1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 // This is an experiment to enable handling of cases where shadow is a non-zero 311 // compile-time constant. For some unexplainable reason they were silently 312 // ignored in the instrumentation. 313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 314 cl::desc("Insert checks for constant shadow values"), 315 cl::Hidden, cl::init(false)); 316 317 // This is off by default because of a bug in gold: 318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 319 static cl::opt<bool> ClWithComdat("msan-with-comdat", 320 cl::desc("Place MSan constructors in comdat sections"), 321 cl::Hidden, cl::init(false)); 322 323 // These options allow to specify custom memory map parameters 324 // See MemoryMapParams for details. 325 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 326 cl::desc("Define custom MSan AndMask"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 330 cl::desc("Define custom MSan XorMask"), 331 cl::Hidden, cl::init(0)); 332 333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 334 cl::desc("Define custom MSan ShadowBase"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 338 cl::desc("Define custom MSan OriginBase"), 339 cl::Hidden, cl::init(0)); 340 341 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 342 static const char *const kMsanInitName = "__msan_init"; 343 344 namespace { 345 346 // Memory map parameters used in application-to-shadow address calculation. 347 // Offset = (Addr & ~AndMask) ^ XorMask 348 // Shadow = ShadowBase + Offset 349 // Origin = OriginBase + Offset 350 struct MemoryMapParams { 351 uint64_t AndMask; 352 uint64_t XorMask; 353 uint64_t ShadowBase; 354 uint64_t OriginBase; 355 }; 356 357 struct PlatformMemoryMapParams { 358 const MemoryMapParams *bits32; 359 const MemoryMapParams *bits64; 360 }; 361 362 } // end anonymous namespace 363 364 // i386 Linux 365 static const MemoryMapParams Linux_I386_MemoryMapParams = { 366 0x000080000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x000040000000, // OriginBase 370 }; 371 372 // x86_64 Linux 373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 375 0x400000000000, // AndMask 376 0, // XorMask (not used) 377 0, // ShadowBase (not used) 378 0x200000000000, // OriginBase 379 #else 380 0, // AndMask (not used) 381 0x500000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x100000000000, // OriginBase 384 #endif 385 }; 386 387 // mips64 Linux 388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 389 0, // AndMask (not used) 390 0x008000000000, // XorMask 391 0, // ShadowBase (not used) 392 0x002000000000, // OriginBase 393 }; 394 395 // ppc64 Linux 396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 397 0xE00000000000, // AndMask 398 0x100000000000, // XorMask 399 0x080000000000, // ShadowBase 400 0x1C0000000000, // OriginBase 401 }; 402 403 // s390x Linux 404 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 405 0xC00000000000, // AndMask 406 0, // XorMask (not used) 407 0x080000000000, // ShadowBase 408 0x1C0000000000, // OriginBase 409 }; 410 411 // aarch64 Linux 412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 413 0, // AndMask (not used) 414 0x06000000000, // XorMask 415 0, // ShadowBase (not used) 416 0x01000000000, // OriginBase 417 }; 418 419 // i386 FreeBSD 420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 421 0x000180000000, // AndMask 422 0x000040000000, // XorMask 423 0x000020000000, // ShadowBase 424 0x000700000000, // OriginBase 425 }; 426 427 // x86_64 FreeBSD 428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 429 0xc00000000000, // AndMask 430 0x200000000000, // XorMask 431 0x100000000000, // ShadowBase 432 0x380000000000, // OriginBase 433 }; 434 435 // x86_64 NetBSD 436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 437 0, // AndMask 438 0x500000000000, // XorMask 439 0, // ShadowBase 440 0x100000000000, // OriginBase 441 }; 442 443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 444 &Linux_I386_MemoryMapParams, 445 &Linux_X86_64_MemoryMapParams, 446 }; 447 448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 449 nullptr, 450 &Linux_MIPS64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 454 nullptr, 455 &Linux_PowerPC64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 459 nullptr, 460 &Linux_S390X_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 464 nullptr, 465 &Linux_AArch64_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 469 &FreeBSD_I386_MemoryMapParams, 470 &FreeBSD_X86_64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 474 nullptr, 475 &NetBSD_X86_64_MemoryMapParams, 476 }; 477 478 namespace { 479 480 /// Instrument functions of a module to detect uninitialized reads. 481 /// 482 /// Instantiating MemorySanitizer inserts the msan runtime library API function 483 /// declarations into the module if they don't exist already. Instantiating 484 /// ensures the __msan_init function is in the list of global constructors for 485 /// the module. 486 class MemorySanitizer { 487 public: 488 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 489 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 490 Recover(Options.Recover) { 491 initializeModule(M); 492 } 493 494 // MSan cannot be moved or copied because of MapParams. 495 MemorySanitizer(MemorySanitizer &&) = delete; 496 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 497 MemorySanitizer(const MemorySanitizer &) = delete; 498 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 499 500 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 501 502 private: 503 friend struct MemorySanitizerVisitor; 504 friend struct VarArgAMD64Helper; 505 friend struct VarArgMIPS64Helper; 506 friend struct VarArgAArch64Helper; 507 friend struct VarArgPowerPC64Helper; 508 friend struct VarArgSystemZHelper; 509 510 void initializeModule(Module &M); 511 void initializeCallbacks(Module &M); 512 void createKernelApi(Module &M); 513 void createUserspaceApi(Module &M); 514 515 /// True if we're compiling the Linux kernel. 516 bool CompileKernel; 517 /// Track origins (allocation points) of uninitialized values. 518 int TrackOrigins; 519 bool Recover; 520 521 LLVMContext *C; 522 Type *IntptrTy; 523 Type *OriginTy; 524 525 // XxxTLS variables represent the per-thread state in MSan and per-task state 526 // in KMSAN. 527 // For the userspace these point to thread-local globals. In the kernel land 528 // they point to the members of a per-task struct obtained via a call to 529 // __msan_get_context_state(). 530 531 /// Thread-local shadow storage for function parameters. 532 Value *ParamTLS; 533 534 /// Thread-local origin storage for function parameters. 535 Value *ParamOriginTLS; 536 537 /// Thread-local shadow storage for function return value. 538 Value *RetvalTLS; 539 540 /// Thread-local origin storage for function return value. 541 Value *RetvalOriginTLS; 542 543 /// Thread-local shadow storage for in-register va_arg function 544 /// parameters (x86_64-specific). 545 Value *VAArgTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgOriginTLS; 550 551 /// Thread-local shadow storage for va_arg overflow area 552 /// (x86_64-specific). 553 Value *VAArgOverflowSizeTLS; 554 555 /// Are the instrumentation callbacks set up? 556 bool CallbacksInitialized = false; 557 558 /// The run-time callback to print a warning. 559 FunctionCallee WarningFn; 560 561 // These arrays are indexed by log2(AccessSize). 562 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 563 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 564 565 /// Run-time helper that generates a new origin value for a stack 566 /// allocation. 567 FunctionCallee MsanSetAllocaOrigin4Fn; 568 569 /// Run-time helper that poisons stack on function entry. 570 FunctionCallee MsanPoisonStackFn; 571 572 /// Run-time helper that records a store (or any event) of an 573 /// uninitialized value and returns an updated origin id encoding this info. 574 FunctionCallee MsanChainOriginFn; 575 576 /// Run-time helper that paints an origin over a region. 577 FunctionCallee MsanSetOriginFn; 578 579 /// MSan runtime replacements for memmove, memcpy and memset. 580 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 581 582 /// KMSAN callback for task-local function argument shadow. 583 StructType *MsanContextStateTy; 584 FunctionCallee MsanGetContextStateFn; 585 586 /// Functions for poisoning/unpoisoning local variables 587 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 588 589 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 590 /// pointers. 591 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 592 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 593 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 594 FunctionCallee MsanInstrumentAsmStoreFn; 595 596 /// Helper to choose between different MsanMetadataPtrXxx(). 597 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 598 599 /// Memory map parameters used in application-to-shadow calculation. 600 const MemoryMapParams *MapParams; 601 602 /// Custom memory map parameters used when -msan-shadow-base or 603 // -msan-origin-base is provided. 604 MemoryMapParams CustomMapParams; 605 606 MDNode *ColdCallWeights; 607 608 /// Branch weights for origin store. 609 MDNode *OriginStoreWeights; 610 }; 611 612 void insertModuleCtor(Module &M) { 613 getOrCreateSanitizerCtorAndInitFunctions( 614 M, kMsanModuleCtorName, kMsanInitName, 615 /*InitArgTypes=*/{}, 616 /*InitArgs=*/{}, 617 // This callback is invoked when the functions are created the first 618 // time. Hook them into the global ctors list in that case: 619 [&](Function *Ctor, FunctionCallee) { 620 if (!ClWithComdat) { 621 appendToGlobalCtors(M, Ctor, 0); 622 return; 623 } 624 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 625 Ctor->setComdat(MsanCtorComdat); 626 appendToGlobalCtors(M, Ctor, 0, Ctor); 627 }); 628 } 629 630 /// A legacy function pass for msan instrumentation. 631 /// 632 /// Instruments functions to detect uninitialized reads. 633 struct MemorySanitizerLegacyPass : public FunctionPass { 634 // Pass identification, replacement for typeid. 635 static char ID; 636 637 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 638 : FunctionPass(ID), Options(Options) { 639 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 640 } 641 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 642 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.addRequired<TargetLibraryInfoWrapperPass>(); 645 } 646 647 bool runOnFunction(Function &F) override { 648 return MSan->sanitizeFunction( 649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 650 } 651 bool doInitialization(Module &M) override; 652 653 Optional<MemorySanitizer> MSan; 654 MemorySanitizerOptions Options; 655 }; 656 657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 658 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 659 } 660 661 } // end anonymous namespace 662 663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 664 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 665 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 666 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 667 668 PreservedAnalyses MemorySanitizerPass::run(Function &F, 669 FunctionAnalysisManager &FAM) { 670 MemorySanitizer Msan(*F.getParent(), Options); 671 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 672 return PreservedAnalyses::none(); 673 return PreservedAnalyses::all(); 674 } 675 676 PreservedAnalyses MemorySanitizerPass::run(Module &M, 677 ModuleAnalysisManager &AM) { 678 if (Options.Kernel) 679 return PreservedAnalyses::all(); 680 insertModuleCtor(M); 681 return PreservedAnalyses::none(); 682 } 683 684 char MemorySanitizerLegacyPass::ID = 0; 685 686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 687 "MemorySanitizer: detects uninitialized reads.", false, 688 false) 689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 691 "MemorySanitizer: detects uninitialized reads.", false, 692 false) 693 694 FunctionPass * 695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 696 return new MemorySanitizerLegacyPass(Options); 697 } 698 699 /// Create a non-const global initialized with the given string. 700 /// 701 /// Creates a writable global for Str so that we can pass it to the 702 /// run-time lib. Runtime uses first 4 bytes of the string to store the 703 /// frame ID, so the string needs to be mutable. 704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 705 StringRef Str) { 706 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 707 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 708 GlobalValue::PrivateLinkage, StrConst, ""); 709 } 710 711 /// Create KMSAN API callbacks. 712 void MemorySanitizer::createKernelApi(Module &M) { 713 IRBuilder<> IRB(*C); 714 715 // These will be initialized in insertKmsanPrologue(). 716 RetvalTLS = nullptr; 717 RetvalOriginTLS = nullptr; 718 ParamTLS = nullptr; 719 ParamOriginTLS = nullptr; 720 VAArgTLS = nullptr; 721 VAArgOriginTLS = nullptr; 722 VAArgOverflowSizeTLS = nullptr; 723 724 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 725 IRB.getInt32Ty()); 726 // Requests the per-task context state (kmsan_context_state*) from the 727 // runtime library. 728 MsanContextStateTy = StructType::get( 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 731 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 732 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 733 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 734 OriginTy); 735 MsanGetContextStateFn = M.getOrInsertFunction( 736 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 737 738 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 739 PointerType::get(IRB.getInt32Ty(), 0)); 740 741 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 742 std::string name_load = 743 "__msan_metadata_ptr_for_load_" + std::to_string(size); 744 std::string name_store = 745 "__msan_metadata_ptr_for_store_" + std::to_string(size); 746 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 747 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 748 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 749 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 750 } 751 752 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 753 "__msan_metadata_ptr_for_load_n", RetTy, 754 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 755 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 756 "__msan_metadata_ptr_for_store_n", RetTy, 757 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 758 759 // Functions for poisoning and unpoisoning memory. 760 MsanPoisonAllocaFn = 761 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 762 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 763 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 764 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 765 } 766 767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 768 return M.getOrInsertGlobal(Name, Ty, [&] { 769 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 770 nullptr, Name, nullptr, 771 GlobalVariable::InitialExecTLSModel); 772 }); 773 } 774 775 /// Insert declarations for userspace-specific functions and globals. 776 void MemorySanitizer::createUserspaceApi(Module &M) { 777 IRBuilder<> IRB(*C); 778 779 // Create the callback. 780 // FIXME: this function should have "Cold" calling conv, 781 // which is not yet implemented. 782 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 783 : "__msan_warning_with_origin_noreturn"; 784 WarningFn = 785 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 786 787 // Create the global TLS variables. 788 RetvalTLS = 789 getOrInsertGlobal(M, "__msan_retval_tls", 790 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 791 792 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 793 794 ParamTLS = 795 getOrInsertGlobal(M, "__msan_param_tls", 796 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 797 798 ParamOriginTLS = 799 getOrInsertGlobal(M, "__msan_param_origin_tls", 800 ArrayType::get(OriginTy, kParamTLSSize / 4)); 801 802 VAArgTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_tls", 804 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 805 806 VAArgOriginTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 808 ArrayType::get(OriginTy, kParamTLSSize / 4)); 809 810 VAArgOverflowSizeTLS = 811 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 812 813 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 814 AccessSizeIndex++) { 815 unsigned AccessSize = 1 << AccessSizeIndex; 816 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 817 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 818 MaybeWarningFnAttrs.push_back(std::make_pair( 819 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 820 MaybeWarningFnAttrs.push_back(std::make_pair( 821 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 822 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 823 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 824 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 825 826 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 827 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 828 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 829 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 830 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 831 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 832 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 833 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 834 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 835 IRB.getInt32Ty()); 836 } 837 838 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 839 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 840 IRB.getInt8PtrTy(), IntptrTy); 841 MsanPoisonStackFn = 842 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 843 IRB.getInt8PtrTy(), IntptrTy); 844 } 845 846 /// Insert extern declaration of runtime-provided functions and globals. 847 void MemorySanitizer::initializeCallbacks(Module &M) { 848 // Only do this once. 849 if (CallbacksInitialized) 850 return; 851 852 IRBuilder<> IRB(*C); 853 // Initialize callbacks that are common for kernel and userspace 854 // instrumentation. 855 MsanChainOriginFn = M.getOrInsertFunction( 856 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 857 MsanSetOriginFn = 858 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 859 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 860 MemmoveFn = M.getOrInsertFunction( 861 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 862 IRB.getInt8PtrTy(), IntptrTy); 863 MemcpyFn = M.getOrInsertFunction( 864 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 865 IntptrTy); 866 MemsetFn = M.getOrInsertFunction( 867 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 868 IntptrTy); 869 870 MsanInstrumentAsmStoreFn = 871 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 872 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 873 874 if (CompileKernel) { 875 createKernelApi(M); 876 } else { 877 createUserspaceApi(M); 878 } 879 CallbacksInitialized = true; 880 } 881 882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 883 int size) { 884 FunctionCallee *Fns = 885 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 886 switch (size) { 887 case 1: 888 return Fns[0]; 889 case 2: 890 return Fns[1]; 891 case 4: 892 return Fns[2]; 893 case 8: 894 return Fns[3]; 895 default: 896 return nullptr; 897 } 898 } 899 900 /// Module-level initialization. 901 /// 902 /// inserts a call to __msan_init to the module's constructor list. 903 void MemorySanitizer::initializeModule(Module &M) { 904 auto &DL = M.getDataLayout(); 905 906 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 907 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 908 // Check the overrides first 909 if (ShadowPassed || OriginPassed) { 910 CustomMapParams.AndMask = ClAndMask; 911 CustomMapParams.XorMask = ClXorMask; 912 CustomMapParams.ShadowBase = ClShadowBase; 913 CustomMapParams.OriginBase = ClOriginBase; 914 MapParams = &CustomMapParams; 915 } else { 916 Triple TargetTriple(M.getTargetTriple()); 917 switch (TargetTriple.getOS()) { 918 case Triple::FreeBSD: 919 switch (TargetTriple.getArch()) { 920 case Triple::x86_64: 921 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 922 break; 923 case Triple::x86: 924 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 925 break; 926 default: 927 report_fatal_error("unsupported architecture"); 928 } 929 break; 930 case Triple::NetBSD: 931 switch (TargetTriple.getArch()) { 932 case Triple::x86_64: 933 MapParams = NetBSD_X86_MemoryMapParams.bits64; 934 break; 935 default: 936 report_fatal_error("unsupported architecture"); 937 } 938 break; 939 case Triple::Linux: 940 switch (TargetTriple.getArch()) { 941 case Triple::x86_64: 942 MapParams = Linux_X86_MemoryMapParams.bits64; 943 break; 944 case Triple::x86: 945 MapParams = Linux_X86_MemoryMapParams.bits32; 946 break; 947 case Triple::mips64: 948 case Triple::mips64el: 949 MapParams = Linux_MIPS_MemoryMapParams.bits64; 950 break; 951 case Triple::ppc64: 952 case Triple::ppc64le: 953 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 954 break; 955 case Triple::systemz: 956 MapParams = Linux_S390_MemoryMapParams.bits64; 957 break; 958 case Triple::aarch64: 959 case Triple::aarch64_be: 960 MapParams = Linux_ARM_MemoryMapParams.bits64; 961 break; 962 default: 963 report_fatal_error("unsupported architecture"); 964 } 965 break; 966 default: 967 report_fatal_error("unsupported operating system"); 968 } 969 } 970 971 C = &(M.getContext()); 972 IRBuilder<> IRB(*C); 973 IntptrTy = IRB.getIntPtrTy(DL); 974 OriginTy = IRB.getInt32Ty(); 975 976 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 977 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 978 979 if (!CompileKernel) { 980 if (TrackOrigins) 981 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 982 return new GlobalVariable( 983 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 984 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 985 }); 986 987 if (Recover) 988 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 989 return new GlobalVariable(M, IRB.getInt32Ty(), true, 990 GlobalValue::WeakODRLinkage, 991 IRB.getInt32(Recover), "__msan_keep_going"); 992 }); 993 } 994 } 995 996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 997 if (!Options.Kernel) 998 insertModuleCtor(M); 999 MSan.emplace(M, Options); 1000 return true; 1001 } 1002 1003 namespace { 1004 1005 /// A helper class that handles instrumentation of VarArg 1006 /// functions on a particular platform. 