1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstIterator.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/DebugCounter.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BuildLibCalls.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace PatternMatch; 94 95 #define DEBUG_TYPE "dse" 96 97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 99 STATISTIC(NumFastStores, "Number of stores deleted"); 100 STATISTIC(NumFastOther, "Number of other instrs removed"); 101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 102 STATISTIC(NumModifiedStores, "Number of stores modified"); 103 STATISTIC(NumCFGChecks, "Number of stores modified"); 104 STATISTIC(NumCFGTries, "Number of stores modified"); 105 STATISTIC(NumCFGSuccess, "Number of stores modified"); 106 STATISTIC(NumGetDomMemoryDefPassed, 107 "Number of times a valid candidate is returned from getDomMemoryDef"); 108 STATISTIC(NumDomMemDefChecks, 109 "Number iterations check for reads in getDomMemoryDef"); 110 111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 112 "Controls which MemoryDefs are eliminated."); 113 114 static cl::opt<bool> 115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial-overwrite tracking in DSE")); 118 119 static cl::opt<bool> 120 EnablePartialStoreMerging("enable-dse-partial-store-merging", 121 cl::init(true), cl::Hidden, 122 cl::desc("Enable partial store merging in DSE")); 123 124 static cl::opt<unsigned> 125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 126 cl::desc("The number of memory instructions to scan for " 127 "dead store elimination (default = 150)")); 128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 130 cl::desc("The maximum number of steps while walking upwards to find " 131 "MemoryDefs that may be killed (default = 90)")); 132 133 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 135 cl::desc("The maximum number candidates that only partially overwrite the " 136 "killing MemoryDef to consider" 137 " (default = 5)")); 138 139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 142 "other stores per basic block (default = 5000)")); 143 144 static cl::opt<unsigned> MemorySSASameBBStepCost( 145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 146 cl::desc( 147 "The cost of a step in the same basic block as the killing MemoryDef" 148 "(default = 1)")); 149 150 static cl::opt<unsigned> 151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 152 cl::Hidden, 153 cl::desc("The cost of a step in a different basic " 154 "block than the killing MemoryDef" 155 "(default = 5)")); 156 157 static cl::opt<unsigned> MemorySSAPathCheckLimit( 158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 159 cl::desc("The maximum number of blocks to check when trying to prove that " 160 "all paths to an exit go through a killing block (default = 50)")); 161 162 //===----------------------------------------------------------------------===// 163 // Helper functions 164 //===----------------------------------------------------------------------===// 165 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 166 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 167 168 /// Does this instruction write some memory? This only returns true for things 169 /// that we can analyze with other helpers below. 170 static bool hasAnalyzableMemoryWrite(Instruction *I, 171 const TargetLibraryInfo &TLI) { 172 if (isa<StoreInst>(I)) 173 return true; 174 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 175 switch (II->getIntrinsicID()) { 176 default: 177 return false; 178 case Intrinsic::memset: 179 case Intrinsic::memmove: 180 case Intrinsic::memcpy: 181 case Intrinsic::memcpy_inline: 182 case Intrinsic::memcpy_element_unordered_atomic: 183 case Intrinsic::memmove_element_unordered_atomic: 184 case Intrinsic::memset_element_unordered_atomic: 185 case Intrinsic::init_trampoline: 186 case Intrinsic::lifetime_end: 187 case Intrinsic::masked_store: 188 return true; 189 } 190 } 191 if (auto *CB = dyn_cast<CallBase>(I)) { 192 LibFunc LF; 193 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 194 switch (LF) { 195 case LibFunc_strcpy: 196 case LibFunc_strncpy: 197 case LibFunc_strcat: 198 case LibFunc_strncat: 199 return true; 200 default: 201 return false; 202 } 203 } 204 } 205 return false; 206 } 207 208 /// Return a Location stored to by the specified instruction. If isRemovable 209 /// returns true, this function and getLocForRead completely describe the memory 210 /// operations for this instruction. 211 static MemoryLocation getLocForWrite(Instruction *Inst, 212 const TargetLibraryInfo &TLI) { 213 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 214 return MemoryLocation::get(SI); 215 216 // memcpy/memmove/memset. 217 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) 218 return MemoryLocation::getForDest(MI); 219 220 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 221 switch (II->getIntrinsicID()) { 222 default: 223 return MemoryLocation(); // Unhandled intrinsic. 224 case Intrinsic::init_trampoline: 225 return MemoryLocation::getAfter(II->getArgOperand(0)); 226 case Intrinsic::masked_store: 227 return MemoryLocation::getForArgument(II, 1, TLI); 228 case Intrinsic::lifetime_end: { 229 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 230 return MemoryLocation(II->getArgOperand(1), Len); 231 } 232 } 233 } 234 if (auto *CB = dyn_cast<CallBase>(Inst)) 235 // All the supported TLI functions so far happen to have dest as their 236 // first argument. 237 return MemoryLocation::getAfter(CB->getArgOperand(0)); 238 return MemoryLocation(); 239 } 240 241 /// If the value of this instruction and the memory it writes to is unused, may 242 /// we delete this instruction? 243 static bool isRemovable(Instruction *I) { 244 // Don't remove volatile/atomic stores. 245 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 246 return SI->isUnordered(); 247 248 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 249 switch (II->getIntrinsicID()) { 250 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); 251 case Intrinsic::lifetime_end: 252 // Never remove dead lifetime_end's, e.g. because it is followed by a 253 // free. 254 return false; 255 case Intrinsic::init_trampoline: 256 // Always safe to remove init_trampoline. 257 return true; 258 case Intrinsic::memset: 259 case Intrinsic::memmove: 260 case Intrinsic::memcpy: 261 case Intrinsic::memcpy_inline: 262 // Don't remove volatile memory intrinsics. 263 return !cast<MemIntrinsic>(II)->isVolatile(); 264 case Intrinsic::memcpy_element_unordered_atomic: 265 case Intrinsic::memmove_element_unordered_atomic: 266 case Intrinsic::memset_element_unordered_atomic: 267 case Intrinsic::masked_store: 268 return true; 269 } 270 } 271 272 // note: only get here for calls with analyzable writes - i.e. libcalls 273 if (auto *CB = dyn_cast<CallBase>(I)) 274 return CB->use_empty(); 275 276 return false; 277 } 278 279 /// Returns true if the end of this instruction can be safely shortened in 280 /// length. 281 static bool isShortenableAtTheEnd(Instruction *I) { 282 // Don't shorten stores for now 283 if (isa<StoreInst>(I)) 284 return false; 285 286 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 287 switch (II->getIntrinsicID()) { 288 default: return false; 289 case Intrinsic::memset: 290 case Intrinsic::memcpy: 291 case Intrinsic::memcpy_element_unordered_atomic: 292 case Intrinsic::memset_element_unordered_atomic: 293 // Do shorten memory intrinsics. 294 // FIXME: Add memmove if it's also safe to transform. 295 return true; 296 } 297 } 298 299 // Don't shorten libcalls calls for now. 300 301 return false; 302 } 303 304 /// Returns true if the beginning of this instruction can be safely shortened 305 /// in length. 306 static bool isShortenableAtTheBeginning(Instruction *I) { 307 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 308 // easily done by offsetting the source address. 309 return isa<AnyMemSetInst>(I); 310 } 311 312 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 313 const TargetLibraryInfo &TLI, 314 const Function *F) { 315 uint64_t Size; 316 ObjectSizeOpts Opts; 317 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 318 319 if (getObjectSize(V, Size, DL, &TLI, Opts)) 320 return Size; 321 return MemoryLocation::UnknownSize; 322 } 323 324 namespace { 325 326 enum OverwriteResult { 327 OW_Begin, 328 OW_Complete, 329 OW_End, 330 OW_PartialEarlierWithFullLater, 331 OW_MaybePartial, 332 OW_Unknown 333 }; 334 335 } // end anonymous namespace 336 337 /// Check if two instruction are masked stores that completely 338 /// overwrite one another. More specifically, \p KillingI has to 339 /// overwrite \p DeadI. 340 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 341 const Instruction *DeadI, 342 BatchAAResults &AA) { 343 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 344 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 345 if (KillingII == nullptr || DeadII == nullptr) 346 return OW_Unknown; 347 if (KillingII->getIntrinsicID() != Intrinsic::masked_store || 348 DeadII->getIntrinsicID() != Intrinsic::masked_store) 349 return OW_Unknown; 350 // Pointers. 351 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 352 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 353 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 354 return OW_Unknown; 355 // Masks. 356 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 357 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 358 return OW_Unknown; 359 return OW_Complete; 360 } 361 362 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 363 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 364 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 365 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 366 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 367 /// overwritten by a killing (smaller) store which doesn't write outside the big 368 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 369 /// NOTE: This function must only be called if both \p KillingLoc and \p 370 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 371 /// \p DeadOff. 