1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallingConv.h" 157 #include "llvm/IR/Constant.h" 158 #include "llvm/IR/Constants.h" 159 #include "llvm/IR/DataLayout.h" 160 #include "llvm/IR/DerivedTypes.h" 161 #include "llvm/IR/Function.h" 162 #include "llvm/IR/GlobalValue.h" 163 #include "llvm/IR/GlobalVariable.h" 164 #include "llvm/IR/IRBuilder.h" 165 #include "llvm/IR/InlineAsm.h" 166 #include "llvm/IR/InstVisitor.h" 167 #include "llvm/IR/InstrTypes.h" 168 #include "llvm/IR/Instruction.h" 169 #include "llvm/IR/Instructions.h" 170 #include "llvm/IR/IntrinsicInst.h" 171 #include "llvm/IR/Intrinsics.h" 172 #include "llvm/IR/IntrinsicsX86.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/Pass.h" 181 #include "llvm/Support/AtomicOrdering.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/CommandLine.h" 184 #include "llvm/Support/Compiler.h" 185 #include "llvm/Support/Debug.h" 186 #include "llvm/Support/ErrorHandling.h" 187 #include "llvm/Support/MathExtras.h" 188 #include "llvm/Support/raw_ostream.h" 189 #include "llvm/Transforms/Instrumentation.h" 190 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 191 #include "llvm/Transforms/Utils/Local.h" 192 #include "llvm/Transforms/Utils/ModuleUtils.h" 193 #include <algorithm> 194 #include <cassert> 195 #include <cstddef> 196 #include <cstdint> 197 #include <memory> 198 #include <string> 199 #include <tuple> 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "msan" 204 205 static const unsigned kOriginSize = 4; 206 static const Align kMinOriginAlignment = Align(4); 207 static const Align kShadowTLSAlignment = Align(8); 208 209 // These constants must be kept in sync with the ones in msan.h. 210 static const unsigned kParamTLSSize = 800; 211 static const unsigned kRetvalTLSSize = 800; 212 213 // Accesses sizes are powers of two: 1, 2, 4, 8. 214 static const size_t kNumberOfAccessSizes = 4; 215 216 /// Track origins of uninitialized values. 217 /// 218 /// Adds a section to MemorySanitizer report that points to the allocation 219 /// (stack or heap) the uninitialized bits came from originally. 220 static cl::opt<int> ClTrackOrigins("msan-track-origins", 221 cl::desc("Track origins (allocation sites) of poisoned memory"), 222 cl::Hidden, cl::init(0)); 223 224 static cl::opt<bool> ClKeepGoing("msan-keep-going", 225 cl::desc("keep going after reporting a UMR"), 226 cl::Hidden, cl::init(false)); 227 228 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 229 cl::desc("poison uninitialized stack variables"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 233 cl::desc("poison uninitialized stack variables with a call"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 237 cl::desc("poison uninitialized stack variables with the given pattern"), 238 cl::Hidden, cl::init(0xff)); 239 240 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 241 cl::desc("poison undef temps"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 245 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 249 cl::desc("exact handling of relational integer ICmp"), 250 cl::Hidden, cl::init(false)); 251 252 static cl::opt<bool> ClHandleLifetimeIntrinsics( 253 "msan-handle-lifetime-intrinsics", 254 cl::desc( 255 "when possible, poison scoped variables at the beginning of the scope " 256 "(slower, but more precise)"), 257 cl::Hidden, cl::init(true)); 258 259 // When compiling the Linux kernel, we sometimes see false positives related to 260 // MSan being unable to understand that inline assembly calls may initialize 261 // local variables. 262 // This flag makes the compiler conservatively unpoison every memory location 263 // passed into an assembly call. Note that this may cause false positives. 264 // Because it's impossible to figure out the array sizes, we can only unpoison 265 // the first sizeof(type) bytes for each type* pointer. 266 // The instrumentation is only enabled in KMSAN builds, and only if 267 // -msan-handle-asm-conservative is on. This is done because we may want to 268 // quickly disable assembly instrumentation when it breaks. 269 static cl::opt<bool> ClHandleAsmConservative( 270 "msan-handle-asm-conservative", 271 cl::desc("conservative handling of inline assembly"), cl::Hidden, 272 cl::init(true)); 273 274 // This flag controls whether we check the shadow of the address 275 // operand of load or store. Such bugs are very rare, since load from 276 // a garbage address typically results in SEGV, but still happen 277 // (e.g. only lower bits of address are garbage, or the access happens 278 // early at program startup where malloc-ed memory is more likely to 279 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 280 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 281 cl::desc("report accesses through a pointer which has poisoned shadow"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 285 cl::desc("print out instructions with default strict semantics"), 286 cl::Hidden, cl::init(false)); 287 288 static cl::opt<int> ClInstrumentationWithCallThreshold( 289 "msan-instrumentation-with-call-threshold", 290 cl::desc( 291 "If the function being instrumented requires more than " 292 "this number of checks and origin stores, use callbacks instead of " 293 "inline checks (-1 means never use callbacks)."), 294 cl::Hidden, cl::init(3500)); 295 296 static cl::opt<bool> 297 ClEnableKmsan("msan-kernel", 298 cl::desc("Enable KernelMemorySanitizer instrumentation"), 299 cl::Hidden, cl::init(false)); 300 301 // This is an experiment to enable handling of cases where shadow is a non-zero 302 // compile-time constant. For some unexplainable reason they were silently 303 // ignored in the instrumentation. 304 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 305 cl::desc("Insert checks for constant shadow values"), 306 cl::Hidden, cl::init(false)); 307 308 // This is off by default because of a bug in gold: 309 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 310 static cl::opt<bool> ClWithComdat("msan-with-comdat", 311 cl::desc("Place MSan constructors in comdat sections"), 312 cl::Hidden, cl::init(false)); 313 314 // These options allow to specify custom memory map parameters 315 // See MemoryMapParams for details. 316 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 317 cl::desc("Define custom MSan AndMask"), 318 cl::Hidden, cl::init(0)); 319 320 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 321 cl::desc("Define custom MSan XorMask"), 322 cl::Hidden, cl::init(0)); 323 324 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 325 cl::desc("Define custom MSan ShadowBase"), 326 cl::Hidden, cl::init(0)); 327 328 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 329 cl::desc("Define custom MSan OriginBase"), 330 cl::Hidden, cl::init(0)); 331 332 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 333 static const char *const kMsanInitName = "__msan_init"; 334 335 namespace { 336 337 // Memory map parameters used in application-to-shadow address calculation. 338 // Offset = (Addr & ~AndMask) ^ XorMask 339 // Shadow = ShadowBase + Offset 340 // Origin = OriginBase + Offset 341 struct MemoryMapParams { 342 uint64_t AndMask; 343 uint64_t XorMask; 344 uint64_t ShadowBase; 345 uint64_t OriginBase; 346 }; 347 348 struct PlatformMemoryMapParams { 349 const MemoryMapParams *bits32; 350 const MemoryMapParams *bits64; 351 }; 352 353 } // end anonymous namespace 354 355 // i386 Linux 356 static const MemoryMapParams Linux_I386_MemoryMapParams = { 357 0x000080000000, // AndMask 358 0, // XorMask (not used) 359 0, // ShadowBase (not used) 360 0x000040000000, // OriginBase 361 }; 362 363 // x86_64 Linux 364 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 365 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 366 0x400000000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x200000000000, // OriginBase 370 #else 371 0, // AndMask (not used) 372 0x500000000000, // XorMask 373 0, // ShadowBase (not used) 374 0x100000000000, // OriginBase 375 #endif 376 }; 377 378 // mips64 Linux 379 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 380 0, // AndMask (not used) 381 0x008000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x002000000000, // OriginBase 384 }; 385 386 // ppc64 Linux 387 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 388 0xE00000000000, // AndMask 389 0x100000000000, // XorMask 390 0x080000000000, // ShadowBase 391 0x1C0000000000, // OriginBase 392 }; 393 394 // s390x Linux 395 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 396 0xC00000000000, // AndMask 397 0, // XorMask (not used) 398 0x080000000000, // ShadowBase 399 0x1C0000000000, // OriginBase 400 }; 401 402 // aarch64 Linux 403 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 404 0, // AndMask (not used) 405 0x06000000000, // XorMask 406 0, // ShadowBase (not used) 407 0x01000000000, // OriginBase 408 }; 409 410 // i386 FreeBSD 411 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 412 0x000180000000, // AndMask 413 0x000040000000, // XorMask 414 0x000020000000, // ShadowBase 415 0x000700000000, // OriginBase 416 }; 417 418 // x86_64 FreeBSD 419 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 420 0xc00000000000, // AndMask 421 0x200000000000, // XorMask 422 0x100000000000, // ShadowBase 423 0x380000000000, // OriginBase 424 }; 425 426 // x86_64 NetBSD 427 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 428 0, // AndMask 429 0x500000000000, // XorMask 430 0, // ShadowBase 431 0x100000000000, // OriginBase 432 }; 433 434 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 435 &Linux_I386_MemoryMapParams, 436 &Linux_X86_64_MemoryMapParams, 437 }; 438 439 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 440 nullptr, 441 &Linux_MIPS64_MemoryMapParams, 442 }; 443 444 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 445 nullptr, 446 &Linux_PowerPC64_MemoryMapParams, 447 }; 448 449 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 450 nullptr, 451 &Linux_S390X_MemoryMapParams, 452 }; 453 454 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 455 nullptr, 456 &Linux_AArch64_MemoryMapParams, 457 }; 458 459 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 460 &FreeBSD_I386_MemoryMapParams, 461 &FreeBSD_X86_64_MemoryMapParams, 462 }; 463 464 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 465 nullptr, 466 &NetBSD_X86_64_MemoryMapParams, 467 }; 468 469 namespace { 470 471 /// Instrument functions of a module to detect uninitialized reads. 472 /// 473 /// Instantiating MemorySanitizer inserts the msan runtime library API function 474 /// declarations into the module if they don't exist already. Instantiating 475 /// ensures the __msan_init function is in the list of global constructors for 476 /// the module. 477 class MemorySanitizer { 478 public: 479 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 480 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 481 Recover(Options.Recover) { 482 initializeModule(M); 483 } 484 485 // MSan cannot be moved or copied because of MapParams. 486 MemorySanitizer(MemorySanitizer &&) = delete; 487 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 488 MemorySanitizer(const MemorySanitizer &) = delete; 489 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 490 491 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 492 493 private: 494 friend struct MemorySanitizerVisitor; 495 friend struct VarArgAMD64Helper; 496 friend struct VarArgMIPS64Helper; 497 friend struct VarArgAArch64Helper; 498 friend struct VarArgPowerPC64Helper; 499 friend struct VarArgSystemZHelper; 500 501 void initializeModule(Module &M); 502 void initializeCallbacks(Module &M); 503 void createKernelApi(Module &M); 504 void createUserspaceApi(Module &M); 505 506 /// True if we're compiling the Linux kernel. 507 bool CompileKernel; 508 /// Track origins (allocation points) of uninitialized values. 509 int TrackOrigins; 510 bool Recover; 511 512 LLVMContext *C; 513 Type *IntptrTy; 514 Type *OriginTy; 515 516 // XxxTLS variables represent the per-thread state in MSan and per-task state 517 // in KMSAN. 518 // For the userspace these point to thread-local globals. In the kernel land 519 // they point to the members of a per-task struct obtained via a call to 520 // __msan_get_context_state(). 521 522 /// Thread-local shadow storage for function parameters. 523 Value *ParamTLS; 524 525 /// Thread-local origin storage for function parameters. 526 Value *ParamOriginTLS; 527 528 /// Thread-local shadow storage for function return value. 529 Value *RetvalTLS; 530 531 /// Thread-local origin storage for function return value. 532 Value *RetvalOriginTLS; 533 534 /// Thread-local shadow storage for in-register va_arg function 535 /// parameters (x86_64-specific). 536 Value *VAArgTLS; 537 538 /// Thread-local shadow storage for in-register va_arg function 539 /// parameters (x86_64-specific). 540 Value *VAArgOriginTLS; 541 542 /// Thread-local shadow storage for va_arg overflow area 543 /// (x86_64-specific). 544 Value *VAArgOverflowSizeTLS; 545 546 /// Are the instrumentation callbacks set up? 547 bool CallbacksInitialized = false; 548 549 /// The run-time callback to print a warning. 550 FunctionCallee WarningFn; 551 552 // These arrays are indexed by log2(AccessSize). 553 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 554 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 555 556 /// Run-time helper that generates a new origin value for a stack 557 /// allocation. 558 FunctionCallee MsanSetAllocaOrigin4Fn; 559 560 /// Run-time helper that poisons stack on function entry. 561 FunctionCallee MsanPoisonStackFn; 562 563 /// Run-time helper that records a store (or any event) of an 564 /// uninitialized value and returns an updated origin id encoding this info. 565 FunctionCallee MsanChainOriginFn; 566 567 /// MSan runtime replacements for memmove, memcpy and memset. 568 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 569 570 /// KMSAN callback for task-local function argument shadow. 571 StructType *MsanContextStateTy; 572 FunctionCallee MsanGetContextStateFn; 573 574 /// Functions for poisoning/unpoisoning local variables 575 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 576 577 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 578 /// pointers. 579 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 580 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 581 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 582 FunctionCallee MsanInstrumentAsmStoreFn; 583 584 /// Helper to choose between different MsanMetadataPtrXxx(). 585 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 586 587 /// Memory map parameters used in application-to-shadow calculation. 588 const MemoryMapParams *MapParams; 589 590 /// Custom memory map parameters used when -msan-shadow-base or 591 // -msan-origin-base is provided. 592 MemoryMapParams CustomMapParams; 593 594 MDNode *ColdCallWeights; 595 596 /// Branch weights for origin store. 597 MDNode *OriginStoreWeights; 598 599 /// An empty volatile inline asm that prevents callback merge. 600 InlineAsm *EmptyAsm; 601 }; 602 603 void insertModuleCtor(Module &M) { 604 getOrCreateSanitizerCtorAndInitFunctions( 605 M, kMsanModuleCtorName, kMsanInitName, 606 /*InitArgTypes=*/{}, 607 /*InitArgs=*/{}, 608 // This callback is invoked when the functions are created the first 609 // time. Hook them into the global ctors list in that case: 610 [&](Function *Ctor, FunctionCallee) { 611 if (!ClWithComdat) { 612 appendToGlobalCtors(M, Ctor, 0); 613 return; 614 } 615 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 616 Ctor->setComdat(MsanCtorComdat); 617 appendToGlobalCtors(M, Ctor, 0, Ctor); 618 }); 619 } 620 621 /// A legacy function pass for msan instrumentation. 622 /// 623 /// Instruments functions to detect uninitialized reads. 624 struct MemorySanitizerLegacyPass : public FunctionPass { 625 // Pass identification, replacement for typeid. 626 static char ID; 627 628 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 629 : FunctionPass(ID), Options(Options) { 630 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 631 } 632 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 633 634 void getAnalysisUsage(AnalysisUsage &AU) const override { 635 AU.addRequired<TargetLibraryInfoWrapperPass>(); 636 } 637 638 bool runOnFunction(Function &F) override { 639 return MSan->sanitizeFunction( 640 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 641 } 642 bool doInitialization(Module &M) override; 643 644 Optional<MemorySanitizer> MSan; 645 MemorySanitizerOptions Options; 646 }; 647 648 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 649 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 650 } 651 652 } // end anonymous namespace 653 654 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 655 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 656 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 657 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 658 659 PreservedAnalyses MemorySanitizerPass::run(Function &F, 660 FunctionAnalysisManager &FAM) { 661 MemorySanitizer Msan(*F.getParent(), Options); 662 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 663 return PreservedAnalyses::none(); 664 return PreservedAnalyses::all(); 665 } 666 667 PreservedAnalyses MemorySanitizerPass::run(Module &M, 668 ModuleAnalysisManager &AM) { 669 if (Options.Kernel) 670 return PreservedAnalyses::all(); 671 insertModuleCtor(M); 672 return PreservedAnalyses::none(); 673 } 674 675 char MemorySanitizerLegacyPass::ID = 0; 676 677 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 678 "MemorySanitizer: detects uninitialized reads.", false, 679 false) 680 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 681 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 682 "MemorySanitizer: detects uninitialized reads.", false, 683 false) 684 685 FunctionPass * 686 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 687 return new MemorySanitizerLegacyPass(Options); 688 } 689 690 /// Create a non-const global initialized with the given string. 691 /// 692 /// Creates a writable global for Str so that we can pass it to the 693 /// run-time lib. Runtime uses first 4 bytes of the string to store the 694 /// frame ID, so the string needs to be mutable. 695 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 696 StringRef Str) { 697 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 698 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 699 GlobalValue::PrivateLinkage, StrConst, ""); 700 } 701 702 /// Create KMSAN API callbacks. 703 void MemorySanitizer::createKernelApi(Module &M) { 704 IRBuilder<> IRB(*C); 705 706 // These will be initialized in insertKmsanPrologue(). 707 RetvalTLS = nullptr; 708 RetvalOriginTLS = nullptr; 709 ParamTLS = nullptr; 710 ParamOriginTLS = nullptr; 711 VAArgTLS = nullptr; 712 VAArgOriginTLS = nullptr; 713 VAArgOverflowSizeTLS = nullptr; 714 715 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 716 IRB.getInt32Ty()); 717 // Requests the per-task context state (kmsan_context_state*) from the 718 // runtime library. 719 MsanContextStateTy = StructType::get( 720 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 721 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 722 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 723 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 724 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 725 OriginTy); 726 MsanGetContextStateFn = M.getOrInsertFunction( 727 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 728 729 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 730 PointerType::get(IRB.getInt32Ty(), 0)); 731 732 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 733 std::string name_load = 734 "__msan_metadata_ptr_for_load_" + std::to_string(size); 735 std::string name_store = 736 "__msan_metadata_ptr_for_store_" + std::to_string(size); 737 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 738 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 739 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 740 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 741 } 742 743 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 744 "__msan_metadata_ptr_for_load_n", RetTy, 745 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 746 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 747 "__msan_metadata_ptr_for_store_n", RetTy, 748 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 749 750 // Functions for poisoning and unpoisoning memory. 751 MsanPoisonAllocaFn = 752 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 753 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 754 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 755 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 756 } 757 758 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 759 return M.getOrInsertGlobal(Name, Ty, [&] { 760 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 761 nullptr, Name, nullptr, 762 GlobalVariable::InitialExecTLSModel); 763 }); 764 } 765 766 /// Insert declarations for userspace-specific functions and globals. 767 void MemorySanitizer::createUserspaceApi(Module &M) { 768 IRBuilder<> IRB(*C); 769 770 // Create the callback. 771 // FIXME: this function should have "Cold" calling conv, 772 // which is not yet implemented. 773 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 774 : "__msan_warning_with_origin_noreturn"; 775 WarningFn = 776 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 777 778 // Create the global TLS variables. 