1007 /// 1008 /// Implementations are expected to insert the instrumentation 1009 /// necessary to propagate argument shadow through VarArg function 1010 /// calls. Visit* methods are called during an InstVisitor pass over 1011 /// the function, and should avoid creating new basic blocks. A new 1012 /// instance of this class is created for each instrumented function. 1013 struct VarArgHelper { 1014 virtual ~VarArgHelper() = default; 1015 1016 /// Visit a CallBase. 1017 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1018 1019 /// Visit a va_start call. 1020 virtual void visitVAStartInst(VAStartInst &I) = 0; 1021 1022 /// Visit a va_copy call. 1023 virtual void visitVACopyInst(VACopyInst &I) = 0; 1024 1025 /// Finalize function instrumentation. 1026 /// 1027 /// This method is called after visiting all interesting (see above) 1028 /// instructions in a function. 1029 virtual void finalizeInstrumentation() = 0; 1030 }; 1031 1032 struct MemorySanitizerVisitor; 1033 1034 } // end anonymous namespace 1035 1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1037 MemorySanitizerVisitor &Visitor); 1038 1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1040 if (TypeSize <= 8) return 0; 1041 return Log2_32_Ceil((TypeSize + 7) / 8); 1042 } 1043 1044 namespace { 1045 1046 /// This class does all the work for a given function. Store and Load 1047 /// instructions store and load corresponding shadow and origin 1048 /// values. Most instructions propagate shadow from arguments to their 1049 /// return values. Certain instructions (most importantly, BranchInst) 1050 /// test their argument shadow and print reports (with a runtime call) if it's 1051 /// non-zero. 1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1053 Function &F; 1054 MemorySanitizer &MS; 1055 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1056 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1057 std::unique_ptr<VarArgHelper> VAHelper; 1058 const TargetLibraryInfo *TLI; 1059 Instruction *FnPrologueEnd; 1060 1061 // The following flags disable parts of MSan instrumentation based on 1062 // exclusion list contents and command-line options. 1063 bool InsertChecks; 1064 bool PropagateShadow; 1065 bool PoisonStack; 1066 bool PoisonUndef; 1067 1068 struct ShadowOriginAndInsertPoint { 1069 Value *Shadow; 1070 Value *Origin; 1071 Instruction *OrigIns; 1072 1073 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1074 : Shadow(S), Origin(O), OrigIns(I) {} 1075 }; 1076 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1077 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1078 SmallSet<AllocaInst *, 16> AllocaSet; 1079 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1080 SmallVector<StoreInst *, 16> StoreList; 1081 1082 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1083 const TargetLibraryInfo &TLI) 1084 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1085 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1086 InsertChecks = SanitizeFunction; 1087 PropagateShadow = SanitizeFunction; 1088 PoisonStack = SanitizeFunction && ClPoisonStack; 1089 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1090 1091 // In the presence of unreachable blocks, we may see Phi nodes with 1092 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1093 // blocks, such nodes will not have any shadow value associated with them. 1094 // It's easier to remove unreachable blocks than deal with missing shadow. 1095 removeUnreachableBlocks(F); 1096 1097 MS.initializeCallbacks(*F.getParent()); 1098 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1099 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1100 1101 if (MS.CompileKernel) { 1102 IRBuilder<> IRB(FnPrologueEnd); 1103 insertKmsanPrologue(IRB); 1104 } 1105 1106 LLVM_DEBUG(if (!InsertChecks) dbgs() 1107 << "MemorySanitizer is not inserting checks into '" 1108 << F.getName() << "'\n"); 1109 } 1110 1111 bool isInPrologue(Instruction &I) { 1112 return I.getParent() == FnPrologueEnd->getParent() && 1113 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1114 } 1115 1116 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1117 if (MS.TrackOrigins <= 1) return V; 1118 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1119 } 1120 1121 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1122 const DataLayout &DL = F.getParent()->getDataLayout(); 1123 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1124 if (IntptrSize == kOriginSize) return Origin; 1125 assert(IntptrSize == kOriginSize * 2); 1126 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1127 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1128 } 1129 1130 /// Fill memory range with the given origin value. 1131 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1132 unsigned Size, Align Alignment) { 1133 const DataLayout &DL = F.getParent()->getDataLayout(); 1134 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1135 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1136 assert(IntptrAlignment >= kMinOriginAlignment); 1137 assert(IntptrSize >= kOriginSize); 1138 1139 unsigned Ofs = 0; 1140 Align CurrentAlignment = Alignment; 1141 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1142 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1143 Value *IntptrOriginPtr = 1144 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1145 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1146 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1147 : IntptrOriginPtr; 1148 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1149 Ofs += IntptrSize / kOriginSize; 1150 CurrentAlignment = IntptrAlignment; 1151 } 1152 } 1153 1154 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1155 Value *GEP = 1156 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1157 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1158 CurrentAlignment = kMinOriginAlignment; 1159 } 1160 } 1161 1162 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1163 Value *OriginPtr, Align Alignment, bool AsCall) { 1164 const DataLayout &DL = F.getParent()->getDataLayout(); 1165 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1166 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1167 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1168 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1169 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1170 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1171 OriginAlignment); 1172 return; 1173 } 1174 1175 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1176 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1177 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1178 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1179 Value *ConvertedShadow2 = 1180 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1181 IRB.CreateCall(Fn, 1182 {ConvertedShadow2, 1183 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1184 } else { 1185 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1186 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1187 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1188 IRBuilder<> IRBNew(CheckTerm); 1189 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1190 OriginAlignment); 1191 } 1192 } 1193 1194 void materializeStores(bool InstrumentWithCalls) { 1195 for (StoreInst *SI : StoreList) { 1196 IRBuilder<> IRB(SI); 1197 Value *Val = SI->getValueOperand(); 1198 Value *Addr = SI->getPointerOperand(); 1199 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1200 Value *ShadowPtr, *OriginPtr; 1201 Type *ShadowTy = Shadow->getType(); 1202 const Align Alignment = assumeAligned(SI->getAlignment()); 1203 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1204 std::tie(ShadowPtr, OriginPtr) = 1205 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1206 1207 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1208 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1209 (void)NewSI; 1210 1211 if (SI->isAtomic()) 1212 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1213 1214 if (MS.TrackOrigins && !SI->isAtomic()) 1215 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1216 OriginAlignment, InstrumentWithCalls); 1217 } 1218 } 1219 1220 /// Helper function to insert a warning at IRB's current insert point. 1221 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1222 if (!Origin) 1223 Origin = (Value *)IRB.getInt32(0); 1224 assert(Origin->getType()->isIntegerTy()); 1225 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1226 // FIXME: Insert UnreachableInst if !MS.Recover? 1227 // This may invalidate some of the following checks and needs to be done 1228 // at the very end. 1229 } 1230 1231 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1232 bool AsCall) { 1233 IRBuilder<> IRB(OrigIns); 1234 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1235 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1236 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1237 1238 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1239 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1240 insertWarningFn(IRB, Origin); 1241 } 1242 return; 1243 } 1244 1245 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1246 1247 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1248 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1249 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1250 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1251 Value *ConvertedShadow2 = 1252 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1253 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1254 ? Origin 1255 : (Value *)IRB.getInt32(0)}); 1256 } else { 1257 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1258 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1259 Cmp, OrigIns, 1260 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1261 1262 IRB.SetInsertPoint(CheckTerm); 1263 insertWarningFn(IRB, Origin); 1264 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1265 } 1266 } 1267 1268 void materializeChecks(bool InstrumentWithCalls) { 1269 for (const auto &ShadowData : InstrumentationList) { 1270 Instruction *OrigIns = ShadowData.OrigIns; 1271 Value *Shadow = ShadowData.Shadow; 1272 Value *Origin = ShadowData.Origin; 1273 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1274 } 1275 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1276 } 1277 1278 // Returns the last instruction in the new prologue 1279 void insertKmsanPrologue(IRBuilder<> &IRB) { 1280 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1281 Constant *Zero = IRB.getInt32(0); 1282 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1283 {Zero, IRB.getInt32(0)}, "param_shadow"); 1284 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1285 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1286 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1287 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1288 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1289 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1290 MS.VAArgOverflowSizeTLS = 1291 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1292 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1293 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1294 {Zero, IRB.getInt32(5)}, "param_origin"); 1295 MS.RetvalOriginTLS = 1296 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1297 {Zero, IRB.getInt32(6)}, "retval_origin"); 1298 } 1299 1300 /// Add MemorySanitizer instrumentation to a function. 1301 bool runOnFunction() { 1302 // Iterate all BBs in depth-first order and create shadow instructions 1303 // for all instructions (where applicable). 1304 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1305 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1306 visit(*BB); 1307 1308 // Finalize PHI nodes. 1309 for (PHINode *PN : ShadowPHINodes) { 1310 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1311 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1312 size_t NumValues = PN->getNumIncomingValues(); 1313 for (size_t v = 0; v < NumValues; v++) { 1314 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1315 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1316 } 1317 } 1318 1319 VAHelper->finalizeInstrumentation(); 1320 1321 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1322 // instrumenting only allocas. 1323 if (InstrumentLifetimeStart) { 1324 for (auto Item : LifetimeStartList) { 1325 instrumentAlloca(*Item.second, Item.first); 1326 AllocaSet.erase(Item.second); 1327 } 1328 } 1329 // Poison the allocas for which we didn't instrument the corresponding 1330 // lifetime intrinsics. 1331 for (AllocaInst *AI : AllocaSet) 1332 instrumentAlloca(*AI); 1333 1334 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1335 InstrumentationList.size() + StoreList.size() > 1336 (unsigned)ClInstrumentationWithCallThreshold; 1337 1338 // Insert shadow value checks. 1339 materializeChecks(InstrumentWithCalls); 1340 1341 // Delayed instrumentation of StoreInst. 1342 // This may not add new address checks. 1343 materializeStores(InstrumentWithCalls); 1344 1345 return true; 1346 } 1347 1348 /// Compute the shadow type that corresponds to a given Value. 1349 Type *getShadowTy(Value *V) { 1350 return getShadowTy(V->getType()); 1351 } 1352 1353 /// Compute the shadow type that corresponds to a given Type. 1354 Type *getShadowTy(Type *OrigTy) { 1355 if (!OrigTy->isSized()) { 1356 return nullptr; 1357 } 1358 // For integer type, shadow is the same as the original type. 1359 // This may return weird-sized types like i1. 1360 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1361 return IT; 1362 const DataLayout &DL = F.getParent()->getDataLayout(); 1363 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1364 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1365 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1366 cast<FixedVectorType>(VT)->getNumElements()); 1367 } 1368 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1369 return ArrayType::get(getShadowTy(AT->getElementType()), 1370 AT->getNumElements()); 1371 } 1372 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1373 SmallVector<Type*, 4> Elements; 1374 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1375 Elements.push_back(getShadowTy(ST->getElementType(i))); 1376 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1377 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1378 return Res; 1379 } 1380 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1381 return IntegerType::get(*MS.C, TypeSize); 1382 } 1383 1384 /// Flatten a vector type. 1385 Type *getShadowTyNoVec(Type *ty) { 1386 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1387 return IntegerType::get(*MS.C, 1388 vt->getPrimitiveSizeInBits().getFixedSize()); 1389 return ty; 1390 } 1391 1392 /// Extract combined shadow of struct elements as a bool 1393 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1394 IRBuilder<> &IRB) { 1395 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1396 Value *Aggregator = FalseVal; 1397 1398 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1399 // Combine by ORing together each element's bool shadow 1400 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1401 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1402 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1403 1404 if (Aggregator != FalseVal) 1405 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1406 else 1407 Aggregator = ShadowBool; 1408 } 1409 1410 return Aggregator; 1411 } 1412 1413 // Extract combined shadow of array elements 1414 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1415 IRBuilder<> &IRB) { 1416 if (!Array->getNumElements()) 1417 return IRB.getIntN(/* width */ 1, /* value */ 0); 1418 1419 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1420 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1421 1422 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1423 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1424 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1425 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1426 } 1427 return Aggregator; 1428 } 1429 1430 /// Convert a shadow value to it's flattened variant. The resulting 1431 /// shadow may not necessarily have the same bit width as the input 1432 /// value, but it will always be comparable to zero. 1433 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1434 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1435 return collapseStructShadow(Struct, V, IRB); 1436 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1437 return collapseArrayShadow(Array, V, IRB); 1438 Type *Ty = V->getType(); 1439 Type *NoVecTy = getShadowTyNoVec(Ty); 1440 if (Ty == NoVecTy) return V; 1441 return IRB.CreateBitCast(V, NoVecTy); 1442 } 1443 1444 // Convert a scalar value to an i1 by comparing with 0 1445 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1446 Type *VTy = V->getType(); 1447 assert(VTy->isIntegerTy()); 1448 if (VTy->getIntegerBitWidth() == 1) 1449 // Just converting a bool to a bool, so do nothing. 1450 return V; 1451 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1452 } 1453 1454 /// Compute the integer shadow offset that corresponds to a given 1455 /// application address. 1456 /// 1457 /// Offset = (Addr & ~AndMask) ^ XorMask 1458 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1459 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1460 1461 uint64_t AndMask = MS.MapParams->AndMask; 1462 if (AndMask) 1463 OffsetLong = 1464 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1465 1466 uint64_t XorMask = MS.MapParams->XorMask; 1467 if (XorMask) 1468 OffsetLong = 1469 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1470 return OffsetLong; 1471 } 1472 1473 /// Compute the shadow and origin addresses corresponding to a given 1474 /// application address. 1475 /// 1476 /// Shadow = ShadowBase + Offset 1477 /// Origin = (OriginBase + Offset) & ~3ULL 1478 std::pair<Value *, Value *> 1479 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1480 MaybeAlign Alignment) { 1481 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1482 Value *ShadowLong = ShadowOffset; 1483 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1484 if (ShadowBase != 0) { 1485 ShadowLong = 1486 IRB.CreateAdd(ShadowLong, 1487 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1488 } 1489 Value *ShadowPtr = 1490 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1491 Value *OriginPtr = nullptr; 1492 if (MS.TrackOrigins) { 1493 Value *OriginLong = ShadowOffset; 1494 uint64_t OriginBase = MS.MapParams->OriginBase; 1495 if (OriginBase != 0) 1496 OriginLong = IRB.CreateAdd(OriginLong, 1497 ConstantInt::get(MS.IntptrTy, OriginBase)); 1498 if (!Alignment || *Alignment < kMinOriginAlignment) { 1499 uint64_t Mask = kMinOriginAlignment.value() - 1; 1500 OriginLong = 1501 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1502 } 1503 OriginPtr = 1504 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1505 } 1506 return std::make_pair(ShadowPtr, OriginPtr); 1507 } 1508 1509 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1510 IRBuilder<> &IRB, 1511 Type *ShadowTy, 1512 bool isStore) { 1513 Value *ShadowOriginPtrs; 1514 const DataLayout &DL = F.getParent()->getDataLayout(); 1515 int Size = DL.getTypeStoreSize(ShadowTy); 1516 1517 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1518 Value *AddrCast = 1519 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1520 if (Getter) { 1521 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1522 } else { 1523 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1524 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1525 : MS.MsanMetadataPtrForLoadN, 1526 {AddrCast, SizeVal}); 1527 } 1528 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1529 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1530 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1531 1532 return std::make_pair(ShadowPtr, OriginPtr); 1533 } 1534 1535 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1536 Type *ShadowTy, 1537 MaybeAlign Alignment, 1538 bool isStore) { 1539 if (MS.CompileKernel) 1540 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1541 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1542 } 1543 1544 /// Compute the shadow address for a given function argument. 1545 /// 1546 /// Shadow = ParamTLS+ArgOffset. 1547 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1548 int ArgOffset) { 1549 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1550 if (ArgOffset) 1551 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1552 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1553 "_msarg"); 1554 } 1555 1556 /// Compute the origin address for a given function argument. 1557 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1558 int ArgOffset) { 1559 if (!MS.TrackOrigins) 1560 return nullptr; 1561 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1562 if (ArgOffset) 1563 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1564 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1565 "_msarg_o"); 1566 } 1567 1568 /// Compute the shadow address for a retval. 1569 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1570 return IRB.CreatePointerCast(MS.RetvalTLS, 1571 PointerType::get(getShadowTy(A), 0), 1572 "_msret"); 1573 } 1574 1575 /// Compute the origin address for a retval. 1576 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1577 // We keep a single origin for the entire retval. Might be too optimistic. 1578 return MS.RetvalOriginTLS; 1579 } 1580 1581 /// Set SV to be the shadow value for V. 1582 void setShadow(Value *V, Value *SV) { 1583 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1584 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1585 } 1586 1587 /// Set Origin to be the origin value for V. 1588 void setOrigin(Value *V, Value *Origin) { 1589 if (!MS.TrackOrigins) return; 1590 assert(!OriginMap.count(V) && "Values may only have one origin"); 1591 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1592 OriginMap[V] = Origin; 1593 } 1594 1595 Constant *getCleanShadow(Type *OrigTy) { 1596 Type *ShadowTy = getShadowTy(OrigTy); 1597 if (!ShadowTy) 1598 return nullptr; 1599 return Constant::getNullValue(ShadowTy); 1600 } 1601 1602 /// Create a clean shadow value for a given value. 1603 /// 1604 /// Clean shadow (all zeroes) means all bits of the value are defined 1605 /// (initialized). 1606 Constant *getCleanShadow(Value *V) { 1607 return getCleanShadow(V->getType()); 1608 } 1609 1610 /// Create a dirty shadow of a given shadow type. 1611 Constant *getPoisonedShadow(Type *ShadowTy) { 1612 assert(ShadowTy); 1613 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1614 return Constant::getAllOnesValue(ShadowTy); 1615 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1616 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1617 getPoisonedShadow(AT->getElementType())); 1618 return ConstantArray::get(AT, Vals); 1619 } 1620 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1621 SmallVector<Constant *, 4> Vals; 1622 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1623 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1624 return ConstantStruct::get(ST, Vals); 1625 } 1626 llvm_unreachable("Unexpected shadow type"); 1627 } 1628 1629 /// Create a dirty shadow for a given value. 