372 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 373 const MemoryLocation &DeadLoc, 374 int64_t KillingOff, int64_t DeadOff, 375 Instruction *DeadI, 376 InstOverlapIntervalsTy &IOL) { 377 const uint64_t KillingSize = KillingLoc.Size.getValue(); 378 const uint64_t DeadSize = DeadLoc.Size.getValue(); 379 // We may now overlap, although the overlap is not complete. There might also 380 // be other incomplete overlaps, and together, they might cover the complete 381 // dead store. 382 // Note: The correctness of this logic depends on the fact that this function 383 // is not even called providing DepWrite when there are any intervening reads. 384 if (EnablePartialOverwriteTracking && 385 KillingOff < int64_t(DeadOff + DeadSize) && 386 int64_t(KillingOff + KillingSize) >= DeadOff) { 387 388 // Insert our part of the overlap into the map. 389 auto &IM = IOL[DeadI]; 390 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 391 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 392 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 393 << ")\n"); 394 395 // Make sure that we only insert non-overlapping intervals and combine 396 // adjacent intervals. The intervals are stored in the map with the ending 397 // offset as the key (in the half-open sense) and the starting offset as 398 // the value. 399 int64_t KillingIntStart = KillingOff; 400 int64_t KillingIntEnd = KillingOff + KillingSize; 401 402 // Find any intervals ending at, or after, KillingIntStart which start 403 // before KillingIntEnd. 404 auto ILI = IM.lower_bound(KillingIntStart); 405 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 406 // This existing interval is overlapped with the current store somewhere 407 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 408 // intervals and adjusting our start and end. 409 KillingIntStart = std::min(KillingIntStart, ILI->second); 410 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 411 ILI = IM.erase(ILI); 412 413 // Continue erasing and adjusting our end in case other previous 414 // intervals are also overlapped with the current store. 415 // 416 // |--- dead 1 ---| |--- dead 2 ---| 417 // |------- killing---------| 418 // 419 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 420 assert(ILI->second > KillingIntStart && "Unexpected interval"); 421 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 422 ILI = IM.erase(ILI); 423 } 424 } 425 426 IM[KillingIntEnd] = KillingIntStart; 427 428 ILI = IM.begin(); 429 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 430 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 431 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 432 << ") Composite KillingLoc [" << ILI->second << ", " 433 << ILI->first << ")\n"); 434 ++NumCompletePartials; 435 return OW_Complete; 436 } 437 } 438 439 // Check for a dead store which writes to all the memory locations that 440 // the killing store writes to. 441 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 442 int64_t(DeadOff + DeadSize) > KillingOff && 443 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 444 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 445 << ", " << int64_t(DeadOff + DeadSize) 446 << ") by a killing store [" << KillingOff << ", " 447 << int64_t(KillingOff + KillingSize) << ")\n"); 448 // TODO: Maybe come up with a better name? 449 return OW_PartialEarlierWithFullLater; 450 } 451 452 // Another interesting case is if the killing store overwrites the end of the 453 // dead store. 454 // 455 // |--dead--| 456 // |-- killing --| 457 // 458 // In this case we may want to trim the size of dead store to avoid 459 // generating stores to addresses which will definitely be overwritten killing 460 // store. 461 if (!EnablePartialOverwriteTracking && 462 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 463 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 464 return OW_End; 465 466 // Finally, we also need to check if the killing store overwrites the 467 // beginning of the dead store. 468 // 469 // |--dead--| 470 // |-- killing --| 471 // 472 // In this case we may want to move the destination address and trim the size 473 // of dead store to avoid generating stores to addresses which will definitely 474 // be overwritten killing store. 475 if (!EnablePartialOverwriteTracking && 476 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 477 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 478 "Expect to be handled as OW_Complete"); 479 return OW_Begin; 480 } 481 // Otherwise, they don't completely overlap. 482 return OW_Unknown; 483 } 484 485 /// Returns true if the memory which is accessed by the second instruction is not 486 /// modified between the first and the second instruction. 487 /// Precondition: Second instruction must be dominated by the first 488 /// instruction. 489 static bool 490 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 491 BatchAAResults &AA, const DataLayout &DL, 492 DominatorTree *DT) { 493 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 494 // instructions which can modify the memory location accessed by SecondI. 495 // 496 // While doing the walk keep track of the address to check. It might be 497 // different in different basic blocks due to PHI translation. 498 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 499 SmallVector<BlockAddressPair, 16> WorkList; 500 // Keep track of the address we visited each block with. Bail out if we 501 // visit a block with different addresses. 502 DenseMap<BasicBlock *, Value *> Visited; 503 504 BasicBlock::iterator FirstBBI(FirstI); 505 ++FirstBBI; 506 BasicBlock::iterator SecondBBI(SecondI); 507 BasicBlock *FirstBB = FirstI->getParent(); 508 BasicBlock *SecondBB = SecondI->getParent(); 509 MemoryLocation MemLoc; 510 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 511 MemLoc = MemoryLocation::getForDest(MemSet); 512 else 513 MemLoc = MemoryLocation::get(SecondI); 514 515 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 516 517 // Start checking the SecondBB. 518 WorkList.push_back( 519 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 520 bool isFirstBlock = true; 521 522 // Check all blocks going backward until we reach the FirstBB. 523 while (!WorkList.empty()) { 524 BlockAddressPair Current = WorkList.pop_back_val(); 525 BasicBlock *B = Current.first; 526 PHITransAddr &Addr = Current.second; 527 Value *Ptr = Addr.getAddr(); 528 529 // Ignore instructions before FirstI if this is the FirstBB. 530 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 531 532 BasicBlock::iterator EI; 533 if (isFirstBlock) { 534 // Ignore instructions after SecondI if this is the first visit of SecondBB. 535 assert(B == SecondBB && "first block is not the store block"); 536 EI = SecondBBI; 537 isFirstBlock = false; 538 } else { 539 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 540 // In this case we also have to look at instructions after SecondI. 541 EI = B->end(); 542 } 543 for (; BI != EI; ++BI) { 544 Instruction *I = &*BI; 545 if (I->mayWriteToMemory() && I != SecondI) 546 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 547 return false; 548 } 549 if (B != FirstBB) { 550 assert(B != &FirstBB->getParent()->getEntryBlock() && 551 "Should not hit the entry block because SI must be dominated by LI"); 552 for (BasicBlock *Pred : predecessors(B)) { 553 PHITransAddr PredAddr = Addr; 554 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 555 if (!PredAddr.IsPotentiallyPHITranslatable()) 556 return false; 557 if (PredAddr.PHITranslateValue(B, Pred, DT, false)) 558 return false; 559 } 560 Value *TranslatedPtr = PredAddr.getAddr(); 561 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 562 if (!Inserted.second) { 563 // We already visited this block before. If it was with a different 564 // address - bail out! 565 if (TranslatedPtr != Inserted.first->second) 566 return false; 567 // ... otherwise just skip it. 568 continue; 569 } 570 WorkList.push_back(std::make_pair(Pred, PredAddr)); 571 } 572 } 573 } 574 return true; 575 } 576 577 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 578 uint64_t &DeadSize, int64_t KillingStart, 579 uint64_t KillingSize, bool IsOverwriteEnd) { 580 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 581 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 582 583 // We assume that memet/memcpy operates in chunks of the "largest" native 584 // type size and aligned on the same value. That means optimal start and size 585 // of memset/memcpy should be modulo of preferred alignment of that type. That 586 // is it there is no any sense in trying to reduce store size any further 587 // since any "extra" stores comes for free anyway. 588 // On the other hand, maximum alignment we can achieve is limited by alignment 589 // of initial store. 590 591 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 592 // "largest" native type. 593 // Note: What is the proper way to get that value? 594 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 595 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 596 597 int64_t ToRemoveStart = 0; 598 uint64_t ToRemoveSize = 0; 599 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 600 // maintained on the remaining store. 601 if (IsOverwriteEnd) { 602 // Calculate required adjustment for 'KillingStart' in order to keep 603 // remaining store size aligned on 'PerfAlign'. 