1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/Pass.h" 180 #include "llvm/Support/AtomicOrdering.h" 181 #include "llvm/Support/Casting.h" 182 #include "llvm/Support/CommandLine.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/ErrorHandling.h" 186 #include "llvm/Support/MathExtras.h" 187 #include "llvm/Support/raw_ostream.h" 188 #include "llvm/Transforms/Instrumentation.h" 189 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 190 #include "llvm/Transforms/Utils/Local.h" 191 #include "llvm/Transforms/Utils/ModuleUtils.h" 192 #include <algorithm> 193 #include <cassert> 194 #include <cstddef> 195 #include <cstdint> 196 #include <memory> 197 #include <string> 198 #include <tuple> 199 200 using namespace llvm; 201 202 #define DEBUG_TYPE "msan" 203 204 static const unsigned kOriginSize = 4; 205 static const unsigned kMinOriginAlignment = 4; 206 static const unsigned kShadowTLSAlignment = 8; 207 208 // These constants must be kept in sync with the ones in msan.h. 209 static const unsigned kParamTLSSize = 800; 210 static const unsigned kRetvalTLSSize = 800; 211 212 // Accesses sizes are powers of two: 1, 2, 4, 8. 213 static const size_t kNumberOfAccessSizes = 4; 214 215 /// Track origins of uninitialized values. 216 /// 217 /// Adds a section to MemorySanitizer report that points to the allocation 218 /// (stack or heap) the uninitialized bits came from originally. 219 static cl::opt<int> ClTrackOrigins("msan-track-origins", 220 cl::desc("Track origins (allocation sites) of poisoned memory"), 221 cl::Hidden, cl::init(0)); 222 223 static cl::opt<bool> ClKeepGoing("msan-keep-going", 224 cl::desc("keep going after reporting a UMR"), 225 cl::Hidden, cl::init(false)); 226 227 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 228 cl::desc("poison uninitialized stack variables"), 229 cl::Hidden, cl::init(true)); 230 231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 232 cl::desc("poison uninitialized stack variables with a call"), 233 cl::Hidden, cl::init(false)); 234 235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 236 cl::desc("poison uninitialized stack variables with the given pattern"), 237 cl::Hidden, cl::init(0xff)); 238 239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 240 cl::desc("poison undef temps"), 241 cl::Hidden, cl::init(true)); 242 243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 244 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 248 cl::desc("exact handling of relational integer ICmp"), 249 cl::Hidden, cl::init(false)); 250 251 static cl::opt<bool> ClHandleLifetimeIntrinsics( 252 "msan-handle-lifetime-intrinsics", 253 cl::desc( 254 "when possible, poison scoped variables at the beginning of the scope " 255 "(slower, but more precise)"), 256 cl::Hidden, cl::init(true)); 257 258 // When compiling the Linux kernel, we sometimes see false positives related to 259 // MSan being unable to understand that inline assembly calls may initialize 260 // local variables. 261 // This flag makes the compiler conservatively unpoison every memory location 262 // passed into an assembly call. Note that this may cause false positives. 263 // Because it's impossible to figure out the array sizes, we can only unpoison 264 // the first sizeof(type) bytes for each type* pointer. 265 // The instrumentation is only enabled in KMSAN builds, and only if 266 // -msan-handle-asm-conservative is on. This is done because we may want to 267 // quickly disable assembly instrumentation when it breaks. 268 static cl::opt<bool> ClHandleAsmConservative( 269 "msan-handle-asm-conservative", 270 cl::desc("conservative handling of inline assembly"), cl::Hidden, 271 cl::init(true)); 272 273 // This flag controls whether we check the shadow of the address 274 // operand of load or store. Such bugs are very rare, since load from 275 // a garbage address typically results in SEGV, but still happen 276 // (e.g. only lower bits of address are garbage, or the access happens 277 // early at program startup where malloc-ed memory is more likely to 278 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 279 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 280 cl::desc("report accesses through a pointer which has poisoned shadow"), 281 cl::Hidden, cl::init(true)); 282 283 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 284 cl::desc("print out instructions with default strict semantics"), 285 cl::Hidden, cl::init(false)); 286 287 static cl::opt<int> ClInstrumentationWithCallThreshold( 288 "msan-instrumentation-with-call-threshold", 289 cl::desc( 290 "If the function being instrumented requires more than " 291 "this number of checks and origin stores, use callbacks instead of " 292 "inline checks (-1 means never use callbacks)."), 293 cl::Hidden, cl::init(3500)); 294 295 static cl::opt<bool> 296 ClEnableKmsan("msan-kernel", 297 cl::desc("Enable KernelMemorySanitizer instrumentation"), 298 cl::Hidden, cl::init(false)); 299 300 // This is an experiment to enable handling of cases where shadow is a non-zero 301 // compile-time constant. For some unexplainable reason they were silently 302 // ignored in the instrumentation. 303 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 304 cl::desc("Insert checks for constant shadow values"), 305 cl::Hidden, cl::init(false)); 306 307 // This is off by default because of a bug in gold: 308 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 309 static cl::opt<bool> ClWithComdat("msan-with-comdat", 310 cl::desc("Place MSan constructors in comdat sections"), 311 cl::Hidden, cl::init(false)); 312 313 // These options allow to specify custom memory map parameters 314 // See MemoryMapParams for details. 315 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 316 cl::desc("Define custom MSan AndMask"), 317 cl::Hidden, cl::init(0)); 318 319 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 320 cl::desc("Define custom MSan XorMask"), 321 cl::Hidden, cl::init(0)); 322 323 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 324 cl::desc("Define custom MSan ShadowBase"), 325 cl::Hidden, cl::init(0)); 326 327 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 328 cl::desc("Define custom MSan OriginBase"), 329 cl::Hidden, cl::init(0)); 330 331 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 332 static const char *const kMsanInitName = "__msan_init"; 333 334 namespace { 335 336 // Memory map parameters used in application-to-shadow address calculation. 337 // Offset = (Addr & ~AndMask) ^ XorMask 338 // Shadow = ShadowBase + Offset 339 // Origin = OriginBase + Offset 340 struct MemoryMapParams { 341 uint64_t AndMask; 342 uint64_t XorMask; 343 uint64_t ShadowBase; 344 uint64_t OriginBase; 345 }; 346 347 struct PlatformMemoryMapParams { 348 const MemoryMapParams *bits32; 349 const MemoryMapParams *bits64; 350 }; 351 352 } // end anonymous namespace 353 354 // i386 Linux 355 static const MemoryMapParams Linux_I386_MemoryMapParams = { 356 0x000080000000, // AndMask 357 0, // XorMask (not used) 358 0, // ShadowBase (not used) 359 0x000040000000, // OriginBase 360 }; 361 362 // x86_64 Linux 363 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 364 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 365 0x400000000000, // AndMask 366 0, // XorMask (not used) 367 0, // ShadowBase (not used) 368 0x200000000000, // OriginBase 369 #else 370 0, // AndMask (not used) 371 0x500000000000, // XorMask 372 0, // ShadowBase (not used) 373 0x100000000000, // OriginBase 374 #endif 375 }; 376 377 // mips64 Linux 378 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 379 0, // AndMask (not used) 380 0x008000000000, // XorMask 381 0, // ShadowBase (not used) 382 0x002000000000, // OriginBase 383 }; 384 385 // ppc64 Linux 386 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 387 0xE00000000000, // AndMask 388 0x100000000000, // XorMask 389 0x080000000000, // ShadowBase 390 0x1C0000000000, // OriginBase 391 }; 392 393 // aarch64 Linux 394 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 395 0, // AndMask (not used) 396 0x06000000000, // XorMask 397 0, // ShadowBase (not used) 398 0x01000000000, // OriginBase 399 }; 400 401 // i386 FreeBSD 402 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 403 0x000180000000, // AndMask 404 0x000040000000, // XorMask 405 0x000020000000, // ShadowBase 406 0x000700000000, // OriginBase 407 }; 408 409 // x86_64 FreeBSD 410 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 411 0xc00000000000, // AndMask 412 0x200000000000, // XorMask 413 0x100000000000, // ShadowBase 414 0x380000000000, // OriginBase 415 }; 416 417 // x86_64 NetBSD 418 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 419 0, // AndMask 420 0x500000000000, // XorMask 421 0, // ShadowBase 422 0x100000000000, // OriginBase 423 }; 424 425 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 426 &Linux_I386_MemoryMapParams, 427 &Linux_X86_64_MemoryMapParams, 428 }; 429 430 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 431 nullptr, 432 &Linux_MIPS64_MemoryMapParams, 433 }; 434 435 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 436 nullptr, 437 &Linux_PowerPC64_MemoryMapParams, 438 }; 439 440 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 441 nullptr, 442 &Linux_AArch64_MemoryMapParams, 443 }; 444 445 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 446 &FreeBSD_I386_MemoryMapParams, 447 &FreeBSD_X86_64_MemoryMapParams, 448 }; 449 450 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 451 nullptr, 452 &NetBSD_X86_64_MemoryMapParams, 453 }; 454 455 namespace { 456 457 /// Instrument functions of a module to detect uninitialized reads. 458 /// 459 /// Instantiating MemorySanitizer inserts the msan runtime library API function 460 /// declarations into the module if they don't exist already. Instantiating 461 /// ensures the __msan_init function is in the list of global constructors for 462 /// the module. 463 class MemorySanitizer { 464 public: 465 MemorySanitizer(Module &M, MemorySanitizerOptions Options) { 466 this->CompileKernel = 467 ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : Options.Kernel; 468 if (ClTrackOrigins.getNumOccurrences() > 0) 469 this->TrackOrigins = ClTrackOrigins; 470 else 471 this->TrackOrigins = this->CompileKernel ? 2 : Options.TrackOrigins; 472 this->Recover = ClKeepGoing.getNumOccurrences() > 0 473 ? ClKeepGoing 474 : (this->CompileKernel | Options.Recover); 475 initializeModule(M); 476 } 477 478 // MSan cannot be moved or copied because of MapParams. 479 MemorySanitizer(MemorySanitizer &&) = delete; 480 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 481 MemorySanitizer(const MemorySanitizer &) = delete; 482 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 483 484 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 485 486 private: 487 friend struct MemorySanitizerVisitor; 488 friend struct VarArgAMD64Helper; 489 friend struct VarArgMIPS64Helper; 490 friend struct VarArgAArch64Helper; 491 friend struct VarArgPowerPC64Helper; 492 493 void initializeModule(Module &M); 494 void initializeCallbacks(Module &M); 495 void createKernelApi(Module &M); 496 void createUserspaceApi(Module &M); 497 498 /// True if we're compiling the Linux kernel. 499 bool CompileKernel; 500 /// Track origins (allocation points) of uninitialized values. 501 int TrackOrigins; 502 bool Recover; 503 504 LLVMContext *C; 505 Type *IntptrTy; 506 Type *OriginTy; 507 508 // XxxTLS variables represent the per-thread state in MSan and per-task state 509 // in KMSAN. 510 // For the userspace these point to thread-local globals. In the kernel land 511 // they point to the members of a per-task struct obtained via a call to 512 // __msan_get_context_state(). 513 514 /// Thread-local shadow storage for function parameters. 515 Value *ParamTLS; 516 517 /// Thread-local origin storage for function parameters. 518 Value *ParamOriginTLS; 519 520 /// Thread-local shadow storage for function return value. 521 Value *RetvalTLS; 522 523 /// Thread-local origin storage for function return value. 524 Value *RetvalOriginTLS; 525 526 /// Thread-local shadow storage for in-register va_arg function 527 /// parameters (x86_64-specific). 528 Value *VAArgTLS; 529 530 /// Thread-local shadow storage for in-register va_arg function 531 /// parameters (x86_64-specific). 532 Value *VAArgOriginTLS; 533 534 /// Thread-local shadow storage for va_arg overflow area 535 /// (x86_64-specific). 536 Value *VAArgOverflowSizeTLS; 537 538 /// Thread-local space used to pass origin value to the UMR reporting 539 /// function. 540 Value *OriginTLS; 541 542 /// Are the instrumentation callbacks set up? 543 bool CallbacksInitialized = false; 544 545 /// The run-time callback to print a warning. 546 FunctionCallee WarningFn; 547 548 // These arrays are indexed by log2(AccessSize). 549 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 550 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 551 552 /// Run-time helper that generates a new origin value for a stack 553 /// allocation. 554 FunctionCallee MsanSetAllocaOrigin4Fn; 555 556 /// Run-time helper that poisons stack on function entry. 557 FunctionCallee MsanPoisonStackFn; 558 559 /// Run-time helper that records a store (or any event) of an 560 /// uninitialized value and returns an updated origin id encoding this info. 561 FunctionCallee MsanChainOriginFn; 562 563 /// MSan runtime replacements for memmove, memcpy and memset. 564 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 565 566 /// KMSAN callback for task-local function argument shadow. 567 StructType *MsanContextStateTy; 568 FunctionCallee MsanGetContextStateFn; 569 570 /// Functions for poisoning/unpoisoning local variables 571 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 572 573 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 574 /// pointers. 575 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 576 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 577 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 578 FunctionCallee MsanInstrumentAsmStoreFn; 579 580 /// Helper to choose between different MsanMetadataPtrXxx(). 581 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 582 583 /// Memory map parameters used in application-to-shadow calculation. 584 const MemoryMapParams *MapParams; 585 586 /// Custom memory map parameters used when -msan-shadow-base or 587 // -msan-origin-base is provided. 588 MemoryMapParams CustomMapParams; 589 590 MDNode *ColdCallWeights; 591 592 /// Branch weights for origin store. 593 MDNode *OriginStoreWeights; 594 595 /// An empty volatile inline asm that prevents callback merge. 596 InlineAsm *EmptyAsm; 597 598 Function *MsanCtorFunction; 599 }; 600 601 /// A legacy function pass for msan instrumentation. 602 /// 603 /// Instruments functions to detect unitialized reads. 604 struct MemorySanitizerLegacyPass : public FunctionPass { 605 // Pass identification, replacement for typeid. 606 static char ID; 607 608 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 609 : FunctionPass(ID), Options(Options) {} 610 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 611 612 void getAnalysisUsage(AnalysisUsage &AU) const override { 613 AU.addRequired<TargetLibraryInfoWrapperPass>(); 614 } 615 616 bool runOnFunction(Function &F) override { 617 return MSan->sanitizeFunction( 618 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 619 } 620 bool doInitialization(Module &M) override; 621 622 Optional<MemorySanitizer> MSan; 623 MemorySanitizerOptions Options; 624 }; 625 626 } // end anonymous namespace 627 628 PreservedAnalyses MemorySanitizerPass::run(Function &F, 629 FunctionAnalysisManager &FAM) { 630 MemorySanitizer Msan(*F.getParent(), Options); 631 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 632 return PreservedAnalyses::none(); 633 return PreservedAnalyses::all(); 634 } 635 636 char MemorySanitizerLegacyPass::ID = 0; 637 638 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 639 "MemorySanitizer: detects uninitialized reads.", false, 640 false) 641 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 642 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 643 "MemorySanitizer: detects uninitialized reads.", false, 644 false) 645 646 FunctionPass * 647 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 648 return new MemorySanitizerLegacyPass(Options); 649 } 650 651 /// Create a non-const global initialized with the given string. 652 /// 653 /// Creates a writable global for Str so that we can pass it to the 654 /// run-time lib. Runtime uses first 4 bytes of the string to store the 655 /// frame ID, so the string needs to be mutable. 656 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 657 StringRef Str) { 658 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 659 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 660 GlobalValue::PrivateLinkage, StrConst, ""); 661 } 662 663 /// Create KMSAN API callbacks. 664 void MemorySanitizer::createKernelApi(Module &M) { 665 IRBuilder<> IRB(*C); 666 667 // These will be initialized in insertKmsanPrologue(). 668 RetvalTLS = nullptr; 669 RetvalOriginTLS = nullptr; 670 ParamTLS = nullptr; 671 ParamOriginTLS = nullptr; 672 VAArgTLS = nullptr; 673 VAArgOriginTLS = nullptr; 674 VAArgOverflowSizeTLS = nullptr; 675 // OriginTLS is unused in the kernel. 676 OriginTLS = nullptr; 677 678 // __msan_warning() in the kernel takes an origin. 679 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 680 IRB.getInt32Ty()); 681 // Requests the per-task context state (kmsan_context_state*) from the 682 // runtime library. 683 MsanContextStateTy = StructType::get( 684 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 685 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 686 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 687 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 688 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 689 OriginTy); 690 MsanGetContextStateFn = M.getOrInsertFunction( 691 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 692 693 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 694 PointerType::get(IRB.getInt32Ty(), 0)); 695 696 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 697 std::string name_load = 698 "__msan_metadata_ptr_for_load_" + std::to_string(size); 699 std::string name_store = 700 "__msan_metadata_ptr_for_store_" + std::to_string(size); 701 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 702 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 703 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 704 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 705 } 706 707 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 708 "__msan_metadata_ptr_for_load_n", RetTy, 709 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 710 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 711 "__msan_metadata_ptr_for_store_n", RetTy, 712 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 713 714 // Functions for poisoning and unpoisoning memory. 715 MsanPoisonAllocaFn = 716 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 717 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 718 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 719 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 720 } 721 722 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 723 return M.getOrInsertGlobal(Name, Ty, [&] { 724 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 725 nullptr, Name, nullptr, 726 GlobalVariable::InitialExecTLSModel); 727 }); 728 } 729 730 /// Insert declarations for userspace-specific functions and globals. 731 void MemorySanitizer::createUserspaceApi(Module &M) { 732 IRBuilder<> IRB(*C); 733 // Create the callback. 734 // FIXME: this function should have "Cold" calling conv, 735 // which is not yet implemented. 736 StringRef WarningFnName = Recover ? "__msan_warning" 737 : "__msan_warning_noreturn"; 738 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 739 740 // Create the global TLS variables. 