1630 Constant *getPoisonedShadow(Value *V) { 1631 Type *ShadowTy = getShadowTy(V); 1632 if (!ShadowTy) 1633 return nullptr; 1634 return getPoisonedShadow(ShadowTy); 1635 } 1636 1637 /// Create a clean (zero) origin. 1638 Value *getCleanOrigin() { 1639 return Constant::getNullValue(MS.OriginTy); 1640 } 1641 1642 /// Get the shadow value for a given Value. 1643 /// 1644 /// This function either returns the value set earlier with setShadow, 1645 /// or extracts if from ParamTLS (for function arguments). 1646 Value *getShadow(Value *V) { 1647 if (!PropagateShadow) return getCleanShadow(V); 1648 if (Instruction *I = dyn_cast<Instruction>(V)) { 1649 if (I->getMetadata("nosanitize")) 1650 return getCleanShadow(V); 1651 // For instructions the shadow is already stored in the map. 1652 Value *Shadow = ShadowMap[V]; 1653 if (!Shadow) { 1654 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1655 (void)I; 1656 assert(Shadow && "No shadow for a value"); 1657 } 1658 return Shadow; 1659 } 1660 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1661 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1662 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1663 (void)U; 1664 return AllOnes; 1665 } 1666 if (Argument *A = dyn_cast<Argument>(V)) { 1667 // For arguments we compute the shadow on demand and store it in the map. 1668 Value **ShadowPtr = &ShadowMap[V]; 1669 if (*ShadowPtr) 1670 return *ShadowPtr; 1671 Function *F = A->getParent(); 1672 IRBuilder<> EntryIRB(FnPrologueEnd); 1673 unsigned ArgOffset = 0; 1674 const DataLayout &DL = F->getParent()->getDataLayout(); 1675 for (auto &FArg : F->args()) { 1676 if (!FArg.getType()->isSized()) { 1677 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1678 continue; 1679 } 1680 1681 bool FArgByVal = FArg.hasByValAttr(); 1682 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1683 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1684 unsigned Size = 1685 FArg.hasByValAttr() 1686 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1687 : DL.getTypeAllocSize(FArg.getType()); 1688 1689 if (A == &FArg) { 1690 bool Overflow = ArgOffset + Size > kParamTLSSize; 1691 if (FArgEagerCheck) { 1692 *ShadowPtr = getCleanShadow(V); 1693 setOrigin(A, getCleanOrigin()); 1694 continue; 1695 } else if (FArgByVal) { 1696 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1697 // ByVal pointer itself has clean shadow. We copy the actual 1698 // argument shadow to the underlying memory. 1699 // Figure out maximal valid memcpy alignment. 1700 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1701 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1702 Value *CpShadowPtr = 1703 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1704 /*isStore*/ true) 1705 .first; 1706 // TODO(glider): need to copy origins. 1707 if (Overflow) { 1708 // ParamTLS overflow. 1709 EntryIRB.CreateMemSet( 1710 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1711 Size, ArgAlign); 1712 } else { 1713 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1714 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1715 CopyAlign, Size); 1716 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1717 (void)Cpy; 1718 } 1719 *ShadowPtr = getCleanShadow(V); 1720 } else { 1721 // Shadow over TLS 1722 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1723 if (Overflow) { 1724 // ParamTLS overflow. 1725 *ShadowPtr = getCleanShadow(V); 1726 } else { 1727 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1728 kShadowTLSAlignment); 1729 } 1730 } 1731 LLVM_DEBUG(dbgs() 1732 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1733 if (MS.TrackOrigins && !Overflow) { 1734 Value *OriginPtr = 1735 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1736 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1737 } else { 1738 setOrigin(A, getCleanOrigin()); 1739 } 1740 } 1741 1742 if (!FArgEagerCheck) 1743 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1744 } 1745 assert(*ShadowPtr && "Could not find shadow for an argument"); 1746 return *ShadowPtr; 1747 } 1748 // For everything else the shadow is zero. 1749 return getCleanShadow(V); 1750 } 1751 1752 /// Get the shadow for i-th argument of the instruction I. 1753 Value *getShadow(Instruction *I, int i) { 1754 return getShadow(I->getOperand(i)); 1755 } 1756 1757 /// Get the origin for a value. 1758 Value *getOrigin(Value *V) { 1759 if (!MS.TrackOrigins) return nullptr; 1760 if (!PropagateShadow) return getCleanOrigin(); 1761 if (isa<Constant>(V)) return getCleanOrigin(); 1762 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1763 "Unexpected value type in getOrigin()"); 1764 if (Instruction *I = dyn_cast<Instruction>(V)) { 1765 if (I->getMetadata("nosanitize")) 1766 return getCleanOrigin(); 1767 } 1768 Value *Origin = OriginMap[V]; 1769 assert(Origin && "Missing origin"); 1770 return Origin; 1771 } 1772 1773 /// Get the origin for i-th argument of the instruction I. 1774 Value *getOrigin(Instruction *I, int i) { 1775 return getOrigin(I->getOperand(i)); 1776 } 1777 1778 /// Remember the place where a shadow check should be inserted. 1779 /// 1780 /// This location will be later instrumented with a check that will print a 1781 /// UMR warning in runtime if the shadow value is not 0. 1782 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1783 assert(Shadow); 1784 if (!InsertChecks) return; 1785 #ifndef NDEBUG 1786 Type *ShadowTy = Shadow->getType(); 1787 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1788 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1789 "Can only insert checks for integer, vector, and aggregate shadow " 1790 "types"); 1791 #endif 1792 InstrumentationList.push_back( 1793 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1794 } 1795 1796 /// Remember the place where a shadow check should be inserted. 1797 /// 1798 /// This location will be later instrumented with a check that will print a 1799 /// UMR warning in runtime if the value is not fully defined. 1800 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1801 assert(Val); 1802 Value *Shadow, *Origin; 1803 if (ClCheckConstantShadow) { 1804 Shadow = getShadow(Val); 1805 if (!Shadow) return; 1806 Origin = getOrigin(Val); 1807 } else { 1808 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1809 if (!Shadow) return; 1810 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1811 } 1812 insertShadowCheck(Shadow, Origin, OrigIns); 1813 } 1814 1815 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1816 switch (a) { 1817 case AtomicOrdering::NotAtomic: 1818 return AtomicOrdering::NotAtomic; 1819 case AtomicOrdering::Unordered: 1820 case AtomicOrdering::Monotonic: 1821 case AtomicOrdering::Release: 1822 return AtomicOrdering::Release; 1823 case AtomicOrdering::Acquire: 1824 case AtomicOrdering::AcquireRelease: 1825 return AtomicOrdering::AcquireRelease; 1826 case AtomicOrdering::SequentiallyConsistent: 1827 return AtomicOrdering::SequentiallyConsistent; 1828 } 1829 llvm_unreachable("Unknown ordering"); 1830 } 1831 1832 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1833 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1834 uint32_t OrderingTable[NumOrderings] = {}; 1835 1836 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1837 OrderingTable[(int)AtomicOrderingCABI::release] = 1838 (int)AtomicOrderingCABI::release; 1839 OrderingTable[(int)AtomicOrderingCABI::consume] = 1840 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1841 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1842 (int)AtomicOrderingCABI::acq_rel; 1843 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1844 (int)AtomicOrderingCABI::seq_cst; 1845 1846 return ConstantDataVector::get(IRB.getContext(), 1847 makeArrayRef(OrderingTable, NumOrderings)); 1848 } 1849 1850 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1851 switch (a) { 1852 case AtomicOrdering::NotAtomic: 1853 return AtomicOrdering::NotAtomic; 1854 case AtomicOrdering::Unordered: 1855 case AtomicOrdering::Monotonic: 1856 case AtomicOrdering::Acquire: 1857 return AtomicOrdering::Acquire; 1858 case AtomicOrdering::Release: 1859 case AtomicOrdering::AcquireRelease: 1860 return AtomicOrdering::AcquireRelease; 1861 case AtomicOrdering::SequentiallyConsistent: 1862 return AtomicOrdering::SequentiallyConsistent; 1863 } 1864 llvm_unreachable("Unknown ordering"); 1865 } 1866 1867 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1868 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1869 uint32_t OrderingTable[NumOrderings] = {}; 1870 1871 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1872 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1873 OrderingTable[(int)AtomicOrderingCABI::consume] = 1874 (int)AtomicOrderingCABI::acquire; 1875 OrderingTable[(int)AtomicOrderingCABI::release] = 1876 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1877 (int)AtomicOrderingCABI::acq_rel; 1878 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1879 (int)AtomicOrderingCABI::seq_cst; 1880 1881 return ConstantDataVector::get(IRB.getContext(), 1882 makeArrayRef(OrderingTable, NumOrderings)); 1883 } 1884 1885 // ------------------- Visitors. 1886 using InstVisitor<MemorySanitizerVisitor>::visit; 1887 void visit(Instruction &I) { 1888 if (I.getMetadata("nosanitize")) 1889 return; 1890 // Don't want to visit if we're in the prologue 1891 if (isInPrologue(I)) 1892 return; 1893 InstVisitor<MemorySanitizerVisitor>::visit(I); 1894 } 1895 1896 /// Instrument LoadInst 1897 /// 1898 /// Loads the corresponding shadow and (optionally) origin. 1899 /// Optionally, checks that the load address is fully defined. 1900 void visitLoadInst(LoadInst &I) { 1901 assert(I.getType()->isSized() && "Load type must have size"); 1902 assert(!I.getMetadata("nosanitize")); 1903 IRBuilder<> IRB(I.getNextNode()); 1904 Type *ShadowTy = getShadowTy(&I); 1905 Value *Addr = I.getPointerOperand(); 1906 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1907 const Align Alignment = assumeAligned(I.getAlignment()); 1908 if (PropagateShadow) { 1909 std::tie(ShadowPtr, OriginPtr) = 1910 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1911 setShadow(&I, 1912 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1913 } else { 1914 setShadow(&I, getCleanShadow(&I)); 1915 } 1916 1917 if (ClCheckAccessAddress) 1918 insertShadowCheck(I.getPointerOperand(), &I); 1919 1920 if (I.isAtomic()) 1921 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1922 1923 if (MS.TrackOrigins) { 1924 if (PropagateShadow) { 1925 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1926 setOrigin( 1927 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1928 } else { 1929 setOrigin(&I, getCleanOrigin()); 1930 } 1931 } 1932 } 1933 1934 /// Instrument StoreInst 1935 /// 1936 /// Stores the corresponding shadow and (optionally) origin. 1937 /// Optionally, checks that the store address is fully defined. 1938 void visitStoreInst(StoreInst &I) { 1939 StoreList.push_back(&I); 1940 if (ClCheckAccessAddress) 1941 insertShadowCheck(I.getPointerOperand(), &I); 1942 } 1943 1944 void handleCASOrRMW(Instruction &I) { 1945 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1946 1947 IRBuilder<> IRB(&I); 1948 Value *Addr = I.getOperand(0); 1949 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1950 /*isStore*/ true) 1951 .first; 1952 1953 if (ClCheckAccessAddress) 1954 insertShadowCheck(Addr, &I); 1955 1956 // Only test the conditional argument of cmpxchg instruction. 1957 // The other argument can potentially be uninitialized, but we can not 1958 // detect this situation reliably without possible false positives. 1959 if (isa<AtomicCmpXchgInst>(I)) 1960 insertShadowCheck(I.getOperand(1), &I); 1961 1962 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1963 1964 setShadow(&I, getCleanShadow(&I)); 1965 setOrigin(&I, getCleanOrigin()); 1966 } 1967 1968 void visitAtomicRMWInst(AtomicRMWInst &I) { 1969 handleCASOrRMW(I); 1970 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1971 } 1972 1973 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1974 handleCASOrRMW(I); 1975 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1976 } 1977 1978 // Vector manipulation. 1979 void visitExtractElementInst(ExtractElementInst &I) { 1980 insertShadowCheck(I.getOperand(1), &I); 1981 IRBuilder<> IRB(&I); 1982 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1983 "_msprop")); 1984 setOrigin(&I, getOrigin(&I, 0)); 1985 } 1986 1987 void visitInsertElementInst(InsertElementInst &I) { 1988 insertShadowCheck(I.getOperand(2), &I); 1989 IRBuilder<> IRB(&I); 1990 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1991 I.getOperand(2), "_msprop")); 1992 setOriginForNaryOp(I); 1993 } 1994 1995 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1996 IRBuilder<> IRB(&I); 1997 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1998 I.getShuffleMask(), "_msprop")); 1999 setOriginForNaryOp(I); 2000 } 2001 2002 // Casts. 2003 void visitSExtInst(SExtInst &I) { 2004 IRBuilder<> IRB(&I); 2005 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2006 setOrigin(&I, getOrigin(&I, 0)); 2007 } 2008 2009 void visitZExtInst(ZExtInst &I) { 2010 IRBuilder<> IRB(&I); 2011 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2012 setOrigin(&I, getOrigin(&I, 0)); 2013 } 2014 2015 void visitTruncInst(TruncInst &I) { 2016 IRBuilder<> IRB(&I); 2017 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2018 setOrigin(&I, getOrigin(&I, 0)); 2019 } 2020 2021 void visitBitCastInst(BitCastInst &I) { 2022 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2023 // a musttail call and a ret, don't instrument. New instructions are not 2024 // allowed after a musttail call. 2025 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2026 if (CI->isMustTailCall()) 2027 return; 2028 IRBuilder<> IRB(&I); 2029 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2030 setOrigin(&I, getOrigin(&I, 0)); 2031 } 2032 2033 void visitPtrToIntInst(PtrToIntInst &I) { 2034 IRBuilder<> IRB(&I); 2035 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2036 "_msprop_ptrtoint")); 2037 setOrigin(&I, getOrigin(&I, 0)); 2038 } 2039 2040 void visitIntToPtrInst(IntToPtrInst &I) { 2041 IRBuilder<> IRB(&I); 2042 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2043 "_msprop_inttoptr")); 2044 setOrigin(&I, getOrigin(&I, 0)); 2045 } 2046 2047 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2048 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2049 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2050 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2051 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2052 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2053 2054 /// Propagate shadow for bitwise AND. 2055 /// 2056 /// This code is exact, i.e. if, for example, a bit in the left argument 2057 /// is defined and 0, then neither the value not definedness of the 2058 /// corresponding bit in B don't affect the resulting shadow. 2059 void visitAnd(BinaryOperator &I) { 2060 IRBuilder<> IRB(&I); 2061 // "And" of 0 and a poisoned value results in unpoisoned value. 2062 // 1&1 => 1; 0&1 => 0; p&1 => p; 2063 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2064 // 1&p => p; 0&p => 0; p&p => p; 2065 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2066 Value *S1 = getShadow(&I, 0); 2067 Value *S2 = getShadow(&I, 1); 2068 Value *V1 = I.getOperand(0); 2069 Value *V2 = I.getOperand(1); 2070 if (V1->getType() != S1->getType()) { 2071 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2072 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2073 } 2074 Value *S1S2 = IRB.CreateAnd(S1, S2); 2075 Value *V1S2 = IRB.CreateAnd(V1, S2); 2076 Value *S1V2 = IRB.CreateAnd(S1, V2); 2077 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2078 setOriginForNaryOp(I); 2079 } 2080 2081 void visitOr(BinaryOperator &I) { 2082 IRBuilder<> IRB(&I); 2083 // "Or" of 1 and a poisoned value results in unpoisoned value. 2084 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2085 // 1|0 => 1; 0|0 => 0; p|0 => p; 2086 // 1|p => 1; 0|p => p; p|p => p; 2087 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2088 Value *S1 = getShadow(&I, 0); 2089 Value *S2 = getShadow(&I, 1); 2090 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2091 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2092 if (V1->getType() != S1->getType()) { 2093 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2094 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2095 } 2096 Value *S1S2 = IRB.CreateAnd(S1, S2); 2097 Value *V1S2 = IRB.CreateAnd(V1, S2); 2098 Value *S1V2 = IRB.CreateAnd(S1, V2); 2099 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2100 setOriginForNaryOp(I); 2101 } 2102 2103 /// Default propagation of shadow and/or origin. 2104 /// 2105 /// This class implements the general case of shadow propagation, used in all 2106 /// cases where we don't know and/or don't care about what the operation 2107 /// actually does. It converts all input shadow values to a common type 2108 /// (extending or truncating as necessary), and bitwise OR's them. 2109 /// 2110 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2111 /// fully initialized), and less prone to false positives. 2112 /// 2113 /// This class also implements the general case of origin propagation. For a 2114 /// Nary operation, result origin is set to the origin of an argument that is 2115 /// not entirely initialized. If there is more than one such arguments, the 2116 /// rightmost of them is picked. It does not matter which one is picked if all 2117 /// arguments are initialized. 2118 template <bool CombineShadow> 2119 class Combiner { 2120 Value *Shadow = nullptr; 2121 Value *Origin = nullptr; 2122 IRBuilder<> &IRB; 2123 MemorySanitizerVisitor *MSV; 2124 2125 public: 2126 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2127 : IRB(IRB), MSV(MSV) {} 2128 2129 /// Add a pair of shadow and origin values to the mix. 2130 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2131 if (CombineShadow) { 2132 assert(OpShadow); 2133 if (!Shadow) 2134 Shadow = OpShadow; 2135 else { 2136 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2137 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2138 } 2139 } 2140 2141 if (MSV->MS.TrackOrigins) { 2142 assert(OpOrigin); 2143 if (!Origin) { 2144 Origin = OpOrigin; 2145 } else { 2146 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2147 // No point in adding something that might result in 0 origin value. 2148 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2149 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2150 Value *Cond = 2151 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2152 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2153 } 2154 } 2155 } 2156 return *this; 2157 } 2158 2159 /// Add an application value to the mix. 2160 Combiner &Add(Value *V) { 2161 Value *OpShadow = MSV->getShadow(V); 2162 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2163 return Add(OpShadow, OpOrigin); 2164 } 2165 2166 /// Set the current combined values as the given instruction's shadow 2167 /// and origin. 2168 void Done(Instruction *I) { 2169 if (CombineShadow) { 2170 assert(Shadow); 2171 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2172 MSV->setShadow(I, Shadow); 2173 } 2174 if (MSV->MS.TrackOrigins) { 2175 assert(Origin); 2176 MSV->setOrigin(I, Origin); 2177 } 2178 } 2179 }; 2180 2181 using ShadowAndOriginCombiner = Combiner<true>; 2182 using OriginCombiner = Combiner<false>; 2183 2184 /// Propagate origin for arbitrary operation. 2185 void setOriginForNaryOp(Instruction &I) { 2186 if (!MS.TrackOrigins) return; 2187 IRBuilder<> IRB(&I); 2188 OriginCombiner OC(this, IRB); 2189 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2190 OC.Add(OI->get()); 2191 OC.Done(&I); 2192 } 2193 2194 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2195 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2196 "Vector of pointers is not a valid shadow type"); 2197 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2198 Ty->getScalarSizeInBits() 2199 : Ty->getPrimitiveSizeInBits(); 2200 } 2201 2202 /// Cast between two shadow types, extending or truncating as 2203 /// necessary. 2204 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2205 bool Signed = false) { 2206 Type *srcTy = V->getType(); 2207 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2208 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2209 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2210 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2211 2212 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2213 return IRB.CreateIntCast(V, dstTy, Signed); 2214 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2215 cast<FixedVectorType>(dstTy)->getNumElements() == 2216 cast<FixedVectorType>(srcTy)->getNumElements()) 2217 return IRB.CreateIntCast(V, dstTy, Signed); 2218 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2219 Value *V2 = 2220 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2221 return IRB.CreateBitCast(V2, dstTy); 2222 // TODO: handle struct types. 2223 } 2224 2225 /// Cast an application value to the type of its own shadow. 2226 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2227 Type *ShadowTy = getShadowTy(V); 2228 if (V->getType() == ShadowTy) 2229 return V; 2230 if (V->getType()->isPtrOrPtrVectorTy()) 2231 return IRB.CreatePtrToInt(V, ShadowTy); 2232 else 2233 return IRB.CreateBitCast(V, ShadowTy); 2234 } 2235 2236 /// Propagate shadow for arbitrary operation. 2237 void handleShadowOr(Instruction &I) { 2238 IRBuilder<> IRB(&I); 2239 ShadowAndOriginCombiner SC(this, IRB); 2240 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2241 SC.Add(OI->get()); 2242 SC.Done(&I); 2243 } 2244 2245 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2246 2247 // Handle multiplication by constant. 2248 // 2249 // Handle a special case of multiplication by constant that may have one or 2250 // more zeros in the lower bits. This makes corresponding number of lower bits 2251 // of the result zero as well. We model it by shifting the other operand 2252 // shadow left by the required number of bits. Effectively, we transform 2253 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2254 // We use multiplication by 2**N instead of shift to cover the case of 2255 // multiplication by 0, which may occur in some elements of a vector operand. 