779 RetvalTLS = 780 getOrInsertGlobal(M, "__msan_retval_tls", 781 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 782 783 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 784 785 ParamTLS = 786 getOrInsertGlobal(M, "__msan_param_tls", 787 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 788 789 ParamOriginTLS = 790 getOrInsertGlobal(M, "__msan_param_origin_tls", 791 ArrayType::get(OriginTy, kParamTLSSize / 4)); 792 793 VAArgTLS = 794 getOrInsertGlobal(M, "__msan_va_arg_tls", 795 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 796 797 VAArgOriginTLS = 798 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 799 ArrayType::get(OriginTy, kParamTLSSize / 4)); 800 801 VAArgOverflowSizeTLS = 802 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 803 804 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 805 AccessSizeIndex++) { 806 unsigned AccessSize = 1 << AccessSizeIndex; 807 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 808 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 809 MaybeWarningFnAttrs.push_back(std::make_pair( 810 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 811 MaybeWarningFnAttrs.push_back(std::make_pair( 812 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 813 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 814 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 815 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 816 817 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 818 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 819 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 820 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 821 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 822 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 823 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 824 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 825 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 826 IRB.getInt32Ty()); 827 } 828 829 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 830 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 831 IRB.getInt8PtrTy(), IntptrTy); 832 MsanPoisonStackFn = 833 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 834 IRB.getInt8PtrTy(), IntptrTy); 835 } 836 837 /// Insert extern declaration of runtime-provided functions and globals. 838 void MemorySanitizer::initializeCallbacks(Module &M) { 839 // Only do this once. 840 if (CallbacksInitialized) 841 return; 842 843 IRBuilder<> IRB(*C); 844 // Initialize callbacks that are common for kernel and userspace 845 // instrumentation. 846 MsanChainOriginFn = M.getOrInsertFunction( 847 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 848 MemmoveFn = M.getOrInsertFunction( 849 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 850 IRB.getInt8PtrTy(), IntptrTy); 851 MemcpyFn = M.getOrInsertFunction( 852 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 853 IntptrTy); 854 MemsetFn = M.getOrInsertFunction( 855 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 856 IntptrTy); 857 // We insert an empty inline asm after __msan_report* to avoid callback merge. 858 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 859 StringRef(""), StringRef(""), 860 /*hasSideEffects=*/true); 861 862 MsanInstrumentAsmStoreFn = 863 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 864 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 865 866 if (CompileKernel) { 867 createKernelApi(M); 868 } else { 869 createUserspaceApi(M); 870 } 871 CallbacksInitialized = true; 872 } 873 874 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 875 int size) { 876 FunctionCallee *Fns = 877 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 878 switch (size) { 879 case 1: 880 return Fns[0]; 881 case 2: 882 return Fns[1]; 883 case 4: 884 return Fns[2]; 885 case 8: 886 return Fns[3]; 887 default: 888 return nullptr; 889 } 890 } 891 892 /// Module-level initialization. 893 /// 894 /// inserts a call to __msan_init to the module's constructor list. 895 void MemorySanitizer::initializeModule(Module &M) { 896 auto &DL = M.getDataLayout(); 897 898 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 899 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 900 // Check the overrides first 901 if (ShadowPassed || OriginPassed) { 902 CustomMapParams.AndMask = ClAndMask; 903 CustomMapParams.XorMask = ClXorMask; 904 CustomMapParams.ShadowBase = ClShadowBase; 905 CustomMapParams.OriginBase = ClOriginBase; 906 MapParams = &CustomMapParams; 907 } else { 908 Triple TargetTriple(M.getTargetTriple()); 909 switch (TargetTriple.getOS()) { 910 case Triple::FreeBSD: 911 switch (TargetTriple.getArch()) { 912 case Triple::x86_64: 913 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 914 break; 915 case Triple::x86: 916 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 917 break; 918 default: 919 report_fatal_error("unsupported architecture"); 920 } 921 break; 922 case Triple::NetBSD: 923 switch (TargetTriple.getArch()) { 924 case Triple::x86_64: 925 MapParams = NetBSD_X86_MemoryMapParams.bits64; 926 break; 927 default: 928 report_fatal_error("unsupported architecture"); 929 } 930 break; 931 case Triple::Linux: 932 switch (TargetTriple.getArch()) { 933 case Triple::x86_64: 934 MapParams = Linux_X86_MemoryMapParams.bits64; 935 break; 936 case Triple::x86: 937 MapParams = Linux_X86_MemoryMapParams.bits32; 938 break; 939 case Triple::mips64: 940 case Triple::mips64el: 941 MapParams = Linux_MIPS_MemoryMapParams.bits64; 942 break; 943 case Triple::ppc64: 944 case Triple::ppc64le: 945 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 946 break; 947 case Triple::systemz: 948 MapParams = Linux_S390_MemoryMapParams.bits64; 949 break; 950 case Triple::aarch64: 951 case Triple::aarch64_be: 952 MapParams = Linux_ARM_MemoryMapParams.bits64; 953 break; 954 default: 955 report_fatal_error("unsupported architecture"); 956 } 957 break; 958 default: 959 report_fatal_error("unsupported operating system"); 960 } 961 } 962 963 C = &(M.getContext()); 964 IRBuilder<> IRB(*C); 965 IntptrTy = IRB.getIntPtrTy(DL); 966 OriginTy = IRB.getInt32Ty(); 967 968 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 969 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 970 971 if (!CompileKernel) { 972 if (TrackOrigins) 973 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 974 return new GlobalVariable( 975 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 976 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 977 }); 978 979 if (Recover) 980 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 981 return new GlobalVariable(M, IRB.getInt32Ty(), true, 982 GlobalValue::WeakODRLinkage, 983 IRB.getInt32(Recover), "__msan_keep_going"); 984 }); 985 } 986 } 987 988 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 989 if (!Options.Kernel) 990 insertModuleCtor(M); 991 MSan.emplace(M, Options); 992 return true; 993 } 994 995 namespace { 996 997 /// A helper class that handles instrumentation of VarArg 998 /// functions on a particular platform. 999 /// 1000 /// Implementations are expected to insert the instrumentation 1001 /// necessary to propagate argument shadow through VarArg function 1002 /// calls. Visit* methods are called during an InstVisitor pass over 1003 /// the function, and should avoid creating new basic blocks. A new 1004 /// instance of this class is created for each instrumented function. 1005 struct VarArgHelper { 1006 virtual ~VarArgHelper() = default; 1007 1008 /// Visit a CallBase. 1009 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1010 1011 /// Visit a va_start call. 1012 virtual void visitVAStartInst(VAStartInst &I) = 0; 1013 1014 /// Visit a va_copy call. 1015 virtual void visitVACopyInst(VACopyInst &I) = 0; 1016 1017 /// Finalize function instrumentation. 1018 /// 1019 /// This method is called after visiting all interesting (see above) 1020 /// instructions in a function. 1021 virtual void finalizeInstrumentation() = 0; 1022 }; 1023 1024 struct MemorySanitizerVisitor; 1025 1026 } // end anonymous namespace 1027 1028 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1029 MemorySanitizerVisitor &Visitor); 1030 1031 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1032 if (TypeSize <= 8) return 0; 1033 return Log2_32_Ceil((TypeSize + 7) / 8); 1034 } 1035 1036 namespace { 1037 1038 /// This class does all the work for a given function. Store and Load 1039 /// instructions store and load corresponding shadow and origin 1040 /// values. Most instructions propagate shadow from arguments to their 1041 /// return values. Certain instructions (most importantly, BranchInst) 1042 /// test their argument shadow and print reports (with a runtime call) if it's 1043 /// non-zero. 1044 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1045 Function &F; 1046 MemorySanitizer &MS; 1047 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1048 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1049 std::unique_ptr<VarArgHelper> VAHelper; 1050 const TargetLibraryInfo *TLI; 1051 BasicBlock *ActualFnStart; 1052 1053 // The following flags disable parts of MSan instrumentation based on 1054 // blacklist contents and command-line options. 1055 bool InsertChecks; 1056 bool PropagateShadow; 1057 bool PoisonStack; 1058 bool PoisonUndef; 1059 bool CheckReturnValue; 1060 1061 struct ShadowOriginAndInsertPoint { 1062 Value *Shadow; 1063 Value *Origin; 1064 Instruction *OrigIns; 1065 1066 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1067 : Shadow(S), Origin(O), OrigIns(I) {} 1068 }; 1069 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1070 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1071 SmallSet<AllocaInst *, 16> AllocaSet; 1072 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1073 SmallVector<StoreInst *, 16> StoreList; 1074 1075 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1076 const TargetLibraryInfo &TLI) 1077 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1078 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1079 InsertChecks = SanitizeFunction; 1080 PropagateShadow = SanitizeFunction; 1081 PoisonStack = SanitizeFunction && ClPoisonStack; 1082 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1083 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1084 // must always return fully initialized values. For now, we hardcode "main". 1085 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1086 1087 MS.initializeCallbacks(*F.getParent()); 1088 if (MS.CompileKernel) 1089 ActualFnStart = insertKmsanPrologue(F); 1090 else 1091 ActualFnStart = &F.getEntryBlock(); 1092 1093 LLVM_DEBUG(if (!InsertChecks) dbgs() 1094 << "MemorySanitizer is not inserting checks into '" 1095 << F.getName() << "'\n"); 1096 } 1097 1098 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1099 if (MS.TrackOrigins <= 1) return V; 1100 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1101 } 1102 1103 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1104 const DataLayout &DL = F.getParent()->getDataLayout(); 1105 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1106 if (IntptrSize == kOriginSize) return Origin; 1107 assert(IntptrSize == kOriginSize * 2); 1108 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1109 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1110 } 1111 1112 /// Fill memory range with the given origin value. 1113 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1114 unsigned Size, Align Alignment) { 1115 const DataLayout &DL = F.getParent()->getDataLayout(); 1116 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1117 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1118 assert(IntptrAlignment >= kMinOriginAlignment); 1119 assert(IntptrSize >= kOriginSize); 1120 1121 unsigned Ofs = 0; 1122 Align CurrentAlignment = Alignment; 1123 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1124 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1125 Value *IntptrOriginPtr = 1126 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1127 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1128 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1129 : IntptrOriginPtr; 1130 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1131 Ofs += IntptrSize / kOriginSize; 1132 CurrentAlignment = IntptrAlignment; 1133 } 1134 } 1135 1136 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1137 Value *GEP = 1138 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1139 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1140 CurrentAlignment = kMinOriginAlignment; 1141 } 1142 } 1143 1144 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1145 Value *OriginPtr, Align Alignment, bool AsCall) { 1146 const DataLayout &DL = F.getParent()->getDataLayout(); 1147 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1148 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1149 if (Shadow->getType()->isAggregateType()) { 1150 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1151 OriginAlignment); 1152 } else { 1153 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1154 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1155 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1156 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1157 OriginAlignment); 1158 return; 1159 } 1160 1161 unsigned TypeSizeInBits = 1162 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1163 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1164 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1165 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1166 Value *ConvertedShadow2 = IRB.CreateZExt( 1167 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1168 IRB.CreateCall(Fn, {ConvertedShadow2, 1169 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1170 Origin}); 1171 } else { 1172 Value *Cmp = IRB.CreateICmpNE( 1173 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1174 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1175 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1176 IRBuilder<> IRBNew(CheckTerm); 1177 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1178 OriginAlignment); 1179 } 1180 } 1181 } 1182 1183 void materializeStores(bool InstrumentWithCalls) { 1184 for (StoreInst *SI : StoreList) { 1185 IRBuilder<> IRB(SI); 1186 Value *Val = SI->getValueOperand(); 1187 Value *Addr = SI->getPointerOperand(); 1188 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1189 Value *ShadowPtr, *OriginPtr; 1190 Type *ShadowTy = Shadow->getType(); 1191 const Align Alignment = assumeAligned(SI->getAlignment()); 1192 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1193 std::tie(ShadowPtr, OriginPtr) = 1194 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1195 1196 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1197 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1198 (void)NewSI; 1199 1200 if (SI->isAtomic()) 1201 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1202 1203 if (MS.TrackOrigins && !SI->isAtomic()) 1204 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1205 OriginAlignment, InstrumentWithCalls); 1206 } 1207 } 1208 1209 /// Helper function to insert a warning at IRB's current insert point. 1210 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1211 if (!Origin) 1212 Origin = (Value *)IRB.getInt32(0); 1213 assert(Origin->getType()->isIntegerTy()); 1214 IRB.CreateCall(MS.WarningFn, Origin); 1215 IRB.CreateCall(MS.EmptyAsm, {}); 1216 // FIXME: Insert UnreachableInst if !MS.Recover? 1217 // This may invalidate some of the following checks and needs to be done 1218 // at the very end. 1219 } 1220 1221 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1222 bool AsCall) { 1223 IRBuilder<> IRB(OrigIns); 1224 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1225 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1226 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1227 1228 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1229 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1230 insertWarningFn(IRB, Origin); 1231 } 1232 return; 1233 } 1234 1235 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1236 1237 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1238 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1239 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1240 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1241 Value *ConvertedShadow2 = 1242 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1243 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1244 ? Origin 1245 : (Value *)IRB.getInt32(0)}); 1246 } else { 1247 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1248 getCleanShadow(ConvertedShadow), "_mscmp"); 1249 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1250 Cmp, OrigIns, 1251 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1252 1253 IRB.SetInsertPoint(CheckTerm); 1254 insertWarningFn(IRB, Origin); 1255 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1256 } 1257 } 1258 1259 void materializeChecks(bool InstrumentWithCalls) { 1260 for (const auto &ShadowData : InstrumentationList) { 1261 Instruction *OrigIns = ShadowData.OrigIns; 1262 Value *Shadow = ShadowData.Shadow; 1263 Value *Origin = ShadowData.Origin; 1264 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1265 } 1266 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1267 } 1268 1269 BasicBlock *insertKmsanPrologue(Function &F) { 1270 BasicBlock *ret = 1271 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1272 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1273 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1274 Constant *Zero = IRB.getInt32(0); 1275 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(0)}, "param_shadow"); 1277 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1278 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1279 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1280 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1281 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1282 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1283 MS.VAArgOverflowSizeTLS = 1284 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1285 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1286 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1287 {Zero, IRB.getInt32(5)}, "param_origin"); 1288 MS.RetvalOriginTLS = 1289 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1290 {Zero, IRB.getInt32(6)}, "retval_origin"); 1291 return ret; 1292 } 1293 1294 /// Add MemorySanitizer instrumentation to a function. 1295 bool runOnFunction() { 1296 // In the presence of unreachable blocks, we may see Phi nodes with 1297 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1298 // blocks, such nodes will not have any shadow value associated with them. 1299 // It's easier to remove unreachable blocks than deal with missing shadow. 1300 removeUnreachableBlocks(F); 1301 1302 // Iterate all BBs in depth-first order and create shadow instructions 1303 // for all instructions (where applicable). 1304 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1305 for (BasicBlock *BB : depth_first(ActualFnStart)) 1306 visit(*BB); 1307 1308 // Finalize PHI nodes. 1309 for (PHINode *PN : ShadowPHINodes) { 1310 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1311 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1312 size_t NumValues = PN->getNumIncomingValues(); 1313 for (size_t v = 0; v < NumValues; v++) { 1314 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1315 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1316 } 1317 } 1318 1319 VAHelper->finalizeInstrumentation(); 1320 1321 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1322 // instrumenting only allocas. 1323 if (InstrumentLifetimeStart) { 1324 for (auto Item : LifetimeStartList) { 1325 instrumentAlloca(*Item.second, Item.first); 1326 AllocaSet.erase(Item.second); 1327 } 1328 } 1329 // Poison the allocas for which we didn't instrument the corresponding 1330 // lifetime intrinsics. 1331 for (AllocaInst *AI : AllocaSet) 1332 instrumentAlloca(*AI); 1333 1334 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1335 InstrumentationList.size() + StoreList.size() > 1336 (unsigned)ClInstrumentationWithCallThreshold; 1337 1338 // Insert shadow value checks. 1339 materializeChecks(InstrumentWithCalls); 1340 1341 // Delayed instrumentation of StoreInst. 1342 // This may not add new address checks. 1343 materializeStores(InstrumentWithCalls); 1344 1345 return true; 1346 } 1347 1348 /// Compute the shadow type that corresponds to a given Value. 1349 Type *getShadowTy(Value *V) { 1350 return getShadowTy(V->getType()); 1351 } 1352 1353 /// Compute the shadow type that corresponds to a given Type. 1354 Type *getShadowTy(Type *OrigTy) { 1355 if (!OrigTy->isSized()) { 1356 return nullptr; 1357 } 1358 // For integer type, shadow is the same as the original type. 1359 // This may return weird-sized types like i1. 1360 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1361 return IT; 1362 const DataLayout &DL = F.getParent()->getDataLayout(); 1363 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1364 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1365 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1366 VT->getNumElements()); 1367 } 1368 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1369 return ArrayType::get(getShadowTy(AT->getElementType()), 1370 AT->getNumElements()); 1371 } 1372 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1373 SmallVector<Type*, 4> Elements; 1374 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1375 Elements.push_back(getShadowTy(ST->getElementType(i))); 1376 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1377 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1378 return Res; 1379 } 1380 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1381 return IntegerType::get(*MS.C, TypeSize); 1382 } 1383 1384 /// Flatten a vector type. 1385 Type *getShadowTyNoVec(Type *ty) { 1386 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1387 return IntegerType::get(*MS.C, 1388 vt->getPrimitiveSizeInBits().getFixedSize()); 1389 return ty; 1390 } 1391 1392 /// Convert a shadow value to it's flattened variant. 1393 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1394 Type *Ty = V->getType(); 1395 Type *NoVecTy = getShadowTyNoVec(Ty); 1396 if (Ty == NoVecTy) return V; 1397 return IRB.CreateBitCast(V, NoVecTy); 1398 } 1399 1400 /// Compute the integer shadow offset that corresponds to a given 1401 /// application address. 