1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/Transforms/Instrumentation.h" 95 #include "llvm/ADT/DepthFirstIterator.h" 96 #include "llvm/ADT/SmallString.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/ADT/StringExtras.h" 99 #include "llvm/ADT/Triple.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/Function.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/InstVisitor.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/MDBuilder.h" 108 #include "llvm/IR/Module.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/ValueMap.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ModuleUtils.h" 118 119 using namespace llvm; 120 121 #define DEBUG_TYPE "msan" 122 123 static const unsigned kOriginSize = 4; 124 static const unsigned kMinOriginAlignment = 4; 125 static const unsigned kShadowTLSAlignment = 8; 126 127 // These constants must be kept in sync with the ones in msan.h. 128 static const unsigned kParamTLSSize = 800; 129 static const unsigned kRetvalTLSSize = 800; 130 131 // Accesses sizes are powers of two: 1, 2, 4, 8. 132 static const size_t kNumberOfAccessSizes = 4; 133 134 /// \brief Track origins of uninitialized values. 135 /// 136 /// Adds a section to MemorySanitizer report that points to the allocation 137 /// (stack or heap) the uninitialized bits came from originally. 138 static cl::opt<int> ClTrackOrigins("msan-track-origins", 139 cl::desc("Track origins (allocation sites) of poisoned memory"), 140 cl::Hidden, cl::init(0)); 141 static cl::opt<bool> ClKeepGoing("msan-keep-going", 142 cl::desc("keep going after reporting a UMR"), 143 cl::Hidden, cl::init(false)); 144 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 145 cl::desc("poison uninitialized stack variables"), 146 cl::Hidden, cl::init(true)); 147 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 148 cl::desc("poison uninitialized stack variables with a call"), 149 cl::Hidden, cl::init(false)); 150 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 151 cl::desc("poison uninitialized stack variables with the given patter"), 152 cl::Hidden, cl::init(0xff)); 153 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 154 cl::desc("poison undef temps"), 155 cl::Hidden, cl::init(true)); 156 157 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 158 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 159 cl::Hidden, cl::init(true)); 160 161 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 162 cl::desc("exact handling of relational integer ICmp"), 163 cl::Hidden, cl::init(false)); 164 165 // This flag controls whether we check the shadow of the address 166 // operand of load or store. Such bugs are very rare, since load from 167 // a garbage address typically results in SEGV, but still happen 168 // (e.g. only lower bits of address are garbage, or the access happens 169 // early at program startup where malloc-ed memory is more likely to 170 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 171 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 172 cl::desc("report accesses through a pointer which has poisoned shadow"), 173 cl::Hidden, cl::init(true)); 174 175 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 176 cl::desc("print out instructions with default strict semantics"), 177 cl::Hidden, cl::init(false)); 178 179 static cl::opt<int> ClInstrumentationWithCallThreshold( 180 "msan-instrumentation-with-call-threshold", 181 cl::desc( 182 "If the function being instrumented requires more than " 183 "this number of checks and origin stores, use callbacks instead of " 184 "inline checks (-1 means never use callbacks)."), 185 cl::Hidden, cl::init(3500)); 186 187 // This is an experiment to enable handling of cases where shadow is a non-zero 188 // compile-time constant. For some unexplainable reason they were silently 189 // ignored in the instrumentation. 190 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 191 cl::desc("Insert checks for constant shadow values"), 192 cl::Hidden, cl::init(false)); 193 194 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 195 static const char *const kMsanInitName = "__msan_init"; 196 197 namespace { 198 199 // Memory map parameters used in application-to-shadow address calculation. 200 // Offset = (Addr & ~AndMask) ^ XorMask 201 // Shadow = ShadowBase + Offset 202 // Origin = OriginBase + Offset 203 struct MemoryMapParams { 204 uint64_t AndMask; 205 uint64_t XorMask; 206 uint64_t ShadowBase; 207 uint64_t OriginBase; 208 }; 209 210 struct PlatformMemoryMapParams { 211 const MemoryMapParams *bits32; 212 const MemoryMapParams *bits64; 213 }; 214 215 // i386 Linux 216 static const MemoryMapParams Linux_I386_MemoryMapParams = { 217 0x000080000000, // AndMask 218 0, // XorMask (not used) 219 0, // ShadowBase (not used) 220 0x000040000000, // OriginBase 221 }; 222 223 // x86_64 Linux 224 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 225 0x400000000000, // AndMask 226 0, // XorMask (not used) 227 0, // ShadowBase (not used) 228 0x200000000000, // OriginBase 229 }; 230 231 // mips64 Linux 232 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 233 0x004000000000, // AndMask 234 0, // XorMask (not used) 235 0, // ShadowBase (not used) 236 0x002000000000, // OriginBase 237 }; 238 239 // ppc64 Linux 240 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 241 0x200000000000, // AndMask 242 0x100000000000, // XorMask 243 0x080000000000, // ShadowBase 244 0x1C0000000000, // OriginBase 245 }; 246 247 // i386 FreeBSD 248 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 249 0x000180000000, // AndMask 250 0x000040000000, // XorMask 251 0x000020000000, // ShadowBase 252 0x000700000000, // OriginBase 253 }; 254 255 // x86_64 FreeBSD 256 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 257 0xc00000000000, // AndMask 258 0x200000000000, // XorMask 259 0x100000000000, // ShadowBase 260 0x380000000000, // OriginBase 261 }; 262 263 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 264 &Linux_I386_MemoryMapParams, 265 &Linux_X86_64_MemoryMapParams, 266 }; 267 268 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 269 NULL, 270 &Linux_MIPS64_MemoryMapParams, 271 }; 272 273 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 274 NULL, 275 &Linux_PowerPC64_MemoryMapParams, 276 }; 277 278 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 279 &FreeBSD_I386_MemoryMapParams, 280 &FreeBSD_X86_64_MemoryMapParams, 281 }; 282 283 /// \brief An instrumentation pass implementing detection of uninitialized 284 /// reads. 