2256 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2257 Value *OtherArg) { 2258 Constant *ShadowMul; 2259 Type *Ty = ConstArg->getType(); 2260 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2261 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2262 Type *EltTy = VTy->getElementType(); 2263 SmallVector<Constant *, 16> Elements; 2264 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2265 if (ConstantInt *Elt = 2266 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2267 const APInt &V = Elt->getValue(); 2268 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2269 Elements.push_back(ConstantInt::get(EltTy, V2)); 2270 } else { 2271 Elements.push_back(ConstantInt::get(EltTy, 1)); 2272 } 2273 } 2274 ShadowMul = ConstantVector::get(Elements); 2275 } else { 2276 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2277 const APInt &V = Elt->getValue(); 2278 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2279 ShadowMul = ConstantInt::get(Ty, V2); 2280 } else { 2281 ShadowMul = ConstantInt::get(Ty, 1); 2282 } 2283 } 2284 2285 IRBuilder<> IRB(&I); 2286 setShadow(&I, 2287 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2288 setOrigin(&I, getOrigin(OtherArg)); 2289 } 2290 2291 void visitMul(BinaryOperator &I) { 2292 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2293 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2294 if (constOp0 && !constOp1) 2295 handleMulByConstant(I, constOp0, I.getOperand(1)); 2296 else if (constOp1 && !constOp0) 2297 handleMulByConstant(I, constOp1, I.getOperand(0)); 2298 else 2299 handleShadowOr(I); 2300 } 2301 2302 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2303 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2304 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2305 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2306 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2307 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2308 2309 void handleIntegerDiv(Instruction &I) { 2310 IRBuilder<> IRB(&I); 2311 // Strict on the second argument. 2312 insertShadowCheck(I.getOperand(1), &I); 2313 setShadow(&I, getShadow(&I, 0)); 2314 setOrigin(&I, getOrigin(&I, 0)); 2315 } 2316 2317 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2318 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2319 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2320 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2321 2322 // Floating point division is side-effect free. We can not require that the 2323 // divisor is fully initialized and must propagate shadow. See PR37523. 2324 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2325 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2326 2327 /// Instrument == and != comparisons. 2328 /// 2329 /// Sometimes the comparison result is known even if some of the bits of the 2330 /// arguments are not. 2331 void handleEqualityComparison(ICmpInst &I) { 2332 IRBuilder<> IRB(&I); 2333 Value *A = I.getOperand(0); 2334 Value *B = I.getOperand(1); 2335 Value *Sa = getShadow(A); 2336 Value *Sb = getShadow(B); 2337 2338 // Get rid of pointers and vectors of pointers. 2339 // For ints (and vectors of ints), types of A and Sa match, 2340 // and this is a no-op. 2341 A = IRB.CreatePointerCast(A, Sa->getType()); 2342 B = IRB.CreatePointerCast(B, Sb->getType()); 2343 2344 // A == B <==> (C = A^B) == 0 2345 // A != B <==> (C = A^B) != 0 2346 // Sc = Sa | Sb 2347 Value *C = IRB.CreateXor(A, B); 2348 Value *Sc = IRB.CreateOr(Sa, Sb); 2349 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2350 // Result is defined if one of the following is true 2351 // * there is a defined 1 bit in C 2352 // * C is fully defined 2353 // Si = !(C & ~Sc) && Sc 2354 Value *Zero = Constant::getNullValue(Sc->getType()); 2355 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2356 Value *Si = 2357 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2358 IRB.CreateICmpEQ( 2359 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2360 Si->setName("_msprop_icmp"); 2361 setShadow(&I, Si); 2362 setOriginForNaryOp(I); 2363 } 2364 2365 /// Build the lowest possible value of V, taking into account V's 2366 /// uninitialized bits. 2367 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2368 bool isSigned) { 2369 if (isSigned) { 2370 // Split shadow into sign bit and other bits. 2371 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2372 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2373 // Maximise the undefined shadow bit, minimize other undefined bits. 2374 return 2375 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2376 } else { 2377 // Minimize undefined bits. 2378 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2379 } 2380 } 2381 2382 /// Build the highest possible value of V, taking into account V's 2383 /// uninitialized bits. 2384 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2385 bool isSigned) { 2386 if (isSigned) { 2387 // Split shadow into sign bit and other bits. 2388 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2389 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2390 // Minimise the undefined shadow bit, maximise other undefined bits. 2391 return 2392 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2393 } else { 2394 // Maximize undefined bits. 2395 return IRB.CreateOr(A, Sa); 2396 } 2397 } 2398 2399 /// Instrument relational comparisons. 2400 /// 2401 /// This function does exact shadow propagation for all relational 2402 /// comparisons of integers, pointers and vectors of those. 2403 /// FIXME: output seems suboptimal when one of the operands is a constant 2404 void handleRelationalComparisonExact(ICmpInst &I) { 2405 IRBuilder<> IRB(&I); 2406 Value *A = I.getOperand(0); 2407 Value *B = I.getOperand(1); 2408 Value *Sa = getShadow(A); 2409 Value *Sb = getShadow(B); 2410 2411 // Get rid of pointers and vectors of pointers. 2412 // For ints (and vectors of ints), types of A and Sa match, 2413 // and this is a no-op. 2414 A = IRB.CreatePointerCast(A, Sa->getType()); 2415 B = IRB.CreatePointerCast(B, Sb->getType()); 2416 2417 // Let [a0, a1] be the interval of possible values of A, taking into account 2418 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2419 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2420 bool IsSigned = I.isSigned(); 2421 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2422 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2423 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2424 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2425 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2426 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2427 Value *Si = IRB.CreateXor(S1, S2); 2428 setShadow(&I, Si); 2429 setOriginForNaryOp(I); 2430 } 2431 2432 /// Instrument signed relational comparisons. 2433 /// 2434 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2435 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2436 void handleSignedRelationalComparison(ICmpInst &I) { 2437 Constant *constOp; 2438 Value *op = nullptr; 2439 CmpInst::Predicate pre; 2440 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2441 op = I.getOperand(0); 2442 pre = I.getPredicate(); 2443 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2444 op = I.getOperand(1); 2445 pre = I.getSwappedPredicate(); 2446 } else { 2447 handleShadowOr(I); 2448 return; 2449 } 2450 2451 if ((constOp->isNullValue() && 2452 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2453 (constOp->isAllOnesValue() && 2454 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2455 IRBuilder<> IRB(&I); 2456 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2457 "_msprop_icmp_s"); 2458 setShadow(&I, Shadow); 2459 setOrigin(&I, getOrigin(op)); 2460 } else { 2461 handleShadowOr(I); 2462 } 2463 } 2464 2465 void visitICmpInst(ICmpInst &I) { 2466 if (!ClHandleICmp) { 2467 handleShadowOr(I); 2468 return; 2469 } 2470 if (I.isEquality()) { 2471 handleEqualityComparison(I); 2472 return; 2473 } 2474 2475 assert(I.isRelational()); 2476 if (ClHandleICmpExact) { 2477 handleRelationalComparisonExact(I); 2478 return; 2479 } 2480 if (I.isSigned()) { 2481 handleSignedRelationalComparison(I); 2482 return; 2483 } 2484 2485 assert(I.isUnsigned()); 2486 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2487 handleRelationalComparisonExact(I); 2488 return; 2489 } 2490 2491 handleShadowOr(I); 2492 } 2493 2494 void visitFCmpInst(FCmpInst &I) { 2495 handleShadowOr(I); 2496 } 2497 2498 void handleShift(BinaryOperator &I) { 2499 IRBuilder<> IRB(&I); 2500 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2501 // Otherwise perform the same shift on S1. 2502 Value *S1 = getShadow(&I, 0); 2503 Value *S2 = getShadow(&I, 1); 2504 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2505 S2->getType()); 2506 Value *V2 = I.getOperand(1); 2507 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2508 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2509 setOriginForNaryOp(I); 2510 } 2511 2512 void visitShl(BinaryOperator &I) { handleShift(I); } 2513 void visitAShr(BinaryOperator &I) { handleShift(I); } 2514 void visitLShr(BinaryOperator &I) { handleShift(I); } 2515 2516 /// Instrument llvm.memmove 2517 /// 2518 /// At this point we don't know if llvm.memmove will be inlined or not. 2519 /// If we don't instrument it and it gets inlined, 2520 /// our interceptor will not kick in and we will lose the memmove. 2521 /// If we instrument the call here, but it does not get inlined, 2522 /// we will memove the shadow twice: which is bad in case 2523 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2524 /// 2525 /// Similar situation exists for memcpy and memset. 2526 void visitMemMoveInst(MemMoveInst &I) { 2527 IRBuilder<> IRB(&I); 2528 IRB.CreateCall( 2529 MS.MemmoveFn, 2530 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2531 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2532 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2533 I.eraseFromParent(); 2534 } 2535 2536 // Similar to memmove: avoid copying shadow twice. 2537 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2538 // FIXME: consider doing manual inline for small constant sizes and proper 2539 // alignment. 2540 void visitMemCpyInst(MemCpyInst &I) { 2541 IRBuilder<> IRB(&I); 2542 IRB.CreateCall( 2543 MS.MemcpyFn, 2544 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2545 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2546 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2547 I.eraseFromParent(); 2548 } 2549 2550 // Same as memcpy. 2551 void visitMemSetInst(MemSetInst &I) { 2552 IRBuilder<> IRB(&I); 2553 IRB.CreateCall( 2554 MS.MemsetFn, 2555 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2556 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2557 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2558 I.eraseFromParent(); 2559 } 2560 2561 void visitVAStartInst(VAStartInst &I) { 2562 VAHelper->visitVAStartInst(I); 2563 } 2564 2565 void visitVACopyInst(VACopyInst &I) { 2566 VAHelper->visitVACopyInst(I); 2567 } 2568 2569 /// Handle vector store-like intrinsics. 2570 /// 2571 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2572 /// has 1 pointer argument and 1 vector argument, returns void. 2573 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2574 IRBuilder<> IRB(&I); 2575 Value* Addr = I.getArgOperand(0); 2576 Value *Shadow = getShadow(&I, 1); 2577 Value *ShadowPtr, *OriginPtr; 2578 2579 // We don't know the pointer alignment (could be unaligned SSE store!). 2580 // Have to assume to worst case. 2581 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2582 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2583 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2584 2585 if (ClCheckAccessAddress) 2586 insertShadowCheck(Addr, &I); 2587 2588 // FIXME: factor out common code from materializeStores 2589 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2590 return true; 2591 } 2592 2593 /// Handle vector load-like intrinsics. 2594 /// 2595 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2596 /// has 1 pointer argument, returns a vector. 2597 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2598 IRBuilder<> IRB(&I); 2599 Value *Addr = I.getArgOperand(0); 2600 2601 Type *ShadowTy = getShadowTy(&I); 2602 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2603 if (PropagateShadow) { 2604 // We don't know the pointer alignment (could be unaligned SSE load!). 2605 // Have to assume to worst case. 2606 const Align Alignment = Align(1); 2607 std::tie(ShadowPtr, OriginPtr) = 2608 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2609 setShadow(&I, 2610 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2611 } else { 2612 setShadow(&I, getCleanShadow(&I)); 2613 } 2614 2615 if (ClCheckAccessAddress) 2616 insertShadowCheck(Addr, &I); 2617 2618 if (MS.TrackOrigins) { 2619 if (PropagateShadow) 2620 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2621 else 2622 setOrigin(&I, getCleanOrigin()); 2623 } 2624 return true; 2625 } 2626 2627 /// Handle (SIMD arithmetic)-like intrinsics. 2628 /// 2629 /// Instrument intrinsics with any number of arguments of the same type, 2630 /// equal to the return type. The type should be simple (no aggregates or 2631 /// pointers; vectors are fine). 2632 /// Caller guarantees that this intrinsic does not access memory. 2633 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2634 Type *RetTy = I.getType(); 2635 if (!(RetTy->isIntOrIntVectorTy() || 2636 RetTy->isFPOrFPVectorTy() || 2637 RetTy->isX86_MMXTy())) 2638 return false; 2639 2640 unsigned NumArgOperands = I.getNumArgOperands(); 2641 for (unsigned i = 0; i < NumArgOperands; ++i) { 2642 Type *Ty = I.getArgOperand(i)->getType(); 2643 if (Ty != RetTy) 2644 return false; 2645 } 2646 2647 IRBuilder<> IRB(&I); 2648 ShadowAndOriginCombiner SC(this, IRB); 2649 for (unsigned i = 0; i < NumArgOperands; ++i) 2650 SC.Add(I.getArgOperand(i)); 2651 SC.Done(&I); 2652 2653 return true; 2654 } 2655 2656 /// Heuristically instrument unknown intrinsics. 2657 /// 2658 /// The main purpose of this code is to do something reasonable with all 2659 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2660 /// We recognize several classes of intrinsics by their argument types and 2661 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2662 /// sure that we know what the intrinsic does. 2663 /// 2664 /// We special-case intrinsics where this approach fails. See llvm.bswap 2665 /// handling as an example of that. 2666 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2667 unsigned NumArgOperands = I.getNumArgOperands(); 2668 if (NumArgOperands == 0) 2669 return false; 2670 2671 if (NumArgOperands == 2 && 2672 I.getArgOperand(0)->getType()->isPointerTy() && 2673 I.getArgOperand(1)->getType()->isVectorTy() && 2674 I.getType()->isVoidTy() && 2675 !I.onlyReadsMemory()) { 2676 // This looks like a vector store. 2677 return handleVectorStoreIntrinsic(I); 2678 } 2679 2680 if (NumArgOperands == 1 && 2681 I.getArgOperand(0)->getType()->isPointerTy() && 2682 I.getType()->isVectorTy() && 2683 I.onlyReadsMemory()) { 2684 // This looks like a vector load. 2685 return handleVectorLoadIntrinsic(I); 2686 } 2687 2688 if (I.doesNotAccessMemory()) 2689 if (maybeHandleSimpleNomemIntrinsic(I)) 2690 return true; 2691 2692 // FIXME: detect and handle SSE maskstore/maskload 2693 return false; 2694 } 2695 2696 void handleInvariantGroup(IntrinsicInst &I) { 2697 setShadow(&I, getShadow(&I, 0)); 2698 setOrigin(&I, getOrigin(&I, 0)); 2699 } 2700 2701 void handleLifetimeStart(IntrinsicInst &I) { 2702 if (!PoisonStack) 2703 return; 2704 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2705 if (!AI) 2706 InstrumentLifetimeStart = false; 2707 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2708 } 2709 2710 void handleBswap(IntrinsicInst &I) { 2711 IRBuilder<> IRB(&I); 2712 Value *Op = I.getArgOperand(0); 2713 Type *OpType = Op->getType(); 2714 Function *BswapFunc = Intrinsic::getDeclaration( 2715 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2716 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2717 setOrigin(&I, getOrigin(Op)); 2718 } 2719 2720 // Instrument vector convert intrinsic. 2721 // 2722 // This function instruments intrinsics like cvtsi2ss: 2723 // %Out = int_xxx_cvtyyy(%ConvertOp) 2724 // or 2725 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2726 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2727 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2728 // elements from \p CopyOp. 2729 // In most cases conversion involves floating-point value which may trigger a 2730 // hardware exception when not fully initialized. For this reason we require 2731 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2732 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2733 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2734 // return a fully initialized value. 2735 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2736 IRBuilder<> IRB(&I); 2737 Value *CopyOp, *ConvertOp; 2738 2739 switch (I.getNumArgOperands()) { 2740 case 3: 2741 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2742 LLVM_FALLTHROUGH; 2743 case 2: 2744 CopyOp = I.getArgOperand(0); 2745 ConvertOp = I.getArgOperand(1); 2746 break; 2747 case 1: 2748 ConvertOp = I.getArgOperand(0); 2749 CopyOp = nullptr; 2750 break; 2751 default: 2752 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2753 } 2754 2755 // The first *NumUsedElements* elements of ConvertOp are converted to the 2756 // same number of output elements. The rest of the output is copied from 2757 // CopyOp, or (if not available) filled with zeroes. 2758 // Combine shadow for elements of ConvertOp that are used in this operation, 2759 // and insert a check. 2760 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2761 // int->any conversion. 2762 Value *ConvertShadow = getShadow(ConvertOp); 2763 Value *AggShadow = nullptr; 2764 if (ConvertOp->getType()->isVectorTy()) { 2765 AggShadow = IRB.CreateExtractElement( 2766 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2767 for (int i = 1; i < NumUsedElements; ++i) { 2768 Value *MoreShadow = IRB.CreateExtractElement( 2769 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2770 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2771 } 2772 } else { 2773 AggShadow = ConvertShadow; 2774 } 2775 assert(AggShadow->getType()->isIntegerTy()); 2776 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2777 2778 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2779 // ConvertOp. 2780 if (CopyOp) { 2781 assert(CopyOp->getType() == I.getType()); 2782 assert(CopyOp->getType()->isVectorTy()); 2783 Value *ResultShadow = getShadow(CopyOp); 2784 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2785 for (int i = 0; i < NumUsedElements; ++i) { 2786 ResultShadow = IRB.CreateInsertElement( 2787 ResultShadow, ConstantInt::getNullValue(EltTy), 2788 ConstantInt::get(IRB.getInt32Ty(), i)); 2789 } 2790 setShadow(&I, ResultShadow); 2791 setOrigin(&I, getOrigin(CopyOp)); 2792 } else { 2793 setShadow(&I, getCleanShadow(&I)); 2794 setOrigin(&I, getCleanOrigin()); 2795 } 2796 } 2797 2798 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2799 // zeroes if it is zero, and all ones otherwise. 2800 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2801 if (S->getType()->isVectorTy()) 2802 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2803 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2804 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2805 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2806 } 2807 2808 // Given a vector, extract its first element, and return all 2809 // zeroes if it is zero, and all ones otherwise. 2810 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2811 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2812 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2813 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2814 } 2815 2816 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2817 Type *T = S->getType(); 2818 assert(T->isVectorTy()); 2819 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2820 return IRB.CreateSExt(S2, T); 2821 } 2822 2823 // Instrument vector shift intrinsic. 2824 // 2825 // This function instruments intrinsics like int_x86_avx2_psll_w. 2826 // Intrinsic shifts %In by %ShiftSize bits. 2827 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2828 // size, and the rest is ignored. Behavior is defined even if shift size is 2829 // greater than register (or field) width. 2830 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2831 assert(I.getNumArgOperands() == 2); 2832 IRBuilder<> IRB(&I); 2833 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2834 // Otherwise perform the same shift on S1. 2835 Value *S1 = getShadow(&I, 0); 2836 Value *S2 = getShadow(&I, 1); 2837 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2838 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2839 Value *V1 = I.getOperand(0); 2840 Value *V2 = I.getOperand(1); 2841 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2842 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2843 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2844 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2845 setOriginForNaryOp(I); 2846 } 2847 2848 // Get an X86_MMX-sized vector type. 2849 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2850 const unsigned X86_MMXSizeInBits = 64; 2851 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2852 "Illegal MMX vector element size"); 2853 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2854 X86_MMXSizeInBits / EltSizeInBits); 2855 } 2856 2857 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2858 // intrinsic. 2859 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2860 switch (id) { 2861 case Intrinsic::x86_sse2_packsswb_128: 2862 case Intrinsic::x86_sse2_packuswb_128: 2863 return Intrinsic::x86_sse2_packsswb_128; 2864 2865 case Intrinsic::x86_sse2_packssdw_128: 2866 case Intrinsic::x86_sse41_packusdw: 2867 return Intrinsic::x86_sse2_packssdw_128; 2868 2869 case Intrinsic::x86_avx2_packsswb: 2870 case Intrinsic::x86_avx2_packuswb: 2871 return Intrinsic::x86_avx2_packsswb; 2872 2873 case Intrinsic::x86_avx2_packssdw: 2874 case Intrinsic::x86_avx2_packusdw: 2875 return Intrinsic::x86_avx2_packssdw; 2876 2877 case Intrinsic::x86_mmx_packsswb: 2878 case Intrinsic::x86_mmx_packuswb: 2879 return Intrinsic::x86_mmx_packsswb; 2880 2881 case Intrinsic::x86_mmx_packssdw: 2882 return Intrinsic::x86_mmx_packssdw; 2883 default: 2884 llvm_unreachable("unexpected intrinsic id"); 2885 } 2886 } 2887 2888 // Instrument vector pack intrinsic. 2889 // 2890 // This function instruments intrinsics like x86_mmx_packsswb, that 2891 // packs elements of 2 input vectors into half as many bits with saturation. 