1402 /// 1403 /// Offset = (Addr & ~AndMask) ^ XorMask 1404 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1405 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1406 1407 uint64_t AndMask = MS.MapParams->AndMask; 1408 if (AndMask) 1409 OffsetLong = 1410 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1411 1412 uint64_t XorMask = MS.MapParams->XorMask; 1413 if (XorMask) 1414 OffsetLong = 1415 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1416 return OffsetLong; 1417 } 1418 1419 /// Compute the shadow and origin addresses corresponding to a given 1420 /// application address. 1421 /// 1422 /// Shadow = ShadowBase + Offset 1423 /// Origin = (OriginBase + Offset) & ~3ULL 1424 std::pair<Value *, Value *> 1425 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1426 MaybeAlign Alignment) { 1427 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1428 Value *ShadowLong = ShadowOffset; 1429 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1430 if (ShadowBase != 0) { 1431 ShadowLong = 1432 IRB.CreateAdd(ShadowLong, 1433 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1434 } 1435 Value *ShadowPtr = 1436 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1437 Value *OriginPtr = nullptr; 1438 if (MS.TrackOrigins) { 1439 Value *OriginLong = ShadowOffset; 1440 uint64_t OriginBase = MS.MapParams->OriginBase; 1441 if (OriginBase != 0) 1442 OriginLong = IRB.CreateAdd(OriginLong, 1443 ConstantInt::get(MS.IntptrTy, OriginBase)); 1444 if (!Alignment || *Alignment < kMinOriginAlignment) { 1445 uint64_t Mask = kMinOriginAlignment.value() - 1; 1446 OriginLong = 1447 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1448 } 1449 OriginPtr = 1450 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1451 } 1452 return std::make_pair(ShadowPtr, OriginPtr); 1453 } 1454 1455 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1456 IRBuilder<> &IRB, 1457 Type *ShadowTy, 1458 bool isStore) { 1459 Value *ShadowOriginPtrs; 1460 const DataLayout &DL = F.getParent()->getDataLayout(); 1461 int Size = DL.getTypeStoreSize(ShadowTy); 1462 1463 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1464 Value *AddrCast = 1465 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1466 if (Getter) { 1467 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1468 } else { 1469 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1470 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1471 : MS.MsanMetadataPtrForLoadN, 1472 {AddrCast, SizeVal}); 1473 } 1474 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1475 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1476 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1477 1478 return std::make_pair(ShadowPtr, OriginPtr); 1479 } 1480 1481 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1482 Type *ShadowTy, 1483 MaybeAlign Alignment, 1484 bool isStore) { 1485 if (MS.CompileKernel) 1486 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1487 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1488 } 1489 1490 /// Compute the shadow address for a given function argument. 1491 /// 1492 /// Shadow = ParamTLS+ArgOffset. 1493 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1494 int ArgOffset) { 1495 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1496 if (ArgOffset) 1497 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1498 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1499 "_msarg"); 1500 } 1501 1502 /// Compute the origin address for a given function argument. 1503 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1504 int ArgOffset) { 1505 if (!MS.TrackOrigins) 1506 return nullptr; 1507 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1508 if (ArgOffset) 1509 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1510 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1511 "_msarg_o"); 1512 } 1513 1514 /// Compute the shadow address for a retval. 1515 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1516 return IRB.CreatePointerCast(MS.RetvalTLS, 1517 PointerType::get(getShadowTy(A), 0), 1518 "_msret"); 1519 } 1520 1521 /// Compute the origin address for a retval. 1522 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1523 // We keep a single origin for the entire retval. Might be too optimistic. 1524 return MS.RetvalOriginTLS; 1525 } 1526 1527 /// Set SV to be the shadow value for V. 1528 void setShadow(Value *V, Value *SV) { 1529 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1530 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1531 } 1532 1533 /// Set Origin to be the origin value for V. 1534 void setOrigin(Value *V, Value *Origin) { 1535 if (!MS.TrackOrigins) return; 1536 assert(!OriginMap.count(V) && "Values may only have one origin"); 1537 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1538 OriginMap[V] = Origin; 1539 } 1540 1541 Constant *getCleanShadow(Type *OrigTy) { 1542 Type *ShadowTy = getShadowTy(OrigTy); 1543 if (!ShadowTy) 1544 return nullptr; 1545 return Constant::getNullValue(ShadowTy); 1546 } 1547 1548 /// Create a clean shadow value for a given value. 1549 /// 1550 /// Clean shadow (all zeroes) means all bits of the value are defined 1551 /// (initialized). 1552 Constant *getCleanShadow(Value *V) { 1553 return getCleanShadow(V->getType()); 1554 } 1555 1556 /// Create a dirty shadow of a given shadow type. 1557 Constant *getPoisonedShadow(Type *ShadowTy) { 1558 assert(ShadowTy); 1559 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1560 return Constant::getAllOnesValue(ShadowTy); 1561 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1562 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1563 getPoisonedShadow(AT->getElementType())); 1564 return ConstantArray::get(AT, Vals); 1565 } 1566 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1567 SmallVector<Constant *, 4> Vals; 1568 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1569 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1570 return ConstantStruct::get(ST, Vals); 1571 } 1572 llvm_unreachable("Unexpected shadow type"); 1573 } 1574 1575 /// Create a dirty shadow for a given value. 1576 Constant *getPoisonedShadow(Value *V) { 1577 Type *ShadowTy = getShadowTy(V); 1578 if (!ShadowTy) 1579 return nullptr; 1580 return getPoisonedShadow(ShadowTy); 1581 } 1582 1583 /// Create a clean (zero) origin. 1584 Value *getCleanOrigin() { 1585 return Constant::getNullValue(MS.OriginTy); 1586 } 1587 1588 /// Get the shadow value for a given Value. 1589 /// 1590 /// This function either returns the value set earlier with setShadow, 1591 /// or extracts if from ParamTLS (for function arguments). 1592 Value *getShadow(Value *V) { 1593 if (!PropagateShadow) return getCleanShadow(V); 1594 if (Instruction *I = dyn_cast<Instruction>(V)) { 1595 if (I->getMetadata("nosanitize")) 1596 return getCleanShadow(V); 1597 // For instructions the shadow is already stored in the map. 1598 Value *Shadow = ShadowMap[V]; 1599 if (!Shadow) { 1600 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1601 (void)I; 1602 assert(Shadow && "No shadow for a value"); 1603 } 1604 return Shadow; 1605 } 1606 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1607 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1608 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1609 (void)U; 1610 return AllOnes; 1611 } 1612 if (Argument *A = dyn_cast<Argument>(V)) { 1613 // For arguments we compute the shadow on demand and store it in the map. 1614 Value **ShadowPtr = &ShadowMap[V]; 1615 if (*ShadowPtr) 1616 return *ShadowPtr; 1617 Function *F = A->getParent(); 1618 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1619 unsigned ArgOffset = 0; 1620 const DataLayout &DL = F->getParent()->getDataLayout(); 1621 for (auto &FArg : F->args()) { 1622 if (!FArg.getType()->isSized()) { 1623 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1624 continue; 1625 } 1626 unsigned Size = 1627 FArg.hasByValAttr() 1628 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1629 : DL.getTypeAllocSize(FArg.getType()); 1630 if (A == &FArg) { 1631 bool Overflow = ArgOffset + Size > kParamTLSSize; 1632 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1633 if (FArg.hasByValAttr()) { 1634 // ByVal pointer itself has clean shadow. We copy the actual 1635 // argument shadow to the underlying memory. 1636 // Figure out maximal valid memcpy alignment. 1637 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1638 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1639 Value *CpShadowPtr = 1640 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1641 /*isStore*/ true) 1642 .first; 1643 // TODO(glider): need to copy origins. 1644 if (Overflow) { 1645 // ParamTLS overflow. 1646 EntryIRB.CreateMemSet( 1647 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1648 Size, ArgAlign); 1649 } else { 1650 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1651 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1652 CopyAlign, Size); 1653 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1654 (void)Cpy; 1655 } 1656 *ShadowPtr = getCleanShadow(V); 1657 } else { 1658 if (Overflow) { 1659 // ParamTLS overflow. 1660 *ShadowPtr = getCleanShadow(V); 1661 } else { 1662 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1663 kShadowTLSAlignment); 1664 } 1665 } 1666 LLVM_DEBUG(dbgs() 1667 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1668 if (MS.TrackOrigins && !Overflow) { 1669 Value *OriginPtr = 1670 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1671 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1672 } else { 1673 setOrigin(A, getCleanOrigin()); 1674 } 1675 } 1676 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1677 } 1678 assert(*ShadowPtr && "Could not find shadow for an argument"); 1679 return *ShadowPtr; 1680 } 1681 // For everything else the shadow is zero. 1682 return getCleanShadow(V); 1683 } 1684 1685 /// Get the shadow for i-th argument of the instruction I. 1686 Value *getShadow(Instruction *I, int i) { 1687 return getShadow(I->getOperand(i)); 1688 } 1689 1690 /// Get the origin for a value. 1691 Value *getOrigin(Value *V) { 1692 if (!MS.TrackOrigins) return nullptr; 1693 if (!PropagateShadow) return getCleanOrigin(); 1694 if (isa<Constant>(V)) return getCleanOrigin(); 1695 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1696 "Unexpected value type in getOrigin()"); 1697 if (Instruction *I = dyn_cast<Instruction>(V)) { 1698 if (I->getMetadata("nosanitize")) 1699 return getCleanOrigin(); 1700 } 1701 Value *Origin = OriginMap[V]; 1702 assert(Origin && "Missing origin"); 1703 return Origin; 1704 } 1705 1706 /// Get the origin for i-th argument of the instruction I. 1707 Value *getOrigin(Instruction *I, int i) { 1708 return getOrigin(I->getOperand(i)); 1709 } 1710 1711 /// Remember the place where a shadow check should be inserted. 1712 /// 1713 /// This location will be later instrumented with a check that will print a 1714 /// UMR warning in runtime if the shadow value is not 0. 1715 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1716 assert(Shadow); 1717 if (!InsertChecks) return; 1718 #ifndef NDEBUG 1719 Type *ShadowTy = Shadow->getType(); 1720 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1721 "Can only insert checks for integer and vector shadow types"); 1722 #endif 1723 InstrumentationList.push_back( 1724 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1725 } 1726 1727 /// Remember the place where a shadow check should be inserted. 1728 /// 1729 /// This location will be later instrumented with a check that will print a 1730 /// UMR warning in runtime if the value is not fully defined. 1731 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1732 assert(Val); 1733 Value *Shadow, *Origin; 1734 if (ClCheckConstantShadow) { 1735 Shadow = getShadow(Val); 1736 if (!Shadow) return; 1737 Origin = getOrigin(Val); 1738 } else { 1739 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1740 if (!Shadow) return; 1741 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1742 } 1743 insertShadowCheck(Shadow, Origin, OrigIns); 1744 } 1745 1746 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1747 switch (a) { 1748 case AtomicOrdering::NotAtomic: 1749 return AtomicOrdering::NotAtomic; 1750 case AtomicOrdering::Unordered: 1751 case AtomicOrdering::Monotonic: 1752 case AtomicOrdering::Release: 1753 return AtomicOrdering::Release; 1754 case AtomicOrdering::Acquire: 1755 case AtomicOrdering::AcquireRelease: 1756 return AtomicOrdering::AcquireRelease; 1757 case AtomicOrdering::SequentiallyConsistent: 1758 return AtomicOrdering::SequentiallyConsistent; 1759 } 1760 llvm_unreachable("Unknown ordering"); 1761 } 1762 1763 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1764 switch (a) { 1765 case AtomicOrdering::NotAtomic: 1766 return AtomicOrdering::NotAtomic; 1767 case AtomicOrdering::Unordered: 1768 case AtomicOrdering::Monotonic: 1769 case AtomicOrdering::Acquire: 1770 return AtomicOrdering::Acquire; 1771 case AtomicOrdering::Release: 1772 case AtomicOrdering::AcquireRelease: 1773 return AtomicOrdering::AcquireRelease; 1774 case AtomicOrdering::SequentiallyConsistent: 1775 return AtomicOrdering::SequentiallyConsistent; 1776 } 1777 llvm_unreachable("Unknown ordering"); 1778 } 1779 1780 // ------------------- Visitors. 1781 using InstVisitor<MemorySanitizerVisitor>::visit; 1782 void visit(Instruction &I) { 1783 if (!I.getMetadata("nosanitize")) 1784 InstVisitor<MemorySanitizerVisitor>::visit(I); 1785 } 1786 1787 /// Instrument LoadInst 1788 /// 1789 /// Loads the corresponding shadow and (optionally) origin. 1790 /// Optionally, checks that the load address is fully defined. 1791 void visitLoadInst(LoadInst &I) { 1792 assert(I.getType()->isSized() && "Load type must have size"); 1793 assert(!I.getMetadata("nosanitize")); 1794 IRBuilder<> IRB(I.getNextNode()); 1795 Type *ShadowTy = getShadowTy(&I); 1796 Value *Addr = I.getPointerOperand(); 1797 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1798 const Align Alignment = assumeAligned(I.getAlignment()); 1799 if (PropagateShadow) { 1800 std::tie(ShadowPtr, OriginPtr) = 1801 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1802 setShadow(&I, 1803 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1804 } else { 1805 setShadow(&I, getCleanShadow(&I)); 1806 } 1807 1808 if (ClCheckAccessAddress) 1809 insertShadowCheck(I.getPointerOperand(), &I); 1810 1811 if (I.isAtomic()) 1812 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1813 1814 if (MS.TrackOrigins) { 1815 if (PropagateShadow) { 1816 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1817 setOrigin( 1818 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1819 } else { 1820 setOrigin(&I, getCleanOrigin()); 1821 } 1822 } 1823 } 1824 1825 /// Instrument StoreInst 1826 /// 1827 /// Stores the corresponding shadow and (optionally) origin. 1828 /// Optionally, checks that the store address is fully defined. 1829 void visitStoreInst(StoreInst &I) { 1830 StoreList.push_back(&I); 1831 if (ClCheckAccessAddress) 1832 insertShadowCheck(I.getPointerOperand(), &I); 1833 } 1834 1835 void handleCASOrRMW(Instruction &I) { 1836 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1837 1838 IRBuilder<> IRB(&I); 1839 Value *Addr = I.getOperand(0); 1840 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1841 /*isStore*/ true) 1842 .first; 1843 1844 if (ClCheckAccessAddress) 1845 insertShadowCheck(Addr, &I); 1846 1847 // Only test the conditional argument of cmpxchg instruction. 1848 // The other argument can potentially be uninitialized, but we can not 1849 // detect this situation reliably without possible false positives. 1850 if (isa<AtomicCmpXchgInst>(I)) 1851 insertShadowCheck(I.getOperand(1), &I); 1852 1853 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1854 1855 setShadow(&I, getCleanShadow(&I)); 1856 setOrigin(&I, getCleanOrigin()); 1857 } 1858 1859 void visitAtomicRMWInst(AtomicRMWInst &I) { 1860 handleCASOrRMW(I); 1861 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1862 } 1863 1864 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1865 handleCASOrRMW(I); 1866 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1867 } 1868 1869 // Vector manipulation. 1870 void visitExtractElementInst(ExtractElementInst &I) { 1871 insertShadowCheck(I.getOperand(1), &I); 1872 IRBuilder<> IRB(&I); 1873 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1874 "_msprop")); 1875 setOrigin(&I, getOrigin(&I, 0)); 1876 } 1877 1878 void visitInsertElementInst(InsertElementInst &I) { 1879 insertShadowCheck(I.getOperand(2), &I); 1880 IRBuilder<> IRB(&I); 1881 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1882 I.getOperand(2), "_msprop")); 1883 setOriginForNaryOp(I); 1884 } 1885 1886 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1887 IRBuilder<> IRB(&I); 1888 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1889 I.getShuffleMask(), "_msprop")); 1890 setOriginForNaryOp(I); 1891 } 1892 1893 // Casts. 1894 void visitSExtInst(SExtInst &I) { 1895 IRBuilder<> IRB(&I); 1896 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1897 setOrigin(&I, getOrigin(&I, 0)); 1898 } 1899 1900 void visitZExtInst(ZExtInst &I) { 1901 IRBuilder<> IRB(&I); 1902 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1903 setOrigin(&I, getOrigin(&I, 0)); 1904 } 1905 1906 void visitTruncInst(TruncInst &I) { 1907 IRBuilder<> IRB(&I); 1908 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1909 setOrigin(&I, getOrigin(&I, 0)); 1910 } 1911 1912 void visitBitCastInst(BitCastInst &I) { 1913 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1914 // a musttail call and a ret, don't instrument. New instructions are not 1915 // allowed after a musttail call. 1916 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1917 if (CI->isMustTailCall()) 1918 return; 1919 IRBuilder<> IRB(&I); 1920 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1921 setOrigin(&I, getOrigin(&I, 0)); 1922 } 1923 1924 void visitPtrToIntInst(PtrToIntInst &I) { 1925 IRBuilder<> IRB(&I); 1926 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1927 "_msprop_ptrtoint")); 1928 setOrigin(&I, getOrigin(&I, 0)); 1929 } 1930 1931 void visitIntToPtrInst(IntToPtrInst &I) { 1932 IRBuilder<> IRB(&I); 1933 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1934 "_msprop_inttoptr")); 1935 setOrigin(&I, getOrigin(&I, 0)); 1936 } 1937 1938 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1939 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1940 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1941 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1942 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1943 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1944 1945 /// Propagate shadow for bitwise AND. 1946 /// 1947 /// This code is exact, i.e. if, for example, a bit in the left argument 1948 /// is defined and 0, then neither the value not definedness of the 1949 /// corresponding bit in B don't affect the resulting shadow. 1950 void visitAnd(BinaryOperator &I) { 1951 IRBuilder<> IRB(&I); 1952 // "And" of 0 and a poisoned value results in unpoisoned value. 1953 // 1&1 => 1; 0&1 => 0; p&1 => p; 1954 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1955 // 1&p => p; 0&p => 0; p&p => p; 1956 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1957 Value *S1 = getShadow(&I, 0); 1958 Value *S2 = getShadow(&I, 1); 1959 Value *V1 = I.getOperand(0); 1960 Value *V2 = I.getOperand(1); 1961 if (V1->getType() != S1->getType()) { 1962 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1963 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1964 } 1965 Value *S1S2 = IRB.CreateAnd(S1, S2); 1966 Value *V1S2 = IRB.CreateAnd(V1, S2); 1967 Value *S1V2 = IRB.CreateAnd(S1, V2); 1968 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1969 setOriginForNaryOp(I); 1970 } 1971 1972 void visitOr(BinaryOperator &I) { 1973 IRBuilder<> IRB(&I); 1974 // "Or" of 1 and a poisoned value results in unpoisoned value. 1975 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1976 // 1|0 => 1; 0|0 => 0; p|0 => p; 1977 // 1|p => 1; 0|p => p; p|p => p; 1978 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1979 Value *S1 = getShadow(&I, 0); 1980 Value *S2 = getShadow(&I, 1); 1981 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1982 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1983 if (V1->getType() != S1->getType()) { 1984 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1985 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1986 } 1987 Value *S1S2 = IRB.CreateAnd(S1, S2); 1988 Value *V1S2 = IRB.CreateAnd(V1, S2); 1989 Value *S1V2 = IRB.CreateAnd(S1, V2); 1990 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1991 setOriginForNaryOp(I); 1992 } 1993 1994 /// Default propagation of shadow and/or origin. 1995 /// 1996 /// This class implements the general case of shadow propagation, used in all 1997 /// cases where we don't know and/or don't care about what the operation 1998 /// actually does. It converts all input shadow values to a common type 1999 /// (extending or truncating as necessary), and bitwise OR's them. 2000 /// 2001 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2002 /// fully initialized), and less prone to false positives. 2003 /// 2004 /// This class also implements the general case of origin propagation. For a 2005 /// Nary operation, result origin is set to the origin of an argument that is 2006 /// not entirely initialized. If there is more than one such arguments, the 2007 /// rightmost of them is picked. It does not matter which one is picked if all 2008 /// arguments are initialized. 2009 template <bool CombineShadow> 2010 class Combiner { 2011 Value *Shadow = nullptr; 2012 Value *Origin = nullptr; 2013 IRBuilder<> &IRB; 2014 MemorySanitizerVisitor *MSV; 2015 2016 public: 2017 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2018 : IRB(IRB), MSV(MSV) {} 2019 2020 /// Add a pair of shadow and origin values to the mix. 2021 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2022 if (CombineShadow) { 2023 assert(OpShadow); 2024 if (!Shadow) 2025 Shadow = OpShadow; 2026 else { 2027 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2028 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2029 } 2030 } 2031 2032 if (MSV->MS.TrackOrigins) { 2033 assert(OpOrigin); 2034 if (!Origin) { 2035 Origin = OpOrigin; 2036 } else { 2037 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2038 // No point in adding something that might result in 0 origin value. 