741 RetvalTLS = 742 getOrInsertGlobal(M, "__msan_retval_tls", 743 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 744 745 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 746 747 ParamTLS = 748 getOrInsertGlobal(M, "__msan_param_tls", 749 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 750 751 ParamOriginTLS = 752 getOrInsertGlobal(M, "__msan_param_origin_tls", 753 ArrayType::get(OriginTy, kParamTLSSize / 4)); 754 755 VAArgTLS = 756 getOrInsertGlobal(M, "__msan_va_arg_tls", 757 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 758 759 VAArgOriginTLS = 760 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 761 ArrayType::get(OriginTy, kParamTLSSize / 4)); 762 763 VAArgOverflowSizeTLS = 764 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 765 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 766 767 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 768 AccessSizeIndex++) { 769 unsigned AccessSize = 1 << AccessSizeIndex; 770 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 771 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 772 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 773 IRB.getInt32Ty()); 774 775 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 776 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 777 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 778 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 779 } 780 781 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 782 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 783 IRB.getInt8PtrTy(), IntptrTy); 784 MsanPoisonStackFn = 785 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 786 IRB.getInt8PtrTy(), IntptrTy); 787 } 788 789 /// Insert extern declaration of runtime-provided functions and globals. 790 void MemorySanitizer::initializeCallbacks(Module &M) { 791 // Only do this once. 792 if (CallbacksInitialized) 793 return; 794 795 IRBuilder<> IRB(*C); 796 // Initialize callbacks that are common for kernel and userspace 797 // instrumentation. 798 MsanChainOriginFn = M.getOrInsertFunction( 799 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 800 MemmoveFn = M.getOrInsertFunction( 801 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 802 IRB.getInt8PtrTy(), IntptrTy); 803 MemcpyFn = M.getOrInsertFunction( 804 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 805 IntptrTy); 806 MemsetFn = M.getOrInsertFunction( 807 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 808 IntptrTy); 809 // We insert an empty inline asm after __msan_report* to avoid callback merge. 810 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 811 StringRef(""), StringRef(""), 812 /*hasSideEffects=*/true); 813 814 MsanInstrumentAsmStoreFn = 815 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 816 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 817 818 if (CompileKernel) { 819 createKernelApi(M); 820 } else { 821 createUserspaceApi(M); 822 } 823 CallbacksInitialized = true; 824 } 825 826 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 827 int size) { 828 FunctionCallee *Fns = 829 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 830 switch (size) { 831 case 1: 832 return Fns[0]; 833 case 2: 834 return Fns[1]; 835 case 4: 836 return Fns[2]; 837 case 8: 838 return Fns[3]; 839 default: 840 return nullptr; 841 } 842 } 843 844 /// Module-level initialization. 845 /// 846 /// inserts a call to __msan_init to the module's constructor list. 847 void MemorySanitizer::initializeModule(Module &M) { 848 auto &DL = M.getDataLayout(); 849 850 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 851 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 852 // Check the overrides first 853 if (ShadowPassed || OriginPassed) { 854 CustomMapParams.AndMask = ClAndMask; 855 CustomMapParams.XorMask = ClXorMask; 856 CustomMapParams.ShadowBase = ClShadowBase; 857 CustomMapParams.OriginBase = ClOriginBase; 858 MapParams = &CustomMapParams; 859 } else { 860 Triple TargetTriple(M.getTargetTriple()); 861 switch (TargetTriple.getOS()) { 862 case Triple::FreeBSD: 863 switch (TargetTriple.getArch()) { 864 case Triple::x86_64: 865 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 866 break; 867 case Triple::x86: 868 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 869 break; 870 default: 871 report_fatal_error("unsupported architecture"); 872 } 873 break; 874 case Triple::NetBSD: 875 switch (TargetTriple.getArch()) { 876 case Triple::x86_64: 877 MapParams = NetBSD_X86_MemoryMapParams.bits64; 878 break; 879 default: 880 report_fatal_error("unsupported architecture"); 881 } 882 break; 883 case Triple::Linux: 884 switch (TargetTriple.getArch()) { 885 case Triple::x86_64: 886 MapParams = Linux_X86_MemoryMapParams.bits64; 887 break; 888 case Triple::x86: 889 MapParams = Linux_X86_MemoryMapParams.bits32; 890 break; 891 case Triple::mips64: 892 case Triple::mips64el: 893 MapParams = Linux_MIPS_MemoryMapParams.bits64; 894 break; 895 case Triple::ppc64: 896 case Triple::ppc64le: 897 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 898 break; 899 case Triple::aarch64: 900 case Triple::aarch64_be: 901 MapParams = Linux_ARM_MemoryMapParams.bits64; 902 break; 903 default: 904 report_fatal_error("unsupported architecture"); 905 } 906 break; 907 default: 908 report_fatal_error("unsupported operating system"); 909 } 910 } 911 912 C = &(M.getContext()); 913 IRBuilder<> IRB(*C); 914 IntptrTy = IRB.getIntPtrTy(DL); 915 OriginTy = IRB.getInt32Ty(); 916 917 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 918 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 919 920 if (!CompileKernel) { 921 std::tie(MsanCtorFunction, std::ignore) = 922 getOrCreateSanitizerCtorAndInitFunctions( 923 M, kMsanModuleCtorName, kMsanInitName, 924 /*InitArgTypes=*/{}, 925 /*InitArgs=*/{}, 926 // This callback is invoked when the functions are created the first 927 // time. Hook them into the global ctors list in that case: 928 [&](Function *Ctor, FunctionCallee) { 929 if (!ClWithComdat) { 930 appendToGlobalCtors(M, Ctor, 0); 931 return; 932 } 933 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 934 Ctor->setComdat(MsanCtorComdat); 935 appendToGlobalCtors(M, Ctor, 0, Ctor); 936 }); 937 938 if (TrackOrigins) 939 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 940 return new GlobalVariable( 941 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 942 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 943 }); 944 945 if (Recover) 946 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 947 return new GlobalVariable(M, IRB.getInt32Ty(), true, 948 GlobalValue::WeakODRLinkage, 949 IRB.getInt32(Recover), "__msan_keep_going"); 950 }); 951 } 952 } 953 954 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 955 MSan.emplace(M, Options); 956 return true; 957 } 958 959 namespace { 960 961 /// A helper class that handles instrumentation of VarArg 962 /// functions on a particular platform. 963 /// 964 /// Implementations are expected to insert the instrumentation 965 /// necessary to propagate argument shadow through VarArg function 966 /// calls. Visit* methods are called during an InstVisitor pass over 967 /// the function, and should avoid creating new basic blocks. A new 968 /// instance of this class is created for each instrumented function. 969 struct VarArgHelper { 970 virtual ~VarArgHelper() = default; 971 972 /// Visit a CallSite. 973 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 974 975 /// Visit a va_start call. 976 virtual void visitVAStartInst(VAStartInst &I) = 0; 977 978 /// Visit a va_copy call. 979 virtual void visitVACopyInst(VACopyInst &I) = 0; 980 981 /// Finalize function instrumentation. 982 /// 983 /// This method is called after visiting all interesting (see above) 984 /// instructions in a function. 985 virtual void finalizeInstrumentation() = 0; 986 }; 987 988 struct MemorySanitizerVisitor; 989 990 } // end anonymous namespace 991 992 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 993 MemorySanitizerVisitor &Visitor); 994 995 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 996 if (TypeSize <= 8) return 0; 997 return Log2_32_Ceil((TypeSize + 7) / 8); 998 } 999 1000 namespace { 1001 1002 /// This class does all the work for a given function. Store and Load 1003 /// instructions store and load corresponding shadow and origin 1004 /// values. Most instructions propagate shadow from arguments to their 1005 /// return values. Certain instructions (most importantly, BranchInst) 1006 /// test their argument shadow and print reports (with a runtime call) if it's 1007 /// non-zero. 1008 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1009 Function &F; 1010 MemorySanitizer &MS; 1011 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1012 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1013 std::unique_ptr<VarArgHelper> VAHelper; 1014 const TargetLibraryInfo *TLI; 1015 BasicBlock *ActualFnStart; 1016 1017 // The following flags disable parts of MSan instrumentation based on 1018 // blacklist contents and command-line options. 1019 bool InsertChecks; 1020 bool PropagateShadow; 1021 bool PoisonStack; 1022 bool PoisonUndef; 1023 bool CheckReturnValue; 1024 1025 struct ShadowOriginAndInsertPoint { 1026 Value *Shadow; 1027 Value *Origin; 1028 Instruction *OrigIns; 1029 1030 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1031 : Shadow(S), Origin(O), OrigIns(I) {} 1032 }; 1033 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1034 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1035 SmallSet<AllocaInst *, 16> AllocaSet; 1036 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1037 SmallVector<StoreInst *, 16> StoreList; 1038 1039 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1040 const TargetLibraryInfo &TLI) 1041 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1042 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1043 InsertChecks = SanitizeFunction; 1044 PropagateShadow = SanitizeFunction; 1045 PoisonStack = SanitizeFunction && ClPoisonStack; 1046 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1047 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1048 // must always return fully initialized values. For now, we hardcode "main". 1049 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1050 1051 MS.initializeCallbacks(*F.getParent()); 1052 if (MS.CompileKernel) 1053 ActualFnStart = insertKmsanPrologue(F); 1054 else 1055 ActualFnStart = &F.getEntryBlock(); 1056 1057 LLVM_DEBUG(if (!InsertChecks) dbgs() 1058 << "MemorySanitizer is not inserting checks into '" 1059 << F.getName() << "'\n"); 1060 } 1061 1062 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1063 if (MS.TrackOrigins <= 1) return V; 1064 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1065 } 1066 1067 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1068 const DataLayout &DL = F.getParent()->getDataLayout(); 1069 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1070 if (IntptrSize == kOriginSize) return Origin; 1071 assert(IntptrSize == kOriginSize * 2); 1072 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1073 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1074 } 1075 1076 /// Fill memory range with the given origin value. 1077 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1078 unsigned Size, unsigned Alignment) { 1079 const DataLayout &DL = F.getParent()->getDataLayout(); 1080 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 1081 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1082 assert(IntptrAlignment >= kMinOriginAlignment); 1083 assert(IntptrSize >= kOriginSize); 1084 1085 unsigned Ofs = 0; 1086 unsigned CurrentAlignment = Alignment; 1087 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1088 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1089 Value *IntptrOriginPtr = 1090 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1091 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1092 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1093 : IntptrOriginPtr; 1094 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1095 Ofs += IntptrSize / kOriginSize; 1096 CurrentAlignment = IntptrAlignment; 1097 } 1098 } 1099 1100 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1101 Value *GEP = 1102 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1103 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1104 CurrentAlignment = kMinOriginAlignment; 1105 } 1106 } 1107 1108 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1109 Value *OriginPtr, unsigned Alignment, bool AsCall) { 1110 const DataLayout &DL = F.getParent()->getDataLayout(); 1111 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1112 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1113 if (Shadow->getType()->isAggregateType()) { 1114 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1115 OriginAlignment); 1116 } else { 1117 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1118 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1119 if (ConstantShadow) { 1120 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1121 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1122 OriginAlignment); 1123 return; 1124 } 1125 1126 unsigned TypeSizeInBits = 1127 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1128 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1129 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1130 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1131 Value *ConvertedShadow2 = IRB.CreateZExt( 1132 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1133 IRB.CreateCall(Fn, {ConvertedShadow2, 1134 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1135 Origin}); 1136 } else { 1137 Value *Cmp = IRB.CreateICmpNE( 1138 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1139 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1140 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1141 IRBuilder<> IRBNew(CheckTerm); 1142 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1143 OriginAlignment); 1144 } 1145 } 1146 } 1147 1148 void materializeStores(bool InstrumentWithCalls) { 1149 for (StoreInst *SI : StoreList) { 1150 IRBuilder<> IRB(SI); 1151 Value *Val = SI->getValueOperand(); 1152 Value *Addr = SI->getPointerOperand(); 1153 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1154 Value *ShadowPtr, *OriginPtr; 1155 Type *ShadowTy = Shadow->getType(); 1156 unsigned Alignment = SI->getAlignment(); 1157 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1158 std::tie(ShadowPtr, OriginPtr) = 1159 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1160 1161 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1162 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1163 (void)NewSI; 1164 1165 if (SI->isAtomic()) 1166 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1167 1168 if (MS.TrackOrigins && !SI->isAtomic()) 1169 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1170 OriginAlignment, InstrumentWithCalls); 1171 } 1172 } 1173 1174 /// Helper function to insert a warning at IRB's current insert point. 1175 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1176 if (!Origin) 1177 Origin = (Value *)IRB.getInt32(0); 1178 if (MS.CompileKernel) { 1179 IRB.CreateCall(MS.WarningFn, Origin); 1180 } else { 1181 if (MS.TrackOrigins) { 1182 IRB.CreateStore(Origin, MS.OriginTLS); 1183 } 1184 IRB.CreateCall(MS.WarningFn, {}); 1185 } 1186 IRB.CreateCall(MS.EmptyAsm, {}); 1187 // FIXME: Insert UnreachableInst if !MS.Recover? 1188 // This may invalidate some of the following checks and needs to be done 1189 // at the very end. 1190 } 1191 1192 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1193 bool AsCall) { 1194 IRBuilder<> IRB(OrigIns); 1195 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1196 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1197 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1198 1199 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1200 if (ConstantShadow) { 1201 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1202 insertWarningFn(IRB, Origin); 1203 } 1204 return; 1205 } 1206 1207 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1208 1209 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1210 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1211 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1212 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1213 Value *ConvertedShadow2 = 1214 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1215 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1216 ? Origin 1217 : (Value *)IRB.getInt32(0)}); 1218 } else { 1219 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1220 getCleanShadow(ConvertedShadow), "_mscmp"); 1221 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1222 Cmp, OrigIns, 1223 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1224 1225 IRB.SetInsertPoint(CheckTerm); 1226 insertWarningFn(IRB, Origin); 1227 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1228 } 1229 } 1230 1231 void materializeChecks(bool InstrumentWithCalls) { 1232 for (const auto &ShadowData : InstrumentationList) { 1233 Instruction *OrigIns = ShadowData.OrigIns; 1234 Value *Shadow = ShadowData.Shadow; 1235 Value *Origin = ShadowData.Origin; 1236 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1237 } 1238 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1239 } 1240 1241 BasicBlock *insertKmsanPrologue(Function &F) { 1242 BasicBlock *ret = 1243 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1244 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1245 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1246 Constant *Zero = IRB.getInt32(0); 1247 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1248 {Zero, IRB.getInt32(0)}, "param_shadow"); 1249 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1250 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1251 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1252 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1253 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1254 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1255 MS.VAArgOverflowSizeTLS = 1256 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1257 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1258 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1259 {Zero, IRB.getInt32(5)}, "param_origin"); 1260 MS.RetvalOriginTLS = 1261 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1262 {Zero, IRB.getInt32(6)}, "retval_origin"); 1263 return ret; 1264 } 1265 1266 /// Add MemorySanitizer instrumentation to a function. 1267 bool runOnFunction() { 1268 // In the presence of unreachable blocks, we may see Phi nodes with 1269 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1270 // blocks, such nodes will not have any shadow value associated with them. 1271 // It's easier to remove unreachable blocks than deal with missing shadow. 1272 removeUnreachableBlocks(F); 1273 1274 // Iterate all BBs in depth-first order and create shadow instructions 1275 // for all instructions (where applicable). 1276 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1277 for (BasicBlock *BB : depth_first(ActualFnStart)) 1278 visit(*BB); 1279 1280 // Finalize PHI nodes. 1281 for (PHINode *PN : ShadowPHINodes) { 1282 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1283 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1284 size_t NumValues = PN->getNumIncomingValues(); 1285 for (size_t v = 0; v < NumValues; v++) { 1286 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1287 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1288 } 1289 } 1290 1291 VAHelper->finalizeInstrumentation(); 1292 1293 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1294 // instrumenting only allocas. 1295 if (InstrumentLifetimeStart) { 1296 for (auto Item : LifetimeStartList) { 1297 instrumentAlloca(*Item.second, Item.first); 1298 AllocaSet.erase(Item.second); 1299 } 1300 } 1301 // Poison the allocas for which we didn't instrument the corresponding 1302 // lifetime intrinsics. 1303 for (AllocaInst *AI : AllocaSet) 1304 instrumentAlloca(*AI); 1305 1306 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1307 InstrumentationList.size() + StoreList.size() > 1308 (unsigned)ClInstrumentationWithCallThreshold; 1309 1310 // Insert shadow value checks. 