604 uint64_t Off = 605 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 606 ToRemoveStart = KillingStart + Off; 607 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 608 return false; 609 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 610 } else { 611 ToRemoveStart = DeadStart; 612 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 613 "Not overlapping accesses?"); 614 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 615 // Calculate required adjustment for 'ToRemoveSize'in order to keep 616 // start of the remaining store aligned on 'PerfAlign'. 617 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 618 if (Off != 0) { 619 if (ToRemoveSize <= (PrefAlign.value() - Off)) 620 return false; 621 ToRemoveSize -= PrefAlign.value() - Off; 622 } 623 assert(isAligned(PrefAlign, ToRemoveSize) && 624 "Should preserve selected alignment"); 625 } 626 627 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 628 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 629 630 uint64_t NewSize = DeadSize - ToRemoveSize; 631 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 632 // When shortening an atomic memory intrinsic, the newly shortened 633 // length must remain an integer multiple of the element size. 634 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 635 if (0 != NewSize % ElementSize) 636 return false; 637 } 638 639 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 640 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 641 << "\n KILLER [" << ToRemoveStart << ", " 642 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 643 644 Value *DeadWriteLength = DeadIntrinsic->getLength(); 645 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 646 DeadIntrinsic->setLength(TrimmedLength); 647 DeadIntrinsic->setDestAlignment(PrefAlign); 648 649 if (!IsOverwriteEnd) { 650 Value *OrigDest = DeadIntrinsic->getRawDest(); 651 Type *Int8PtrTy = 652 Type::getInt8PtrTy(DeadIntrinsic->getContext(), 653 OrigDest->getType()->getPointerAddressSpace()); 654 Value *Dest = OrigDest; 655 if (OrigDest->getType() != Int8PtrTy) 656 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI); 657 Value *Indices[1] = { 658 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 659 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 660 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI); 661 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 662 if (NewDestGEP->getType() != OrigDest->getType()) 663 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(), 664 "", DeadI); 665 DeadIntrinsic->setDest(NewDestGEP); 666 } 667 668 // Finally update start and size of dead access. 669 if (!IsOverwriteEnd) 670 DeadStart += ToRemoveSize; 671 DeadSize = NewSize; 672 673 return true; 674 } 675 676 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 677 int64_t &DeadStart, uint64_t &DeadSize) { 678 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 679 return false; 680 681 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 682 int64_t KillingStart = OII->second; 683 uint64_t KillingSize = OII->first - KillingStart; 684 685 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 686 687 if (KillingStart > DeadStart && 688 // Note: "KillingStart - KillingStart" is known to be positive due to 689 // preceding check. 690 (uint64_t)(KillingStart - DeadStart) < DeadSize && 691 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 692 // be non negative due to preceding checks. 693 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 694 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 695 true)) { 696 IntervalMap.erase(OII); 697 return true; 698 } 699 } 700 return false; 701 } 702 703 static bool tryToShortenBegin(Instruction *DeadI, 704 OverlapIntervalsTy &IntervalMap, 705 int64_t &DeadStart, uint64_t &DeadSize) { 706 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 707 return false; 708 709 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 710 int64_t KillingStart = OII->second; 711 uint64_t KillingSize = OII->first - KillingStart; 712 713 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 714 715 if (KillingStart <= DeadStart && 716 // Note: "DeadStart - KillingStart" is known to be non negative due to 717 // preceding check. 718 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 719 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 720 // be positive due to preceding checks. 721 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 722 "Should have been handled as OW_Complete"); 723 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 724 false)) { 725 IntervalMap.erase(OII); 726 return true; 727 } 728 } 729 return false; 730 } 731 732 static bool removePartiallyOverlappedStores(const DataLayout &DL, 733 InstOverlapIntervalsTy &IOL, 734 const TargetLibraryInfo &TLI) { 735 bool Changed = false; 736 for (auto OI : IOL) { 737 Instruction *DeadI = OI.first; 738 MemoryLocation Loc = getLocForWrite(DeadI, TLI); 739 assert(isRemovable(DeadI) && "Expect only removable instruction"); 740 741 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 742 int64_t DeadStart = 0; 743 uint64_t DeadSize = Loc.Size.getValue(); 744 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 745 OverlapIntervalsTy &IntervalMap = OI.second; 746 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 747 if (IntervalMap.empty()) 748 continue; 749 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 750 } 751 return Changed; 752 } 753 754 static Constant * 755 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 756 int64_t KillingOffset, int64_t DeadOffset, 757 const DataLayout &DL, BatchAAResults &AA, 758 DominatorTree *DT) { 759 760 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 761 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 762 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 763 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 764 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 765 // If the store we find is: 766 // a) partially overwritten by the store to 'Loc' 767 // b) the killing store is fully contained in the dead one and 768 // c) they both have a constant value 769 // d) none of the two stores need padding 770 // Merge the two stores, replacing the dead store's value with a 771 // merge of both values. 772 // TODO: Deal with other constant types (vectors, etc), and probably 773 // some mem intrinsics (if needed) 774 775 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 776 APInt KillingValue = 777 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 778 unsigned KillingBits = KillingValue.getBitWidth(); 779 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 780 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 781 782 // Offset of the smaller store inside the larger store 783 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 784 unsigned LShiftAmount = 785 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 786 : BitOffsetDiff; 787 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 788 LShiftAmount + KillingBits); 789 // Clear the bits we'll be replacing, then OR with the smaller 790 // store, shifted appropriately. 791 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 792 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 793 << "\n Killing: " << *KillingI 794 << "\n Merged Value: " << Merged << '\n'); 795 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 796 } 797 return nullptr; 798 } 799 800 namespace { 801 // Returns true if \p I is an intrisnic that does not read or write memory. 802 bool isNoopIntrinsic(Instruction *I) { 803 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 804 switch (II->getIntrinsicID()) { 805 case Intrinsic::lifetime_start: 806 case Intrinsic::lifetime_end: 807 case Intrinsic::invariant_end: 808 case Intrinsic::launder_invariant_group: 809 case Intrinsic::assume: 810 return true; 811 case Intrinsic::dbg_addr: 812 case Intrinsic::dbg_declare: 813 case Intrinsic::dbg_label: 814 case Intrinsic::dbg_value: 815 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 816 default: 817 return false; 818 } 819 } 820 return false; 821 } 822 823 // Check if we can ignore \p D for DSE. 824 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller, 825 const TargetLibraryInfo &TLI) { 826 Instruction *DI = D->getMemoryInst(); 827 // Calls that only access inaccessible memory cannot read or write any memory 828 // locations we consider for elimination. 829 if (auto *CB = dyn_cast<CallBase>(DI)) 830 if (CB->onlyAccessesInaccessibleMemory()) { 831 if (isAllocLikeFn(DI, &TLI)) 832 return false; 833 return true; 834 } 835 // We can eliminate stores to locations not visible to the caller across 836 // throwing instructions. 837 if (DI->mayThrow() && !DefVisibleToCaller) 838 return true; 839 840 // We can remove the dead stores, irrespective of the fence and its ordering 841 // (release/acquire/seq_cst). Fences only constraints the ordering of 842 // already visible stores, it does not make a store visible to other 843 // threads. So, skipping over a fence does not change a store from being 844 // dead. 845 if (isa<FenceInst>(DI)) 846 return true; 847 848 // Skip intrinsics that do not really read or modify memory. 849 if (isNoopIntrinsic(DI)) 850 return true; 851 852 return false; 853 } 854 855 struct DSEState { 856 Function &F; 857 AliasAnalysis &AA; 858 EarliestEscapeInfo EI; 859 860 /// The single BatchAA instance that is used to cache AA queries. It will 861 /// not be invalidated over the whole run. This is safe, because: 862 /// 1. Only memory writes are removed, so the alias cache for memory 863 /// locations remains valid. 864 /// 2. No new instructions are added (only instructions removed), so cached 865 /// information for a deleted value cannot be accessed by a re-used new 866 /// value pointer. 867 BatchAAResults BatchAA; 868 869 MemorySSA &MSSA; 870 DominatorTree &DT; 871 PostDominatorTree &PDT; 872 const TargetLibraryInfo &TLI; 873 const DataLayout &DL; 874 const LoopInfo &LI; 875 876 // Whether the function contains any irreducible control flow, useful for 877 // being accurately able to detect loops. 