1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/MDBuilder.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/IR/Type.h" 180 #include "llvm/IR/Value.h" 181 #include "llvm/IR/ValueMap.h" 182 #include "llvm/InitializePasses.h" 183 #include "llvm/Pass.h" 184 #include "llvm/Support/Alignment.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Debug.h" 189 #include "llvm/Support/ErrorHandling.h" 190 #include "llvm/Support/MathExtras.h" 191 #include "llvm/Support/raw_ostream.h" 192 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 193 #include "llvm/Transforms/Utils/Local.h" 194 #include "llvm/Transforms/Utils/ModuleUtils.h" 195 #include <algorithm> 196 #include <cassert> 197 #include <cstddef> 198 #include <cstdint> 199 #include <memory> 200 #include <string> 201 #include <tuple> 202 203 using namespace llvm; 204 205 #define DEBUG_TYPE "msan" 206 207 static const unsigned kOriginSize = 4; 208 static const Align kMinOriginAlignment = Align(4); 209 static const Align kShadowTLSAlignment = Align(8); 210 211 // These constants must be kept in sync with the ones in msan.h. 212 static const unsigned kParamTLSSize = 800; 213 static const unsigned kRetvalTLSSize = 800; 214 215 // Accesses sizes are powers of two: 1, 2, 4, 8. 216 static const size_t kNumberOfAccessSizes = 4; 217 218 /// Track origins of uninitialized values. 219 /// 220 /// Adds a section to MemorySanitizer report that points to the allocation 221 /// (stack or heap) the uninitialized bits came from originally. 222 static cl::opt<int> ClTrackOrigins("msan-track-origins", 223 cl::desc("Track origins (allocation sites) of poisoned memory"), 224 cl::Hidden, cl::init(0)); 225 226 static cl::opt<bool> ClKeepGoing("msan-keep-going", 227 cl::desc("keep going after reporting a UMR"), 228 cl::Hidden, cl::init(false)); 229 230 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 231 cl::desc("poison uninitialized stack variables"), 232 cl::Hidden, cl::init(true)); 233 234 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 235 cl::desc("poison uninitialized stack variables with a call"), 236 cl::Hidden, cl::init(false)); 237 238 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 239 cl::desc("poison uninitialized stack variables with the given pattern"), 240 cl::Hidden, cl::init(0xff)); 241 242 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 243 cl::desc("poison undef temps"), 244 cl::Hidden, cl::init(true)); 245 246 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 247 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 248 cl::Hidden, cl::init(true)); 249 250 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 251 cl::desc("exact handling of relational integer ICmp"), 252 cl::Hidden, cl::init(false)); 253 254 static cl::opt<bool> ClHandleLifetimeIntrinsics( 255 "msan-handle-lifetime-intrinsics", 256 cl::desc( 257 "when possible, poison scoped variables at the beginning of the scope " 258 "(slower, but more precise)"), 259 cl::Hidden, cl::init(true)); 260 261 // When compiling the Linux kernel, we sometimes see false positives related to 262 // MSan being unable to understand that inline assembly calls may initialize 263 // local variables. 264 // This flag makes the compiler conservatively unpoison every memory location 265 // passed into an assembly call. Note that this may cause false positives. 266 // Because it's impossible to figure out the array sizes, we can only unpoison 267 // the first sizeof(type) bytes for each type* pointer. 268 // The instrumentation is only enabled in KMSAN builds, and only if 269 // -msan-handle-asm-conservative is on. This is done because we may want to 270 // quickly disable assembly instrumentation when it breaks. 271 static cl::opt<bool> ClHandleAsmConservative( 272 "msan-handle-asm-conservative", 273 cl::desc("conservative handling of inline assembly"), cl::Hidden, 274 cl::init(true)); 275 276 // This flag controls whether we check the shadow of the address 277 // operand of load or store. Such bugs are very rare, since load from 278 // a garbage address typically results in SEGV, but still happen 279 // (e.g. only lower bits of address are garbage, or the access happens 280 // early at program startup where malloc-ed memory is more likely to 281 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 282 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 283 cl::desc("report accesses through a pointer which has poisoned shadow"), 284 cl::Hidden, cl::init(true)); 285 286 static cl::opt<bool> ClEagerChecks( 287 "msan-eager-checks", 288 cl::desc("check arguments and return values at function call boundaries"), 289 cl::Hidden, cl::init(false)); 290 291 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 292 cl::desc("print out instructions with default strict semantics"), 293 cl::Hidden, cl::init(false)); 294 295 static cl::opt<int> ClInstrumentationWithCallThreshold( 296 "msan-instrumentation-with-call-threshold", 297 cl::desc( 298 "If the function being instrumented requires more than " 299 "this number of checks and origin stores, use callbacks instead of " 300 "inline checks (-1 means never use callbacks)."), 301 cl::Hidden, cl::init(3500)); 302 303 static cl::opt<bool> 304 ClEnableKmsan("msan-kernel", 305 cl::desc("Enable KernelMemorySanitizer instrumentation"), 306 cl::Hidden, cl::init(false)); 307 308 static cl::opt<bool> 309 ClDisableChecks("msan-disable-checks", 310 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 311 cl::init(false)); 312 313 // This is an experiment to enable handling of cases where shadow is a non-zero 314 // compile-time constant. For some unexplainable reason they were silently 315 // ignored in the instrumentation. 316 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 317 cl::desc("Insert checks for constant shadow values"), 318 cl::Hidden, cl::init(false)); 319 320 // This is off by default because of a bug in gold: 321 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 322 static cl::opt<bool> ClWithComdat("msan-with-comdat", 323 cl::desc("Place MSan constructors in comdat sections"), 324 cl::Hidden, cl::init(false)); 325 326 // These options allow to specify custom memory map parameters 327 // See MemoryMapParams for details. 328 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 329 cl::desc("Define custom MSan AndMask"), 330 cl::Hidden, cl::init(0)); 331 332 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 333 cl::desc("Define custom MSan XorMask"), 334 cl::Hidden, cl::init(0)); 335 336 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 337 cl::desc("Define custom MSan ShadowBase"), 338 cl::Hidden, cl::init(0)); 339 340 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 341 cl::desc("Define custom MSan OriginBase"), 342 cl::Hidden, cl::init(0)); 343 344 const char kMsanModuleCtorName[] = "msan.module_ctor"; 345 const char kMsanInitName[] = "__msan_init"; 346 347 namespace { 348 349 // Memory map parameters used in application-to-shadow address calculation. 350 // Offset = (Addr & ~AndMask) ^ XorMask 351 // Shadow = ShadowBase + Offset 352 // Origin = OriginBase + Offset 353 struct MemoryMapParams { 354 uint64_t AndMask; 355 uint64_t XorMask; 356 uint64_t ShadowBase; 357 uint64_t OriginBase; 358 }; 359 360 struct PlatformMemoryMapParams { 361 const MemoryMapParams *bits32; 362 const MemoryMapParams *bits64; 363 }; 364 365 } // end anonymous namespace 366 367 // i386 Linux 368 static const MemoryMapParams Linux_I386_MemoryMapParams = { 369 0x000080000000, // AndMask 370 0, // XorMask (not used) 371 0, // ShadowBase (not used) 372 0x000040000000, // OriginBase 373 }; 374 375 // x86_64 Linux 376 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 377 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 378 0x400000000000, // AndMask 379 0, // XorMask (not used) 380 0, // ShadowBase (not used) 381 0x200000000000, // OriginBase 382 #else 383 0, // AndMask (not used) 384 0x500000000000, // XorMask 385 0, // ShadowBase (not used) 386 0x100000000000, // OriginBase 387 #endif 388 }; 389 390 // mips64 Linux 391 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 392 0, // AndMask (not used) 393 0x008000000000, // XorMask 394 0, // ShadowBase (not used) 395 0x002000000000, // OriginBase 396 }; 397 398 // ppc64 Linux 399 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 400 0xE00000000000, // AndMask 401 0x100000000000, // XorMask 402 0x080000000000, // ShadowBase 403 0x1C0000000000, // OriginBase 404 }; 405 406 // s390x Linux 407 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 408 0xC00000000000, // AndMask 409 0, // XorMask (not used) 410 0x080000000000, // ShadowBase 411 0x1C0000000000, // OriginBase 412 }; 413 414 // aarch64 Linux 415 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 416 0, // AndMask (not used) 417 0x06000000000, // XorMask 418 0, // ShadowBase (not used) 419 0x01000000000, // OriginBase 420 }; 421 422 // i386 FreeBSD 423 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 424 0x000180000000, // AndMask 425 0x000040000000, // XorMask 426 0x000020000000, // ShadowBase 427 0x000700000000, // OriginBase 428 }; 429 430 // x86_64 FreeBSD 431 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 432 0xc00000000000, // AndMask 433 0x200000000000, // XorMask 434 0x100000000000, // ShadowBase 435 0x380000000000, // OriginBase 436 }; 437 438 // x86_64 NetBSD 439 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 440 0, // AndMask 441 0x500000000000, // XorMask 442 0, // ShadowBase 443 0x100000000000, // OriginBase 444 }; 445 446 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 447 &Linux_I386_MemoryMapParams, 448 &Linux_X86_64_MemoryMapParams, 449 }; 450 451 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 452 nullptr, 453 &Linux_MIPS64_MemoryMapParams, 454 }; 455 456 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 457 nullptr, 458 &Linux_PowerPC64_MemoryMapParams, 459 }; 460 461 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 462 nullptr, 463 &Linux_S390X_MemoryMapParams, 464 }; 465 466 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 467 nullptr, 468 &Linux_AArch64_MemoryMapParams, 469 }; 470 471 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 472 &FreeBSD_I386_MemoryMapParams, 473 &FreeBSD_X86_64_MemoryMapParams, 474 }; 475 476 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 477 nullptr, 478 &NetBSD_X86_64_MemoryMapParams, 479 }; 480 481 namespace { 482 483 /// Instrument functions of a module to detect uninitialized reads. 484 /// 485 /// Instantiating MemorySanitizer inserts the msan runtime library API function 486 /// declarations into the module if they don't exist already. Instantiating 487 /// ensures the __msan_init function is in the list of global constructors for 488 /// the module. 489 class MemorySanitizer { 490 public: 491 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 492 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 493 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 494 initializeModule(M); 495 } 496 497 // MSan cannot be moved or copied because of MapParams. 498 MemorySanitizer(MemorySanitizer &&) = delete; 499 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 500 MemorySanitizer(const MemorySanitizer &) = delete; 501 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 502 503 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 504 505 private: 506 friend struct MemorySanitizerVisitor; 507 friend struct VarArgAMD64Helper; 508 friend struct VarArgMIPS64Helper; 509 friend struct VarArgAArch64Helper; 510 friend struct VarArgPowerPC64Helper; 511 friend struct VarArgSystemZHelper; 512 513 void initializeModule(Module &M); 514 void initializeCallbacks(Module &M); 515 void createKernelApi(Module &M); 516 void createUserspaceApi(Module &M); 517 518 /// True if we're compiling the Linux kernel. 519 bool CompileKernel; 520 /// Track origins (allocation points) of uninitialized values. 521 int TrackOrigins; 522 bool Recover; 523 bool EagerChecks; 524 525 LLVMContext *C; 526 Type *IntptrTy; 527 Type *OriginTy; 528 529 // XxxTLS variables represent the per-thread state in MSan and per-task state 530 // in KMSAN. 531 // For the userspace these point to thread-local globals. In the kernel land 532 // they point to the members of a per-task struct obtained via a call to 533 // __msan_get_context_state(). 534 535 /// Thread-local shadow storage for function parameters. 536 Value *ParamTLS; 537 538 /// Thread-local origin storage for function parameters. 539 Value *ParamOriginTLS; 540 541 /// Thread-local shadow storage for function return value. 542 Value *RetvalTLS; 543 544 /// Thread-local origin storage for function return value. 545 Value *RetvalOriginTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgTLS; 550 551 /// Thread-local shadow storage for in-register va_arg function 552 /// parameters (x86_64-specific). 553 Value *VAArgOriginTLS; 554 555 /// Thread-local shadow storage for va_arg overflow area 556 /// (x86_64-specific). 557 Value *VAArgOverflowSizeTLS; 558 559 /// Are the instrumentation callbacks set up? 560 bool CallbacksInitialized = false; 561 562 /// The run-time callback to print a warning. 563 FunctionCallee WarningFn; 564 565 // These arrays are indexed by log2(AccessSize). 566 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 567 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 568 569 /// Run-time helper that generates a new origin value for a stack 570 /// allocation. 571 FunctionCallee MsanSetAllocaOrigin4Fn; 572 573 /// Run-time helper that poisons stack on function entry. 574 FunctionCallee MsanPoisonStackFn; 575 576 /// Run-time helper that records a store (or any event) of an 577 /// uninitialized value and returns an updated origin id encoding this info. 578 FunctionCallee MsanChainOriginFn; 579 580 /// Run-time helper that paints an origin over a region. 581 FunctionCallee MsanSetOriginFn; 582 583 /// MSan runtime replacements for memmove, memcpy and memset. 584 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 585 586 /// KMSAN callback for task-local function argument shadow. 587 StructType *MsanContextStateTy; 588 FunctionCallee MsanGetContextStateFn; 589 590 /// Functions for poisoning/unpoisoning local variables 591 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 592 593 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 594 /// pointers. 595 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 596 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 597 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 598 FunctionCallee MsanInstrumentAsmStoreFn; 599 600 /// Helper to choose between different MsanMetadataPtrXxx(). 601 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 602 603 /// Memory map parameters used in application-to-shadow calculation. 604 const MemoryMapParams *MapParams; 605 606 /// Custom memory map parameters used when -msan-shadow-base or 607 // -msan-origin-base is provided. 608 MemoryMapParams CustomMapParams; 609 610 MDNode *ColdCallWeights; 611 612 /// Branch weights for origin store. 613 MDNode *OriginStoreWeights; 614 }; 615 616 void insertModuleCtor(Module &M) { 617 getOrCreateSanitizerCtorAndInitFunctions( 618 M, kMsanModuleCtorName, kMsanInitName, 619 /*InitArgTypes=*/{}, 620 /*InitArgs=*/{}, 621 // This callback is invoked when the functions are created the first 622 // time. Hook them into the global ctors list in that case: 623 [&](Function *Ctor, FunctionCallee) { 624 if (!ClWithComdat) { 625 appendToGlobalCtors(M, Ctor, 0); 626 return; 627 } 628 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 629 Ctor->setComdat(MsanCtorComdat); 630 appendToGlobalCtors(M, Ctor, 0, Ctor); 631 }); 632 } 633 634 /// A legacy function pass for msan instrumentation. 635 /// 636 /// Instruments functions to detect uninitialized reads. 637 struct MemorySanitizerLegacyPass : public FunctionPass { 638 // Pass identification, replacement for typeid. 639 static char ID; 640 641 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 642 : FunctionPass(ID), Options(Options) { 643 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 644 } 645 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 646 647 void getAnalysisUsage(AnalysisUsage &AU) const override { 648 AU.addRequired<TargetLibraryInfoWrapperPass>(); 649 } 650 651 bool runOnFunction(Function &F) override { 652 return MSan->sanitizeFunction( 653 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 654 } 655 bool doInitialization(Module &M) override; 656 657 Optional<MemorySanitizer> MSan; 658 MemorySanitizerOptions Options; 659 }; 660 661 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 662 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 663 } 664 665 } // end anonymous namespace 666 667 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 668 bool EagerChecks) 669 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 670 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 671 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 672 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 673 674 PreservedAnalyses MemorySanitizerPass::run(Function &F, 675 FunctionAnalysisManager &FAM) { 676 MemorySanitizer Msan(*F.getParent(), Options); 677 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 678 return PreservedAnalyses::none(); 679 return PreservedAnalyses::all(); 680 } 681 682 PreservedAnalyses 683 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 684 if (Options.Kernel) 685 return PreservedAnalyses::all(); 686 insertModuleCtor(M); 687 return PreservedAnalyses::none(); 688 } 689 690 void MemorySanitizerPass::printPipeline( 691 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 692 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 693 OS, MapClassName2PassName); 694 OS << "<"; 695 if (Options.Recover) 696 OS << "recover;"; 697 if (Options.Kernel) 698 OS << "kernel;"; 699 if (Options.EagerChecks) 700 OS << "eager-checks;"; 701 OS << "track-origins=" << Options.TrackOrigins; 702 OS << ">"; 703 } 704 705 char MemorySanitizerLegacyPass::ID = 0; 706 707 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 708 "MemorySanitizer: detects uninitialized reads.", false, 709 false) 710 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 711 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 712 "MemorySanitizer: detects uninitialized reads.", false, 713 false) 714 715 FunctionPass * 716 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 717 return new MemorySanitizerLegacyPass(Options); 718 } 719 720 /// Create a non-const global initialized with the given string. 721 /// 722 /// Creates a writable global for Str so that we can pass it to the 723 /// run-time lib. Runtime uses first 4 bytes of the string to store the 724 /// frame ID, so the string needs to be mutable. 725 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 726 StringRef Str) { 727 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 728 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 729 GlobalValue::PrivateLinkage, StrConst, ""); 730 } 731 732 /// Create KMSAN API callbacks. 733 void MemorySanitizer::createKernelApi(Module &M) { 734 IRBuilder<> IRB(*C); 735 736 // These will be initialized in insertKmsanPrologue(). 737 RetvalTLS = nullptr; 738 RetvalOriginTLS = nullptr; 739 ParamTLS = nullptr; 740 ParamOriginTLS = nullptr; 741 VAArgTLS = nullptr; 742 VAArgOriginTLS = nullptr; 743 VAArgOverflowSizeTLS = nullptr; 744 745 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 746 IRB.getInt32Ty()); 747 // Requests the per-task context state (kmsan_context_state*) from the 748 // runtime library. 749 MsanContextStateTy = StructType::get( 750 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 751 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 752 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 753 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 754 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 755 OriginTy); 756 MsanGetContextStateFn = M.getOrInsertFunction( 757 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 758 759 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 760 PointerType::get(IRB.getInt32Ty(), 0)); 761 762 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 763 std::string name_load = 764 "__msan_metadata_ptr_for_load_" + std::to_string(size); 765 std::string name_store = 766 "__msan_metadata_ptr_for_store_" + std::to_string(size); 767 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 768 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 769 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 770 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 771 } 772 773 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 774 "__msan_metadata_ptr_for_load_n", RetTy, 775 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 776 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 777 "__msan_metadata_ptr_for_store_n", RetTy, 778 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 779 780 // Functions for poisoning and unpoisoning memory. 781 MsanPoisonAllocaFn = 782 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 783 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 784 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 785 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 786 } 787 788 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 789 return M.getOrInsertGlobal(Name, Ty, [&] { 790 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 791 nullptr, Name, nullptr, 792 GlobalVariable::InitialExecTLSModel); 793 }); 794 } 795 796 /// Insert declarations for userspace-specific functions and globals. 797 void MemorySanitizer::createUserspaceApi(Module &M) { 798 IRBuilder<> IRB(*C); 799 800 // Create the callback. 801 // FIXME: this function should have "Cold" calling conv, 802 // which is not yet implemented. 803 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 804 : "__msan_warning_with_origin_noreturn"; 805 WarningFn = 806 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 807 808 // Create the global TLS variables. 809 RetvalTLS = 810 getOrInsertGlobal(M, "__msan_retval_tls", 811 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 812 813 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 814 815 ParamTLS = 816 getOrInsertGlobal(M, "__msan_param_tls", 817 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 818 819 ParamOriginTLS = 820 getOrInsertGlobal(M, "__msan_param_origin_tls", 821 ArrayType::get(OriginTy, kParamTLSSize / 4)); 822 823 VAArgTLS = 824 getOrInsertGlobal(M, "__msan_va_arg_tls", 825 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 826 827 VAArgOriginTLS = 828 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 829 ArrayType::get(OriginTy, kParamTLSSize / 4)); 830 831 VAArgOverflowSizeTLS = 832 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 833 834 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 835 AccessSizeIndex++) { 836 unsigned AccessSize = 1 << AccessSizeIndex; 837 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 838 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 839 MaybeWarningFnAttrs.push_back(std::make_pair( 840 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 841 MaybeWarningFnAttrs.push_back(std::make_pair( 842 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 843 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 844 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 845 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 846 847 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 848 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 849 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 850 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 851 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 852 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 853 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 854 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 855 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 856 IRB.getInt32Ty()); 857 } 858 859 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 860 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 861 IRB.getInt8PtrTy(), IntptrTy); 862 MsanPoisonStackFn = 863 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 864 IRB.getInt8PtrTy(), IntptrTy); 865 } 866 867 /// Insert extern declaration of runtime-provided functions and globals. 