285 /// 286 /// MemorySanitizer: instrument the code in module to find 287 /// uninitialized reads. 288 class MemorySanitizer : public FunctionPass { 289 public: 290 MemorySanitizer(int TrackOrigins = 0) 291 : FunctionPass(ID), 292 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 293 WarningFn(nullptr) {} 294 const char *getPassName() const override { return "MemorySanitizer"; } 295 bool runOnFunction(Function &F) override; 296 bool doInitialization(Module &M) override; 297 static char ID; // Pass identification, replacement for typeid. 298 299 private: 300 void initializeCallbacks(Module &M); 301 302 /// \brief Track origins (allocation points) of uninitialized values. 303 int TrackOrigins; 304 305 LLVMContext *C; 306 Type *IntptrTy; 307 Type *OriginTy; 308 /// \brief Thread-local shadow storage for function parameters. 309 GlobalVariable *ParamTLS; 310 /// \brief Thread-local origin storage for function parameters. 311 GlobalVariable *ParamOriginTLS; 312 /// \brief Thread-local shadow storage for function return value. 313 GlobalVariable *RetvalTLS; 314 /// \brief Thread-local origin storage for function return value. 315 GlobalVariable *RetvalOriginTLS; 316 /// \brief Thread-local shadow storage for in-register va_arg function 317 /// parameters (x86_64-specific). 318 GlobalVariable *VAArgTLS; 319 /// \brief Thread-local shadow storage for va_arg overflow area 320 /// (x86_64-specific). 321 GlobalVariable *VAArgOverflowSizeTLS; 322 /// \brief Thread-local space used to pass origin value to the UMR reporting 323 /// function. 324 GlobalVariable *OriginTLS; 325 326 /// \brief The run-time callback to print a warning. 327 Value *WarningFn; 328 // These arrays are indexed by log2(AccessSize). 329 Value *MaybeWarningFn[kNumberOfAccessSizes]; 330 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 331 332 /// \brief Run-time helper that generates a new origin value for a stack 333 /// allocation. 334 Value *MsanSetAllocaOrigin4Fn; 335 /// \brief Run-time helper that poisons stack on function entry. 336 Value *MsanPoisonStackFn; 337 /// \brief Run-time helper that records a store (or any event) of an 338 /// uninitialized value and returns an updated origin id encoding this info. 339 Value *MsanChainOriginFn; 340 /// \brief MSan runtime replacements for memmove, memcpy and memset. 341 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 342 343 /// \brief Memory map parameters used in application-to-shadow calculation. 344 const MemoryMapParams *MapParams; 345 346 MDNode *ColdCallWeights; 347 /// \brief Branch weights for origin store. 348 MDNode *OriginStoreWeights; 349 /// \brief An empty volatile inline asm that prevents callback merge. 350 InlineAsm *EmptyAsm; 351 Function *MsanCtorFunction; 352 353 friend struct MemorySanitizerVisitor; 354 friend struct VarArgAMD64Helper; 355 friend struct VarArgMIPS64Helper; 356 }; 357 } // namespace 358 359 char MemorySanitizer::ID = 0; 360 INITIALIZE_PASS(MemorySanitizer, "msan", 361 "MemorySanitizer: detects uninitialized reads.", 362 false, false) 363 364 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 365 return new MemorySanitizer(TrackOrigins); 366 } 367 368 /// \brief Create a non-const global initialized with the given string. 369 /// 370 /// Creates a writable global for Str so that we can pass it to the 371 /// run-time lib. Runtime uses first 4 bytes of the string to store the 372 /// frame ID, so the string needs to be mutable. 373 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 374 StringRef Str) { 375 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 376 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 377 GlobalValue::PrivateLinkage, StrConst, ""); 378 } 379 380 381 /// \brief Insert extern declaration of runtime-provided functions and globals. 382 void MemorySanitizer::initializeCallbacks(Module &M) { 383 // Only do this once. 384 if (WarningFn) 385 return; 386 387 IRBuilder<> IRB(*C); 388 // Create the callback. 389 // FIXME: this function should have "Cold" calling conv, 390 // which is not yet implemented. 391 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 392 : "__msan_warning_noreturn"; 393 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 394 395 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 396 AccessSizeIndex++) { 397 unsigned AccessSize = 1 << AccessSizeIndex; 398 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 399 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 400 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 401 IRB.getInt32Ty(), nullptr); 402 403 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 404 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 405 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 406 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 407 } 408 409 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 410 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 411 IRB.getInt8PtrTy(), IntptrTy, nullptr); 412 MsanPoisonStackFn = 413 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 414 IRB.getInt8PtrTy(), IntptrTy, nullptr); 415 MsanChainOriginFn = M.getOrInsertFunction( 416 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 417 MemmoveFn = M.getOrInsertFunction( 418 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 419 IRB.getInt8PtrTy(), IntptrTy, nullptr); 420 MemcpyFn = M.getOrInsertFunction( 421 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 422 IntptrTy, nullptr); 423 MemsetFn = M.getOrInsertFunction( 424 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 425 IntptrTy, nullptr); 426 427 // Create globals. 