2039 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2040 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2041 Value *Cond = 2042 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2043 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2044 } 2045 } 2046 } 2047 return *this; 2048 } 2049 2050 /// Add an application value to the mix. 2051 Combiner &Add(Value *V) { 2052 Value *OpShadow = MSV->getShadow(V); 2053 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2054 return Add(OpShadow, OpOrigin); 2055 } 2056 2057 /// Set the current combined values as the given instruction's shadow 2058 /// and origin. 2059 void Done(Instruction *I) { 2060 if (CombineShadow) { 2061 assert(Shadow); 2062 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2063 MSV->setShadow(I, Shadow); 2064 } 2065 if (MSV->MS.TrackOrigins) { 2066 assert(Origin); 2067 MSV->setOrigin(I, Origin); 2068 } 2069 } 2070 }; 2071 2072 using ShadowAndOriginCombiner = Combiner<true>; 2073 using OriginCombiner = Combiner<false>; 2074 2075 /// Propagate origin for arbitrary operation. 2076 void setOriginForNaryOp(Instruction &I) { 2077 if (!MS.TrackOrigins) return; 2078 IRBuilder<> IRB(&I); 2079 OriginCombiner OC(this, IRB); 2080 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2081 OC.Add(OI->get()); 2082 OC.Done(&I); 2083 } 2084 2085 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2086 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2087 "Vector of pointers is not a valid shadow type"); 2088 return Ty->isVectorTy() ? cast<VectorType>(Ty)->getNumElements() * 2089 Ty->getScalarSizeInBits() 2090 : Ty->getPrimitiveSizeInBits(); 2091 } 2092 2093 /// Cast between two shadow types, extending or truncating as 2094 /// necessary. 2095 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2096 bool Signed = false) { 2097 Type *srcTy = V->getType(); 2098 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2099 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2100 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2101 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2102 2103 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2104 return IRB.CreateIntCast(V, dstTy, Signed); 2105 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2106 cast<VectorType>(dstTy)->getNumElements() == 2107 cast<VectorType>(srcTy)->getNumElements()) 2108 return IRB.CreateIntCast(V, dstTy, Signed); 2109 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2110 Value *V2 = 2111 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2112 return IRB.CreateBitCast(V2, dstTy); 2113 // TODO: handle struct types. 2114 } 2115 2116 /// Cast an application value to the type of its own shadow. 2117 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2118 Type *ShadowTy = getShadowTy(V); 2119 if (V->getType() == ShadowTy) 2120 return V; 2121 if (V->getType()->isPtrOrPtrVectorTy()) 2122 return IRB.CreatePtrToInt(V, ShadowTy); 2123 else 2124 return IRB.CreateBitCast(V, ShadowTy); 2125 } 2126 2127 /// Propagate shadow for arbitrary operation. 2128 void handleShadowOr(Instruction &I) { 2129 IRBuilder<> IRB(&I); 2130 ShadowAndOriginCombiner SC(this, IRB); 2131 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2132 SC.Add(OI->get()); 2133 SC.Done(&I); 2134 } 2135 2136 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2137 2138 // Handle multiplication by constant. 2139 // 2140 // Handle a special case of multiplication by constant that may have one or 2141 // more zeros in the lower bits. This makes corresponding number of lower bits 2142 // of the result zero as well. We model it by shifting the other operand 2143 // shadow left by the required number of bits. Effectively, we transform 2144 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2145 // We use multiplication by 2**N instead of shift to cover the case of 2146 // multiplication by 0, which may occur in some elements of a vector operand. 2147 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2148 Value *OtherArg) { 2149 Constant *ShadowMul; 2150 Type *Ty = ConstArg->getType(); 2151 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2152 unsigned NumElements = VTy->getNumElements(); 2153 Type *EltTy = VTy->getElementType(); 2154 SmallVector<Constant *, 16> Elements; 2155 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2156 if (ConstantInt *Elt = 2157 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2158 const APInt &V = Elt->getValue(); 2159 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2160 Elements.push_back(ConstantInt::get(EltTy, V2)); 2161 } else { 2162 Elements.push_back(ConstantInt::get(EltTy, 1)); 2163 } 2164 } 2165 ShadowMul = ConstantVector::get(Elements); 2166 } else { 2167 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2168 const APInt &V = Elt->getValue(); 2169 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2170 ShadowMul = ConstantInt::get(Ty, V2); 2171 } else { 2172 ShadowMul = ConstantInt::get(Ty, 1); 2173 } 2174 } 2175 2176 IRBuilder<> IRB(&I); 2177 setShadow(&I, 2178 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2179 setOrigin(&I, getOrigin(OtherArg)); 2180 } 2181 2182 void visitMul(BinaryOperator &I) { 2183 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2184 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2185 if (constOp0 && !constOp1) 2186 handleMulByConstant(I, constOp0, I.getOperand(1)); 2187 else if (constOp1 && !constOp0) 2188 handleMulByConstant(I, constOp1, I.getOperand(0)); 2189 else 2190 handleShadowOr(I); 2191 } 2192 2193 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2194 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2195 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2196 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2197 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2198 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2199 2200 void handleIntegerDiv(Instruction &I) { 2201 IRBuilder<> IRB(&I); 2202 // Strict on the second argument. 2203 insertShadowCheck(I.getOperand(1), &I); 2204 setShadow(&I, getShadow(&I, 0)); 2205 setOrigin(&I, getOrigin(&I, 0)); 2206 } 2207 2208 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2209 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2210 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2211 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2212 2213 // Floating point division is side-effect free. We can not require that the 2214 // divisor is fully initialized and must propagate shadow. See PR37523. 2215 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2216 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2217 2218 /// Instrument == and != comparisons. 2219 /// 2220 /// Sometimes the comparison result is known even if some of the bits of the 2221 /// arguments are not. 2222 void handleEqualityComparison(ICmpInst &I) { 2223 IRBuilder<> IRB(&I); 2224 Value *A = I.getOperand(0); 2225 Value *B = I.getOperand(1); 2226 Value *Sa = getShadow(A); 2227 Value *Sb = getShadow(B); 2228 2229 // Get rid of pointers and vectors of pointers. 2230 // For ints (and vectors of ints), types of A and Sa match, 2231 // and this is a no-op. 2232 A = IRB.CreatePointerCast(A, Sa->getType()); 2233 B = IRB.CreatePointerCast(B, Sb->getType()); 2234 2235 // A == B <==> (C = A^B) == 0 2236 // A != B <==> (C = A^B) != 0 2237 // Sc = Sa | Sb 2238 Value *C = IRB.CreateXor(A, B); 2239 Value *Sc = IRB.CreateOr(Sa, Sb); 2240 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2241 // Result is defined if one of the following is true 2242 // * there is a defined 1 bit in C 2243 // * C is fully defined 2244 // Si = !(C & ~Sc) && Sc 2245 Value *Zero = Constant::getNullValue(Sc->getType()); 2246 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2247 Value *Si = 2248 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2249 IRB.CreateICmpEQ( 2250 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2251 Si->setName("_msprop_icmp"); 2252 setShadow(&I, Si); 2253 setOriginForNaryOp(I); 2254 } 2255 2256 /// Build the lowest possible value of V, taking into account V's 2257 /// uninitialized bits. 2258 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2259 bool isSigned) { 2260 if (isSigned) { 2261 // Split shadow into sign bit and other bits. 2262 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2263 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2264 // Maximise the undefined shadow bit, minimize other undefined bits. 2265 return 2266 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2267 } else { 2268 // Minimize undefined bits. 2269 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2270 } 2271 } 2272 2273 /// Build the highest possible value of V, taking into account V's 2274 /// uninitialized bits. 2275 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2276 bool isSigned) { 2277 if (isSigned) { 2278 // Split shadow into sign bit and other bits. 2279 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2280 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2281 // Minimise the undefined shadow bit, maximise other undefined bits. 2282 return 2283 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2284 } else { 2285 // Maximize undefined bits. 2286 return IRB.CreateOr(A, Sa); 2287 } 2288 } 2289 2290 /// Instrument relational comparisons. 2291 /// 2292 /// This function does exact shadow propagation for all relational 2293 /// comparisons of integers, pointers and vectors of those. 2294 /// FIXME: output seems suboptimal when one of the operands is a constant 2295 void handleRelationalComparisonExact(ICmpInst &I) { 2296 IRBuilder<> IRB(&I); 2297 Value *A = I.getOperand(0); 2298 Value *B = I.getOperand(1); 2299 Value *Sa = getShadow(A); 2300 Value *Sb = getShadow(B); 2301 2302 // Get rid of pointers and vectors of pointers. 2303 // For ints (and vectors of ints), types of A and Sa match, 2304 // and this is a no-op. 2305 A = IRB.CreatePointerCast(A, Sa->getType()); 2306 B = IRB.CreatePointerCast(B, Sb->getType()); 2307 2308 // Let [a0, a1] be the interval of possible values of A, taking into account 2309 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2310 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2311 bool IsSigned = I.isSigned(); 2312 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2313 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2314 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2315 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2316 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2317 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2318 Value *Si = IRB.CreateXor(S1, S2); 2319 setShadow(&I, Si); 2320 setOriginForNaryOp(I); 2321 } 2322 2323 /// Instrument signed relational comparisons. 2324 /// 2325 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2326 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2327 void handleSignedRelationalComparison(ICmpInst &I) { 2328 Constant *constOp; 2329 Value *op = nullptr; 2330 CmpInst::Predicate pre; 2331 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2332 op = I.getOperand(0); 2333 pre = I.getPredicate(); 2334 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2335 op = I.getOperand(1); 2336 pre = I.getSwappedPredicate(); 2337 } else { 2338 handleShadowOr(I); 2339 return; 2340 } 2341 2342 if ((constOp->isNullValue() && 2343 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2344 (constOp->isAllOnesValue() && 2345 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2346 IRBuilder<> IRB(&I); 2347 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2348 "_msprop_icmp_s"); 2349 setShadow(&I, Shadow); 2350 setOrigin(&I, getOrigin(op)); 2351 } else { 2352 handleShadowOr(I); 2353 } 2354 } 2355 2356 void visitICmpInst(ICmpInst &I) { 2357 if (!ClHandleICmp) { 2358 handleShadowOr(I); 2359 return; 2360 } 2361 if (I.isEquality()) { 2362 handleEqualityComparison(I); 2363 return; 2364 } 2365 2366 assert(I.isRelational()); 2367 if (ClHandleICmpExact) { 2368 handleRelationalComparisonExact(I); 2369 return; 2370 } 2371 if (I.isSigned()) { 2372 handleSignedRelationalComparison(I); 2373 return; 2374 } 2375 2376 assert(I.isUnsigned()); 2377 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2378 handleRelationalComparisonExact(I); 2379 return; 2380 } 2381 2382 handleShadowOr(I); 2383 } 2384 2385 void visitFCmpInst(FCmpInst &I) { 2386 handleShadowOr(I); 2387 } 2388 2389 void handleShift(BinaryOperator &I) { 2390 IRBuilder<> IRB(&I); 2391 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2392 // Otherwise perform the same shift on S1. 2393 Value *S1 = getShadow(&I, 0); 2394 Value *S2 = getShadow(&I, 1); 2395 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2396 S2->getType()); 2397 Value *V2 = I.getOperand(1); 2398 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2399 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2400 setOriginForNaryOp(I); 2401 } 2402 2403 void visitShl(BinaryOperator &I) { handleShift(I); } 2404 void visitAShr(BinaryOperator &I) { handleShift(I); } 2405 void visitLShr(BinaryOperator &I) { handleShift(I); } 2406 2407 /// Instrument llvm.memmove 2408 /// 2409 /// At this point we don't know if llvm.memmove will be inlined or not. 2410 /// If we don't instrument it and it gets inlined, 2411 /// our interceptor will not kick in and we will lose the memmove. 2412 /// If we instrument the call here, but it does not get inlined, 2413 /// we will memove the shadow twice: which is bad in case 2414 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2415 /// 2416 /// Similar situation exists for memcpy and memset. 2417 void visitMemMoveInst(MemMoveInst &I) { 2418 IRBuilder<> IRB(&I); 2419 IRB.CreateCall( 2420 MS.MemmoveFn, 2421 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2422 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2423 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2424 I.eraseFromParent(); 2425 } 2426 2427 // Similar to memmove: avoid copying shadow twice. 2428 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2429 // FIXME: consider doing manual inline for small constant sizes and proper 2430 // alignment. 2431 void visitMemCpyInst(MemCpyInst &I) { 2432 IRBuilder<> IRB(&I); 2433 IRB.CreateCall( 2434 MS.MemcpyFn, 2435 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2436 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2437 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2438 I.eraseFromParent(); 2439 } 2440 2441 // Same as memcpy. 2442 void visitMemSetInst(MemSetInst &I) { 2443 IRBuilder<> IRB(&I); 2444 IRB.CreateCall( 2445 MS.MemsetFn, 2446 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2447 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2448 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2449 I.eraseFromParent(); 2450 } 2451 2452 void visitVAStartInst(VAStartInst &I) { 2453 VAHelper->visitVAStartInst(I); 2454 } 2455 2456 void visitVACopyInst(VACopyInst &I) { 2457 VAHelper->visitVACopyInst(I); 2458 } 2459 2460 /// Handle vector store-like intrinsics. 2461 /// 2462 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2463 /// has 1 pointer argument and 1 vector argument, returns void. 2464 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2465 IRBuilder<> IRB(&I); 2466 Value* Addr = I.getArgOperand(0); 2467 Value *Shadow = getShadow(&I, 1); 2468 Value *ShadowPtr, *OriginPtr; 2469 2470 // We don't know the pointer alignment (could be unaligned SSE store!). 2471 // Have to assume to worst case. 2472 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2473 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2474 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2475 2476 if (ClCheckAccessAddress) 2477 insertShadowCheck(Addr, &I); 2478 2479 // FIXME: factor out common code from materializeStores 2480 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2481 return true; 2482 } 2483 2484 /// Handle vector load-like intrinsics. 2485 /// 2486 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2487 /// has 1 pointer argument, returns a vector. 2488 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2489 IRBuilder<> IRB(&I); 2490 Value *Addr = I.getArgOperand(0); 2491 2492 Type *ShadowTy = getShadowTy(&I); 2493 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2494 if (PropagateShadow) { 2495 // We don't know the pointer alignment (could be unaligned SSE load!). 2496 // Have to assume to worst case. 2497 const Align Alignment = Align(1); 2498 std::tie(ShadowPtr, OriginPtr) = 2499 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2500 setShadow(&I, 2501 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2502 } else { 2503 setShadow(&I, getCleanShadow(&I)); 2504 } 2505 2506 if (ClCheckAccessAddress) 2507 insertShadowCheck(Addr, &I); 2508 2509 if (MS.TrackOrigins) { 2510 if (PropagateShadow) 2511 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2512 else 2513 setOrigin(&I, getCleanOrigin()); 2514 } 2515 return true; 2516 } 2517 2518 /// Handle (SIMD arithmetic)-like intrinsics. 2519 /// 2520 /// Instrument intrinsics with any number of arguments of the same type, 2521 /// equal to the return type. The type should be simple (no aggregates or 2522 /// pointers; vectors are fine). 2523 /// Caller guarantees that this intrinsic does not access memory. 2524 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2525 Type *RetTy = I.getType(); 2526 if (!(RetTy->isIntOrIntVectorTy() || 2527 RetTy->isFPOrFPVectorTy() || 2528 RetTy->isX86_MMXTy())) 2529 return false; 2530 2531 unsigned NumArgOperands = I.getNumArgOperands(); 2532 2533 for (unsigned i = 0; i < NumArgOperands; ++i) { 2534 Type *Ty = I.getArgOperand(i)->getType(); 2535 if (Ty != RetTy) 2536 return false; 2537 } 2538 2539 IRBuilder<> IRB(&I); 2540 ShadowAndOriginCombiner SC(this, IRB); 2541 for (unsigned i = 0; i < NumArgOperands; ++i) 2542 SC.Add(I.getArgOperand(i)); 2543 SC.Done(&I); 2544 2545 return true; 2546 } 2547 2548 /// Heuristically instrument unknown intrinsics. 2549 /// 2550 /// The main purpose of this code is to do something reasonable with all 2551 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2552 /// We recognize several classes of intrinsics by their argument types and 2553 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2554 /// sure that we know what the intrinsic does. 2555 /// 2556 /// We special-case intrinsics where this approach fails. See llvm.bswap 2557 /// handling as an example of that. 2558 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2559 unsigned NumArgOperands = I.getNumArgOperands(); 2560 if (NumArgOperands == 0) 2561 return false; 2562 2563 if (NumArgOperands == 2 && 2564 I.getArgOperand(0)->getType()->isPointerTy() && 2565 I.getArgOperand(1)->getType()->isVectorTy() && 2566 I.getType()->isVoidTy() && 2567 !I.onlyReadsMemory()) { 2568 // This looks like a vector store. 2569 return handleVectorStoreIntrinsic(I); 2570 } 2571 2572 if (NumArgOperands == 1 && 2573 I.getArgOperand(0)->getType()->isPointerTy() && 2574 I.getType()->isVectorTy() && 2575 I.onlyReadsMemory()) { 2576 // This looks like a vector load. 2577 return handleVectorLoadIntrinsic(I); 2578 } 2579 2580 if (I.doesNotAccessMemory()) 2581 if (maybeHandleSimpleNomemIntrinsic(I)) 2582 return true; 2583 2584 // FIXME: detect and handle SSE maskstore/maskload 2585 return false; 2586 } 2587 2588 void handleInvariantGroup(IntrinsicInst &I) { 2589 setShadow(&I, getShadow(&I, 0)); 2590 setOrigin(&I, getOrigin(&I, 0)); 2591 } 2592 2593 void handleLifetimeStart(IntrinsicInst &I) { 2594 if (!PoisonStack) 2595 return; 2596 DenseMap<Value *, AllocaInst *> AllocaForValue; 2597 AllocaInst *AI = 2598 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2599 if (!AI) 2600 InstrumentLifetimeStart = false; 2601 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2602 } 2603 2604 void handleBswap(IntrinsicInst &I) { 2605 IRBuilder<> IRB(&I); 2606 Value *Op = I.getArgOperand(0); 2607 Type *OpType = Op->getType(); 2608 Function *BswapFunc = Intrinsic::getDeclaration( 2609 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2610 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2611 setOrigin(&I, getOrigin(Op)); 2612 } 2613 2614 // Instrument vector convert intrinsic. 2615 // 2616 // This function instruments intrinsics like cvtsi2ss: 2617 // %Out = int_xxx_cvtyyy(%ConvertOp) 2618 // or 2619 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2620 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2621 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2622 // elements from \p CopyOp. 2623 // In most cases conversion involves floating-point value which may trigger a 2624 // hardware exception when not fully initialized. For this reason we require 2625 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2626 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2627 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2628 // return a fully initialized value. 2629 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2630 IRBuilder<> IRB(&I); 2631 Value *CopyOp, *ConvertOp; 2632 2633 switch (I.getNumArgOperands()) { 2634 case 3: 2635 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2636 LLVM_FALLTHROUGH; 2637 case 2: 2638 CopyOp = I.getArgOperand(0); 2639 ConvertOp = I.getArgOperand(1); 2640 break; 2641 case 1: 2642 ConvertOp = I.getArgOperand(0); 2643 CopyOp = nullptr; 2644 break; 2645 default: 2646 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2647 } 2648 2649 // The first *NumUsedElements* elements of ConvertOp are converted to the 2650 // same number of output elements. The rest of the output is copied from 2651 // CopyOp, or (if not available) filled with zeroes. 2652 // Combine shadow for elements of ConvertOp that are used in this operation, 2653 // and insert a check. 