868 void MemorySanitizer::initializeCallbacks(Module &M) { 869 // Only do this once. 870 if (CallbacksInitialized) 871 return; 872 873 IRBuilder<> IRB(*C); 874 // Initialize callbacks that are common for kernel and userspace 875 // instrumentation. 876 MsanChainOriginFn = M.getOrInsertFunction( 877 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 878 MsanSetOriginFn = 879 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 880 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 881 MemmoveFn = M.getOrInsertFunction( 882 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 883 IRB.getInt8PtrTy(), IntptrTy); 884 MemcpyFn = M.getOrInsertFunction( 885 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 886 IntptrTy); 887 MemsetFn = M.getOrInsertFunction( 888 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 889 IntptrTy); 890 891 MsanInstrumentAsmStoreFn = 892 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 893 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 894 895 if (CompileKernel) { 896 createKernelApi(M); 897 } else { 898 createUserspaceApi(M); 899 } 900 CallbacksInitialized = true; 901 } 902 903 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 904 int size) { 905 FunctionCallee *Fns = 906 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 907 switch (size) { 908 case 1: 909 return Fns[0]; 910 case 2: 911 return Fns[1]; 912 case 4: 913 return Fns[2]; 914 case 8: 915 return Fns[3]; 916 default: 917 return nullptr; 918 } 919 } 920 921 /// Module-level initialization. 922 /// 923 /// inserts a call to __msan_init to the module's constructor list. 924 void MemorySanitizer::initializeModule(Module &M) { 925 auto &DL = M.getDataLayout(); 926 927 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 928 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 929 // Check the overrides first 930 if (ShadowPassed || OriginPassed) { 931 CustomMapParams.AndMask = ClAndMask; 932 CustomMapParams.XorMask = ClXorMask; 933 CustomMapParams.ShadowBase = ClShadowBase; 934 CustomMapParams.OriginBase = ClOriginBase; 935 MapParams = &CustomMapParams; 936 } else { 937 Triple TargetTriple(M.getTargetTriple()); 938 switch (TargetTriple.getOS()) { 939 case Triple::FreeBSD: 940 switch (TargetTriple.getArch()) { 941 case Triple::x86_64: 942 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 943 break; 944 case Triple::x86: 945 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 946 break; 947 default: 948 report_fatal_error("unsupported architecture"); 949 } 950 break; 951 case Triple::NetBSD: 952 switch (TargetTriple.getArch()) { 953 case Triple::x86_64: 954 MapParams = NetBSD_X86_MemoryMapParams.bits64; 955 break; 956 default: 957 report_fatal_error("unsupported architecture"); 958 } 959 break; 960 case Triple::Linux: 961 switch (TargetTriple.getArch()) { 962 case Triple::x86_64: 963 MapParams = Linux_X86_MemoryMapParams.bits64; 964 break; 965 case Triple::x86: 966 MapParams = Linux_X86_MemoryMapParams.bits32; 967 break; 968 case Triple::mips64: 969 case Triple::mips64el: 970 MapParams = Linux_MIPS_MemoryMapParams.bits64; 971 break; 972 case Triple::ppc64: 973 case Triple::ppc64le: 974 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 975 break; 976 case Triple::systemz: 977 MapParams = Linux_S390_MemoryMapParams.bits64; 978 break; 979 case Triple::aarch64: 980 case Triple::aarch64_be: 981 MapParams = Linux_ARM_MemoryMapParams.bits64; 982 break; 983 default: 984 report_fatal_error("unsupported architecture"); 985 } 986 break; 987 default: 988 report_fatal_error("unsupported operating system"); 989 } 990 } 991 992 C = &(M.getContext()); 993 IRBuilder<> IRB(*C); 994 IntptrTy = IRB.getIntPtrTy(DL); 995 OriginTy = IRB.getInt32Ty(); 996 997 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 998 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 999 1000 if (!CompileKernel) { 1001 if (TrackOrigins) 1002 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1003 return new GlobalVariable( 1004 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1005 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1006 }); 1007 1008 if (Recover) 1009 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1010 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1011 GlobalValue::WeakODRLinkage, 1012 IRB.getInt32(Recover), "__msan_keep_going"); 1013 }); 1014 } 1015 } 1016 1017 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 1018 if (!Options.Kernel) 1019 insertModuleCtor(M); 1020 MSan.emplace(M, Options); 1021 return true; 1022 } 1023 1024 namespace { 1025 1026 /// A helper class that handles instrumentation of VarArg 1027 /// functions on a particular platform. 1028 /// 1029 /// Implementations are expected to insert the instrumentation 1030 /// necessary to propagate argument shadow through VarArg function 1031 /// calls. Visit* methods are called during an InstVisitor pass over 1032 /// the function, and should avoid creating new basic blocks. A new 1033 /// instance of this class is created for each instrumented function. 1034 struct VarArgHelper { 1035 virtual ~VarArgHelper() = default; 1036 1037 /// Visit a CallBase. 1038 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1039 1040 /// Visit a va_start call. 1041 virtual void visitVAStartInst(VAStartInst &I) = 0; 1042 1043 /// Visit a va_copy call. 1044 virtual void visitVACopyInst(VACopyInst &I) = 0; 1045 1046 /// Finalize function instrumentation. 1047 /// 1048 /// This method is called after visiting all interesting (see above) 1049 /// instructions in a function. 1050 virtual void finalizeInstrumentation() = 0; 1051 }; 1052 1053 struct MemorySanitizerVisitor; 1054 1055 } // end anonymous namespace 1056 1057 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1058 MemorySanitizerVisitor &Visitor); 1059 1060 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1061 if (TypeSize <= 8) return 0; 1062 return Log2_32_Ceil((TypeSize + 7) / 8); 1063 } 1064 1065 namespace { 1066 1067 /// This class does all the work for a given function. Store and Load 1068 /// instructions store and load corresponding shadow and origin 1069 /// values. Most instructions propagate shadow from arguments to their 1070 /// return values. Certain instructions (most importantly, BranchInst) 1071 /// test their argument shadow and print reports (with a runtime call) if it's 1072 /// non-zero. 1073 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1074 Function &F; 1075 MemorySanitizer &MS; 1076 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1077 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1078 std::unique_ptr<VarArgHelper> VAHelper; 1079 const TargetLibraryInfo *TLI; 1080 Instruction *FnPrologueEnd; 1081 1082 // The following flags disable parts of MSan instrumentation based on 1083 // exclusion list contents and command-line options. 1084 bool InsertChecks; 1085 bool PropagateShadow; 1086 bool PoisonStack; 1087 bool PoisonUndef; 1088 1089 struct ShadowOriginAndInsertPoint { 1090 Value *Shadow; 1091 Value *Origin; 1092 Instruction *OrigIns; 1093 1094 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1095 : Shadow(S), Origin(O), OrigIns(I) {} 1096 }; 1097 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1098 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1099 SmallSet<AllocaInst *, 16> AllocaSet; 1100 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1101 SmallVector<StoreInst *, 16> StoreList; 1102 1103 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1104 const TargetLibraryInfo &TLI) 1105 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1106 bool SanitizeFunction = 1107 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1108 InsertChecks = SanitizeFunction; 1109 PropagateShadow = SanitizeFunction; 1110 PoisonStack = SanitizeFunction && ClPoisonStack; 1111 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1112 1113 // In the presence of unreachable blocks, we may see Phi nodes with 1114 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1115 // blocks, such nodes will not have any shadow value associated with them. 1116 // It's easier to remove unreachable blocks than deal with missing shadow. 1117 removeUnreachableBlocks(F); 1118 1119 MS.initializeCallbacks(*F.getParent()); 1120 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1121 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1122 1123 if (MS.CompileKernel) { 1124 IRBuilder<> IRB(FnPrologueEnd); 1125 insertKmsanPrologue(IRB); 1126 } 1127 1128 LLVM_DEBUG(if (!InsertChecks) dbgs() 1129 << "MemorySanitizer is not inserting checks into '" 1130 << F.getName() << "'\n"); 1131 } 1132 1133 bool isInPrologue(Instruction &I) { 1134 return I.getParent() == FnPrologueEnd->getParent() && 1135 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1136 } 1137 1138 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1139 if (MS.TrackOrigins <= 1) return V; 1140 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1141 } 1142 1143 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1144 const DataLayout &DL = F.getParent()->getDataLayout(); 1145 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1146 if (IntptrSize == kOriginSize) return Origin; 1147 assert(IntptrSize == kOriginSize * 2); 1148 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1149 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1150 } 1151 1152 /// Fill memory range with the given origin value. 1153 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1154 unsigned Size, Align Alignment) { 1155 const DataLayout &DL = F.getParent()->getDataLayout(); 1156 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1157 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1158 assert(IntptrAlignment >= kMinOriginAlignment); 1159 assert(IntptrSize >= kOriginSize); 1160 1161 unsigned Ofs = 0; 1162 Align CurrentAlignment = Alignment; 1163 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1164 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1165 Value *IntptrOriginPtr = 1166 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1167 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1168 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1169 : IntptrOriginPtr; 1170 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1171 Ofs += IntptrSize / kOriginSize; 1172 CurrentAlignment = IntptrAlignment; 1173 } 1174 } 1175 1176 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1177 Value *GEP = 1178 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1179 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1180 CurrentAlignment = kMinOriginAlignment; 1181 } 1182 } 1183 1184 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1185 Value *OriginPtr, Align Alignment, bool AsCall) { 1186 const DataLayout &DL = F.getParent()->getDataLayout(); 1187 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1188 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1189 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1190 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1191 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1192 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1193 OriginAlignment); 1194 return; 1195 } 1196 1197 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1198 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1199 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1200 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1201 Value *ConvertedShadow2 = 1202 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1203 CallBase *CB = IRB.CreateCall( 1204 Fn, {ConvertedShadow2, 1205 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1206 CB->addParamAttr(0, Attribute::ZExt); 1207 CB->addParamAttr(2, Attribute::ZExt); 1208 } else { 1209 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1210 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1211 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1212 IRBuilder<> IRBNew(CheckTerm); 1213 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1214 OriginAlignment); 1215 } 1216 } 1217 1218 void materializeStores(bool InstrumentWithCalls) { 1219 for (StoreInst *SI : StoreList) { 1220 IRBuilder<> IRB(SI); 1221 Value *Val = SI->getValueOperand(); 1222 Value *Addr = SI->getPointerOperand(); 1223 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1224 Value *ShadowPtr, *OriginPtr; 1225 Type *ShadowTy = Shadow->getType(); 1226 const Align Alignment = SI->getAlign(); 1227 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1228 std::tie(ShadowPtr, OriginPtr) = 1229 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1230 1231 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1232 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1233 (void)NewSI; 1234 1235 if (SI->isAtomic()) 1236 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1237 1238 if (MS.TrackOrigins && !SI->isAtomic()) 1239 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1240 OriginAlignment, InstrumentWithCalls); 1241 } 1242 } 1243 1244 /// Helper function to insert a warning at IRB's current insert point. 1245 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1246 if (!Origin) 1247 Origin = (Value *)IRB.getInt32(0); 1248 assert(Origin->getType()->isIntegerTy()); 1249 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1250 // FIXME: Insert UnreachableInst if !MS.Recover? 1251 // This may invalidate some of the following checks and needs to be done 1252 // at the very end. 1253 } 1254 1255 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1256 bool AsCall) { 1257 IRBuilder<> IRB(OrigIns); 1258 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1259 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1260 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1261 1262 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1263 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1264 insertWarningFn(IRB, Origin); 1265 } 1266 return; 1267 } 1268 1269 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1270 1271 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1272 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1273 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1274 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1275 Value *ConvertedShadow2 = 1276 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1277 CallBase *CB = IRB.CreateCall( 1278 Fn, {ConvertedShadow2, 1279 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1280 CB->addParamAttr(0, Attribute::ZExt); 1281 CB->addParamAttr(1, Attribute::ZExt); 1282 } else { 1283 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1284 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1285 Cmp, OrigIns, 1286 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1287 1288 IRB.SetInsertPoint(CheckTerm); 1289 insertWarningFn(IRB, Origin); 1290 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1291 } 1292 } 1293 1294 void materializeChecks(bool InstrumentWithCalls) { 1295 for (const auto &ShadowData : InstrumentationList) { 1296 Instruction *OrigIns = ShadowData.OrigIns; 1297 Value *Shadow = ShadowData.Shadow; 1298 Value *Origin = ShadowData.Origin; 1299 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1300 } 1301 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1302 } 1303 1304 // Returns the last instruction in the new prologue 1305 void insertKmsanPrologue(IRBuilder<> &IRB) { 1306 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1307 Constant *Zero = IRB.getInt32(0); 1308 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1309 {Zero, IRB.getInt32(0)}, "param_shadow"); 1310 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1311 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1312 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1313 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1314 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1315 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1316 MS.VAArgOverflowSizeTLS = 1317 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1318 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1319 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1320 {Zero, IRB.getInt32(5)}, "param_origin"); 1321 MS.RetvalOriginTLS = 1322 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1323 {Zero, IRB.getInt32(6)}, "retval_origin"); 1324 } 1325 1326 /// Add MemorySanitizer instrumentation to a function. 1327 bool runOnFunction() { 1328 // Iterate all BBs in depth-first order and create shadow instructions 1329 // for all instructions (where applicable). 1330 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1331 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1332 visit(*BB); 1333 1334 // Finalize PHI nodes. 1335 for (PHINode *PN : ShadowPHINodes) { 1336 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1337 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1338 size_t NumValues = PN->getNumIncomingValues(); 1339 for (size_t v = 0; v < NumValues; v++) { 1340 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1341 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1342 } 1343 } 1344 1345 VAHelper->finalizeInstrumentation(); 1346 1347 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1348 // instrumenting only allocas. 1349 if (InstrumentLifetimeStart) { 1350 for (auto Item : LifetimeStartList) { 1351 instrumentAlloca(*Item.second, Item.first); 1352 AllocaSet.erase(Item.second); 1353 } 1354 } 1355 // Poison the allocas for which we didn't instrument the corresponding 1356 // lifetime intrinsics. 1357 for (AllocaInst *AI : AllocaSet) 1358 instrumentAlloca(*AI); 1359 1360 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1361 InstrumentationList.size() + StoreList.size() > 1362 (unsigned)ClInstrumentationWithCallThreshold; 1363 1364 // Insert shadow value checks. 1365 materializeChecks(InstrumentWithCalls); 1366 1367 // Delayed instrumentation of StoreInst. 1368 // This may not add new address checks. 1369 materializeStores(InstrumentWithCalls); 1370 1371 return true; 1372 } 1373 1374 /// Compute the shadow type that corresponds to a given Value. 1375 Type *getShadowTy(Value *V) { 1376 return getShadowTy(V->getType()); 1377 } 1378 1379 /// Compute the shadow type that corresponds to a given Type. 1380 Type *getShadowTy(Type *OrigTy) { 1381 if (!OrigTy->isSized()) { 1382 return nullptr; 1383 } 1384 // For integer type, shadow is the same as the original type. 1385 // This may return weird-sized types like i1. 1386 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1387 return IT; 1388 const DataLayout &DL = F.getParent()->getDataLayout(); 1389 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1390 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1391 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1392 cast<FixedVectorType>(VT)->getNumElements()); 1393 } 1394 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1395 return ArrayType::get(getShadowTy(AT->getElementType()), 1396 AT->getNumElements()); 1397 } 1398 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1399 SmallVector<Type*, 4> Elements; 1400 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1401 Elements.push_back(getShadowTy(ST->getElementType(i))); 1402 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1403 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1404 return Res; 1405 } 1406 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1407 return IntegerType::get(*MS.C, TypeSize); 1408 } 1409 1410 /// Flatten a vector type. 1411 Type *getShadowTyNoVec(Type *ty) { 1412 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1413 return IntegerType::get(*MS.C, 1414 vt->getPrimitiveSizeInBits().getFixedSize()); 1415 return ty; 1416 } 1417 1418 /// Extract combined shadow of struct elements as a bool 1419 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1420 IRBuilder<> &IRB) { 1421 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1422 Value *Aggregator = FalseVal; 1423 1424 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1425 // Combine by ORing together each element's bool shadow 1426 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1427 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1428 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1429 1430 if (Aggregator != FalseVal) 1431 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1432 else 1433 Aggregator = ShadowBool; 1434 } 1435 1436 return Aggregator; 1437 } 1438 1439 // Extract combined shadow of array elements 1440 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1441 IRBuilder<> &IRB) { 1442 if (!Array->getNumElements()) 1443 return IRB.getIntN(/* width */ 1, /* value */ 0); 1444 1445 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1446 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1447 1448 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1449 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1450 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1451 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1452 } 1453 return Aggregator; 1454 } 1455 1456 /// Convert a shadow value to it's flattened variant. The resulting 1457 /// shadow may not necessarily have the same bit width as the input 1458 /// value, but it will always be comparable to zero. 1459 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1460 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1461 return collapseStructShadow(Struct, V, IRB); 1462 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1463 return collapseArrayShadow(Array, V, IRB); 1464 Type *Ty = V->getType(); 1465 Type *NoVecTy = getShadowTyNoVec(Ty); 1466 if (Ty == NoVecTy) return V; 1467 return IRB.CreateBitCast(V, NoVecTy); 1468 } 1469 1470 // Convert a scalar value to an i1 by comparing with 0 1471 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1472 Type *VTy = V->getType(); 1473 assert(VTy->isIntegerTy()); 1474 if (VTy->getIntegerBitWidth() == 1) 1475 // Just converting a bool to a bool, so do nothing. 1476 return V; 1477 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1478 } 1479 1480 /// Compute the integer shadow offset that corresponds to a given 1481 /// application address. 1482 /// 1483 /// Offset = (Addr & ~AndMask) ^ XorMask 1484 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1485 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1486 1487 uint64_t AndMask = MS.MapParams->AndMask; 1488 if (AndMask) 1489 OffsetLong = 1490 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1491 1492 uint64_t XorMask = MS.MapParams->XorMask; 1493 if (XorMask) 1494 OffsetLong = 1495 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1496 return OffsetLong; 1497 } 1498 1499 /// Compute the shadow and origin addresses corresponding to a given 1500 /// application address. 