1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that tries to split a call-site to pass 10 // more constrained arguments if its argument is predicated in the control flow 11 // so that we can expose better context to the later passes (e.g, inliner, jump 12 // threading, or IPA-CP based function cloning, etc.). 13 // As of now we support two cases : 14 // 15 // 1) Try to a split call-site with constrained arguments, if any constraints 16 // on any argument can be found by following the single predecessors of the 17 // all site's predecessors. Currently this pass only handles call-sites with 2 18 // predecessors. For example, in the code below, we try to split the call-site 19 // since we can predicate the argument(ptr) based on the OR condition. 20 // 21 // Split from : 22 // if (!ptr || c) 23 // callee(ptr); 24 // to : 25 // if (!ptr) 26 // callee(null) // set the known constant value 27 // else if (c) 28 // callee(nonnull ptr) // set non-null attribute in the argument 29 // 30 // 2) We can also split a call-site based on constant incoming values of a PHI 31 // For example, 32 // from : 33 // Header: 34 // %c = icmp eq i32 %i1, %i2 35 // br i1 %c, label %Tail, label %TBB 36 // TBB: 37 // br label Tail% 38 // Tail: 39 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 40 // call void @bar(i32 %p) 41 // to 42 // Header: 43 // %c = icmp eq i32 %i1, %i2 44 // br i1 %c, label %Tail-split0, label %TBB 45 // TBB: 46 // br label %Tail-split1 47 // Tail-split0: 48 // call void @bar(i32 0) 49 // br label %Tail 50 // Tail-split1: 51 // call void @bar(i32 1) 52 // br label %Tail 53 // Tail: 54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 55 // 56 //===----------------------------------------------------------------------===// 57 58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/DomTreeUpdater.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 73 using namespace llvm; 74 using namespace PatternMatch; 75 76 #define DEBUG_TYPE "callsite-splitting" 77 78 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 79 80 /// Only allow instructions before a call, if their CodeSize cost is below 81 /// DuplicationThreshold. Those instructions need to be duplicated in all 82 /// split blocks. 83 static cl::opt<unsigned> 84 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 85 cl::desc("Only allow instructions before a call, if " 86 "their cost is below DuplicationThreshold"), 87 cl::init(5)); 88 89 static void addNonNullAttribute(CallBase &CB, Value *Op) { 90 unsigned ArgNo = 0; 91 for (auto &I : CB.args()) { 92 if (&*I == Op) 93 CB.addParamAttr(ArgNo, Attribute::NonNull); 94 ++ArgNo; 95 } 96 } 97 98 static void setConstantInArgument(CallBase &CB, Value *Op, 99 Constant *ConstValue) { 100 unsigned ArgNo = 0; 101 for (auto &I : CB.args()) { 102 if (&*I == Op) { 103 // It is possible we have already added the non-null attribute to the 104 // parameter by using an earlier constraining condition. 105 CB.removeParamAttr(ArgNo, Attribute::NonNull); 106 CB.setArgOperand(ArgNo, ConstValue); 107 } 108 ++ArgNo; 109 } 110 } 111 112 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) { 113 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 114 Value *Op0 = Cmp->getOperand(0); 115 unsigned ArgNo = 0; 116 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) { 117 // Don't consider constant or arguments that are already known non-null. 118 if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull)) 119 continue; 120 121 if (*I == Op0) 122 return true; 123 } 124 return false; 125 } 126 127 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 128 typedef SmallVector<ConditionTy, 2> ConditionsTy; 129 130 /// If From has a conditional jump to To, add the condition to Conditions, 131 /// if it is relevant to any argument at CB. 132 static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To, 133 ConditionsTy &Conditions) { 134 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 135 if (!BI || !BI->isConditional()) 136 return; 137 138 CmpInst::Predicate Pred; 139 Value *Cond = BI->getCondition(); 140 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 141 return; 142 143 ICmpInst *Cmp = cast<ICmpInst>(Cond); 144 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 145 if (isCondRelevantToAnyCallArgument(Cmp, CB)) 146 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 147 ? Pred 148 : Cmp->getInversePredicate()}); 149 } 150 151 /// Record ICmp conditions relevant to any argument in CB following Pred's 152 /// single predecessors. If there are conflicting conditions along a path, like 153 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 154 /// an edge to StopAt. 