878 bool ContainsIrreducibleLoops; 879 880 // All MemoryDefs that potentially could kill other MemDefs. 881 SmallVector<MemoryDef *, 64> MemDefs; 882 // Any that should be skipped as they are already deleted 883 SmallPtrSet<MemoryAccess *, 4> SkipStores; 884 // Keep track of all of the objects that are invisible to the caller before 885 // the function returns. 886 // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet; 887 DenseMap<const Value *, bool> InvisibleToCallerBeforeRet; 888 // Keep track of all of the objects that are invisible to the caller after 889 // the function returns. 890 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 891 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 892 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 893 // Post-order numbers for each basic block. Used to figure out if memory 894 // accesses are executed before another access. 895 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 896 897 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 898 /// basic block. 899 DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs; 900 901 // Class contains self-reference, make sure it's not copied/moved. 902 DSEState(const DSEState &) = delete; 903 DSEState &operator=(const DSEState &) = delete; 904 905 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 906 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 907 const LoopInfo &LI) 908 : F(F), AA(AA), EI(DT, LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT), 909 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 910 // Collect blocks with throwing instructions not modeled in MemorySSA and 911 // alloc-like objects. 912 unsigned PO = 0; 913 for (BasicBlock *BB : post_order(&F)) { 914 PostOrderNumbers[BB] = PO++; 915 for (Instruction &I : *BB) { 916 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 917 if (I.mayThrow() && !MA) 918 ThrowingBlocks.insert(I.getParent()); 919 920 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 921 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 922 (getLocForWriteEx(&I) || isMemTerminatorInst(&I))) 923 MemDefs.push_back(MD); 924 } 925 } 926 927 // Treat byval or inalloca arguments the same as Allocas, stores to them are 928 // dead at the end of the function. 929 for (Argument &AI : F.args()) 930 if (AI.hasPassPointeeByValueCopyAttr()) { 931 // For byval, the caller doesn't know the address of the allocation. 932 if (AI.hasByValAttr()) 933 InvisibleToCallerBeforeRet.insert({&AI, true}); 934 InvisibleToCallerAfterRet.insert({&AI, true}); 935 } 936 937 // Collect whether there is any irreducible control flow in the function. 938 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 939 } 940 941 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 942 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 943 /// location (by \p DeadI instruction). 944 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 945 /// \p DeadI, but they both write to the same underlying object. In that 946 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 947 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 948 OverwriteResult isOverwrite(const Instruction *KillingI, 949 const Instruction *DeadI, 950 const MemoryLocation &KillingLoc, 951 const MemoryLocation &DeadLoc, 952 int64_t &KillingOff, int64_t &DeadOff) { 953 // AliasAnalysis does not always account for loops. Limit overwrite checks 954 // to dependencies for which we can guarantee they are independent of any 955 // loops they are in. 956 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 957 return OW_Unknown; 958 959 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 960 // get imprecise values here, though (except for unknown sizes). 961 if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) { 962 // In case no constant size is known, try to an IR values for the number 963 // of bytes written and check if they match. 964 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 965 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 966 if (KillingMemI && DeadMemI) { 967 const Value *KillingV = KillingMemI->getLength(); 968 const Value *DeadV = DeadMemI->getLength(); 969 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 970 return OW_Complete; 971 } 972 973 // Masked stores have imprecise locations, but we can reason about them 974 // to some extent. 975 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 976 } 977 978 const uint64_t KillingSize = KillingLoc.Size.getValue(); 979 const uint64_t DeadSize = DeadLoc.Size.getValue(); 980 981 // Query the alias information 982 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 983 984 // If the start pointers are the same, we just have to compare sizes to see if 985 // the killing store was larger than the dead store. 986 if (AAR == AliasResult::MustAlias) { 987 // Make sure that the KillingSize size is >= the DeadSize size. 988 if (KillingSize >= DeadSize) 989 return OW_Complete; 990 } 991 992 // If we hit a partial alias we may have a full overwrite 993 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 994 int32_t Off = AAR.getOffset(); 995 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 996 return OW_Complete; 997 } 998 999 // Check to see if the killing store is to the entire object (either a 1000 // global, an alloca, or a byval/inalloca argument). If so, then it clearly 1001 // overwrites any other store to the same object. 1002 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 1003 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 1004 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 1005 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 1006 1007 // If we can't resolve the same pointers to the same object, then we can't 1008 // analyze them at all. 1009 if (DeadUndObj != KillingUndObj) 1010 return OW_Unknown; 1011 1012 // If the KillingI store is to a recognizable object, get its size. 1013 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F); 1014 if (KillingUndObjSize != MemoryLocation::UnknownSize) 1015 if (KillingUndObjSize == KillingSize && KillingUndObjSize >= DeadSize) 1016 return OW_Complete; 1017 1018 // Okay, we have stores to two completely different pointers. Try to 1019 // decompose the pointer into a "base + constant_offset" form. If the base 1020 // pointers are equal, then we can reason about the two stores. 1021 DeadOff = 0; 1022 KillingOff = 0; 1023 const Value *DeadBasePtr = 1024 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 1025 const Value *KillingBasePtr = 1026 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 1027 1028 // If the base pointers still differ, we have two completely different 1029 // stores. 1030 if (DeadBasePtr != KillingBasePtr) 1031 return OW_Unknown; 1032 1033 // The killing access completely overlaps the dead store if and only if 1034 // both start and end of the dead one is "inside" the killing one: 1035 // |<->|--dead--|<->| 1036 // |-----killing------| 1037 // Accesses may overlap if and only if start of one of them is "inside" 1038 // another one: 1039 // |<->|--dead--|<-------->| 1040 // |-------killing--------| 1041 // OR 1042 // |-------dead-------| 1043 // |<->|---killing---|<----->| 1044 // 1045 // We have to be careful here as *Off is signed while *.Size is unsigned. 1046 1047 // Check if the dead access starts "not before" the killing one. 1048 if (DeadOff >= KillingOff) { 1049 // If the dead access ends "not after" the killing access then the 1050 // dead one is completely overwritten by the killing one. 1051 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 1052 return OW_Complete; 1053 // If start of the dead access is "before" end of the killing access 1054 // then accesses overlap. 1055 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 1056 return OW_MaybePartial; 1057 } 1058 // If start of the killing access is "before" end of the dead access then 1059 // accesses overlap. 1060 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 1061 return OW_MaybePartial; 1062 } 1063 1064 // Can reach here only if accesses are known not to overlap. There is no 1065 // dedicated code to indicate no overlap so signal "unknown". 1066 return OW_Unknown; 1067 } 1068 1069 bool isInvisibleToCallerAfterRet(const Value *V) { 1070 if (isa<AllocaInst>(V)) 1071 return true; 1072 auto I = InvisibleToCallerAfterRet.insert({V, false}); 1073 if (I.second) { 1074 if (!isInvisibleToCallerBeforeRet(V)) { 1075 I.first->second = false; 1076 } else { 1077 auto *Inst = dyn_cast<Instruction>(V); 1078 if (Inst && isAllocLikeFn(Inst, &TLI)) 1079 I.first->second = !PointerMayBeCaptured(V, true, false); 1080 } 1081 } 1082 return I.first->second; 1083 } 1084 1085 bool isInvisibleToCallerBeforeRet(const Value *V) { 1086 if (isa<AllocaInst>(V)) 1087 return true; 1088 auto I = InvisibleToCallerBeforeRet.insert({V, false}); 1089 if (I.second) { 1090 auto *Inst = dyn_cast<Instruction>(V); 1091 if (Inst && isAllocLikeFn(Inst, &TLI)) 1092 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1093 // with the killing MemoryDef. But we refrain from doing so for now to 1094 // limit compile-time and this does not cause any changes to the number 1095 // of stores removed on a large test set in practice. 