1501 /// 1502 /// Shadow = ShadowBase + Offset 1503 /// Origin = (OriginBase + Offset) & ~3ULL 1504 std::pair<Value *, Value *> 1505 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1506 MaybeAlign Alignment) { 1507 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1508 Value *ShadowLong = ShadowOffset; 1509 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1510 if (ShadowBase != 0) { 1511 ShadowLong = 1512 IRB.CreateAdd(ShadowLong, 1513 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1514 } 1515 Value *ShadowPtr = 1516 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1517 Value *OriginPtr = nullptr; 1518 if (MS.TrackOrigins) { 1519 Value *OriginLong = ShadowOffset; 1520 uint64_t OriginBase = MS.MapParams->OriginBase; 1521 if (OriginBase != 0) 1522 OriginLong = IRB.CreateAdd(OriginLong, 1523 ConstantInt::get(MS.IntptrTy, OriginBase)); 1524 if (!Alignment || *Alignment < kMinOriginAlignment) { 1525 uint64_t Mask = kMinOriginAlignment.value() - 1; 1526 OriginLong = 1527 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1528 } 1529 OriginPtr = 1530 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1531 } 1532 return std::make_pair(ShadowPtr, OriginPtr); 1533 } 1534 1535 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1536 IRBuilder<> &IRB, 1537 Type *ShadowTy, 1538 bool isStore) { 1539 Value *ShadowOriginPtrs; 1540 const DataLayout &DL = F.getParent()->getDataLayout(); 1541 int Size = DL.getTypeStoreSize(ShadowTy); 1542 1543 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1544 Value *AddrCast = 1545 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1546 if (Getter) { 1547 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1548 } else { 1549 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1550 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1551 : MS.MsanMetadataPtrForLoadN, 1552 {AddrCast, SizeVal}); 1553 } 1554 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1555 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1556 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1557 1558 return std::make_pair(ShadowPtr, OriginPtr); 1559 } 1560 1561 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1562 Type *ShadowTy, 1563 MaybeAlign Alignment, 1564 bool isStore) { 1565 if (MS.CompileKernel) 1566 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1567 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1568 } 1569 1570 /// Compute the shadow address for a given function argument. 1571 /// 1572 /// Shadow = ParamTLS+ArgOffset. 1573 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1574 int ArgOffset) { 1575 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1576 if (ArgOffset) 1577 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1578 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1579 "_msarg"); 1580 } 1581 1582 /// Compute the origin address for a given function argument. 1583 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1584 int ArgOffset) { 1585 if (!MS.TrackOrigins) 1586 return nullptr; 1587 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1588 if (ArgOffset) 1589 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1590 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1591 "_msarg_o"); 1592 } 1593 1594 /// Compute the shadow address for a retval. 1595 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1596 return IRB.CreatePointerCast(MS.RetvalTLS, 1597 PointerType::get(getShadowTy(A), 0), 1598 "_msret"); 1599 } 1600 1601 /// Compute the origin address for a retval. 1602 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1603 // We keep a single origin for the entire retval. Might be too optimistic. 1604 return MS.RetvalOriginTLS; 1605 } 1606 1607 /// Set SV to be the shadow value for V. 1608 void setShadow(Value *V, Value *SV) { 1609 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1610 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1611 } 1612 1613 /// Set Origin to be the origin value for V. 1614 void setOrigin(Value *V, Value *Origin) { 1615 if (!MS.TrackOrigins) return; 1616 assert(!OriginMap.count(V) && "Values may only have one origin"); 1617 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1618 OriginMap[V] = Origin; 1619 } 1620 1621 Constant *getCleanShadow(Type *OrigTy) { 1622 Type *ShadowTy = getShadowTy(OrigTy); 1623 if (!ShadowTy) 1624 return nullptr; 1625 return Constant::getNullValue(ShadowTy); 1626 } 1627 1628 /// Create a clean shadow value for a given value. 1629 /// 1630 /// Clean shadow (all zeroes) means all bits of the value are defined 1631 /// (initialized). 1632 Constant *getCleanShadow(Value *V) { 1633 return getCleanShadow(V->getType()); 1634 } 1635 1636 /// Create a dirty shadow of a given shadow type. 1637 Constant *getPoisonedShadow(Type *ShadowTy) { 1638 assert(ShadowTy); 1639 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1640 return Constant::getAllOnesValue(ShadowTy); 1641 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1642 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1643 getPoisonedShadow(AT->getElementType())); 1644 return ConstantArray::get(AT, Vals); 1645 } 1646 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1647 SmallVector<Constant *, 4> Vals; 1648 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1649 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1650 return ConstantStruct::get(ST, Vals); 1651 } 1652 llvm_unreachable("Unexpected shadow type"); 1653 } 1654 1655 /// Create a dirty shadow for a given value. 1656 Constant *getPoisonedShadow(Value *V) { 1657 Type *ShadowTy = getShadowTy(V); 1658 if (!ShadowTy) 1659 return nullptr; 1660 return getPoisonedShadow(ShadowTy); 1661 } 1662 1663 /// Create a clean (zero) origin. 1664 Value *getCleanOrigin() { 1665 return Constant::getNullValue(MS.OriginTy); 1666 } 1667 1668 /// Get the shadow value for a given Value. 1669 /// 1670 /// This function either returns the value set earlier with setShadow, 1671 /// or extracts if from ParamTLS (for function arguments). 1672 Value *getShadow(Value *V) { 1673 if (Instruction *I = dyn_cast<Instruction>(V)) { 1674 if (!PropagateShadow || I->getMetadata("nosanitize")) 1675 return getCleanShadow(V); 1676 // For instructions the shadow is already stored in the map. 1677 Value *Shadow = ShadowMap[V]; 1678 if (!Shadow) { 1679 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1680 (void)I; 1681 assert(Shadow && "No shadow for a value"); 1682 } 1683 return Shadow; 1684 } 1685 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1686 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1687 : getCleanShadow(V); 1688 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1689 (void)U; 1690 return AllOnes; 1691 } 1692 if (Argument *A = dyn_cast<Argument>(V)) { 1693 // For arguments we compute the shadow on demand and store it in the map. 1694 Value *&ShadowPtr = ShadowMap[V]; 1695 if (ShadowPtr) 1696 return ShadowPtr; 1697 Function *F = A->getParent(); 1698 IRBuilder<> EntryIRB(FnPrologueEnd); 1699 unsigned ArgOffset = 0; 1700 const DataLayout &DL = F->getParent()->getDataLayout(); 1701 for (auto &FArg : F->args()) { 1702 if (!FArg.getType()->isSized()) { 1703 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1704 continue; 1705 } 1706 1707 unsigned Size = FArg.hasByValAttr() 1708 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1709 : DL.getTypeAllocSize(FArg.getType()); 1710 1711 if (A == &FArg) { 1712 bool Overflow = ArgOffset + Size > kParamTLSSize; 1713 if (FArg.hasByValAttr()) { 1714 // ByVal pointer itself has clean shadow. We copy the actual 1715 // argument shadow to the underlying memory. 1716 // Figure out maximal valid memcpy alignment. 1717 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1718 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1719 Value *CpShadowPtr, *CpOriginPtr; 1720 std::tie(CpShadowPtr, CpOriginPtr) = 1721 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1722 /*isStore*/ true); 1723 if (!PropagateShadow || Overflow) { 1724 // ParamTLS overflow. 1725 EntryIRB.CreateMemSet( 1726 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1727 Size, ArgAlign); 1728 } else { 1729 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1730 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1731 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1732 CopyAlign, Size); 1733 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1734 (void)Cpy; 1735 1736 if (MS.TrackOrigins) { 1737 Value *OriginPtr = 1738 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1739 // FIXME: OriginSize should be: 1740 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1741 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1742 EntryIRB.CreateMemCpy( 1743 CpOriginPtr, 1744 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1745 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1746 OriginSize); 1747 } 1748 } 1749 } 1750 1751 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 1752 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 1753 ShadowPtr = getCleanShadow(V); 1754 setOrigin(A, getCleanOrigin()); 1755 } else { 1756 // Shadow over TLS 1757 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1758 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1759 kShadowTLSAlignment); 1760 if (MS.TrackOrigins) { 1761 Value *OriginPtr = 1762 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1763 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1764 } 1765 } 1766 LLVM_DEBUG(dbgs() 1767 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 1768 break; 1769 } 1770 1771 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1772 } 1773 assert(ShadowPtr && "Could not find shadow for an argument"); 1774 return ShadowPtr; 1775 } 1776 // For everything else the shadow is zero. 1777 return getCleanShadow(V); 1778 } 1779 1780 /// Get the shadow for i-th argument of the instruction I. 1781 Value *getShadow(Instruction *I, int i) { 1782 return getShadow(I->getOperand(i)); 1783 } 1784 1785 /// Get the origin for a value. 1786 Value *getOrigin(Value *V) { 1787 if (!MS.TrackOrigins) return nullptr; 1788 if (!PropagateShadow) return getCleanOrigin(); 1789 if (isa<Constant>(V)) return getCleanOrigin(); 1790 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1791 "Unexpected value type in getOrigin()"); 1792 if (Instruction *I = dyn_cast<Instruction>(V)) { 1793 if (I->getMetadata("nosanitize")) 1794 return getCleanOrigin(); 1795 } 1796 Value *Origin = OriginMap[V]; 1797 assert(Origin && "Missing origin"); 1798 return Origin; 1799 } 1800 1801 /// Get the origin for i-th argument of the instruction I. 1802 Value *getOrigin(Instruction *I, int i) { 1803 return getOrigin(I->getOperand(i)); 1804 } 1805 1806 /// Remember the place where a shadow check should be inserted. 1807 /// 1808 /// This location will be later instrumented with a check that will print a 1809 /// UMR warning in runtime if the shadow value is not 0. 1810 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1811 assert(Shadow); 1812 if (!InsertChecks) return; 1813 #ifndef NDEBUG 1814 Type *ShadowTy = Shadow->getType(); 1815 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1816 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1817 "Can only insert checks for integer, vector, and aggregate shadow " 1818 "types"); 1819 #endif 1820 InstrumentationList.push_back( 1821 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1822 } 1823 1824 /// Remember the place where a shadow check should be inserted. 1825 /// 1826 /// This location will be later instrumented with a check that will print a 1827 /// UMR warning in runtime if the value is not fully defined. 1828 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1829 assert(Val); 1830 Value *Shadow, *Origin; 1831 if (ClCheckConstantShadow) { 1832 Shadow = getShadow(Val); 1833 if (!Shadow) return; 1834 Origin = getOrigin(Val); 1835 } else { 1836 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1837 if (!Shadow) return; 1838 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1839 } 1840 insertShadowCheck(Shadow, Origin, OrigIns); 1841 } 1842 1843 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1844 switch (a) { 1845 case AtomicOrdering::NotAtomic: 1846 return AtomicOrdering::NotAtomic; 1847 case AtomicOrdering::Unordered: 1848 case AtomicOrdering::Monotonic: 1849 case AtomicOrdering::Release: 1850 return AtomicOrdering::Release; 1851 case AtomicOrdering::Acquire: 1852 case AtomicOrdering::AcquireRelease: 1853 return AtomicOrdering::AcquireRelease; 1854 case AtomicOrdering::SequentiallyConsistent: 1855 return AtomicOrdering::SequentiallyConsistent; 1856 } 1857 llvm_unreachable("Unknown ordering"); 1858 } 1859 1860 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1861 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1862 uint32_t OrderingTable[NumOrderings] = {}; 1863 1864 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1865 OrderingTable[(int)AtomicOrderingCABI::release] = 1866 (int)AtomicOrderingCABI::release; 1867 OrderingTable[(int)AtomicOrderingCABI::consume] = 1868 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1869 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1870 (int)AtomicOrderingCABI::acq_rel; 1871 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1872 (int)AtomicOrderingCABI::seq_cst; 1873 1874 return ConstantDataVector::get(IRB.getContext(), 1875 makeArrayRef(OrderingTable, NumOrderings)); 1876 } 1877 1878 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1879 switch (a) { 1880 case AtomicOrdering::NotAtomic: 1881 return AtomicOrdering::NotAtomic; 1882 case AtomicOrdering::Unordered: 1883 case AtomicOrdering::Monotonic: 1884 case AtomicOrdering::Acquire: 1885 return AtomicOrdering::Acquire; 1886 case AtomicOrdering::Release: 1887 case AtomicOrdering::AcquireRelease: 1888 return AtomicOrdering::AcquireRelease; 1889 case AtomicOrdering::SequentiallyConsistent: 1890 return AtomicOrdering::SequentiallyConsistent; 1891 } 1892 llvm_unreachable("Unknown ordering"); 1893 } 1894 1895 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1896 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1897 uint32_t OrderingTable[NumOrderings] = {}; 1898 1899 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1900 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1901 OrderingTable[(int)AtomicOrderingCABI::consume] = 1902 (int)AtomicOrderingCABI::acquire; 1903 OrderingTable[(int)AtomicOrderingCABI::release] = 1904 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1905 (int)AtomicOrderingCABI::acq_rel; 1906 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1907 (int)AtomicOrderingCABI::seq_cst; 1908 1909 return ConstantDataVector::get(IRB.getContext(), 1910 makeArrayRef(OrderingTable, NumOrderings)); 1911 } 1912 1913 // ------------------- Visitors. 1914 using InstVisitor<MemorySanitizerVisitor>::visit; 1915 void visit(Instruction &I) { 1916 if (I.getMetadata("nosanitize")) 1917 return; 1918 // Don't want to visit if we're in the prologue 1919 if (isInPrologue(I)) 1920 return; 1921 InstVisitor<MemorySanitizerVisitor>::visit(I); 1922 } 1923 1924 /// Instrument LoadInst 1925 /// 1926 /// Loads the corresponding shadow and (optionally) origin. 1927 /// Optionally, checks that the load address is fully defined. 1928 void visitLoadInst(LoadInst &I) { 1929 assert(I.getType()->isSized() && "Load type must have size"); 1930 assert(!I.getMetadata("nosanitize")); 1931 IRBuilder<> IRB(I.getNextNode()); 1932 Type *ShadowTy = getShadowTy(&I); 1933 Value *Addr = I.getPointerOperand(); 1934 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1935 const Align Alignment = assumeAligned(I.getAlignment()); 1936 if (PropagateShadow) { 1937 std::tie(ShadowPtr, OriginPtr) = 1938 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1939 setShadow(&I, 1940 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1941 } else { 1942 setShadow(&I, getCleanShadow(&I)); 1943 } 1944 1945 if (ClCheckAccessAddress) 1946 insertShadowCheck(I.getPointerOperand(), &I); 1947 1948 if (I.isAtomic()) 1949 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1950 1951 if (MS.TrackOrigins) { 1952 if (PropagateShadow) { 1953 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1954 setOrigin( 1955 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1956 } else { 1957 setOrigin(&I, getCleanOrigin()); 1958 } 1959 } 1960 } 1961 1962 /// Instrument StoreInst 1963 /// 1964 /// Stores the corresponding shadow and (optionally) origin. 1965 /// Optionally, checks that the store address is fully defined. 1966 void visitStoreInst(StoreInst &I) { 1967 StoreList.push_back(&I); 1968 if (ClCheckAccessAddress) 1969 insertShadowCheck(I.getPointerOperand(), &I); 1970 } 1971 1972 void handleCASOrRMW(Instruction &I) { 1973 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1974 1975 IRBuilder<> IRB(&I); 1976 Value *Addr = I.getOperand(0); 1977 Value *Val = I.getOperand(1); 1978 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1979 /*isStore*/ true) 1980 .first; 1981 1982 if (ClCheckAccessAddress) 1983 insertShadowCheck(Addr, &I); 1984 1985 // Only test the conditional argument of cmpxchg instruction. 1986 // The other argument can potentially be uninitialized, but we can not 1987 // detect this situation reliably without possible false positives. 1988 if (isa<AtomicCmpXchgInst>(I)) 1989 insertShadowCheck(Val, &I); 1990 1991 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1992 1993 setShadow(&I, getCleanShadow(&I)); 1994 setOrigin(&I, getCleanOrigin()); 1995 } 1996 1997 void visitAtomicRMWInst(AtomicRMWInst &I) { 1998 handleCASOrRMW(I); 1999 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2000 } 2001 2002 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2003 handleCASOrRMW(I); 2004 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2005 } 2006 2007 // Vector manipulation. 2008 void visitExtractElementInst(ExtractElementInst &I) { 2009 insertShadowCheck(I.getOperand(1), &I); 2010 IRBuilder<> IRB(&I); 2011 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2012 "_msprop")); 2013 setOrigin(&I, getOrigin(&I, 0)); 2014 } 2015 2016 void visitInsertElementInst(InsertElementInst &I) { 2017 insertShadowCheck(I.getOperand(2), &I); 2018 IRBuilder<> IRB(&I); 2019 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 2020 I.getOperand(2), "_msprop")); 2021 setOriginForNaryOp(I); 2022 } 2023 2024 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2025 IRBuilder<> IRB(&I); 2026 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2027 I.getShuffleMask(), "_msprop")); 2028 setOriginForNaryOp(I); 2029 } 2030 2031 // Casts. 2032 void visitSExtInst(SExtInst &I) { 2033 IRBuilder<> IRB(&I); 2034 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2035 setOrigin(&I, getOrigin(&I, 0)); 2036 } 2037 2038 void visitZExtInst(ZExtInst &I) { 2039 IRBuilder<> IRB(&I); 2040 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2041 setOrigin(&I, getOrigin(&I, 0)); 2042 } 2043 2044 void visitTruncInst(TruncInst &I) { 2045 IRBuilder<> IRB(&I); 2046 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2047 setOrigin(&I, getOrigin(&I, 0)); 2048 } 2049 2050 void visitBitCastInst(BitCastInst &I) { 2051 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2052 // a musttail call and a ret, don't instrument. New instructions are not 2053 // allowed after a musttail call. 2054 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2055 if (CI->isMustTailCall()) 2056 return; 2057 IRBuilder<> IRB(&I); 2058 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2059 setOrigin(&I, getOrigin(&I, 0)); 2060 } 2061 2062 void visitPtrToIntInst(PtrToIntInst &I) { 2063 IRBuilder<> IRB(&I); 2064 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2065 "_msprop_ptrtoint")); 2066 setOrigin(&I, getOrigin(&I, 0)); 2067 } 2068 2069 void visitIntToPtrInst(IntToPtrInst &I) { 2070 IRBuilder<> IRB(&I); 2071 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2072 "_msprop_inttoptr")); 2073 setOrigin(&I, getOrigin(&I, 0)); 2074 } 2075 2076 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2077 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2078 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2079 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2080 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2081 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2082 2083 /// Propagate shadow for bitwise AND. 2084 /// 2085 /// This code is exact, i.e. if, for example, a bit in the left argument 2086 /// is defined and 0, then neither the value not definedness of the 2087 /// corresponding bit in B don't affect the resulting shadow. 2088 void visitAnd(BinaryOperator &I) { 2089 IRBuilder<> IRB(&I); 2090 // "And" of 0 and a poisoned value results in unpoisoned value. 2091 // 1&1 => 1; 0&1 => 0; p&1 => p; 2092 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2093 // 1&p => p; 0&p => 0; p&p => p; 2094 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2095 Value *S1 = getShadow(&I, 0); 2096 Value *S2 = getShadow(&I, 1); 2097 Value *V1 = I.getOperand(0); 2098 Value *V2 = I.getOperand(1); 2099 if (V1->getType() != S1->getType()) { 2100 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2101 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2102 } 2103 Value *S1S2 = IRB.CreateAnd(S1, S2); 2104 Value *V1S2 = IRB.CreateAnd(V1, S2); 2105 Value *S1V2 = IRB.CreateAnd(S1, V2); 2106 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2107 setOriginForNaryOp(I); 2108 } 2109 2110 void visitOr(BinaryOperator &I) { 2111 IRBuilder<> IRB(&I); 2112 // "Or" of 1 and a poisoned value results in unpoisoned value. 2113 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2114 // 1|0 => 1; 0|0 => 0; p|0 => p; 2115 // 1|p => 1; 0|p => p; p|p => p; 2116 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2117 Value *S1 = getShadow(&I, 0); 2118 Value *S2 = getShadow(&I, 1); 2119 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2120 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2121 if (V1->getType() != S1->getType()) { 2122 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2123 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2124 } 2125 Value *S1S2 = IRB.CreateAnd(S1, S2); 2126 Value *V1S2 = IRB.CreateAnd(V1, S2); 2127 Value *S1V2 = IRB.CreateAnd(S1, V2); 2128 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2129 setOriginForNaryOp(I); 2130 } 2131 2132 /// Default propagation of shadow and/or origin. 2133 /// 2134 /// This class implements the general case of shadow propagation, used in all 2135 /// cases where we don't know and/or don't care about what the operation 2136 /// actually does. It converts all input shadow values to a common type 2137 /// (extending or truncating as necessary), and bitwise OR's them. 2138 /// 2139 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2140 /// fully initialized), and less prone to false positives. 2141 /// 2142 /// This class also implements the general case of origin propagation. For a 2143 /// Nary operation, result origin is set to the origin of an argument that is 2144 /// not entirely initialized. If there is more than one such arguments, the 2145 /// rightmost of them is picked. It does not matter which one is picked if all 2146 /// arguments are initialized. 2147 template <bool CombineShadow> 2148 class Combiner { 2149 Value *Shadow = nullptr; 2150 Value *Origin = nullptr; 2151 IRBuilder<> &IRB; 2152 MemorySanitizerVisitor *MSV; 2153 2154 public: 2155 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2156 : IRB(IRB), MSV(MSV) {} 2157 2158 /// Add a pair of shadow and origin values to the mix. 2159 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2160 if (CombineShadow) { 2161 assert(OpShadow); 2162 if (!Shadow) 2163 Shadow = OpShadow; 2164 else { 2165 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2166 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2167 } 2168 } 2169 2170 if (MSV->MS.TrackOrigins) { 2171 assert(OpOrigin); 2172 if (!Origin) { 2173 Origin = OpOrigin; 2174 } else { 2175 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2176 // No point in adding something that might result in 0 origin value. 