2654 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2655 // int->any conversion. 2656 Value *ConvertShadow = getShadow(ConvertOp); 2657 Value *AggShadow = nullptr; 2658 if (ConvertOp->getType()->isVectorTy()) { 2659 AggShadow = IRB.CreateExtractElement( 2660 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2661 for (int i = 1; i < NumUsedElements; ++i) { 2662 Value *MoreShadow = IRB.CreateExtractElement( 2663 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2664 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2665 } 2666 } else { 2667 AggShadow = ConvertShadow; 2668 } 2669 assert(AggShadow->getType()->isIntegerTy()); 2670 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2671 2672 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2673 // ConvertOp. 2674 if (CopyOp) { 2675 assert(CopyOp->getType() == I.getType()); 2676 assert(CopyOp->getType()->isVectorTy()); 2677 Value *ResultShadow = getShadow(CopyOp); 2678 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2679 for (int i = 0; i < NumUsedElements; ++i) { 2680 ResultShadow = IRB.CreateInsertElement( 2681 ResultShadow, ConstantInt::getNullValue(EltTy), 2682 ConstantInt::get(IRB.getInt32Ty(), i)); 2683 } 2684 setShadow(&I, ResultShadow); 2685 setOrigin(&I, getOrigin(CopyOp)); 2686 } else { 2687 setShadow(&I, getCleanShadow(&I)); 2688 setOrigin(&I, getCleanOrigin()); 2689 } 2690 } 2691 2692 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2693 // zeroes if it is zero, and all ones otherwise. 2694 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2695 if (S->getType()->isVectorTy()) 2696 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2697 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2698 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2699 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2700 } 2701 2702 // Given a vector, extract its first element, and return all 2703 // zeroes if it is zero, and all ones otherwise. 2704 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2705 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2706 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2707 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2708 } 2709 2710 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2711 Type *T = S->getType(); 2712 assert(T->isVectorTy()); 2713 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2714 return IRB.CreateSExt(S2, T); 2715 } 2716 2717 // Instrument vector shift intrinsic. 2718 // 2719 // This function instruments intrinsics like int_x86_avx2_psll_w. 2720 // Intrinsic shifts %In by %ShiftSize bits. 2721 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2722 // size, and the rest is ignored. Behavior is defined even if shift size is 2723 // greater than register (or field) width. 2724 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2725 assert(I.getNumArgOperands() == 2); 2726 IRBuilder<> IRB(&I); 2727 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2728 // Otherwise perform the same shift on S1. 2729 Value *S1 = getShadow(&I, 0); 2730 Value *S2 = getShadow(&I, 1); 2731 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2732 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2733 Value *V1 = I.getOperand(0); 2734 Value *V2 = I.getOperand(1); 2735 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2736 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2737 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2738 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2739 setOriginForNaryOp(I); 2740 } 2741 2742 // Get an X86_MMX-sized vector type. 2743 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2744 const unsigned X86_MMXSizeInBits = 64; 2745 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2746 "Illegal MMX vector element size"); 2747 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2748 X86_MMXSizeInBits / EltSizeInBits); 2749 } 2750 2751 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2752 // intrinsic. 2753 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2754 switch (id) { 2755 case Intrinsic::x86_sse2_packsswb_128: 2756 case Intrinsic::x86_sse2_packuswb_128: 2757 return Intrinsic::x86_sse2_packsswb_128; 2758 2759 case Intrinsic::x86_sse2_packssdw_128: 2760 case Intrinsic::x86_sse41_packusdw: 2761 return Intrinsic::x86_sse2_packssdw_128; 2762 2763 case Intrinsic::x86_avx2_packsswb: 2764 case Intrinsic::x86_avx2_packuswb: 2765 return Intrinsic::x86_avx2_packsswb; 2766 2767 case Intrinsic::x86_avx2_packssdw: 2768 case Intrinsic::x86_avx2_packusdw: 2769 return Intrinsic::x86_avx2_packssdw; 2770 2771 case Intrinsic::x86_mmx_packsswb: 2772 case Intrinsic::x86_mmx_packuswb: 2773 return Intrinsic::x86_mmx_packsswb; 2774 2775 case Intrinsic::x86_mmx_packssdw: 2776 return Intrinsic::x86_mmx_packssdw; 2777 default: 2778 llvm_unreachable("unexpected intrinsic id"); 2779 } 2780 } 2781 2782 // Instrument vector pack intrinsic. 2783 // 2784 // This function instruments intrinsics like x86_mmx_packsswb, that 2785 // packs elements of 2 input vectors into half as many bits with saturation. 2786 // Shadow is propagated with the signed variant of the same intrinsic applied 2787 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2788 // EltSizeInBits is used only for x86mmx arguments. 2789 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2790 assert(I.getNumArgOperands() == 2); 2791 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2792 IRBuilder<> IRB(&I); 2793 Value *S1 = getShadow(&I, 0); 2794 Value *S2 = getShadow(&I, 1); 2795 assert(isX86_MMX || S1->getType()->isVectorTy()); 2796 2797 // SExt and ICmpNE below must apply to individual elements of input vectors. 2798 // In case of x86mmx arguments, cast them to appropriate vector types and 2799 // back. 2800 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2801 if (isX86_MMX) { 2802 S1 = IRB.CreateBitCast(S1, T); 2803 S2 = IRB.CreateBitCast(S2, T); 2804 } 2805 Value *S1_ext = IRB.CreateSExt( 2806 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2807 Value *S2_ext = IRB.CreateSExt( 2808 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2809 if (isX86_MMX) { 2810 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2811 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2812 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2813 } 2814 2815 Function *ShadowFn = Intrinsic::getDeclaration( 2816 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2817 2818 Value *S = 2819 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2820 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2821 setShadow(&I, S); 2822 setOriginForNaryOp(I); 2823 } 2824 2825 // Instrument sum-of-absolute-differences intrinsic. 2826 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2827 const unsigned SignificantBitsPerResultElement = 16; 2828 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2829 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2830 unsigned ZeroBitsPerResultElement = 2831 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2832 2833 IRBuilder<> IRB(&I); 2834 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2835 S = IRB.CreateBitCast(S, ResTy); 2836 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2837 ResTy); 2838 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2839 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2840 setShadow(&I, S); 2841 setOriginForNaryOp(I); 2842 } 2843 2844 // Instrument multiply-add intrinsic. 2845 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2846 unsigned EltSizeInBits = 0) { 2847 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2848 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2849 IRBuilder<> IRB(&I); 2850 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2851 S = IRB.CreateBitCast(S, ResTy); 2852 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2853 ResTy); 2854 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2855 setShadow(&I, S); 2856 setOriginForNaryOp(I); 2857 } 2858 2859 // Instrument compare-packed intrinsic. 2860 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2861 // all-ones shadow. 2862 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2863 IRBuilder<> IRB(&I); 2864 Type *ResTy = getShadowTy(&I); 2865 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2866 Value *S = IRB.CreateSExt( 2867 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2868 setShadow(&I, S); 2869 setOriginForNaryOp(I); 2870 } 2871 2872 // Instrument compare-scalar intrinsic. 2873 // This handles both cmp* intrinsics which return the result in the first 2874 // element of a vector, and comi* which return the result as i32. 2875 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2876 IRBuilder<> IRB(&I); 2877 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2878 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2879 setShadow(&I, S); 2880 setOriginForNaryOp(I); 2881 } 2882 2883 void handleStmxcsr(IntrinsicInst &I) { 2884 IRBuilder<> IRB(&I); 2885 Value* Addr = I.getArgOperand(0); 2886 Type *Ty = IRB.getInt32Ty(); 2887 Value *ShadowPtr = 2888 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2889 2890 IRB.CreateStore(getCleanShadow(Ty), 2891 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2892 2893 if (ClCheckAccessAddress) 2894 insertShadowCheck(Addr, &I); 2895 } 2896 2897 void handleLdmxcsr(IntrinsicInst &I) { 2898 if (!InsertChecks) return; 2899 2900 IRBuilder<> IRB(&I); 2901 Value *Addr = I.getArgOperand(0); 2902 Type *Ty = IRB.getInt32Ty(); 2903 const Align Alignment = Align(1); 2904 Value *ShadowPtr, *OriginPtr; 2905 std::tie(ShadowPtr, OriginPtr) = 2906 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2907 2908 if (ClCheckAccessAddress) 2909 insertShadowCheck(Addr, &I); 2910 2911 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2912 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2913 : getCleanOrigin(); 2914 insertShadowCheck(Shadow, Origin, &I); 2915 } 2916 2917 void handleMaskedStore(IntrinsicInst &I) { 2918 IRBuilder<> IRB(&I); 2919 Value *V = I.getArgOperand(0); 2920 Value *Addr = I.getArgOperand(1); 2921 const Align Alignment( 2922 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2923 Value *Mask = I.getArgOperand(3); 2924 Value *Shadow = getShadow(V); 2925 2926 Value *ShadowPtr; 2927 Value *OriginPtr; 2928 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2929 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2930 2931 if (ClCheckAccessAddress) { 2932 insertShadowCheck(Addr, &I); 2933 // Uninitialized mask is kind of like uninitialized address, but not as 2934 // scary. 2935 insertShadowCheck(Mask, &I); 2936 } 2937 2938 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 2939 2940 if (MS.TrackOrigins) { 2941 auto &DL = F.getParent()->getDataLayout(); 2942 paintOrigin(IRB, getOrigin(V), OriginPtr, 2943 DL.getTypeStoreSize(Shadow->getType()), 2944 std::max(Alignment, kMinOriginAlignment)); 2945 } 2946 } 2947 2948 bool handleMaskedLoad(IntrinsicInst &I) { 2949 IRBuilder<> IRB(&I); 2950 Value *Addr = I.getArgOperand(0); 2951 const Align Alignment( 2952 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2953 Value *Mask = I.getArgOperand(2); 2954 Value *PassThru = I.getArgOperand(3); 2955 2956 Type *ShadowTy = getShadowTy(&I); 2957 Value *ShadowPtr, *OriginPtr; 2958 if (PropagateShadow) { 2959 std::tie(ShadowPtr, OriginPtr) = 2960 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2961 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 2962 getShadow(PassThru), "_msmaskedld")); 2963 } else { 2964 setShadow(&I, getCleanShadow(&I)); 2965 } 2966 2967 if (ClCheckAccessAddress) { 2968 insertShadowCheck(Addr, &I); 2969 insertShadowCheck(Mask, &I); 2970 } 2971 2972 if (MS.TrackOrigins) { 2973 if (PropagateShadow) { 2974 // Choose between PassThru's and the loaded value's origins. 2975 Value *MaskedPassThruShadow = IRB.CreateAnd( 2976 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2977 2978 Value *Acc = IRB.CreateExtractElement( 2979 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2980 for (int i = 1, 2981 N = cast<VectorType>(PassThru->getType())->getNumElements(); 2982 i < N; ++i) { 2983 Value *More = IRB.CreateExtractElement( 2984 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2985 Acc = IRB.CreateOr(Acc, More); 2986 } 2987 2988 Value *Origin = IRB.CreateSelect( 2989 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2990 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2991 2992 setOrigin(&I, Origin); 2993 } else { 2994 setOrigin(&I, getCleanOrigin()); 2995 } 2996 } 2997 return true; 2998 } 2999 3000 // Instrument BMI / BMI2 intrinsics. 3001 // All of these intrinsics are Z = I(X, Y) 3002 // where the types of all operands and the result match, and are either i32 or i64. 3003 // The following instrumentation happens to work for all of them: 3004 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3005 void handleBmiIntrinsic(IntrinsicInst &I) { 3006 IRBuilder<> IRB(&I); 3007 Type *ShadowTy = getShadowTy(&I); 3008 3009 // If any bit of the mask operand is poisoned, then the whole thing is. 3010 Value *SMask = getShadow(&I, 1); 3011 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3012 ShadowTy); 3013 // Apply the same intrinsic to the shadow of the first operand. 3014 Value *S = IRB.CreateCall(I.getCalledFunction(), 3015 {getShadow(&I, 0), I.getOperand(1)}); 3016 S = IRB.CreateOr(SMask, S); 3017 setShadow(&I, S); 3018 setOriginForNaryOp(I); 3019 } 3020 3021 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3022 SmallVector<int, 8> Mask; 3023 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3024 Mask.append(2, X); 3025 } 3026 return Mask; 3027 } 3028 3029 // Instrument pclmul intrinsics. 3030 // These intrinsics operate either on odd or on even elements of the input 3031 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3032 // Replace the unused elements with copies of the used ones, ex: 3033 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3034 // or 3035 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3036 // and then apply the usual shadow combining logic. 3037 void handlePclmulIntrinsic(IntrinsicInst &I) { 3038 IRBuilder<> IRB(&I); 3039 Type *ShadowTy = getShadowTy(&I); 3040 unsigned Width = 3041 cast<VectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3042 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3043 "pclmul 3rd operand must be a constant"); 3044 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3045 Value *Shuf0 = 3046 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3047 getPclmulMask(Width, Imm & 0x01)); 3048 Value *Shuf1 = 3049 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3050 getPclmulMask(Width, Imm & 0x10)); 3051 ShadowAndOriginCombiner SOC(this, IRB); 3052 SOC.Add(Shuf0, getOrigin(&I, 0)); 3053 SOC.Add(Shuf1, getOrigin(&I, 1)); 3054 SOC.Done(&I); 3055 } 3056 3057 void visitIntrinsicInst(IntrinsicInst &I) { 3058 switch (I.getIntrinsicID()) { 3059 case Intrinsic::lifetime_start: 3060 handleLifetimeStart(I); 3061 break; 3062 case Intrinsic::launder_invariant_group: 3063 case Intrinsic::strip_invariant_group: 3064 handleInvariantGroup(I); 3065 break; 3066 case Intrinsic::bswap: 3067 handleBswap(I); 3068 break; 3069 case Intrinsic::masked_store: 3070 handleMaskedStore(I); 3071 break; 3072 case Intrinsic::masked_load: 3073 handleMaskedLoad(I); 3074 break; 3075 case Intrinsic::x86_sse_stmxcsr: 3076 handleStmxcsr(I); 3077 break; 3078 case Intrinsic::x86_sse_ldmxcsr: 3079 handleLdmxcsr(I); 3080 break; 3081 case Intrinsic::x86_avx512_vcvtsd2usi64: 3082 case Intrinsic::x86_avx512_vcvtsd2usi32: 3083 case Intrinsic::x86_avx512_vcvtss2usi64: 3084 case Intrinsic::x86_avx512_vcvtss2usi32: 3085 case Intrinsic::x86_avx512_cvttss2usi64: 3086 case Intrinsic::x86_avx512_cvttss2usi: 3087 case Intrinsic::x86_avx512_cvttsd2usi64: 3088 case Intrinsic::x86_avx512_cvttsd2usi: 3089 case Intrinsic::x86_avx512_cvtusi2ss: 3090 case Intrinsic::x86_avx512_cvtusi642sd: 3091 case Intrinsic::x86_avx512_cvtusi642ss: 3092 case Intrinsic::x86_sse2_cvtsd2si64: 3093 case Intrinsic::x86_sse2_cvtsd2si: 3094 case Intrinsic::x86_sse2_cvtsd2ss: 3095 case Intrinsic::x86_sse2_cvttsd2si64: 3096 case Intrinsic::x86_sse2_cvttsd2si: 3097 case Intrinsic::x86_sse_cvtss2si64: 3098 case Intrinsic::x86_sse_cvtss2si: 3099 case Intrinsic::x86_sse_cvttss2si64: 3100 case Intrinsic::x86_sse_cvttss2si: 3101 handleVectorConvertIntrinsic(I, 1); 3102 break; 3103 case Intrinsic::x86_sse_cvtps2pi: 3104 case Intrinsic::x86_sse_cvttps2pi: 3105 handleVectorConvertIntrinsic(I, 2); 3106 break; 3107 3108 case Intrinsic::x86_avx512_psll_w_512: 3109 case Intrinsic::x86_avx512_psll_d_512: 3110 case Intrinsic::x86_avx512_psll_q_512: 3111 case Intrinsic::x86_avx512_pslli_w_512: 3112 case Intrinsic::x86_avx512_pslli_d_512: 3113 case Intrinsic::x86_avx512_pslli_q_512: 3114 case Intrinsic::x86_avx512_psrl_w_512: 3115 case Intrinsic::x86_avx512_psrl_d_512: 3116 case Intrinsic::x86_avx512_psrl_q_512: 3117 case Intrinsic::x86_avx512_psra_w_512: 3118 case Intrinsic::x86_avx512_psra_d_512: 3119 case Intrinsic::x86_avx512_psra_q_512: 3120 case Intrinsic::x86_avx512_psrli_w_512: 3121 case Intrinsic::x86_avx512_psrli_d_512: 3122 case Intrinsic::x86_avx512_psrli_q_512: 3123 case Intrinsic::x86_avx512_psrai_w_512: 3124 case Intrinsic::x86_avx512_psrai_d_512: 3125 case Intrinsic::x86_avx512_psrai_q_512: 3126 case Intrinsic::x86_avx512_psra_q_256: 3127 case Intrinsic::x86_avx512_psra_q_128: 3128 case Intrinsic::x86_avx512_psrai_q_256: 3129 case Intrinsic::x86_avx512_psrai_q_128: 3130 case Intrinsic::x86_avx2_psll_w: 3131 case Intrinsic::x86_avx2_psll_d: 3132 case Intrinsic::x86_avx2_psll_q: 3133 case Intrinsic::x86_avx2_pslli_w: 3134 case Intrinsic::x86_avx2_pslli_d: 3135 case Intrinsic::x86_avx2_pslli_q: 3136 case Intrinsic::x86_avx2_psrl_w: 3137 case Intrinsic::x86_avx2_psrl_d: 3138 case Intrinsic::x86_avx2_psrl_q: 3139 case Intrinsic::x86_avx2_psra_w: 3140 case Intrinsic::x86_avx2_psra_d: 3141 case Intrinsic::x86_avx2_psrli_w: 3142 case Intrinsic::x86_avx2_psrli_d: 3143 case Intrinsic::x86_avx2_psrli_q: 3144 case Intrinsic::x86_avx2_psrai_w: 3145 case Intrinsic::x86_avx2_psrai_d: 3146 case Intrinsic::x86_sse2_psll_w: 3147 case Intrinsic::x86_sse2_psll_d: 3148 case Intrinsic::x86_sse2_psll_q: 3149 case Intrinsic::x86_sse2_pslli_w: 3150 case Intrinsic::x86_sse2_pslli_d: 3151 case Intrinsic::x86_sse2_pslli_q: 3152 case Intrinsic::x86_sse2_psrl_w: 3153 case Intrinsic::x86_sse2_psrl_d: 3154 case Intrinsic::x86_sse2_psrl_q: 3155 case Intrinsic::x86_sse2_psra_w: 3156 case Intrinsic::x86_sse2_psra_d: 3157 case Intrinsic::x86_sse2_psrli_w: 3158 case Intrinsic::x86_sse2_psrli_d: 3159 case Intrinsic::x86_sse2_psrli_q: 3160 case Intrinsic::x86_sse2_psrai_w: 3161 case Intrinsic::x86_sse2_psrai_d: 3162 case Intrinsic::x86_mmx_psll_w: 3163 case Intrinsic::x86_mmx_psll_d: 3164 case Intrinsic::x86_mmx_psll_q: 3165 case Intrinsic::x86_mmx_pslli_w: 3166 case Intrinsic::x86_mmx_pslli_d: 3167 case Intrinsic::x86_mmx_pslli_q: 3168 case Intrinsic::x86_mmx_psrl_w: 3169 case Intrinsic::x86_mmx_psrl_d: 3170 case Intrinsic::x86_mmx_psrl_q: 3171 case Intrinsic::x86_mmx_psra_w: 3172 case Intrinsic::x86_mmx_psra_d: 3173 case Intrinsic::x86_mmx_psrli_w: 3174 case Intrinsic::x86_mmx_psrli_d: 3175 case Intrinsic::x86_mmx_psrli_q: 3176 case Intrinsic::x86_mmx_psrai_w: 3177 case Intrinsic::x86_mmx_psrai_d: 3178 handleVectorShiftIntrinsic(I, /* Variable */ false); 3179 break; 3180 case Intrinsic::x86_avx2_psllv_d: 3181 case Intrinsic::x86_avx2_psllv_d_256: 3182 case Intrinsic::x86_avx512_psllv_d_512: 3183 case Intrinsic::x86_avx2_psllv_q: 3184 case Intrinsic::x86_avx2_psllv_q_256: 3185 case Intrinsic::x86_avx512_psllv_q_512: 3186 case Intrinsic::x86_avx2_psrlv_d: 3187 case Intrinsic::x86_avx2_psrlv_d_256: 3188 case Intrinsic::x86_avx512_psrlv_d_512: 3189 case Intrinsic::x86_avx2_psrlv_q: 3190 case Intrinsic::x86_avx2_psrlv_q_256: 3191 case Intrinsic::x86_avx512_psrlv_q_512: 3192 case Intrinsic::x86_avx2_psrav_d: 3193 case Intrinsic::x86_avx2_psrav_d_256: 3194 case Intrinsic::x86_avx512_psrav_d_512: 3195 case Intrinsic::x86_avx512_psrav_q_128: 3196 case Intrinsic::x86_avx512_psrav_q_256: 3197 case Intrinsic::x86_avx512_psrav_q_512: 3198 handleVectorShiftIntrinsic(I, /* Variable */ true); 3199 break; 3200 3201 case Intrinsic::x86_sse2_packsswb_128: 3202 case Intrinsic::x86_sse2_packssdw_128: 3203 case Intrinsic::x86_sse2_packuswb_128: 3204 case Intrinsic::x86_sse41_packusdw: 3205 case Intrinsic::x86_avx2_packsswb: 3206 case Intrinsic::x86_avx2_packssdw: 3207 case Intrinsic::x86_avx2_packuswb: 3208 case Intrinsic::x86_avx2_packusdw: 3209 handleVectorPackIntrinsic(I); 3210 break; 3211 3212 case Intrinsic::x86_mmx_packsswb: 3213 case Intrinsic::x86_mmx_packuswb: 3214 handleVectorPackIntrinsic(I, 16); 3215 break; 3216 3217 case Intrinsic::x86_mmx_packssdw: 3218 handleVectorPackIntrinsic(I, 32); 3219 break; 3220 3221 case Intrinsic::x86_mmx_psad_bw: 3222 case Intrinsic::x86_sse2_psad_bw: 3223 case Intrinsic::x86_avx2_psad_bw: 3224 handleVectorSadIntrinsic(I); 3225 break; 3226 3227 case Intrinsic::x86_sse2_pmadd_wd: 3228 case Intrinsic::x86_avx2_pmadd_wd: 3229 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3230 case Intrinsic::x86_avx2_pmadd_ub_sw: 3231 handleVectorPmaddIntrinsic(I); 3232 break; 3233 3234 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3235 handleVectorPmaddIntrinsic(I, 8); 3236 break; 3237 3238 case Intrinsic::x86_mmx_pmadd_wd: 3239 handleVectorPmaddIntrinsic(I, 16); 3240 break; 3241 3242 case Intrinsic::x86_sse_cmp_ss: 3243 case Intrinsic::x86_sse2_cmp_sd: 3244 case Intrinsic::x86_sse_comieq_ss: 3245 case Intrinsic::x86_sse_comilt_ss: 3246 case Intrinsic::x86_sse_comile_ss: 3247 case Intrinsic::x86_sse_comigt_ss: 3248 case Intrinsic::x86_sse_comige_ss: 3249 case Intrinsic::x86_sse_comineq_ss: 3250 case Intrinsic::x86_sse_ucomieq_ss: 3251 case Intrinsic::x86_sse_ucomilt_ss: 3252 case Intrinsic::x86_sse_ucomile_ss: 3253 case Intrinsic::x86_sse_ucomigt_ss: 3254 case Intrinsic::x86_sse_ucomige_ss: 3255 case Intrinsic::x86_sse_ucomineq_ss: 3256 case Intrinsic::x86_sse2_comieq_sd: 3257 case Intrinsic::x86_sse2_comilt_sd: 3258 case Intrinsic::x86_sse2_comile_sd: 3259 case Intrinsic::x86_sse2_comigt_sd: 3260 case Intrinsic::x86_sse2_comige_sd: 3261 case Intrinsic::x86_sse2_comineq_sd: 3262 case Intrinsic::x86_sse2_ucomieq_sd: 3263 case Intrinsic::x86_sse2_ucomilt_sd: 3264 case Intrinsic::x86_sse2_ucomile_sd: 3265 case Intrinsic::x86_sse2_ucomigt_sd: 3266 case Intrinsic::x86_sse2_ucomige_sd: 3267 case Intrinsic::x86_sse2_ucomineq_sd: 3268 handleVectorCompareScalarIntrinsic(I); 3269 break; 3270 3271 case Intrinsic::x86_sse_cmp_ps: 3272 case Intrinsic::x86_sse2_cmp_pd: 3273 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3274 // generates reasonably looking IR that fails in the backend with "Do not 3275 // know how to split the result of this operator!". 