1311 materializeChecks(InstrumentWithCalls); 1312 1313 // Delayed instrumentation of StoreInst. 1314 // This may not add new address checks. 1315 materializeStores(InstrumentWithCalls); 1316 1317 return true; 1318 } 1319 1320 /// Compute the shadow type that corresponds to a given Value. 1321 Type *getShadowTy(Value *V) { 1322 return getShadowTy(V->getType()); 1323 } 1324 1325 /// Compute the shadow type that corresponds to a given Type. 1326 Type *getShadowTy(Type *OrigTy) { 1327 if (!OrigTy->isSized()) { 1328 return nullptr; 1329 } 1330 // For integer type, shadow is the same as the original type. 1331 // This may return weird-sized types like i1. 1332 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1333 return IT; 1334 const DataLayout &DL = F.getParent()->getDataLayout(); 1335 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1336 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1337 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1338 VT->getNumElements()); 1339 } 1340 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1341 return ArrayType::get(getShadowTy(AT->getElementType()), 1342 AT->getNumElements()); 1343 } 1344 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1345 SmallVector<Type*, 4> Elements; 1346 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1347 Elements.push_back(getShadowTy(ST->getElementType(i))); 1348 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1349 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1350 return Res; 1351 } 1352 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1353 return IntegerType::get(*MS.C, TypeSize); 1354 } 1355 1356 /// Flatten a vector type. 1357 Type *getShadowTyNoVec(Type *ty) { 1358 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1359 return IntegerType::get(*MS.C, vt->getBitWidth()); 1360 return ty; 1361 } 1362 1363 /// Convert a shadow value to it's flattened variant. 1364 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1365 Type *Ty = V->getType(); 1366 Type *NoVecTy = getShadowTyNoVec(Ty); 1367 if (Ty == NoVecTy) return V; 1368 return IRB.CreateBitCast(V, NoVecTy); 1369 } 1370 1371 /// Compute the integer shadow offset that corresponds to a given 1372 /// application address. 1373 /// 1374 /// Offset = (Addr & ~AndMask) ^ XorMask 1375 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1376 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1377 1378 uint64_t AndMask = MS.MapParams->AndMask; 1379 if (AndMask) 1380 OffsetLong = 1381 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1382 1383 uint64_t XorMask = MS.MapParams->XorMask; 1384 if (XorMask) 1385 OffsetLong = 1386 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1387 return OffsetLong; 1388 } 1389 1390 /// Compute the shadow and origin addresses corresponding to a given 1391 /// application address. 1392 /// 1393 /// Shadow = ShadowBase + Offset 1394 /// Origin = (OriginBase + Offset) & ~3ULL 1395 std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, 1396 IRBuilder<> &IRB, 1397 Type *ShadowTy, 1398 unsigned Alignment) { 1399 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1400 Value *ShadowLong = ShadowOffset; 1401 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1402 if (ShadowBase != 0) { 1403 ShadowLong = 1404 IRB.CreateAdd(ShadowLong, 1405 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1406 } 1407 Value *ShadowPtr = 1408 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1409 Value *OriginPtr = nullptr; 1410 if (MS.TrackOrigins) { 1411 Value *OriginLong = ShadowOffset; 1412 uint64_t OriginBase = MS.MapParams->OriginBase; 1413 if (OriginBase != 0) 1414 OriginLong = IRB.CreateAdd(OriginLong, 1415 ConstantInt::get(MS.IntptrTy, OriginBase)); 1416 if (Alignment < kMinOriginAlignment) { 1417 uint64_t Mask = kMinOriginAlignment - 1; 1418 OriginLong = 1419 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1420 } 1421 OriginPtr = 1422 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1423 } 1424 return std::make_pair(ShadowPtr, OriginPtr); 1425 } 1426 1427 std::pair<Value *, Value *> 1428 getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1429 unsigned Alignment, bool isStore) { 1430 Value *ShadowOriginPtrs; 1431 const DataLayout &DL = F.getParent()->getDataLayout(); 1432 int Size = DL.getTypeStoreSize(ShadowTy); 1433 1434 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1435 Value *AddrCast = 1436 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1437 if (Getter) { 1438 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1439 } else { 1440 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1441 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1442 : MS.MsanMetadataPtrForLoadN, 1443 {AddrCast, SizeVal}); 1444 } 1445 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1446 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1447 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1448 1449 return std::make_pair(ShadowPtr, OriginPtr); 1450 } 1451 1452 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1453 Type *ShadowTy, 1454 unsigned Alignment, 1455 bool isStore) { 1456 std::pair<Value *, Value *> ret; 1457 if (MS.CompileKernel) 1458 ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); 1459 else 1460 ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1461 return ret; 1462 } 1463 1464 /// Compute the shadow address for a given function argument. 1465 /// 1466 /// Shadow = ParamTLS+ArgOffset. 1467 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1468 int ArgOffset) { 1469 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1470 if (ArgOffset) 1471 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1472 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1473 "_msarg"); 1474 } 1475 1476 /// Compute the origin address for a given function argument. 1477 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1478 int ArgOffset) { 1479 if (!MS.TrackOrigins) 1480 return nullptr; 1481 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1482 if (ArgOffset) 1483 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1484 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1485 "_msarg_o"); 1486 } 1487 1488 /// Compute the shadow address for a retval. 1489 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1490 return IRB.CreatePointerCast(MS.RetvalTLS, 1491 PointerType::get(getShadowTy(A), 0), 1492 "_msret"); 1493 } 1494 1495 /// Compute the origin address for a retval. 1496 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1497 // We keep a single origin for the entire retval. Might be too optimistic. 1498 return MS.RetvalOriginTLS; 1499 } 1500 1501 /// Set SV to be the shadow value for V. 1502 void setShadow(Value *V, Value *SV) { 1503 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1504 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1505 } 1506 1507 /// Set Origin to be the origin value for V. 1508 void setOrigin(Value *V, Value *Origin) { 1509 if (!MS.TrackOrigins) return; 1510 assert(!OriginMap.count(V) && "Values may only have one origin"); 1511 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1512 OriginMap[V] = Origin; 1513 } 1514 1515 Constant *getCleanShadow(Type *OrigTy) { 1516 Type *ShadowTy = getShadowTy(OrigTy); 1517 if (!ShadowTy) 1518 return nullptr; 1519 return Constant::getNullValue(ShadowTy); 1520 } 1521 1522 /// Create a clean shadow value for a given value. 1523 /// 1524 /// Clean shadow (all zeroes) means all bits of the value are defined 1525 /// (initialized). 1526 Constant *getCleanShadow(Value *V) { 1527 return getCleanShadow(V->getType()); 1528 } 1529 1530 /// Create a dirty shadow of a given shadow type. 1531 Constant *getPoisonedShadow(Type *ShadowTy) { 1532 assert(ShadowTy); 1533 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1534 return Constant::getAllOnesValue(ShadowTy); 1535 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1536 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1537 getPoisonedShadow(AT->getElementType())); 1538 return ConstantArray::get(AT, Vals); 1539 } 1540 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1541 SmallVector<Constant *, 4> Vals; 1542 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1543 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1544 return ConstantStruct::get(ST, Vals); 1545 } 1546 llvm_unreachable("Unexpected shadow type"); 1547 } 1548 1549 /// Create a dirty shadow for a given value. 1550 Constant *getPoisonedShadow(Value *V) { 1551 Type *ShadowTy = getShadowTy(V); 1552 if (!ShadowTy) 1553 return nullptr; 1554 return getPoisonedShadow(ShadowTy); 1555 } 1556 1557 /// Create a clean (zero) origin. 1558 Value *getCleanOrigin() { 1559 return Constant::getNullValue(MS.OriginTy); 1560 } 1561 1562 /// Get the shadow value for a given Value. 1563 /// 1564 /// This function either returns the value set earlier with setShadow, 1565 /// or extracts if from ParamTLS (for function arguments). 1566 Value *getShadow(Value *V) { 1567 if (!PropagateShadow) return getCleanShadow(V); 1568 if (Instruction *I = dyn_cast<Instruction>(V)) { 1569 if (I->getMetadata("nosanitize")) 1570 return getCleanShadow(V); 1571 // For instructions the shadow is already stored in the map. 1572 Value *Shadow = ShadowMap[V]; 1573 if (!Shadow) { 1574 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1575 (void)I; 1576 assert(Shadow && "No shadow for a value"); 1577 } 1578 return Shadow; 1579 } 1580 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1581 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1582 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1583 (void)U; 1584 return AllOnes; 1585 } 1586 if (Argument *A = dyn_cast<Argument>(V)) { 1587 // For arguments we compute the shadow on demand and store it in the map. 1588 Value **ShadowPtr = &ShadowMap[V]; 1589 if (*ShadowPtr) 1590 return *ShadowPtr; 1591 Function *F = A->getParent(); 1592 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1593 unsigned ArgOffset = 0; 1594 const DataLayout &DL = F->getParent()->getDataLayout(); 1595 for (auto &FArg : F->args()) { 1596 if (!FArg.getType()->isSized()) { 1597 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1598 continue; 1599 } 1600 unsigned Size = 1601 FArg.hasByValAttr() 1602 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1603 : DL.getTypeAllocSize(FArg.getType()); 1604 if (A == &FArg) { 1605 bool Overflow = ArgOffset + Size > kParamTLSSize; 1606 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1607 if (FArg.hasByValAttr()) { 1608 // ByVal pointer itself has clean shadow. We copy the actual 1609 // argument shadow to the underlying memory. 1610 // Figure out maximal valid memcpy alignment. 1611 unsigned ArgAlign = FArg.getParamAlignment(); 1612 if (ArgAlign == 0) { 1613 Type *EltType = A->getType()->getPointerElementType(); 1614 ArgAlign = DL.getABITypeAlignment(EltType); 1615 } 1616 Value *CpShadowPtr = 1617 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1618 /*isStore*/ true) 1619 .first; 1620 // TODO(glider): need to copy origins. 1621 if (Overflow) { 1622 // ParamTLS overflow. 1623 EntryIRB.CreateMemSet( 1624 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1625 Size, ArgAlign); 1626 } else { 1627 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1628 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1629 CopyAlign, Size); 1630 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1631 (void)Cpy; 1632 } 1633 *ShadowPtr = getCleanShadow(V); 1634 } else { 1635 if (Overflow) { 1636 // ParamTLS overflow. 1637 *ShadowPtr = getCleanShadow(V); 1638 } else { 1639 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1640 kShadowTLSAlignment); 1641 } 1642 } 1643 LLVM_DEBUG(dbgs() 1644 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1645 if (MS.TrackOrigins && !Overflow) { 1646 Value *OriginPtr = 1647 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1648 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1649 } else { 1650 setOrigin(A, getCleanOrigin()); 1651 } 1652 } 1653 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1654 } 1655 assert(*ShadowPtr && "Could not find shadow for an argument"); 1656 return *ShadowPtr; 1657 } 1658 // For everything else the shadow is zero. 1659 return getCleanShadow(V); 1660 } 1661 1662 /// Get the shadow for i-th argument of the instruction I. 1663 Value *getShadow(Instruction *I, int i) { 1664 return getShadow(I->getOperand(i)); 1665 } 1666 1667 /// Get the origin for a value. 1668 Value *getOrigin(Value *V) { 1669 if (!MS.TrackOrigins) return nullptr; 1670 if (!PropagateShadow) return getCleanOrigin(); 1671 if (isa<Constant>(V)) return getCleanOrigin(); 1672 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1673 "Unexpected value type in getOrigin()"); 1674 if (Instruction *I = dyn_cast<Instruction>(V)) { 1675 if (I->getMetadata("nosanitize")) 1676 return getCleanOrigin(); 1677 } 1678 Value *Origin = OriginMap[V]; 1679 assert(Origin && "Missing origin"); 1680 return Origin; 1681 } 1682 1683 /// Get the origin for i-th argument of the instruction I. 1684 Value *getOrigin(Instruction *I, int i) { 1685 return getOrigin(I->getOperand(i)); 1686 } 1687 1688 /// Remember the place where a shadow check should be inserted. 1689 /// 1690 /// This location will be later instrumented with a check that will print a 1691 /// UMR warning in runtime if the shadow value is not 0. 1692 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1693 assert(Shadow); 1694 if (!InsertChecks) return; 1695 #ifndef NDEBUG 1696 Type *ShadowTy = Shadow->getType(); 1697 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1698 "Can only insert checks for integer and vector shadow types"); 1699 #endif 1700 InstrumentationList.push_back( 1701 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1702 } 1703 1704 /// Remember the place where a shadow check should be inserted. 1705 /// 1706 /// This location will be later instrumented with a check that will print a 1707 /// UMR warning in runtime if the value is not fully defined. 1708 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1709 assert(Val); 1710 Value *Shadow, *Origin; 1711 if (ClCheckConstantShadow) { 1712 Shadow = getShadow(Val); 1713 if (!Shadow) return; 1714 Origin = getOrigin(Val); 1715 } else { 1716 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1717 if (!Shadow) return; 1718 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1719 } 1720 insertShadowCheck(Shadow, Origin, OrigIns); 1721 } 1722 1723 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1724 switch (a) { 1725 case AtomicOrdering::NotAtomic: 1726 return AtomicOrdering::NotAtomic; 1727 case AtomicOrdering::Unordered: 1728 case AtomicOrdering::Monotonic: 1729 case AtomicOrdering::Release: 1730 return AtomicOrdering::Release; 1731 case AtomicOrdering::Acquire: 1732 case AtomicOrdering::AcquireRelease: 1733 return AtomicOrdering::AcquireRelease; 1734 case AtomicOrdering::SequentiallyConsistent: 1735 return AtomicOrdering::SequentiallyConsistent; 1736 } 1737 llvm_unreachable("Unknown ordering"); 1738 } 1739 1740 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1741 switch (a) { 1742 case AtomicOrdering::NotAtomic: 1743 return AtomicOrdering::NotAtomic; 1744 case AtomicOrdering::Unordered: 1745 case AtomicOrdering::Monotonic: 1746 case AtomicOrdering::Acquire: 1747 return AtomicOrdering::Acquire; 1748 case AtomicOrdering::Release: 1749 case AtomicOrdering::AcquireRelease: 1750 return AtomicOrdering::AcquireRelease; 1751 case AtomicOrdering::SequentiallyConsistent: 1752 return AtomicOrdering::SequentiallyConsistent; 1753 } 1754 llvm_unreachable("Unknown ordering"); 1755 } 1756 1757 // ------------------- Visitors. 1758 using InstVisitor<MemorySanitizerVisitor>::visit; 1759 void visit(Instruction &I) { 1760 if (!I.getMetadata("nosanitize")) 1761 InstVisitor<MemorySanitizerVisitor>::visit(I); 1762 } 1763 1764 /// Instrument LoadInst 1765 /// 1766 /// Loads the corresponding shadow and (optionally) origin. 1767 /// Optionally, checks that the load address is fully defined. 1768 void visitLoadInst(LoadInst &I) { 1769 assert(I.getType()->isSized() && "Load type must have size"); 1770 assert(!I.getMetadata("nosanitize")); 1771 IRBuilder<> IRB(I.getNextNode()); 1772 Type *ShadowTy = getShadowTy(&I); 1773 Value *Addr = I.getPointerOperand(); 1774 Value *ShadowPtr, *OriginPtr; 1775 unsigned Alignment = I.getAlignment(); 1776 if (PropagateShadow) { 1777 std::tie(ShadowPtr, OriginPtr) = 1778 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1779 setShadow(&I, 1780 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1781 } else { 1782 setShadow(&I, getCleanShadow(&I)); 1783 } 1784 1785 if (ClCheckAccessAddress) 1786 insertShadowCheck(I.getPointerOperand(), &I); 1787 1788 if (I.isAtomic()) 1789 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1790 1791 if (MS.TrackOrigins) { 1792 if (PropagateShadow) { 1793 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1794 setOrigin( 1795 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1796 } else { 1797 setOrigin(&I, getCleanOrigin()); 1798 } 1799 } 1800 } 1801 1802 /// Instrument StoreInst 1803 /// 1804 /// Stores the corresponding shadow and (optionally) origin. 1805 /// Optionally, checks that the store address is fully defined. 1806 void visitStoreInst(StoreInst &I) { 1807 StoreList.push_back(&I); 1808 if (ClCheckAccessAddress) 1809 insertShadowCheck(I.getPointerOperand(), &I); 1810 } 1811 1812 void handleCASOrRMW(Instruction &I) { 1813 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1814 1815 IRBuilder<> IRB(&I); 1816 Value *Addr = I.getOperand(0); 1817 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), 1818 /*Alignment*/ 1, /*isStore*/ true) 1819 .first; 1820 1821 if (ClCheckAccessAddress) 1822 insertShadowCheck(Addr, &I); 1823 1824 // Only test the conditional argument of cmpxchg instruction. 1825 // The other argument can potentially be uninitialized, but we can not 1826 // detect this situation reliably without possible false positives. 1827 if (isa<AtomicCmpXchgInst>(I)) 1828 insertShadowCheck(I.getOperand(1), &I); 1829 1830 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1831 1832 setShadow(&I, getCleanShadow(&I)); 1833 setOrigin(&I, getCleanOrigin()); 1834 } 1835 1836 void visitAtomicRMWInst(AtomicRMWInst &I) { 1837 handleCASOrRMW(I); 1838 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1839 } 1840 1841 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1842 handleCASOrRMW(I); 1843 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1844 } 1845 1846 // Vector manipulation. 1847 void visitExtractElementInst(ExtractElementInst &I) { 1848 insertShadowCheck(I.getOperand(1), &I); 1849 IRBuilder<> IRB(&I); 1850 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1851 "_msprop")); 1852 setOrigin(&I, getOrigin(&I, 0)); 1853 } 1854 1855 void visitInsertElementInst(InsertElementInst &I) { 1856 insertShadowCheck(I.getOperand(2), &I); 1857 IRBuilder<> IRB(&I); 1858 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1859 I.getOperand(2), "_msprop")); 1860 setOriginForNaryOp(I); 1861 } 1862 1863 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1864 insertShadowCheck(I.getOperand(2), &I); 1865 IRBuilder<> IRB(&I); 1866 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1867 I.getOperand(2), "_msprop")); 1868 setOriginForNaryOp(I); 1869 } 1870 1871 // Casts. 