1096 I.first->second = !PointerMayBeCaptured(V, false, true); 1097 } 1098 return I.first->second; 1099 } 1100 1101 Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const { 1102 if (!I->mayWriteToMemory()) 1103 return None; 1104 1105 if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I)) 1106 return {MemoryLocation::getForDest(MTI)}; 1107 1108 if (auto *CB = dyn_cast<CallBase>(I)) { 1109 // If the functions may write to memory we do not know about, bail out. 1110 if (!CB->onlyAccessesArgMemory() && 1111 !CB->onlyAccessesInaccessibleMemOrArgMem()) 1112 return None; 1113 1114 LibFunc LF; 1115 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 1116 switch (LF) { 1117 case LibFunc_strcpy: 1118 case LibFunc_strncpy: 1119 case LibFunc_strcat: 1120 case LibFunc_strncat: 1121 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1122 default: 1123 break; 1124 } 1125 } 1126 switch (CB->getIntrinsicID()) { 1127 case Intrinsic::init_trampoline: 1128 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1129 case Intrinsic::masked_store: 1130 return {MemoryLocation::getForArgument(CB, 1, TLI)}; 1131 default: 1132 break; 1133 } 1134 return None; 1135 } 1136 1137 return MemoryLocation::getOrNone(I); 1138 } 1139 1140 /// Returns true if \p UseInst completely overwrites \p DefLoc 1141 /// (stored by \p DefInst). 1142 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1143 Instruction *UseInst) { 1144 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1145 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1146 // MemoryDef. 1147 if (!UseInst->mayWriteToMemory()) 1148 return false; 1149 1150 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1151 if (CB->onlyAccessesInaccessibleMemory()) 1152 return false; 1153 1154 int64_t InstWriteOffset, DepWriteOffset; 1155 if (auto CC = getLocForWriteEx(UseInst)) 1156 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1157 DepWriteOffset) == OW_Complete; 1158 return false; 1159 } 1160 1161 /// Returns true if \p Def is not read before returning from the function. 1162 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1163 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1164 << *Def->getMemoryInst() 1165 << ") is at the end the function \n"); 1166 1167 auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst()); 1168 if (!MaybeLoc) { 1169 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1170 return false; 1171 } 1172 1173 SmallVector<MemoryAccess *, 4> WorkList; 1174 SmallPtrSet<MemoryAccess *, 8> Visited; 1175 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1176 if (!Visited.insert(Acc).second) 1177 return; 1178 for (Use &U : Acc->uses()) 1179 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1180 }; 1181 PushMemUses(Def); 1182 for (unsigned I = 0; I < WorkList.size(); I++) { 1183 if (WorkList.size() >= MemorySSAScanLimit) { 1184 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1185 return false; 1186 } 1187 1188 MemoryAccess *UseAccess = WorkList[I]; 1189 // Simply adding the users of MemoryPhi to the worklist is not enough, 1190 // because we might miss read clobbers in different iterations of a loop, 1191 // for example. 1192 // TODO: Add support for phi translation to handle the loop case. 1193 if (isa<MemoryPhi>(UseAccess)) 1194 return false; 1195 1196 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1197 // of times this is called and/or caching it. 1198 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1199 if (isReadClobber(*MaybeLoc, UseInst)) { 1200 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1201 return false; 1202 } 1203 1204 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1205 PushMemUses(UseDef); 1206 } 1207 return true; 1208 } 1209 1210 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1211 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1212 /// indicating whether \p I is a free-like call. 1213 Optional<std::pair<MemoryLocation, bool>> 1214 getLocForTerminator(Instruction *I) const { 1215 uint64_t Len; 1216 Value *Ptr; 1217 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1218 m_Value(Ptr)))) 1219 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1220 1221 if (auto *CB = dyn_cast<CallBase>(I)) { 1222 if (isFreeCall(I, &TLI)) 1223 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1224 true)}; 1225 } 1226 1227 return None; 1228 } 1229 1230 /// Returns true if \p I is a memory terminator instruction like 1231 /// llvm.lifetime.end or free. 1232 bool isMemTerminatorInst(Instruction *I) const { 1233 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1234 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1235 isFreeCall(I, &TLI); 1236 } 1237 1238 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1239 /// instruction \p AccessI. 1240 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1241 Instruction *MaybeTerm) { 1242 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1243 getLocForTerminator(MaybeTerm); 1244 1245 if (!MaybeTermLoc) 1246 return false; 1247 1248 // If the terminator is a free-like call, all accesses to the underlying 1249 // object can be considered terminated. 1250 if (getUnderlyingObject(Loc.Ptr) != 1251 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1252 return false; 1253 1254 auto TermLoc = MaybeTermLoc->first; 1255 if (MaybeTermLoc->second) { 1256 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1257 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1258 } 1259 int64_t InstWriteOffset = 0; 1260 int64_t DepWriteOffset = 0; 1261 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1262 DepWriteOffset) == OW_Complete; 1263 } 1264 1265 // Returns true if \p Use may read from \p DefLoc. 1266 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1267 if (isNoopIntrinsic(UseInst)) 1268 return false; 1269 1270 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1271 // treated as read clobber. 1272 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1273 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1274 1275 if (!UseInst->mayReadFromMemory()) 1276 return false; 1277 1278 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1279 if (CB->onlyAccessesInaccessibleMemory()) 1280 return false; 1281 1282 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1283 } 1284 1285 /// Returns true if a dependency between \p Current and \p KillingDef is 1286 /// guaranteed to be loop invariant for the loops that they are in. Either 1287 /// because they are known to be in the same block, in the same loop level or 1288 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1289 /// during execution of the containing function. 1290 bool isGuaranteedLoopIndependent(const Instruction *Current, 1291 const Instruction *KillingDef, 1292 const MemoryLocation &CurrentLoc) { 1293 // If the dependency is within the same block or loop level (being careful 1294 // of irreducible loops), we know that AA will return a valid result for the 1295 // memory dependency. (Both at the function level, outside of any loop, 1296 // would also be valid but we currently disable that to limit compile time). 1297 if (Current->getParent() == KillingDef->getParent()) 1298 return true; 1299 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1300 if (!ContainsIrreducibleLoops && CurrentLI && 1301 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1302 return true; 1303 // Otherwise check the memory location is invariant to any loops. 1304 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1305 } 1306 1307 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1308 /// loop. In particular, this guarantees that it only references a single 1309 /// MemoryLocation during execution of the containing function. 1310 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1311 auto IsGuaranteedLoopInvariantBase = [this](const Value *Ptr) { 1312 Ptr = Ptr->stripPointerCasts(); 1313 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1314 if (isa<AllocaInst>(Ptr)) 1315 return true; 1316 1317 if (isAllocLikeFn(I, &TLI)) 1318 return true; 1319 1320 return false; 1321 } 1322 return true; 1323 }; 1324 1325 Ptr = Ptr->stripPointerCasts(); 1326 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1327 if (I->getParent()->isEntryBlock()) 1328 return true; 1329 } 1330 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 1331 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 1332 GEP->hasAllConstantIndices(); 1333 } 1334 return IsGuaranteedLoopInvariantBase(Ptr); 1335 } 1336 1337 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1338 // with no read access between them or on any other path to a function exit 1339 // block if \p KillingLoc is not accessible after the function returns. If 1340 // there is no such MemoryDef, return None. The returned value may not 1341 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1342 // encounter an aliasing MemoryUse (read). 1343 Optional<MemoryAccess *> 1344 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1345 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1346 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1347 bool IsMemTerm, unsigned &PartialLimit) { 1348 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1349 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1350 return None; 1351 } 1352 1353 MemoryAccess *Current = StartAccess; 1354 Instruction *KillingI = KillingDef->getMemoryInst(); 1355 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1356 1357 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1358 Optional<MemoryLocation> CurrentLoc; 1359 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1360 LLVM_DEBUG({ 1361 dbgs() << " visiting " << *Current; 1362 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1363 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1364 << ")"; 1365 dbgs() << "\n"; 1366 }); 1367 1368 // Reached TOP. 1369 if (MSSA.isLiveOnEntryDef(Current)) { 1370 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1371 return None; 1372 } 1373 1374 // Cost of a step. Accesses in the same block are more likely to be valid 1375 // candidates for elimination, hence consider them cheaper. 1376 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1377 ? MemorySSASameBBStepCost 1378 : MemorySSAOtherBBStepCost; 1379 if (WalkerStepLimit <= StepCost) { 1380 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1381 return None; 1382 } 1383 WalkerStepLimit -= StepCost; 1384 1385 // Return for MemoryPhis. They cannot be eliminated directly and the 1386 // caller is responsible for traversing them. 1387 if (isa<MemoryPhi>(Current)) { 1388 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1389 return Current; 1390 } 1391 1392 // Below, check if CurrentDef is a valid candidate to be eliminated by 1393 // KillingDef. If it is not, check the next candidate. 