428 RetvalTLS = new GlobalVariable( 429 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 430 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 431 GlobalVariable::InitialExecTLSModel); 432 RetvalOriginTLS = new GlobalVariable( 433 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 434 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 435 436 ParamTLS = new GlobalVariable( 437 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 438 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 439 GlobalVariable::InitialExecTLSModel); 440 ParamOriginTLS = new GlobalVariable( 441 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 442 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 443 nullptr, GlobalVariable::InitialExecTLSModel); 444 445 VAArgTLS = new GlobalVariable( 446 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 447 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 448 GlobalVariable::InitialExecTLSModel); 449 VAArgOverflowSizeTLS = new GlobalVariable( 450 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 451 "__msan_va_arg_overflow_size_tls", nullptr, 452 GlobalVariable::InitialExecTLSModel); 453 OriginTLS = new GlobalVariable( 454 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 455 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 456 457 // We insert an empty inline asm after __msan_report* to avoid callback merge. 458 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 459 StringRef(""), StringRef(""), 460 /*hasSideEffects=*/true); 461 } 462 463 /// \brief Module-level initialization. 464 /// 465 /// inserts a call to __msan_init to the module's constructor list. 466 bool MemorySanitizer::doInitialization(Module &M) { 467 auto &DL = M.getDataLayout(); 468 469 Triple TargetTriple(M.getTargetTriple()); 470 switch (TargetTriple.getOS()) { 471 case Triple::FreeBSD: 472 switch (TargetTriple.getArch()) { 473 case Triple::x86_64: 474 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 475 break; 476 case Triple::x86: 477 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 478 break; 479 default: 480 report_fatal_error("unsupported architecture"); 481 } 482 break; 483 case Triple::Linux: 484 switch (TargetTriple.getArch()) { 485 case Triple::x86_64: 486 MapParams = Linux_X86_MemoryMapParams.bits64; 487 break; 488 case Triple::x86: 489 MapParams = Linux_X86_MemoryMapParams.bits32; 490 break; 491 case Triple::mips64: 492 case Triple::mips64el: 493 MapParams = Linux_MIPS_MemoryMapParams.bits64; 494 break; 495 case Triple::ppc64: 496 case Triple::ppc64le: 497 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 498 break; 499 default: 500 report_fatal_error("unsupported architecture"); 501 } 502 break; 503 default: 504 report_fatal_error("unsupported operating system"); 505 } 506 507 C = &(M.getContext()); 508 IRBuilder<> IRB(*C); 509 IntptrTy = IRB.getIntPtrTy(DL); 510 OriginTy = IRB.getInt32Ty(); 511 512 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 513 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 514 515 std::tie(MsanCtorFunction, std::ignore) = 516 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 517 /*InitArgTypes=*/{}, 518 /*InitArgs=*/{}); 519 520 appendToGlobalCtors(M, MsanCtorFunction, 0); 521 522 if (TrackOrigins) 523 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 524 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 525 526 if (ClKeepGoing) 527 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 528 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 529 530 return true; 531 } 532 533 namespace { 534 535 /// \brief A helper class that handles instrumentation of VarArg 536 /// functions on a particular platform. 537 /// 538 /// Implementations are expected to insert the instrumentation 539 /// necessary to propagate argument shadow through VarArg function 540 /// calls. Visit* methods are called during an InstVisitor pass over 541 /// the function, and should avoid creating new basic blocks. A new 542 /// instance of this class is created for each instrumented function. 543 struct VarArgHelper { 544 /// \brief Visit a CallSite. 545 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 546 547 /// \brief Visit a va_start call. 548 virtual void visitVAStartInst(VAStartInst &I) = 0; 549 550 /// \brief Visit a va_copy call. 551 virtual void visitVACopyInst(VACopyInst &I) = 0; 552 553 /// \brief Finalize function instrumentation. 554 /// 555 /// This method is called after visiting all interesting (see above) 556 /// instructions in a function. 557 virtual void finalizeInstrumentation() = 0; 558 559 virtual ~VarArgHelper() {} 560 }; 561 562 struct MemorySanitizerVisitor; 563 564 VarArgHelper* 565 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 566 MemorySanitizerVisitor &Visitor); 567 568 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 569 if (TypeSize <= 8) return 0; 570 return Log2_32_Ceil(TypeSize / 8); 571 } 572 573 /// This class does all the work for a given function. Store and Load 574 /// instructions store and load corresponding shadow and origin 575 /// values. Most instructions propagate shadow from arguments to their 576 /// return values. Certain instructions (most importantly, BranchInst) 577 /// test their argument shadow and print reports (with a runtime call) if it's 578 /// non-zero. 579 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 580 Function &F; 581 MemorySanitizer &MS; 582 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 583 ValueMap<Value*, Value*> ShadowMap, OriginMap; 584 std::unique_ptr<VarArgHelper> VAHelper; 585 586 // The following flags disable parts of MSan instrumentation based on 587 // blacklist contents and command-line options. 