3276 handleVectorComparePackedIntrinsic(I); 3277 break; 3278 3279 case Intrinsic::x86_bmi_bextr_32: 3280 case Intrinsic::x86_bmi_bextr_64: 3281 case Intrinsic::x86_bmi_bzhi_32: 3282 case Intrinsic::x86_bmi_bzhi_64: 3283 case Intrinsic::x86_bmi_pdep_32: 3284 case Intrinsic::x86_bmi_pdep_64: 3285 case Intrinsic::x86_bmi_pext_32: 3286 case Intrinsic::x86_bmi_pext_64: 3287 handleBmiIntrinsic(I); 3288 break; 3289 3290 case Intrinsic::x86_pclmulqdq: 3291 case Intrinsic::x86_pclmulqdq_256: 3292 case Intrinsic::x86_pclmulqdq_512: 3293 handlePclmulIntrinsic(I); 3294 break; 3295 3296 case Intrinsic::is_constant: 3297 // The result of llvm.is.constant() is always defined. 3298 setShadow(&I, getCleanShadow(&I)); 3299 setOrigin(&I, getCleanOrigin()); 3300 break; 3301 3302 default: 3303 if (!handleUnknownIntrinsic(I)) 3304 visitInstruction(I); 3305 break; 3306 } 3307 } 3308 3309 void visitCallBase(CallBase &CB) { 3310 assert(!CB.getMetadata("nosanitize")); 3311 if (CB.isInlineAsm()) { 3312 // For inline asm (either a call to asm function, or callbr instruction), 3313 // do the usual thing: check argument shadow and mark all outputs as 3314 // clean. Note that any side effects of the inline asm that are not 3315 // immediately visible in its constraints are not handled. 3316 if (ClHandleAsmConservative && MS.CompileKernel) 3317 visitAsmInstruction(CB); 3318 else 3319 visitInstruction(CB); 3320 return; 3321 } 3322 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3323 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3324 3325 // We are going to insert code that relies on the fact that the callee 3326 // will become a non-readonly function after it is instrumented by us. To 3327 // prevent this code from being optimized out, mark that function 3328 // non-readonly in advance. 3329 if (Function *Func = Call->getCalledFunction()) { 3330 // Clear out readonly/readnone attributes. 3331 AttrBuilder B; 3332 B.addAttribute(Attribute::ReadOnly) 3333 .addAttribute(Attribute::ReadNone) 3334 .addAttribute(Attribute::WriteOnly) 3335 .addAttribute(Attribute::ArgMemOnly) 3336 .addAttribute(Attribute::Speculatable); 3337 Func->removeAttributes(AttributeList::FunctionIndex, B); 3338 } 3339 3340 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3341 } 3342 IRBuilder<> IRB(&CB); 3343 3344 unsigned ArgOffset = 0; 3345 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3346 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3347 ++ArgIt) { 3348 Value *A = *ArgIt; 3349 unsigned i = ArgIt - CB.arg_begin(); 3350 if (!A->getType()->isSized()) { 3351 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3352 continue; 3353 } 3354 unsigned Size = 0; 3355 Value *Store = nullptr; 3356 // Compute the Shadow for arg even if it is ByVal, because 3357 // in that case getShadow() will copy the actual arg shadow to 3358 // __msan_param_tls. 3359 Value *ArgShadow = getShadow(A); 3360 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3361 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3362 << " Shadow: " << *ArgShadow << "\n"); 3363 bool ArgIsInitialized = false; 3364 const DataLayout &DL = F.getParent()->getDataLayout(); 3365 if (CB.paramHasAttr(i, Attribute::ByVal)) { 3366 assert(A->getType()->isPointerTy() && 3367 "ByVal argument is not a pointer!"); 3368 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3369 if (ArgOffset + Size > kParamTLSSize) break; 3370 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3371 MaybeAlign Alignment = llvm::None; 3372 if (ParamAlignment) 3373 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3374 Value *AShadowPtr = 3375 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3376 /*isStore*/ false) 3377 .first; 3378 3379 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3380 Alignment, Size); 3381 // TODO(glider): need to copy origins. 3382 } else { 3383 Size = DL.getTypeAllocSize(A->getType()); 3384 if (ArgOffset + Size > kParamTLSSize) break; 3385 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3386 kShadowTLSAlignment); 3387 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3388 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3389 } 3390 if (MS.TrackOrigins && !ArgIsInitialized) 3391 IRB.CreateStore(getOrigin(A), 3392 getOriginPtrForArgument(A, IRB, ArgOffset)); 3393 (void)Store; 3394 assert(Size != 0 && Store != nullptr); 3395 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3396 ArgOffset += alignTo(Size, 8); 3397 } 3398 LLVM_DEBUG(dbgs() << " done with call args\n"); 3399 3400 FunctionType *FT = CB.getFunctionType(); 3401 if (FT->isVarArg()) { 3402 VAHelper->visitCallBase(CB, IRB); 3403 } 3404 3405 // Now, get the shadow for the RetVal. 3406 if (!CB.getType()->isSized()) 3407 return; 3408 // Don't emit the epilogue for musttail call returns. 3409 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3410 return; 3411 IRBuilder<> IRBBefore(&CB); 3412 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3413 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3414 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3415 kShadowTLSAlignment); 3416 BasicBlock::iterator NextInsn; 3417 if (isa<CallInst>(CB)) { 3418 NextInsn = ++CB.getIterator(); 3419 assert(NextInsn != CB.getParent()->end()); 3420 } else { 3421 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3422 if (!NormalDest->getSinglePredecessor()) { 3423 // FIXME: this case is tricky, so we are just conservative here. 3424 // Perhaps we need to split the edge between this BB and NormalDest, 3425 // but a naive attempt to use SplitEdge leads to a crash. 3426 setShadow(&CB, getCleanShadow(&CB)); 3427 setOrigin(&CB, getCleanOrigin()); 3428 return; 3429 } 3430 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3431 // Anything inserted there will be instrumented by MSan later! 3432 NextInsn = NormalDest->getFirstInsertionPt(); 3433 assert(NextInsn != NormalDest->end() && 3434 "Could not find insertion point for retval shadow load"); 3435 } 3436 IRBuilder<> IRBAfter(&*NextInsn); 3437 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3438 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3439 kShadowTLSAlignment, "_msret"); 3440 setShadow(&CB, RetvalShadow); 3441 if (MS.TrackOrigins) 3442 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3443 getOriginPtrForRetval(IRBAfter))); 3444 } 3445 3446 bool isAMustTailRetVal(Value *RetVal) { 3447 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3448 RetVal = I->getOperand(0); 3449 } 3450 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3451 return I->isMustTailCall(); 3452 } 3453 return false; 3454 } 3455 3456 void visitReturnInst(ReturnInst &I) { 3457 IRBuilder<> IRB(&I); 3458 Value *RetVal = I.getReturnValue(); 3459 if (!RetVal) return; 3460 // Don't emit the epilogue for musttail call returns. 3461 if (isAMustTailRetVal(RetVal)) return; 3462 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3463 if (CheckReturnValue) { 3464 insertShadowCheck(RetVal, &I); 3465 Value *Shadow = getCleanShadow(RetVal); 3466 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3467 } else { 3468 Value *Shadow = getShadow(RetVal); 3469 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3470 if (MS.TrackOrigins) 3471 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3472 } 3473 } 3474 3475 void visitPHINode(PHINode &I) { 3476 IRBuilder<> IRB(&I); 3477 if (!PropagateShadow) { 3478 setShadow(&I, getCleanShadow(&I)); 3479 setOrigin(&I, getCleanOrigin()); 3480 return; 3481 } 3482 3483 ShadowPHINodes.push_back(&I); 3484 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3485 "_msphi_s")); 3486 if (MS.TrackOrigins) 3487 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3488 "_msphi_o")); 3489 } 3490 3491 Value *getLocalVarDescription(AllocaInst &I) { 3492 SmallString<2048> StackDescriptionStorage; 3493 raw_svector_ostream StackDescription(StackDescriptionStorage); 3494 // We create a string with a description of the stack allocation and 3495 // pass it into __msan_set_alloca_origin. 3496 // It will be printed by the run-time if stack-originated UMR is found. 3497 // The first 4 bytes of the string are set to '----' and will be replaced 3498 // by __msan_va_arg_overflow_size_tls at the first call. 3499 StackDescription << "----" << I.getName() << "@" << F.getName(); 3500 return createPrivateNonConstGlobalForString(*F.getParent(), 3501 StackDescription.str()); 3502 } 3503 3504 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3505 if (PoisonStack && ClPoisonStackWithCall) { 3506 IRB.CreateCall(MS.MsanPoisonStackFn, 3507 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3508 } else { 3509 Value *ShadowBase, *OriginBase; 3510 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3511 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3512 3513 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3514 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3515 MaybeAlign(I.getAlignment())); 3516 } 3517 3518 if (PoisonStack && MS.TrackOrigins) { 3519 Value *Descr = getLocalVarDescription(I); 3520 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3521 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3522 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3523 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3524 } 3525 } 3526 3527 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3528 Value *Descr = getLocalVarDescription(I); 3529 if (PoisonStack) { 3530 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3531 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3532 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3533 } else { 3534 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3535 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3536 } 3537 } 3538 3539 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3540 if (!InsPoint) 3541 InsPoint = &I; 3542 IRBuilder<> IRB(InsPoint->getNextNode()); 3543 const DataLayout &DL = F.getParent()->getDataLayout(); 3544 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3545 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3546 if (I.isArrayAllocation()) 3547 Len = IRB.CreateMul(Len, I.getArraySize()); 3548 3549 if (MS.CompileKernel) 3550 poisonAllocaKmsan(I, IRB, Len); 3551 else 3552 poisonAllocaUserspace(I, IRB, Len); 3553 } 3554 3555 void visitAllocaInst(AllocaInst &I) { 3556 setShadow(&I, getCleanShadow(&I)); 3557 setOrigin(&I, getCleanOrigin()); 3558 // We'll get to this alloca later unless it's poisoned at the corresponding 3559 // llvm.lifetime.start. 3560 AllocaSet.insert(&I); 3561 } 3562 3563 void visitSelectInst(SelectInst& I) { 3564 IRBuilder<> IRB(&I); 3565 // a = select b, c, d 3566 Value *B = I.getCondition(); 3567 Value *C = I.getTrueValue(); 3568 Value *D = I.getFalseValue(); 3569 Value *Sb = getShadow(B); 3570 Value *Sc = getShadow(C); 3571 Value *Sd = getShadow(D); 3572 3573 // Result shadow if condition shadow is 0. 3574 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3575 Value *Sa1; 3576 if (I.getType()->isAggregateType()) { 3577 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3578 // an extra "select". This results in much more compact IR. 3579 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3580 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3581 } else { 3582 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3583 // If Sb (condition is poisoned), look for bits in c and d that are equal 3584 // and both unpoisoned. 3585 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3586 3587 // Cast arguments to shadow-compatible type. 3588 C = CreateAppToShadowCast(IRB, C); 3589 D = CreateAppToShadowCast(IRB, D); 3590 3591 // Result shadow if condition shadow is 1. 3592 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3593 } 3594 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3595 setShadow(&I, Sa); 3596 if (MS.TrackOrigins) { 3597 // Origins are always i32, so any vector conditions must be flattened. 3598 // FIXME: consider tracking vector origins for app vectors? 3599 if (B->getType()->isVectorTy()) { 3600 Type *FlatTy = getShadowTyNoVec(B->getType()); 3601 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3602 ConstantInt::getNullValue(FlatTy)); 3603 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3604 ConstantInt::getNullValue(FlatTy)); 3605 } 3606 // a = select b, c, d 3607 // Oa = Sb ? Ob : (b ? Oc : Od) 3608 setOrigin( 3609 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3610 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3611 getOrigin(I.getFalseValue())))); 3612 } 3613 } 3614 3615 void visitLandingPadInst(LandingPadInst &I) { 3616 // Do nothing. 3617 // See https://github.com/google/sanitizers/issues/504 3618 setShadow(&I, getCleanShadow(&I)); 3619 setOrigin(&I, getCleanOrigin()); 3620 } 3621 3622 void visitCatchSwitchInst(CatchSwitchInst &I) { 3623 setShadow(&I, getCleanShadow(&I)); 3624 setOrigin(&I, getCleanOrigin()); 3625 } 3626 3627 void visitFuncletPadInst(FuncletPadInst &I) { 3628 setShadow(&I, getCleanShadow(&I)); 3629 setOrigin(&I, getCleanOrigin()); 3630 } 3631 3632 void visitGetElementPtrInst(GetElementPtrInst &I) { 3633 handleShadowOr(I); 3634 } 3635 3636 void visitExtractValueInst(ExtractValueInst &I) { 3637 IRBuilder<> IRB(&I); 3638 Value *Agg = I.getAggregateOperand(); 3639 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3640 Value *AggShadow = getShadow(Agg); 3641 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3642 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3643 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3644 setShadow(&I, ResShadow); 3645 setOriginForNaryOp(I); 3646 } 3647 3648 void visitInsertValueInst(InsertValueInst &I) { 3649 IRBuilder<> IRB(&I); 3650 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3651 Value *AggShadow = getShadow(I.getAggregateOperand()); 3652 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3653 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3654 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3655 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3656 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3657 setShadow(&I, Res); 3658 setOriginForNaryOp(I); 3659 } 3660 3661 void dumpInst(Instruction &I) { 3662 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3663 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3664 } else { 3665 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3666 } 3667 errs() << "QQQ " << I << "\n"; 3668 } 3669 3670 void visitResumeInst(ResumeInst &I) { 3671 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3672 // Nothing to do here. 3673 } 3674 3675 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3676 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3677 // Nothing to do here. 3678 } 3679 3680 void visitCatchReturnInst(CatchReturnInst &CRI) { 3681 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3682 // Nothing to do here. 3683 } 3684 3685 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3686 const DataLayout &DL, bool isOutput) { 3687 // For each assembly argument, we check its value for being initialized. 3688 // If the argument is a pointer, we assume it points to a single element 3689 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3690 // Each such pointer is instrumented with a call to the runtime library. 3691 Type *OpType = Operand->getType(); 3692 // Check the operand value itself. 3693 insertShadowCheck(Operand, &I); 3694 if (!OpType->isPointerTy() || !isOutput) { 3695 assert(!isOutput); 3696 return; 3697 } 3698 Type *ElType = OpType->getPointerElementType(); 3699 if (!ElType->isSized()) 3700 return; 3701 int Size = DL.getTypeStoreSize(ElType); 3702 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3703 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3704 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3705 } 3706 3707 /// Get the number of output arguments returned by pointers. 3708 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3709 int NumRetOutputs = 0; 3710 int NumOutputs = 0; 3711 Type *RetTy = cast<Value>(CB)->getType(); 3712 if (!RetTy->isVoidTy()) { 3713 // Register outputs are returned via the CallInst return value. 3714 auto *ST = dyn_cast<StructType>(RetTy); 3715 if (ST) 3716 NumRetOutputs = ST->getNumElements(); 3717 else 3718 NumRetOutputs = 1; 3719 } 3720 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3721 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3722 InlineAsm::ConstraintInfo Info = Constraints[i]; 3723 switch (Info.Type) { 3724 case InlineAsm::isOutput: 3725 NumOutputs++; 3726 break; 3727 default: 3728 break; 3729 } 3730 } 3731 return NumOutputs - NumRetOutputs; 3732 } 3733 3734 void visitAsmInstruction(Instruction &I) { 3735 // Conservative inline assembly handling: check for poisoned shadow of 3736 // asm() arguments, then unpoison the result and all the memory locations 3737 // pointed to by those arguments. 3738 // An inline asm() statement in C++ contains lists of input and output 3739 // arguments used by the assembly code. These are mapped to operands of the 3740 // CallInst as follows: 3741 // - nR register outputs ("=r) are returned by value in a single structure 3742 // (SSA value of the CallInst); 3743 // - nO other outputs ("=m" and others) are returned by pointer as first 3744 // nO operands of the CallInst; 3745 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3746 // remaining nI operands. 3747 // The total number of asm() arguments in the source is nR+nO+nI, and the 3748 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3749 // function to be called). 3750 const DataLayout &DL = F.getParent()->getDataLayout(); 3751 CallBase *CB = cast<CallBase>(&I); 3752 IRBuilder<> IRB(&I); 3753 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3754 int OutputArgs = getNumOutputArgs(IA, CB); 3755 // The last operand of a CallInst is the function itself. 3756 int NumOperands = CB->getNumOperands() - 1; 3757 3758 // Check input arguments. Doing so before unpoisoning output arguments, so 3759 // that we won't overwrite uninit values before checking them. 3760 for (int i = OutputArgs; i < NumOperands; i++) { 3761 Value *Operand = CB->getOperand(i); 3762 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3763 } 3764 // Unpoison output arguments. This must happen before the actual InlineAsm 3765 // call, so that the shadow for memory published in the asm() statement 3766 // remains valid. 3767 for (int i = 0; i < OutputArgs; i++) { 3768 Value *Operand = CB->getOperand(i); 3769 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3770 } 3771 3772 setShadow(&I, getCleanShadow(&I)); 3773 setOrigin(&I, getCleanOrigin()); 3774 } 3775 3776 void visitInstruction(Instruction &I) { 3777 // Everything else: stop propagating and check for poisoned shadow. 3778 if (ClDumpStrictInstructions) 3779 dumpInst(I); 3780 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3781 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3782 Value *Operand = I.getOperand(i); 3783 if (Operand->getType()->isSized()) 3784 insertShadowCheck(Operand, &I); 3785 } 3786 setShadow(&I, getCleanShadow(&I)); 3787 setOrigin(&I, getCleanOrigin()); 3788 } 3789 }; 3790 3791 /// AMD64-specific implementation of VarArgHelper. 3792 struct VarArgAMD64Helper : public VarArgHelper { 3793 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3794 // See a comment in visitCallBase for more details. 3795 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3796 static const unsigned AMD64FpEndOffsetSSE = 176; 3797 // If SSE is disabled, fp_offset in va_list is zero. 3798 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3799 3800 unsigned AMD64FpEndOffset; 3801 Function &F; 3802 MemorySanitizer &MS; 3803 MemorySanitizerVisitor &MSV; 3804 Value *VAArgTLSCopy = nullptr; 3805 Value *VAArgTLSOriginCopy = nullptr; 3806 Value *VAArgOverflowSize = nullptr; 3807 3808 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3809 3810 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3811 3812 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3813 MemorySanitizerVisitor &MSV) 3814 : F(F), MS(MS), MSV(MSV) { 3815 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3816 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3817 if (Attr.isStringAttribute() && 3818 (Attr.getKindAsString() == "target-features")) { 3819 if (Attr.getValueAsString().contains("-sse")) 3820 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3821 break; 3822 } 3823 } 3824 } 3825 3826 ArgKind classifyArgument(Value* arg) { 3827 // A very rough approximation of X86_64 argument classification rules. 3828 Type *T = arg->getType(); 3829 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3830 return AK_FloatingPoint; 3831 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3832 return AK_GeneralPurpose; 3833 if (T->isPointerTy()) 3834 return AK_GeneralPurpose; 3835 return AK_Memory; 3836 } 3837 3838 // For VarArg functions, store the argument shadow in an ABI-specific format 3839 // that corresponds to va_list layout. 3840 // We do this because Clang lowers va_arg in the frontend, and this pass 3841 // only sees the low level code that deals with va_list internals. 3842 // A much easier alternative (provided that Clang emits va_arg instructions) 3843 // would have been to associate each live instance of va_list with a copy of 3844 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3845 // order. 