1394 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1395 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1396 1397 if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(KillingUndObj), 1398 TLI)) 1399 continue; 1400 1401 // Before we try to remove anything, check for any extra throwing 1402 // instructions that block us from DSEing 1403 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1404 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1405 return None; 1406 } 1407 1408 // Check for anything that looks like it will be a barrier to further 1409 // removal 1410 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1411 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1412 return None; 1413 } 1414 1415 // If Current is known to be on path that reads DefLoc or is a read 1416 // clobber, bail out, as the path is not profitable. We skip this check 1417 // for intrinsic calls, because the code knows how to handle memcpy 1418 // intrinsics. 1419 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1420 return None; 1421 1422 // Quick check if there are direct uses that are read-clobbers. 1423 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1424 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1425 return !MSSA.dominates(StartAccess, UseOrDef) && 1426 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1427 return false; 1428 })) { 1429 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1430 return None; 1431 } 1432 1433 // If Current cannot be analyzed or is not removable, check the next 1434 // candidate. 1435 if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI)) 1436 continue; 1437 1438 // If Current does not have an analyzable write location, skip it 1439 CurrentLoc = getLocForWriteEx(CurrentI); 1440 if (!CurrentLoc) 1441 continue; 1442 1443 // AliasAnalysis does not account for loops. Limit elimination to 1444 // candidates for which we can guarantee they always store to the same 1445 // memory location and not located in different loops. 1446 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1447 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1448 WalkerStepLimit -= 1; 1449 continue; 1450 } 1451 1452 if (IsMemTerm) { 1453 // If the killing def is a memory terminator (e.g. lifetime.end), check 1454 // the next candidate if the current Current does not write the same 1455 // underlying object as the terminator. 1456 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) 1457 continue; 1458 } else { 1459 int64_t KillingOffset = 0; 1460 int64_t DeadOffset = 0; 1461 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1462 KillingOffset, DeadOffset); 1463 // If Current does not write to the same object as KillingDef, check 1464 // the next candidate. 1465 if (OR == OW_Unknown) 1466 continue; 1467 else if (OR == OW_MaybePartial) { 1468 // If KillingDef only partially overwrites Current, check the next 1469 // candidate if the partial step limit is exceeded. This aggressively 1470 // limits the number of candidates for partial store elimination, 1471 // which are less likely to be removable in the end. 1472 if (PartialLimit <= 1) { 1473 WalkerStepLimit -= 1; 1474 continue; 1475 } 1476 PartialLimit -= 1; 1477 } 1478 } 1479 break; 1480 }; 1481 1482 // Accesses to objects accessible after the function returns can only be 1483 // eliminated if the access is dead along all paths to the exit. Collect 1484 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1485 // they cover all paths from MaybeDeadAccess to any function exit. 1486 SmallPtrSet<Instruction *, 16> KillingDefs; 1487 KillingDefs.insert(KillingDef->getMemoryInst()); 1488 MemoryAccess *MaybeDeadAccess = Current; 1489 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1490 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1491 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1492 << *MaybeDeadI << ")\n"); 1493 1494 SmallSetVector<MemoryAccess *, 32> WorkList; 1495 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1496 for (Use &U : Acc->uses()) 1497 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1498 }; 1499 PushMemUses(MaybeDeadAccess); 1500 1501 // Check if DeadDef may be read. 1502 for (unsigned I = 0; I < WorkList.size(); I++) { 1503 MemoryAccess *UseAccess = WorkList[I]; 1504 1505 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1506 // Bail out if the number of accesses to check exceeds the scan limit. 1507 if (ScanLimit < (WorkList.size() - I)) { 1508 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1509 return None; 1510 } 1511 --ScanLimit; 1512 NumDomMemDefChecks++; 1513 1514 if (isa<MemoryPhi>(UseAccess)) { 1515 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1516 return DT.properlyDominates(KI->getParent(), 1517 UseAccess->getBlock()); 1518 })) { 1519 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1520 continue; 1521 } 1522 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1523 PushMemUses(UseAccess); 1524 continue; 1525 } 1526 1527 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1528 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1529 1530 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1531 return DT.dominates(KI, UseInst); 1532 })) { 1533 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1534 continue; 1535 } 1536 1537 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1538 // MemoryAccesses. We do not have to check it's users. 1539 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1540 LLVM_DEBUG( 1541 dbgs() 1542 << " ... skipping, memterminator invalidates following accesses\n"); 1543 continue; 1544 } 1545 1546 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1547 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1548 PushMemUses(UseAccess); 1549 continue; 1550 } 1551 1552 if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) { 1553 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1554 return None; 1555 } 1556 1557 // Uses which may read the original MemoryDef mean we cannot eliminate the 1558 // original MD. Stop walk. 1559 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1560 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1561 return None; 1562 } 1563 1564 // If this worklist walks back to the original memory access (and the 1565 // pointer is not guarenteed loop invariant) then we cannot assume that a 1566 // store kills itself. 1567 if (MaybeDeadAccess == UseAccess && 1568 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1569 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1570 return None; 1571 } 1572 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1573 // if it reads the memory location. 1574 // TODO: It would probably be better to check for self-reads before 1575 // calling the function. 1576 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1577 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1578 continue; 1579 } 1580 1581 // Check all uses for MemoryDefs, except for defs completely overwriting 1582 // the original location. Otherwise we have to check uses of *all* 1583 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1584 // miss cases like the following 1585 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1586 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1587 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1588 // (The Use points to the *first* Def it may alias) 1589 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1590 // stores [0,1] 1591 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1592 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1593 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1594 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1595 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1596 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1597 LLVM_DEBUG(dbgs() 1598 << " ... found killing def " << *UseInst << "\n"); 1599 KillingDefs.insert(UseInst); 1600 } 1601 } else { 1602 LLVM_DEBUG(dbgs() 1603 << " ... found preceeding def " << *UseInst << "\n"); 1604 return None; 1605 } 1606 } else 1607 PushMemUses(UseDef); 1608 } 1609 } 1610 1611 // For accesses to locations visible after the function returns, make sure 1612 // that the location is dead (=overwritten) along all paths from 1613 // MaybeDeadAccess to the exit. 1614 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1615 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1616 for (Instruction *KD : KillingDefs) 1617 KillingBlocks.insert(KD->getParent()); 1618 assert(!KillingBlocks.empty() && 1619 "Expected at least a single killing block"); 1620 1621 // Find the common post-dominator of all killing blocks. 1622 BasicBlock *CommonPred = *KillingBlocks.begin(); 1623 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1624 if (!CommonPred) 1625 break; 1626 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1627 } 1628 1629 // If CommonPred is in the set of killing blocks, just check if it 1630 // post-dominates MaybeDeadAccess. 1631 if (KillingBlocks.count(CommonPred)) { 1632 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) 1633 return {MaybeDeadAccess}; 1634 return None; 1635 } 1636 1637 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1638 // there is a path from MaybeDeadAccess to an exit not going through a 1639 // killing block. 1640 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1641 SetVector<BasicBlock *> WorkList; 1642 1643 // If CommonPred is null, there are multiple exits from the function. 1644 // They all have to be added to the worklist. 