588 bool InsertChecks; 589 bool PropagateShadow; 590 bool PoisonStack; 591 bool PoisonUndef; 592 bool CheckReturnValue; 593 594 struct ShadowOriginAndInsertPoint { 595 Value *Shadow; 596 Value *Origin; 597 Instruction *OrigIns; 598 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 599 : Shadow(S), Origin(O), OrigIns(I) { } 600 }; 601 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 602 SmallVector<Instruction*, 16> StoreList; 603 604 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 605 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 606 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 607 InsertChecks = SanitizeFunction; 608 PropagateShadow = SanitizeFunction; 609 PoisonStack = SanitizeFunction && ClPoisonStack; 610 PoisonUndef = SanitizeFunction && ClPoisonUndef; 611 // FIXME: Consider using SpecialCaseList to specify a list of functions that 612 // must always return fully initialized values. For now, we hardcode "main". 613 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 614 615 DEBUG(if (!InsertChecks) 616 dbgs() << "MemorySanitizer is not inserting checks into '" 617 << F.getName() << "'\n"); 618 } 619 620 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 621 if (MS.TrackOrigins <= 1) return V; 622 return IRB.CreateCall(MS.MsanChainOriginFn, V); 623 } 624 625 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 626 const DataLayout &DL = F.getParent()->getDataLayout(); 627 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 628 if (IntptrSize == kOriginSize) return Origin; 629 assert(IntptrSize == kOriginSize * 2); 630 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 631 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 632 } 633 634 /// \brief Fill memory range with the given origin value. 635 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 636 unsigned Size, unsigned Alignment) { 637 const DataLayout &DL = F.getParent()->getDataLayout(); 638 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 639 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 640 assert(IntptrAlignment >= kMinOriginAlignment); 641 assert(IntptrSize >= kOriginSize); 642 643 unsigned Ofs = 0; 644 unsigned CurrentAlignment = Alignment; 645 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 646 Value *IntptrOrigin = originToIntptr(IRB, Origin); 647 Value *IntptrOriginPtr = 648 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 649 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 650 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 651 : IntptrOriginPtr; 652 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 653 Ofs += IntptrSize / kOriginSize; 654 CurrentAlignment = IntptrAlignment; 655 } 656 } 657 658 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 659 Value *GEP = 660 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 661 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 662 CurrentAlignment = kMinOriginAlignment; 663 } 664 } 665 666 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 667 unsigned Alignment, bool AsCall) { 668 const DataLayout &DL = F.getParent()->getDataLayout(); 669 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 670 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 671 if (isa<StructType>(Shadow->getType())) { 672 paintOrigin(IRB, updateOrigin(Origin, IRB), 673 getOriginPtr(Addr, IRB, Alignment), StoreSize, 674 OriginAlignment); 675 } else { 676 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 677 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 678 if (ConstantShadow) { 679 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 680 paintOrigin(IRB, updateOrigin(Origin, IRB), 681 getOriginPtr(Addr, IRB, Alignment), StoreSize, 682 OriginAlignment); 683 return; 684 } 685 686 unsigned TypeSizeInBits = 687 DL.getTypeSizeInBits(ConvertedShadow->getType()); 688 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 689 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 690 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 691 Value *ConvertedShadow2 = IRB.CreateZExt( 692 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 693 IRB.CreateCall(Fn, {ConvertedShadow2, 694 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 695 Origin}); 696 } else { 697 Value *Cmp = IRB.CreateICmpNE( 698 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 699 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 700 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 701 IRBuilder<> IRBNew(CheckTerm); 702 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 703 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 704 OriginAlignment); 705 } 706 } 707 } 708 709 void materializeStores(bool InstrumentWithCalls) { 710 for (auto Inst : StoreList) { 711 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 712 713 IRBuilder<> IRB(&SI); 714 Value *Val = SI.getValueOperand(); 715 Value *Addr = SI.getPointerOperand(); 716 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 717 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 718 719 StoreInst *NewSI = 720 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 721 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 722 (void)NewSI; 723 724 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 725 726 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 727 728 if (MS.TrackOrigins && !SI.isAtomic()) 729 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 730 InstrumentWithCalls); 731 } 732 } 733 734 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 735 bool AsCall) { 736 IRBuilder<> IRB(OrigIns); 737 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 738 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 739 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 740 741 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 742 if (ConstantShadow) { 743 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 744 if (MS.TrackOrigins) { 745 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 746 MS.OriginTLS); 747 } 748 IRB.CreateCall(MS.WarningFn, {}); 749 IRB.CreateCall(MS.EmptyAsm, {}); 750 // FIXME: Insert UnreachableInst if !ClKeepGoing? 