1872 void visitSExtInst(SExtInst &I) { 1873 IRBuilder<> IRB(&I); 1874 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1875 setOrigin(&I, getOrigin(&I, 0)); 1876 } 1877 1878 void visitZExtInst(ZExtInst &I) { 1879 IRBuilder<> IRB(&I); 1880 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1881 setOrigin(&I, getOrigin(&I, 0)); 1882 } 1883 1884 void visitTruncInst(TruncInst &I) { 1885 IRBuilder<> IRB(&I); 1886 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1887 setOrigin(&I, getOrigin(&I, 0)); 1888 } 1889 1890 void visitBitCastInst(BitCastInst &I) { 1891 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1892 // a musttail call and a ret, don't instrument. New instructions are not 1893 // allowed after a musttail call. 1894 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1895 if (CI->isMustTailCall()) 1896 return; 1897 IRBuilder<> IRB(&I); 1898 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1899 setOrigin(&I, getOrigin(&I, 0)); 1900 } 1901 1902 void visitPtrToIntInst(PtrToIntInst &I) { 1903 IRBuilder<> IRB(&I); 1904 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1905 "_msprop_ptrtoint")); 1906 setOrigin(&I, getOrigin(&I, 0)); 1907 } 1908 1909 void visitIntToPtrInst(IntToPtrInst &I) { 1910 IRBuilder<> IRB(&I); 1911 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1912 "_msprop_inttoptr")); 1913 setOrigin(&I, getOrigin(&I, 0)); 1914 } 1915 1916 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1917 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1918 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1919 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1920 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1921 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1922 1923 /// Propagate shadow for bitwise AND. 1924 /// 1925 /// This code is exact, i.e. if, for example, a bit in the left argument 1926 /// is defined and 0, then neither the value not definedness of the 1927 /// corresponding bit in B don't affect the resulting shadow. 1928 void visitAnd(BinaryOperator &I) { 1929 IRBuilder<> IRB(&I); 1930 // "And" of 0 and a poisoned value results in unpoisoned value. 1931 // 1&1 => 1; 0&1 => 0; p&1 => p; 1932 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1933 // 1&p => p; 0&p => 0; p&p => p; 1934 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1935 Value *S1 = getShadow(&I, 0); 1936 Value *S2 = getShadow(&I, 1); 1937 Value *V1 = I.getOperand(0); 1938 Value *V2 = I.getOperand(1); 1939 if (V1->getType() != S1->getType()) { 1940 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1941 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1942 } 1943 Value *S1S2 = IRB.CreateAnd(S1, S2); 1944 Value *V1S2 = IRB.CreateAnd(V1, S2); 1945 Value *S1V2 = IRB.CreateAnd(S1, V2); 1946 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1947 setOriginForNaryOp(I); 1948 } 1949 1950 void visitOr(BinaryOperator &I) { 1951 IRBuilder<> IRB(&I); 1952 // "Or" of 1 and a poisoned value results in unpoisoned value. 1953 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1954 // 1|0 => 1; 0|0 => 0; p|0 => p; 1955 // 1|p => 1; 0|p => p; p|p => p; 1956 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1957 Value *S1 = getShadow(&I, 0); 1958 Value *S2 = getShadow(&I, 1); 1959 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1960 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1961 if (V1->getType() != S1->getType()) { 1962 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1963 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1964 } 1965 Value *S1S2 = IRB.CreateAnd(S1, S2); 1966 Value *V1S2 = IRB.CreateAnd(V1, S2); 1967 Value *S1V2 = IRB.CreateAnd(S1, V2); 1968 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1969 setOriginForNaryOp(I); 1970 } 1971 1972 /// Default propagation of shadow and/or origin. 1973 /// 1974 /// This class implements the general case of shadow propagation, used in all 1975 /// cases where we don't know and/or don't care about what the operation 1976 /// actually does. It converts all input shadow values to a common type 1977 /// (extending or truncating as necessary), and bitwise OR's them. 1978 /// 1979 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1980 /// fully initialized), and less prone to false positives. 1981 /// 1982 /// This class also implements the general case of origin propagation. For a 1983 /// Nary operation, result origin is set to the origin of an argument that is 1984 /// not entirely initialized. If there is more than one such arguments, the 1985 /// rightmost of them is picked. It does not matter which one is picked if all 1986 /// arguments are initialized. 1987 template <bool CombineShadow> 1988 class Combiner { 1989 Value *Shadow = nullptr; 1990 Value *Origin = nullptr; 1991 IRBuilder<> &IRB; 1992 MemorySanitizerVisitor *MSV; 1993 1994 public: 1995 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 1996 : IRB(IRB), MSV(MSV) {} 1997 1998 /// Add a pair of shadow and origin values to the mix. 1999 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2000 if (CombineShadow) { 2001 assert(OpShadow); 2002 if (!Shadow) 2003 Shadow = OpShadow; 2004 else { 2005 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2006 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2007 } 2008 } 2009 2010 if (MSV->MS.TrackOrigins) { 2011 assert(OpOrigin); 2012 if (!Origin) { 2013 Origin = OpOrigin; 2014 } else { 2015 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2016 // No point in adding something that might result in 0 origin value. 2017 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2018 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2019 Value *Cond = 2020 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2021 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2022 } 2023 } 2024 } 2025 return *this; 2026 } 2027 2028 /// Add an application value to the mix. 2029 Combiner &Add(Value *V) { 2030 Value *OpShadow = MSV->getShadow(V); 2031 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2032 return Add(OpShadow, OpOrigin); 2033 } 2034 2035 /// Set the current combined values as the given instruction's shadow 2036 /// and origin. 2037 void Done(Instruction *I) { 2038 if (CombineShadow) { 2039 assert(Shadow); 2040 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2041 MSV->setShadow(I, Shadow); 2042 } 2043 if (MSV->MS.TrackOrigins) { 2044 assert(Origin); 2045 MSV->setOrigin(I, Origin); 2046 } 2047 } 2048 }; 2049 2050 using ShadowAndOriginCombiner = Combiner<true>; 2051 using OriginCombiner = Combiner<false>; 2052 2053 /// Propagate origin for arbitrary operation. 2054 void setOriginForNaryOp(Instruction &I) { 2055 if (!MS.TrackOrigins) return; 2056 IRBuilder<> IRB(&I); 2057 OriginCombiner OC(this, IRB); 2058 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2059 OC.Add(OI->get()); 2060 OC.Done(&I); 2061 } 2062 2063 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2064 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2065 "Vector of pointers is not a valid shadow type"); 2066 return Ty->isVectorTy() ? 2067 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2068 Ty->getPrimitiveSizeInBits(); 2069 } 2070 2071 /// Cast between two shadow types, extending or truncating as 2072 /// necessary. 2073 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2074 bool Signed = false) { 2075 Type *srcTy = V->getType(); 2076 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2077 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2078 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2079 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2080 2081 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2082 return IRB.CreateIntCast(V, dstTy, Signed); 2083 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2084 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2085 return IRB.CreateIntCast(V, dstTy, Signed); 2086 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2087 Value *V2 = 2088 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2089 return IRB.CreateBitCast(V2, dstTy); 2090 // TODO: handle struct types. 2091 } 2092 2093 /// Cast an application value to the type of its own shadow. 2094 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2095 Type *ShadowTy = getShadowTy(V); 2096 if (V->getType() == ShadowTy) 2097 return V; 2098 if (V->getType()->isPtrOrPtrVectorTy()) 2099 return IRB.CreatePtrToInt(V, ShadowTy); 2100 else 2101 return IRB.CreateBitCast(V, ShadowTy); 2102 } 2103 2104 /// Propagate shadow for arbitrary operation. 2105 void handleShadowOr(Instruction &I) { 2106 IRBuilder<> IRB(&I); 2107 ShadowAndOriginCombiner SC(this, IRB); 2108 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2109 SC.Add(OI->get()); 2110 SC.Done(&I); 2111 } 2112 2113 // Handle multiplication by constant. 2114 // 2115 // Handle a special case of multiplication by constant that may have one or 2116 // more zeros in the lower bits. This makes corresponding number of lower bits 2117 // of the result zero as well. We model it by shifting the other operand 2118 // shadow left by the required number of bits. Effectively, we transform 2119 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2120 // We use multiplication by 2**N instead of shift to cover the case of 2121 // multiplication by 0, which may occur in some elements of a vector operand. 2122 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2123 Value *OtherArg) { 2124 Constant *ShadowMul; 2125 Type *Ty = ConstArg->getType(); 2126 if (Ty->isVectorTy()) { 2127 unsigned NumElements = Ty->getVectorNumElements(); 2128 Type *EltTy = Ty->getSequentialElementType(); 2129 SmallVector<Constant *, 16> Elements; 2130 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2131 if (ConstantInt *Elt = 2132 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2133 const APInt &V = Elt->getValue(); 2134 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2135 Elements.push_back(ConstantInt::get(EltTy, V2)); 2136 } else { 2137 Elements.push_back(ConstantInt::get(EltTy, 1)); 2138 } 2139 } 2140 ShadowMul = ConstantVector::get(Elements); 2141 } else { 2142 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2143 const APInt &V = Elt->getValue(); 2144 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2145 ShadowMul = ConstantInt::get(Ty, V2); 2146 } else { 2147 ShadowMul = ConstantInt::get(Ty, 1); 2148 } 2149 } 2150 2151 IRBuilder<> IRB(&I); 2152 setShadow(&I, 2153 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2154 setOrigin(&I, getOrigin(OtherArg)); 2155 } 2156 2157 void visitMul(BinaryOperator &I) { 2158 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2159 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2160 if (constOp0 && !constOp1) 2161 handleMulByConstant(I, constOp0, I.getOperand(1)); 2162 else if (constOp1 && !constOp0) 2163 handleMulByConstant(I, constOp1, I.getOperand(0)); 2164 else 2165 handleShadowOr(I); 2166 } 2167 2168 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2169 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2170 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2171 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2172 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2173 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2174 2175 void handleIntegerDiv(Instruction &I) { 2176 IRBuilder<> IRB(&I); 2177 // Strict on the second argument. 2178 insertShadowCheck(I.getOperand(1), &I); 2179 setShadow(&I, getShadow(&I, 0)); 2180 setOrigin(&I, getOrigin(&I, 0)); 2181 } 2182 2183 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2184 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2185 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2186 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2187 2188 // Floating point division is side-effect free. We can not require that the 2189 // divisor is fully initialized and must propagate shadow. See PR37523. 2190 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2191 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2192 2193 /// Instrument == and != comparisons. 2194 /// 2195 /// Sometimes the comparison result is known even if some of the bits of the 2196 /// arguments are not. 2197 void handleEqualityComparison(ICmpInst &I) { 2198 IRBuilder<> IRB(&I); 2199 Value *A = I.getOperand(0); 2200 Value *B = I.getOperand(1); 2201 Value *Sa = getShadow(A); 2202 Value *Sb = getShadow(B); 2203 2204 // Get rid of pointers and vectors of pointers. 2205 // For ints (and vectors of ints), types of A and Sa match, 2206 // and this is a no-op. 2207 A = IRB.CreatePointerCast(A, Sa->getType()); 2208 B = IRB.CreatePointerCast(B, Sb->getType()); 2209 2210 // A == B <==> (C = A^B) == 0 2211 // A != B <==> (C = A^B) != 0 2212 // Sc = Sa | Sb 2213 Value *C = IRB.CreateXor(A, B); 2214 Value *Sc = IRB.CreateOr(Sa, Sb); 2215 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2216 // Result is defined if one of the following is true 2217 // * there is a defined 1 bit in C 2218 // * C is fully defined 2219 // Si = !(C & ~Sc) && Sc 2220 Value *Zero = Constant::getNullValue(Sc->getType()); 2221 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2222 Value *Si = 2223 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2224 IRB.CreateICmpEQ( 2225 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2226 Si->setName("_msprop_icmp"); 2227 setShadow(&I, Si); 2228 setOriginForNaryOp(I); 2229 } 2230 2231 /// Build the lowest possible value of V, taking into account V's 2232 /// uninitialized bits. 2233 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2234 bool isSigned) { 2235 if (isSigned) { 2236 // Split shadow into sign bit and other bits. 2237 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2238 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2239 // Maximise the undefined shadow bit, minimize other undefined bits. 2240 return 2241 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2242 } else { 2243 // Minimize undefined bits. 2244 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2245 } 2246 } 2247 2248 /// Build the highest possible value of V, taking into account V's 2249 /// uninitialized bits. 2250 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2251 bool isSigned) { 2252 if (isSigned) { 2253 // Split shadow into sign bit and other bits. 2254 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2255 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2256 // Minimise the undefined shadow bit, maximise other undefined bits. 2257 return 2258 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2259 } else { 2260 // Maximize undefined bits. 2261 return IRB.CreateOr(A, Sa); 2262 } 2263 } 2264 2265 /// Instrument relational comparisons. 2266 /// 2267 /// This function does exact shadow propagation for all relational 2268 /// comparisons of integers, pointers and vectors of those. 2269 /// FIXME: output seems suboptimal when one of the operands is a constant 2270 void handleRelationalComparisonExact(ICmpInst &I) { 2271 IRBuilder<> IRB(&I); 2272 Value *A = I.getOperand(0); 2273 Value *B = I.getOperand(1); 2274 Value *Sa = getShadow(A); 2275 Value *Sb = getShadow(B); 2276 2277 // Get rid of pointers and vectors of pointers. 2278 // For ints (and vectors of ints), types of A and Sa match, 2279 // and this is a no-op. 2280 A = IRB.CreatePointerCast(A, Sa->getType()); 2281 B = IRB.CreatePointerCast(B, Sb->getType()); 2282 2283 // Let [a0, a1] be the interval of possible values of A, taking into account 2284 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2285 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2286 bool IsSigned = I.isSigned(); 2287 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2288 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2289 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2290 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2291 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2292 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2293 Value *Si = IRB.CreateXor(S1, S2); 2294 setShadow(&I, Si); 2295 setOriginForNaryOp(I); 2296 } 2297 2298 /// Instrument signed relational comparisons. 2299 /// 2300 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2301 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2302 void handleSignedRelationalComparison(ICmpInst &I) { 2303 Constant *constOp; 2304 Value *op = nullptr; 2305 CmpInst::Predicate pre; 2306 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2307 op = I.getOperand(0); 2308 pre = I.getPredicate(); 2309 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2310 op = I.getOperand(1); 2311 pre = I.getSwappedPredicate(); 2312 } else { 2313 handleShadowOr(I); 2314 return; 2315 } 2316 2317 if ((constOp->isNullValue() && 2318 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2319 (constOp->isAllOnesValue() && 2320 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2321 IRBuilder<> IRB(&I); 2322 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2323 "_msprop_icmp_s"); 2324 setShadow(&I, Shadow); 2325 setOrigin(&I, getOrigin(op)); 2326 } else { 2327 handleShadowOr(I); 2328 } 2329 } 2330 2331 void visitICmpInst(ICmpInst &I) { 2332 if (!ClHandleICmp) { 2333 handleShadowOr(I); 2334 return; 2335 } 2336 if (I.isEquality()) { 2337 handleEqualityComparison(I); 2338 return; 2339 } 2340 2341 assert(I.isRelational()); 2342 if (ClHandleICmpExact) { 2343 handleRelationalComparisonExact(I); 2344 return; 2345 } 2346 if (I.isSigned()) { 2347 handleSignedRelationalComparison(I); 2348 return; 2349 } 2350 2351 assert(I.isUnsigned()); 2352 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2353 handleRelationalComparisonExact(I); 2354 return; 2355 } 2356 2357 handleShadowOr(I); 2358 } 2359 2360 void visitFCmpInst(FCmpInst &I) { 2361 handleShadowOr(I); 2362 } 2363 2364 void handleShift(BinaryOperator &I) { 2365 IRBuilder<> IRB(&I); 2366 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2367 // Otherwise perform the same shift on S1. 2368 Value *S1 = getShadow(&I, 0); 2369 Value *S2 = getShadow(&I, 1); 2370 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2371 S2->getType()); 2372 Value *V2 = I.getOperand(1); 2373 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2374 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2375 setOriginForNaryOp(I); 2376 } 2377 2378 void visitShl(BinaryOperator &I) { handleShift(I); } 2379 void visitAShr(BinaryOperator &I) { handleShift(I); } 2380 void visitLShr(BinaryOperator &I) { handleShift(I); } 2381 2382 /// Instrument llvm.memmove 2383 /// 2384 /// At this point we don't know if llvm.memmove will be inlined or not. 2385 /// If we don't instrument it and it gets inlined, 2386 /// our interceptor will not kick in and we will lose the memmove. 2387 /// If we instrument the call here, but it does not get inlined, 2388 /// we will memove the shadow twice: which is bad in case 2389 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2390 /// 2391 /// Similar situation exists for memcpy and memset. 2392 void visitMemMoveInst(MemMoveInst &I) { 2393 IRBuilder<> IRB(&I); 2394 IRB.CreateCall( 2395 MS.MemmoveFn, 2396 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2397 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2398 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2399 I.eraseFromParent(); 2400 } 2401 2402 // Similar to memmove: avoid copying shadow twice. 2403 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2404 // FIXME: consider doing manual inline for small constant sizes and proper 2405 // alignment. 2406 void visitMemCpyInst(MemCpyInst &I) { 2407 IRBuilder<> IRB(&I); 2408 IRB.CreateCall( 2409 MS.MemcpyFn, 2410 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2411 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2412 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2413 I.eraseFromParent(); 2414 } 2415 2416 // Same as memcpy. 2417 void visitMemSetInst(MemSetInst &I) { 2418 IRBuilder<> IRB(&I); 2419 IRB.CreateCall( 2420 MS.MemsetFn, 2421 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2422 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2423 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2424 I.eraseFromParent(); 2425 } 2426 2427 void visitVAStartInst(VAStartInst &I) { 2428 VAHelper->visitVAStartInst(I); 2429 } 2430 2431 void visitVACopyInst(VACopyInst &I) { 2432 VAHelper->visitVACopyInst(I); 2433 } 2434 2435 /// Handle vector store-like intrinsics. 2436 /// 2437 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2438 /// has 1 pointer argument and 1 vector argument, returns void. 2439 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2440 IRBuilder<> IRB(&I); 2441 Value* Addr = I.getArgOperand(0); 2442 Value *Shadow = getShadow(&I, 1); 2443 Value *ShadowPtr, *OriginPtr; 2444 2445 // We don't know the pointer alignment (could be unaligned SSE store!). 