155 static void recordConditions(CallBase &CB, BasicBlock *Pred, 156 ConditionsTy &Conditions, BasicBlock *StopAt) { 157 BasicBlock *From = Pred; 158 BasicBlock *To = Pred; 159 SmallPtrSet<BasicBlock *, 4> Visited; 160 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 161 (From = From->getSinglePredecessor())) { 162 recordCondition(CB, From, To, Conditions); 163 Visited.insert(From); 164 To = From; 165 } 166 } 167 168 static void addConditions(CallBase &CB, const ConditionsTy &Conditions) { 169 for (auto &Cond : Conditions) { 170 Value *Arg = Cond.first->getOperand(0); 171 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 172 if (Cond.second == ICmpInst::ICMP_EQ) 173 setConstantInArgument(CB, Arg, ConstVal); 174 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 175 assert(Cond.second == ICmpInst::ICMP_NE); 176 addNonNullAttribute(CB, Arg); 177 } 178 } 179 } 180 181 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 182 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 183 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 184 return Preds; 185 } 186 187 static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) { 188 if (CB.isConvergent() || CB.cannotDuplicate()) 189 return false; 190 191 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 192 // without too much effort. 193 if (!isa<CallInst>(CB)) 194 return false; 195 196 BasicBlock *CallSiteBB = CB.getParent(); 197 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 198 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 199 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 200 isa<IndirectBrInst>(Preds[1]->getTerminator())) 201 return false; 202 203 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 204 // BasicBlock::isEHPad as well. 205 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 206 return false; 207 208 // Allow splitting a call-site only when the CodeSize cost of the 209 // instructions before the call is less then DuplicationThreshold. The 210 // instructions before the call will be duplicated in the split blocks and 211 // corresponding uses will be updated. 212 InstructionCost Cost = 0; 213 for (auto &InstBeforeCall : 214 llvm::make_range(CallSiteBB->begin(), CB.getIterator())) { 215 Cost += TTI.getInstructionCost(&InstBeforeCall, 216 TargetTransformInfo::TCK_CodeSize); 217 if (Cost >= DuplicationThreshold) 218 return false; 219 } 220 221 return true; 222 } 223 224 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 225 Value *V) { 226 Instruction *Copy = I->clone(); 227 Copy->setName(I->getName()); 228 Copy->insertBefore(Before); 229 if (V) 230 Copy->setOperand(0, V); 231 return Copy; 232 } 233 234 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 235 /// link it up to `NewCI` value instead: 236 /// 237 /// * (optional) `bitcast NewCI to ...` 238 /// * `ret bitcast or NewCI` 239 /// 240 /// Insert this sequence right before `SplitBB`'s terminator, which will be 241 /// cleaned up later in `splitCallSite` below. 242 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 243 Instruction *NewCI) { 244 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 245 auto II = std::next(CI->getIterator()); 246 247 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 248 if (BCI) 249 ++II; 250 251 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 252 assert(RI && "`musttail` call must be followed by `ret` instruction"); 253 254 Instruction *TI = SplitBB->getTerminator(); 255 Value *V = NewCI; 256 if (BCI) 257 V = cloneInstForMustTail(BCI, TI, V); 258 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 259 260 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 261 // that prevents doing this now. 262 } 263 264 /// For each (predecessor, conditions from predecessors) pair, it will split the 265 /// basic block containing the call site, hook it up to the predecessor and 266 /// replace the call instruction with new call instructions, which contain 267 /// constraints based on the conditions from their predecessors. 268 /// For example, in the IR below with an OR condition, the call-site can 269 /// be split. In this case, Preds for Tail is [(Header, a == null), 270 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 271 /// CallInst1, which has constraints based on the conditions from Head and 272 /// CallInst2, which has constraints based on the conditions coming from TBB. 273 /// 274 /// From : 275 /// 276 /// Header: 277 /// %c = icmp eq i32* %a, null 278 /// br i1 %c %Tail, %TBB 279 /// TBB: 280 /// %c2 = icmp eq i32* %b, null 281 /// br i1 %c %Tail, %End 282 /// Tail: 283 /// %ca = call i1 @callee (i32* %a, i32* %b) 284 /// 285 /// to : 286 /// 287 /// Header: // PredBB1 is Header 288 /// %c = icmp eq i32* %a, null 289 /// br i1 %c %Tail-split1, %TBB 290 /// TBB: // PredBB2 is TBB 291 /// %c2 = icmp eq i32* %b, null 292 /// br i1 %c %Tail-split2, %End 293 /// Tail-split1: 294 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 295 /// br %Tail 296 /// Tail-split2: 297 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 298 /// br %Tail 299 /// Tail: 300 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 301 /// 302 /// Note that in case any arguments at the call-site are constrained by its 303 /// predecessors, new call-sites with more constrained arguments will be 304 /// created in createCallSitesOnPredicatedArgument(). 