2177 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2178 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2179 Value *Cond = 2180 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2181 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2182 } 2183 } 2184 } 2185 return *this; 2186 } 2187 2188 /// Add an application value to the mix. 2189 Combiner &Add(Value *V) { 2190 Value *OpShadow = MSV->getShadow(V); 2191 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2192 return Add(OpShadow, OpOrigin); 2193 } 2194 2195 /// Set the current combined values as the given instruction's shadow 2196 /// and origin. 2197 void Done(Instruction *I) { 2198 if (CombineShadow) { 2199 assert(Shadow); 2200 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2201 MSV->setShadow(I, Shadow); 2202 } 2203 if (MSV->MS.TrackOrigins) { 2204 assert(Origin); 2205 MSV->setOrigin(I, Origin); 2206 } 2207 } 2208 }; 2209 2210 using ShadowAndOriginCombiner = Combiner<true>; 2211 using OriginCombiner = Combiner<false>; 2212 2213 /// Propagate origin for arbitrary operation. 2214 void setOriginForNaryOp(Instruction &I) { 2215 if (!MS.TrackOrigins) return; 2216 IRBuilder<> IRB(&I); 2217 OriginCombiner OC(this, IRB); 2218 for (Use &Op : I.operands()) 2219 OC.Add(Op.get()); 2220 OC.Done(&I); 2221 } 2222 2223 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2224 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2225 "Vector of pointers is not a valid shadow type"); 2226 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2227 Ty->getScalarSizeInBits() 2228 : Ty->getPrimitiveSizeInBits(); 2229 } 2230 2231 /// Cast between two shadow types, extending or truncating as 2232 /// necessary. 2233 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2234 bool Signed = false) { 2235 Type *srcTy = V->getType(); 2236 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2237 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2238 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2239 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2240 2241 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2242 return IRB.CreateIntCast(V, dstTy, Signed); 2243 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2244 cast<FixedVectorType>(dstTy)->getNumElements() == 2245 cast<FixedVectorType>(srcTy)->getNumElements()) 2246 return IRB.CreateIntCast(V, dstTy, Signed); 2247 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2248 Value *V2 = 2249 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2250 return IRB.CreateBitCast(V2, dstTy); 2251 // TODO: handle struct types. 2252 } 2253 2254 /// Cast an application value to the type of its own shadow. 2255 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2256 Type *ShadowTy = getShadowTy(V); 2257 if (V->getType() == ShadowTy) 2258 return V; 2259 if (V->getType()->isPtrOrPtrVectorTy()) 2260 return IRB.CreatePtrToInt(V, ShadowTy); 2261 else 2262 return IRB.CreateBitCast(V, ShadowTy); 2263 } 2264 2265 /// Propagate shadow for arbitrary operation. 2266 void handleShadowOr(Instruction &I) { 2267 IRBuilder<> IRB(&I); 2268 ShadowAndOriginCombiner SC(this, IRB); 2269 for (Use &Op : I.operands()) 2270 SC.Add(Op.get()); 2271 SC.Done(&I); 2272 } 2273 2274 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2275 2276 // Handle multiplication by constant. 2277 // 2278 // Handle a special case of multiplication by constant that may have one or 2279 // more zeros in the lower bits. This makes corresponding number of lower bits 2280 // of the result zero as well. We model it by shifting the other operand 2281 // shadow left by the required number of bits. Effectively, we transform 2282 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2283 // We use multiplication by 2**N instead of shift to cover the case of 2284 // multiplication by 0, which may occur in some elements of a vector operand. 2285 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2286 Value *OtherArg) { 2287 Constant *ShadowMul; 2288 Type *Ty = ConstArg->getType(); 2289 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2290 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2291 Type *EltTy = VTy->getElementType(); 2292 SmallVector<Constant *, 16> Elements; 2293 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2294 if (ConstantInt *Elt = 2295 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2296 const APInt &V = Elt->getValue(); 2297 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2298 Elements.push_back(ConstantInt::get(EltTy, V2)); 2299 } else { 2300 Elements.push_back(ConstantInt::get(EltTy, 1)); 2301 } 2302 } 2303 ShadowMul = ConstantVector::get(Elements); 2304 } else { 2305 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2306 const APInt &V = Elt->getValue(); 2307 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2308 ShadowMul = ConstantInt::get(Ty, V2); 2309 } else { 2310 ShadowMul = ConstantInt::get(Ty, 1); 2311 } 2312 } 2313 2314 IRBuilder<> IRB(&I); 2315 setShadow(&I, 2316 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2317 setOrigin(&I, getOrigin(OtherArg)); 2318 } 2319 2320 void visitMul(BinaryOperator &I) { 2321 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2322 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2323 if (constOp0 && !constOp1) 2324 handleMulByConstant(I, constOp0, I.getOperand(1)); 2325 else if (constOp1 && !constOp0) 2326 handleMulByConstant(I, constOp1, I.getOperand(0)); 2327 else 2328 handleShadowOr(I); 2329 } 2330 2331 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2332 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2333 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2334 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2335 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2336 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2337 2338 void handleIntegerDiv(Instruction &I) { 2339 IRBuilder<> IRB(&I); 2340 // Strict on the second argument. 2341 insertShadowCheck(I.getOperand(1), &I); 2342 setShadow(&I, getShadow(&I, 0)); 2343 setOrigin(&I, getOrigin(&I, 0)); 2344 } 2345 2346 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2347 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2348 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2349 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2350 2351 // Floating point division is side-effect free. We can not require that the 2352 // divisor is fully initialized and must propagate shadow. See PR37523. 2353 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2354 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2355 2356 /// Instrument == and != comparisons. 2357 /// 2358 /// Sometimes the comparison result is known even if some of the bits of the 2359 /// arguments are not. 2360 void handleEqualityComparison(ICmpInst &I) { 2361 IRBuilder<> IRB(&I); 2362 Value *A = I.getOperand(0); 2363 Value *B = I.getOperand(1); 2364 Value *Sa = getShadow(A); 2365 Value *Sb = getShadow(B); 2366 2367 // Get rid of pointers and vectors of pointers. 2368 // For ints (and vectors of ints), types of A and Sa match, 2369 // and this is a no-op. 2370 A = IRB.CreatePointerCast(A, Sa->getType()); 2371 B = IRB.CreatePointerCast(B, Sb->getType()); 2372 2373 // A == B <==> (C = A^B) == 0 2374 // A != B <==> (C = A^B) != 0 2375 // Sc = Sa | Sb 2376 Value *C = IRB.CreateXor(A, B); 2377 Value *Sc = IRB.CreateOr(Sa, Sb); 2378 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2379 // Result is defined if one of the following is true 2380 // * there is a defined 1 bit in C 2381 // * C is fully defined 2382 // Si = !(C & ~Sc) && Sc 2383 Value *Zero = Constant::getNullValue(Sc->getType()); 2384 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2385 Value *Si = 2386 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2387 IRB.CreateICmpEQ( 2388 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2389 Si->setName("_msprop_icmp"); 2390 setShadow(&I, Si); 2391 setOriginForNaryOp(I); 2392 } 2393 2394 /// Build the lowest possible value of V, taking into account V's 2395 /// uninitialized bits. 2396 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2397 bool isSigned) { 2398 if (isSigned) { 2399 // Split shadow into sign bit and other bits. 2400 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2401 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2402 // Maximise the undefined shadow bit, minimize other undefined bits. 2403 return 2404 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2405 } else { 2406 // Minimize undefined bits. 2407 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2408 } 2409 } 2410 2411 /// Build the highest possible value of V, taking into account V's 2412 /// uninitialized bits. 2413 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2414 bool isSigned) { 2415 if (isSigned) { 2416 // Split shadow into sign bit and other bits. 2417 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2418 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2419 // Minimise the undefined shadow bit, maximise other undefined bits. 2420 return 2421 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2422 } else { 2423 // Maximize undefined bits. 2424 return IRB.CreateOr(A, Sa); 2425 } 2426 } 2427 2428 /// Instrument relational comparisons. 2429 /// 2430 /// This function does exact shadow propagation for all relational 2431 /// comparisons of integers, pointers and vectors of those. 2432 /// FIXME: output seems suboptimal when one of the operands is a constant 2433 void handleRelationalComparisonExact(ICmpInst &I) { 2434 IRBuilder<> IRB(&I); 2435 Value *A = I.getOperand(0); 2436 Value *B = I.getOperand(1); 2437 Value *Sa = getShadow(A); 2438 Value *Sb = getShadow(B); 2439 2440 // Get rid of pointers and vectors of pointers. 2441 // For ints (and vectors of ints), types of A and Sa match, 2442 // and this is a no-op. 2443 A = IRB.CreatePointerCast(A, Sa->getType()); 2444 B = IRB.CreatePointerCast(B, Sb->getType()); 2445 2446 // Let [a0, a1] be the interval of possible values of A, taking into account 2447 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2448 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2449 bool IsSigned = I.isSigned(); 2450 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2451 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2452 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2453 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2454 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2455 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2456 Value *Si = IRB.CreateXor(S1, S2); 2457 setShadow(&I, Si); 2458 setOriginForNaryOp(I); 2459 } 2460 2461 /// Instrument signed relational comparisons. 2462 /// 2463 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2464 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2465 void handleSignedRelationalComparison(ICmpInst &I) { 2466 Constant *constOp; 2467 Value *op = nullptr; 2468 CmpInst::Predicate pre; 2469 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2470 op = I.getOperand(0); 2471 pre = I.getPredicate(); 2472 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2473 op = I.getOperand(1); 2474 pre = I.getSwappedPredicate(); 2475 } else { 2476 handleShadowOr(I); 2477 return; 2478 } 2479 2480 if ((constOp->isNullValue() && 2481 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2482 (constOp->isAllOnesValue() && 2483 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2484 IRBuilder<> IRB(&I); 2485 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2486 "_msprop_icmp_s"); 2487 setShadow(&I, Shadow); 2488 setOrigin(&I, getOrigin(op)); 2489 } else { 2490 handleShadowOr(I); 2491 } 2492 } 2493 2494 void visitICmpInst(ICmpInst &I) { 2495 if (!ClHandleICmp) { 2496 handleShadowOr(I); 2497 return; 2498 } 2499 if (I.isEquality()) { 2500 handleEqualityComparison(I); 2501 return; 2502 } 2503 2504 assert(I.isRelational()); 2505 if (ClHandleICmpExact) { 2506 handleRelationalComparisonExact(I); 2507 return; 2508 } 2509 if (I.isSigned()) { 2510 handleSignedRelationalComparison(I); 2511 return; 2512 } 2513 2514 assert(I.isUnsigned()); 2515 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2516 handleRelationalComparisonExact(I); 2517 return; 2518 } 2519 2520 handleShadowOr(I); 2521 } 2522 2523 void visitFCmpInst(FCmpInst &I) { 2524 handleShadowOr(I); 2525 } 2526 2527 void handleShift(BinaryOperator &I) { 2528 IRBuilder<> IRB(&I); 2529 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2530 // Otherwise perform the same shift on S1. 2531 Value *S1 = getShadow(&I, 0); 2532 Value *S2 = getShadow(&I, 1); 2533 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2534 S2->getType()); 2535 Value *V2 = I.getOperand(1); 2536 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2537 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2538 setOriginForNaryOp(I); 2539 } 2540 2541 void visitShl(BinaryOperator &I) { handleShift(I); } 2542 void visitAShr(BinaryOperator &I) { handleShift(I); } 2543 void visitLShr(BinaryOperator &I) { handleShift(I); } 2544 2545 void handleFunnelShift(IntrinsicInst &I) { 2546 IRBuilder<> IRB(&I); 2547 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2548 // Otherwise perform the same shift on S0 and S1. 2549 Value *S0 = getShadow(&I, 0); 2550 Value *S1 = getShadow(&I, 1); 2551 Value *S2 = getShadow(&I, 2); 2552 Value *S2Conv = 2553 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2554 Value *V2 = I.getOperand(2); 2555 Function *Intrin = Intrinsic::getDeclaration( 2556 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2557 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2558 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2559 setOriginForNaryOp(I); 2560 } 2561 2562 /// Instrument llvm.memmove 2563 /// 2564 /// At this point we don't know if llvm.memmove will be inlined or not. 2565 /// If we don't instrument it and it gets inlined, 2566 /// our interceptor will not kick in and we will lose the memmove. 2567 /// If we instrument the call here, but it does not get inlined, 2568 /// we will memove the shadow twice: which is bad in case 2569 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2570 /// 2571 /// Similar situation exists for memcpy and memset. 2572 void visitMemMoveInst(MemMoveInst &I) { 2573 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2574 IRBuilder<> IRB(&I); 2575 IRB.CreateCall( 2576 MS.MemmoveFn, 2577 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2578 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2579 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2580 I.eraseFromParent(); 2581 } 2582 2583 // Similar to memmove: avoid copying shadow twice. 2584 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2585 // FIXME: consider doing manual inline for small constant sizes and proper 2586 // alignment. 2587 void visitMemCpyInst(MemCpyInst &I) { 2588 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2589 IRBuilder<> IRB(&I); 2590 IRB.CreateCall( 2591 MS.MemcpyFn, 2592 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2593 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2594 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2595 I.eraseFromParent(); 2596 } 2597 2598 // Same as memcpy. 2599 void visitMemSetInst(MemSetInst &I) { 2600 IRBuilder<> IRB(&I); 2601 IRB.CreateCall( 2602 MS.MemsetFn, 2603 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2604 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2605 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2606 I.eraseFromParent(); 2607 } 2608 2609 void visitVAStartInst(VAStartInst &I) { 2610 VAHelper->visitVAStartInst(I); 2611 } 2612 2613 void visitVACopyInst(VACopyInst &I) { 2614 VAHelper->visitVACopyInst(I); 2615 } 2616 2617 /// Handle vector store-like intrinsics. 2618 /// 2619 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2620 /// has 1 pointer argument and 1 vector argument, returns void. 2621 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2622 IRBuilder<> IRB(&I); 2623 Value* Addr = I.getArgOperand(0); 2624 Value *Shadow = getShadow(&I, 1); 2625 Value *ShadowPtr, *OriginPtr; 2626 2627 // We don't know the pointer alignment (could be unaligned SSE store!). 2628 // Have to assume to worst case. 2629 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2630 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2631 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2632 2633 if (ClCheckAccessAddress) 2634 insertShadowCheck(Addr, &I); 2635 2636 // FIXME: factor out common code from materializeStores 2637 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2638 return true; 2639 } 2640 2641 /// Handle vector load-like intrinsics. 2642 /// 2643 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2644 /// has 1 pointer argument, returns a vector. 2645 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2646 IRBuilder<> IRB(&I); 2647 Value *Addr = I.getArgOperand(0); 2648 2649 Type *ShadowTy = getShadowTy(&I); 2650 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2651 if (PropagateShadow) { 2652 // We don't know the pointer alignment (could be unaligned SSE load!). 2653 // Have to assume to worst case. 2654 const Align Alignment = Align(1); 2655 std::tie(ShadowPtr, OriginPtr) = 2656 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2657 setShadow(&I, 2658 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2659 } else { 2660 setShadow(&I, getCleanShadow(&I)); 2661 } 2662 2663 if (ClCheckAccessAddress) 2664 insertShadowCheck(Addr, &I); 2665 2666 if (MS.TrackOrigins) { 2667 if (PropagateShadow) 2668 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2669 else 2670 setOrigin(&I, getCleanOrigin()); 2671 } 2672 return true; 2673 } 2674 2675 /// Handle (SIMD arithmetic)-like intrinsics. 2676 /// 2677 /// Instrument intrinsics with any number of arguments of the same type, 2678 /// equal to the return type. The type should be simple (no aggregates or 2679 /// pointers; vectors are fine). 2680 /// Caller guarantees that this intrinsic does not access memory. 2681 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2682 Type *RetTy = I.getType(); 2683 if (!(RetTy->isIntOrIntVectorTy() || 2684 RetTy->isFPOrFPVectorTy() || 2685 RetTy->isX86_MMXTy())) 2686 return false; 2687 2688 unsigned NumArgOperands = I.arg_size(); 2689 for (unsigned i = 0; i < NumArgOperands; ++i) { 2690 Type *Ty = I.getArgOperand(i)->getType(); 2691 if (Ty != RetTy) 2692 return false; 2693 } 2694 2695 IRBuilder<> IRB(&I); 2696 ShadowAndOriginCombiner SC(this, IRB); 2697 for (unsigned i = 0; i < NumArgOperands; ++i) 2698 SC.Add(I.getArgOperand(i)); 2699 SC.Done(&I); 2700 2701 return true; 2702 } 2703 2704 /// Heuristically instrument unknown intrinsics. 2705 /// 2706 /// The main purpose of this code is to do something reasonable with all 2707 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2708 /// We recognize several classes of intrinsics by their argument types and 2709 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2710 /// sure that we know what the intrinsic does. 2711 /// 2712 /// We special-case intrinsics where this approach fails. See llvm.bswap 2713 /// handling as an example of that. 2714 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2715 unsigned NumArgOperands = I.arg_size(); 2716 if (NumArgOperands == 0) 2717 return false; 2718 2719 if (NumArgOperands == 2 && 2720 I.getArgOperand(0)->getType()->isPointerTy() && 2721 I.getArgOperand(1)->getType()->isVectorTy() && 2722 I.getType()->isVoidTy() && 2723 !I.onlyReadsMemory()) { 2724 // This looks like a vector store. 2725 return handleVectorStoreIntrinsic(I); 2726 } 2727 2728 if (NumArgOperands == 1 && 2729 I.getArgOperand(0)->getType()->isPointerTy() && 2730 I.getType()->isVectorTy() && 2731 I.onlyReadsMemory()) { 2732 // This looks like a vector load. 2733 return handleVectorLoadIntrinsic(I); 2734 } 2735 2736 if (I.doesNotAccessMemory()) 2737 if (maybeHandleSimpleNomemIntrinsic(I)) 2738 return true; 2739 2740 // FIXME: detect and handle SSE maskstore/maskload 2741 return false; 2742 } 2743 2744 void handleInvariantGroup(IntrinsicInst &I) { 2745 setShadow(&I, getShadow(&I, 0)); 2746 setOrigin(&I, getOrigin(&I, 0)); 2747 } 2748 2749 void handleLifetimeStart(IntrinsicInst &I) { 2750 if (!PoisonStack) 2751 return; 2752 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2753 if (!AI) 2754 InstrumentLifetimeStart = false; 2755 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2756 } 2757 2758 void handleBswap(IntrinsicInst &I) { 2759 IRBuilder<> IRB(&I); 2760 Value *Op = I.getArgOperand(0); 2761 Type *OpType = Op->getType(); 2762 Function *BswapFunc = Intrinsic::getDeclaration( 2763 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2764 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2765 setOrigin(&I, getOrigin(Op)); 2766 } 2767 2768 // Instrument vector convert intrinsic. 2769 // 2770 // This function instruments intrinsics like cvtsi2ss: 2771 // %Out = int_xxx_cvtyyy(%ConvertOp) 2772 // or 2773 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2774 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2775 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2776 // elements from \p CopyOp. 2777 // In most cases conversion involves floating-point value which may trigger a 2778 // hardware exception when not fully initialized. For this reason we require 2779 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2780 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2781 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2782 // return a fully initialized value. 2783 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2784 bool HasRoundingMode = false) { 2785 IRBuilder<> IRB(&I); 2786 Value *CopyOp, *ConvertOp; 2787 2788 assert((!HasRoundingMode || 2789 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2790 "Invalid rounding mode"); 2791 2792 switch (I.arg_size() - HasRoundingMode) { 2793 case 2: 2794 CopyOp = I.getArgOperand(0); 2795 ConvertOp = I.getArgOperand(1); 2796 break; 2797 case 1: 2798 ConvertOp = I.getArgOperand(0); 2799 CopyOp = nullptr; 2800 break; 2801 default: 2802 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2803 } 2804 2805 // The first *NumUsedElements* elements of ConvertOp are converted to the 2806 // same number of output elements. The rest of the output is copied from 2807 // CopyOp, or (if not available) filled with zeroes. 2808 // Combine shadow for elements of ConvertOp that are used in this operation, 2809 // and insert a check. 2810 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2811 // int->any conversion. 2812 Value *ConvertShadow = getShadow(ConvertOp); 2813 Value *AggShadow = nullptr; 2814 if (ConvertOp->getType()->isVectorTy()) { 2815 AggShadow = IRB.CreateExtractElement( 2816 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2817 for (int i = 1; i < NumUsedElements; ++i) { 2818 Value *MoreShadow = IRB.CreateExtractElement( 2819 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2820 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2821 } 2822 } else { 2823 AggShadow = ConvertShadow; 2824 } 2825 assert(AggShadow->getType()->isIntegerTy()); 2826 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2827 2828 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2829 // ConvertOp. 2830 if (CopyOp) { 2831 assert(CopyOp->getType() == I.getType()); 2832 assert(CopyOp->getType()->isVectorTy()); 2833 Value *ResultShadow = getShadow(CopyOp); 2834 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2835 for (int i = 0; i < NumUsedElements; ++i) { 2836 ResultShadow = IRB.CreateInsertElement( 2837 ResultShadow, ConstantInt::getNullValue(EltTy), 2838 ConstantInt::get(IRB.getInt32Ty(), i)); 2839 } 2840 setShadow(&I, ResultShadow); 2841 setOrigin(&I, getOrigin(CopyOp)); 2842 } else { 2843 setShadow(&I, getCleanShadow(&I)); 2844 setOrigin(&I, getCleanOrigin()); 2845 } 2846 } 2847 2848 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2849 // zeroes if it is zero, and all ones otherwise. 