3846 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 3847 unsigned GpOffset = 0; 3848 unsigned FpOffset = AMD64GpEndOffset; 3849 unsigned OverflowOffset = AMD64FpEndOffset; 3850 const DataLayout &DL = F.getParent()->getDataLayout(); 3851 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3852 ++ArgIt) { 3853 Value *A = *ArgIt; 3854 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 3855 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 3856 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 3857 if (IsByVal) { 3858 // ByVal arguments always go to the overflow area. 3859 // Fixed arguments passed through the overflow area will be stepped 3860 // over by va_start, so don't count them towards the offset. 3861 if (IsFixed) 3862 continue; 3863 assert(A->getType()->isPointerTy()); 3864 Type *RealTy = CB.getParamByValType(ArgNo); 3865 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3866 Value *ShadowBase = getShadowPtrForVAArgument( 3867 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3868 Value *OriginBase = nullptr; 3869 if (MS.TrackOrigins) 3870 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3871 OverflowOffset += alignTo(ArgSize, 8); 3872 if (!ShadowBase) 3873 continue; 3874 Value *ShadowPtr, *OriginPtr; 3875 std::tie(ShadowPtr, OriginPtr) = 3876 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3877 /*isStore*/ false); 3878 3879 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3880 kShadowTLSAlignment, ArgSize); 3881 if (MS.TrackOrigins) 3882 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3883 kShadowTLSAlignment, ArgSize); 3884 } else { 3885 ArgKind AK = classifyArgument(A); 3886 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3887 AK = AK_Memory; 3888 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3889 AK = AK_Memory; 3890 Value *ShadowBase, *OriginBase = nullptr; 3891 switch (AK) { 3892 case AK_GeneralPurpose: 3893 ShadowBase = 3894 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3895 if (MS.TrackOrigins) 3896 OriginBase = 3897 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3898 GpOffset += 8; 3899 break; 3900 case AK_FloatingPoint: 3901 ShadowBase = 3902 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3903 if (MS.TrackOrigins) 3904 OriginBase = 3905 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3906 FpOffset += 16; 3907 break; 3908 case AK_Memory: 3909 if (IsFixed) 3910 continue; 3911 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3912 ShadowBase = 3913 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3914 if (MS.TrackOrigins) 3915 OriginBase = 3916 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3917 OverflowOffset += alignTo(ArgSize, 8); 3918 } 3919 // Take fixed arguments into account for GpOffset and FpOffset, 3920 // but don't actually store shadows for them. 3921 // TODO(glider): don't call get*PtrForVAArgument() for them. 3922 if (IsFixed) 3923 continue; 3924 if (!ShadowBase) 3925 continue; 3926 Value *Shadow = MSV.getShadow(A); 3927 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3928 if (MS.TrackOrigins) { 3929 Value *Origin = MSV.getOrigin(A); 3930 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3931 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3932 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3933 } 3934 } 3935 } 3936 Constant *OverflowSize = 3937 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3938 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3939 } 3940 3941 /// Compute the shadow address for a given va_arg. 3942 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3943 unsigned ArgOffset, unsigned ArgSize) { 3944 // Make sure we don't overflow __msan_va_arg_tls. 3945 if (ArgOffset + ArgSize > kParamTLSSize) 3946 return nullptr; 3947 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3948 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3949 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3950 "_msarg_va_s"); 3951 } 3952 3953 /// Compute the origin address for a given va_arg. 3954 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3955 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3956 // getOriginPtrForVAArgument() is always called after 3957 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3958 // overflow. 3959 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3960 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3961 "_msarg_va_o"); 3962 } 3963 3964 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3965 IRBuilder<> IRB(&I); 3966 Value *VAListTag = I.getArgOperand(0); 3967 Value *ShadowPtr, *OriginPtr; 3968 const Align Alignment = Align(8); 3969 std::tie(ShadowPtr, OriginPtr) = 3970 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3971 /*isStore*/ true); 3972 3973 // Unpoison the whole __va_list_tag. 3974 // FIXME: magic ABI constants. 3975 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3976 /* size */ 24, Alignment, false); 3977 // We shouldn't need to zero out the origins, as they're only checked for 3978 // nonzero shadow. 3979 } 3980 3981 void visitVAStartInst(VAStartInst &I) override { 3982 if (F.getCallingConv() == CallingConv::Win64) 3983 return; 3984 VAStartInstrumentationList.push_back(&I); 3985 unpoisonVAListTagForInst(I); 3986 } 3987 3988 void visitVACopyInst(VACopyInst &I) override { 3989 if (F.getCallingConv() == CallingConv::Win64) return; 3990 unpoisonVAListTagForInst(I); 3991 } 3992 3993 void finalizeInstrumentation() override { 3994 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3995 "finalizeInstrumentation called twice"); 3996 if (!VAStartInstrumentationList.empty()) { 3997 // If there is a va_start in this function, make a backup copy of 3998 // va_arg_tls somewhere in the function entry block. 3999 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4000 VAArgOverflowSize = 4001 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4002 Value *CopySize = 4003 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4004 VAArgOverflowSize); 4005 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4006 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4007 if (MS.TrackOrigins) { 4008 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4009 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4010 Align(8), CopySize); 4011 } 4012 } 4013 4014 // Instrument va_start. 4015 // Copy va_list shadow from the backup copy of the TLS contents. 4016 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4017 CallInst *OrigInst = VAStartInstrumentationList[i]; 4018 IRBuilder<> IRB(OrigInst->getNextNode()); 4019 Value *VAListTag = OrigInst->getArgOperand(0); 4020 4021 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4022 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4023 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4024 ConstantInt::get(MS.IntptrTy, 16)), 4025 PointerType::get(RegSaveAreaPtrTy, 0)); 4026 Value *RegSaveAreaPtr = 4027 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4028 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4029 const Align Alignment = Align(16); 4030 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4031 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4032 Alignment, /*isStore*/ true); 4033 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4034 AMD64FpEndOffset); 4035 if (MS.TrackOrigins) 4036 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4037 Alignment, AMD64FpEndOffset); 4038 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4039 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4040 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4041 ConstantInt::get(MS.IntptrTy, 8)), 4042 PointerType::get(OverflowArgAreaPtrTy, 0)); 4043 Value *OverflowArgAreaPtr = 4044 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4045 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4046 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4047 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4048 Alignment, /*isStore*/ true); 4049 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4050 AMD64FpEndOffset); 4051 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4052 VAArgOverflowSize); 4053 if (MS.TrackOrigins) { 4054 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4055 AMD64FpEndOffset); 4056 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4057 VAArgOverflowSize); 4058 } 4059 } 4060 } 4061 }; 4062 4063 /// MIPS64-specific implementation of VarArgHelper. 4064 struct VarArgMIPS64Helper : public VarArgHelper { 4065 Function &F; 4066 MemorySanitizer &MS; 4067 MemorySanitizerVisitor &MSV; 4068 Value *VAArgTLSCopy = nullptr; 4069 Value *VAArgSize = nullptr; 4070 4071 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4072 4073 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4074 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4075 4076 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4077 unsigned VAArgOffset = 0; 4078 const DataLayout &DL = F.getParent()->getDataLayout(); 4079 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4080 End = CB.arg_end(); 4081 ArgIt != End; ++ArgIt) { 4082 Triple TargetTriple(F.getParent()->getTargetTriple()); 4083 Value *A = *ArgIt; 4084 Value *Base; 4085 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4086 if (TargetTriple.getArch() == Triple::mips64) { 4087 // Adjusting the shadow for argument with size < 8 to match the placement 4088 // of bits in big endian system 4089 if (ArgSize < 8) 4090 VAArgOffset += (8 - ArgSize); 4091 } 4092 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4093 VAArgOffset += ArgSize; 4094 VAArgOffset = alignTo(VAArgOffset, 8); 4095 if (!Base) 4096 continue; 4097 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4098 } 4099 4100 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4101 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4102 // a new class member i.e. it is the total size of all VarArgs. 4103 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4104 } 4105 4106 /// Compute the shadow address for a given va_arg. 4107 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4108 unsigned ArgOffset, unsigned ArgSize) { 4109 // Make sure we don't overflow __msan_va_arg_tls. 4110 if (ArgOffset + ArgSize > kParamTLSSize) 4111 return nullptr; 4112 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4113 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4114 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4115 "_msarg"); 4116 } 4117 4118 void visitVAStartInst(VAStartInst &I) override { 4119 IRBuilder<> IRB(&I); 4120 VAStartInstrumentationList.push_back(&I); 4121 Value *VAListTag = I.getArgOperand(0); 4122 Value *ShadowPtr, *OriginPtr; 4123 const Align Alignment = Align(8); 4124 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4125 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4126 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4127 /* size */ 8, Alignment, false); 4128 } 4129 4130 void visitVACopyInst(VACopyInst &I) override { 4131 IRBuilder<> IRB(&I); 4132 VAStartInstrumentationList.push_back(&I); 4133 Value *VAListTag = I.getArgOperand(0); 4134 Value *ShadowPtr, *OriginPtr; 4135 const Align Alignment = Align(8); 4136 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4137 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4138 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4139 /* size */ 8, Alignment, false); 4140 } 4141 4142 void finalizeInstrumentation() override { 4143 assert(!VAArgSize && !VAArgTLSCopy && 4144 "finalizeInstrumentation called twice"); 4145 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4146 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4147 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4148 VAArgSize); 4149 4150 if (!VAStartInstrumentationList.empty()) { 4151 // If there is a va_start in this function, make a backup copy of 4152 // va_arg_tls somewhere in the function entry block. 4153 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4154 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4155 } 4156 4157 // Instrument va_start. 4158 // Copy va_list shadow from the backup copy of the TLS contents. 4159 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4160 CallInst *OrigInst = VAStartInstrumentationList[i]; 4161 IRBuilder<> IRB(OrigInst->getNextNode()); 4162 Value *VAListTag = OrigInst->getArgOperand(0); 4163 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4164 Value *RegSaveAreaPtrPtr = 4165 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4166 PointerType::get(RegSaveAreaPtrTy, 0)); 4167 Value *RegSaveAreaPtr = 4168 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4169 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4170 const Align Alignment = Align(8); 4171 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4172 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4173 Alignment, /*isStore*/ true); 4174 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4175 CopySize); 4176 } 4177 } 4178 }; 4179 4180 /// AArch64-specific implementation of VarArgHelper. 4181 struct VarArgAArch64Helper : public VarArgHelper { 4182 static const unsigned kAArch64GrArgSize = 64; 4183 static const unsigned kAArch64VrArgSize = 128; 4184 4185 static const unsigned AArch64GrBegOffset = 0; 4186 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4187 // Make VR space aligned to 16 bytes. 4188 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4189 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4190 + kAArch64VrArgSize; 4191 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4192 4193 Function &F; 4194 MemorySanitizer &MS; 4195 MemorySanitizerVisitor &MSV; 4196 Value *VAArgTLSCopy = nullptr; 4197 Value *VAArgOverflowSize = nullptr; 4198 4199 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4200 4201 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4202 4203 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4204 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4205 4206 ArgKind classifyArgument(Value* arg) { 4207 Type *T = arg->getType(); 4208 if (T->isFPOrFPVectorTy()) 4209 return AK_FloatingPoint; 4210 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4211 || (T->isPointerTy())) 4212 return AK_GeneralPurpose; 4213 return AK_Memory; 4214 } 4215 4216 // The instrumentation stores the argument shadow in a non ABI-specific 4217 // format because it does not know which argument is named (since Clang, 4218 // like x86_64 case, lowers the va_args in the frontend and this pass only 4219 // sees the low level code that deals with va_list internals). 4220 // The first seven GR registers are saved in the first 56 bytes of the 4221 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4222 // the remaining arguments. 4223 // Using constant offset within the va_arg TLS array allows fast copy 4224 // in the finalize instrumentation. 4225 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4226 unsigned GrOffset = AArch64GrBegOffset; 4227 unsigned VrOffset = AArch64VrBegOffset; 4228 unsigned OverflowOffset = AArch64VAEndOffset; 4229 4230 const DataLayout &DL = F.getParent()->getDataLayout(); 4231 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4232 ++ArgIt) { 4233 Value *A = *ArgIt; 4234 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4235 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4236 ArgKind AK = classifyArgument(A); 4237 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4238 AK = AK_Memory; 4239 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4240 AK = AK_Memory; 4241 Value *Base; 4242 switch (AK) { 4243 case AK_GeneralPurpose: 4244 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4245 GrOffset += 8; 4246 break; 4247 case AK_FloatingPoint: 4248 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4249 VrOffset += 16; 4250 break; 4251 case AK_Memory: 4252 // Don't count fixed arguments in the overflow area - va_start will 4253 // skip right over them. 4254 if (IsFixed) 4255 continue; 4256 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4257 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4258 alignTo(ArgSize, 8)); 4259 OverflowOffset += alignTo(ArgSize, 8); 4260 break; 4261 } 4262 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4263 // bother to actually store a shadow. 4264 if (IsFixed) 4265 continue; 4266 if (!Base) 4267 continue; 4268 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4269 } 4270 Constant *OverflowSize = 4271 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4272 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4273 } 4274 4275 /// Compute the shadow address for a given va_arg. 4276 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4277 unsigned ArgOffset, unsigned ArgSize) { 4278 // Make sure we don't overflow __msan_va_arg_tls. 4279 if (ArgOffset + ArgSize > kParamTLSSize) 4280 return nullptr; 4281 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4282 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4283 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4284 "_msarg"); 4285 } 4286 4287 void visitVAStartInst(VAStartInst &I) override { 4288 IRBuilder<> IRB(&I); 4289 VAStartInstrumentationList.push_back(&I); 4290 Value *VAListTag = I.getArgOperand(0); 4291 Value *ShadowPtr, *OriginPtr; 4292 const Align Alignment = Align(8); 4293 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4294 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4295 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4296 /* size */ 32, Alignment, false); 4297 } 4298 4299 void visitVACopyInst(VACopyInst &I) override { 4300 IRBuilder<> IRB(&I); 4301 VAStartInstrumentationList.push_back(&I); 4302 Value *VAListTag = I.getArgOperand(0); 4303 Value *ShadowPtr, *OriginPtr; 4304 const Align Alignment = Align(8); 4305 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4306 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4307 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4308 /* size */ 32, Alignment, false); 4309 } 4310 4311 // Retrieve a va_list field of 'void*' size. 4312 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4313 Value *SaveAreaPtrPtr = 4314 IRB.CreateIntToPtr( 4315 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4316 ConstantInt::get(MS.IntptrTy, offset)), 4317 Type::getInt64PtrTy(*MS.C)); 4318 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4319 } 4320 4321 // Retrieve a va_list field of 'int' size. 4322 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4323 Value *SaveAreaPtr = 4324 IRB.CreateIntToPtr( 4325 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4326 ConstantInt::get(MS.IntptrTy, offset)), 4327 Type::getInt32PtrTy(*MS.C)); 4328 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4329 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4330 } 4331 4332 void finalizeInstrumentation() override { 4333 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4334 "finalizeInstrumentation called twice"); 4335 if (!VAStartInstrumentationList.empty()) { 4336 // If there is a va_start in this function, make a backup copy of 4337 // va_arg_tls somewhere in the function entry block. 4338 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4339 VAArgOverflowSize = 4340 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4341 Value *CopySize = 4342 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4343 VAArgOverflowSize); 4344 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4345 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4346 } 4347 4348 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4349 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4350 4351 // Instrument va_start, copy va_list shadow from the backup copy of 4352 // the TLS contents. 4353 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4354 CallInst *OrigInst = VAStartInstrumentationList[i]; 4355 IRBuilder<> IRB(OrigInst->getNextNode()); 4356 4357 Value *VAListTag = OrigInst->getArgOperand(0); 4358 4359 // The variadic ABI for AArch64 creates two areas to save the incoming 4360 // argument registers (one for 64-bit general register xn-x7 and another 4361 // for 128-bit FP/SIMD vn-v7). 4362 // We need then to propagate the shadow arguments on both regions 4363 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4364 // The remaining arguments are saved on shadow for 'va::stack'. 4365 // One caveat is it requires only to propagate the non-named arguments, 4366 // however on the call site instrumentation 'all' the arguments are 4367 // saved. So to copy the shadow values from the va_arg TLS array 4368 // we need to adjust the offset for both GR and VR fields based on 4369 // the __{gr,vr}_offs value (since they are stores based on incoming 4370 // named arguments). 4371 4372 // Read the stack pointer from the va_list. 4373 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4374 4375 // Read both the __gr_top and __gr_off and add them up. 4376 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4377 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4378 4379 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4380 4381 // Read both the __vr_top and __vr_off and add them up. 4382 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4383 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4384 4385 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4386 4387 // It does not know how many named arguments is being used and, on the 4388 // callsite all the arguments were saved. Since __gr_off is defined as 4389 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4390 // argument by ignoring the bytes of shadow from named arguments. 4391 Value *GrRegSaveAreaShadowPtrOff = 4392 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4393 4394 Value *GrRegSaveAreaShadowPtr = 4395 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4396 Align(8), /*isStore*/ true) 4397 .first; 4398 4399 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4400 GrRegSaveAreaShadowPtrOff); 4401 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4402 4403 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4404 GrCopySize); 4405 4406 // Again, but for FP/SIMD values. 