305 static void splitCallSite( 306 CallBase &CB, 307 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 308 DomTreeUpdater &DTU) { 309 BasicBlock *TailBB = CB.getParent(); 310 bool IsMustTailCall = CB.isMustTailCall(); 311 312 PHINode *CallPN = nullptr; 313 314 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 315 // split blocks will be terminated right after that so there're no users for 316 // this phi in a `TailBB`. 317 if (!IsMustTailCall && !CB.use_empty()) { 318 CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call"); 319 CallPN->setDebugLoc(CB.getDebugLoc()); 320 } 321 322 LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n"); 323 324 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 325 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 326 // here. 327 ValueToValueMapTy ValueToValueMaps[2]; 328 for (unsigned i = 0; i < Preds.size(); i++) { 329 BasicBlock *PredBB = Preds[i].first; 330 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 331 TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i], 332 DTU); 333 assert(SplitBlock && "Unexpected new basic block split."); 334 335 auto *NewCI = 336 cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator())); 337 addConditions(*NewCI, Preds[i].second); 338 339 // Handle PHIs used as arguments in the call-site. 340 for (PHINode &PN : TailBB->phis()) { 341 unsigned ArgNo = 0; 342 for (auto &CI : CB.args()) { 343 if (&*CI == &PN) { 344 NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 345 } 346 ++ArgNo; 347 } 348 } 349 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 350 << "\n"); 351 if (CallPN) 352 CallPN->addIncoming(NewCI, SplitBlock); 353 354 // Clone and place bitcast and return instructions before `TI` 355 if (IsMustTailCall) 356 copyMustTailReturn(SplitBlock, &CB, NewCI); 357 } 358 359 NumCallSiteSplit++; 360 361 // FIXME: remove TI in `copyMustTailReturn` 362 if (IsMustTailCall) { 363 // Remove superfluous `br` terminators from the end of the Split blocks 364 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 365 // predecessors. Therefore we must get complete list of Splits before 366 // attempting removal. 367 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 368 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 369 for (unsigned i = 0; i < Splits.size(); i++) { 370 Splits[i]->getTerminator()->eraseFromParent(); 371 DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}}); 372 } 373 374 // Erase the tail block once done with musttail patching 375 DTU.deleteBB(TailBB); 376 return; 377 } 378 379 auto *OriginalBegin = &*TailBB->begin(); 380 // Replace users of the original call with a PHI mering call-sites split. 381 if (CallPN) { 382 CallPN->insertBefore(OriginalBegin); 383 CB.replaceAllUsesWith(CallPN); 384 } 385 386 // Remove instructions moved to split blocks from TailBB, from the duplicated 387 // call instruction to the beginning of the basic block. If an instruction 388 // has any uses, add a new PHI node to combine the values coming from the 389 // split blocks. The new PHI nodes are placed before the first original 390 // instruction, so we do not end up deleting them. By using reverse-order, we 391 // do not introduce unnecessary PHI nodes for def-use chains from the call 392 // instruction to the beginning of the block. 393 auto I = CB.getReverseIterator(); 394 while (I != TailBB->rend()) { 395 Instruction *CurrentI = &*I++; 396 if (!CurrentI->use_empty()) { 397 // If an existing PHI has users after the call, there is no need to create 398 // a new one. 399 if (isa<PHINode>(CurrentI)) 400 continue; 401 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 402 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 403 for (auto &Mapping : ValueToValueMaps) 404 NewPN->addIncoming(Mapping[CurrentI], 405 cast<Instruction>(Mapping[CurrentI])->getParent()); 406 NewPN->insertBefore(&*TailBB->begin()); 407 CurrentI->replaceAllUsesWith(NewPN); 408 } 409 CurrentI->eraseFromParent(); 410 // We are done once we handled the first original instruction in TailBB. 411 if (CurrentI == OriginalBegin) 412 break; 413 } 414 } 415 416 // Return true if the call-site has an argument which is a PHI with only 417 // constant incoming values. 418 static bool isPredicatedOnPHI(CallBase &CB) { 419 BasicBlock *Parent = CB.getParent(); 420 if (&CB != Parent->getFirstNonPHIOrDbg()) 421 return false; 422 423 for (auto &PN : Parent->phis()) { 424 for (auto &Arg : CB.args()) { 425 if (&*Arg != &PN) 426 continue; 427 assert(PN.getNumIncomingValues() == 2 && 428 "Unexpected number of incoming values"); 429 if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1)) 430 return false; 431 if (PN.getIncomingValue(0) == PN.getIncomingValue(1)) 432 continue; 433 if (isa<Constant>(PN.getIncomingValue(0)) && 434 isa<Constant>(PN.getIncomingValue(1))) 435 return true; 436 } 437 } 438 return false; 439 } 440 441 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 442 443 // Check if any of the arguments in CS are predicated on a PHI node and return 444 // the set of predecessors we should use for splitting. 