2446 // Have to assume to worst case. 2447 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2448 Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); 2449 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2450 2451 if (ClCheckAccessAddress) 2452 insertShadowCheck(Addr, &I); 2453 2454 // FIXME: factor out common code from materializeStores 2455 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2456 return true; 2457 } 2458 2459 /// Handle vector load-like intrinsics. 2460 /// 2461 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2462 /// has 1 pointer argument, returns a vector. 2463 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2464 IRBuilder<> IRB(&I); 2465 Value *Addr = I.getArgOperand(0); 2466 2467 Type *ShadowTy = getShadowTy(&I); 2468 Value *ShadowPtr, *OriginPtr; 2469 if (PropagateShadow) { 2470 // We don't know the pointer alignment (could be unaligned SSE load!). 2471 // Have to assume to worst case. 2472 unsigned Alignment = 1; 2473 std::tie(ShadowPtr, OriginPtr) = 2474 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2475 setShadow(&I, 2476 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2477 } else { 2478 setShadow(&I, getCleanShadow(&I)); 2479 } 2480 2481 if (ClCheckAccessAddress) 2482 insertShadowCheck(Addr, &I); 2483 2484 if (MS.TrackOrigins) { 2485 if (PropagateShadow) 2486 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2487 else 2488 setOrigin(&I, getCleanOrigin()); 2489 } 2490 return true; 2491 } 2492 2493 /// Handle (SIMD arithmetic)-like intrinsics. 2494 /// 2495 /// Instrument intrinsics with any number of arguments of the same type, 2496 /// equal to the return type. The type should be simple (no aggregates or 2497 /// pointers; vectors are fine). 2498 /// Caller guarantees that this intrinsic does not access memory. 2499 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2500 Type *RetTy = I.getType(); 2501 if (!(RetTy->isIntOrIntVectorTy() || 2502 RetTy->isFPOrFPVectorTy() || 2503 RetTy->isX86_MMXTy())) 2504 return false; 2505 2506 unsigned NumArgOperands = I.getNumArgOperands(); 2507 2508 for (unsigned i = 0; i < NumArgOperands; ++i) { 2509 Type *Ty = I.getArgOperand(i)->getType(); 2510 if (Ty != RetTy) 2511 return false; 2512 } 2513 2514 IRBuilder<> IRB(&I); 2515 ShadowAndOriginCombiner SC(this, IRB); 2516 for (unsigned i = 0; i < NumArgOperands; ++i) 2517 SC.Add(I.getArgOperand(i)); 2518 SC.Done(&I); 2519 2520 return true; 2521 } 2522 2523 /// Heuristically instrument unknown intrinsics. 2524 /// 2525 /// The main purpose of this code is to do something reasonable with all 2526 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2527 /// We recognize several classes of intrinsics by their argument types and 2528 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2529 /// sure that we know what the intrinsic does. 2530 /// 2531 /// We special-case intrinsics where this approach fails. See llvm.bswap 2532 /// handling as an example of that. 2533 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2534 unsigned NumArgOperands = I.getNumArgOperands(); 2535 if (NumArgOperands == 0) 2536 return false; 2537 2538 if (NumArgOperands == 2 && 2539 I.getArgOperand(0)->getType()->isPointerTy() && 2540 I.getArgOperand(1)->getType()->isVectorTy() && 2541 I.getType()->isVoidTy() && 2542 !I.onlyReadsMemory()) { 2543 // This looks like a vector store. 2544 return handleVectorStoreIntrinsic(I); 2545 } 2546 2547 if (NumArgOperands == 1 && 2548 I.getArgOperand(0)->getType()->isPointerTy() && 2549 I.getType()->isVectorTy() && 2550 I.onlyReadsMemory()) { 2551 // This looks like a vector load. 2552 return handleVectorLoadIntrinsic(I); 2553 } 2554 2555 if (I.doesNotAccessMemory()) 2556 if (maybeHandleSimpleNomemIntrinsic(I)) 2557 return true; 2558 2559 // FIXME: detect and handle SSE maskstore/maskload 2560 return false; 2561 } 2562 2563 void handleLifetimeStart(IntrinsicInst &I) { 2564 if (!PoisonStack) 2565 return; 2566 DenseMap<Value *, AllocaInst *> AllocaForValue; 2567 AllocaInst *AI = 2568 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2569 if (!AI) 2570 InstrumentLifetimeStart = false; 2571 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2572 } 2573 2574 void handleBswap(IntrinsicInst &I) { 2575 IRBuilder<> IRB(&I); 2576 Value *Op = I.getArgOperand(0); 2577 Type *OpType = Op->getType(); 2578 Function *BswapFunc = Intrinsic::getDeclaration( 2579 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2580 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2581 setOrigin(&I, getOrigin(Op)); 2582 } 2583 2584 // Instrument vector convert instrinsic. 2585 // 2586 // This function instruments intrinsics like cvtsi2ss: 2587 // %Out = int_xxx_cvtyyy(%ConvertOp) 2588 // or 2589 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2590 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2591 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2592 // elements from \p CopyOp. 2593 // In most cases conversion involves floating-point value which may trigger a 2594 // hardware exception when not fully initialized. For this reason we require 2595 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2596 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2597 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2598 // return a fully initialized value. 2599 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2600 IRBuilder<> IRB(&I); 2601 Value *CopyOp, *ConvertOp; 2602 2603 switch (I.getNumArgOperands()) { 2604 case 3: 2605 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2606 LLVM_FALLTHROUGH; 2607 case 2: 2608 CopyOp = I.getArgOperand(0); 2609 ConvertOp = I.getArgOperand(1); 2610 break; 2611 case 1: 2612 ConvertOp = I.getArgOperand(0); 2613 CopyOp = nullptr; 2614 break; 2615 default: 2616 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2617 } 2618 2619 // The first *NumUsedElements* elements of ConvertOp are converted to the 2620 // same number of output elements. The rest of the output is copied from 2621 // CopyOp, or (if not available) filled with zeroes. 2622 // Combine shadow for elements of ConvertOp that are used in this operation, 2623 // and insert a check. 2624 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2625 // int->any conversion. 2626 Value *ConvertShadow = getShadow(ConvertOp); 2627 Value *AggShadow = nullptr; 2628 if (ConvertOp->getType()->isVectorTy()) { 2629 AggShadow = IRB.CreateExtractElement( 2630 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2631 for (int i = 1; i < NumUsedElements; ++i) { 2632 Value *MoreShadow = IRB.CreateExtractElement( 2633 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2634 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2635 } 2636 } else { 2637 AggShadow = ConvertShadow; 2638 } 2639 assert(AggShadow->getType()->isIntegerTy()); 2640 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2641 2642 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2643 // ConvertOp. 2644 if (CopyOp) { 2645 assert(CopyOp->getType() == I.getType()); 2646 assert(CopyOp->getType()->isVectorTy()); 2647 Value *ResultShadow = getShadow(CopyOp); 2648 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2649 for (int i = 0; i < NumUsedElements; ++i) { 2650 ResultShadow = IRB.CreateInsertElement( 2651 ResultShadow, ConstantInt::getNullValue(EltTy), 2652 ConstantInt::get(IRB.getInt32Ty(), i)); 2653 } 2654 setShadow(&I, ResultShadow); 2655 setOrigin(&I, getOrigin(CopyOp)); 2656 } else { 2657 setShadow(&I, getCleanShadow(&I)); 2658 setOrigin(&I, getCleanOrigin()); 2659 } 2660 } 2661 2662 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2663 // zeroes if it is zero, and all ones otherwise. 2664 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2665 if (S->getType()->isVectorTy()) 2666 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2667 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2668 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2669 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2670 } 2671 2672 // Given a vector, extract its first element, and return all 2673 // zeroes if it is zero, and all ones otherwise. 2674 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2675 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2676 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2677 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2678 } 2679 2680 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2681 Type *T = S->getType(); 2682 assert(T->isVectorTy()); 2683 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2684 return IRB.CreateSExt(S2, T); 2685 } 2686 2687 // Instrument vector shift instrinsic. 2688 // 2689 // This function instruments intrinsics like int_x86_avx2_psll_w. 2690 // Intrinsic shifts %In by %ShiftSize bits. 2691 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2692 // size, and the rest is ignored. Behavior is defined even if shift size is 2693 // greater than register (or field) width. 2694 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2695 assert(I.getNumArgOperands() == 2); 2696 IRBuilder<> IRB(&I); 2697 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2698 // Otherwise perform the same shift on S1. 2699 Value *S1 = getShadow(&I, 0); 2700 Value *S2 = getShadow(&I, 1); 2701 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2702 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2703 Value *V1 = I.getOperand(0); 2704 Value *V2 = I.getOperand(1); 2705 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 2706 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2707 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2708 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2709 setOriginForNaryOp(I); 2710 } 2711 2712 // Get an X86_MMX-sized vector type. 2713 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2714 const unsigned X86_MMXSizeInBits = 64; 2715 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2716 "Illegal MMX vector element size"); 2717 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2718 X86_MMXSizeInBits / EltSizeInBits); 2719 } 2720 2721 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2722 // intrinsic. 2723 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2724 switch (id) { 2725 case Intrinsic::x86_sse2_packsswb_128: 2726 case Intrinsic::x86_sse2_packuswb_128: 2727 return Intrinsic::x86_sse2_packsswb_128; 2728 2729 case Intrinsic::x86_sse2_packssdw_128: 2730 case Intrinsic::x86_sse41_packusdw: 2731 return Intrinsic::x86_sse2_packssdw_128; 2732 2733 case Intrinsic::x86_avx2_packsswb: 2734 case Intrinsic::x86_avx2_packuswb: 2735 return Intrinsic::x86_avx2_packsswb; 2736 2737 case Intrinsic::x86_avx2_packssdw: 2738 case Intrinsic::x86_avx2_packusdw: 2739 return Intrinsic::x86_avx2_packssdw; 2740 2741 case Intrinsic::x86_mmx_packsswb: 2742 case Intrinsic::x86_mmx_packuswb: 2743 return Intrinsic::x86_mmx_packsswb; 2744 2745 case Intrinsic::x86_mmx_packssdw: 2746 return Intrinsic::x86_mmx_packssdw; 2747 default: 2748 llvm_unreachable("unexpected intrinsic id"); 2749 } 2750 } 2751 2752 // Instrument vector pack instrinsic. 2753 // 2754 // This function instruments intrinsics like x86_mmx_packsswb, that 2755 // packs elements of 2 input vectors into half as many bits with saturation. 2756 // Shadow is propagated with the signed variant of the same intrinsic applied 2757 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2758 // EltSizeInBits is used only for x86mmx arguments. 2759 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2760 assert(I.getNumArgOperands() == 2); 2761 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2762 IRBuilder<> IRB(&I); 2763 Value *S1 = getShadow(&I, 0); 2764 Value *S2 = getShadow(&I, 1); 2765 assert(isX86_MMX || S1->getType()->isVectorTy()); 2766 2767 // SExt and ICmpNE below must apply to individual elements of input vectors. 2768 // In case of x86mmx arguments, cast them to appropriate vector types and 2769 // back. 2770 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2771 if (isX86_MMX) { 2772 S1 = IRB.CreateBitCast(S1, T); 2773 S2 = IRB.CreateBitCast(S2, T); 2774 } 2775 Value *S1_ext = IRB.CreateSExt( 2776 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2777 Value *S2_ext = IRB.CreateSExt( 2778 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2779 if (isX86_MMX) { 2780 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2781 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2782 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2783 } 2784 2785 Function *ShadowFn = Intrinsic::getDeclaration( 2786 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2787 2788 Value *S = 2789 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2790 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2791 setShadow(&I, S); 2792 setOriginForNaryOp(I); 2793 } 2794 2795 // Instrument sum-of-absolute-differencies intrinsic. 2796 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2797 const unsigned SignificantBitsPerResultElement = 16; 2798 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2799 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2800 unsigned ZeroBitsPerResultElement = 2801 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2802 2803 IRBuilder<> IRB(&I); 2804 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2805 S = IRB.CreateBitCast(S, ResTy); 2806 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2807 ResTy); 2808 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2809 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2810 setShadow(&I, S); 2811 setOriginForNaryOp(I); 2812 } 2813 2814 // Instrument multiply-add intrinsic. 2815 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2816 unsigned EltSizeInBits = 0) { 2817 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2818 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2819 IRBuilder<> IRB(&I); 2820 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2821 S = IRB.CreateBitCast(S, ResTy); 2822 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2823 ResTy); 2824 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2825 setShadow(&I, S); 2826 setOriginForNaryOp(I); 2827 } 2828 2829 // Instrument compare-packed intrinsic. 2830 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2831 // all-ones shadow. 2832 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2833 IRBuilder<> IRB(&I); 2834 Type *ResTy = getShadowTy(&I); 2835 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2836 Value *S = IRB.CreateSExt( 2837 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2838 setShadow(&I, S); 2839 setOriginForNaryOp(I); 2840 } 2841 2842 // Instrument compare-scalar intrinsic. 2843 // This handles both cmp* intrinsics which return the result in the first 2844 // element of a vector, and comi* which return the result as i32. 2845 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2846 IRBuilder<> IRB(&I); 2847 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2848 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2849 setShadow(&I, S); 2850 setOriginForNaryOp(I); 2851 } 2852 2853 void handleStmxcsr(IntrinsicInst &I) { 2854 IRBuilder<> IRB(&I); 2855 Value* Addr = I.getArgOperand(0); 2856 Type *Ty = IRB.getInt32Ty(); 2857 Value *ShadowPtr = 2858 getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) 2859 .first; 2860 2861 IRB.CreateStore(getCleanShadow(Ty), 2862 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2863 2864 if (ClCheckAccessAddress) 2865 insertShadowCheck(Addr, &I); 2866 } 2867 2868 void handleLdmxcsr(IntrinsicInst &I) { 2869 if (!InsertChecks) return; 2870 2871 IRBuilder<> IRB(&I); 2872 Value *Addr = I.getArgOperand(0); 2873 Type *Ty = IRB.getInt32Ty(); 2874 unsigned Alignment = 1; 2875 Value *ShadowPtr, *OriginPtr; 2876 std::tie(ShadowPtr, OriginPtr) = 2877 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2878 2879 if (ClCheckAccessAddress) 2880 insertShadowCheck(Addr, &I); 2881 2882 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2883 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2884 : getCleanOrigin(); 2885 insertShadowCheck(Shadow, Origin, &I); 2886 } 2887 2888 void handleMaskedStore(IntrinsicInst &I) { 2889 IRBuilder<> IRB(&I); 2890 Value *V = I.getArgOperand(0); 2891 Value *Addr = I.getArgOperand(1); 2892 unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 2893 Value *Mask = I.getArgOperand(3); 2894 Value *Shadow = getShadow(V); 2895 2896 Value *ShadowPtr; 2897 Value *OriginPtr; 2898 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2899 Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); 2900 2901 if (ClCheckAccessAddress) { 2902 insertShadowCheck(Addr, &I); 2903 // Uninitialized mask is kind of like uninitialized address, but not as 2904 // scary. 2905 insertShadowCheck(Mask, &I); 2906 } 2907 2908 IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); 2909 2910 if (MS.TrackOrigins) { 2911 auto &DL = F.getParent()->getDataLayout(); 2912 paintOrigin(IRB, getOrigin(V), OriginPtr, 2913 DL.getTypeStoreSize(Shadow->getType()), 2914 std::max(Align, kMinOriginAlignment)); 2915 } 2916 } 2917 2918 bool handleMaskedLoad(IntrinsicInst &I) { 2919 IRBuilder<> IRB(&I); 2920 Value *Addr = I.getArgOperand(0); 2921 unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 2922 Value *Mask = I.getArgOperand(2); 2923 Value *PassThru = I.getArgOperand(3); 2924 2925 Type *ShadowTy = getShadowTy(&I); 2926 Value *ShadowPtr, *OriginPtr; 2927 if (PropagateShadow) { 2928 std::tie(ShadowPtr, OriginPtr) = 2929 getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); 2930 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, 2931 getShadow(PassThru), "_msmaskedld")); 2932 } else { 2933 setShadow(&I, getCleanShadow(&I)); 2934 } 2935 2936 if (ClCheckAccessAddress) { 2937 insertShadowCheck(Addr, &I); 2938 insertShadowCheck(Mask, &I); 2939 } 2940 2941 if (MS.TrackOrigins) { 2942 if (PropagateShadow) { 2943 // Choose between PassThru's and the loaded value's origins. 2944 Value *MaskedPassThruShadow = IRB.CreateAnd( 2945 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2946 2947 Value *Acc = IRB.CreateExtractElement( 2948 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2949 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2950 ++i) { 2951 Value *More = IRB.CreateExtractElement( 2952 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2953 Acc = IRB.CreateOr(Acc, More); 2954 } 2955 2956 Value *Origin = IRB.CreateSelect( 2957 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2958 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2959 2960 setOrigin(&I, Origin); 2961 } else { 2962 setOrigin(&I, getCleanOrigin()); 2963 } 2964 } 2965 return true; 2966 } 2967 2968 // Instrument BMI / BMI2 intrinsics. 2969 // All of these intrinsics are Z = I(X, Y) 2970 // where the types of all operands and the result match, and are either i32 or i64. 2971 // The following instrumentation happens to work for all of them: 2972 // Sz = I(Sx, Y) | (sext (Sy != 0)) 2973 void handleBmiIntrinsic(IntrinsicInst &I) { 2974 IRBuilder<> IRB(&I); 2975 Type *ShadowTy = getShadowTy(&I); 2976 2977 // If any bit of the mask operand is poisoned, then the whole thing is. 2978 Value *SMask = getShadow(&I, 1); 2979 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 2980 ShadowTy); 2981 // Apply the same intrinsic to the shadow of the first operand. 