751 // This may invalidate some of the following checks and needs to be done 752 // at the very end. 753 } 754 return; 755 } 756 757 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 758 759 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 760 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 761 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 762 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 763 Value *ConvertedShadow2 = 764 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 765 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 766 ? Origin 767 : (Value *)IRB.getInt32(0)}); 768 } else { 769 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 770 getCleanShadow(ConvertedShadow), "_mscmp"); 771 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 772 Cmp, OrigIns, 773 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 774 775 IRB.SetInsertPoint(CheckTerm); 776 if (MS.TrackOrigins) { 777 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 778 MS.OriginTLS); 779 } 780 IRB.CreateCall(MS.WarningFn, {}); 781 IRB.CreateCall(MS.EmptyAsm, {}); 782 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 783 } 784 } 785 786 void materializeChecks(bool InstrumentWithCalls) { 787 for (const auto &ShadowData : InstrumentationList) { 788 Instruction *OrigIns = ShadowData.OrigIns; 789 Value *Shadow = ShadowData.Shadow; 790 Value *Origin = ShadowData.Origin; 791 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 792 } 793 DEBUG(dbgs() << "DONE:\n" << F); 794 } 795 796 /// \brief Add MemorySanitizer instrumentation to a function. 797 bool runOnFunction() { 798 MS.initializeCallbacks(*F.getParent()); 799 800 // In the presence of unreachable blocks, we may see Phi nodes with 801 // incoming nodes from such blocks. Since InstVisitor skips unreachable 802 // blocks, such nodes will not have any shadow value associated with them. 803 // It's easier to remove unreachable blocks than deal with missing shadow. 804 removeUnreachableBlocks(F); 805 806 // Iterate all BBs in depth-first order and create shadow instructions 807 // for all instructions (where applicable). 808 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 809 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 810 visit(*BB); 811 812 813 // Finalize PHI nodes. 814 for (PHINode *PN : ShadowPHINodes) { 815 PHINode *PNS = cast<PHINode>(getShadow(PN)); 816 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 817 size_t NumValues = PN->getNumIncomingValues(); 818 for (size_t v = 0; v < NumValues; v++) { 819 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 820 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 821 } 822 } 823 824 VAHelper->finalizeInstrumentation(); 825 826 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 827 InstrumentationList.size() + StoreList.size() > 828 (unsigned)ClInstrumentationWithCallThreshold; 829 830 // Delayed instrumentation of StoreInst. 831 // This may add new checks to be inserted later. 832 materializeStores(InstrumentWithCalls); 833 834 // Insert shadow value checks. 835 materializeChecks(InstrumentWithCalls); 836 837 return true; 838 } 839 840 /// \brief Compute the shadow type that corresponds to a given Value. 841 Type *getShadowTy(Value *V) { 842 return getShadowTy(V->getType()); 843 } 844 845 /// \brief Compute the shadow type that corresponds to a given Type. 846 Type *getShadowTy(Type *OrigTy) { 847 if (!OrigTy->isSized()) { 848 return nullptr; 849 } 850 // For integer type, shadow is the same as the original type. 851 // This may return weird-sized types like i1. 852 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 853 return IT; 854 const DataLayout &DL = F.getParent()->getDataLayout(); 855 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 856 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 857 return VectorType::get(IntegerType::get(*MS.C, EltSize), 858 VT->getNumElements()); 859 } 860 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 861 return ArrayType::get(getShadowTy(AT->getElementType()), 862 AT->getNumElements()); 863 } 864 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 865 SmallVector<Type*, 4> Elements; 866 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 867 Elements.push_back(getShadowTy(ST->getElementType(i))); 868 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 869 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 870 return Res; 871 } 872 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 873 return IntegerType::get(*MS.C, TypeSize); 874 } 875 876 /// \brief Flatten a vector type. 877 Type *getShadowTyNoVec(Type *ty) { 878 if (VectorType *vt = dyn_cast<VectorType>(ty)) 879 return IntegerType::get(*MS.C, vt->getBitWidth()); 880 return ty; 881 } 882 883 /// \brief Convert a shadow value to it's flattened variant. 884 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 885 Type *Ty = V->getType(); 886 Type *NoVecTy = getShadowTyNoVec(Ty); 887 if (Ty == NoVecTy) return V; 888 return IRB.CreateBitCast(V, NoVecTy); 889 } 890 891 /// \brief Compute the integer shadow offset that corresponds to a given 892 /// application address. 893 /// 894 /// Offset = (Addr & ~AndMask) ^ XorMask 895 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 896 uint64_t AndMask = MS.MapParams->AndMask; 897 assert(AndMask != 0 && "AndMask shall be specified"); 898 Value *OffsetLong = 899 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy), 900 ConstantInt::get(MS.IntptrTy, ~AndMask)); 901 902 uint64_t XorMask = MS.MapParams->XorMask; 903 if (XorMask != 0) 904 OffsetLong = IRB.CreateXor(OffsetLong, 905 ConstantInt::get(MS.IntptrTy, XorMask)); 906 return OffsetLong; 907 } 908 909 /// \brief Compute the shadow address that corresponds to a given application 910 /// address. 911 /// 912 /// Shadow = ShadowBase + Offset 913 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 914 IRBuilder<> &IRB) { 915 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 916 uint64_t ShadowBase = MS.MapParams->ShadowBase; 917 if (ShadowBase != 0) 918 ShadowLong = 919 IRB.CreateAdd(ShadowLong, 920 ConstantInt::get(MS.IntptrTy, ShadowBase)); 921 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 922 } 923 924 /// \brief Compute the origin address that corresponds to a given application 925 /// address. 