2892 // Shadow is propagated with the signed variant of the same intrinsic applied 2893 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2894 // EltSizeInBits is used only for x86mmx arguments. 2895 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2896 assert(I.getNumArgOperands() == 2); 2897 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2898 IRBuilder<> IRB(&I); 2899 Value *S1 = getShadow(&I, 0); 2900 Value *S2 = getShadow(&I, 1); 2901 assert(isX86_MMX || S1->getType()->isVectorTy()); 2902 2903 // SExt and ICmpNE below must apply to individual elements of input vectors. 2904 // In case of x86mmx arguments, cast them to appropriate vector types and 2905 // back. 2906 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2907 if (isX86_MMX) { 2908 S1 = IRB.CreateBitCast(S1, T); 2909 S2 = IRB.CreateBitCast(S2, T); 2910 } 2911 Value *S1_ext = IRB.CreateSExt( 2912 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2913 Value *S2_ext = IRB.CreateSExt( 2914 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2915 if (isX86_MMX) { 2916 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2917 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2918 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2919 } 2920 2921 Function *ShadowFn = Intrinsic::getDeclaration( 2922 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2923 2924 Value *S = 2925 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2926 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2927 setShadow(&I, S); 2928 setOriginForNaryOp(I); 2929 } 2930 2931 // Instrument sum-of-absolute-differences intrinsic. 2932 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2933 const unsigned SignificantBitsPerResultElement = 16; 2934 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2935 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2936 unsigned ZeroBitsPerResultElement = 2937 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2938 2939 IRBuilder<> IRB(&I); 2940 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2941 S = IRB.CreateBitCast(S, ResTy); 2942 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2943 ResTy); 2944 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2945 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2946 setShadow(&I, S); 2947 setOriginForNaryOp(I); 2948 } 2949 2950 // Instrument multiply-add intrinsic. 2951 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2952 unsigned EltSizeInBits = 0) { 2953 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2954 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2955 IRBuilder<> IRB(&I); 2956 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2957 S = IRB.CreateBitCast(S, ResTy); 2958 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2959 ResTy); 2960 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2961 setShadow(&I, S); 2962 setOriginForNaryOp(I); 2963 } 2964 2965 // Instrument compare-packed intrinsic. 2966 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2967 // all-ones shadow. 2968 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2969 IRBuilder<> IRB(&I); 2970 Type *ResTy = getShadowTy(&I); 2971 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2972 Value *S = IRB.CreateSExt( 2973 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2974 setShadow(&I, S); 2975 setOriginForNaryOp(I); 2976 } 2977 2978 // Instrument compare-scalar intrinsic. 2979 // This handles both cmp* intrinsics which return the result in the first 2980 // element of a vector, and comi* which return the result as i32. 2981 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2982 IRBuilder<> IRB(&I); 2983 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2984 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2985 setShadow(&I, S); 2986 setOriginForNaryOp(I); 2987 } 2988 2989 // Instrument generic vector reduction intrinsics 2990 // by ORing together all their fields. 2991 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2992 IRBuilder<> IRB(&I); 2993 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2994 setShadow(&I, S); 2995 setOrigin(&I, getOrigin(&I, 0)); 2996 } 2997 2998 // Instrument vector.reduce.or intrinsic. 2999 // Valid (non-poisoned) set bits in the operand pull low the 3000 // corresponding shadow bits. 3001 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3002 IRBuilder<> IRB(&I); 3003 Value *OperandShadow = getShadow(&I, 0); 3004 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3005 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3006 // Bit N is clean if any field's bit N is 1 and unpoison 3007 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3008 // Otherwise, it is clean if every field's bit N is unpoison 3009 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3010 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3011 3012 setShadow(&I, S); 3013 setOrigin(&I, getOrigin(&I, 0)); 3014 } 3015 3016 // Instrument vector.reduce.and intrinsic. 3017 // Valid (non-poisoned) unset bits in the operand pull down the 3018 // corresponding shadow bits. 3019 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3020 IRBuilder<> IRB(&I); 3021 Value *OperandShadow = getShadow(&I, 0); 3022 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3023 // Bit N is clean if any field's bit N is 0 and unpoison 3024 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3025 // Otherwise, it is clean if every field's bit N is unpoison 3026 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3027 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3028 3029 setShadow(&I, S); 3030 setOrigin(&I, getOrigin(&I, 0)); 3031 } 3032 3033 void handleStmxcsr(IntrinsicInst &I) { 3034 IRBuilder<> IRB(&I); 3035 Value* Addr = I.getArgOperand(0); 3036 Type *Ty = IRB.getInt32Ty(); 3037 Value *ShadowPtr = 3038 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3039 3040 IRB.CreateStore(getCleanShadow(Ty), 3041 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3042 3043 if (ClCheckAccessAddress) 3044 insertShadowCheck(Addr, &I); 3045 } 3046 3047 void handleLdmxcsr(IntrinsicInst &I) { 3048 if (!InsertChecks) return; 3049 3050 IRBuilder<> IRB(&I); 3051 Value *Addr = I.getArgOperand(0); 3052 Type *Ty = IRB.getInt32Ty(); 3053 const Align Alignment = Align(1); 3054 Value *ShadowPtr, *OriginPtr; 3055 std::tie(ShadowPtr, OriginPtr) = 3056 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3057 3058 if (ClCheckAccessAddress) 3059 insertShadowCheck(Addr, &I); 3060 3061 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3062 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3063 : getCleanOrigin(); 3064 insertShadowCheck(Shadow, Origin, &I); 3065 } 3066 3067 void handleMaskedStore(IntrinsicInst &I) { 3068 IRBuilder<> IRB(&I); 3069 Value *V = I.getArgOperand(0); 3070 Value *Addr = I.getArgOperand(1); 3071 const Align Alignment( 3072 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3073 Value *Mask = I.getArgOperand(3); 3074 Value *Shadow = getShadow(V); 3075 3076 Value *ShadowPtr; 3077 Value *OriginPtr; 3078 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3079 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3080 3081 if (ClCheckAccessAddress) { 3082 insertShadowCheck(Addr, &I); 3083 // Uninitialized mask is kind of like uninitialized address, but not as 3084 // scary. 3085 insertShadowCheck(Mask, &I); 3086 } 3087 3088 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3089 3090 if (MS.TrackOrigins) { 3091 auto &DL = F.getParent()->getDataLayout(); 3092 paintOrigin(IRB, getOrigin(V), OriginPtr, 3093 DL.getTypeStoreSize(Shadow->getType()), 3094 std::max(Alignment, kMinOriginAlignment)); 3095 } 3096 } 3097 3098 bool handleMaskedLoad(IntrinsicInst &I) { 3099 IRBuilder<> IRB(&I); 3100 Value *Addr = I.getArgOperand(0); 3101 const Align Alignment( 3102 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3103 Value *Mask = I.getArgOperand(2); 3104 Value *PassThru = I.getArgOperand(3); 3105 3106 Type *ShadowTy = getShadowTy(&I); 3107 Value *ShadowPtr, *OriginPtr; 3108 if (PropagateShadow) { 3109 std::tie(ShadowPtr, OriginPtr) = 3110 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3111 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 3112 getShadow(PassThru), "_msmaskedld")); 3113 } else { 3114 setShadow(&I, getCleanShadow(&I)); 3115 } 3116 3117 if (ClCheckAccessAddress) { 3118 insertShadowCheck(Addr, &I); 3119 insertShadowCheck(Mask, &I); 3120 } 3121 3122 if (MS.TrackOrigins) { 3123 if (PropagateShadow) { 3124 // Choose between PassThru's and the loaded value's origins. 3125 Value *MaskedPassThruShadow = IRB.CreateAnd( 3126 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3127 3128 Value *Acc = IRB.CreateExtractElement( 3129 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3130 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3131 ->getNumElements(); 3132 i < N; ++i) { 3133 Value *More = IRB.CreateExtractElement( 3134 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3135 Acc = IRB.CreateOr(Acc, More); 3136 } 3137 3138 Value *Origin = IRB.CreateSelect( 3139 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3140 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3141 3142 setOrigin(&I, Origin); 3143 } else { 3144 setOrigin(&I, getCleanOrigin()); 3145 } 3146 } 3147 return true; 3148 } 3149 3150 // Instrument BMI / BMI2 intrinsics. 3151 // All of these intrinsics are Z = I(X, Y) 3152 // where the types of all operands and the result match, and are either i32 or i64. 3153 // The following instrumentation happens to work for all of them: 3154 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3155 void handleBmiIntrinsic(IntrinsicInst &I) { 3156 IRBuilder<> IRB(&I); 3157 Type *ShadowTy = getShadowTy(&I); 3158 3159 // If any bit of the mask operand is poisoned, then the whole thing is. 3160 Value *SMask = getShadow(&I, 1); 3161 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3162 ShadowTy); 3163 // Apply the same intrinsic to the shadow of the first operand. 3164 Value *S = IRB.CreateCall(I.getCalledFunction(), 3165 {getShadow(&I, 0), I.getOperand(1)}); 3166 S = IRB.CreateOr(SMask, S); 3167 setShadow(&I, S); 3168 setOriginForNaryOp(I); 3169 } 3170 3171 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3172 SmallVector<int, 8> Mask; 3173 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3174 Mask.append(2, X); 3175 } 3176 return Mask; 3177 } 3178 3179 // Instrument pclmul intrinsics. 3180 // These intrinsics operate either on odd or on even elements of the input 3181 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3182 // Replace the unused elements with copies of the used ones, ex: 3183 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3184 // or 3185 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3186 // and then apply the usual shadow combining logic. 3187 void handlePclmulIntrinsic(IntrinsicInst &I) { 3188 IRBuilder<> IRB(&I); 3189 Type *ShadowTy = getShadowTy(&I); 3190 unsigned Width = 3191 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3192 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3193 "pclmul 3rd operand must be a constant"); 3194 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3195 Value *Shuf0 = 3196 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3197 getPclmulMask(Width, Imm & 0x01)); 3198 Value *Shuf1 = 3199 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3200 getPclmulMask(Width, Imm & 0x10)); 3201 ShadowAndOriginCombiner SOC(this, IRB); 3202 SOC.Add(Shuf0, getOrigin(&I, 0)); 3203 SOC.Add(Shuf1, getOrigin(&I, 1)); 3204 SOC.Done(&I); 3205 } 3206 3207 // Instrument _mm_*_sd intrinsics 3208 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3209 IRBuilder<> IRB(&I); 3210 Value *First = getShadow(&I, 0); 3211 Value *Second = getShadow(&I, 1); 3212 // High word of first operand, low word of second 3213 Value *Shadow = 3214 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3215 3216 setShadow(&I, Shadow); 3217 setOriginForNaryOp(I); 3218 } 3219 3220 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3221 IRBuilder<> IRB(&I); 3222 Value *First = getShadow(&I, 0); 3223 Value *Second = getShadow(&I, 1); 3224 Value *OrShadow = IRB.CreateOr(First, Second); 3225 // High word of first operand, low word of both OR'd together 3226 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3227 llvm::makeArrayRef<int>({2, 1})); 3228 3229 setShadow(&I, Shadow); 3230 setOriginForNaryOp(I); 3231 } 3232 3233 // Instrument abs intrinsic. 3234 // handleUnknownIntrinsic can't handle it because of the last 3235 // is_int_min_poison argument which does not match the result type. 3236 void handleAbsIntrinsic(IntrinsicInst &I) { 3237 assert(I.getType()->isIntOrIntVectorTy()); 3238 assert(I.getArgOperand(0)->getType() == I.getType()); 3239 3240 // FIXME: Handle is_int_min_poison. 3241 IRBuilder<> IRB(&I); 3242 setShadow(&I, getShadow(&I, 0)); 3243 setOrigin(&I, getOrigin(&I, 0)); 3244 } 3245 3246 void visitIntrinsicInst(IntrinsicInst &I) { 3247 switch (I.getIntrinsicID()) { 3248 case Intrinsic::abs: 3249 handleAbsIntrinsic(I); 3250 break; 3251 case Intrinsic::lifetime_start: 3252 handleLifetimeStart(I); 3253 break; 3254 case Intrinsic::launder_invariant_group: 3255 case Intrinsic::strip_invariant_group: 3256 handleInvariantGroup(I); 3257 break; 3258 case Intrinsic::bswap: 3259 handleBswap(I); 3260 break; 3261 case Intrinsic::masked_store: 3262 handleMaskedStore(I); 3263 break; 3264 case Intrinsic::masked_load: 3265 handleMaskedLoad(I); 3266 break; 3267 case Intrinsic::vector_reduce_and: 3268 handleVectorReduceAndIntrinsic(I); 3269 break; 3270 case Intrinsic::vector_reduce_or: 3271 handleVectorReduceOrIntrinsic(I); 3272 break; 3273 case Intrinsic::vector_reduce_add: 3274 case Intrinsic::vector_reduce_xor: 3275 case Intrinsic::vector_reduce_mul: 3276 handleVectorReduceIntrinsic(I); 3277 break; 3278 case Intrinsic::x86_sse_stmxcsr: 3279 handleStmxcsr(I); 3280 break; 3281 case Intrinsic::x86_sse_ldmxcsr: 3282 handleLdmxcsr(I); 3283 break; 3284 case Intrinsic::x86_avx512_vcvtsd2usi64: 3285 case Intrinsic::x86_avx512_vcvtsd2usi32: 3286 case Intrinsic::x86_avx512_vcvtss2usi64: 3287 case Intrinsic::x86_avx512_vcvtss2usi32: 3288 case Intrinsic::x86_avx512_cvttss2usi64: 3289 case Intrinsic::x86_avx512_cvttss2usi: 3290 case Intrinsic::x86_avx512_cvttsd2usi64: 3291 case Intrinsic::x86_avx512_cvttsd2usi: 3292 case Intrinsic::x86_avx512_cvtusi2ss: 3293 case Intrinsic::x86_avx512_cvtusi642sd: 3294 case Intrinsic::x86_avx512_cvtusi642ss: 3295 case Intrinsic::x86_sse2_cvtsd2si64: 3296 case Intrinsic::x86_sse2_cvtsd2si: 3297 case Intrinsic::x86_sse2_cvtsd2ss: 3298 case Intrinsic::x86_sse2_cvttsd2si64: 3299 case Intrinsic::x86_sse2_cvttsd2si: 3300 case Intrinsic::x86_sse_cvtss2si64: 3301 case Intrinsic::x86_sse_cvtss2si: 3302 case Intrinsic::x86_sse_cvttss2si64: 3303 case Intrinsic::x86_sse_cvttss2si: 3304 handleVectorConvertIntrinsic(I, 1); 3305 break; 3306 case Intrinsic::x86_sse_cvtps2pi: 3307 case Intrinsic::x86_sse_cvttps2pi: 3308 handleVectorConvertIntrinsic(I, 2); 3309 break; 3310 3311 case Intrinsic::x86_avx512_psll_w_512: 3312 case Intrinsic::x86_avx512_psll_d_512: 3313 case Intrinsic::x86_avx512_psll_q_512: 3314 case Intrinsic::x86_avx512_pslli_w_512: 3315 case Intrinsic::x86_avx512_pslli_d_512: 3316 case Intrinsic::x86_avx512_pslli_q_512: 3317 case Intrinsic::x86_avx512_psrl_w_512: 3318 case Intrinsic::x86_avx512_psrl_d_512: 3319 case Intrinsic::x86_avx512_psrl_q_512: 3320 case Intrinsic::x86_avx512_psra_w_512: 3321 case Intrinsic::x86_avx512_psra_d_512: 3322 case Intrinsic::x86_avx512_psra_q_512: 3323 case Intrinsic::x86_avx512_psrli_w_512: 3324 case Intrinsic::x86_avx512_psrli_d_512: 3325 case Intrinsic::x86_avx512_psrli_q_512: 3326 case Intrinsic::x86_avx512_psrai_w_512: 3327 case Intrinsic::x86_avx512_psrai_d_512: 3328 case Intrinsic::x86_avx512_psrai_q_512: 3329 case Intrinsic::x86_avx512_psra_q_256: 3330 case Intrinsic::x86_avx512_psra_q_128: 3331 case Intrinsic::x86_avx512_psrai_q_256: 3332 case Intrinsic::x86_avx512_psrai_q_128: 3333 case Intrinsic::x86_avx2_psll_w: 3334 case Intrinsic::x86_avx2_psll_d: 3335 case Intrinsic::x86_avx2_psll_q: 3336 case Intrinsic::x86_avx2_pslli_w: 3337 case Intrinsic::x86_avx2_pslli_d: 3338 case Intrinsic::x86_avx2_pslli_q: 3339 case Intrinsic::x86_avx2_psrl_w: 3340 case Intrinsic::x86_avx2_psrl_d: 3341 case Intrinsic::x86_avx2_psrl_q: 3342 case Intrinsic::x86_avx2_psra_w: 3343 case Intrinsic::x86_avx2_psra_d: 3344 case Intrinsic::x86_avx2_psrli_w: 3345 case Intrinsic::x86_avx2_psrli_d: 3346 case Intrinsic::x86_avx2_psrli_q: 3347 case Intrinsic::x86_avx2_psrai_w: 3348 case Intrinsic::x86_avx2_psrai_d: 3349 case Intrinsic::x86_sse2_psll_w: 3350 case Intrinsic::x86_sse2_psll_d: 3351 case Intrinsic::x86_sse2_psll_q: 3352 case Intrinsic::x86_sse2_pslli_w: 3353 case Intrinsic::x86_sse2_pslli_d: 3354 case Intrinsic::x86_sse2_pslli_q: 3355 case Intrinsic::x86_sse2_psrl_w: 3356 case Intrinsic::x86_sse2_psrl_d: 3357 case Intrinsic::x86_sse2_psrl_q: 3358 case Intrinsic::x86_sse2_psra_w: 3359 case Intrinsic::x86_sse2_psra_d: 3360 case Intrinsic::x86_sse2_psrli_w: 3361 case Intrinsic::x86_sse2_psrli_d: 3362 case Intrinsic::x86_sse2_psrli_q: 3363 case Intrinsic::x86_sse2_psrai_w: 3364 case Intrinsic::x86_sse2_psrai_d: 3365 case Intrinsic::x86_mmx_psll_w: 3366 case Intrinsic::x86_mmx_psll_d: 3367 case Intrinsic::x86_mmx_psll_q: 3368 case Intrinsic::x86_mmx_pslli_w: 3369 case Intrinsic::x86_mmx_pslli_d: 3370 case Intrinsic::x86_mmx_pslli_q: 3371 case Intrinsic::x86_mmx_psrl_w: 3372 case Intrinsic::x86_mmx_psrl_d: 3373 case Intrinsic::x86_mmx_psrl_q: 3374 case Intrinsic::x86_mmx_psra_w: 3375 case Intrinsic::x86_mmx_psra_d: 3376 case Intrinsic::x86_mmx_psrli_w: 3377 case Intrinsic::x86_mmx_psrli_d: 3378 case Intrinsic::x86_mmx_psrli_q: 3379 case Intrinsic::x86_mmx_psrai_w: 3380 case Intrinsic::x86_mmx_psrai_d: 3381 handleVectorShiftIntrinsic(I, /* Variable */ false); 3382 break; 3383 case Intrinsic::x86_avx2_psllv_d: 3384 case Intrinsic::x86_avx2_psllv_d_256: 3385 case Intrinsic::x86_avx512_psllv_d_512: 3386 case Intrinsic::x86_avx2_psllv_q: 3387 case Intrinsic::x86_avx2_psllv_q_256: 3388 case Intrinsic::x86_avx512_psllv_q_512: 3389 case Intrinsic::x86_avx2_psrlv_d: 3390 case Intrinsic::x86_avx2_psrlv_d_256: 3391 case Intrinsic::x86_avx512_psrlv_d_512: 3392 case Intrinsic::x86_avx2_psrlv_q: 3393 case Intrinsic::x86_avx2_psrlv_q_256: 3394 case Intrinsic::x86_avx512_psrlv_q_512: 3395 case Intrinsic::x86_avx2_psrav_d: 3396 case Intrinsic::x86_avx2_psrav_d_256: 3397 case Intrinsic::x86_avx512_psrav_d_512: 3398 case Intrinsic::x86_avx512_psrav_q_128: 3399 case Intrinsic::x86_avx512_psrav_q_256: 3400 case Intrinsic::x86_avx512_psrav_q_512: 3401 handleVectorShiftIntrinsic(I, /* Variable */ true); 3402 break; 3403 3404 case Intrinsic::x86_sse2_packsswb_128: 3405 case Intrinsic::x86_sse2_packssdw_128: 3406 case Intrinsic::x86_sse2_packuswb_128: 3407 case Intrinsic::x86_sse41_packusdw: 3408 case Intrinsic::x86_avx2_packsswb: 3409 case Intrinsic::x86_avx2_packssdw: 3410 case Intrinsic::x86_avx2_packuswb: 3411 case Intrinsic::x86_avx2_packusdw: 3412 handleVectorPackIntrinsic(I); 3413 break; 3414 3415 case Intrinsic::x86_mmx_packsswb: 3416 case Intrinsic::x86_mmx_packuswb: 3417 handleVectorPackIntrinsic(I, 16); 3418 break; 3419 3420 case Intrinsic::x86_mmx_packssdw: 3421 handleVectorPackIntrinsic(I, 32); 3422 break; 3423 3424 case Intrinsic::x86_mmx_psad_bw: 3425 case Intrinsic::x86_sse2_psad_bw: 3426 case Intrinsic::x86_avx2_psad_bw: 3427 handleVectorSadIntrinsic(I); 3428 break; 3429 3430 case Intrinsic::x86_sse2_pmadd_wd: 3431 case Intrinsic::x86_avx2_pmadd_wd: 3432 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3433 case Intrinsic::x86_avx2_pmadd_ub_sw: 3434 handleVectorPmaddIntrinsic(I); 3435 break; 3436 3437 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3438 handleVectorPmaddIntrinsic(I, 8); 3439 break; 3440 3441 case Intrinsic::x86_mmx_pmadd_wd: 3442 handleVectorPmaddIntrinsic(I, 16); 3443 break; 3444 3445 case Intrinsic::x86_sse_cmp_ss: 3446 case Intrinsic::x86_sse2_cmp_sd: 3447 case Intrinsic::x86_sse_comieq_ss: 3448 case Intrinsic::x86_sse_comilt_ss: 3449 case Intrinsic::x86_sse_comile_ss: 3450 case Intrinsic::x86_sse_comigt_ss: 3451 case Intrinsic::x86_sse_comige_ss: 3452 case Intrinsic::x86_sse_comineq_ss: 3453 case Intrinsic::x86_sse_ucomieq_ss: 3454 case Intrinsic::x86_sse_ucomilt_ss: 3455 case Intrinsic::x86_sse_ucomile_ss: 3456 case Intrinsic::x86_sse_ucomigt_ss: 3457 case Intrinsic::x86_sse_ucomige_ss: 3458 case Intrinsic::x86_sse_ucomineq_ss: 3459 case Intrinsic::x86_sse2_comieq_sd: 3460 case Intrinsic::x86_sse2_comilt_sd: 3461 case Intrinsic::x86_sse2_comile_sd: 3462 case Intrinsic::x86_sse2_comigt_sd: 3463 case Intrinsic::x86_sse2_comige_sd: 3464 case Intrinsic::x86_sse2_comineq_sd: 3465 case Intrinsic::x86_sse2_ucomieq_sd: 3466 case Intrinsic::x86_sse2_ucomilt_sd: 3467 case Intrinsic::x86_sse2_ucomile_sd: 3468 case Intrinsic::x86_sse2_ucomigt_sd: 3469 case Intrinsic::x86_sse2_ucomige_sd: 3470 case Intrinsic::x86_sse2_ucomineq_sd: 3471 handleVectorCompareScalarIntrinsic(I); 3472 break; 3473 3474 case Intrinsic::x86_sse_cmp_ps: 3475 case Intrinsic::x86_sse2_cmp_pd: 3476 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3477 // generates reasonably looking IR that fails in the backend with "Do not 3478 // know how to split the result of this operator!". 3479 handleVectorComparePackedIntrinsic(I); 3480 break; 3481 3482 case Intrinsic::x86_bmi_bextr_32: 3483 case Intrinsic::x86_bmi_bextr_64: 3484 case Intrinsic::x86_bmi_bzhi_32: 3485 case Intrinsic::x86_bmi_bzhi_64: 3486 case Intrinsic::x86_bmi_pdep_32: 3487 case Intrinsic::x86_bmi_pdep_64: 3488 case Intrinsic::x86_bmi_pext_32: 3489 case Intrinsic::x86_bmi_pext_64: 3490 handleBmiIntrinsic(I); 3491 break; 3492 3493 case Intrinsic::x86_pclmulqdq: 3494 case Intrinsic::x86_pclmulqdq_256: 3495 case Intrinsic::x86_pclmulqdq_512: 3496 handlePclmulIntrinsic(I); 3497 break; 3498 3499 case Intrinsic::x86_sse41_round_sd: 3500 handleUnarySdIntrinsic(I); 3501 break; 3502 case Intrinsic::x86_sse2_max_sd: 3503 case Intrinsic::x86_sse2_min_sd: 3504 handleBinarySdIntrinsic(I); 3505 break; 3506 3507 case Intrinsic::is_constant: 3508 // The result of llvm.is.constant() is always defined. 