2850 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2851 if (S->getType()->isVectorTy()) 2852 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2853 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2854 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2855 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2856 } 2857 2858 // Given a vector, extract its first element, and return all 2859 // zeroes if it is zero, and all ones otherwise. 2860 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2861 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2862 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2863 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2864 } 2865 2866 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2867 Type *T = S->getType(); 2868 assert(T->isVectorTy()); 2869 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2870 return IRB.CreateSExt(S2, T); 2871 } 2872 2873 // Instrument vector shift intrinsic. 2874 // 2875 // This function instruments intrinsics like int_x86_avx2_psll_w. 2876 // Intrinsic shifts %In by %ShiftSize bits. 2877 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2878 // size, and the rest is ignored. Behavior is defined even if shift size is 2879 // greater than register (or field) width. 2880 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2881 assert(I.arg_size() == 2); 2882 IRBuilder<> IRB(&I); 2883 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2884 // Otherwise perform the same shift on S1. 2885 Value *S1 = getShadow(&I, 0); 2886 Value *S2 = getShadow(&I, 1); 2887 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2888 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2889 Value *V1 = I.getOperand(0); 2890 Value *V2 = I.getOperand(1); 2891 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2892 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2893 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2894 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2895 setOriginForNaryOp(I); 2896 } 2897 2898 // Get an X86_MMX-sized vector type. 2899 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2900 const unsigned X86_MMXSizeInBits = 64; 2901 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2902 "Illegal MMX vector element size"); 2903 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2904 X86_MMXSizeInBits / EltSizeInBits); 2905 } 2906 2907 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2908 // intrinsic. 2909 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2910 switch (id) { 2911 case Intrinsic::x86_sse2_packsswb_128: 2912 case Intrinsic::x86_sse2_packuswb_128: 2913 return Intrinsic::x86_sse2_packsswb_128; 2914 2915 case Intrinsic::x86_sse2_packssdw_128: 2916 case Intrinsic::x86_sse41_packusdw: 2917 return Intrinsic::x86_sse2_packssdw_128; 2918 2919 case Intrinsic::x86_avx2_packsswb: 2920 case Intrinsic::x86_avx2_packuswb: 2921 return Intrinsic::x86_avx2_packsswb; 2922 2923 case Intrinsic::x86_avx2_packssdw: 2924 case Intrinsic::x86_avx2_packusdw: 2925 return Intrinsic::x86_avx2_packssdw; 2926 2927 case Intrinsic::x86_mmx_packsswb: 2928 case Intrinsic::x86_mmx_packuswb: 2929 return Intrinsic::x86_mmx_packsswb; 2930 2931 case Intrinsic::x86_mmx_packssdw: 2932 return Intrinsic::x86_mmx_packssdw; 2933 default: 2934 llvm_unreachable("unexpected intrinsic id"); 2935 } 2936 } 2937 2938 // Instrument vector pack intrinsic. 2939 // 2940 // This function instruments intrinsics like x86_mmx_packsswb, that 2941 // packs elements of 2 input vectors into half as many bits with saturation. 2942 // Shadow is propagated with the signed variant of the same intrinsic applied 2943 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2944 // EltSizeInBits is used only for x86mmx arguments. 2945 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2946 assert(I.arg_size() == 2); 2947 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2948 IRBuilder<> IRB(&I); 2949 Value *S1 = getShadow(&I, 0); 2950 Value *S2 = getShadow(&I, 1); 2951 assert(isX86_MMX || S1->getType()->isVectorTy()); 2952 2953 // SExt and ICmpNE below must apply to individual elements of input vectors. 2954 // In case of x86mmx arguments, cast them to appropriate vector types and 2955 // back. 2956 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2957 if (isX86_MMX) { 2958 S1 = IRB.CreateBitCast(S1, T); 2959 S2 = IRB.CreateBitCast(S2, T); 2960 } 2961 Value *S1_ext = IRB.CreateSExt( 2962 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2963 Value *S2_ext = IRB.CreateSExt( 2964 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2965 if (isX86_MMX) { 2966 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2967 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2968 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2969 } 2970 2971 Function *ShadowFn = Intrinsic::getDeclaration( 2972 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2973 2974 Value *S = 2975 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2976 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2977 setShadow(&I, S); 2978 setOriginForNaryOp(I); 2979 } 2980 2981 // Instrument sum-of-absolute-differences intrinsic. 2982 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2983 const unsigned SignificantBitsPerResultElement = 16; 2984 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2985 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2986 unsigned ZeroBitsPerResultElement = 2987 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2988 2989 IRBuilder<> IRB(&I); 2990 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2991 S = IRB.CreateBitCast(S, ResTy); 2992 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2993 ResTy); 2994 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2995 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2996 setShadow(&I, S); 2997 setOriginForNaryOp(I); 2998 } 2999 3000 // Instrument multiply-add intrinsic. 3001 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3002 unsigned EltSizeInBits = 0) { 3003 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3004 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3005 IRBuilder<> IRB(&I); 3006 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3007 S = IRB.CreateBitCast(S, ResTy); 3008 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3009 ResTy); 3010 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3011 setShadow(&I, S); 3012 setOriginForNaryOp(I); 3013 } 3014 3015 // Instrument compare-packed intrinsic. 3016 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3017 // all-ones shadow. 3018 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3019 IRBuilder<> IRB(&I); 3020 Type *ResTy = getShadowTy(&I); 3021 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3022 Value *S = IRB.CreateSExt( 3023 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3024 setShadow(&I, S); 3025 setOriginForNaryOp(I); 3026 } 3027 3028 // Instrument compare-scalar intrinsic. 3029 // This handles both cmp* intrinsics which return the result in the first 3030 // element of a vector, and comi* which return the result as i32. 3031 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3032 IRBuilder<> IRB(&I); 3033 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3034 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3035 setShadow(&I, S); 3036 setOriginForNaryOp(I); 3037 } 3038 3039 // Instrument generic vector reduction intrinsics 3040 // by ORing together all their fields. 3041 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3042 IRBuilder<> IRB(&I); 3043 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3044 setShadow(&I, S); 3045 setOrigin(&I, getOrigin(&I, 0)); 3046 } 3047 3048 // Instrument vector.reduce.or intrinsic. 3049 // Valid (non-poisoned) set bits in the operand pull low the 3050 // corresponding shadow bits. 3051 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3052 IRBuilder<> IRB(&I); 3053 Value *OperandShadow = getShadow(&I, 0); 3054 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3055 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3056 // Bit N is clean if any field's bit N is 1 and unpoison 3057 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3058 // Otherwise, it is clean if every field's bit N is unpoison 3059 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3060 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3061 3062 setShadow(&I, S); 3063 setOrigin(&I, getOrigin(&I, 0)); 3064 } 3065 3066 // Instrument vector.reduce.and intrinsic. 3067 // Valid (non-poisoned) unset bits in the operand pull down the 3068 // corresponding shadow bits. 3069 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3070 IRBuilder<> IRB(&I); 3071 Value *OperandShadow = getShadow(&I, 0); 3072 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3073 // Bit N is clean if any field's bit N is 0 and unpoison 3074 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3075 // Otherwise, it is clean if every field's bit N is unpoison 3076 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3077 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3078 3079 setShadow(&I, S); 3080 setOrigin(&I, getOrigin(&I, 0)); 3081 } 3082 3083 void handleStmxcsr(IntrinsicInst &I) { 3084 IRBuilder<> IRB(&I); 3085 Value* Addr = I.getArgOperand(0); 3086 Type *Ty = IRB.getInt32Ty(); 3087 Value *ShadowPtr = 3088 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3089 3090 IRB.CreateStore(getCleanShadow(Ty), 3091 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3092 3093 if (ClCheckAccessAddress) 3094 insertShadowCheck(Addr, &I); 3095 } 3096 3097 void handleLdmxcsr(IntrinsicInst &I) { 3098 if (!InsertChecks) return; 3099 3100 IRBuilder<> IRB(&I); 3101 Value *Addr = I.getArgOperand(0); 3102 Type *Ty = IRB.getInt32Ty(); 3103 const Align Alignment = Align(1); 3104 Value *ShadowPtr, *OriginPtr; 3105 std::tie(ShadowPtr, OriginPtr) = 3106 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3107 3108 if (ClCheckAccessAddress) 3109 insertShadowCheck(Addr, &I); 3110 3111 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3112 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3113 : getCleanOrigin(); 3114 insertShadowCheck(Shadow, Origin, &I); 3115 } 3116 3117 void handleMaskedStore(IntrinsicInst &I) { 3118 IRBuilder<> IRB(&I); 3119 Value *V = I.getArgOperand(0); 3120 Value *Addr = I.getArgOperand(1); 3121 const Align Alignment( 3122 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3123 Value *Mask = I.getArgOperand(3); 3124 Value *Shadow = getShadow(V); 3125 3126 Value *ShadowPtr; 3127 Value *OriginPtr; 3128 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3129 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3130 3131 if (ClCheckAccessAddress) { 3132 insertShadowCheck(Addr, &I); 3133 // Uninitialized mask is kind of like uninitialized address, but not as 3134 // scary. 3135 insertShadowCheck(Mask, &I); 3136 } 3137 3138 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3139 3140 if (MS.TrackOrigins) { 3141 auto &DL = F.getParent()->getDataLayout(); 3142 paintOrigin(IRB, getOrigin(V), OriginPtr, 3143 DL.getTypeStoreSize(Shadow->getType()), 3144 std::max(Alignment, kMinOriginAlignment)); 3145 } 3146 } 3147 3148 bool handleMaskedLoad(IntrinsicInst &I) { 3149 IRBuilder<> IRB(&I); 3150 Value *Addr = I.getArgOperand(0); 3151 const Align Alignment( 3152 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3153 Value *Mask = I.getArgOperand(2); 3154 Value *PassThru = I.getArgOperand(3); 3155 3156 Type *ShadowTy = getShadowTy(&I); 3157 Value *ShadowPtr, *OriginPtr; 3158 if (PropagateShadow) { 3159 std::tie(ShadowPtr, OriginPtr) = 3160 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3161 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3162 getShadow(PassThru), "_msmaskedld")); 3163 } else { 3164 setShadow(&I, getCleanShadow(&I)); 3165 } 3166 3167 if (ClCheckAccessAddress) { 3168 insertShadowCheck(Addr, &I); 3169 insertShadowCheck(Mask, &I); 3170 } 3171 3172 if (MS.TrackOrigins) { 3173 if (PropagateShadow) { 3174 // Choose between PassThru's and the loaded value's origins. 3175 Value *MaskedPassThruShadow = IRB.CreateAnd( 3176 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3177 3178 Value *Acc = IRB.CreateExtractElement( 3179 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3180 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3181 ->getNumElements(); 3182 i < N; ++i) { 3183 Value *More = IRB.CreateExtractElement( 3184 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3185 Acc = IRB.CreateOr(Acc, More); 3186 } 3187 3188 Value *Origin = IRB.CreateSelect( 3189 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3190 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3191 3192 setOrigin(&I, Origin); 3193 } else { 3194 setOrigin(&I, getCleanOrigin()); 3195 } 3196 } 3197 return true; 3198 } 3199 3200 // Instrument BMI / BMI2 intrinsics. 3201 // All of these intrinsics are Z = I(X, Y) 3202 // where the types of all operands and the result match, and are either i32 or i64. 3203 // The following instrumentation happens to work for all of them: 3204 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3205 void handleBmiIntrinsic(IntrinsicInst &I) { 3206 IRBuilder<> IRB(&I); 3207 Type *ShadowTy = getShadowTy(&I); 3208 3209 // If any bit of the mask operand is poisoned, then the whole thing is. 3210 Value *SMask = getShadow(&I, 1); 3211 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3212 ShadowTy); 3213 // Apply the same intrinsic to the shadow of the first operand. 3214 Value *S = IRB.CreateCall(I.getCalledFunction(), 3215 {getShadow(&I, 0), I.getOperand(1)}); 3216 S = IRB.CreateOr(SMask, S); 3217 setShadow(&I, S); 3218 setOriginForNaryOp(I); 3219 } 3220 3221 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3222 SmallVector<int, 8> Mask; 3223 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3224 Mask.append(2, X); 3225 } 3226 return Mask; 3227 } 3228 3229 // Instrument pclmul intrinsics. 3230 // These intrinsics operate either on odd or on even elements of the input 3231 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3232 // Replace the unused elements with copies of the used ones, ex: 3233 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3234 // or 3235 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3236 // and then apply the usual shadow combining logic. 3237 void handlePclmulIntrinsic(IntrinsicInst &I) { 3238 IRBuilder<> IRB(&I); 3239 unsigned Width = 3240 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3241 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3242 "pclmul 3rd operand must be a constant"); 3243 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3244 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3245 getPclmulMask(Width, Imm & 0x01)); 3246 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3247 getPclmulMask(Width, Imm & 0x10)); 3248 ShadowAndOriginCombiner SOC(this, IRB); 3249 SOC.Add(Shuf0, getOrigin(&I, 0)); 3250 SOC.Add(Shuf1, getOrigin(&I, 1)); 3251 SOC.Done(&I); 3252 } 3253 3254 // Instrument _mm_*_sd intrinsics 3255 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3256 IRBuilder<> IRB(&I); 3257 Value *First = getShadow(&I, 0); 3258 Value *Second = getShadow(&I, 1); 3259 // High word of first operand, low word of second 3260 Value *Shadow = 3261 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3262 3263 setShadow(&I, Shadow); 3264 setOriginForNaryOp(I); 3265 } 3266 3267 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3268 IRBuilder<> IRB(&I); 3269 Value *First = getShadow(&I, 0); 3270 Value *Second = getShadow(&I, 1); 3271 Value *OrShadow = IRB.CreateOr(First, Second); 3272 // High word of first operand, low word of both OR'd together 3273 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3274 llvm::makeArrayRef<int>({2, 1})); 3275 3276 setShadow(&I, Shadow); 3277 setOriginForNaryOp(I); 3278 } 3279 3280 // Instrument abs intrinsic. 3281 // handleUnknownIntrinsic can't handle it because of the last 3282 // is_int_min_poison argument which does not match the result type. 3283 void handleAbsIntrinsic(IntrinsicInst &I) { 3284 assert(I.getType()->isIntOrIntVectorTy()); 3285 assert(I.getArgOperand(0)->getType() == I.getType()); 3286 3287 // FIXME: Handle is_int_min_poison. 3288 IRBuilder<> IRB(&I); 3289 setShadow(&I, getShadow(&I, 0)); 3290 setOrigin(&I, getOrigin(&I, 0)); 3291 } 3292 3293 void visitIntrinsicInst(IntrinsicInst &I) { 3294 switch (I.getIntrinsicID()) { 3295 case Intrinsic::abs: 3296 handleAbsIntrinsic(I); 3297 break; 3298 case Intrinsic::lifetime_start: 3299 handleLifetimeStart(I); 3300 break; 3301 case Intrinsic::launder_invariant_group: 3302 case Intrinsic::strip_invariant_group: 3303 handleInvariantGroup(I); 3304 break; 3305 case Intrinsic::bswap: 3306 handleBswap(I); 3307 break; 3308 case Intrinsic::masked_store: 3309 handleMaskedStore(I); 3310 break; 3311 case Intrinsic::masked_load: 3312 handleMaskedLoad(I); 3313 break; 3314 case Intrinsic::vector_reduce_and: 3315 handleVectorReduceAndIntrinsic(I); 3316 break; 3317 case Intrinsic::vector_reduce_or: 3318 handleVectorReduceOrIntrinsic(I); 3319 break; 3320 case Intrinsic::vector_reduce_add: 3321 case Intrinsic::vector_reduce_xor: 3322 case Intrinsic::vector_reduce_mul: 3323 handleVectorReduceIntrinsic(I); 3324 break; 3325 case Intrinsic::x86_sse_stmxcsr: 3326 handleStmxcsr(I); 3327 break; 3328 case Intrinsic::x86_sse_ldmxcsr: 3329 handleLdmxcsr(I); 3330 break; 3331 case Intrinsic::x86_avx512_vcvtsd2usi64: 3332 case Intrinsic::x86_avx512_vcvtsd2usi32: 3333 case Intrinsic::x86_avx512_vcvtss2usi64: 3334 case Intrinsic::x86_avx512_vcvtss2usi32: 3335 case Intrinsic::x86_avx512_cvttss2usi64: 3336 case Intrinsic::x86_avx512_cvttss2usi: 3337 case Intrinsic::x86_avx512_cvttsd2usi64: 3338 case Intrinsic::x86_avx512_cvttsd2usi: 3339 case Intrinsic::x86_avx512_cvtusi2ss: 3340 case Intrinsic::x86_avx512_cvtusi642sd: 3341 case Intrinsic::x86_avx512_cvtusi642ss: 3342 handleVectorConvertIntrinsic(I, 1, true); 3343 break; 3344 case Intrinsic::x86_sse2_cvtsd2si64: 3345 case Intrinsic::x86_sse2_cvtsd2si: 3346 case Intrinsic::x86_sse2_cvtsd2ss: 3347 case Intrinsic::x86_sse2_cvttsd2si64: 3348 case Intrinsic::x86_sse2_cvttsd2si: 3349 case Intrinsic::x86_sse_cvtss2si64: 3350 case Intrinsic::x86_sse_cvtss2si: 3351 case Intrinsic::x86_sse_cvttss2si64: 3352 case Intrinsic::x86_sse_cvttss2si: 3353 handleVectorConvertIntrinsic(I, 1); 3354 break; 3355 case Intrinsic::x86_sse_cvtps2pi: 3356 case Intrinsic::x86_sse_cvttps2pi: 3357 handleVectorConvertIntrinsic(I, 2); 3358 break; 3359 3360 case Intrinsic::x86_avx512_psll_w_512: 3361 case Intrinsic::x86_avx512_psll_d_512: 3362 case Intrinsic::x86_avx512_psll_q_512: 3363 case Intrinsic::x86_avx512_pslli_w_512: 3364 case Intrinsic::x86_avx512_pslli_d_512: 3365 case Intrinsic::x86_avx512_pslli_q_512: 3366 case Intrinsic::x86_avx512_psrl_w_512: 3367 case Intrinsic::x86_avx512_psrl_d_512: 3368 case Intrinsic::x86_avx512_psrl_q_512: 3369 case Intrinsic::x86_avx512_psra_w_512: 3370 case Intrinsic::x86_avx512_psra_d_512: 3371 case Intrinsic::x86_avx512_psra_q_512: 3372 case Intrinsic::x86_avx512_psrli_w_512: 3373 case Intrinsic::x86_avx512_psrli_d_512: 3374 case Intrinsic::x86_avx512_psrli_q_512: 3375 case Intrinsic::x86_avx512_psrai_w_512: 3376 case Intrinsic::x86_avx512_psrai_d_512: 3377 case Intrinsic::x86_avx512_psrai_q_512: 3378 case Intrinsic::x86_avx512_psra_q_256: 3379 case Intrinsic::x86_avx512_psra_q_128: 3380 case Intrinsic::x86_avx512_psrai_q_256: 3381 case Intrinsic::x86_avx512_psrai_q_128: 3382 case Intrinsic::x86_avx2_psll_w: 3383 case Intrinsic::x86_avx2_psll_d: 3384 case Intrinsic::x86_avx2_psll_q: 3385 case Intrinsic::x86_avx2_pslli_w: 3386 case Intrinsic::x86_avx2_pslli_d: 3387 case Intrinsic::x86_avx2_pslli_q: 3388 case Intrinsic::x86_avx2_psrl_w: 3389 case Intrinsic::x86_avx2_psrl_d: 3390 case Intrinsic::x86_avx2_psrl_q: 3391 case Intrinsic::x86_avx2_psra_w: 3392 case Intrinsic::x86_avx2_psra_d: 3393 case Intrinsic::x86_avx2_psrli_w: 3394 case Intrinsic::x86_avx2_psrli_d: 3395 case Intrinsic::x86_avx2_psrli_q: 3396 case Intrinsic::x86_avx2_psrai_w: 3397 case Intrinsic::x86_avx2_psrai_d: 3398 case Intrinsic::x86_sse2_psll_w: 3399 case Intrinsic::x86_sse2_psll_d: 3400 case Intrinsic::x86_sse2_psll_q: 3401 case Intrinsic::x86_sse2_pslli_w: 3402 case Intrinsic::x86_sse2_pslli_d: 3403 case Intrinsic::x86_sse2_pslli_q: 3404 case Intrinsic::x86_sse2_psrl_w: 3405 case Intrinsic::x86_sse2_psrl_d: 3406 case Intrinsic::x86_sse2_psrl_q: 3407 case Intrinsic::x86_sse2_psra_w: 3408 case Intrinsic::x86_sse2_psra_d: 3409 case Intrinsic::x86_sse2_psrli_w: 3410 case Intrinsic::x86_sse2_psrli_d: 3411 case Intrinsic::x86_sse2_psrli_q: 3412 case Intrinsic::x86_sse2_psrai_w: 3413 case Intrinsic::x86_sse2_psrai_d: 3414 case Intrinsic::x86_mmx_psll_w: 3415 case Intrinsic::x86_mmx_psll_d: 3416 case Intrinsic::x86_mmx_psll_q: 3417 case Intrinsic::x86_mmx_pslli_w: 3418 case Intrinsic::x86_mmx_pslli_d: 3419 case Intrinsic::x86_mmx_pslli_q: 3420 case Intrinsic::x86_mmx_psrl_w: 3421 case Intrinsic::x86_mmx_psrl_d: 3422 case Intrinsic::x86_mmx_psrl_q: 3423 case Intrinsic::x86_mmx_psra_w: 3424 case Intrinsic::x86_mmx_psra_d: 3425 case Intrinsic::x86_mmx_psrli_w: 3426 case Intrinsic::x86_mmx_psrli_d: 3427 case Intrinsic::x86_mmx_psrli_q: 3428 case Intrinsic::x86_mmx_psrai_w: 3429 case Intrinsic::x86_mmx_psrai_d: 3430 handleVectorShiftIntrinsic(I, /* Variable */ false); 3431 break; 3432 case Intrinsic::x86_avx2_psllv_d: 3433 case Intrinsic::x86_avx2_psllv_d_256: 3434 case Intrinsic::x86_avx512_psllv_d_512: 3435 case Intrinsic::x86_avx2_psllv_q: 3436 case Intrinsic::x86_avx2_psllv_q_256: 3437 case Intrinsic::x86_avx512_psllv_q_512: 3438 case Intrinsic::x86_avx2_psrlv_d: 3439 case Intrinsic::x86_avx2_psrlv_d_256: 3440 case Intrinsic::x86_avx512_psrlv_d_512: 3441 case Intrinsic::x86_avx2_psrlv_q: 3442 case Intrinsic::x86_avx2_psrlv_q_256: 3443 case Intrinsic::x86_avx512_psrlv_q_512: 3444 case Intrinsic::x86_avx2_psrav_d: 3445 case Intrinsic::x86_avx2_psrav_d_256: 3446 case Intrinsic::x86_avx512_psrav_d_512: 3447 case Intrinsic::x86_avx512_psrav_q_128: 3448 case Intrinsic::x86_avx512_psrav_q_256: 3449 case Intrinsic::x86_avx512_psrav_q_512: 3450 handleVectorShiftIntrinsic(I, /* Variable */ true); 3451 break; 3452 3453 case Intrinsic::x86_sse2_packsswb_128: 3454 case Intrinsic::x86_sse2_packssdw_128: 3455 case Intrinsic::x86_sse2_packuswb_128: 3456 case Intrinsic::x86_sse41_packusdw: 3457 case Intrinsic::x86_avx2_packsswb: 3458 case Intrinsic::x86_avx2_packssdw: 3459 case Intrinsic::x86_avx2_packuswb: 3460 case Intrinsic::x86_avx2_packusdw: 3461 handleVectorPackIntrinsic(I); 3462 break; 3463 3464 case Intrinsic::x86_mmx_packsswb: 3465 case Intrinsic::x86_mmx_packuswb: 3466 handleVectorPackIntrinsic(I, 16); 3467 break; 3468 3469 case Intrinsic::x86_mmx_packssdw: 3470 handleVectorPackIntrinsic(I, 32); 3471 break; 3472 3473 case Intrinsic::x86_mmx_psad_bw: 3474 case Intrinsic::x86_sse2_psad_bw: 3475 case Intrinsic::x86_avx2_psad_bw: 3476 handleVectorSadIntrinsic(I); 3477 break; 3478 3479 case Intrinsic::x86_sse2_pmadd_wd: 3480 case Intrinsic::x86_avx2_pmadd_wd: 3481 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3482 case Intrinsic::x86_avx2_pmadd_ub_sw: 3483 handleVectorPmaddIntrinsic(I); 3484 break; 3485 3486 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3487 handleVectorPmaddIntrinsic(I, 8); 3488 break; 3489 3490 case Intrinsic::x86_mmx_pmadd_wd: 3491 handleVectorPmaddIntrinsic(I, 16); 3492 break; 3493 3494 case Intrinsic::x86_sse_cmp_ss: 3495 case Intrinsic::x86_sse2_cmp_sd: 3496 case Intrinsic::x86_sse_comieq_ss: 3497 case Intrinsic::x86_sse_comilt_ss: 3498 case Intrinsic::x86_sse_comile_ss: 3499 case Intrinsic::x86_sse_comigt_ss: 3500 case Intrinsic::x86_sse_comige_ss: 3501 case Intrinsic::x86_sse_comineq_ss: 3502 case Intrinsic::x86_sse_ucomieq_ss: 3503 case Intrinsic::x86_sse_ucomilt_ss: 3504 case Intrinsic::x86_sse_ucomile_ss: 3505 case Intrinsic::x86_sse_ucomigt_ss: 3506 case Intrinsic::x86_sse_ucomige_ss: 3507 case Intrinsic::x86_sse_ucomineq_ss: 3508 case Intrinsic::x86_sse2_comieq_sd: 3509 case Intrinsic::x86_sse2_comilt_sd: 3510 case Intrinsic::x86_sse2_comile_sd: 3511 case Intrinsic::x86_sse2_comigt_sd: 3512 case Intrinsic::x86_sse2_comige_sd: 3513 case Intrinsic::x86_sse2_comineq_sd: 3514 case Intrinsic::x86_sse2_ucomieq_sd: 3515 case Intrinsic::x86_sse2_ucomilt_sd: 3516 case Intrinsic::x86_sse2_ucomile_sd: 3517 case Intrinsic::x86_sse2_ucomigt_sd: 3518 case Intrinsic::x86_sse2_ucomige_sd: 3519 case Intrinsic::x86_sse2_ucomineq_sd: 3520 handleVectorCompareScalarIntrinsic(I); 3521 break; 3522 3523 case Intrinsic::x86_sse_cmp_ps: 3524 case Intrinsic::x86_sse2_cmp_pd: 3525 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3526 // generates reasonably looking IR that fails in the backend with "Do not 3527 // know how to split the result of this operator!". 