926 /// 927 /// OriginAddr = (OriginBase + Offset) & ~3ULL 928 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 929 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 930 uint64_t OriginBase = MS.MapParams->OriginBase; 931 if (OriginBase != 0) 932 OriginLong = 933 IRB.CreateAdd(OriginLong, 934 ConstantInt::get(MS.IntptrTy, OriginBase)); 935 if (Alignment < kMinOriginAlignment) { 936 uint64_t Mask = kMinOriginAlignment - 1; 937 OriginLong = IRB.CreateAnd(OriginLong, 938 ConstantInt::get(MS.IntptrTy, ~Mask)); 939 } 940 return IRB.CreateIntToPtr(OriginLong, 941 PointerType::get(IRB.getInt32Ty(), 0)); 942 } 943 944 /// \brief Compute the shadow address for a given function argument. 945 /// 946 /// Shadow = ParamTLS+ArgOffset. 947 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 948 int ArgOffset) { 949 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 950 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 951 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 952 "_msarg"); 953 } 954 955 /// \brief Compute the origin address for a given function argument. 956 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 957 int ArgOffset) { 958 if (!MS.TrackOrigins) return nullptr; 959 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 960 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 961 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 962 "_msarg_o"); 963 } 964 965 /// \brief Compute the shadow address for a retval. 966 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 967 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 968 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 969 "_msret"); 970 } 971 972 /// \brief Compute the origin address for a retval. 973 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 974 // We keep a single origin for the entire retval. Might be too optimistic. 975 return MS.RetvalOriginTLS; 976 } 977 978 /// \brief Set SV to be the shadow value for V. 979 void setShadow(Value *V, Value *SV) { 980 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 981 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 982 } 983 984 /// \brief Set Origin to be the origin value for V. 985 void setOrigin(Value *V, Value *Origin) { 986 if (!MS.TrackOrigins) return; 987 assert(!OriginMap.count(V) && "Values may only have one origin"); 988 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 989 OriginMap[V] = Origin; 990 } 991 992 /// \brief Create a clean shadow value for a given value. 993 /// 994 /// Clean shadow (all zeroes) means all bits of the value are defined 995 /// (initialized). 996 Constant *getCleanShadow(Value *V) { 997 Type *ShadowTy = getShadowTy(V); 998 if (!ShadowTy) 999 return nullptr; 1000 return Constant::getNullValue(ShadowTy); 1001 } 1002 1003 /// \brief Create a dirty shadow of a given shadow type. 1004 Constant *getPoisonedShadow(Type *ShadowTy) { 1005 assert(ShadowTy); 1006 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1007 return Constant::getAllOnesValue(ShadowTy); 1008 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1009 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1010 getPoisonedShadow(AT->getElementType())); 1011 return ConstantArray::get(AT, Vals); 1012 } 1013 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1014 SmallVector<Constant *, 4> Vals; 1015 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1016 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1017 return ConstantStruct::get(ST, Vals); 1018 } 1019 llvm_unreachable("Unexpected shadow type"); 1020 } 1021 1022 /// \brief Create a dirty shadow for a given value. 1023 Constant *getPoisonedShadow(Value *V) { 1024 Type *ShadowTy = getShadowTy(V); 1025 if (!ShadowTy) 1026 return nullptr; 1027 return getPoisonedShadow(ShadowTy); 1028 } 1029 1030 /// \brief Create a clean (zero) origin. 1031 Value *getCleanOrigin() { 1032 return Constant::getNullValue(MS.OriginTy); 1033 } 1034 1035 /// \brief Get the shadow value for a given Value. 1036 /// 1037 /// This function either returns the value set earlier with setShadow, 1038 /// or extracts if from ParamTLS (for function arguments). 1039 Value *getShadow(Value *V) { 1040 if (!PropagateShadow) return getCleanShadow(V); 1041 if (Instruction *I = dyn_cast<Instruction>(V)) { 1042 // For instructions the shadow is already stored in the map. 1043 Value *Shadow = ShadowMap[V]; 1044 if (!Shadow) { 1045 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1046 (void)I; 1047 assert(Shadow && "No shadow for a value"); 1048 } 1049 return Shadow; 1050 } 1051 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1052 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1053 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1054 (void)U; 1055 return AllOnes; 1056 } 1057 if (Argument *A = dyn_cast<Argument>(V)) { 1058 // For arguments we compute the shadow on demand and store it in the map. 1059 Value **ShadowPtr = &ShadowMap[V]; 1060 if (*ShadowPtr) 1061 return *ShadowPtr; 1062 Function *F = A->getParent(); 1063 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1064 unsigned ArgOffset = 0; 1065 const DataLayout &DL = F->getParent()->getDataLayout(); 1066 for (auto &FArg : F->args()) { 1067 if (!FArg.getType()->isSized()) { 1068 DEBUG(dbgs() << "Arg is not sized\n"); 1069 continue; 1070 } 1071 unsigned Size = 1072 FArg.hasByValAttr() 1073 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1074 : DL.getTypeAllocSize(FArg.getType()); 1075 if (A == &FArg) { 1076 bool Overflow = ArgOffset + Size > kParamTLSSize; 1077 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1078 if (FArg.hasByValAttr()) { 1079 // ByVal pointer itself has clean shadow. We copy the actual 1080 // argument shadow to the underlying memory. 1081 // Figure out maximal valid memcpy alignment. 