3509 setShadow(&I, getCleanShadow(&I)); 3510 setOrigin(&I, getCleanOrigin()); 3511 break; 3512 3513 default: 3514 if (!handleUnknownIntrinsic(I)) 3515 visitInstruction(I); 3516 break; 3517 } 3518 } 3519 3520 void visitLibAtomicLoad(CallBase &CB) { 3521 // Since we use getNextNode here, we can't have CB terminate the BB. 3522 assert(isa<CallInst>(CB)); 3523 3524 IRBuilder<> IRB(&CB); 3525 Value *Size = CB.getArgOperand(0); 3526 Value *SrcPtr = CB.getArgOperand(1); 3527 Value *DstPtr = CB.getArgOperand(2); 3528 Value *Ordering = CB.getArgOperand(3); 3529 // Convert the call to have at least Acquire ordering to make sure 3530 // the shadow operations aren't reordered before it. 3531 Value *NewOrdering = 3532 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3533 CB.setArgOperand(3, NewOrdering); 3534 3535 IRBuilder<> NextIRB(CB.getNextNode()); 3536 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3537 3538 Value *SrcShadowPtr, *SrcOriginPtr; 3539 std::tie(SrcShadowPtr, SrcOriginPtr) = 3540 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3541 /*isStore*/ false); 3542 Value *DstShadowPtr = 3543 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3544 /*isStore*/ true) 3545 .first; 3546 3547 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3548 if (MS.TrackOrigins) { 3549 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3550 kMinOriginAlignment); 3551 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3552 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3553 } 3554 } 3555 3556 void visitLibAtomicStore(CallBase &CB) { 3557 IRBuilder<> IRB(&CB); 3558 Value *Size = CB.getArgOperand(0); 3559 Value *DstPtr = CB.getArgOperand(2); 3560 Value *Ordering = CB.getArgOperand(3); 3561 // Convert the call to have at least Release ordering to make sure 3562 // the shadow operations aren't reordered after it. 3563 Value *NewOrdering = 3564 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3565 CB.setArgOperand(3, NewOrdering); 3566 3567 Value *DstShadowPtr = 3568 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3569 /*isStore*/ true) 3570 .first; 3571 3572 // Atomic store always paints clean shadow/origin. See file header. 3573 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3574 Align(1)); 3575 } 3576 3577 void visitCallBase(CallBase &CB) { 3578 assert(!CB.getMetadata("nosanitize")); 3579 if (CB.isInlineAsm()) { 3580 // For inline asm (either a call to asm function, or callbr instruction), 3581 // do the usual thing: check argument shadow and mark all outputs as 3582 // clean. Note that any side effects of the inline asm that are not 3583 // immediately visible in its constraints are not handled. 3584 if (ClHandleAsmConservative && MS.CompileKernel) 3585 visitAsmInstruction(CB); 3586 else 3587 visitInstruction(CB); 3588 return; 3589 } 3590 LibFunc LF; 3591 if (TLI->getLibFunc(CB, LF)) { 3592 // libatomic.a functions need to have special handling because there isn't 3593 // a good way to intercept them or compile the library with 3594 // instrumentation. 3595 switch (LF) { 3596 case LibFunc_atomic_load: 3597 if (!isa<CallInst>(CB)) { 3598 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3599 "Ignoring!\n"; 3600 break; 3601 } 3602 visitLibAtomicLoad(CB); 3603 return; 3604 case LibFunc_atomic_store: 3605 visitLibAtomicStore(CB); 3606 return; 3607 default: 3608 break; 3609 } 3610 } 3611 3612 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3613 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3614 3615 // We are going to insert code that relies on the fact that the callee 3616 // will become a non-readonly function after it is instrumented by us. To 3617 // prevent this code from being optimized out, mark that function 3618 // non-readonly in advance. 3619 AttrBuilder B; 3620 B.addAttribute(Attribute::ReadOnly) 3621 .addAttribute(Attribute::ReadNone) 3622 .addAttribute(Attribute::WriteOnly) 3623 .addAttribute(Attribute::ArgMemOnly) 3624 .addAttribute(Attribute::Speculatable); 3625 3626 Call->removeAttributes(AttributeList::FunctionIndex, B); 3627 if (Function *Func = Call->getCalledFunction()) { 3628 Func->removeAttributes(AttributeList::FunctionIndex, B); 3629 } 3630 3631 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3632 } 3633 IRBuilder<> IRB(&CB); 3634 bool MayCheckCall = ClEagerChecks; 3635 if (Function *Func = CB.getCalledFunction()) { 3636 // __sanitizer_unaligned_{load,store} functions may be called by users 3637 // and always expects shadows in the TLS. So don't check them. 3638 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3639 } 3640 3641 unsigned ArgOffset = 0; 3642 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3643 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3644 ++ArgIt) { 3645 Value *A = *ArgIt; 3646 unsigned i = ArgIt - CB.arg_begin(); 3647 if (!A->getType()->isSized()) { 3648 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3649 continue; 3650 } 3651 unsigned Size = 0; 3652 Value *Store = nullptr; 3653 // Compute the Shadow for arg even if it is ByVal, because 3654 // in that case getShadow() will copy the actual arg shadow to 3655 // __msan_param_tls. 3656 Value *ArgShadow = getShadow(A); 3657 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3658 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3659 << " Shadow: " << *ArgShadow << "\n"); 3660 bool ArgIsInitialized = false; 3661 const DataLayout &DL = F.getParent()->getDataLayout(); 3662 3663 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3664 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3665 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3666 3667 if (EagerCheck) { 3668 insertShadowCheck(A, &CB); 3669 continue; 3670 } 3671 if (ByVal) { 3672 // ByVal requires some special handling as it's too big for a single 3673 // load 3674 assert(A->getType()->isPointerTy() && 3675 "ByVal argument is not a pointer!"); 3676 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3677 if (ArgOffset + Size > kParamTLSSize) break; 3678 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3679 MaybeAlign Alignment = llvm::None; 3680 if (ParamAlignment) 3681 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3682 Value *AShadowPtr = 3683 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3684 /*isStore*/ false) 3685 .first; 3686 3687 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3688 Alignment, Size); 3689 // TODO(glider): need to copy origins. 3690 } else { 3691 // Any other parameters mean we need bit-grained tracking of uninit data 3692 Size = DL.getTypeAllocSize(A->getType()); 3693 if (ArgOffset + Size > kParamTLSSize) break; 3694 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3695 kShadowTLSAlignment); 3696 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3697 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3698 } 3699 if (MS.TrackOrigins && !ArgIsInitialized) 3700 IRB.CreateStore(getOrigin(A), 3701 getOriginPtrForArgument(A, IRB, ArgOffset)); 3702 (void)Store; 3703 assert(Size != 0 && Store != nullptr); 3704 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3705 ArgOffset += alignTo(Size, 8); 3706 } 3707 LLVM_DEBUG(dbgs() << " done with call args\n"); 3708 3709 FunctionType *FT = CB.getFunctionType(); 3710 if (FT->isVarArg()) { 3711 VAHelper->visitCallBase(CB, IRB); 3712 } 3713 3714 // Now, get the shadow for the RetVal. 3715 if (!CB.getType()->isSized()) 3716 return; 3717 // Don't emit the epilogue for musttail call returns. 3718 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3719 return; 3720 3721 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3722 setShadow(&CB, getCleanShadow(&CB)); 3723 setOrigin(&CB, getCleanOrigin()); 3724 return; 3725 } 3726 3727 IRBuilder<> IRBBefore(&CB); 3728 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3729 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3730 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3731 kShadowTLSAlignment); 3732 BasicBlock::iterator NextInsn; 3733 if (isa<CallInst>(CB)) { 3734 NextInsn = ++CB.getIterator(); 3735 assert(NextInsn != CB.getParent()->end()); 3736 } else { 3737 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3738 if (!NormalDest->getSinglePredecessor()) { 3739 // FIXME: this case is tricky, so we are just conservative here. 3740 // Perhaps we need to split the edge between this BB and NormalDest, 3741 // but a naive attempt to use SplitEdge leads to a crash. 3742 setShadow(&CB, getCleanShadow(&CB)); 3743 setOrigin(&CB, getCleanOrigin()); 3744 return; 3745 } 3746 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3747 // Anything inserted there will be instrumented by MSan later! 3748 NextInsn = NormalDest->getFirstInsertionPt(); 3749 assert(NextInsn != NormalDest->end() && 3750 "Could not find insertion point for retval shadow load"); 3751 } 3752 IRBuilder<> IRBAfter(&*NextInsn); 3753 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3754 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3755 kShadowTLSAlignment, "_msret"); 3756 setShadow(&CB, RetvalShadow); 3757 if (MS.TrackOrigins) 3758 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3759 getOriginPtrForRetval(IRBAfter))); 3760 } 3761 3762 bool isAMustTailRetVal(Value *RetVal) { 3763 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3764 RetVal = I->getOperand(0); 3765 } 3766 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3767 return I->isMustTailCall(); 3768 } 3769 return false; 3770 } 3771 3772 void visitReturnInst(ReturnInst &I) { 3773 IRBuilder<> IRB(&I); 3774 Value *RetVal = I.getReturnValue(); 3775 if (!RetVal) return; 3776 // Don't emit the epilogue for musttail call returns. 3777 if (isAMustTailRetVal(RetVal)) return; 3778 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3779 bool HasNoUndef = 3780 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3781 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3782 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3783 // must always return fully initialized values. For now, we hardcode "main". 3784 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3785 3786 Value *Shadow = getShadow(RetVal); 3787 bool StoreOrigin = true; 3788 if (EagerCheck) { 3789 insertShadowCheck(RetVal, &I); 3790 Shadow = getCleanShadow(RetVal); 3791 StoreOrigin = false; 3792 } 3793 3794 // The caller may still expect information passed over TLS if we pass our 3795 // check 3796 if (StoreShadow) { 3797 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3798 if (MS.TrackOrigins && StoreOrigin) 3799 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3800 } 3801 } 3802 3803 void visitPHINode(PHINode &I) { 3804 IRBuilder<> IRB(&I); 3805 if (!PropagateShadow) { 3806 setShadow(&I, getCleanShadow(&I)); 3807 setOrigin(&I, getCleanOrigin()); 3808 return; 3809 } 3810 3811 ShadowPHINodes.push_back(&I); 3812 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3813 "_msphi_s")); 3814 if (MS.TrackOrigins) 3815 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3816 "_msphi_o")); 3817 } 3818 3819 Value *getLocalVarDescription(AllocaInst &I) { 3820 SmallString<2048> StackDescriptionStorage; 3821 raw_svector_ostream StackDescription(StackDescriptionStorage); 3822 // We create a string with a description of the stack allocation and 3823 // pass it into __msan_set_alloca_origin. 3824 // It will be printed by the run-time if stack-originated UMR is found. 3825 // The first 4 bytes of the string are set to '----' and will be replaced 3826 // by __msan_va_arg_overflow_size_tls at the first call. 3827 StackDescription << "----" << I.getName() << "@" << F.getName(); 3828 return createPrivateNonConstGlobalForString(*F.getParent(), 3829 StackDescription.str()); 3830 } 3831 3832 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3833 if (PoisonStack && ClPoisonStackWithCall) { 3834 IRB.CreateCall(MS.MsanPoisonStackFn, 3835 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3836 } else { 3837 Value *ShadowBase, *OriginBase; 3838 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3839 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3840 3841 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3842 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3843 MaybeAlign(I.getAlignment())); 3844 } 3845 3846 if (PoisonStack && MS.TrackOrigins) { 3847 Value *Descr = getLocalVarDescription(I); 3848 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3849 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3850 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3851 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3852 } 3853 } 3854 3855 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3856 Value *Descr = getLocalVarDescription(I); 3857 if (PoisonStack) { 3858 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3859 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3860 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3861 } else { 3862 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3863 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3864 } 3865 } 3866 3867 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3868 if (!InsPoint) 3869 InsPoint = &I; 3870 IRBuilder<> IRB(InsPoint->getNextNode()); 3871 const DataLayout &DL = F.getParent()->getDataLayout(); 3872 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3873 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3874 if (I.isArrayAllocation()) 3875 Len = IRB.CreateMul(Len, I.getArraySize()); 3876 3877 if (MS.CompileKernel) 3878 poisonAllocaKmsan(I, IRB, Len); 3879 else 3880 poisonAllocaUserspace(I, IRB, Len); 3881 } 3882 3883 void visitAllocaInst(AllocaInst &I) { 3884 setShadow(&I, getCleanShadow(&I)); 3885 setOrigin(&I, getCleanOrigin()); 3886 // We'll get to this alloca later unless it's poisoned at the corresponding 3887 // llvm.lifetime.start. 3888 AllocaSet.insert(&I); 3889 } 3890 3891 void visitSelectInst(SelectInst& I) { 3892 IRBuilder<> IRB(&I); 3893 // a = select b, c, d 3894 Value *B = I.getCondition(); 3895 Value *C = I.getTrueValue(); 3896 Value *D = I.getFalseValue(); 3897 Value *Sb = getShadow(B); 3898 Value *Sc = getShadow(C); 3899 Value *Sd = getShadow(D); 3900 3901 // Result shadow if condition shadow is 0. 3902 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3903 Value *Sa1; 3904 if (I.getType()->isAggregateType()) { 3905 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3906 // an extra "select". This results in much more compact IR. 3907 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3908 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3909 } else { 3910 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3911 // If Sb (condition is poisoned), look for bits in c and d that are equal 3912 // and both unpoisoned. 3913 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3914 3915 // Cast arguments to shadow-compatible type. 3916 C = CreateAppToShadowCast(IRB, C); 3917 D = CreateAppToShadowCast(IRB, D); 3918 3919 // Result shadow if condition shadow is 1. 3920 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3921 } 3922 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3923 setShadow(&I, Sa); 3924 if (MS.TrackOrigins) { 3925 // Origins are always i32, so any vector conditions must be flattened. 3926 // FIXME: consider tracking vector origins for app vectors? 3927 if (B->getType()->isVectorTy()) { 3928 Type *FlatTy = getShadowTyNoVec(B->getType()); 3929 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3930 ConstantInt::getNullValue(FlatTy)); 3931 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3932 ConstantInt::getNullValue(FlatTy)); 3933 } 3934 // a = select b, c, d 3935 // Oa = Sb ? Ob : (b ? Oc : Od) 3936 setOrigin( 3937 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3938 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3939 getOrigin(I.getFalseValue())))); 3940 } 3941 } 3942 3943 void visitLandingPadInst(LandingPadInst &I) { 3944 // Do nothing. 3945 // See https://github.com/google/sanitizers/issues/504 3946 setShadow(&I, getCleanShadow(&I)); 3947 setOrigin(&I, getCleanOrigin()); 3948 } 3949 3950 void visitCatchSwitchInst(CatchSwitchInst &I) { 3951 setShadow(&I, getCleanShadow(&I)); 3952 setOrigin(&I, getCleanOrigin()); 3953 } 3954 3955 void visitFuncletPadInst(FuncletPadInst &I) { 3956 setShadow(&I, getCleanShadow(&I)); 3957 setOrigin(&I, getCleanOrigin()); 3958 } 3959 3960 void visitGetElementPtrInst(GetElementPtrInst &I) { 3961 handleShadowOr(I); 3962 } 3963 3964 void visitExtractValueInst(ExtractValueInst &I) { 3965 IRBuilder<> IRB(&I); 3966 Value *Agg = I.getAggregateOperand(); 3967 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3968 Value *AggShadow = getShadow(Agg); 3969 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3970 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3971 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3972 setShadow(&I, ResShadow); 3973 setOriginForNaryOp(I); 3974 } 3975 3976 void visitInsertValueInst(InsertValueInst &I) { 3977 IRBuilder<> IRB(&I); 3978 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3979 Value *AggShadow = getShadow(I.getAggregateOperand()); 3980 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3981 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3982 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3983 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3984 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3985 setShadow(&I, Res); 3986 setOriginForNaryOp(I); 3987 } 3988 3989 void dumpInst(Instruction &I) { 3990 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3991 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3992 } else { 3993 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3994 } 3995 errs() << "QQQ " << I << "\n"; 3996 } 3997 3998 void visitResumeInst(ResumeInst &I) { 3999 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4000 // Nothing to do here. 4001 } 4002 4003 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4004 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4005 // Nothing to do here. 4006 } 4007 4008 void visitCatchReturnInst(CatchReturnInst &CRI) { 4009 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4010 // Nothing to do here. 4011 } 4012 4013 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4014 const DataLayout &DL, bool isOutput) { 4015 // For each assembly argument, we check its value for being initialized. 4016 // If the argument is a pointer, we assume it points to a single element 4017 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4018 // Each such pointer is instrumented with a call to the runtime library. 4019 Type *OpType = Operand->getType(); 4020 // Check the operand value itself. 4021 insertShadowCheck(Operand, &I); 4022 if (!OpType->isPointerTy() || !isOutput) { 4023 assert(!isOutput); 4024 return; 4025 } 4026 Type *ElType = OpType->getPointerElementType(); 4027 if (!ElType->isSized()) 4028 return; 4029 int Size = DL.getTypeStoreSize(ElType); 4030 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4031 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4032 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4033 } 4034 4035 /// Get the number of output arguments returned by pointers. 4036 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4037 int NumRetOutputs = 0; 4038 int NumOutputs = 0; 4039 Type *RetTy = cast<Value>(CB)->getType(); 4040 if (!RetTy->isVoidTy()) { 4041 // Register outputs are returned via the CallInst return value. 4042 auto *ST = dyn_cast<StructType>(RetTy); 4043 if (ST) 4044 NumRetOutputs = ST->getNumElements(); 4045 else 4046 NumRetOutputs = 1; 4047 } 4048 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4049 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 4050 InlineAsm::ConstraintInfo Info = Constraints[i]; 4051 switch (Info.Type) { 4052 case InlineAsm::isOutput: 4053 NumOutputs++; 4054 break; 4055 default: 4056 break; 4057 } 4058 } 4059 return NumOutputs - NumRetOutputs; 4060 } 4061 4062 void visitAsmInstruction(Instruction &I) { 4063 // Conservative inline assembly handling: check for poisoned shadow of 4064 // asm() arguments, then unpoison the result and all the memory locations 4065 // pointed to by those arguments. 4066 // An inline asm() statement in C++ contains lists of input and output 4067 // arguments used by the assembly code. These are mapped to operands of the 4068 // CallInst as follows: 4069 // - nR register outputs ("=r) are returned by value in a single structure 4070 // (SSA value of the CallInst); 4071 // - nO other outputs ("=m" and others) are returned by pointer as first 4072 // nO operands of the CallInst; 4073 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4074 // remaining nI operands. 4075 // The total number of asm() arguments in the source is nR+nO+nI, and the 4076 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4077 // function to be called). 4078 const DataLayout &DL = F.getParent()->getDataLayout(); 4079 CallBase *CB = cast<CallBase>(&I); 4080 IRBuilder<> IRB(&I); 4081 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4082 int OutputArgs = getNumOutputArgs(IA, CB); 4083 // The last operand of a CallInst is the function itself. 4084 int NumOperands = CB->getNumOperands() - 1; 4085 4086 // Check input arguments. Doing so before unpoisoning output arguments, so 4087 // that we won't overwrite uninit values before checking them. 4088 for (int i = OutputArgs; i < NumOperands; i++) { 4089 Value *Operand = CB->getOperand(i); 4090 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4091 } 4092 // Unpoison output arguments. This must happen before the actual InlineAsm 4093 // call, so that the shadow for memory published in the asm() statement 4094 // remains valid. 4095 for (int i = 0; i < OutputArgs; i++) { 4096 Value *Operand = CB->getOperand(i); 4097 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4098 } 4099 4100 setShadow(&I, getCleanShadow(&I)); 4101 setOrigin(&I, getCleanOrigin()); 4102 } 4103 4104 void visitFreezeInst(FreezeInst &I) { 4105 // Freeze always returns a fully defined value. 4106 setShadow(&I, getCleanShadow(&I)); 4107 setOrigin(&I, getCleanOrigin()); 4108 } 4109 4110 void visitInstruction(Instruction &I) { 4111 // Everything else: stop propagating and check for poisoned shadow. 4112 if (ClDumpStrictInstructions) 4113 dumpInst(I); 4114 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4115 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4116 Value *Operand = I.getOperand(i); 4117 if (Operand->getType()->isSized()) 4118 insertShadowCheck(Operand, &I); 4119 } 4120 setShadow(&I, getCleanShadow(&I)); 4121 setOrigin(&I, getCleanOrigin()); 4122 } 4123 }; 4124 4125 /// AMD64-specific implementation of VarArgHelper. 4126 struct VarArgAMD64Helper : public VarArgHelper { 4127 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4128 // See a comment in visitCallBase for more details. 