3528 handleVectorComparePackedIntrinsic(I); 3529 break; 3530 3531 case Intrinsic::x86_bmi_bextr_32: 3532 case Intrinsic::x86_bmi_bextr_64: 3533 case Intrinsic::x86_bmi_bzhi_32: 3534 case Intrinsic::x86_bmi_bzhi_64: 3535 case Intrinsic::x86_bmi_pdep_32: 3536 case Intrinsic::x86_bmi_pdep_64: 3537 case Intrinsic::x86_bmi_pext_32: 3538 case Intrinsic::x86_bmi_pext_64: 3539 handleBmiIntrinsic(I); 3540 break; 3541 3542 case Intrinsic::x86_pclmulqdq: 3543 case Intrinsic::x86_pclmulqdq_256: 3544 case Intrinsic::x86_pclmulqdq_512: 3545 handlePclmulIntrinsic(I); 3546 break; 3547 3548 case Intrinsic::x86_sse41_round_sd: 3549 handleUnarySdIntrinsic(I); 3550 break; 3551 case Intrinsic::x86_sse2_max_sd: 3552 case Intrinsic::x86_sse2_min_sd: 3553 handleBinarySdIntrinsic(I); 3554 break; 3555 3556 case Intrinsic::fshl: 3557 case Intrinsic::fshr: 3558 handleFunnelShift(I); 3559 break; 3560 3561 case Intrinsic::is_constant: 3562 // The result of llvm.is.constant() is always defined. 3563 setShadow(&I, getCleanShadow(&I)); 3564 setOrigin(&I, getCleanOrigin()); 3565 break; 3566 3567 default: 3568 if (!handleUnknownIntrinsic(I)) 3569 visitInstruction(I); 3570 break; 3571 } 3572 } 3573 3574 void visitLibAtomicLoad(CallBase &CB) { 3575 // Since we use getNextNode here, we can't have CB terminate the BB. 3576 assert(isa<CallInst>(CB)); 3577 3578 IRBuilder<> IRB(&CB); 3579 Value *Size = CB.getArgOperand(0); 3580 Value *SrcPtr = CB.getArgOperand(1); 3581 Value *DstPtr = CB.getArgOperand(2); 3582 Value *Ordering = CB.getArgOperand(3); 3583 // Convert the call to have at least Acquire ordering to make sure 3584 // the shadow operations aren't reordered before it. 3585 Value *NewOrdering = 3586 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3587 CB.setArgOperand(3, NewOrdering); 3588 3589 IRBuilder<> NextIRB(CB.getNextNode()); 3590 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3591 3592 Value *SrcShadowPtr, *SrcOriginPtr; 3593 std::tie(SrcShadowPtr, SrcOriginPtr) = 3594 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3595 /*isStore*/ false); 3596 Value *DstShadowPtr = 3597 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3598 /*isStore*/ true) 3599 .first; 3600 3601 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3602 if (MS.TrackOrigins) { 3603 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3604 kMinOriginAlignment); 3605 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3606 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3607 } 3608 } 3609 3610 void visitLibAtomicStore(CallBase &CB) { 3611 IRBuilder<> IRB(&CB); 3612 Value *Size = CB.getArgOperand(0); 3613 Value *DstPtr = CB.getArgOperand(2); 3614 Value *Ordering = CB.getArgOperand(3); 3615 // Convert the call to have at least Release ordering to make sure 3616 // the shadow operations aren't reordered after it. 3617 Value *NewOrdering = 3618 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3619 CB.setArgOperand(3, NewOrdering); 3620 3621 Value *DstShadowPtr = 3622 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3623 /*isStore*/ true) 3624 .first; 3625 3626 // Atomic store always paints clean shadow/origin. See file header. 3627 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3628 Align(1)); 3629 } 3630 3631 void visitCallBase(CallBase &CB) { 3632 assert(!CB.getMetadata("nosanitize")); 3633 if (CB.isInlineAsm()) { 3634 // For inline asm (either a call to asm function, or callbr instruction), 3635 // do the usual thing: check argument shadow and mark all outputs as 3636 // clean. Note that any side effects of the inline asm that are not 3637 // immediately visible in its constraints are not handled. 3638 if (ClHandleAsmConservative && MS.CompileKernel) 3639 visitAsmInstruction(CB); 3640 else 3641 visitInstruction(CB); 3642 return; 3643 } 3644 LibFunc LF; 3645 if (TLI->getLibFunc(CB, LF)) { 3646 // libatomic.a functions need to have special handling because there isn't 3647 // a good way to intercept them or compile the library with 3648 // instrumentation. 3649 switch (LF) { 3650 case LibFunc_atomic_load: 3651 if (!isa<CallInst>(CB)) { 3652 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3653 "Ignoring!\n"; 3654 break; 3655 } 3656 visitLibAtomicLoad(CB); 3657 return; 3658 case LibFunc_atomic_store: 3659 visitLibAtomicStore(CB); 3660 return; 3661 default: 3662 break; 3663 } 3664 } 3665 3666 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3667 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3668 3669 // We are going to insert code that relies on the fact that the callee 3670 // will become a non-readonly function after it is instrumented by us. To 3671 // prevent this code from being optimized out, mark that function 3672 // non-readonly in advance. 3673 AttributeMask B; 3674 B.addAttribute(Attribute::ReadOnly) 3675 .addAttribute(Attribute::ReadNone) 3676 .addAttribute(Attribute::WriteOnly) 3677 .addAttribute(Attribute::ArgMemOnly) 3678 .addAttribute(Attribute::Speculatable); 3679 3680 Call->removeFnAttrs(B); 3681 if (Function *Func = Call->getCalledFunction()) { 3682 Func->removeFnAttrs(B); 3683 } 3684 3685 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3686 } 3687 IRBuilder<> IRB(&CB); 3688 bool MayCheckCall = MS.EagerChecks; 3689 if (Function *Func = CB.getCalledFunction()) { 3690 // __sanitizer_unaligned_{load,store} functions may be called by users 3691 // and always expects shadows in the TLS. So don't check them. 3692 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3693 } 3694 3695 unsigned ArgOffset = 0; 3696 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3697 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3698 ++ArgIt) { 3699 Value *A = *ArgIt; 3700 unsigned i = ArgIt - CB.arg_begin(); 3701 if (!A->getType()->isSized()) { 3702 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3703 continue; 3704 } 3705 unsigned Size = 0; 3706 const DataLayout &DL = F.getParent()->getDataLayout(); 3707 3708 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3709 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3710 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3711 3712 if (EagerCheck) { 3713 insertShadowCheck(A, &CB); 3714 Size = DL.getTypeAllocSize(A->getType()); 3715 } else { 3716 Value *Store = nullptr; 3717 // Compute the Shadow for arg even if it is ByVal, because 3718 // in that case getShadow() will copy the actual arg shadow to 3719 // __msan_param_tls. 3720 Value *ArgShadow = getShadow(A); 3721 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3722 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3723 << " Shadow: " << *ArgShadow << "\n"); 3724 if (ByVal) { 3725 // ByVal requires some special handling as it's too big for a single 3726 // load 3727 assert(A->getType()->isPointerTy() && 3728 "ByVal argument is not a pointer!"); 3729 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3730 if (ArgOffset + Size > kParamTLSSize) 3731 break; 3732 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3733 MaybeAlign Alignment = llvm::None; 3734 if (ParamAlignment) 3735 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3736 Value *AShadowPtr, *AOriginPtr; 3737 std::tie(AShadowPtr, AOriginPtr) = 3738 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3739 /*isStore*/ false); 3740 if (!PropagateShadow) { 3741 Store = IRB.CreateMemSet(ArgShadowBase, 3742 Constant::getNullValue(IRB.getInt8Ty()), 3743 Size, Alignment); 3744 } else { 3745 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3746 Alignment, Size); 3747 if (MS.TrackOrigins) { 3748 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 3749 // FIXME: OriginSize should be: 3750 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 3751 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 3752 IRB.CreateMemCpy( 3753 ArgOriginBase, 3754 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 3755 AOriginPtr, 3756 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 3757 } 3758 } 3759 } else { 3760 // Any other parameters mean we need bit-grained tracking of uninit 3761 // data 3762 Size = DL.getTypeAllocSize(A->getType()); 3763 if (ArgOffset + Size > kParamTLSSize) 3764 break; 3765 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3766 kShadowTLSAlignment); 3767 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3768 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 3769 IRB.CreateStore(getOrigin(A), 3770 getOriginPtrForArgument(A, IRB, ArgOffset)); 3771 } 3772 } 3773 (void)Store; 3774 assert(Store != nullptr); 3775 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3776 } 3777 assert(Size != 0); 3778 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3779 } 3780 LLVM_DEBUG(dbgs() << " done with call args\n"); 3781 3782 FunctionType *FT = CB.getFunctionType(); 3783 if (FT->isVarArg()) { 3784 VAHelper->visitCallBase(CB, IRB); 3785 } 3786 3787 // Now, get the shadow for the RetVal. 3788 if (!CB.getType()->isSized()) 3789 return; 3790 // Don't emit the epilogue for musttail call returns. 3791 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3792 return; 3793 3794 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3795 setShadow(&CB, getCleanShadow(&CB)); 3796 setOrigin(&CB, getCleanOrigin()); 3797 return; 3798 } 3799 3800 IRBuilder<> IRBBefore(&CB); 3801 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3802 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3803 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3804 kShadowTLSAlignment); 3805 BasicBlock::iterator NextInsn; 3806 if (isa<CallInst>(CB)) { 3807 NextInsn = ++CB.getIterator(); 3808 assert(NextInsn != CB.getParent()->end()); 3809 } else { 3810 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3811 if (!NormalDest->getSinglePredecessor()) { 3812 // FIXME: this case is tricky, so we are just conservative here. 3813 // Perhaps we need to split the edge between this BB and NormalDest, 3814 // but a naive attempt to use SplitEdge leads to a crash. 3815 setShadow(&CB, getCleanShadow(&CB)); 3816 setOrigin(&CB, getCleanOrigin()); 3817 return; 3818 } 3819 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3820 // Anything inserted there will be instrumented by MSan later! 3821 NextInsn = NormalDest->getFirstInsertionPt(); 3822 assert(NextInsn != NormalDest->end() && 3823 "Could not find insertion point for retval shadow load"); 3824 } 3825 IRBuilder<> IRBAfter(&*NextInsn); 3826 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3827 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3828 kShadowTLSAlignment, "_msret"); 3829 setShadow(&CB, RetvalShadow); 3830 if (MS.TrackOrigins) 3831 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3832 getOriginPtrForRetval(IRBAfter))); 3833 } 3834 3835 bool isAMustTailRetVal(Value *RetVal) { 3836 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3837 RetVal = I->getOperand(0); 3838 } 3839 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3840 return I->isMustTailCall(); 3841 } 3842 return false; 3843 } 3844 3845 void visitReturnInst(ReturnInst &I) { 3846 IRBuilder<> IRB(&I); 3847 Value *RetVal = I.getReturnValue(); 3848 if (!RetVal) return; 3849 // Don't emit the epilogue for musttail call returns. 3850 if (isAMustTailRetVal(RetVal)) return; 3851 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3852 bool HasNoUndef = 3853 F.hasRetAttribute(Attribute::NoUndef); 3854 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 3855 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3856 // must always return fully initialized values. For now, we hardcode "main". 3857 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 3858 3859 Value *Shadow = getShadow(RetVal); 3860 bool StoreOrigin = true; 3861 if (EagerCheck) { 3862 insertShadowCheck(RetVal, &I); 3863 Shadow = getCleanShadow(RetVal); 3864 StoreOrigin = false; 3865 } 3866 3867 // The caller may still expect information passed over TLS if we pass our 3868 // check 3869 if (StoreShadow) { 3870 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3871 if (MS.TrackOrigins && StoreOrigin) 3872 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3873 } 3874 } 3875 3876 void visitPHINode(PHINode &I) { 3877 IRBuilder<> IRB(&I); 3878 if (!PropagateShadow) { 3879 setShadow(&I, getCleanShadow(&I)); 3880 setOrigin(&I, getCleanOrigin()); 3881 return; 3882 } 3883 3884 ShadowPHINodes.push_back(&I); 3885 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3886 "_msphi_s")); 3887 if (MS.TrackOrigins) 3888 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3889 "_msphi_o")); 3890 } 3891 3892 Value *getLocalVarDescription(AllocaInst &I) { 3893 SmallString<2048> StackDescriptionStorage; 3894 raw_svector_ostream StackDescription(StackDescriptionStorage); 3895 // We create a string with a description of the stack allocation and 3896 // pass it into __msan_set_alloca_origin. 3897 // It will be printed by the run-time if stack-originated UMR is found. 3898 // The first 4 bytes of the string are set to '----' and will be replaced 3899 // by __msan_va_arg_overflow_size_tls at the first call. 3900 StackDescription << "----" << I.getName() << "@" << F.getName(); 3901 return createPrivateNonConstGlobalForString(*F.getParent(), 3902 StackDescription.str()); 3903 } 3904 3905 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3906 if (PoisonStack && ClPoisonStackWithCall) { 3907 IRB.CreateCall(MS.MsanPoisonStackFn, 3908 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3909 } else { 3910 Value *ShadowBase, *OriginBase; 3911 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3912 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3913 3914 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3915 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 3916 } 3917 3918 if (PoisonStack && MS.TrackOrigins) { 3919 Value *Descr = getLocalVarDescription(I); 3920 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3921 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3922 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3923 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3924 } 3925 } 3926 3927 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3928 Value *Descr = getLocalVarDescription(I); 3929 if (PoisonStack) { 3930 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3931 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3932 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3933 } else { 3934 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3935 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3936 } 3937 } 3938 3939 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3940 if (!InsPoint) 3941 InsPoint = &I; 3942 IRBuilder<> IRB(InsPoint->getNextNode()); 3943 const DataLayout &DL = F.getParent()->getDataLayout(); 3944 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3945 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3946 if (I.isArrayAllocation()) 3947 Len = IRB.CreateMul(Len, I.getArraySize()); 3948 3949 if (MS.CompileKernel) 3950 poisonAllocaKmsan(I, IRB, Len); 3951 else 3952 poisonAllocaUserspace(I, IRB, Len); 3953 } 3954 3955 void visitAllocaInst(AllocaInst &I) { 3956 setShadow(&I, getCleanShadow(&I)); 3957 setOrigin(&I, getCleanOrigin()); 3958 // We'll get to this alloca later unless it's poisoned at the corresponding 3959 // llvm.lifetime.start. 3960 AllocaSet.insert(&I); 3961 } 3962 3963 void visitSelectInst(SelectInst& I) { 3964 IRBuilder<> IRB(&I); 3965 // a = select b, c, d 3966 Value *B = I.getCondition(); 3967 Value *C = I.getTrueValue(); 3968 Value *D = I.getFalseValue(); 3969 Value *Sb = getShadow(B); 3970 Value *Sc = getShadow(C); 3971 Value *Sd = getShadow(D); 3972 3973 // Result shadow if condition shadow is 0. 3974 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3975 Value *Sa1; 3976 if (I.getType()->isAggregateType()) { 3977 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3978 // an extra "select". This results in much more compact IR. 3979 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3980 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3981 } else { 3982 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3983 // If Sb (condition is poisoned), look for bits in c and d that are equal 3984 // and both unpoisoned. 3985 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3986 3987 // Cast arguments to shadow-compatible type. 3988 C = CreateAppToShadowCast(IRB, C); 3989 D = CreateAppToShadowCast(IRB, D); 3990 3991 // Result shadow if condition shadow is 1. 3992 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3993 } 3994 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3995 setShadow(&I, Sa); 3996 if (MS.TrackOrigins) { 3997 // Origins are always i32, so any vector conditions must be flattened. 3998 // FIXME: consider tracking vector origins for app vectors? 3999 if (B->getType()->isVectorTy()) { 4000 Type *FlatTy = getShadowTyNoVec(B->getType()); 4001 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 4002 ConstantInt::getNullValue(FlatTy)); 4003 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 4004 ConstantInt::getNullValue(FlatTy)); 4005 } 4006 // a = select b, c, d 4007 // Oa = Sb ? Ob : (b ? Oc : Od) 4008 setOrigin( 4009 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 4010 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 4011 getOrigin(I.getFalseValue())))); 4012 } 4013 } 4014 4015 void visitLandingPadInst(LandingPadInst &I) { 4016 // Do nothing. 4017 // See https://github.com/google/sanitizers/issues/504 4018 setShadow(&I, getCleanShadow(&I)); 4019 setOrigin(&I, getCleanOrigin()); 4020 } 4021 4022 void visitCatchSwitchInst(CatchSwitchInst &I) { 4023 setShadow(&I, getCleanShadow(&I)); 4024 setOrigin(&I, getCleanOrigin()); 4025 } 4026 4027 void visitFuncletPadInst(FuncletPadInst &I) { 4028 setShadow(&I, getCleanShadow(&I)); 4029 setOrigin(&I, getCleanOrigin()); 4030 } 4031 4032 void visitGetElementPtrInst(GetElementPtrInst &I) { 4033 handleShadowOr(I); 4034 } 4035 4036 void visitExtractValueInst(ExtractValueInst &I) { 4037 IRBuilder<> IRB(&I); 4038 Value *Agg = I.getAggregateOperand(); 4039 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4040 Value *AggShadow = getShadow(Agg); 4041 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4042 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4043 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4044 setShadow(&I, ResShadow); 4045 setOriginForNaryOp(I); 4046 } 4047 4048 void visitInsertValueInst(InsertValueInst &I) { 4049 IRBuilder<> IRB(&I); 4050 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4051 Value *AggShadow = getShadow(I.getAggregateOperand()); 4052 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4053 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4054 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4055 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4056 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4057 setShadow(&I, Res); 4058 setOriginForNaryOp(I); 4059 } 4060 4061 void dumpInst(Instruction &I) { 4062 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4063 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4064 } else { 4065 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4066 } 4067 errs() << "QQQ " << I << "\n"; 4068 } 4069 4070 void visitResumeInst(ResumeInst &I) { 4071 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4072 // Nothing to do here. 4073 } 4074 4075 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4076 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4077 // Nothing to do here. 4078 } 4079 4080 void visitCatchReturnInst(CatchReturnInst &CRI) { 4081 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4082 // Nothing to do here. 4083 } 4084 4085 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4086 IRBuilder<> &IRB, const DataLayout &DL, 4087 bool isOutput) { 4088 // For each assembly argument, we check its value for being initialized. 4089 // If the argument is a pointer, we assume it points to a single element 4090 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4091 // Each such pointer is instrumented with a call to the runtime library. 4092 Type *OpType = Operand->getType(); 4093 // Check the operand value itself. 4094 insertShadowCheck(Operand, &I); 4095 if (!OpType->isPointerTy() || !isOutput) { 4096 assert(!isOutput); 4097 return; 4098 } 4099 if (!ElemTy->isSized()) 4100 return; 4101 int Size = DL.getTypeStoreSize(ElemTy); 4102 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4103 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4104 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4105 } 4106 4107 /// Get the number of output arguments returned by pointers. 4108 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4109 int NumRetOutputs = 0; 4110 int NumOutputs = 0; 4111 Type *RetTy = cast<Value>(CB)->getType(); 4112 if (!RetTy->isVoidTy()) { 4113 // Register outputs are returned via the CallInst return value. 4114 auto *ST = dyn_cast<StructType>(RetTy); 4115 if (ST) 4116 NumRetOutputs = ST->getNumElements(); 4117 else 4118 NumRetOutputs = 1; 4119 } 4120 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4121 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4122 switch (Info.Type) { 4123 case InlineAsm::isOutput: 4124 NumOutputs++; 4125 break; 4126 default: 4127 break; 4128 } 4129 } 4130 return NumOutputs - NumRetOutputs; 4131 } 4132 4133 void visitAsmInstruction(Instruction &I) { 4134 // Conservative inline assembly handling: check for poisoned shadow of 4135 // asm() arguments, then unpoison the result and all the memory locations 4136 // pointed to by those arguments. 4137 // An inline asm() statement in C++ contains lists of input and output 4138 // arguments used by the assembly code. These are mapped to operands of the 4139 // CallInst as follows: 4140 // - nR register outputs ("=r) are returned by value in a single structure 4141 // (SSA value of the CallInst); 4142 // - nO other outputs ("=m" and others) are returned by pointer as first 4143 // nO operands of the CallInst; 4144 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4145 // remaining nI operands. 4146 // The total number of asm() arguments in the source is nR+nO+nI, and the 4147 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4148 // function to be called). 4149 const DataLayout &DL = F.getParent()->getDataLayout(); 4150 CallBase *CB = cast<CallBase>(&I); 4151 IRBuilder<> IRB(&I); 4152 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4153 int OutputArgs = getNumOutputArgs(IA, CB); 4154 // The last operand of a CallInst is the function itself. 