1645 if (CommonPred) 1646 WorkList.insert(CommonPred); 1647 else 1648 for (BasicBlock *R : PDT.roots()) 1649 WorkList.insert(R); 1650 1651 NumCFGTries++; 1652 // Check if all paths starting from an exit node go through one of the 1653 // killing blocks before reaching MaybeDeadAccess. 1654 for (unsigned I = 0; I < WorkList.size(); I++) { 1655 NumCFGChecks++; 1656 BasicBlock *Current = WorkList[I]; 1657 if (KillingBlocks.count(Current)) 1658 continue; 1659 if (Current == MaybeDeadAccess->getBlock()) 1660 return None; 1661 1662 // MaybeDeadAccess is reachable from the entry, so we don't have to 1663 // explore unreachable blocks further. 1664 if (!DT.isReachableFromEntry(Current)) 1665 continue; 1666 1667 for (BasicBlock *Pred : predecessors(Current)) 1668 WorkList.insert(Pred); 1669 1670 if (WorkList.size() >= MemorySSAPathCheckLimit) 1671 return None; 1672 } 1673 NumCFGSuccess++; 1674 return {MaybeDeadAccess}; 1675 } 1676 return None; 1677 } 1678 1679 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1680 // potentially dead. 1681 return {MaybeDeadAccess}; 1682 } 1683 1684 // Delete dead memory defs 1685 void deleteDeadInstruction(Instruction *SI) { 1686 MemorySSAUpdater Updater(&MSSA); 1687 SmallVector<Instruction *, 32> NowDeadInsts; 1688 NowDeadInsts.push_back(SI); 1689 --NumFastOther; 1690 1691 while (!NowDeadInsts.empty()) { 1692 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1693 ++NumFastOther; 1694 1695 // Try to preserve debug information attached to the dead instruction. 1696 salvageDebugInfo(*DeadInst); 1697 salvageKnowledge(DeadInst); 1698 1699 // Remove the Instruction from MSSA. 1700 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 1701 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 1702 SkipStores.insert(MD); 1703 } 1704 1705 Updater.removeMemoryAccess(MA); 1706 } 1707 1708 auto I = IOLs.find(DeadInst->getParent()); 1709 if (I != IOLs.end()) 1710 I->second.erase(DeadInst); 1711 // Remove its operands 1712 for (Use &O : DeadInst->operands()) 1713 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1714 O = nullptr; 1715 if (isInstructionTriviallyDead(OpI, &TLI)) 1716 NowDeadInsts.push_back(OpI); 1717 } 1718 1719 EI.removeInstruction(DeadInst); 1720 DeadInst->eraseFromParent(); 1721 } 1722 } 1723 1724 // Check for any extra throws between \p KillingI and \p DeadI that block 1725 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1726 // MemoryDef that may throw are handled during the walk from one def to the 1727 // next. 1728 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1729 const Value *KillingUndObj) { 1730 // First see if we can ignore it by using the fact that KillingI is an 1731 // alloca/alloca like object that is not visible to the caller during 1732 // execution of the function. 1733 if (KillingUndObj && isInvisibleToCallerBeforeRet(KillingUndObj)) 1734 return false; 1735 1736 if (KillingI->getParent() == DeadI->getParent()) 1737 return ThrowingBlocks.count(KillingI->getParent()); 1738 return !ThrowingBlocks.empty(); 1739 } 1740 1741 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1742 // instructions act as barriers: 1743 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1744 // object. 1745 // * Atomic stores stronger that monotonic. 1746 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1747 // If DeadI may throw it acts as a barrier, unless we are to an 1748 // alloca/alloca like object that does not escape. 1749 if (DeadI->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) 1750 return true; 1751 1752 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1753 // eliminate/reorder it. 1754 if (DeadI->isAtomic()) { 1755 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1756 return isStrongerThanMonotonic(LI->getOrdering()); 1757 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1758 return isStrongerThanMonotonic(SI->getOrdering()); 1759 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1760 return isStrongerThanMonotonic(ARMW->getOrdering()); 1761 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1762 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1763 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1764 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1765 } 1766 return false; 1767 } 1768 1769 /// Eliminate writes to objects that are not visible in the caller and are not 1770 /// accessed before returning from the function. 1771 bool eliminateDeadWritesAtEndOfFunction() { 1772 bool MadeChange = false; 1773 LLVM_DEBUG( 1774 dbgs() 1775 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1776 for (int I = MemDefs.size() - 1; I >= 0; I--) { 1777 MemoryDef *Def = MemDefs[I]; 1778 if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst())) 1779 continue; 1780 1781 Instruction *DefI = Def->getMemoryInst(); 1782 auto DefLoc = getLocForWriteEx(DefI); 1783 if (!DefLoc) 1784 continue; 1785 1786 // NOTE: Currently eliminating writes at the end of a function is limited 1787 // to MemoryDefs with a single underlying object, to save compile-time. In 1788 // practice it appears the case with multiple underlying objects is very 1789 // uncommon. If it turns out to be important, we can use 1790 // getUnderlyingObjects here instead. 1791 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1792 if (!isInvisibleToCallerAfterRet(UO)) 1793 continue; 1794 1795 if (isWriteAtEndOfFunction(Def)) { 1796 // See through pointer-to-pointer bitcasts 1797 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1798 "of the function\n"); 1799 deleteDeadInstruction(DefI); 1800 ++NumFastStores; 1801 MadeChange = true; 1802 } 1803 } 1804 return MadeChange; 1805 } 1806 1807 /// \returns true if \p Def is a no-op store, either because it 1808 /// directly stores back a loaded value or stores zero to a calloced object. 1809 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1810 StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst()); 1811 MemSetInst *MemSet = dyn_cast<MemSetInst>(Def->getMemoryInst()); 1812 Constant *StoredConstant = nullptr; 1813 if (Store) 1814 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1815 if (MemSet) 1816 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1817 1818 if (StoredConstant && StoredConstant->isNullValue()) { 1819 auto *DefUOInst = dyn_cast<Instruction>(DefUO); 1820 if (DefUOInst) { 1821 if (isCallocLikeFn(DefUOInst, &TLI)) { 1822 auto *UnderlyingDef = 1823 cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst)); 1824 // If UnderlyingDef is the clobbering access of Def, no instructions 1825 // between them can modify the memory location. 1826 auto *ClobberDef = 1827 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def); 1828 return UnderlyingDef == ClobberDef; 1829 } 1830 1831 if (MemSet) { 1832 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1833 F.hasFnAttribute(Attribute::SanitizeAddress) || 1834 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1835 F.getName() == "calloc") 1836 return false; 1837 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUOInst)); 1838 if (!Malloc) 1839 return false; 1840 auto *InnerCallee = Malloc->getCalledFunction(); 1841 if (!InnerCallee) 1842 return false; 1843 LibFunc Func; 1844 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1845 Func != LibFunc_malloc) 1846 return false; 1847 if (Malloc->getOperand(0) == MemSet->getLength()) { 1848 if (DT.dominates(Malloc, MemSet) && PDT.dominates(MemSet, Malloc) && 1849 memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) { 1850 IRBuilder<> IRB(Malloc); 1851 const auto &DL = Malloc->getModule()->getDataLayout(); 1852 if (auto *Calloc = 1853 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1), 1854 Malloc->getArgOperand(0), IRB, TLI)) { 1855 MemorySSAUpdater Updater(&MSSA); 1856 auto *LastDef = cast<MemoryDef>( 1857 Updater.getMemorySSA()->getMemoryAccess(Malloc)); 1858 auto *NewAccess = Updater.createMemoryAccessAfter( 1859 cast<Instruction>(Calloc), LastDef, LastDef); 1860 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1861 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1862 Updater.removeMemoryAccess(Malloc); 1863 Malloc->replaceAllUsesWith(Calloc); 1864 Malloc->eraseFromParent(); 1865 return true; 1866 } 1867 return false; 1868 } 1869 } 1870 } 1871 } 1872 } 1873 1874 if (!Store) 1875 return false; 1876 1877 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1878 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1879 // Get the defining access for the load. 1880 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1881 // Fast path: the defining accesses are the same. 1882 if (LoadAccess == Def->getDefiningAccess()) 1883 return true; 1884 1885 // Look through phi accesses. Recursively scan all phi accesses by 1886 // adding them to a worklist. Bail when we run into a memory def that 1887 // does not match LoadAccess. 1888 SetVector<MemoryAccess *> ToCheck; 1889 MemoryAccess *Current = 1890 MSSA.getWalker()->getClobberingMemoryAccess(Def); 1891 // We don't want to bail when we run into the store memory def. But, 1892 // the phi access may point to it. So, pretend like we've already 1893 // checked it. 1894 ToCheck.insert(Def); 1895 ToCheck.insert(Current); 1896 // Start at current (1) to simulate already having checked Def. 1897 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1898 Current = ToCheck[I]; 1899 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1900 // Check all the operands. 1901 for (auto &Use : PhiAccess->incoming_values()) 1902 ToCheck.insert(cast<MemoryAccess>(&Use)); 1903 continue; 1904 } 1905 1906 // If we found a memory def, bail. This happens when we have an 1907 // unrelated write in between an otherwise noop store. 1908 assert(isa<MemoryDef>(Current) && 1909 "Only MemoryDefs should reach here."); 1910 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1911 // We are searching for the definition of the store's destination. 