4407 Value *VrRegSaveAreaShadowPtrOff = 4408 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4409 4410 Value *VrRegSaveAreaShadowPtr = 4411 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4412 Align(8), /*isStore*/ true) 4413 .first; 4414 4415 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4416 IRB.getInt8Ty(), 4417 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4418 IRB.getInt32(AArch64VrBegOffset)), 4419 VrRegSaveAreaShadowPtrOff); 4420 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4421 4422 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4423 VrCopySize); 4424 4425 // And finally for remaining arguments. 4426 Value *StackSaveAreaShadowPtr = 4427 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4428 Align(16), /*isStore*/ true) 4429 .first; 4430 4431 Value *StackSrcPtr = 4432 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4433 IRB.getInt32(AArch64VAEndOffset)); 4434 4435 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4436 Align(16), VAArgOverflowSize); 4437 } 4438 } 4439 }; 4440 4441 /// PowerPC64-specific implementation of VarArgHelper. 4442 struct VarArgPowerPC64Helper : public VarArgHelper { 4443 Function &F; 4444 MemorySanitizer &MS; 4445 MemorySanitizerVisitor &MSV; 4446 Value *VAArgTLSCopy = nullptr; 4447 Value *VAArgSize = nullptr; 4448 4449 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4450 4451 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4452 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4453 4454 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4455 // For PowerPC, we need to deal with alignment of stack arguments - 4456 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4457 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4458 // and QPX vectors are aligned to 32 bytes. For that reason, we 4459 // compute current offset from stack pointer (which is always properly 4460 // aligned), and offset for the first vararg, then subtract them. 4461 unsigned VAArgBase; 4462 Triple TargetTriple(F.getParent()->getTargetTriple()); 4463 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4464 // and 32 bytes for ABIv2. This is usually determined by target 4465 // endianness, but in theory could be overridden by function attribute. 4466 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4467 if (TargetTriple.getArch() == Triple::ppc64) 4468 VAArgBase = 48; 4469 else 4470 VAArgBase = 32; 4471 unsigned VAArgOffset = VAArgBase; 4472 const DataLayout &DL = F.getParent()->getDataLayout(); 4473 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4474 ++ArgIt) { 4475 Value *A = *ArgIt; 4476 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4477 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4478 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4479 if (IsByVal) { 4480 assert(A->getType()->isPointerTy()); 4481 Type *RealTy = CB.getParamByValType(ArgNo); 4482 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4483 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4484 if (!ArgAlign || *ArgAlign < Align(8)) 4485 ArgAlign = Align(8); 4486 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4487 if (!IsFixed) { 4488 Value *Base = getShadowPtrForVAArgument( 4489 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4490 if (Base) { 4491 Value *AShadowPtr, *AOriginPtr; 4492 std::tie(AShadowPtr, AOriginPtr) = 4493 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4494 kShadowTLSAlignment, /*isStore*/ false); 4495 4496 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4497 kShadowTLSAlignment, ArgSize); 4498 } 4499 } 4500 VAArgOffset += alignTo(ArgSize, 8); 4501 } else { 4502 Value *Base; 4503 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4504 uint64_t ArgAlign = 8; 4505 if (A->getType()->isArrayTy()) { 4506 // Arrays are aligned to element size, except for long double 4507 // arrays, which are aligned to 8 bytes. 4508 Type *ElementTy = A->getType()->getArrayElementType(); 4509 if (!ElementTy->isPPC_FP128Ty()) 4510 ArgAlign = DL.getTypeAllocSize(ElementTy); 4511 } else if (A->getType()->isVectorTy()) { 4512 // Vectors are naturally aligned. 4513 ArgAlign = DL.getTypeAllocSize(A->getType()); 4514 } 4515 if (ArgAlign < 8) 4516 ArgAlign = 8; 4517 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4518 if (DL.isBigEndian()) { 4519 // Adjusting the shadow for argument with size < 8 to match the placement 4520 // of bits in big endian system 4521 if (ArgSize < 8) 4522 VAArgOffset += (8 - ArgSize); 4523 } 4524 if (!IsFixed) { 4525 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4526 VAArgOffset - VAArgBase, ArgSize); 4527 if (Base) 4528 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4529 } 4530 VAArgOffset += ArgSize; 4531 VAArgOffset = alignTo(VAArgOffset, 8); 4532 } 4533 if (IsFixed) 4534 VAArgBase = VAArgOffset; 4535 } 4536 4537 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4538 VAArgOffset - VAArgBase); 4539 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4540 // a new class member i.e. it is the total size of all VarArgs. 4541 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4542 } 4543 4544 /// Compute the shadow address for a given va_arg. 4545 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4546 unsigned ArgOffset, unsigned ArgSize) { 4547 // Make sure we don't overflow __msan_va_arg_tls. 4548 if (ArgOffset + ArgSize > kParamTLSSize) 4549 return nullptr; 4550 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4551 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4552 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4553 "_msarg"); 4554 } 4555 4556 void visitVAStartInst(VAStartInst &I) override { 4557 IRBuilder<> IRB(&I); 4558 VAStartInstrumentationList.push_back(&I); 4559 Value *VAListTag = I.getArgOperand(0); 4560 Value *ShadowPtr, *OriginPtr; 4561 const Align Alignment = Align(8); 4562 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4563 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4564 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4565 /* size */ 8, Alignment, false); 4566 } 4567 4568 void visitVACopyInst(VACopyInst &I) override { 4569 IRBuilder<> IRB(&I); 4570 Value *VAListTag = I.getArgOperand(0); 4571 Value *ShadowPtr, *OriginPtr; 4572 const Align Alignment = Align(8); 4573 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4574 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4575 // Unpoison the whole __va_list_tag. 4576 // FIXME: magic ABI constants. 4577 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4578 /* size */ 8, Alignment, false); 4579 } 4580 4581 void finalizeInstrumentation() override { 4582 assert(!VAArgSize && !VAArgTLSCopy && 4583 "finalizeInstrumentation called twice"); 4584 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4585 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4586 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4587 VAArgSize); 4588 4589 if (!VAStartInstrumentationList.empty()) { 4590 // If there is a va_start in this function, make a backup copy of 4591 // va_arg_tls somewhere in the function entry block. 4592 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4593 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4594 } 4595 4596 // Instrument va_start. 4597 // Copy va_list shadow from the backup copy of the TLS contents. 4598 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4599 CallInst *OrigInst = VAStartInstrumentationList[i]; 4600 IRBuilder<> IRB(OrigInst->getNextNode()); 4601 Value *VAListTag = OrigInst->getArgOperand(0); 4602 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4603 Value *RegSaveAreaPtrPtr = 4604 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4605 PointerType::get(RegSaveAreaPtrTy, 0)); 4606 Value *RegSaveAreaPtr = 4607 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4608 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4609 const Align Alignment = Align(8); 4610 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4611 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4612 Alignment, /*isStore*/ true); 4613 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4614 CopySize); 4615 } 4616 } 4617 }; 4618 4619 /// SystemZ-specific implementation of VarArgHelper. 4620 struct VarArgSystemZHelper : public VarArgHelper { 4621 static const unsigned SystemZGpOffset = 16; 4622 static const unsigned SystemZGpEndOffset = 56; 4623 static const unsigned SystemZFpOffset = 128; 4624 static const unsigned SystemZFpEndOffset = 160; 4625 static const unsigned SystemZMaxVrArgs = 8; 4626 static const unsigned SystemZRegSaveAreaSize = 160; 4627 static const unsigned SystemZOverflowOffset = 160; 4628 static const unsigned SystemZVAListTagSize = 32; 4629 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4630 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4631 4632 Function &F; 4633 MemorySanitizer &MS; 4634 MemorySanitizerVisitor &MSV; 4635 Value *VAArgTLSCopy = nullptr; 4636 Value *VAArgTLSOriginCopy = nullptr; 4637 Value *VAArgOverflowSize = nullptr; 4638 4639 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4640 4641 enum class ArgKind { 4642 GeneralPurpose, 4643 FloatingPoint, 4644 Vector, 4645 Memory, 4646 Indirect, 4647 }; 4648 4649 enum class ShadowExtension { None, Zero, Sign }; 4650 4651 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4652 MemorySanitizerVisitor &MSV) 4653 : F(F), MS(MS), MSV(MSV) {} 4654 4655 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4656 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4657 // only a few possibilities of what it can be. In particular, enums, single 4658 // element structs and large types have already been taken care of. 4659 4660 // Some i128 and fp128 arguments are converted to pointers only in the 4661 // back end. 4662 if (T->isIntegerTy(128) || T->isFP128Ty()) 4663 return ArgKind::Indirect; 4664 if (T->isFloatingPointTy()) 4665 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4666 if (T->isIntegerTy() || T->isPointerTy()) 4667 return ArgKind::GeneralPurpose; 4668 if (T->isVectorTy()) 4669 return ArgKind::Vector; 4670 return ArgKind::Memory; 4671 } 4672 4673 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4674 // ABI says: "One of the simple integer types no more than 64 bits wide. 4675 // ... If such an argument is shorter than 64 bits, replace it by a full 4676 // 64-bit integer representing the same number, using sign or zero 4677 // extension". Shadow for an integer argument has the same type as the 4678 // argument itself, so it can be sign or zero extended as well. 4679 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4680 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4681 if (ZExt) { 4682 assert(!SExt); 4683 return ShadowExtension::Zero; 4684 } 4685 if (SExt) { 4686 assert(!ZExt); 4687 return ShadowExtension::Sign; 4688 } 4689 return ShadowExtension::None; 4690 } 4691 4692 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4693 bool IsSoftFloatABI = CB.getCalledFunction() 4694 ->getFnAttribute("use-soft-float") 4695 .getValueAsString() == "true"; 4696 unsigned GpOffset = SystemZGpOffset; 4697 unsigned FpOffset = SystemZFpOffset; 4698 unsigned VrIndex = 0; 4699 unsigned OverflowOffset = SystemZOverflowOffset; 4700 const DataLayout &DL = F.getParent()->getDataLayout(); 4701 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4702 ++ArgIt) { 4703 Value *A = *ArgIt; 4704 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4705 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4706 // SystemZABIInfo does not produce ByVal parameters. 4707 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 4708 Type *T = A->getType(); 4709 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 4710 if (AK == ArgKind::Indirect) { 4711 T = PointerType::get(T, 0); 4712 AK = ArgKind::GeneralPurpose; 4713 } 4714 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 4715 AK = ArgKind::Memory; 4716 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 4717 AK = ArgKind::Memory; 4718 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 4719 AK = ArgKind::Memory; 4720 Value *ShadowBase = nullptr; 4721 Value *OriginBase = nullptr; 4722 ShadowExtension SE = ShadowExtension::None; 4723 switch (AK) { 4724 case ArgKind::GeneralPurpose: { 4725 // Always keep track of GpOffset, but store shadow only for varargs. 4726 uint64_t ArgSize = 8; 4727 if (GpOffset + ArgSize <= kParamTLSSize) { 4728 if (!IsFixed) { 4729 SE = getShadowExtension(CB, ArgNo); 4730 uint64_t GapSize = 0; 4731 if (SE == ShadowExtension::None) { 4732 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4733 assert(ArgAllocSize <= ArgSize); 4734 GapSize = ArgSize - ArgAllocSize; 4735 } 4736 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 4737 if (MS.TrackOrigins) 4738 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 4739 } 4740 GpOffset += ArgSize; 4741 } else { 4742 GpOffset = kParamTLSSize; 4743 } 4744 break; 4745 } 4746 case ArgKind::FloatingPoint: { 4747 // Always keep track of FpOffset, but store shadow only for varargs. 4748 uint64_t ArgSize = 8; 4749 if (FpOffset + ArgSize <= kParamTLSSize) { 4750 if (!IsFixed) { 4751 // PoP says: "A short floating-point datum requires only the 4752 // left-most 32 bit positions of a floating-point register". 4753 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 4754 // don't extend shadow and don't mind the gap. 4755 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 4756 if (MS.TrackOrigins) 4757 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4758 } 4759 FpOffset += ArgSize; 4760 } else { 4761 FpOffset = kParamTLSSize; 4762 } 4763 break; 4764 } 4765 case ArgKind::Vector: { 4766 // Keep track of VrIndex. No need to store shadow, since vector varargs 4767 // go through AK_Memory. 4768 assert(IsFixed); 4769 VrIndex++; 4770 break; 4771 } 4772 case ArgKind::Memory: { 4773 // Keep track of OverflowOffset and store shadow only for varargs. 4774 // Ignore fixed args, since we need to copy only the vararg portion of 4775 // the overflow area shadow. 4776 if (!IsFixed) { 4777 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4778 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 4779 if (OverflowOffset + ArgSize <= kParamTLSSize) { 4780 SE = getShadowExtension(CB, ArgNo); 4781 uint64_t GapSize = 4782 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 4783 ShadowBase = 4784 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 4785 if (MS.TrackOrigins) 4786 OriginBase = 4787 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 4788 OverflowOffset += ArgSize; 4789 } else { 4790 OverflowOffset = kParamTLSSize; 4791 } 4792 } 4793 break; 4794 } 4795 case ArgKind::Indirect: 4796 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 4797 } 4798 if (ShadowBase == nullptr) 4799 continue; 4800 Value *Shadow = MSV.getShadow(A); 4801 if (SE != ShadowExtension::None) 4802 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 4803 /*Signed*/ SE == ShadowExtension::Sign); 4804 ShadowBase = IRB.CreateIntToPtr( 4805 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 4806 IRB.CreateStore(Shadow, ShadowBase); 4807 if (MS.TrackOrigins) { 4808 Value *Origin = MSV.getOrigin(A); 4809 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4810 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4811 kMinOriginAlignment); 4812 } 4813 } 4814 Constant *OverflowSize = ConstantInt::get( 4815 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 4816 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4817 } 4818 4819 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 4820 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4821 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4822 } 4823 4824 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 4825 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4826 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4827 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4828 "_msarg_va_o"); 4829 } 4830 4831 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4832 IRBuilder<> IRB(&I); 4833 Value *VAListTag = I.getArgOperand(0); 4834 Value *ShadowPtr, *OriginPtr; 4835 const Align Alignment = Align(8); 4836 std::tie(ShadowPtr, OriginPtr) = 4837 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4838 /*isStore*/ true); 4839 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4840 SystemZVAListTagSize, Alignment, false); 4841 } 4842 4843 void visitVAStartInst(VAStartInst &I) override { 4844 VAStartInstrumentationList.push_back(&I); 4845 unpoisonVAListTagForInst(I); 4846 } 4847 4848 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 4849 4850 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 4851 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4852 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4853 IRB.CreateAdd( 4854 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4855 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 4856 PointerType::get(RegSaveAreaPtrTy, 0)); 4857 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4858 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4859 const Align Alignment = Align(8); 4860 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4861 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 4862 /*isStore*/ true); 4863 // TODO(iii): copy only fragments filled by visitCallBase() 4864 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4865 SystemZRegSaveAreaSize); 4866 if (MS.TrackOrigins) 4867 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4868 Alignment, SystemZRegSaveAreaSize); 4869 } 4870 4871 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 4872 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4873 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4874 IRB.CreateAdd( 4875 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4876 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 4877 PointerType::get(OverflowArgAreaPtrTy, 0)); 4878 Value *OverflowArgAreaPtr = 4879 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4880 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4881 const Align Alignment = Align(8); 4882 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4883 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4884 Alignment, /*isStore*/ true); 4885 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4886 SystemZOverflowOffset); 4887 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4888 VAArgOverflowSize); 4889 if (MS.TrackOrigins) { 4890 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4891 SystemZOverflowOffset); 4892 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4893 VAArgOverflowSize); 4894 } 4895 } 4896 4897 void finalizeInstrumentation() override { 4898 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4899 "finalizeInstrumentation called twice"); 4900 if (!VAStartInstrumentationList.empty()) { 4901 // If there is a va_start in this function, make a backup copy of 4902 // va_arg_tls somewhere in the function entry block. 4903 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4904 VAArgOverflowSize = 4905 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4906 Value *CopySize = 4907 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 4908 VAArgOverflowSize); 4909 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4910 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4911 if (MS.TrackOrigins) { 4912 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4913 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4914 Align(8), CopySize); 4915 } 4916 } 4917 4918 // Instrument va_start. 4919 // Copy va_list shadow from the backup copy of the TLS contents. 4920 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 4921 VaStartNo < VaStartNum; VaStartNo++) { 4922 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 4923 IRBuilder<> IRB(OrigInst->getNextNode()); 4924 Value *VAListTag = OrigInst->getArgOperand(0); 4925 copyRegSaveArea(IRB, VAListTag); 4926 copyOverflowArea(IRB, VAListTag); 4927 } 4928 } 4929 }; 4930 4931 /// A no-op implementation of VarArgHelper. 4932 struct VarArgNoOpHelper : public VarArgHelper { 4933 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4934 MemorySanitizerVisitor &MSV) {} 4935 4936 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 4937 4938 void visitVAStartInst(VAStartInst &I) override {} 4939 4940 void visitVACopyInst(VACopyInst &I) override {} 4941 4942 void finalizeInstrumentation() override {} 4943 }; 4944 4945 } // end anonymous namespace 4946 4947 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4948 MemorySanitizerVisitor &Visitor) { 4949 // VarArg handling is only implemented on AMD64. False positives are possible 4950 // on other platforms. 4951 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4952 if (TargetTriple.getArch() == Triple::x86_64) 4953 return new VarArgAMD64Helper(Func, Msan, Visitor); 4954 else if (TargetTriple.isMIPS64()) 4955 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4956 else if (TargetTriple.getArch() == Triple::aarch64) 4957 return new VarArgAArch64Helper(Func, Msan, Visitor); 4958 else if (TargetTriple.getArch() == Triple::ppc64 || 4959 TargetTriple.getArch() == Triple::ppc64le) 4960 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4961 else if (TargetTriple.getArch() == Triple::systemz) 4962 return new VarArgSystemZHelper(Func, Msan, Visitor); 4963 else 4964 return new VarArgNoOpHelper(Func, Msan, Visitor); 4965 } 4966 4967 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4968 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4969 return false; 4970 4971 MemorySanitizerVisitor Visitor(F, *this, TLI); 4972 4973 // Clear out readonly/readnone attributes. 4974 AttrBuilder B; 4975 B.addAttribute(Attribute::ReadOnly) 4976 .addAttribute(Attribute::ReadNone) 4977 .addAttribute(Attribute::WriteOnly) 4978 .addAttribute(Attribute::ArgMemOnly) 4979 .addAttribute(Attribute::Speculatable); 4980 F.removeAttributes(AttributeList::FunctionIndex, B); 4981 4982 return Visitor.runOnFunction(); 4983 } 4984