4155 int NumOperands = CB->getNumOperands() - 1; 4156 4157 // Check input arguments. Doing so before unpoisoning output arguments, so 4158 // that we won't overwrite uninit values before checking them. 4159 for (int i = OutputArgs; i < NumOperands; i++) { 4160 Value *Operand = CB->getOperand(i); 4161 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4162 /*isOutput*/ false); 4163 } 4164 // Unpoison output arguments. This must happen before the actual InlineAsm 4165 // call, so that the shadow for memory published in the asm() statement 4166 // remains valid. 4167 for (int i = 0; i < OutputArgs; i++) { 4168 Value *Operand = CB->getOperand(i); 4169 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4170 /*isOutput*/ true); 4171 } 4172 4173 setShadow(&I, getCleanShadow(&I)); 4174 setOrigin(&I, getCleanOrigin()); 4175 } 4176 4177 void visitFreezeInst(FreezeInst &I) { 4178 // Freeze always returns a fully defined value. 4179 setShadow(&I, getCleanShadow(&I)); 4180 setOrigin(&I, getCleanOrigin()); 4181 } 4182 4183 void visitInstruction(Instruction &I) { 4184 // Everything else: stop propagating and check for poisoned shadow. 4185 if (ClDumpStrictInstructions) 4186 dumpInst(I); 4187 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4188 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4189 Value *Operand = I.getOperand(i); 4190 if (Operand->getType()->isSized()) 4191 insertShadowCheck(Operand, &I); 4192 } 4193 setShadow(&I, getCleanShadow(&I)); 4194 setOrigin(&I, getCleanOrigin()); 4195 } 4196 }; 4197 4198 /// AMD64-specific implementation of VarArgHelper. 4199 struct VarArgAMD64Helper : public VarArgHelper { 4200 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4201 // See a comment in visitCallBase for more details. 4202 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4203 static const unsigned AMD64FpEndOffsetSSE = 176; 4204 // If SSE is disabled, fp_offset in va_list is zero. 4205 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4206 4207 unsigned AMD64FpEndOffset; 4208 Function &F; 4209 MemorySanitizer &MS; 4210 MemorySanitizerVisitor &MSV; 4211 Value *VAArgTLSCopy = nullptr; 4212 Value *VAArgTLSOriginCopy = nullptr; 4213 Value *VAArgOverflowSize = nullptr; 4214 4215 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4216 4217 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4218 4219 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4220 MemorySanitizerVisitor &MSV) 4221 : F(F), MS(MS), MSV(MSV) { 4222 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4223 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4224 if (Attr.isStringAttribute() && 4225 (Attr.getKindAsString() == "target-features")) { 4226 if (Attr.getValueAsString().contains("-sse")) 4227 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4228 break; 4229 } 4230 } 4231 } 4232 4233 ArgKind classifyArgument(Value* arg) { 4234 // A very rough approximation of X86_64 argument classification rules. 4235 Type *T = arg->getType(); 4236 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4237 return AK_FloatingPoint; 4238 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4239 return AK_GeneralPurpose; 4240 if (T->isPointerTy()) 4241 return AK_GeneralPurpose; 4242 return AK_Memory; 4243 } 4244 4245 // For VarArg functions, store the argument shadow in an ABI-specific format 4246 // that corresponds to va_list layout. 4247 // We do this because Clang lowers va_arg in the frontend, and this pass 4248 // only sees the low level code that deals with va_list internals. 4249 // A much easier alternative (provided that Clang emits va_arg instructions) 4250 // would have been to associate each live instance of va_list with a copy of 4251 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4252 // order. 4253 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4254 unsigned GpOffset = 0; 4255 unsigned FpOffset = AMD64GpEndOffset; 4256 unsigned OverflowOffset = AMD64FpEndOffset; 4257 const DataLayout &DL = F.getParent()->getDataLayout(); 4258 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4259 ++ArgIt) { 4260 Value *A = *ArgIt; 4261 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4262 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4263 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4264 if (IsByVal) { 4265 // ByVal arguments always go to the overflow area. 4266 // Fixed arguments passed through the overflow area will be stepped 4267 // over by va_start, so don't count them towards the offset. 4268 if (IsFixed) 4269 continue; 4270 assert(A->getType()->isPointerTy()); 4271 Type *RealTy = CB.getParamByValType(ArgNo); 4272 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4273 Value *ShadowBase = getShadowPtrForVAArgument( 4274 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4275 Value *OriginBase = nullptr; 4276 if (MS.TrackOrigins) 4277 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4278 OverflowOffset += alignTo(ArgSize, 8); 4279 if (!ShadowBase) 4280 continue; 4281 Value *ShadowPtr, *OriginPtr; 4282 std::tie(ShadowPtr, OriginPtr) = 4283 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4284 /*isStore*/ false); 4285 4286 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4287 kShadowTLSAlignment, ArgSize); 4288 if (MS.TrackOrigins) 4289 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4290 kShadowTLSAlignment, ArgSize); 4291 } else { 4292 ArgKind AK = classifyArgument(A); 4293 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4294 AK = AK_Memory; 4295 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4296 AK = AK_Memory; 4297 Value *ShadowBase, *OriginBase = nullptr; 4298 switch (AK) { 4299 case AK_GeneralPurpose: 4300 ShadowBase = 4301 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4302 if (MS.TrackOrigins) 4303 OriginBase = 4304 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4305 GpOffset += 8; 4306 break; 4307 case AK_FloatingPoint: 4308 ShadowBase = 4309 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4310 if (MS.TrackOrigins) 4311 OriginBase = 4312 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4313 FpOffset += 16; 4314 break; 4315 case AK_Memory: 4316 if (IsFixed) 4317 continue; 4318 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4319 ShadowBase = 4320 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4321 if (MS.TrackOrigins) 4322 OriginBase = 4323 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4324 OverflowOffset += alignTo(ArgSize, 8); 4325 } 4326 // Take fixed arguments into account for GpOffset and FpOffset, 4327 // but don't actually store shadows for them. 4328 // TODO(glider): don't call get*PtrForVAArgument() for them. 4329 if (IsFixed) 4330 continue; 4331 if (!ShadowBase) 4332 continue; 4333 Value *Shadow = MSV.getShadow(A); 4334 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4335 if (MS.TrackOrigins) { 4336 Value *Origin = MSV.getOrigin(A); 4337 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4338 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4339 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4340 } 4341 } 4342 } 4343 Constant *OverflowSize = 4344 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4345 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4346 } 4347 4348 /// Compute the shadow address for a given va_arg. 4349 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4350 unsigned ArgOffset, unsigned ArgSize) { 4351 // Make sure we don't overflow __msan_va_arg_tls. 4352 if (ArgOffset + ArgSize > kParamTLSSize) 4353 return nullptr; 4354 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4355 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4356 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4357 "_msarg_va_s"); 4358 } 4359 4360 /// Compute the origin address for a given va_arg. 4361 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4362 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4363 // getOriginPtrForVAArgument() is always called after 4364 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4365 // overflow. 4366 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4367 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4368 "_msarg_va_o"); 4369 } 4370 4371 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4372 IRBuilder<> IRB(&I); 4373 Value *VAListTag = I.getArgOperand(0); 4374 Value *ShadowPtr, *OriginPtr; 4375 const Align Alignment = Align(8); 4376 std::tie(ShadowPtr, OriginPtr) = 4377 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4378 /*isStore*/ true); 4379 4380 // Unpoison the whole __va_list_tag. 4381 // FIXME: magic ABI constants. 4382 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4383 /* size */ 24, Alignment, false); 4384 // We shouldn't need to zero out the origins, as they're only checked for 4385 // nonzero shadow. 4386 } 4387 4388 void visitVAStartInst(VAStartInst &I) override { 4389 if (F.getCallingConv() == CallingConv::Win64) 4390 return; 4391 VAStartInstrumentationList.push_back(&I); 4392 unpoisonVAListTagForInst(I); 4393 } 4394 4395 void visitVACopyInst(VACopyInst &I) override { 4396 if (F.getCallingConv() == CallingConv::Win64) return; 4397 unpoisonVAListTagForInst(I); 4398 } 4399 4400 void finalizeInstrumentation() override { 4401 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4402 "finalizeInstrumentation called twice"); 4403 if (!VAStartInstrumentationList.empty()) { 4404 // If there is a va_start in this function, make a backup copy of 4405 // va_arg_tls somewhere in the function entry block. 4406 IRBuilder<> IRB(MSV.FnPrologueEnd); 4407 VAArgOverflowSize = 4408 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4409 Value *CopySize = 4410 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4411 VAArgOverflowSize); 4412 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4413 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4414 if (MS.TrackOrigins) { 4415 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4416 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4417 Align(8), CopySize); 4418 } 4419 } 4420 4421 // Instrument va_start. 4422 // Copy va_list shadow from the backup copy of the TLS contents. 4423 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4424 CallInst *OrigInst = VAStartInstrumentationList[i]; 4425 IRBuilder<> IRB(OrigInst->getNextNode()); 4426 Value *VAListTag = OrigInst->getArgOperand(0); 4427 4428 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4429 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4430 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4431 ConstantInt::get(MS.IntptrTy, 16)), 4432 PointerType::get(RegSaveAreaPtrTy, 0)); 4433 Value *RegSaveAreaPtr = 4434 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4435 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4436 const Align Alignment = Align(16); 4437 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4438 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4439 Alignment, /*isStore*/ true); 4440 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4441 AMD64FpEndOffset); 4442 if (MS.TrackOrigins) 4443 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4444 Alignment, AMD64FpEndOffset); 4445 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4446 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4447 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4448 ConstantInt::get(MS.IntptrTy, 8)), 4449 PointerType::get(OverflowArgAreaPtrTy, 0)); 4450 Value *OverflowArgAreaPtr = 4451 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4452 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4453 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4454 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4455 Alignment, /*isStore*/ true); 4456 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4457 AMD64FpEndOffset); 4458 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4459 VAArgOverflowSize); 4460 if (MS.TrackOrigins) { 4461 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4462 AMD64FpEndOffset); 4463 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4464 VAArgOverflowSize); 4465 } 4466 } 4467 } 4468 }; 4469 4470 /// MIPS64-specific implementation of VarArgHelper. 4471 struct VarArgMIPS64Helper : public VarArgHelper { 4472 Function &F; 4473 MemorySanitizer &MS; 4474 MemorySanitizerVisitor &MSV; 4475 Value *VAArgTLSCopy = nullptr; 4476 Value *VAArgSize = nullptr; 4477 4478 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4479 4480 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4481 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4482 4483 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4484 unsigned VAArgOffset = 0; 4485 const DataLayout &DL = F.getParent()->getDataLayout(); 4486 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4487 End = CB.arg_end(); 4488 ArgIt != End; ++ArgIt) { 4489 Triple TargetTriple(F.getParent()->getTargetTriple()); 4490 Value *A = *ArgIt; 4491 Value *Base; 4492 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4493 if (TargetTriple.getArch() == Triple::mips64) { 4494 // Adjusting the shadow for argument with size < 8 to match the placement 4495 // of bits in big endian system 4496 if (ArgSize < 8) 4497 VAArgOffset += (8 - ArgSize); 4498 } 4499 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4500 VAArgOffset += ArgSize; 4501 VAArgOffset = alignTo(VAArgOffset, 8); 4502 if (!Base) 4503 continue; 4504 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4505 } 4506 4507 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4508 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4509 // a new class member i.e. it is the total size of all VarArgs. 4510 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4511 } 4512 4513 /// Compute the shadow address for a given va_arg. 4514 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4515 unsigned ArgOffset, unsigned ArgSize) { 4516 // Make sure we don't overflow __msan_va_arg_tls. 4517 if (ArgOffset + ArgSize > kParamTLSSize) 4518 return nullptr; 4519 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4520 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4521 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4522 "_msarg"); 4523 } 4524 4525 void visitVAStartInst(VAStartInst &I) override { 4526 IRBuilder<> IRB(&I); 4527 VAStartInstrumentationList.push_back(&I); 4528 Value *VAListTag = I.getArgOperand(0); 4529 Value *ShadowPtr, *OriginPtr; 4530 const Align Alignment = Align(8); 4531 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4532 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4533 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4534 /* size */ 8, Alignment, false); 4535 } 4536 4537 void visitVACopyInst(VACopyInst &I) override { 4538 IRBuilder<> IRB(&I); 4539 VAStartInstrumentationList.push_back(&I); 4540 Value *VAListTag = I.getArgOperand(0); 4541 Value *ShadowPtr, *OriginPtr; 4542 const Align Alignment = Align(8); 4543 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4544 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4545 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4546 /* size */ 8, Alignment, false); 4547 } 4548 4549 void finalizeInstrumentation() override { 4550 assert(!VAArgSize && !VAArgTLSCopy && 4551 "finalizeInstrumentation called twice"); 4552 IRBuilder<> IRB(MSV.FnPrologueEnd); 4553 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4554 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4555 VAArgSize); 4556 4557 if (!VAStartInstrumentationList.empty()) { 4558 // If there is a va_start in this function, make a backup copy of 4559 // va_arg_tls somewhere in the function entry block. 4560 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4561 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4562 } 4563 4564 // Instrument va_start. 4565 // Copy va_list shadow from the backup copy of the TLS contents. 4566 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4567 CallInst *OrigInst = VAStartInstrumentationList[i]; 4568 IRBuilder<> IRB(OrigInst->getNextNode()); 4569 Value *VAListTag = OrigInst->getArgOperand(0); 4570 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4571 Value *RegSaveAreaPtrPtr = 4572 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4573 PointerType::get(RegSaveAreaPtrTy, 0)); 4574 Value *RegSaveAreaPtr = 4575 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4576 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4577 const Align Alignment = Align(8); 4578 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4579 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4580 Alignment, /*isStore*/ true); 4581 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4582 CopySize); 4583 } 4584 } 4585 }; 4586 4587 /// AArch64-specific implementation of VarArgHelper. 4588 struct VarArgAArch64Helper : public VarArgHelper { 4589 static const unsigned kAArch64GrArgSize = 64; 4590 static const unsigned kAArch64VrArgSize = 128; 4591 4592 static const unsigned AArch64GrBegOffset = 0; 4593 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4594 // Make VR space aligned to 16 bytes. 4595 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4596 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4597 + kAArch64VrArgSize; 4598 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4599 4600 Function &F; 4601 MemorySanitizer &MS; 4602 MemorySanitizerVisitor &MSV; 4603 Value *VAArgTLSCopy = nullptr; 4604 Value *VAArgOverflowSize = nullptr; 4605 4606 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4607 4608 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4609 4610 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4611 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4612 4613 ArgKind classifyArgument(Value* arg) { 4614 Type *T = arg->getType(); 4615 if (T->isFPOrFPVectorTy()) 4616 return AK_FloatingPoint; 4617 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4618 || (T->isPointerTy())) 4619 return AK_GeneralPurpose; 4620 return AK_Memory; 4621 } 4622 4623 // The instrumentation stores the argument shadow in a non ABI-specific 4624 // format because it does not know which argument is named (since Clang, 4625 // like x86_64 case, lowers the va_args in the frontend and this pass only 4626 // sees the low level code that deals with va_list internals). 4627 // The first seven GR registers are saved in the first 56 bytes of the 4628 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4629 // the remaining arguments. 4630 // Using constant offset within the va_arg TLS array allows fast copy 4631 // in the finalize instrumentation. 4632 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4633 unsigned GrOffset = AArch64GrBegOffset; 4634 unsigned VrOffset = AArch64VrBegOffset; 4635 unsigned OverflowOffset = AArch64VAEndOffset; 4636 4637 const DataLayout &DL = F.getParent()->getDataLayout(); 4638 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4639 ++ArgIt) { 4640 Value *A = *ArgIt; 4641 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4642 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4643 ArgKind AK = classifyArgument(A); 4644 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4645 AK = AK_Memory; 4646 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4647 AK = AK_Memory; 4648 Value *Base; 4649 switch (AK) { 4650 case AK_GeneralPurpose: 4651 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4652 GrOffset += 8; 4653 break; 4654 case AK_FloatingPoint: 4655 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4656 VrOffset += 16; 4657 break; 4658 case AK_Memory: 4659 // Don't count fixed arguments in the overflow area - va_start will 4660 // skip right over them. 4661 if (IsFixed) 4662 continue; 4663 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4664 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4665 alignTo(ArgSize, 8)); 4666 OverflowOffset += alignTo(ArgSize, 8); 4667 break; 4668 } 4669 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4670 // bother to actually store a shadow. 4671 if (IsFixed) 4672 continue; 4673 if (!Base) 4674 continue; 4675 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4676 } 4677 Constant *OverflowSize = 4678 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4679 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4680 } 4681 4682 /// Compute the shadow address for a given va_arg. 4683 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4684 unsigned ArgOffset, unsigned ArgSize) { 4685 // Make sure we don't overflow __msan_va_arg_tls. 4686 if (ArgOffset + ArgSize > kParamTLSSize) 4687 return nullptr; 4688 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4689 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4690 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4691 "_msarg"); 4692 } 4693 4694 void visitVAStartInst(VAStartInst &I) override { 4695 IRBuilder<> IRB(&I); 4696 VAStartInstrumentationList.push_back(&I); 4697 Value *VAListTag = I.getArgOperand(0); 4698 Value *ShadowPtr, *OriginPtr; 4699 const Align Alignment = Align(8); 4700 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4701 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4702 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4703 /* size */ 32, Alignment, false); 4704 } 4705 4706 void visitVACopyInst(VACopyInst &I) override { 4707 IRBuilder<> IRB(&I); 4708 VAStartInstrumentationList.push_back(&I); 4709 Value *VAListTag = I.getArgOperand(0); 4710 Value *ShadowPtr, *OriginPtr; 4711 const Align Alignment = Align(8); 4712 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4713 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4714 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4715 /* size */ 32, Alignment, false); 4716 } 4717 4718 // Retrieve a va_list field of 'void*' size. 4719 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4720 Value *SaveAreaPtrPtr = 4721 IRB.CreateIntToPtr( 4722 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4723 ConstantInt::get(MS.IntptrTy, offset)), 4724 Type::getInt64PtrTy(*MS.C)); 4725 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4726 } 4727 4728 // Retrieve a va_list field of 'int' size. 4729 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4730 Value *SaveAreaPtr = 4731 IRB.CreateIntToPtr( 4732 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4733 ConstantInt::get(MS.IntptrTy, offset)), 4734 Type::getInt32PtrTy(*MS.C)); 4735 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4736 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4737 } 4738 4739 void finalizeInstrumentation() override { 4740 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4741 "finalizeInstrumentation called twice"); 4742 if (!VAStartInstrumentationList.empty()) { 4743 // If there is a va_start in this function, make a backup copy of 4744 // va_arg_tls somewhere in the function entry block. 4745 IRBuilder<> IRB(MSV.FnPrologueEnd); 4746 VAArgOverflowSize = 4747 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4748 Value *CopySize = 4749 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4750 VAArgOverflowSize); 4751 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4752 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4753 } 4754 4755 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4756 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4757 4758 // Instrument va_start, copy va_list shadow from the backup copy of 4759 // the TLS contents. 4760 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4761 CallInst *OrigInst = VAStartInstrumentationList[i]; 4762 IRBuilder<> IRB(OrigInst->getNextNode()); 4763 4764 Value *VAListTag = OrigInst->getArgOperand(0); 4765 4766 // The variadic ABI for AArch64 creates two areas to save the incoming 4767 // argument registers (one for 64-bit general register xn-x7 and another 4768 // for 128-bit FP/SIMD vn-v7). 