2982 Value *S = IRB.CreateCall(I.getCalledFunction(), 2983 {getShadow(&I, 0), I.getOperand(1)}); 2984 S = IRB.CreateOr(SMask, S); 2985 setShadow(&I, S); 2986 setOriginForNaryOp(I); 2987 } 2988 2989 void visitIntrinsicInst(IntrinsicInst &I) { 2990 switch (I.getIntrinsicID()) { 2991 case Intrinsic::lifetime_start: 2992 handleLifetimeStart(I); 2993 break; 2994 case Intrinsic::bswap: 2995 handleBswap(I); 2996 break; 2997 case Intrinsic::masked_store: 2998 handleMaskedStore(I); 2999 break; 3000 case Intrinsic::masked_load: 3001 handleMaskedLoad(I); 3002 break; 3003 case Intrinsic::x86_sse_stmxcsr: 3004 handleStmxcsr(I); 3005 break; 3006 case Intrinsic::x86_sse_ldmxcsr: 3007 handleLdmxcsr(I); 3008 break; 3009 case Intrinsic::x86_avx512_vcvtsd2usi64: 3010 case Intrinsic::x86_avx512_vcvtsd2usi32: 3011 case Intrinsic::x86_avx512_vcvtss2usi64: 3012 case Intrinsic::x86_avx512_vcvtss2usi32: 3013 case Intrinsic::x86_avx512_cvttss2usi64: 3014 case Intrinsic::x86_avx512_cvttss2usi: 3015 case Intrinsic::x86_avx512_cvttsd2usi64: 3016 case Intrinsic::x86_avx512_cvttsd2usi: 3017 case Intrinsic::x86_avx512_cvtusi2ss: 3018 case Intrinsic::x86_avx512_cvtusi642sd: 3019 case Intrinsic::x86_avx512_cvtusi642ss: 3020 case Intrinsic::x86_sse2_cvtsd2si64: 3021 case Intrinsic::x86_sse2_cvtsd2si: 3022 case Intrinsic::x86_sse2_cvtsd2ss: 3023 case Intrinsic::x86_sse2_cvttsd2si64: 3024 case Intrinsic::x86_sse2_cvttsd2si: 3025 case Intrinsic::x86_sse_cvtss2si64: 3026 case Intrinsic::x86_sse_cvtss2si: 3027 case Intrinsic::x86_sse_cvttss2si64: 3028 case Intrinsic::x86_sse_cvttss2si: 3029 handleVectorConvertIntrinsic(I, 1); 3030 break; 3031 case Intrinsic::x86_sse_cvtps2pi: 3032 case Intrinsic::x86_sse_cvttps2pi: 3033 handleVectorConvertIntrinsic(I, 2); 3034 break; 3035 3036 case Intrinsic::x86_avx512_psll_w_512: 3037 case Intrinsic::x86_avx512_psll_d_512: 3038 case Intrinsic::x86_avx512_psll_q_512: 3039 case Intrinsic::x86_avx512_pslli_w_512: 3040 case Intrinsic::x86_avx512_pslli_d_512: 3041 case Intrinsic::x86_avx512_pslli_q_512: 3042 case Intrinsic::x86_avx512_psrl_w_512: 3043 case Intrinsic::x86_avx512_psrl_d_512: 3044 case Intrinsic::x86_avx512_psrl_q_512: 3045 case Intrinsic::x86_avx512_psra_w_512: 3046 case Intrinsic::x86_avx512_psra_d_512: 3047 case Intrinsic::x86_avx512_psra_q_512: 3048 case Intrinsic::x86_avx512_psrli_w_512: 3049 case Intrinsic::x86_avx512_psrli_d_512: 3050 case Intrinsic::x86_avx512_psrli_q_512: 3051 case Intrinsic::x86_avx512_psrai_w_512: 3052 case Intrinsic::x86_avx512_psrai_d_512: 3053 case Intrinsic::x86_avx512_psrai_q_512: 3054 case Intrinsic::x86_avx512_psra_q_256: 3055 case Intrinsic::x86_avx512_psra_q_128: 3056 case Intrinsic::x86_avx512_psrai_q_256: 3057 case Intrinsic::x86_avx512_psrai_q_128: 3058 case Intrinsic::x86_avx2_psll_w: 3059 case Intrinsic::x86_avx2_psll_d: 3060 case Intrinsic::x86_avx2_psll_q: 3061 case Intrinsic::x86_avx2_pslli_w: 3062 case Intrinsic::x86_avx2_pslli_d: 3063 case Intrinsic::x86_avx2_pslli_q: 3064 case Intrinsic::x86_avx2_psrl_w: 3065 case Intrinsic::x86_avx2_psrl_d: 3066 case Intrinsic::x86_avx2_psrl_q: 3067 case Intrinsic::x86_avx2_psra_w: 3068 case Intrinsic::x86_avx2_psra_d: 3069 case Intrinsic::x86_avx2_psrli_w: 3070 case Intrinsic::x86_avx2_psrli_d: 3071 case Intrinsic::x86_avx2_psrli_q: 3072 case Intrinsic::x86_avx2_psrai_w: 3073 case Intrinsic::x86_avx2_psrai_d: 3074 case Intrinsic::x86_sse2_psll_w: 3075 case Intrinsic::x86_sse2_psll_d: 3076 case Intrinsic::x86_sse2_psll_q: 3077 case Intrinsic::x86_sse2_pslli_w: 3078 case Intrinsic::x86_sse2_pslli_d: 3079 case Intrinsic::x86_sse2_pslli_q: 3080 case Intrinsic::x86_sse2_psrl_w: 3081 case Intrinsic::x86_sse2_psrl_d: 3082 case Intrinsic::x86_sse2_psrl_q: 3083 case Intrinsic::x86_sse2_psra_w: 3084 case Intrinsic::x86_sse2_psra_d: 3085 case Intrinsic::x86_sse2_psrli_w: 3086 case Intrinsic::x86_sse2_psrli_d: 3087 case Intrinsic::x86_sse2_psrli_q: 3088 case Intrinsic::x86_sse2_psrai_w: 3089 case Intrinsic::x86_sse2_psrai_d: 3090 case Intrinsic::x86_mmx_psll_w: 3091 case Intrinsic::x86_mmx_psll_d: 3092 case Intrinsic::x86_mmx_psll_q: 3093 case Intrinsic::x86_mmx_pslli_w: 3094 case Intrinsic::x86_mmx_pslli_d: 3095 case Intrinsic::x86_mmx_pslli_q: 3096 case Intrinsic::x86_mmx_psrl_w: 3097 case Intrinsic::x86_mmx_psrl_d: 3098 case Intrinsic::x86_mmx_psrl_q: 3099 case Intrinsic::x86_mmx_psra_w: 3100 case Intrinsic::x86_mmx_psra_d: 3101 case Intrinsic::x86_mmx_psrli_w: 3102 case Intrinsic::x86_mmx_psrli_d: 3103 case Intrinsic::x86_mmx_psrli_q: 3104 case Intrinsic::x86_mmx_psrai_w: 3105 case Intrinsic::x86_mmx_psrai_d: 3106 handleVectorShiftIntrinsic(I, /* Variable */ false); 3107 break; 3108 case Intrinsic::x86_avx2_psllv_d: 3109 case Intrinsic::x86_avx2_psllv_d_256: 3110 case Intrinsic::x86_avx512_psllv_d_512: 3111 case Intrinsic::x86_avx2_psllv_q: 3112 case Intrinsic::x86_avx2_psllv_q_256: 3113 case Intrinsic::x86_avx512_psllv_q_512: 3114 case Intrinsic::x86_avx2_psrlv_d: 3115 case Intrinsic::x86_avx2_psrlv_d_256: 3116 case Intrinsic::x86_avx512_psrlv_d_512: 3117 case Intrinsic::x86_avx2_psrlv_q: 3118 case Intrinsic::x86_avx2_psrlv_q_256: 3119 case Intrinsic::x86_avx512_psrlv_q_512: 3120 case Intrinsic::x86_avx2_psrav_d: 3121 case Intrinsic::x86_avx2_psrav_d_256: 3122 case Intrinsic::x86_avx512_psrav_d_512: 3123 case Intrinsic::x86_avx512_psrav_q_128: 3124 case Intrinsic::x86_avx512_psrav_q_256: 3125 case Intrinsic::x86_avx512_psrav_q_512: 3126 handleVectorShiftIntrinsic(I, /* Variable */ true); 3127 break; 3128 3129 case Intrinsic::x86_sse2_packsswb_128: 3130 case Intrinsic::x86_sse2_packssdw_128: 3131 case Intrinsic::x86_sse2_packuswb_128: 3132 case Intrinsic::x86_sse41_packusdw: 3133 case Intrinsic::x86_avx2_packsswb: 3134 case Intrinsic::x86_avx2_packssdw: 3135 case Intrinsic::x86_avx2_packuswb: 3136 case Intrinsic::x86_avx2_packusdw: 3137 handleVectorPackIntrinsic(I); 3138 break; 3139 3140 case Intrinsic::x86_mmx_packsswb: 3141 case Intrinsic::x86_mmx_packuswb: 3142 handleVectorPackIntrinsic(I, 16); 3143 break; 3144 3145 case Intrinsic::x86_mmx_packssdw: 3146 handleVectorPackIntrinsic(I, 32); 3147 break; 3148 3149 case Intrinsic::x86_mmx_psad_bw: 3150 case Intrinsic::x86_sse2_psad_bw: 3151 case Intrinsic::x86_avx2_psad_bw: 3152 handleVectorSadIntrinsic(I); 3153 break; 3154 3155 case Intrinsic::x86_sse2_pmadd_wd: 3156 case Intrinsic::x86_avx2_pmadd_wd: 3157 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3158 case Intrinsic::x86_avx2_pmadd_ub_sw: 3159 handleVectorPmaddIntrinsic(I); 3160 break; 3161 3162 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3163 handleVectorPmaddIntrinsic(I, 8); 3164 break; 3165 3166 case Intrinsic::x86_mmx_pmadd_wd: 3167 handleVectorPmaddIntrinsic(I, 16); 3168 break; 3169 3170 case Intrinsic::x86_sse_cmp_ss: 3171 case Intrinsic::x86_sse2_cmp_sd: 3172 case Intrinsic::x86_sse_comieq_ss: 3173 case Intrinsic::x86_sse_comilt_ss: 3174 case Intrinsic::x86_sse_comile_ss: 3175 case Intrinsic::x86_sse_comigt_ss: 3176 case Intrinsic::x86_sse_comige_ss: 3177 case Intrinsic::x86_sse_comineq_ss: 3178 case Intrinsic::x86_sse_ucomieq_ss: 3179 case Intrinsic::x86_sse_ucomilt_ss: 3180 case Intrinsic::x86_sse_ucomile_ss: 3181 case Intrinsic::x86_sse_ucomigt_ss: 3182 case Intrinsic::x86_sse_ucomige_ss: 3183 case Intrinsic::x86_sse_ucomineq_ss: 3184 case Intrinsic::x86_sse2_comieq_sd: 3185 case Intrinsic::x86_sse2_comilt_sd: 3186 case Intrinsic::x86_sse2_comile_sd: 3187 case Intrinsic::x86_sse2_comigt_sd: 3188 case Intrinsic::x86_sse2_comige_sd: 3189 case Intrinsic::x86_sse2_comineq_sd: 3190 case Intrinsic::x86_sse2_ucomieq_sd: 3191 case Intrinsic::x86_sse2_ucomilt_sd: 3192 case Intrinsic::x86_sse2_ucomile_sd: 3193 case Intrinsic::x86_sse2_ucomigt_sd: 3194 case Intrinsic::x86_sse2_ucomige_sd: 3195 case Intrinsic::x86_sse2_ucomineq_sd: 3196 handleVectorCompareScalarIntrinsic(I); 3197 break; 3198 3199 case Intrinsic::x86_sse_cmp_ps: 3200 case Intrinsic::x86_sse2_cmp_pd: 3201 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3202 // generates reasonably looking IR that fails in the backend with "Do not 3203 // know how to split the result of this operator!". 3204 handleVectorComparePackedIntrinsic(I); 3205 break; 3206 3207 case Intrinsic::x86_bmi_bextr_32: 3208 case Intrinsic::x86_bmi_bextr_64: 3209 case Intrinsic::x86_bmi_bzhi_32: 3210 case Intrinsic::x86_bmi_bzhi_64: 3211 case Intrinsic::x86_bmi_pdep_32: 3212 case Intrinsic::x86_bmi_pdep_64: 3213 case Intrinsic::x86_bmi_pext_32: 3214 case Intrinsic::x86_bmi_pext_64: 3215 handleBmiIntrinsic(I); 3216 break; 3217 3218 case Intrinsic::is_constant: 3219 // The result of llvm.is.constant() is always defined. 3220 setShadow(&I, getCleanShadow(&I)); 3221 setOrigin(&I, getCleanOrigin()); 3222 break; 3223 3224 default: 3225 if (!handleUnknownIntrinsic(I)) 3226 visitInstruction(I); 3227 break; 3228 } 3229 } 3230 3231 void visitCallSite(CallSite CS) { 3232 Instruction &I = *CS.getInstruction(); 3233 assert(!I.getMetadata("nosanitize")); 3234 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 3235 if (CS.isCall()) { 3236 CallInst *Call = cast<CallInst>(&I); 3237 3238 // For inline asm, do the usual thing: check argument shadow and mark all 3239 // outputs as clean. Note that any side effects of the inline asm that are 3240 // not immediately visible in its constraints are not handled. 3241 if (Call->isInlineAsm()) { 3242 if (ClHandleAsmConservative && MS.CompileKernel) 3243 visitAsmInstruction(I); 3244 else 3245 visitInstruction(I); 3246 return; 3247 } 3248 3249 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3250 3251 // We are going to insert code that relies on the fact that the callee 3252 // will become a non-readonly function after it is instrumented by us. To 3253 // prevent this code from being optimized out, mark that function 3254 // non-readonly in advance. 3255 if (Function *Func = Call->getCalledFunction()) { 3256 // Clear out readonly/readnone attributes. 3257 AttrBuilder B; 3258 B.addAttribute(Attribute::ReadOnly) 3259 .addAttribute(Attribute::ReadNone); 3260 Func->removeAttributes(AttributeList::FunctionIndex, B); 3261 } 3262 3263 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3264 } 3265 IRBuilder<> IRB(&I); 3266 3267 unsigned ArgOffset = 0; 3268 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3269 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3270 ArgIt != End; ++ArgIt) { 3271 Value *A = *ArgIt; 3272 unsigned i = ArgIt - CS.arg_begin(); 3273 if (!A->getType()->isSized()) { 3274 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3275 continue; 3276 } 3277 unsigned Size = 0; 3278 Value *Store = nullptr; 3279 // Compute the Shadow for arg even if it is ByVal, because 3280 // in that case getShadow() will copy the actual arg shadow to 3281 // __msan_param_tls. 3282 Value *ArgShadow = getShadow(A); 3283 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3284 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3285 << " Shadow: " << *ArgShadow << "\n"); 3286 bool ArgIsInitialized = false; 3287 const DataLayout &DL = F.getParent()->getDataLayout(); 3288 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3289 assert(A->getType()->isPointerTy() && 3290 "ByVal argument is not a pointer!"); 3291 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3292 if (ArgOffset + Size > kParamTLSSize) break; 3293 unsigned ParamAlignment = CS.getParamAlignment(i); 3294 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 3295 Value *AShadowPtr = 3296 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3297 /*isStore*/ false) 3298 .first; 3299 3300 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3301 Alignment, Size); 3302 // TODO(glider): need to copy origins. 3303 } else { 3304 Size = DL.getTypeAllocSize(A->getType()); 3305 if (ArgOffset + Size > kParamTLSSize) break; 3306 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3307 kShadowTLSAlignment); 3308 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3309 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3310 } 3311 if (MS.TrackOrigins && !ArgIsInitialized) 3312 IRB.CreateStore(getOrigin(A), 3313 getOriginPtrForArgument(A, IRB, ArgOffset)); 3314 (void)Store; 3315 assert(Size != 0 && Store != nullptr); 3316 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3317 ArgOffset += alignTo(Size, 8); 3318 } 3319 LLVM_DEBUG(dbgs() << " done with call args\n"); 3320 3321 FunctionType *FT = CS.getFunctionType(); 3322 if (FT->isVarArg()) { 3323 VAHelper->visitCallSite(CS, IRB); 3324 } 3325 3326 // Now, get the shadow for the RetVal. 3327 if (!I.getType()->isSized()) return; 3328 // Don't emit the epilogue for musttail call returns. 3329 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3330 IRBuilder<> IRBBefore(&I); 3331 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3332 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3333 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 3334 BasicBlock::iterator NextInsn; 3335 if (CS.isCall()) { 3336 NextInsn = ++I.getIterator(); 3337 assert(NextInsn != I.getParent()->end()); 3338 } else { 3339 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3340 if (!NormalDest->getSinglePredecessor()) { 3341 // FIXME: this case is tricky, so we are just conservative here. 3342 // Perhaps we need to split the edge between this BB and NormalDest, 3343 // but a naive attempt to use SplitEdge leads to a crash. 3344 setShadow(&I, getCleanShadow(&I)); 3345 setOrigin(&I, getCleanOrigin()); 3346 return; 3347 } 3348 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3349 // Anything inserted there will be instrumented by MSan later! 3350 NextInsn = NormalDest->getFirstInsertionPt(); 3351 assert(NextInsn != NormalDest->end() && 3352 "Could not find insertion point for retval shadow load"); 3353 } 3354 IRBuilder<> IRBAfter(&*NextInsn); 3355 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3356 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), 3357 kShadowTLSAlignment, "_msret"); 3358 setShadow(&I, RetvalShadow); 3359 if (MS.TrackOrigins) 3360 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, 3361 getOriginPtrForRetval(IRBAfter))); 3362 } 3363 3364 bool isAMustTailRetVal(Value *RetVal) { 3365 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3366 RetVal = I->getOperand(0); 3367 } 3368 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3369 return I->isMustTailCall(); 3370 } 3371 return false; 3372 } 3373 3374 void visitReturnInst(ReturnInst &I) { 3375 IRBuilder<> IRB(&I); 3376 Value *RetVal = I.getReturnValue(); 3377 if (!RetVal) return; 3378 // Don't emit the epilogue for musttail call returns. 3379 if (isAMustTailRetVal(RetVal)) return; 3380 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3381 if (CheckReturnValue) { 3382 insertShadowCheck(RetVal, &I); 3383 Value *Shadow = getCleanShadow(RetVal); 3384 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3385 } else { 3386 Value *Shadow = getShadow(RetVal); 3387 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3388 if (MS.TrackOrigins) 3389 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3390 } 3391 } 3392 3393 void visitPHINode(PHINode &I) { 3394 IRBuilder<> IRB(&I); 3395 if (!PropagateShadow) { 3396 setShadow(&I, getCleanShadow(&I)); 3397 setOrigin(&I, getCleanOrigin()); 3398 return; 3399 } 3400 3401 ShadowPHINodes.push_back(&I); 3402 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3403 "_msphi_s")); 3404 if (MS.TrackOrigins) 3405 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3406 "_msphi_o")); 3407 } 3408 3409 Value *getLocalVarDescription(AllocaInst &I) { 3410 SmallString<2048> StackDescriptionStorage; 3411 raw_svector_ostream StackDescription(StackDescriptionStorage); 3412 // We create a string with a description of the stack allocation and 3413 // pass it into __msan_set_alloca_origin. 3414 // It will be printed by the run-time if stack-originated UMR is found. 3415 // The first 4 bytes of the string are set to '----' and will be replaced 3416 // by __msan_va_arg_overflow_size_tls at the first call. 3417 StackDescription << "----" << I.getName() << "@" << F.getName(); 3418 return createPrivateNonConstGlobalForString(*F.getParent(), 3419 StackDescription.str()); 3420 } 3421 3422 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3423 if (PoisonStack && ClPoisonStackWithCall) { 3424 IRB.CreateCall(MS.MsanPoisonStackFn, 3425 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3426 } else { 3427 Value *ShadowBase, *OriginBase; 3428 std::tie(ShadowBase, OriginBase) = 3429 getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); 3430 3431 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3432 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); 3433 } 3434 3435 if (PoisonStack && MS.TrackOrigins) { 3436 Value *Descr = getLocalVarDescription(I); 3437 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3438 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3439 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3440 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3441 } 3442 } 3443 3444 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3445 Value *Descr = getLocalVarDescription(I); 3446 if (PoisonStack) { 3447 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3448 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3449 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3450 } else { 3451 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3452 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3453 } 3454 } 3455 3456 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3457 if (!InsPoint) 3458 InsPoint = &I; 3459 IRBuilder<> IRB(InsPoint->getNextNode()); 3460 const DataLayout &DL = F.getParent()->getDataLayout(); 3461 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3462 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3463 if (I.isArrayAllocation()) 3464 Len = IRB.CreateMul(Len, I.getArraySize()); 3465 3466 if (MS.CompileKernel) 3467 poisonAllocaKmsan(I, IRB, Len); 3468 else 3469 poisonAllocaUserspace(I, IRB, Len); 3470 } 3471 3472 void visitAllocaInst(AllocaInst &I) { 3473 setShadow(&I, getCleanShadow(&I)); 3474 setOrigin(&I, getCleanOrigin()); 3475 // We'll get to this alloca later unless it's poisoned at the corresponding 3476 // llvm.lifetime.start. 3477 AllocaSet.insert(&I); 3478 } 3479 3480 void visitSelectInst(SelectInst& I) { 3481 IRBuilder<> IRB(&I); 3482 // a = select b, c, d 3483 Value *B = I.getCondition(); 3484 Value *C = I.getTrueValue(); 3485 Value *D = I.getFalseValue(); 3486 Value *Sb = getShadow(B); 3487 Value *Sc = getShadow(C); 3488 Value *Sd = getShadow(D); 3489 3490 // Result shadow if condition shadow is 0. 3491 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3492 Value *Sa1; 3493 if (I.getType()->isAggregateType()) { 3494 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3495 // an extra "select". This results in much more compact IR. 3496 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3497 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3498 } else { 3499 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3500 // If Sb (condition is poisoned), look for bits in c and d that are equal 3501 // and both unpoisoned. 3502 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3503 3504 // Cast arguments to shadow-compatible type. 3505 C = CreateAppToShadowCast(IRB, C); 3506 D = CreateAppToShadowCast(IRB, D); 3507 3508 // Result shadow if condition shadow is 1. 3509 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 3510 } 3511 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3512 setShadow(&I, Sa); 3513 if (MS.TrackOrigins) { 3514 // Origins are always i32, so any vector conditions must be flattened. 3515 // FIXME: consider tracking vector origins for app vectors? 3516 if (B->getType()->isVectorTy()) { 3517 Type *FlatTy = getShadowTyNoVec(B->getType()); 3518 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3519 ConstantInt::getNullValue(FlatTy)); 3520 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3521 ConstantInt::getNullValue(FlatTy)); 3522 } 3523 // a = select b, c, d 3524 // Oa = Sb ? Ob : (b ? Oc : Od) 3525 setOrigin( 3526 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3527 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3528 getOrigin(I.getFalseValue())))); 3529 } 3530 } 3531 3532 void visitLandingPadInst(LandingPadInst &I) { 3533 // Do nothing. 