1 //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Bit-Tracking Dead Code Elimination pass. Some 10 // instructions (shifts, some ands, ors, etc.) kill some of their input bits. 11 // We track these dead bits and remove instructions that compute only these 12 // dead bits. We also simplify sext that generates unused extension bits, 13 // converting it to a zext. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/BDCE.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/DemandedBits.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "bdce" 35 36 STATISTIC(NumRemoved, "Number of instructions removed (unused)"); 37 STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); 38 STATISTIC(NumSExt2ZExt, 39 "Number of sign extension instructions converted to zero extension"); 40 41 /// If an instruction is trivialized (dead), then the chain of users of that 42 /// instruction may need to be cleared of assumptions that can no longer be 43 /// guaranteed correct. 44 static void clearAssumptionsOfUsers(Instruction *I, DemandedBits &DB) { 45 assert(I->getType()->isIntOrIntVectorTy() && 46 "Trivializing a non-integer value?"); 47 48 // Initialize the worklist with eligible direct users. 49 SmallPtrSet<Instruction *, 16> Visited; 50 SmallVector<Instruction *, 16> WorkList; 51 for (User *JU : I->users()) { 52 // If all bits of a user are demanded, then we know that nothing below that 53 // in the def-use chain needs to be changed. 54 auto *J = dyn_cast<Instruction>(JU); 55 if (J && J->getType()->isIntOrIntVectorTy() && 56 !DB.getDemandedBits(J).isAllOnesValue()) { 57 Visited.insert(J); 58 WorkList.push_back(J); 59 } 60 61 // Note that we need to check for non-int types above before asking for 62 // demanded bits. Normally, the only way to reach an instruction with an 63 // non-int type is via an instruction that has side effects (or otherwise 64 // will demand its input bits). However, if we have a readnone function 65 // that returns an unsized type (e.g., void), we must avoid asking for the 66 // demanded bits of the function call's return value. A void-returning 67 // readnone function is always dead (and so we can stop walking the use/def 68 // chain here), but the check is necessary to avoid asserting. 69 } 70 71 // DFS through subsequent users while tracking visits to avoid cycles. 72 while (!WorkList.empty()) { 73 Instruction *J = WorkList.pop_back_val(); 74 75 // NSW, NUW, and exact are based on operands that might have changed. 76 J->dropPoisonGeneratingFlags(); 77 78 // We do not have to worry about llvm.assume or range metadata: 79 // 1. llvm.assume demands its operand, so trivializing can't change it. 80 // 2. range metadata only applies to memory accesses which demand all bits. 81 82 for (User *KU : J->users()) { 83 // If all bits of a user are demanded, then we know that nothing below 84 // that in the def-use chain needs to be changed. 85 auto *K = dyn_cast<Instruction>(KU); 86 if (K && Visited.insert(K).second && K->getType()->isIntOrIntVectorTy() && 87 !DB.getDemandedBits(K).isAllOnesValue()) 88 WorkList.push_back(K); 89 } 90 } 91 } 92 93 static bool bitTrackingDCE(Function &F, DemandedBits &DB) { 94 SmallVector<Instruction*, 128> Worklist; 95 bool Changed = false; 96 for (Instruction &I : instructions(F)) { 97 // If the instruction has side effects and no non-dbg uses, 98 // skip it. This way we avoid computing known bits on an instruction 99 // that will not help us. 100 if (I.mayHaveSideEffects() && I.use_empty()) 101 continue; 102 103 // Remove instructions that are dead, either because they were not reached 104 // during analysis or have no demanded bits. 105 if (DB.isInstructionDead(&I) || 106 (I.getType()->isIntOrIntVectorTy() && 107 DB.getDemandedBits(&I).isNullValue() && 108 wouldInstructionBeTriviallyDead(&I))) { 109 Worklist.push_back(&I); 110 Changed = true; 111 continue; 112 } 113 114 // Convert SExt into ZExt if none of the extension bits is required 115 if (SExtInst *SE = dyn_cast<SExtInst>(&I)) { 116 APInt Demanded = DB.getDemandedBits(SE); 117 const uint32_t SrcBitSize = SE->getSrcTy()->getScalarSizeInBits(); 118 auto *const DstTy = SE->getDestTy(); 119 const uint32_t DestBitSize = DstTy->getScalarSizeInBits(); 120 if (Demanded.countLeadingZeros() >= (DestBitSize - SrcBitSize)) { 121 clearAssumptionsOfUsers(SE, DB); 122 IRBuilder<> Builder(SE); 123 I.replaceAllUsesWith( 124 Builder.CreateZExt(SE->getOperand(0), DstTy, SE->getName())); 125 Worklist.push_back(SE); 126 Changed = true; 127 NumSExt2ZExt++; 128 continue; 129 } 130 } 131 132 for (Use &U : I.operands()) { 133 // DemandedBits only detects dead integer uses. 134 if (!U->getType()->isIntOrIntVectorTy()) 135 continue; 136 137 if (!isa<Instruction>(U) && !isa<Argument>(U)) 138 continue; 139 140 if (!DB.isUseDead(&U)) 141 continue; 142 143 LLVM_DEBUG(dbgs() << "BDCE: Trivializing: " << U << " (all bits dead)\n"); 144 145 clearAssumptionsOfUsers(&I, DB); 146 147 // FIXME: In theory we could substitute undef here instead of zero. 148 // This should be reconsidered once we settle on the semantics of 149 // undef, poison, etc. 150 U.set(ConstantInt::get(U->getType(), 0)); 151 ++NumSimplified; 152 Changed = true; 153 } 154 } 155 156 for (Instruction *&I : llvm::reverse(Worklist)) { 157 salvageDebugInfo(*I); 158 I->dropAllReferences(); 159 } 160 161 for (Instruction *&I : Worklist) { 162 ++NumRemoved; 163 I->eraseFromParent(); 164 } 165 166 return Changed; 167 } 168 169 PreservedAnalyses BDCEPass::run(Function &F, FunctionAnalysisManager &AM) { 170 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 171 if (!bitTrackingDCE(F, DB)) 172 return PreservedAnalyses::all(); 173 174 PreservedAnalyses PA; 175 PA.preserveSet<CFGAnalyses>(); 176 return PA; 177 } 178 179 namespace { 180 struct BDCELegacyPass : public FunctionPass { 181 static char ID; // Pass identification, replacement for typeid 182 BDCELegacyPass() : FunctionPass(ID) { 183 initializeBDCELegacyPassPass(*PassRegistry::getPassRegistry()); 184 } 185 186 bool runOnFunction(Function &F) override { 187 if (skipFunction(F)) 188 return false; 189 auto &DB = getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 190 return bitTrackingDCE(F, DB); 191 } 192 193 void getAnalysisUsage(AnalysisUsage &AU) const override { 194 AU.setPreservesCFG(); 195 AU.addRequired<DemandedBitsWrapperPass>(); 196 AU.addPreserved<GlobalsAAWrapperPass>(); 197 } 198 }; 199 } 200 201 char BDCELegacyPass::ID = 0; 202 INITIALIZE_PASS_BEGIN(BDCELegacyPass, "bdce", 203 "Bit-Tracking Dead Code Elimination", false, false) 204 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 205 INITIALIZE_PASS_END(BDCELegacyPass, "bdce", 206 "Bit-Tracking Dead Code Elimination", false, false) 207 208 FunctionPass *llvm::createBitTrackingDCEPass() { return new BDCELegacyPass(); } 209