1082 unsigned ArgAlign = FArg.getParamAlignment(); 1083 if (ArgAlign == 0) { 1084 Type *EltType = A->getType()->getPointerElementType(); 1085 ArgAlign = DL.getABITypeAlignment(EltType); 1086 } 1087 if (Overflow) { 1088 // ParamTLS overflow. 1089 EntryIRB.CreateMemSet( 1090 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1091 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1092 } else { 1093 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1094 Value *Cpy = EntryIRB.CreateMemCpy( 1095 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1096 CopyAlign); 1097 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1098 (void)Cpy; 1099 } 1100 *ShadowPtr = getCleanShadow(V); 1101 } else { 1102 if (Overflow) { 1103 // ParamTLS overflow. 1104 *ShadowPtr = getCleanShadow(V); 1105 } else { 1106 *ShadowPtr = 1107 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1108 } 1109 } 1110 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1111 **ShadowPtr << "\n"); 1112 if (MS.TrackOrigins && !Overflow) { 1113 Value *OriginPtr = 1114 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1115 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1116 } else { 1117 setOrigin(A, getCleanOrigin()); 1118 } 1119 } 1120 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment); 1121 } 1122 assert(*ShadowPtr && "Could not find shadow for an argument"); 1123 return *ShadowPtr; 1124 } 1125 // For everything else the shadow is zero. 1126 return getCleanShadow(V); 1127 } 1128 1129 /// \brief Get the shadow for i-th argument of the instruction I. 1130 Value *getShadow(Instruction *I, int i) { 1131 return getShadow(I->getOperand(i)); 1132 } 1133 1134 /// \brief Get the origin for a value. 1135 Value *getOrigin(Value *V) { 1136 if (!MS.TrackOrigins) return nullptr; 1137 if (!PropagateShadow) return getCleanOrigin(); 1138 if (isa<Constant>(V)) return getCleanOrigin(); 1139 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1140 "Unexpected value type in getOrigin()"); 1141 Value *Origin = OriginMap[V]; 1142 assert(Origin && "Missing origin"); 1143 return Origin; 1144 } 1145 1146 /// \brief Get the origin for i-th argument of the instruction I. 1147 Value *getOrigin(Instruction *I, int i) { 1148 return getOrigin(I->getOperand(i)); 1149 } 1150 1151 /// \brief Remember the place where a shadow check should be inserted. 1152 /// 1153 /// This location will be later instrumented with a check that will print a 1154 /// UMR warning in runtime if the shadow value is not 0. 1155 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1156 assert(Shadow); 1157 if (!InsertChecks) return; 1158 #ifndef NDEBUG 1159 Type *ShadowTy = Shadow->getType(); 1160 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1161 "Can only insert checks for integer and vector shadow types"); 1162 #endif 1163 InstrumentationList.push_back( 1164 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1165 } 1166 1167 /// \brief Remember the place where a shadow check should be inserted. 1168 /// 1169 /// This location will be later instrumented with a check that will print a 1170 /// UMR warning in runtime if the value is not fully defined. 1171 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1172 assert(Val); 1173 Value *Shadow, *Origin; 1174 if (ClCheckConstantShadow) { 1175 Shadow = getShadow(Val); 1176 if (!Shadow) return; 1177 Origin = getOrigin(Val); 1178 } else { 1179 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1180 if (!Shadow) return; 1181 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1182 } 1183 insertShadowCheck(Shadow, Origin, OrigIns); 1184 } 1185 1186 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1187 switch (a) { 1188 case NotAtomic: 1189 return NotAtomic; 1190 case Unordered: 1191 case Monotonic: 1192 case Release: 1193 return Release; 1194 case Acquire: 1195 case AcquireRelease: 1196 return AcquireRelease; 1197 case SequentiallyConsistent: 1198 return SequentiallyConsistent; 1199 } 1200 llvm_unreachable("Unknown ordering"); 1201 } 1202 1203 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1204 switch (a) { 1205 case NotAtomic: 1206 return NotAtomic; 1207 case Unordered: 1208 case Monotonic: 1209 case Acquire: 1210 return Acquire; 1211 case Release: 1212 case AcquireRelease: 1213 return AcquireRelease; 1214 case SequentiallyConsistent: 1215 return SequentiallyConsistent; 1216 } 1217 llvm_unreachable("Unknown ordering"); 1218 } 1219 1220 // ------------------- Visitors. 1221 1222 /// \brief Instrument LoadInst 1223 /// 1224 /// Loads the corresponding shadow and (optionally) origin. 1225 /// Optionally, checks that the load address is fully defined. 1226 void visitLoadInst(LoadInst &I) { 1227 assert(I.getType()->isSized() && "Load type must have size"); 1228 IRBuilder<> IRB(I.getNextNode()); 1229 Type *ShadowTy = getShadowTy(&I); 1230 Value *Addr = I.getPointerOperand(); 1231 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1232 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1233 setShadow(&I, 1234 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1235 } else { 1236 setShadow(&I, getCleanShadow(&I)); 1237 } 1238 1239 if (ClCheckAccessAddress) 1240 insertShadowCheck(I.getPointerOperand(), &I); 1241 1242 if (I.isAtomic()) 1243 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1244 1245 if (MS.TrackOrigins) { 1246 if (PropagateShadow) { 1247 unsigned Alignment = I.getAlignment(); 1248 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1249 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1250 OriginAlignment)); 1251 } else { 1252 setOrigin(&I, getCleanOrigin()); 1253 } 1254 } 1255 } 1256 1257 /// \brief Instrument StoreInst 1258 /// 1259 /// Stores the corresponding shadow and (optionally) origin. 1260 /// Optionally, checks that the store address is fully defined. 1261 void visitStoreInst(StoreInst &I) { 1262 StoreList.push_back(&I); 1263 } 1264 1265 void handleCASOrRMW(Instruction &I) { 1266 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1267 1268 IRBuilder<> IRB(&I); 1269 Value *Addr = I.getOperand(0); 1270 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1271 1272 if (ClCheckAccessAddress) 1273 insertShadowCheck(Addr, &I); 1274 1275 // Only test the conditional argument of cmpxchg instruction. 