4769 // We need then to propagate the shadow arguments on both regions 4770 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4771 // The remaining arguments are saved on shadow for 'va::stack'. 4772 // One caveat is it requires only to propagate the non-named arguments, 4773 // however on the call site instrumentation 'all' the arguments are 4774 // saved. So to copy the shadow values from the va_arg TLS array 4775 // we need to adjust the offset for both GR and VR fields based on 4776 // the __{gr,vr}_offs value (since they are stores based on incoming 4777 // named arguments). 4778 4779 // Read the stack pointer from the va_list. 4780 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4781 4782 // Read both the __gr_top and __gr_off and add them up. 4783 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4784 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4785 4786 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4787 4788 // Read both the __vr_top and __vr_off and add them up. 4789 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4790 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4791 4792 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4793 4794 // It does not know how many named arguments is being used and, on the 4795 // callsite all the arguments were saved. Since __gr_off is defined as 4796 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4797 // argument by ignoring the bytes of shadow from named arguments. 4798 Value *GrRegSaveAreaShadowPtrOff = 4799 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4800 4801 Value *GrRegSaveAreaShadowPtr = 4802 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4803 Align(8), /*isStore*/ true) 4804 .first; 4805 4806 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4807 GrRegSaveAreaShadowPtrOff); 4808 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4809 4810 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4811 GrCopySize); 4812 4813 // Again, but for FP/SIMD values. 4814 Value *VrRegSaveAreaShadowPtrOff = 4815 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4816 4817 Value *VrRegSaveAreaShadowPtr = 4818 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4819 Align(8), /*isStore*/ true) 4820 .first; 4821 4822 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4823 IRB.getInt8Ty(), 4824 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4825 IRB.getInt32(AArch64VrBegOffset)), 4826 VrRegSaveAreaShadowPtrOff); 4827 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4828 4829 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4830 VrCopySize); 4831 4832 // And finally for remaining arguments. 4833 Value *StackSaveAreaShadowPtr = 4834 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4835 Align(16), /*isStore*/ true) 4836 .first; 4837 4838 Value *StackSrcPtr = 4839 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4840 IRB.getInt32(AArch64VAEndOffset)); 4841 4842 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4843 Align(16), VAArgOverflowSize); 4844 } 4845 } 4846 }; 4847 4848 /// PowerPC64-specific implementation of VarArgHelper. 4849 struct VarArgPowerPC64Helper : public VarArgHelper { 4850 Function &F; 4851 MemorySanitizer &MS; 4852 MemorySanitizerVisitor &MSV; 4853 Value *VAArgTLSCopy = nullptr; 4854 Value *VAArgSize = nullptr; 4855 4856 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4857 4858 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4859 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4860 4861 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4862 // For PowerPC, we need to deal with alignment of stack arguments - 4863 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4864 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4865 // For that reason, we compute current offset from stack pointer (which is 4866 // always properly aligned), and offset for the first vararg, then subtract 4867 // them. 4868 unsigned VAArgBase; 4869 Triple TargetTriple(F.getParent()->getTargetTriple()); 4870 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4871 // and 32 bytes for ABIv2. This is usually determined by target 4872 // endianness, but in theory could be overridden by function attribute. 4873 if (TargetTriple.getArch() == Triple::ppc64) 4874 VAArgBase = 48; 4875 else 4876 VAArgBase = 32; 4877 unsigned VAArgOffset = VAArgBase; 4878 const DataLayout &DL = F.getParent()->getDataLayout(); 4879 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4880 ++ArgIt) { 4881 Value *A = *ArgIt; 4882 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4883 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4884 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4885 if (IsByVal) { 4886 assert(A->getType()->isPointerTy()); 4887 Type *RealTy = CB.getParamByValType(ArgNo); 4888 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4889 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4890 if (!ArgAlign || *ArgAlign < Align(8)) 4891 ArgAlign = Align(8); 4892 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4893 if (!IsFixed) { 4894 Value *Base = getShadowPtrForVAArgument( 4895 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4896 if (Base) { 4897 Value *AShadowPtr, *AOriginPtr; 4898 std::tie(AShadowPtr, AOriginPtr) = 4899 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4900 kShadowTLSAlignment, /*isStore*/ false); 4901 4902 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4903 kShadowTLSAlignment, ArgSize); 4904 } 4905 } 4906 VAArgOffset += alignTo(ArgSize, 8); 4907 } else { 4908 Value *Base; 4909 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4910 uint64_t ArgAlign = 8; 4911 if (A->getType()->isArrayTy()) { 4912 // Arrays are aligned to element size, except for long double 4913 // arrays, which are aligned to 8 bytes. 4914 Type *ElementTy = A->getType()->getArrayElementType(); 4915 if (!ElementTy->isPPC_FP128Ty()) 4916 ArgAlign = DL.getTypeAllocSize(ElementTy); 4917 } else if (A->getType()->isVectorTy()) { 4918 // Vectors are naturally aligned. 4919 ArgAlign = DL.getTypeAllocSize(A->getType()); 4920 } 4921 if (ArgAlign < 8) 4922 ArgAlign = 8; 4923 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4924 if (DL.isBigEndian()) { 4925 // Adjusting the shadow for argument with size < 8 to match the placement 4926 // of bits in big endian system 4927 if (ArgSize < 8) 4928 VAArgOffset += (8 - ArgSize); 4929 } 4930 if (!IsFixed) { 4931 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4932 VAArgOffset - VAArgBase, ArgSize); 4933 if (Base) 4934 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4935 } 4936 VAArgOffset += ArgSize; 4937 VAArgOffset = alignTo(VAArgOffset, 8); 4938 } 4939 if (IsFixed) 4940 VAArgBase = VAArgOffset; 4941 } 4942 4943 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4944 VAArgOffset - VAArgBase); 4945 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4946 // a new class member i.e. it is the total size of all VarArgs. 4947 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4948 } 4949 4950 /// Compute the shadow address for a given va_arg. 4951 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4952 unsigned ArgOffset, unsigned ArgSize) { 4953 // Make sure we don't overflow __msan_va_arg_tls. 4954 if (ArgOffset + ArgSize > kParamTLSSize) 4955 return nullptr; 4956 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4957 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4958 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4959 "_msarg"); 4960 } 4961 4962 void visitVAStartInst(VAStartInst &I) override { 4963 IRBuilder<> IRB(&I); 4964 VAStartInstrumentationList.push_back(&I); 4965 Value *VAListTag = I.getArgOperand(0); 4966 Value *ShadowPtr, *OriginPtr; 4967 const Align Alignment = Align(8); 4968 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4969 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4970 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4971 /* size */ 8, Alignment, false); 4972 } 4973 4974 void visitVACopyInst(VACopyInst &I) override { 4975 IRBuilder<> IRB(&I); 4976 Value *VAListTag = I.getArgOperand(0); 4977 Value *ShadowPtr, *OriginPtr; 4978 const Align Alignment = Align(8); 4979 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4980 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4981 // Unpoison the whole __va_list_tag. 4982 // FIXME: magic ABI constants. 4983 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4984 /* size */ 8, Alignment, false); 4985 } 4986 4987 void finalizeInstrumentation() override { 4988 assert(!VAArgSize && !VAArgTLSCopy && 4989 "finalizeInstrumentation called twice"); 4990 IRBuilder<> IRB(MSV.FnPrologueEnd); 4991 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4992 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4993 VAArgSize); 4994 4995 if (!VAStartInstrumentationList.empty()) { 4996 // If there is a va_start in this function, make a backup copy of 4997 // va_arg_tls somewhere in the function entry block. 4998 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4999 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5000 } 5001 5002 // Instrument va_start. 5003 // Copy va_list shadow from the backup copy of the TLS contents. 5004 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5005 CallInst *OrigInst = VAStartInstrumentationList[i]; 5006 IRBuilder<> IRB(OrigInst->getNextNode()); 5007 Value *VAListTag = OrigInst->getArgOperand(0); 5008 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5009 Value *RegSaveAreaPtrPtr = 5010 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5011 PointerType::get(RegSaveAreaPtrTy, 0)); 5012 Value *RegSaveAreaPtr = 5013 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5014 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5015 const Align Alignment = Align(8); 5016 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5017 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5018 Alignment, /*isStore*/ true); 5019 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5020 CopySize); 5021 } 5022 } 5023 }; 5024 5025 /// SystemZ-specific implementation of VarArgHelper. 5026 struct VarArgSystemZHelper : public VarArgHelper { 5027 static const unsigned SystemZGpOffset = 16; 5028 static const unsigned SystemZGpEndOffset = 56; 5029 static const unsigned SystemZFpOffset = 128; 5030 static const unsigned SystemZFpEndOffset = 160; 5031 static const unsigned SystemZMaxVrArgs = 8; 5032 static const unsigned SystemZRegSaveAreaSize = 160; 5033 static const unsigned SystemZOverflowOffset = 160; 5034 static const unsigned SystemZVAListTagSize = 32; 5035 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5036 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5037 5038 Function &F; 5039 MemorySanitizer &MS; 5040 MemorySanitizerVisitor &MSV; 5041 Value *VAArgTLSCopy = nullptr; 5042 Value *VAArgTLSOriginCopy = nullptr; 5043 Value *VAArgOverflowSize = nullptr; 5044 5045 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5046 5047 enum class ArgKind { 5048 GeneralPurpose, 5049 FloatingPoint, 5050 Vector, 5051 Memory, 5052 Indirect, 5053 }; 5054 5055 enum class ShadowExtension { None, Zero, Sign }; 5056 5057 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5058 MemorySanitizerVisitor &MSV) 5059 : F(F), MS(MS), MSV(MSV) {} 5060 5061 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5062 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5063 // only a few possibilities of what it can be. In particular, enums, single 5064 // element structs and large types have already been taken care of. 5065 5066 // Some i128 and fp128 arguments are converted to pointers only in the 5067 // back end. 5068 if (T->isIntegerTy(128) || T->isFP128Ty()) 5069 return ArgKind::Indirect; 5070 if (T->isFloatingPointTy()) 5071 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5072 if (T->isIntegerTy() || T->isPointerTy()) 5073 return ArgKind::GeneralPurpose; 5074 if (T->isVectorTy()) 5075 return ArgKind::Vector; 5076 return ArgKind::Memory; 5077 } 5078 5079 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5080 // ABI says: "One of the simple integer types no more than 64 bits wide. 5081 // ... If such an argument is shorter than 64 bits, replace it by a full 5082 // 64-bit integer representing the same number, using sign or zero 5083 // extension". Shadow for an integer argument has the same type as the 5084 // argument itself, so it can be sign or zero extended as well. 5085 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5086 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5087 if (ZExt) { 5088 assert(!SExt); 5089 return ShadowExtension::Zero; 5090 } 5091 if (SExt) { 5092 assert(!ZExt); 5093 return ShadowExtension::Sign; 5094 } 5095 return ShadowExtension::None; 5096 } 5097 5098 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5099 bool IsSoftFloatABI = CB.getCalledFunction() 5100 ->getFnAttribute("use-soft-float") 5101 .getValueAsBool(); 5102 unsigned GpOffset = SystemZGpOffset; 5103 unsigned FpOffset = SystemZFpOffset; 5104 unsigned VrIndex = 0; 5105 unsigned OverflowOffset = SystemZOverflowOffset; 5106 const DataLayout &DL = F.getParent()->getDataLayout(); 5107 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5108 ++ArgIt) { 5109 Value *A = *ArgIt; 5110 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5111 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5112 // SystemZABIInfo does not produce ByVal parameters. 5113 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5114 Type *T = A->getType(); 5115 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5116 if (AK == ArgKind::Indirect) { 5117 T = PointerType::get(T, 0); 5118 AK = ArgKind::GeneralPurpose; 5119 } 5120 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5121 AK = ArgKind::Memory; 5122 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5123 AK = ArgKind::Memory; 5124 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5125 AK = ArgKind::Memory; 5126 Value *ShadowBase = nullptr; 5127 Value *OriginBase = nullptr; 5128 ShadowExtension SE = ShadowExtension::None; 5129 switch (AK) { 5130 case ArgKind::GeneralPurpose: { 5131 // Always keep track of GpOffset, but store shadow only for varargs. 5132 uint64_t ArgSize = 8; 5133 if (GpOffset + ArgSize <= kParamTLSSize) { 5134 if (!IsFixed) { 5135 SE = getShadowExtension(CB, ArgNo); 5136 uint64_t GapSize = 0; 5137 if (SE == ShadowExtension::None) { 5138 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5139 assert(ArgAllocSize <= ArgSize); 5140 GapSize = ArgSize - ArgAllocSize; 5141 } 5142 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5143 if (MS.TrackOrigins) 5144 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5145 } 5146 GpOffset += ArgSize; 5147 } else { 5148 GpOffset = kParamTLSSize; 5149 } 5150 break; 5151 } 5152 case ArgKind::FloatingPoint: { 5153 // Always keep track of FpOffset, but store shadow only for varargs. 5154 uint64_t ArgSize = 8; 5155 if (FpOffset + ArgSize <= kParamTLSSize) { 5156 if (!IsFixed) { 5157 // PoP says: "A short floating-point datum requires only the 5158 // left-most 32 bit positions of a floating-point register". 5159 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5160 // don't extend shadow and don't mind the gap. 5161 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5162 if (MS.TrackOrigins) 5163 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5164 } 5165 FpOffset += ArgSize; 5166 } else { 5167 FpOffset = kParamTLSSize; 5168 } 5169 break; 5170 } 5171 case ArgKind::Vector: { 5172 // Keep track of VrIndex. No need to store shadow, since vector varargs 5173 // go through AK_Memory. 5174 assert(IsFixed); 5175 VrIndex++; 5176 break; 5177 } 5178 case ArgKind::Memory: { 5179 // Keep track of OverflowOffset and store shadow only for varargs. 5180 // Ignore fixed args, since we need to copy only the vararg portion of 5181 // the overflow area shadow. 5182 if (!IsFixed) { 5183 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5184 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5185 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5186 SE = getShadowExtension(CB, ArgNo); 5187 uint64_t GapSize = 5188 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5189 ShadowBase = 5190 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5191 if (MS.TrackOrigins) 5192 OriginBase = 5193 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5194 OverflowOffset += ArgSize; 5195 } else { 5196 OverflowOffset = kParamTLSSize; 5197 } 5198 } 5199 break; 5200 } 5201 case ArgKind::Indirect: 5202 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5203 } 5204 if (ShadowBase == nullptr) 5205 continue; 5206 Value *Shadow = MSV.getShadow(A); 5207 if (SE != ShadowExtension::None) 5208 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5209 /*Signed*/ SE == ShadowExtension::Sign); 5210 ShadowBase = IRB.CreateIntToPtr( 5211 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5212 IRB.CreateStore(Shadow, ShadowBase); 5213 if (MS.TrackOrigins) { 5214 Value *Origin = MSV.getOrigin(A); 5215 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5216 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5217 kMinOriginAlignment); 5218 } 5219 } 5220 Constant *OverflowSize = ConstantInt::get( 5221 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5222 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5223 } 5224 5225 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5226 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5227 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5228 } 5229 5230 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5231 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5232 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5233 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5234 "_msarg_va_o"); 5235 } 5236 5237 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5238 IRBuilder<> IRB(&I); 5239 Value *VAListTag = I.getArgOperand(0); 5240 Value *ShadowPtr, *OriginPtr; 5241 const Align Alignment = Align(8); 5242 std::tie(ShadowPtr, OriginPtr) = 5243 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5244 /*isStore*/ true); 5245 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5246 SystemZVAListTagSize, Alignment, false); 5247 } 5248 5249 void visitVAStartInst(VAStartInst &I) override { 5250 VAStartInstrumentationList.push_back(&I); 5251 unpoisonVAListTagForInst(I); 5252 } 5253 5254 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5255 5256 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5257 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5258 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5259 IRB.CreateAdd( 5260 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5261 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5262 PointerType::get(RegSaveAreaPtrTy, 0)); 5263 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5264 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5265 const Align Alignment = Align(8); 5266 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5267 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5268 /*isStore*/ true); 5269 // TODO(iii): copy only fragments filled by visitCallBase() 5270 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5271 SystemZRegSaveAreaSize); 5272 if (MS.TrackOrigins) 5273 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5274 Alignment, SystemZRegSaveAreaSize); 5275 } 5276 5277 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5278 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5279 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5280 IRB.CreateAdd( 5281 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5282 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5283 PointerType::get(OverflowArgAreaPtrTy, 0)); 5284 Value *OverflowArgAreaPtr = 5285 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5286 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5287 const Align Alignment = Align(8); 5288 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5289 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5290 Alignment, /*isStore*/ true); 5291 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5292 SystemZOverflowOffset); 5293 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5294 VAArgOverflowSize); 5295 if (MS.TrackOrigins) { 5296 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5297 SystemZOverflowOffset); 5298 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5299 VAArgOverflowSize); 5300 } 5301 } 5302 5303 void finalizeInstrumentation() override { 5304 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5305 "finalizeInstrumentation called twice"); 5306 if (!VAStartInstrumentationList.empty()) { 5307 // If there is a va_start in this function, make a backup copy of 5308 // va_arg_tls somewhere in the function entry block. 5309 IRBuilder<> IRB(MSV.FnPrologueEnd); 5310 VAArgOverflowSize = 5311 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5312 Value *CopySize = 5313 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5314 VAArgOverflowSize); 5315 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5316 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5317 if (MS.TrackOrigins) { 5318 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5319 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5320 Align(8), CopySize); 5321 } 5322 } 5323 5324 // Instrument va_start. 5325 // Copy va_list shadow from the backup copy of the TLS contents. 5326 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5327 VaStartNo < VaStartNum; VaStartNo++) { 5328 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5329 IRBuilder<> IRB(OrigInst->getNextNode()); 5330 Value *VAListTag = OrigInst->getArgOperand(0); 5331 copyRegSaveArea(IRB, VAListTag); 5332 copyOverflowArea(IRB, VAListTag); 5333 } 5334 } 5335 }; 5336 5337 /// A no-op implementation of VarArgHelper. 5338 struct VarArgNoOpHelper : public VarArgHelper { 5339 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5340 MemorySanitizerVisitor &MSV) {} 5341 5342 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5343 5344 void visitVAStartInst(VAStartInst &I) override {} 5345 5346 void visitVACopyInst(VACopyInst &I) override {} 5347 5348 void finalizeInstrumentation() override {} 5349 }; 5350 5351 } // end anonymous namespace 5352 5353 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5354 MemorySanitizerVisitor &Visitor) { 5355 // VarArg handling is only implemented on AMD64. False positives are possible 5356 // on other platforms. 5357 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5358 if (TargetTriple.getArch() == Triple::x86_64) 5359 return new VarArgAMD64Helper(Func, Msan, Visitor); 5360 else if (TargetTriple.isMIPS64()) 5361 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5362 else if (TargetTriple.getArch() == Triple::aarch64) 5363 return new VarArgAArch64Helper(Func, Msan, Visitor); 5364 else if (TargetTriple.getArch() == Triple::ppc64 || 5365 TargetTriple.getArch() == Triple::ppc64le) 5366 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5367 else if (TargetTriple.getArch() == Triple::systemz) 5368 return new VarArgSystemZHelper(Func, Msan, Visitor); 5369 else 5370 return new VarArgNoOpHelper(Func, Msan, Visitor); 5371 } 5372 5373 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5374 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5375 return false; 5376 5377 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5378 return false; 5379 5380 MemorySanitizerVisitor Visitor(F, *this, TLI); 5381 5382 // Clear out readonly/readnone attributes. 5383 AttributeMask B; 5384 B.addAttribute(Attribute::ReadOnly) 5385 .addAttribute(Attribute::ReadNone) 5386 .addAttribute(Attribute::WriteOnly) 5387 .addAttribute(Attribute::ArgMemOnly) 5388 .addAttribute(Attribute::Speculatable); 5389 F.removeFnAttrs(B); 5390 5391 return Visitor.runOnFunction(); 5392 } 5393