3534 // See https://github.com/google/sanitizers/issues/504 3535 setShadow(&I, getCleanShadow(&I)); 3536 setOrigin(&I, getCleanOrigin()); 3537 } 3538 3539 void visitCatchSwitchInst(CatchSwitchInst &I) { 3540 setShadow(&I, getCleanShadow(&I)); 3541 setOrigin(&I, getCleanOrigin()); 3542 } 3543 3544 void visitFuncletPadInst(FuncletPadInst &I) { 3545 setShadow(&I, getCleanShadow(&I)); 3546 setOrigin(&I, getCleanOrigin()); 3547 } 3548 3549 void visitGetElementPtrInst(GetElementPtrInst &I) { 3550 handleShadowOr(I); 3551 } 3552 3553 void visitExtractValueInst(ExtractValueInst &I) { 3554 IRBuilder<> IRB(&I); 3555 Value *Agg = I.getAggregateOperand(); 3556 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3557 Value *AggShadow = getShadow(Agg); 3558 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3559 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3560 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3561 setShadow(&I, ResShadow); 3562 setOriginForNaryOp(I); 3563 } 3564 3565 void visitInsertValueInst(InsertValueInst &I) { 3566 IRBuilder<> IRB(&I); 3567 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3568 Value *AggShadow = getShadow(I.getAggregateOperand()); 3569 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3570 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3571 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3572 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3573 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3574 setShadow(&I, Res); 3575 setOriginForNaryOp(I); 3576 } 3577 3578 void dumpInst(Instruction &I) { 3579 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3580 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3581 } else { 3582 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3583 } 3584 errs() << "QQQ " << I << "\n"; 3585 } 3586 3587 void visitResumeInst(ResumeInst &I) { 3588 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3589 // Nothing to do here. 3590 } 3591 3592 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3593 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3594 // Nothing to do here. 3595 } 3596 3597 void visitCatchReturnInst(CatchReturnInst &CRI) { 3598 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3599 // Nothing to do here. 3600 } 3601 3602 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3603 const DataLayout &DL, bool isOutput) { 3604 // For each assembly argument, we check its value for being initialized. 3605 // If the argument is a pointer, we assume it points to a single element 3606 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3607 // Each such pointer is instrumented with a call to the runtime library. 3608 Type *OpType = Operand->getType(); 3609 // Check the operand value itself. 3610 insertShadowCheck(Operand, &I); 3611 if (!OpType->isPointerTy() || !isOutput) { 3612 assert(!isOutput); 3613 return; 3614 } 3615 Type *ElType = OpType->getPointerElementType(); 3616 if (!ElType->isSized()) 3617 return; 3618 int Size = DL.getTypeStoreSize(ElType); 3619 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3620 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3621 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3622 } 3623 3624 /// Get the number of output arguments returned by pointers. 3625 int getNumOutputArgs(InlineAsm *IA, CallInst *CI) { 3626 int NumRetOutputs = 0; 3627 int NumOutputs = 0; 3628 Type *RetTy = dyn_cast<Value>(CI)->getType(); 3629 if (!RetTy->isVoidTy()) { 3630 // Register outputs are returned via the CallInst return value. 3631 StructType *ST = dyn_cast_or_null<StructType>(RetTy); 3632 if (ST) 3633 NumRetOutputs = ST->getNumElements(); 3634 else 3635 NumRetOutputs = 1; 3636 } 3637 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3638 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3639 InlineAsm::ConstraintInfo Info = Constraints[i]; 3640 switch (Info.Type) { 3641 case InlineAsm::isOutput: 3642 NumOutputs++; 3643 break; 3644 default: 3645 break; 3646 } 3647 } 3648 return NumOutputs - NumRetOutputs; 3649 } 3650 3651 void visitAsmInstruction(Instruction &I) { 3652 // Conservative inline assembly handling: check for poisoned shadow of 3653 // asm() arguments, then unpoison the result and all the memory locations 3654 // pointed to by those arguments. 3655 // An inline asm() statement in C++ contains lists of input and output 3656 // arguments used by the assembly code. These are mapped to operands of the 3657 // CallInst as follows: 3658 // - nR register outputs ("=r) are returned by value in a single structure 3659 // (SSA value of the CallInst); 3660 // - nO other outputs ("=m" and others) are returned by pointer as first 3661 // nO operands of the CallInst; 3662 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3663 // remaining nI operands. 3664 // The total number of asm() arguments in the source is nR+nO+nI, and the 3665 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3666 // function to be called). 3667 const DataLayout &DL = F.getParent()->getDataLayout(); 3668 CallInst *CI = dyn_cast<CallInst>(&I); 3669 IRBuilder<> IRB(&I); 3670 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 3671 int OutputArgs = getNumOutputArgs(IA, CI); 3672 // The last operand of a CallInst is the function itself. 3673 int NumOperands = CI->getNumOperands() - 1; 3674 3675 // Check input arguments. Doing so before unpoisoning output arguments, so 3676 // that we won't overwrite uninit values before checking them. 3677 for (int i = OutputArgs; i < NumOperands; i++) { 3678 Value *Operand = CI->getOperand(i); 3679 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3680 } 3681 // Unpoison output arguments. This must happen before the actual InlineAsm 3682 // call, so that the shadow for memory published in the asm() statement 3683 // remains valid. 3684 for (int i = 0; i < OutputArgs; i++) { 3685 Value *Operand = CI->getOperand(i); 3686 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3687 } 3688 3689 setShadow(&I, getCleanShadow(&I)); 3690 setOrigin(&I, getCleanOrigin()); 3691 } 3692 3693 void visitInstruction(Instruction &I) { 3694 // Everything else: stop propagating and check for poisoned shadow. 3695 if (ClDumpStrictInstructions) 3696 dumpInst(I); 3697 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3698 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3699 Value *Operand = I.getOperand(i); 3700 if (Operand->getType()->isSized()) 3701 insertShadowCheck(Operand, &I); 3702 } 3703 setShadow(&I, getCleanShadow(&I)); 3704 setOrigin(&I, getCleanOrigin()); 3705 } 3706 }; 3707 3708 /// AMD64-specific implementation of VarArgHelper. 3709 struct VarArgAMD64Helper : public VarArgHelper { 3710 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3711 // See a comment in visitCallSite for more details. 3712 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3713 static const unsigned AMD64FpEndOffsetSSE = 176; 3714 // If SSE is disabled, fp_offset in va_list is zero. 3715 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3716 3717 unsigned AMD64FpEndOffset; 3718 Function &F; 3719 MemorySanitizer &MS; 3720 MemorySanitizerVisitor &MSV; 3721 Value *VAArgTLSCopy = nullptr; 3722 Value *VAArgTLSOriginCopy = nullptr; 3723 Value *VAArgOverflowSize = nullptr; 3724 3725 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3726 3727 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3728 3729 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3730 MemorySanitizerVisitor &MSV) 3731 : F(F), MS(MS), MSV(MSV) { 3732 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3733 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3734 if (Attr.isStringAttribute() && 3735 (Attr.getKindAsString() == "target-features")) { 3736 if (Attr.getValueAsString().contains("-sse")) 3737 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3738 break; 3739 } 3740 } 3741 } 3742 3743 ArgKind classifyArgument(Value* arg) { 3744 // A very rough approximation of X86_64 argument classification rules. 3745 Type *T = arg->getType(); 3746 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3747 return AK_FloatingPoint; 3748 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3749 return AK_GeneralPurpose; 3750 if (T->isPointerTy()) 3751 return AK_GeneralPurpose; 3752 return AK_Memory; 3753 } 3754 3755 // For VarArg functions, store the argument shadow in an ABI-specific format 3756 // that corresponds to va_list layout. 3757 // We do this because Clang lowers va_arg in the frontend, and this pass 3758 // only sees the low level code that deals with va_list internals. 3759 // A much easier alternative (provided that Clang emits va_arg instructions) 3760 // would have been to associate each live instance of va_list with a copy of 3761 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3762 // order. 3763 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3764 unsigned GpOffset = 0; 3765 unsigned FpOffset = AMD64GpEndOffset; 3766 unsigned OverflowOffset = AMD64FpEndOffset; 3767 const DataLayout &DL = F.getParent()->getDataLayout(); 3768 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3769 ArgIt != End; ++ArgIt) { 3770 Value *A = *ArgIt; 3771 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3772 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3773 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3774 if (IsByVal) { 3775 // ByVal arguments always go to the overflow area. 3776 // Fixed arguments passed through the overflow area will be stepped 3777 // over by va_start, so don't count them towards the offset. 3778 if (IsFixed) 3779 continue; 3780 assert(A->getType()->isPointerTy()); 3781 Type *RealTy = A->getType()->getPointerElementType(); 3782 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3783 Value *ShadowBase = getShadowPtrForVAArgument( 3784 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3785 Value *OriginBase = nullptr; 3786 if (MS.TrackOrigins) 3787 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3788 OverflowOffset += alignTo(ArgSize, 8); 3789 if (!ShadowBase) 3790 continue; 3791 Value *ShadowPtr, *OriginPtr; 3792 std::tie(ShadowPtr, OriginPtr) = 3793 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3794 /*isStore*/ false); 3795 3796 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3797 kShadowTLSAlignment, ArgSize); 3798 if (MS.TrackOrigins) 3799 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3800 kShadowTLSAlignment, ArgSize); 3801 } else { 3802 ArgKind AK = classifyArgument(A); 3803 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3804 AK = AK_Memory; 3805 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3806 AK = AK_Memory; 3807 Value *ShadowBase, *OriginBase = nullptr; 3808 switch (AK) { 3809 case AK_GeneralPurpose: 3810 ShadowBase = 3811 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3812 if (MS.TrackOrigins) 3813 OriginBase = 3814 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3815 GpOffset += 8; 3816 break; 3817 case AK_FloatingPoint: 3818 ShadowBase = 3819 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3820 if (MS.TrackOrigins) 3821 OriginBase = 3822 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3823 FpOffset += 16; 3824 break; 3825 case AK_Memory: 3826 if (IsFixed) 3827 continue; 3828 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3829 ShadowBase = 3830 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3831 if (MS.TrackOrigins) 3832 OriginBase = 3833 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3834 OverflowOffset += alignTo(ArgSize, 8); 3835 } 3836 // Take fixed arguments into account for GpOffset and FpOffset, 3837 // but don't actually store shadows for them. 3838 // TODO(glider): don't call get*PtrForVAArgument() for them. 3839 if (IsFixed) 3840 continue; 3841 if (!ShadowBase) 3842 continue; 3843 Value *Shadow = MSV.getShadow(A); 3844 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3845 if (MS.TrackOrigins) { 3846 Value *Origin = MSV.getOrigin(A); 3847 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3848 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3849 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3850 } 3851 } 3852 } 3853 Constant *OverflowSize = 3854 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3855 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3856 } 3857 3858 /// Compute the shadow address for a given va_arg. 3859 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3860 unsigned ArgOffset, unsigned ArgSize) { 3861 // Make sure we don't overflow __msan_va_arg_tls. 3862 if (ArgOffset + ArgSize > kParamTLSSize) 3863 return nullptr; 3864 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3865 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3866 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3867 "_msarg_va_s"); 3868 } 3869 3870 /// Compute the origin address for a given va_arg. 3871 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3872 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3873 // getOriginPtrForVAArgument() is always called after 3874 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3875 // overflow. 3876 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3877 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3878 "_msarg_va_o"); 3879 } 3880 3881 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3882 IRBuilder<> IRB(&I); 3883 Value *VAListTag = I.getArgOperand(0); 3884 Value *ShadowPtr, *OriginPtr; 3885 unsigned Alignment = 8; 3886 std::tie(ShadowPtr, OriginPtr) = 3887 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3888 /*isStore*/ true); 3889 3890 // Unpoison the whole __va_list_tag. 3891 // FIXME: magic ABI constants. 3892 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3893 /* size */ 24, Alignment, false); 3894 // We shouldn't need to zero out the origins, as they're only checked for 3895 // nonzero shadow. 3896 } 3897 3898 void visitVAStartInst(VAStartInst &I) override { 3899 if (F.getCallingConv() == CallingConv::Win64) 3900 return; 3901 VAStartInstrumentationList.push_back(&I); 3902 unpoisonVAListTagForInst(I); 3903 } 3904 3905 void visitVACopyInst(VACopyInst &I) override { 3906 if (F.getCallingConv() == CallingConv::Win64) return; 3907 unpoisonVAListTagForInst(I); 3908 } 3909 3910 void finalizeInstrumentation() override { 3911 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3912 "finalizeInstrumentation called twice"); 3913 if (!VAStartInstrumentationList.empty()) { 3914 // If there is a va_start in this function, make a backup copy of 3915 // va_arg_tls somewhere in the function entry block. 3916 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3917 VAArgOverflowSize = 3918 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 3919 Value *CopySize = 3920 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3921 VAArgOverflowSize); 3922 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3923 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3924 if (MS.TrackOrigins) { 3925 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3926 IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); 3927 } 3928 } 3929 3930 // Instrument va_start. 3931 // Copy va_list shadow from the backup copy of the TLS contents. 3932 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3933 CallInst *OrigInst = VAStartInstrumentationList[i]; 3934 IRBuilder<> IRB(OrigInst->getNextNode()); 3935 Value *VAListTag = OrigInst->getArgOperand(0); 3936 3937 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3938 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 3939 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3940 ConstantInt::get(MS.IntptrTy, 16)), 3941 PointerType::get(RegSaveAreaPtrTy, 0)); 3942 Value *RegSaveAreaPtr = 3943 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 3944 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3945 unsigned Alignment = 16; 3946 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3947 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3948 Alignment, /*isStore*/ true); 3949 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3950 AMD64FpEndOffset); 3951 if (MS.TrackOrigins) 3952 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 3953 Alignment, AMD64FpEndOffset); 3954 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3955 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 3956 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3957 ConstantInt::get(MS.IntptrTy, 8)), 3958 PointerType::get(OverflowArgAreaPtrTy, 0)); 3959 Value *OverflowArgAreaPtr = 3960 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 3961 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 3962 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 3963 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 3964 Alignment, /*isStore*/ true); 3965 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3966 AMD64FpEndOffset); 3967 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 3968 VAArgOverflowSize); 3969 if (MS.TrackOrigins) { 3970 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 3971 AMD64FpEndOffset); 3972 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 3973 VAArgOverflowSize); 3974 } 3975 } 3976 } 3977 }; 3978 3979 /// MIPS64-specific implementation of VarArgHelper. 3980 struct VarArgMIPS64Helper : public VarArgHelper { 3981 Function &F; 3982 MemorySanitizer &MS; 3983 MemorySanitizerVisitor &MSV; 3984 Value *VAArgTLSCopy = nullptr; 3985 Value *VAArgSize = nullptr; 3986 3987 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3988 3989 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3990 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 3991 3992 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3993 unsigned VAArgOffset = 0; 3994 const DataLayout &DL = F.getParent()->getDataLayout(); 3995 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3996 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3997 ArgIt != End; ++ArgIt) { 3998 Triple TargetTriple(F.getParent()->getTargetTriple()); 3999 Value *A = *ArgIt; 4000 Value *Base; 4001 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4002 if (TargetTriple.getArch() == Triple::mips64) { 4003 // Adjusting the shadow for argument with size < 8 to match the placement 4004 // of bits in big endian system 4005 if (ArgSize < 8) 4006 VAArgOffset += (8 - ArgSize); 4007 } 4008 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4009 VAArgOffset += ArgSize; 4010 VAArgOffset = alignTo(VAArgOffset, 8); 4011 if (!Base) 4012 continue; 4013 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4014 } 4015 4016 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4017 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4018 // a new class member i.e. it is the total size of all VarArgs. 4019 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4020 } 4021 4022 /// Compute the shadow address for a given va_arg. 4023 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4024 unsigned ArgOffset, unsigned ArgSize) { 4025 // Make sure we don't overflow __msan_va_arg_tls. 4026 if (ArgOffset + ArgSize > kParamTLSSize) 4027 return nullptr; 4028 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4029 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4030 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4031 "_msarg"); 4032 } 4033 4034 void visitVAStartInst(VAStartInst &I) override { 4035 IRBuilder<> IRB(&I); 4036 VAStartInstrumentationList.push_back(&I); 4037 Value *VAListTag = I.getArgOperand(0); 4038 Value *ShadowPtr, *OriginPtr; 4039 unsigned Alignment = 8; 4040 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4041 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4042 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4043 /* size */ 8, Alignment, false); 4044 } 4045 4046 void visitVACopyInst(VACopyInst &I) override { 4047 IRBuilder<> IRB(&I); 4048 VAStartInstrumentationList.push_back(&I); 4049 Value *VAListTag = I.getArgOperand(0); 4050 Value *ShadowPtr, *OriginPtr; 4051 unsigned Alignment = 8; 4052 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4053 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4054 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4055 /* size */ 8, Alignment, false); 4056 } 4057 4058 void finalizeInstrumentation() override { 4059 assert(!VAArgSize && !VAArgTLSCopy && 4060 "finalizeInstrumentation called twice"); 4061 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4062 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4063 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4064 VAArgSize); 4065 4066 if (!VAStartInstrumentationList.empty()) { 4067 // If there is a va_start in this function, make a backup copy of 4068 // va_arg_tls somewhere in the function entry block. 