1912 // So, if that is the same definition as the load, then this is a 1913 // noop. Otherwise, fail. 1914 if (LoadAccess != Current) 1915 return false; 1916 } 1917 return true; 1918 } 1919 } 1920 1921 return false; 1922 } 1923 }; 1924 1925 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1926 DominatorTree &DT, PostDominatorTree &PDT, 1927 const TargetLibraryInfo &TLI, 1928 const LoopInfo &LI) { 1929 bool MadeChange = false; 1930 1931 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 1932 // For each store: 1933 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 1934 MemoryDef *KillingDef = State.MemDefs[I]; 1935 if (State.SkipStores.count(KillingDef)) 1936 continue; 1937 Instruction *KillingI = KillingDef->getMemoryInst(); 1938 1939 Optional<MemoryLocation> MaybeKillingLoc; 1940 if (State.isMemTerminatorInst(KillingI)) 1941 MaybeKillingLoc = State.getLocForTerminator(KillingI).map( 1942 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 1943 else 1944 MaybeKillingLoc = State.getLocForWriteEx(KillingI); 1945 1946 if (!MaybeKillingLoc) { 1947 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 1948 << *KillingI << "\n"); 1949 continue; 1950 } 1951 MemoryLocation KillingLoc = *MaybeKillingLoc; 1952 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 1953 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 1954 1955 MemoryAccess *Current = KillingDef; 1956 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 1957 << *KillingDef << " (" << *KillingI << ")\n"); 1958 1959 unsigned ScanLimit = MemorySSAScanLimit; 1960 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 1961 unsigned PartialLimit = MemorySSAPartialStoreLimit; 1962 // Worklist of MemoryAccesses that may be killed by KillingDef. 1963 SetVector<MemoryAccess *> ToCheck; 1964 ToCheck.insert(KillingDef->getDefiningAccess()); 1965 1966 bool Shortend = false; 1967 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 1968 // Check if MemoryAccesses in the worklist are killed by KillingDef. 1969 for (unsigned I = 0; I < ToCheck.size(); I++) { 1970 Current = ToCheck[I]; 1971 if (State.SkipStores.count(Current)) 1972 continue; 1973 1974 Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 1975 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 1976 WalkerStepLimit, IsMemTerm, PartialLimit); 1977 1978 if (!MaybeDeadAccess) { 1979 LLVM_DEBUG(dbgs() << " finished walk\n"); 1980 continue; 1981 } 1982 1983 MemoryAccess *DeadAccess = *MaybeDeadAccess; 1984 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 1985 if (isa<MemoryPhi>(DeadAccess)) { 1986 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 1987 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 1988 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 1989 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 1990 BasicBlock *PhiBlock = DeadAccess->getBlock(); 1991 1992 // We only consider incoming MemoryAccesses that come before the 1993 // MemoryPhi. Otherwise we could discover candidates that do not 1994 // strictly dominate our starting def. 1995 if (State.PostOrderNumbers[IncomingBlock] > 1996 State.PostOrderNumbers[PhiBlock]) 1997 ToCheck.insert(IncomingAccess); 1998 } 1999 continue; 2000 } 2001 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 2002 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 2003 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 2004 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 2005 NumGetDomMemoryDefPassed++; 2006 2007 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2008 continue; 2009 2010 MemoryLocation DeadLoc = *State.getLocForWriteEx(DeadI); 2011 2012 if (IsMemTerm) { 2013 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2014 if (KillingUndObj != DeadUndObj) 2015 continue; 2016 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2017 << "\n KILLER: " << *KillingI << '\n'); 2018 State.deleteDeadInstruction(DeadI); 2019 ++NumFastStores; 2020 MadeChange = true; 2021 } else { 2022 // Check if DeadI overwrites KillingI. 2023 int64_t KillingOffset = 0; 2024 int64_t DeadOffset = 0; 2025 OverwriteResult OR = State.isOverwrite( 2026 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2027 if (OR == OW_MaybePartial) { 2028 auto Iter = State.IOLs.insert( 2029 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2030 DeadI->getParent(), InstOverlapIntervalsTy())); 2031 auto &IOL = Iter.first->second; 2032 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2033 DeadOffset, DeadI, IOL); 2034 } 2035 2036 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2037 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2038 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2039 // We are re-using tryToMergePartialOverlappingStores, which requires 2040 // DeadSI to dominate DeadSI. 2041 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2042 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2043 if (Constant *Merged = tryToMergePartialOverlappingStores( 2044 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2045 State.BatchAA, &DT)) { 2046 2047 // Update stored value of earlier store to merged constant. 2048 DeadSI->setOperand(0, Merged); 2049 ++NumModifiedStores; 2050 MadeChange = true; 2051 2052 Shortend = true; 2053 // Remove killing store and remove any outstanding overlap 2054 // intervals for the updated store. 2055 State.deleteDeadInstruction(KillingSI); 2056 auto I = State.IOLs.find(DeadSI->getParent()); 2057 if (I != State.IOLs.end()) 2058 I->second.erase(DeadSI); 2059 break; 2060 } 2061 } 2062 } 2063 2064 if (OR == OW_Complete) { 2065 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2066 << "\n KILLER: " << *KillingI << '\n'); 2067 State.deleteDeadInstruction(DeadI); 2068 ++NumFastStores; 2069 MadeChange = true; 2070 } 2071 } 2072 } 2073 2074 // Check if the store is a no-op. 2075 if (!Shortend && isRemovable(KillingI) && 2076 State.storeIsNoop(KillingDef, KillingUndObj)) { 2077 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2078 << '\n'); 2079 State.deleteDeadInstruction(KillingI); 2080 NumRedundantStores++; 2081 MadeChange = true; 2082 continue; 2083 } 2084 } 2085 2086 if (EnablePartialOverwriteTracking) 2087 for (auto &KV : State.IOLs) 2088 MadeChange |= removePartiallyOverlappedStores(State.DL, KV.second, TLI); 2089 2090 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2091 return MadeChange; 2092 } 2093 } // end anonymous namespace 2094 2095 //===----------------------------------------------------------------------===// 2096 // DSE Pass 2097 //===----------------------------------------------------------------------===// 2098 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2099 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2100 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2101 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2102 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2103 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2104 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2105 2106 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2107 2108 #ifdef LLVM_ENABLE_STATS 2109 if (AreStatisticsEnabled()) 2110 for (auto &I : instructions(F)) 2111 NumRemainingStores += isa<StoreInst>(&I); 2112 #endif 2113 2114 if (!Changed) 2115 return PreservedAnalyses::all(); 2116 2117 PreservedAnalyses PA; 2118 PA.preserveSet<CFGAnalyses>(); 2119 PA.preserve<MemorySSAAnalysis>(); 2120 PA.preserve<LoopAnalysis>(); 2121 return PA; 2122 } 2123 2124 namespace { 2125 2126 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2127 class DSELegacyPass : public FunctionPass { 2128 public: 2129 static char ID; // Pass identification, replacement for typeid 2130 2131 DSELegacyPass() : FunctionPass(ID) { 2132 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2133 } 2134 2135 bool runOnFunction(Function &F) override { 2136 if (skipFunction(F)) 2137 return false; 2138 2139 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2140 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2141 const TargetLibraryInfo &TLI = 2142 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2143 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2144 PostDominatorTree &PDT = 2145 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2146 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2147 2148 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2149 2150 #ifdef LLVM_ENABLE_STATS 2151 if (AreStatisticsEnabled()) 2152 for (auto &I : instructions(F)) 2153 NumRemainingStores += isa<StoreInst>(&I); 2154 #endif 2155 2156 return Changed; 2157 } 2158 2159 void getAnalysisUsage(AnalysisUsage &AU) const override { 2160 AU.setPreservesCFG(); 2161 AU.addRequired<AAResultsWrapperPass>(); 2162 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2163 AU.addPreserved<GlobalsAAWrapperPass>(); 2164 AU.addRequired<DominatorTreeWrapperPass>(); 2165 AU.addPreserved<DominatorTreeWrapperPass>(); 2166 AU.addRequired<PostDominatorTreeWrapperPass>(); 2167 AU.addRequired<MemorySSAWrapperPass>(); 2168 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2169 AU.addPreserved<MemorySSAWrapperPass>(); 2170 AU.addRequired<LoopInfoWrapperPass>(); 2171 AU.addPreserved<LoopInfoWrapperPass>(); 2172 } 2173 }; 2174 2175 } // end anonymous namespace 2176 2177 char DSELegacyPass::ID = 0; 2178 2179 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2180 false) 2181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2182 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2184 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2185 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2186 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2187 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2189 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2190 false) 2191 2192 FunctionPass *llvm::createDeadStoreEliminationPass() { 2193 return new DSELegacyPass(); 2194 } 2195