4129 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4130 static const unsigned AMD64FpEndOffsetSSE = 176; 4131 // If SSE is disabled, fp_offset in va_list is zero. 4132 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4133 4134 unsigned AMD64FpEndOffset; 4135 Function &F; 4136 MemorySanitizer &MS; 4137 MemorySanitizerVisitor &MSV; 4138 Value *VAArgTLSCopy = nullptr; 4139 Value *VAArgTLSOriginCopy = nullptr; 4140 Value *VAArgOverflowSize = nullptr; 4141 4142 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4143 4144 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4145 4146 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4147 MemorySanitizerVisitor &MSV) 4148 : F(F), MS(MS), MSV(MSV) { 4149 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4150 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 4151 if (Attr.isStringAttribute() && 4152 (Attr.getKindAsString() == "target-features")) { 4153 if (Attr.getValueAsString().contains("-sse")) 4154 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4155 break; 4156 } 4157 } 4158 } 4159 4160 ArgKind classifyArgument(Value* arg) { 4161 // A very rough approximation of X86_64 argument classification rules. 4162 Type *T = arg->getType(); 4163 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4164 return AK_FloatingPoint; 4165 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4166 return AK_GeneralPurpose; 4167 if (T->isPointerTy()) 4168 return AK_GeneralPurpose; 4169 return AK_Memory; 4170 } 4171 4172 // For VarArg functions, store the argument shadow in an ABI-specific format 4173 // that corresponds to va_list layout. 4174 // We do this because Clang lowers va_arg in the frontend, and this pass 4175 // only sees the low level code that deals with va_list internals. 4176 // A much easier alternative (provided that Clang emits va_arg instructions) 4177 // would have been to associate each live instance of va_list with a copy of 4178 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4179 // order. 4180 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4181 unsigned GpOffset = 0; 4182 unsigned FpOffset = AMD64GpEndOffset; 4183 unsigned OverflowOffset = AMD64FpEndOffset; 4184 const DataLayout &DL = F.getParent()->getDataLayout(); 4185 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4186 ++ArgIt) { 4187 Value *A = *ArgIt; 4188 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4189 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4190 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4191 if (IsByVal) { 4192 // ByVal arguments always go to the overflow area. 4193 // Fixed arguments passed through the overflow area will be stepped 4194 // over by va_start, so don't count them towards the offset. 4195 if (IsFixed) 4196 continue; 4197 assert(A->getType()->isPointerTy()); 4198 Type *RealTy = CB.getParamByValType(ArgNo); 4199 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4200 Value *ShadowBase = getShadowPtrForVAArgument( 4201 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4202 Value *OriginBase = nullptr; 4203 if (MS.TrackOrigins) 4204 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4205 OverflowOffset += alignTo(ArgSize, 8); 4206 if (!ShadowBase) 4207 continue; 4208 Value *ShadowPtr, *OriginPtr; 4209 std::tie(ShadowPtr, OriginPtr) = 4210 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4211 /*isStore*/ false); 4212 4213 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4214 kShadowTLSAlignment, ArgSize); 4215 if (MS.TrackOrigins) 4216 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4217 kShadowTLSAlignment, ArgSize); 4218 } else { 4219 ArgKind AK = classifyArgument(A); 4220 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4221 AK = AK_Memory; 4222 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4223 AK = AK_Memory; 4224 Value *ShadowBase, *OriginBase = nullptr; 4225 switch (AK) { 4226 case AK_GeneralPurpose: 4227 ShadowBase = 4228 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4229 if (MS.TrackOrigins) 4230 OriginBase = 4231 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4232 GpOffset += 8; 4233 break; 4234 case AK_FloatingPoint: 4235 ShadowBase = 4236 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4237 if (MS.TrackOrigins) 4238 OriginBase = 4239 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4240 FpOffset += 16; 4241 break; 4242 case AK_Memory: 4243 if (IsFixed) 4244 continue; 4245 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4246 ShadowBase = 4247 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4248 if (MS.TrackOrigins) 4249 OriginBase = 4250 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4251 OverflowOffset += alignTo(ArgSize, 8); 4252 } 4253 // Take fixed arguments into account for GpOffset and FpOffset, 4254 // but don't actually store shadows for them. 4255 // TODO(glider): don't call get*PtrForVAArgument() for them. 4256 if (IsFixed) 4257 continue; 4258 if (!ShadowBase) 4259 continue; 4260 Value *Shadow = MSV.getShadow(A); 4261 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4262 if (MS.TrackOrigins) { 4263 Value *Origin = MSV.getOrigin(A); 4264 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4265 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4266 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4267 } 4268 } 4269 } 4270 Constant *OverflowSize = 4271 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4272 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4273 } 4274 4275 /// Compute the shadow address for a given va_arg. 4276 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4277 unsigned ArgOffset, unsigned ArgSize) { 4278 // Make sure we don't overflow __msan_va_arg_tls. 4279 if (ArgOffset + ArgSize > kParamTLSSize) 4280 return nullptr; 4281 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4282 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4283 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4284 "_msarg_va_s"); 4285 } 4286 4287 /// Compute the origin address for a given va_arg. 4288 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4289 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4290 // getOriginPtrForVAArgument() is always called after 4291 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4292 // overflow. 4293 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4294 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4295 "_msarg_va_o"); 4296 } 4297 4298 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4299 IRBuilder<> IRB(&I); 4300 Value *VAListTag = I.getArgOperand(0); 4301 Value *ShadowPtr, *OriginPtr; 4302 const Align Alignment = Align(8); 4303 std::tie(ShadowPtr, OriginPtr) = 4304 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4305 /*isStore*/ true); 4306 4307 // Unpoison the whole __va_list_tag. 4308 // FIXME: magic ABI constants. 4309 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4310 /* size */ 24, Alignment, false); 4311 // We shouldn't need to zero out the origins, as they're only checked for 4312 // nonzero shadow. 4313 } 4314 4315 void visitVAStartInst(VAStartInst &I) override { 4316 if (F.getCallingConv() == CallingConv::Win64) 4317 return; 4318 VAStartInstrumentationList.push_back(&I); 4319 unpoisonVAListTagForInst(I); 4320 } 4321 4322 void visitVACopyInst(VACopyInst &I) override { 4323 if (F.getCallingConv() == CallingConv::Win64) return; 4324 unpoisonVAListTagForInst(I); 4325 } 4326 4327 void finalizeInstrumentation() override { 4328 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4329 "finalizeInstrumentation called twice"); 4330 if (!VAStartInstrumentationList.empty()) { 4331 // If there is a va_start in this function, make a backup copy of 4332 // va_arg_tls somewhere in the function entry block. 4333 IRBuilder<> IRB(MSV.FnPrologueEnd); 4334 VAArgOverflowSize = 4335 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4336 Value *CopySize = 4337 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4338 VAArgOverflowSize); 4339 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4340 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4341 if (MS.TrackOrigins) { 4342 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4343 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4344 Align(8), CopySize); 4345 } 4346 } 4347 4348 // Instrument va_start. 4349 // Copy va_list shadow from the backup copy of the TLS contents. 4350 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4351 CallInst *OrigInst = VAStartInstrumentationList[i]; 4352 IRBuilder<> IRB(OrigInst->getNextNode()); 4353 Value *VAListTag = OrigInst->getArgOperand(0); 4354 4355 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4356 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4357 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4358 ConstantInt::get(MS.IntptrTy, 16)), 4359 PointerType::get(RegSaveAreaPtrTy, 0)); 4360 Value *RegSaveAreaPtr = 4361 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4362 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4363 const Align Alignment = Align(16); 4364 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4365 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4366 Alignment, /*isStore*/ true); 4367 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4368 AMD64FpEndOffset); 4369 if (MS.TrackOrigins) 4370 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4371 Alignment, AMD64FpEndOffset); 4372 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4373 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4374 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4375 ConstantInt::get(MS.IntptrTy, 8)), 4376 PointerType::get(OverflowArgAreaPtrTy, 0)); 4377 Value *OverflowArgAreaPtr = 4378 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4379 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4380 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4381 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4382 Alignment, /*isStore*/ true); 4383 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4384 AMD64FpEndOffset); 4385 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4386 VAArgOverflowSize); 4387 if (MS.TrackOrigins) { 4388 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4389 AMD64FpEndOffset); 4390 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4391 VAArgOverflowSize); 4392 } 4393 } 4394 } 4395 }; 4396 4397 /// MIPS64-specific implementation of VarArgHelper. 4398 struct VarArgMIPS64Helper : public VarArgHelper { 4399 Function &F; 4400 MemorySanitizer &MS; 4401 MemorySanitizerVisitor &MSV; 4402 Value *VAArgTLSCopy = nullptr; 4403 Value *VAArgSize = nullptr; 4404 4405 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4406 4407 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4408 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4409 4410 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4411 unsigned VAArgOffset = 0; 4412 const DataLayout &DL = F.getParent()->getDataLayout(); 4413 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4414 End = CB.arg_end(); 4415 ArgIt != End; ++ArgIt) { 4416 Triple TargetTriple(F.getParent()->getTargetTriple()); 4417 Value *A = *ArgIt; 4418 Value *Base; 4419 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4420 if (TargetTriple.getArch() == Triple::mips64) { 4421 // Adjusting the shadow for argument with size < 8 to match the placement 4422 // of bits in big endian system 4423 if (ArgSize < 8) 4424 VAArgOffset += (8 - ArgSize); 4425 } 4426 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4427 VAArgOffset += ArgSize; 4428 VAArgOffset = alignTo(VAArgOffset, 8); 4429 if (!Base) 4430 continue; 4431 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4432 } 4433 4434 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4435 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4436 // a new class member i.e. it is the total size of all VarArgs. 4437 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4438 } 4439 4440 /// Compute the shadow address for a given va_arg. 4441 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4442 unsigned ArgOffset, unsigned ArgSize) { 4443 // Make sure we don't overflow __msan_va_arg_tls. 4444 if (ArgOffset + ArgSize > kParamTLSSize) 4445 return nullptr; 4446 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4447 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4448 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4449 "_msarg"); 4450 } 4451 4452 void visitVAStartInst(VAStartInst &I) override { 4453 IRBuilder<> IRB(&I); 4454 VAStartInstrumentationList.push_back(&I); 4455 Value *VAListTag = I.getArgOperand(0); 4456 Value *ShadowPtr, *OriginPtr; 4457 const Align Alignment = Align(8); 4458 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4459 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4460 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4461 /* size */ 8, Alignment, false); 4462 } 4463 4464 void visitVACopyInst(VACopyInst &I) override { 4465 IRBuilder<> IRB(&I); 4466 VAStartInstrumentationList.push_back(&I); 4467 Value *VAListTag = I.getArgOperand(0); 4468 Value *ShadowPtr, *OriginPtr; 4469 const Align Alignment = Align(8); 4470 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4471 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4472 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4473 /* size */ 8, Alignment, false); 4474 } 4475 4476 void finalizeInstrumentation() override { 4477 assert(!VAArgSize && !VAArgTLSCopy && 4478 "finalizeInstrumentation called twice"); 4479 IRBuilder<> IRB(MSV.FnPrologueEnd); 4480 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4481 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4482 VAArgSize); 4483 4484 if (!VAStartInstrumentationList.empty()) { 4485 // If there is a va_start in this function, make a backup copy of 4486 // va_arg_tls somewhere in the function entry block. 4487 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4488 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4489 } 4490 4491 // Instrument va_start. 4492 // Copy va_list shadow from the backup copy of the TLS contents. 4493 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4494 CallInst *OrigInst = VAStartInstrumentationList[i]; 4495 IRBuilder<> IRB(OrigInst->getNextNode()); 4496 Value *VAListTag = OrigInst->getArgOperand(0); 4497 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4498 Value *RegSaveAreaPtrPtr = 4499 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4500 PointerType::get(RegSaveAreaPtrTy, 0)); 4501 Value *RegSaveAreaPtr = 4502 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4503 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4504 const Align Alignment = Align(8); 4505 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4506 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4507 Alignment, /*isStore*/ true); 4508 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4509 CopySize); 4510 } 4511 } 4512 }; 4513 4514 /// AArch64-specific implementation of VarArgHelper. 4515 struct VarArgAArch64Helper : public VarArgHelper { 4516 static const unsigned kAArch64GrArgSize = 64; 4517 static const unsigned kAArch64VrArgSize = 128; 4518 4519 static const unsigned AArch64GrBegOffset = 0; 4520 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4521 // Make VR space aligned to 16 bytes. 4522 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4523 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4524 + kAArch64VrArgSize; 4525 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4526 4527 Function &F; 4528 MemorySanitizer &MS; 4529 MemorySanitizerVisitor &MSV; 4530 Value *VAArgTLSCopy = nullptr; 4531 Value *VAArgOverflowSize = nullptr; 4532 4533 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4534 4535 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4536 4537 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4538 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4539 4540 ArgKind classifyArgument(Value* arg) { 4541 Type *T = arg->getType(); 4542 if (T->isFPOrFPVectorTy()) 4543 return AK_FloatingPoint; 4544 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4545 || (T->isPointerTy())) 4546 return AK_GeneralPurpose; 4547 return AK_Memory; 4548 } 4549 4550 // The instrumentation stores the argument shadow in a non ABI-specific 4551 // format because it does not know which argument is named (since Clang, 4552 // like x86_64 case, lowers the va_args in the frontend and this pass only 4553 // sees the low level code that deals with va_list internals). 4554 // The first seven GR registers are saved in the first 56 bytes of the 4555 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4556 // the remaining arguments. 4557 // Using constant offset within the va_arg TLS array allows fast copy 4558 // in the finalize instrumentation. 4559 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4560 unsigned GrOffset = AArch64GrBegOffset; 4561 unsigned VrOffset = AArch64VrBegOffset; 4562 unsigned OverflowOffset = AArch64VAEndOffset; 4563 4564 const DataLayout &DL = F.getParent()->getDataLayout(); 4565 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4566 ++ArgIt) { 4567 Value *A = *ArgIt; 4568 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4569 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4570 ArgKind AK = classifyArgument(A); 4571 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4572 AK = AK_Memory; 4573 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4574 AK = AK_Memory; 4575 Value *Base; 4576 switch (AK) { 4577 case AK_GeneralPurpose: 4578 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4579 GrOffset += 8; 4580 break; 4581 case AK_FloatingPoint: 4582 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4583 VrOffset += 16; 4584 break; 4585 case AK_Memory: 4586 // Don't count fixed arguments in the overflow area - va_start will 4587 // skip right over them. 4588 if (IsFixed) 4589 continue; 4590 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4591 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4592 alignTo(ArgSize, 8)); 4593 OverflowOffset += alignTo(ArgSize, 8); 4594 break; 4595 } 4596 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4597 // bother to actually store a shadow. 4598 if (IsFixed) 4599 continue; 4600 if (!Base) 4601 continue; 4602 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4603 } 4604 Constant *OverflowSize = 4605 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4606 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4607 } 4608 4609 /// Compute the shadow address for a given va_arg. 4610 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4611 unsigned ArgOffset, unsigned ArgSize) { 4612 // Make sure we don't overflow __msan_va_arg_tls. 4613 if (ArgOffset + ArgSize > kParamTLSSize) 4614 return nullptr; 4615 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4616 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4617 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4618 "_msarg"); 4619 } 4620 4621 void visitVAStartInst(VAStartInst &I) override { 4622 IRBuilder<> IRB(&I); 4623 VAStartInstrumentationList.push_back(&I); 4624 Value *VAListTag = I.getArgOperand(0); 4625 Value *ShadowPtr, *OriginPtr; 4626 const Align Alignment = Align(8); 4627 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4628 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4629 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4630 /* size */ 32, Alignment, false); 4631 } 4632 4633 void visitVACopyInst(VACopyInst &I) override { 4634 IRBuilder<> IRB(&I); 4635 VAStartInstrumentationList.push_back(&I); 4636 Value *VAListTag = I.getArgOperand(0); 4637 Value *ShadowPtr, *OriginPtr; 4638 const Align Alignment = Align(8); 4639 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4640 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4641 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4642 /* size */ 32, Alignment, false); 4643 } 4644 4645 // Retrieve a va_list field of 'void*' size. 4646 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4647 Value *SaveAreaPtrPtr = 4648 IRB.CreateIntToPtr( 4649 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4650 ConstantInt::get(MS.IntptrTy, offset)), 4651 Type::getInt64PtrTy(*MS.C)); 4652 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4653 } 4654 4655 // Retrieve a va_list field of 'int' size. 4656 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4657 Value *SaveAreaPtr = 4658 IRB.CreateIntToPtr( 4659 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4660 ConstantInt::get(MS.IntptrTy, offset)), 4661 Type::getInt32PtrTy(*MS.C)); 4662 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4663 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4664 } 4665 4666 void finalizeInstrumentation() override { 4667 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4668 "finalizeInstrumentation called twice"); 4669 if (!VAStartInstrumentationList.empty()) { 4670 // If there is a va_start in this function, make a backup copy of 4671 // va_arg_tls somewhere in the function entry block. 4672 IRBuilder<> IRB(MSV.FnPrologueEnd); 4673 VAArgOverflowSize = 4674 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4675 Value *CopySize = 4676 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4677 VAArgOverflowSize); 4678 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4679 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4680 } 4681 4682 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4683 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4684 4685 // Instrument va_start, copy va_list shadow from the backup copy of 4686 // the TLS contents. 4687 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4688 CallInst *OrigInst = VAStartInstrumentationList[i]; 4689 IRBuilder<> IRB(OrigInst->getNextNode()); 4690 4691 Value *VAListTag = OrigInst->getArgOperand(0); 4692 4693 // The variadic ABI for AArch64 creates two areas to save the incoming 4694 // argument registers (one for 64-bit general register xn-x7 and another 4695 // for 128-bit FP/SIMD vn-v7). 4696 // We need then to propagate the shadow arguments on both regions 4697 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4698 // The remaining arguments are saved on shadow for 'va::stack'. 4699 // One caveat is it requires only to propagate the non-named arguments, 4700 // however on the call site instrumentation 'all' the arguments are 4701 // saved. So to copy the shadow values from the va_arg TLS array 4702 // we need to adjust the offset for both GR and VR fields based on 4703 // the __{gr,vr}_offs value (since they are stores based on incoming 4704 // named arguments). 4705 4706 // Read the stack pointer from the va_list. 4707 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4708 4709 // Read both the __gr_top and __gr_off and add them up. 4710 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4711 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4712 4713 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4714 4715 // Read both the __vr_top and __vr_off and add them up. 4716 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4717 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4718 4719 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4720 4721 // It does not know how many named arguments is being used and, on the 4722 // callsite all the arguments were saved. Since __gr_off is defined as 4723 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4724 // argument by ignoring the bytes of shadow from named arguments. 