445 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) { 446 if (!isPredicatedOnPHI(CB)) 447 return {}; 448 449 auto Preds = getTwoPredecessors(CB.getParent()); 450 return {{Preds[0], {}}, {Preds[1], {}}}; 451 } 452 453 // Checks if any of the arguments in CS are predicated in a predecessor and 454 // returns a list of predecessors with the conditions that hold on their edges 455 // to CS. 456 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB, 457 DomTreeUpdater &DTU) { 458 auto Preds = getTwoPredecessors(CB.getParent()); 459 if (Preds[0] == Preds[1]) 460 return {}; 461 462 // We can stop recording conditions once we reached the immediate dominator 463 // for the block containing the call site. Conditions in predecessors of the 464 // that node will be the same for all paths to the call site and splitting 465 // is not beneficial. 466 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 467 auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent()); 468 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 469 470 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 471 for (auto *Pred : llvm::reverse(Preds)) { 472 ConditionsTy Conditions; 473 // Record condition on edge BB(CS) <- Pred 474 recordCondition(CB, Pred, CB.getParent(), Conditions); 475 // Record conditions following Pred's single predecessors. 476 recordConditions(CB, Pred, Conditions, StopAt); 477 PredsCS.push_back({Pred, Conditions}); 478 } 479 480 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 481 return P.second.empty(); 482 })) 483 return {}; 484 485 return PredsCS; 486 } 487 488 static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI, 489 DomTreeUpdater &DTU) { 490 // Check if we can split the call site. 491 if (!CB.arg_size() || !canSplitCallSite(CB, TTI)) 492 return false; 493 494 auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU); 495 if (PredsWithConds.empty()) 496 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB); 497 if (PredsWithConds.empty()) 498 return false; 499 500 splitCallSite(CB, PredsWithConds, DTU); 501 return true; 502 } 503 504 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 505 TargetTransformInfo &TTI, DominatorTree &DT) { 506 507 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 508 bool Changed = false; 509 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 510 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 511 auto IE = BB.getTerminator()->getIterator(); 512 // Iterate until we reach the terminator instruction. tryToSplitCallSite 513 // can replace BB's terminator in case BB is a successor of itself. In that 514 // case, IE will be invalidated and we also have to check the current 515 // terminator. 516 while (II != IE && &*II != BB.getTerminator()) { 517 CallBase *CB = dyn_cast<CallBase>(&*II++); 518 if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI)) 519 continue; 520 521 Function *Callee = CB->getCalledFunction(); 522 if (!Callee || Callee->isDeclaration()) 523 continue; 524 525 // Successful musttail call-site splits result in erased CI and erased BB. 526 // Check if such path is possible before attempting the splitting. 527 bool IsMustTail = CB->isMustTailCall(); 528 529 Changed |= tryToSplitCallSite(*CB, TTI, DTU); 530 531 // There're no interesting instructions after this. The call site 532 // itself might have been erased on splitting. 533 if (IsMustTail) 534 break; 535 } 536 } 537 return Changed; 538 } 539 540 namespace { 541 struct CallSiteSplittingLegacyPass : public FunctionPass { 542 static char ID; 543 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 544 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 545 } 546 547 void getAnalysisUsage(AnalysisUsage &AU) const override { 548 AU.addRequired<TargetLibraryInfoWrapperPass>(); 549 AU.addRequired<TargetTransformInfoWrapperPass>(); 550 AU.addRequired<DominatorTreeWrapperPass>(); 551 AU.addPreserved<DominatorTreeWrapperPass>(); 552 FunctionPass::getAnalysisUsage(AU); 553 } 554 555 bool runOnFunction(Function &F) override { 556 if (skipFunction(F)) 557 return false; 558 559 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 560 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 561 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 562 return doCallSiteSplitting(F, TLI, TTI, DT); 563 } 564 }; 565 } // namespace 566 567 char CallSiteSplittingLegacyPass::ID = 0; 568 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 569 "Call-site splitting", false, false) 570 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 571 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 573 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 574 "Call-site splitting", false, false) 575 FunctionPass *llvm::createCallSiteSplittingPass() { 576 return new CallSiteSplittingLegacyPass(); 577 } 578 579 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 580 FunctionAnalysisManager &AM) { 581 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 582 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 583 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 584 585 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 586 return PreservedAnalyses::all(); 587 PreservedAnalyses PA; 588 PA.preserve<DominatorTreeAnalysis>(); 589 return PA; 590 } 591