4069 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4070 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4071 } 4072 4073 // Instrument va_start. 4074 // Copy va_list shadow from the backup copy of the TLS contents. 4075 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4076 CallInst *OrigInst = VAStartInstrumentationList[i]; 4077 IRBuilder<> IRB(OrigInst->getNextNode()); 4078 Value *VAListTag = OrigInst->getArgOperand(0); 4079 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4080 Value *RegSaveAreaPtrPtr = 4081 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4082 PointerType::get(RegSaveAreaPtrTy, 0)); 4083 Value *RegSaveAreaPtr = 4084 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4085 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4086 unsigned Alignment = 8; 4087 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4088 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4089 Alignment, /*isStore*/ true); 4090 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4091 CopySize); 4092 } 4093 } 4094 }; 4095 4096 /// AArch64-specific implementation of VarArgHelper. 4097 struct VarArgAArch64Helper : public VarArgHelper { 4098 static const unsigned kAArch64GrArgSize = 64; 4099 static const unsigned kAArch64VrArgSize = 128; 4100 4101 static const unsigned AArch64GrBegOffset = 0; 4102 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4103 // Make VR space aligned to 16 bytes. 4104 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4105 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4106 + kAArch64VrArgSize; 4107 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4108 4109 Function &F; 4110 MemorySanitizer &MS; 4111 MemorySanitizerVisitor &MSV; 4112 Value *VAArgTLSCopy = nullptr; 4113 Value *VAArgOverflowSize = nullptr; 4114 4115 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4116 4117 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4118 4119 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4120 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4121 4122 ArgKind classifyArgument(Value* arg) { 4123 Type *T = arg->getType(); 4124 if (T->isFPOrFPVectorTy()) 4125 return AK_FloatingPoint; 4126 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4127 || (T->isPointerTy())) 4128 return AK_GeneralPurpose; 4129 return AK_Memory; 4130 } 4131 4132 // The instrumentation stores the argument shadow in a non ABI-specific 4133 // format because it does not know which argument is named (since Clang, 4134 // like x86_64 case, lowers the va_args in the frontend and this pass only 4135 // sees the low level code that deals with va_list internals). 4136 // The first seven GR registers are saved in the first 56 bytes of the 4137 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4138 // the remaining arguments. 4139 // Using constant offset within the va_arg TLS array allows fast copy 4140 // in the finalize instrumentation. 4141 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4142 unsigned GrOffset = AArch64GrBegOffset; 4143 unsigned VrOffset = AArch64VrBegOffset; 4144 unsigned OverflowOffset = AArch64VAEndOffset; 4145 4146 const DataLayout &DL = F.getParent()->getDataLayout(); 4147 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4148 ArgIt != End; ++ArgIt) { 4149 Value *A = *ArgIt; 4150 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4151 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4152 ArgKind AK = classifyArgument(A); 4153 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4154 AK = AK_Memory; 4155 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4156 AK = AK_Memory; 4157 Value *Base; 4158 switch (AK) { 4159 case AK_GeneralPurpose: 4160 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4161 GrOffset += 8; 4162 break; 4163 case AK_FloatingPoint: 4164 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4165 VrOffset += 16; 4166 break; 4167 case AK_Memory: 4168 // Don't count fixed arguments in the overflow area - va_start will 4169 // skip right over them. 4170 if (IsFixed) 4171 continue; 4172 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4173 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4174 alignTo(ArgSize, 8)); 4175 OverflowOffset += alignTo(ArgSize, 8); 4176 break; 4177 } 4178 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4179 // bother to actually store a shadow. 4180 if (IsFixed) 4181 continue; 4182 if (!Base) 4183 continue; 4184 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4185 } 4186 Constant *OverflowSize = 4187 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4188 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4189 } 4190 4191 /// Compute the shadow address for a given va_arg. 4192 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4193 unsigned ArgOffset, unsigned ArgSize) { 4194 // Make sure we don't overflow __msan_va_arg_tls. 4195 if (ArgOffset + ArgSize > kParamTLSSize) 4196 return nullptr; 4197 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4198 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4199 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4200 "_msarg"); 4201 } 4202 4203 void visitVAStartInst(VAStartInst &I) override { 4204 IRBuilder<> IRB(&I); 4205 VAStartInstrumentationList.push_back(&I); 4206 Value *VAListTag = I.getArgOperand(0); 4207 Value *ShadowPtr, *OriginPtr; 4208 unsigned Alignment = 8; 4209 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4210 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4211 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4212 /* size */ 32, Alignment, false); 4213 } 4214 4215 void visitVACopyInst(VACopyInst &I) override { 4216 IRBuilder<> IRB(&I); 4217 VAStartInstrumentationList.push_back(&I); 4218 Value *VAListTag = I.getArgOperand(0); 4219 Value *ShadowPtr, *OriginPtr; 4220 unsigned Alignment = 8; 4221 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4222 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4223 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4224 /* size */ 32, Alignment, false); 4225 } 4226 4227 // Retrieve a va_list field of 'void*' size. 4228 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4229 Value *SaveAreaPtrPtr = 4230 IRB.CreateIntToPtr( 4231 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4232 ConstantInt::get(MS.IntptrTy, offset)), 4233 Type::getInt64PtrTy(*MS.C)); 4234 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4235 } 4236 4237 // Retrieve a va_list field of 'int' size. 4238 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4239 Value *SaveAreaPtr = 4240 IRB.CreateIntToPtr( 4241 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4242 ConstantInt::get(MS.IntptrTy, offset)), 4243 Type::getInt32PtrTy(*MS.C)); 4244 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4245 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4246 } 4247 4248 void finalizeInstrumentation() override { 4249 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4250 "finalizeInstrumentation called twice"); 4251 if (!VAStartInstrumentationList.empty()) { 4252 // If there is a va_start in this function, make a backup copy of 4253 // va_arg_tls somewhere in the function entry block. 4254 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4255 VAArgOverflowSize = 4256 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4257 Value *CopySize = 4258 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4259 VAArgOverflowSize); 4260 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4261 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4262 } 4263 4264 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4265 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4266 4267 // Instrument va_start, copy va_list shadow from the backup copy of 4268 // the TLS contents. 4269 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4270 CallInst *OrigInst = VAStartInstrumentationList[i]; 4271 IRBuilder<> IRB(OrigInst->getNextNode()); 4272 4273 Value *VAListTag = OrigInst->getArgOperand(0); 4274 4275 // The variadic ABI for AArch64 creates two areas to save the incoming 4276 // argument registers (one for 64-bit general register xn-x7 and another 4277 // for 128-bit FP/SIMD vn-v7). 4278 // We need then to propagate the shadow arguments on both regions 4279 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4280 // The remaning arguments are saved on shadow for 'va::stack'. 4281 // One caveat is it requires only to propagate the non-named arguments, 4282 // however on the call site instrumentation 'all' the arguments are 4283 // saved. So to copy the shadow values from the va_arg TLS array 4284 // we need to adjust the offset for both GR and VR fields based on 4285 // the __{gr,vr}_offs value (since they are stores based on incoming 4286 // named arguments). 4287 4288 // Read the stack pointer from the va_list. 4289 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4290 4291 // Read both the __gr_top and __gr_off and add them up. 4292 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4293 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4294 4295 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4296 4297 // Read both the __vr_top and __vr_off and add them up. 4298 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4299 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4300 4301 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4302 4303 // It does not know how many named arguments is being used and, on the 4304 // callsite all the arguments were saved. Since __gr_off is defined as 4305 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4306 // argument by ignoring the bytes of shadow from named arguments. 4307 Value *GrRegSaveAreaShadowPtrOff = 4308 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4309 4310 Value *GrRegSaveAreaShadowPtr = 4311 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4312 /*Alignment*/ 8, /*isStore*/ true) 4313 .first; 4314 4315 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4316 GrRegSaveAreaShadowPtrOff); 4317 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4318 4319 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); 4320 4321 // Again, but for FP/SIMD values. 4322 Value *VrRegSaveAreaShadowPtrOff = 4323 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4324 4325 Value *VrRegSaveAreaShadowPtr = 4326 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4327 /*Alignment*/ 8, /*isStore*/ true) 4328 .first; 4329 4330 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4331 IRB.getInt8Ty(), 4332 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4333 IRB.getInt32(AArch64VrBegOffset)), 4334 VrRegSaveAreaShadowPtrOff); 4335 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4336 4337 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); 4338 4339 // And finally for remaining arguments. 4340 Value *StackSaveAreaShadowPtr = 4341 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4342 /*Alignment*/ 16, /*isStore*/ true) 4343 .first; 4344 4345 Value *StackSrcPtr = 4346 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4347 IRB.getInt32(AArch64VAEndOffset)); 4348 4349 IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, 4350 VAArgOverflowSize); 4351 } 4352 } 4353 }; 4354 4355 /// PowerPC64-specific implementation of VarArgHelper. 4356 struct VarArgPowerPC64Helper : public VarArgHelper { 4357 Function &F; 4358 MemorySanitizer &MS; 4359 MemorySanitizerVisitor &MSV; 4360 Value *VAArgTLSCopy = nullptr; 4361 Value *VAArgSize = nullptr; 4362 4363 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4364 4365 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4366 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4367 4368 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4369 // For PowerPC, we need to deal with alignment of stack arguments - 4370 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4371 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4372 // and QPX vectors are aligned to 32 bytes. For that reason, we 4373 // compute current offset from stack pointer (which is always properly 4374 // aligned), and offset for the first vararg, then subtract them. 4375 unsigned VAArgBase; 4376 Triple TargetTriple(F.getParent()->getTargetTriple()); 4377 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4378 // and 32 bytes for ABIv2. This is usually determined by target 4379 // endianness, but in theory could be overriden by function attribute. 4380 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4381 if (TargetTriple.getArch() == Triple::ppc64) 4382 VAArgBase = 48; 4383 else 4384 VAArgBase = 32; 4385 unsigned VAArgOffset = VAArgBase; 4386 const DataLayout &DL = F.getParent()->getDataLayout(); 4387 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4388 ArgIt != End; ++ArgIt) { 4389 Value *A = *ArgIt; 4390 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4391 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4392 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4393 if (IsByVal) { 4394 assert(A->getType()->isPointerTy()); 4395 Type *RealTy = A->getType()->getPointerElementType(); 4396 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4397 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4398 if (ArgAlign < 8) 4399 ArgAlign = 8; 4400 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4401 if (!IsFixed) { 4402 Value *Base = getShadowPtrForVAArgument( 4403 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4404 if (Base) { 4405 Value *AShadowPtr, *AOriginPtr; 4406 std::tie(AShadowPtr, AOriginPtr) = 4407 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4408 kShadowTLSAlignment, /*isStore*/ false); 4409 4410 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4411 kShadowTLSAlignment, ArgSize); 4412 } 4413 } 4414 VAArgOffset += alignTo(ArgSize, 8); 4415 } else { 4416 Value *Base; 4417 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4418 uint64_t ArgAlign = 8; 4419 if (A->getType()->isArrayTy()) { 4420 // Arrays are aligned to element size, except for long double 4421 // arrays, which are aligned to 8 bytes. 4422 Type *ElementTy = A->getType()->getArrayElementType(); 4423 if (!ElementTy->isPPC_FP128Ty()) 4424 ArgAlign = DL.getTypeAllocSize(ElementTy); 4425 } else if (A->getType()->isVectorTy()) { 4426 // Vectors are naturally aligned. 4427 ArgAlign = DL.getTypeAllocSize(A->getType()); 4428 } 4429 if (ArgAlign < 8) 4430 ArgAlign = 8; 4431 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4432 if (DL.isBigEndian()) { 4433 // Adjusting the shadow for argument with size < 8 to match the placement 4434 // of bits in big endian system 4435 if (ArgSize < 8) 4436 VAArgOffset += (8 - ArgSize); 4437 } 4438 if (!IsFixed) { 4439 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4440 VAArgOffset - VAArgBase, ArgSize); 4441 if (Base) 4442 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4443 } 4444 VAArgOffset += ArgSize; 4445 VAArgOffset = alignTo(VAArgOffset, 8); 4446 } 4447 if (IsFixed) 4448 VAArgBase = VAArgOffset; 4449 } 4450 4451 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4452 VAArgOffset - VAArgBase); 4453 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4454 // a new class member i.e. it is the total size of all VarArgs. 4455 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4456 } 4457 4458 /// Compute the shadow address for a given va_arg. 4459 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4460 unsigned ArgOffset, unsigned ArgSize) { 4461 // Make sure we don't overflow __msan_va_arg_tls. 4462 if (ArgOffset + ArgSize > kParamTLSSize) 4463 return nullptr; 4464 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4465 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4466 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4467 "_msarg"); 4468 } 4469 4470 void visitVAStartInst(VAStartInst &I) override { 4471 IRBuilder<> IRB(&I); 4472 VAStartInstrumentationList.push_back(&I); 4473 Value *VAListTag = I.getArgOperand(0); 4474 Value *ShadowPtr, *OriginPtr; 4475 unsigned Alignment = 8; 4476 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4477 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4478 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4479 /* size */ 8, Alignment, false); 4480 } 4481 4482 void visitVACopyInst(VACopyInst &I) override { 4483 IRBuilder<> IRB(&I); 4484 Value *VAListTag = I.getArgOperand(0); 4485 Value *ShadowPtr, *OriginPtr; 4486 unsigned Alignment = 8; 4487 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4488 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4489 // Unpoison the whole __va_list_tag. 4490 // FIXME: magic ABI constants. 4491 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4492 /* size */ 8, Alignment, false); 4493 } 4494 4495 void finalizeInstrumentation() override { 4496 assert(!VAArgSize && !VAArgTLSCopy && 4497 "finalizeInstrumentation called twice"); 4498 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4499 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4500 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4501 VAArgSize); 4502 4503 if (!VAStartInstrumentationList.empty()) { 4504 // If there is a va_start in this function, make a backup copy of 4505 // va_arg_tls somewhere in the function entry block. 4506 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4507 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4508 } 4509 4510 // Instrument va_start. 4511 // Copy va_list shadow from the backup copy of the TLS contents. 4512 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4513 CallInst *OrigInst = VAStartInstrumentationList[i]; 4514 IRBuilder<> IRB(OrigInst->getNextNode()); 4515 Value *VAListTag = OrigInst->getArgOperand(0); 4516 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4517 Value *RegSaveAreaPtrPtr = 4518 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4519 PointerType::get(RegSaveAreaPtrTy, 0)); 4520 Value *RegSaveAreaPtr = 4521 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4522 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4523 unsigned Alignment = 8; 4524 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4525 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4526 Alignment, /*isStore*/ true); 4527 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4528 CopySize); 4529 } 4530 } 4531 }; 4532 4533 /// A no-op implementation of VarArgHelper. 4534 struct VarArgNoOpHelper : public VarArgHelper { 4535 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4536 MemorySanitizerVisitor &MSV) {} 4537 4538 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4539 4540 void visitVAStartInst(VAStartInst &I) override {} 4541 4542 void visitVACopyInst(VACopyInst &I) override {} 4543 4544 void finalizeInstrumentation() override {} 4545 }; 4546 4547 } // end anonymous namespace 4548 4549 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4550 MemorySanitizerVisitor &Visitor) { 4551 // VarArg handling is only implemented on AMD64. False positives are possible 4552 // on other platforms. 4553 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4554 if (TargetTriple.getArch() == Triple::x86_64) 4555 return new VarArgAMD64Helper(Func, Msan, Visitor); 4556 else if (TargetTriple.isMIPS64()) 4557 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4558 else if (TargetTriple.getArch() == Triple::aarch64) 4559 return new VarArgAArch64Helper(Func, Msan, Visitor); 4560 else if (TargetTriple.getArch() == Triple::ppc64 || 4561 TargetTriple.getArch() == Triple::ppc64le) 4562 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4563 else 4564 return new VarArgNoOpHelper(Func, Msan, Visitor); 4565 } 4566 4567 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4568 if (!CompileKernel && (&F == MsanCtorFunction)) 4569 return false; 4570 MemorySanitizerVisitor Visitor(F, *this, TLI); 4571 4572 // Clear out readonly/readnone attributes. 4573 AttrBuilder B; 4574 B.addAttribute(Attribute::ReadOnly) 4575 .addAttribute(Attribute::ReadNone); 4576 F.removeAttributes(AttributeList::FunctionIndex, B); 4577 4578 return Visitor.runOnFunction(); 4579 } 4580