4725 Value *GrRegSaveAreaShadowPtrOff = 4726 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4727 4728 Value *GrRegSaveAreaShadowPtr = 4729 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4730 Align(8), /*isStore*/ true) 4731 .first; 4732 4733 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4734 GrRegSaveAreaShadowPtrOff); 4735 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4736 4737 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4738 GrCopySize); 4739 4740 // Again, but for FP/SIMD values. 4741 Value *VrRegSaveAreaShadowPtrOff = 4742 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4743 4744 Value *VrRegSaveAreaShadowPtr = 4745 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4746 Align(8), /*isStore*/ true) 4747 .first; 4748 4749 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4750 IRB.getInt8Ty(), 4751 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4752 IRB.getInt32(AArch64VrBegOffset)), 4753 VrRegSaveAreaShadowPtrOff); 4754 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4755 4756 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4757 VrCopySize); 4758 4759 // And finally for remaining arguments. 4760 Value *StackSaveAreaShadowPtr = 4761 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4762 Align(16), /*isStore*/ true) 4763 .first; 4764 4765 Value *StackSrcPtr = 4766 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4767 IRB.getInt32(AArch64VAEndOffset)); 4768 4769 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4770 Align(16), VAArgOverflowSize); 4771 } 4772 } 4773 }; 4774 4775 /// PowerPC64-specific implementation of VarArgHelper. 4776 struct VarArgPowerPC64Helper : public VarArgHelper { 4777 Function &F; 4778 MemorySanitizer &MS; 4779 MemorySanitizerVisitor &MSV; 4780 Value *VAArgTLSCopy = nullptr; 4781 Value *VAArgSize = nullptr; 4782 4783 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4784 4785 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4786 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4787 4788 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4789 // For PowerPC, we need to deal with alignment of stack arguments - 4790 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4791 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4792 // For that reason, we compute current offset from stack pointer (which is 4793 // always properly aligned), and offset for the first vararg, then subtract 4794 // them. 4795 unsigned VAArgBase; 4796 Triple TargetTriple(F.getParent()->getTargetTriple()); 4797 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4798 // and 32 bytes for ABIv2. This is usually determined by target 4799 // endianness, but in theory could be overridden by function attribute. 4800 if (TargetTriple.getArch() == Triple::ppc64) 4801 VAArgBase = 48; 4802 else 4803 VAArgBase = 32; 4804 unsigned VAArgOffset = VAArgBase; 4805 const DataLayout &DL = F.getParent()->getDataLayout(); 4806 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4807 ++ArgIt) { 4808 Value *A = *ArgIt; 4809 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4810 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4811 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4812 if (IsByVal) { 4813 assert(A->getType()->isPointerTy()); 4814 Type *RealTy = CB.getParamByValType(ArgNo); 4815 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4816 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4817 if (!ArgAlign || *ArgAlign < Align(8)) 4818 ArgAlign = Align(8); 4819 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4820 if (!IsFixed) { 4821 Value *Base = getShadowPtrForVAArgument( 4822 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4823 if (Base) { 4824 Value *AShadowPtr, *AOriginPtr; 4825 std::tie(AShadowPtr, AOriginPtr) = 4826 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4827 kShadowTLSAlignment, /*isStore*/ false); 4828 4829 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4830 kShadowTLSAlignment, ArgSize); 4831 } 4832 } 4833 VAArgOffset += alignTo(ArgSize, 8); 4834 } else { 4835 Value *Base; 4836 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4837 uint64_t ArgAlign = 8; 4838 if (A->getType()->isArrayTy()) { 4839 // Arrays are aligned to element size, except for long double 4840 // arrays, which are aligned to 8 bytes. 4841 Type *ElementTy = A->getType()->getArrayElementType(); 4842 if (!ElementTy->isPPC_FP128Ty()) 4843 ArgAlign = DL.getTypeAllocSize(ElementTy); 4844 } else if (A->getType()->isVectorTy()) { 4845 // Vectors are naturally aligned. 4846 ArgAlign = DL.getTypeAllocSize(A->getType()); 4847 } 4848 if (ArgAlign < 8) 4849 ArgAlign = 8; 4850 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4851 if (DL.isBigEndian()) { 4852 // Adjusting the shadow for argument with size < 8 to match the placement 4853 // of bits in big endian system 4854 if (ArgSize < 8) 4855 VAArgOffset += (8 - ArgSize); 4856 } 4857 if (!IsFixed) { 4858 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4859 VAArgOffset - VAArgBase, ArgSize); 4860 if (Base) 4861 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4862 } 4863 VAArgOffset += ArgSize; 4864 VAArgOffset = alignTo(VAArgOffset, 8); 4865 } 4866 if (IsFixed) 4867 VAArgBase = VAArgOffset; 4868 } 4869 4870 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4871 VAArgOffset - VAArgBase); 4872 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4873 // a new class member i.e. it is the total size of all VarArgs. 4874 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4875 } 4876 4877 /// Compute the shadow address for a given va_arg. 4878 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4879 unsigned ArgOffset, unsigned ArgSize) { 4880 // Make sure we don't overflow __msan_va_arg_tls. 4881 if (ArgOffset + ArgSize > kParamTLSSize) 4882 return nullptr; 4883 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4884 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4885 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4886 "_msarg"); 4887 } 4888 4889 void visitVAStartInst(VAStartInst &I) override { 4890 IRBuilder<> IRB(&I); 4891 VAStartInstrumentationList.push_back(&I); 4892 Value *VAListTag = I.getArgOperand(0); 4893 Value *ShadowPtr, *OriginPtr; 4894 const Align Alignment = Align(8); 4895 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4896 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4897 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4898 /* size */ 8, Alignment, false); 4899 } 4900 4901 void visitVACopyInst(VACopyInst &I) override { 4902 IRBuilder<> IRB(&I); 4903 Value *VAListTag = I.getArgOperand(0); 4904 Value *ShadowPtr, *OriginPtr; 4905 const Align Alignment = Align(8); 4906 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4907 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4908 // Unpoison the whole __va_list_tag. 4909 // FIXME: magic ABI constants. 4910 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4911 /* size */ 8, Alignment, false); 4912 } 4913 4914 void finalizeInstrumentation() override { 4915 assert(!VAArgSize && !VAArgTLSCopy && 4916 "finalizeInstrumentation called twice"); 4917 IRBuilder<> IRB(MSV.FnPrologueEnd); 4918 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4919 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4920 VAArgSize); 4921 4922 if (!VAStartInstrumentationList.empty()) { 4923 // If there is a va_start in this function, make a backup copy of 4924 // va_arg_tls somewhere in the function entry block. 4925 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4926 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4927 } 4928 4929 // Instrument va_start. 4930 // Copy va_list shadow from the backup copy of the TLS contents. 4931 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4932 CallInst *OrigInst = VAStartInstrumentationList[i]; 4933 IRBuilder<> IRB(OrigInst->getNextNode()); 4934 Value *VAListTag = OrigInst->getArgOperand(0); 4935 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4936 Value *RegSaveAreaPtrPtr = 4937 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4938 PointerType::get(RegSaveAreaPtrTy, 0)); 4939 Value *RegSaveAreaPtr = 4940 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4941 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4942 const Align Alignment = Align(8); 4943 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4944 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4945 Alignment, /*isStore*/ true); 4946 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4947 CopySize); 4948 } 4949 } 4950 }; 4951 4952 /// SystemZ-specific implementation of VarArgHelper. 4953 struct VarArgSystemZHelper : public VarArgHelper { 4954 static const unsigned SystemZGpOffset = 16; 4955 static const unsigned SystemZGpEndOffset = 56; 4956 static const unsigned SystemZFpOffset = 128; 4957 static const unsigned SystemZFpEndOffset = 160; 4958 static const unsigned SystemZMaxVrArgs = 8; 4959 static const unsigned SystemZRegSaveAreaSize = 160; 4960 static const unsigned SystemZOverflowOffset = 160; 4961 static const unsigned SystemZVAListTagSize = 32; 4962 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4963 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4964 4965 Function &F; 4966 MemorySanitizer &MS; 4967 MemorySanitizerVisitor &MSV; 4968 Value *VAArgTLSCopy = nullptr; 4969 Value *VAArgTLSOriginCopy = nullptr; 4970 Value *VAArgOverflowSize = nullptr; 4971 4972 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4973 4974 enum class ArgKind { 4975 GeneralPurpose, 4976 FloatingPoint, 4977 Vector, 4978 Memory, 4979 Indirect, 4980 }; 4981 4982 enum class ShadowExtension { None, Zero, Sign }; 4983 4984 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4985 MemorySanitizerVisitor &MSV) 4986 : F(F), MS(MS), MSV(MSV) {} 4987 4988 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4989 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4990 // only a few possibilities of what it can be. In particular, enums, single 4991 // element structs and large types have already been taken care of. 4992 4993 // Some i128 and fp128 arguments are converted to pointers only in the 4994 // back end. 4995 if (T->isIntegerTy(128) || T->isFP128Ty()) 4996 return ArgKind::Indirect; 4997 if (T->isFloatingPointTy()) 4998 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4999 if (T->isIntegerTy() || T->isPointerTy()) 5000 return ArgKind::GeneralPurpose; 5001 if (T->isVectorTy()) 5002 return ArgKind::Vector; 5003 return ArgKind::Memory; 5004 } 5005 5006 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5007 // ABI says: "One of the simple integer types no more than 64 bits wide. 5008 // ... If such an argument is shorter than 64 bits, replace it by a full 5009 // 64-bit integer representing the same number, using sign or zero 5010 // extension". Shadow for an integer argument has the same type as the 5011 // argument itself, so it can be sign or zero extended as well. 5012 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5013 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5014 if (ZExt) { 5015 assert(!SExt); 5016 return ShadowExtension::Zero; 5017 } 5018 if (SExt) { 5019 assert(!ZExt); 5020 return ShadowExtension::Sign; 5021 } 5022 return ShadowExtension::None; 5023 } 5024 5025 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5026 bool IsSoftFloatABI = CB.getCalledFunction() 5027 ->getFnAttribute("use-soft-float") 5028 .getValueAsString() == "true"; 5029 unsigned GpOffset = SystemZGpOffset; 5030 unsigned FpOffset = SystemZFpOffset; 5031 unsigned VrIndex = 0; 5032 unsigned OverflowOffset = SystemZOverflowOffset; 5033 const DataLayout &DL = F.getParent()->getDataLayout(); 5034 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5035 ++ArgIt) { 5036 Value *A = *ArgIt; 5037 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5038 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5039 // SystemZABIInfo does not produce ByVal parameters. 5040 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5041 Type *T = A->getType(); 5042 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5043 if (AK == ArgKind::Indirect) { 5044 T = PointerType::get(T, 0); 5045 AK = ArgKind::GeneralPurpose; 5046 } 5047 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5048 AK = ArgKind::Memory; 5049 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5050 AK = ArgKind::Memory; 5051 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5052 AK = ArgKind::Memory; 5053 Value *ShadowBase = nullptr; 5054 Value *OriginBase = nullptr; 5055 ShadowExtension SE = ShadowExtension::None; 5056 switch (AK) { 5057 case ArgKind::GeneralPurpose: { 5058 // Always keep track of GpOffset, but store shadow only for varargs. 5059 uint64_t ArgSize = 8; 5060 if (GpOffset + ArgSize <= kParamTLSSize) { 5061 if (!IsFixed) { 5062 SE = getShadowExtension(CB, ArgNo); 5063 uint64_t GapSize = 0; 5064 if (SE == ShadowExtension::None) { 5065 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5066 assert(ArgAllocSize <= ArgSize); 5067 GapSize = ArgSize - ArgAllocSize; 5068 } 5069 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5070 if (MS.TrackOrigins) 5071 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5072 } 5073 GpOffset += ArgSize; 5074 } else { 5075 GpOffset = kParamTLSSize; 5076 } 5077 break; 5078 } 5079 case ArgKind::FloatingPoint: { 5080 // Always keep track of FpOffset, but store shadow only for varargs. 5081 uint64_t ArgSize = 8; 5082 if (FpOffset + ArgSize <= kParamTLSSize) { 5083 if (!IsFixed) { 5084 // PoP says: "A short floating-point datum requires only the 5085 // left-most 32 bit positions of a floating-point register". 5086 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5087 // don't extend shadow and don't mind the gap. 5088 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5089 if (MS.TrackOrigins) 5090 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5091 } 5092 FpOffset += ArgSize; 5093 } else { 5094 FpOffset = kParamTLSSize; 5095 } 5096 break; 5097 } 5098 case ArgKind::Vector: { 5099 // Keep track of VrIndex. No need to store shadow, since vector varargs 5100 // go through AK_Memory. 5101 assert(IsFixed); 5102 VrIndex++; 5103 break; 5104 } 5105 case ArgKind::Memory: { 5106 // Keep track of OverflowOffset and store shadow only for varargs. 5107 // Ignore fixed args, since we need to copy only the vararg portion of 5108 // the overflow area shadow. 5109 if (!IsFixed) { 5110 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5111 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5112 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5113 SE = getShadowExtension(CB, ArgNo); 5114 uint64_t GapSize = 5115 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5116 ShadowBase = 5117 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5118 if (MS.TrackOrigins) 5119 OriginBase = 5120 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5121 OverflowOffset += ArgSize; 5122 } else { 5123 OverflowOffset = kParamTLSSize; 5124 } 5125 } 5126 break; 5127 } 5128 case ArgKind::Indirect: 5129 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5130 } 5131 if (ShadowBase == nullptr) 5132 continue; 5133 Value *Shadow = MSV.getShadow(A); 5134 if (SE != ShadowExtension::None) 5135 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5136 /*Signed*/ SE == ShadowExtension::Sign); 5137 ShadowBase = IRB.CreateIntToPtr( 5138 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5139 IRB.CreateStore(Shadow, ShadowBase); 5140 if (MS.TrackOrigins) { 5141 Value *Origin = MSV.getOrigin(A); 5142 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5143 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5144 kMinOriginAlignment); 5145 } 5146 } 5147 Constant *OverflowSize = ConstantInt::get( 5148 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5149 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5150 } 5151 5152 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5153 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5154 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5155 } 5156 5157 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5158 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5159 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5160 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5161 "_msarg_va_o"); 5162 } 5163 5164 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5165 IRBuilder<> IRB(&I); 5166 Value *VAListTag = I.getArgOperand(0); 5167 Value *ShadowPtr, *OriginPtr; 5168 const Align Alignment = Align(8); 5169 std::tie(ShadowPtr, OriginPtr) = 5170 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5171 /*isStore*/ true); 5172 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5173 SystemZVAListTagSize, Alignment, false); 5174 } 5175 5176 void visitVAStartInst(VAStartInst &I) override { 5177 VAStartInstrumentationList.push_back(&I); 5178 unpoisonVAListTagForInst(I); 5179 } 5180 5181 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5182 5183 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5184 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5185 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5186 IRB.CreateAdd( 5187 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5188 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5189 PointerType::get(RegSaveAreaPtrTy, 0)); 5190 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5191 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5192 const Align Alignment = Align(8); 5193 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5194 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5195 /*isStore*/ true); 5196 // TODO(iii): copy only fragments filled by visitCallBase() 5197 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5198 SystemZRegSaveAreaSize); 5199 if (MS.TrackOrigins) 5200 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5201 Alignment, SystemZRegSaveAreaSize); 5202 } 5203 5204 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5205 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5206 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5207 IRB.CreateAdd( 5208 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5209 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5210 PointerType::get(OverflowArgAreaPtrTy, 0)); 5211 Value *OverflowArgAreaPtr = 5212 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5213 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5214 const Align Alignment = Align(8); 5215 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5216 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5217 Alignment, /*isStore*/ true); 5218 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5219 SystemZOverflowOffset); 5220 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5221 VAArgOverflowSize); 5222 if (MS.TrackOrigins) { 5223 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5224 SystemZOverflowOffset); 5225 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5226 VAArgOverflowSize); 5227 } 5228 } 5229 5230 void finalizeInstrumentation() override { 5231 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5232 "finalizeInstrumentation called twice"); 5233 if (!VAStartInstrumentationList.empty()) { 5234 // If there is a va_start in this function, make a backup copy of 5235 // va_arg_tls somewhere in the function entry block. 5236 IRBuilder<> IRB(MSV.FnPrologueEnd); 5237 VAArgOverflowSize = 5238 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5239 Value *CopySize = 5240 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5241 VAArgOverflowSize); 5242 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5243 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5244 if (MS.TrackOrigins) { 5245 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5246 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5247 Align(8), CopySize); 5248 } 5249 } 5250 5251 // Instrument va_start. 5252 // Copy va_list shadow from the backup copy of the TLS contents. 5253 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5254 VaStartNo < VaStartNum; VaStartNo++) { 5255 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5256 IRBuilder<> IRB(OrigInst->getNextNode()); 5257 Value *VAListTag = OrigInst->getArgOperand(0); 5258 copyRegSaveArea(IRB, VAListTag); 5259 copyOverflowArea(IRB, VAListTag); 5260 } 5261 } 5262 }; 5263 5264 /// A no-op implementation of VarArgHelper. 5265 struct VarArgNoOpHelper : public VarArgHelper { 5266 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5267 MemorySanitizerVisitor &MSV) {} 5268 5269 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5270 5271 void visitVAStartInst(VAStartInst &I) override {} 5272 5273 void visitVACopyInst(VACopyInst &I) override {} 5274 5275 void finalizeInstrumentation() override {} 5276 }; 5277 5278 } // end anonymous namespace 5279 5280 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5281 MemorySanitizerVisitor &Visitor) { 5282 // VarArg handling is only implemented on AMD64. False positives are possible 5283 // on other platforms. 5284 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5285 if (TargetTriple.getArch() == Triple::x86_64) 5286 return new VarArgAMD64Helper(Func, Msan, Visitor); 5287 else if (TargetTriple.isMIPS64()) 5288 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5289 else if (TargetTriple.getArch() == Triple::aarch64) 5290 return new VarArgAArch64Helper(Func, Msan, Visitor); 5291 else if (TargetTriple.getArch() == Triple::ppc64 || 5292 TargetTriple.getArch() == Triple::ppc64le) 5293 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5294 else if (TargetTriple.getArch() == Triple::systemz) 5295 return new VarArgSystemZHelper(Func, Msan, Visitor); 5296 else 5297 return new VarArgNoOpHelper(Func, Msan, Visitor); 5298 } 5299 5300 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5301 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5302 return false; 5303 5304 MemorySanitizerVisitor Visitor(F, *this, TLI); 5305 5306 // Clear out readonly/readnone attributes. 5307 AttrBuilder B; 5308 B.addAttribute(Attribute::ReadOnly) 5309 .addAttribute(Attribute::ReadNone) 5310 .addAttribute(Attribute::WriteOnly) 5311 .addAttribute(Attribute::ArgMemOnly) 5312 .addAttribute(Attribute::Speculatable); 5313 F.removeAttributes(AttributeList::FunctionIndex, B); 5314 5315 return Visitor.runOnFunction(); 5316 } 5317