1276 // The other argument can potentially be uninitialized, but we can not 1277 // detect this situation reliably without possible false positives. 1278 if (isa<AtomicCmpXchgInst>(I)) 1279 insertShadowCheck(I.getOperand(1), &I); 1280 1281 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1282 1283 setShadow(&I, getCleanShadow(&I)); 1284 setOrigin(&I, getCleanOrigin()); 1285 } 1286 1287 void visitAtomicRMWInst(AtomicRMWInst &I) { 1288 handleCASOrRMW(I); 1289 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1290 } 1291 1292 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1293 handleCASOrRMW(I); 1294 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1295 } 1296 1297 // Vector manipulation. 1298 void visitExtractElementInst(ExtractElementInst &I) { 1299 insertShadowCheck(I.getOperand(1), &I); 1300 IRBuilder<> IRB(&I); 1301 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1302 "_msprop")); 1303 setOrigin(&I, getOrigin(&I, 0)); 1304 } 1305 1306 void visitInsertElementInst(InsertElementInst &I) { 1307 insertShadowCheck(I.getOperand(2), &I); 1308 IRBuilder<> IRB(&I); 1309 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1310 I.getOperand(2), "_msprop")); 1311 setOriginForNaryOp(I); 1312 } 1313 1314 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1315 insertShadowCheck(I.getOperand(2), &I); 1316 IRBuilder<> IRB(&I); 1317 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1318 I.getOperand(2), "_msprop")); 1319 setOriginForNaryOp(I); 1320 } 1321 1322 // Casts. 1323 void visitSExtInst(SExtInst &I) { 1324 IRBuilder<> IRB(&I); 1325 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1326 setOrigin(&I, getOrigin(&I, 0)); 1327 } 1328 1329 void visitZExtInst(ZExtInst &I) { 1330 IRBuilder<> IRB(&I); 1331 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1332 setOrigin(&I, getOrigin(&I, 0)); 1333 } 1334 1335 void visitTruncInst(TruncInst &I) { 1336 IRBuilder<> IRB(&I); 1337 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1338 setOrigin(&I, getOrigin(&I, 0)); 1339 } 1340 1341 void visitBitCastInst(BitCastInst &I) { 1342 IRBuilder<> IRB(&I); 1343 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1344 setOrigin(&I, getOrigin(&I, 0)); 1345 } 1346 1347 void visitPtrToIntInst(PtrToIntInst &I) { 1348 IRBuilder<> IRB(&I); 1349 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1350 "_msprop_ptrtoint")); 1351 setOrigin(&I, getOrigin(&I, 0)); 1352 } 1353 1354 void visitIntToPtrInst(IntToPtrInst &I) { 1355 IRBuilder<> IRB(&I); 1356 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1357 "_msprop_inttoptr")); 1358 setOrigin(&I, getOrigin(&I, 0)); 1359 } 1360 1361 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1362 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1363 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1364 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1365 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1366 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1367 1368 /// \brief Propagate shadow for bitwise AND. 1369 /// 1370 /// This code is exact, i.e. if, for example, a bit in the left argument 1371 /// is defined and 0, then neither the value not definedness of the 1372 /// corresponding bit in B don't affect the resulting shadow. 1373 void visitAnd(BinaryOperator &I) { 1374 IRBuilder<> IRB(&I); 1375 // "And" of 0 and a poisoned value results in unpoisoned value. 1376 // 1&1 => 1; 0&1 => 0; p&1 => p; 1377 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1378 // 1&p => p; 0&p => 0; p&p => p; 1379 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1380 Value *S1 = getShadow(&I, 0); 1381 Value *S2 = getShadow(&I, 1); 1382 Value *V1 = I.getOperand(0); 1383 Value *V2 = I.getOperand(1); 1384 if (V1->getType() != S1->getType()) { 1385 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1386 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1387 } 1388 Value *S1S2 = IRB.CreateAnd(S1, S2); 1389 Value *V1S2 = IRB.CreateAnd(V1, S2); 1390 Value *S1V2 = IRB.CreateAnd(S1, V2); 1391 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1392 setOriginForNaryOp(I); 1393 } 1394 1395 void visitOr(BinaryOperator &I) { 1396 IRBuilder<> IRB(&I); 1397 // "Or" of 1 and a poisoned value results in unpoisoned value. 1398 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1399 // 1|0 => 1; 0|0 => 0; p|0 => p; 1400 // 1|p => 1; 0|p => p; p|p => p; 1401 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1402 Value *S1 = getShadow(&I, 0); 1403 Value *S2 = getShadow(&I, 1); 1404 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1405 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1406 if (V1->getType() != S1->getType()) { 1407 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1408 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1409 } 1410 Value *S1S2 = IRB.CreateAnd(S1, S2); 1411 Value *V1S2 = IRB.CreateAnd(V1, S2); 1412 Value *S1V2 = IRB.CreateAnd(S1, V2); 1413 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1414 setOriginForNaryOp(I); 1415 } 1416 1417 /// \brief Default propagation of shadow and/or origin. 1418 /// 1419 /// This class implements the general case of shadow propagation, used in all 1420 /// cases where we don't know and/or don't care about what the operation 1421 /// actually does. It converts all input shadow values to a common type 1422 /// (extending or truncating as necessary), and bitwise OR's them. 1423 /// 1424 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1425 /// fully initialized), and less prone to false positives. 1426 /// 1427 /// This class also implements the general case of origin propagation. For a 1428 /// Nary operation, result origin is set to the origin of an argument that is 1429 /// not entirely initialized. If there is more than one such arguments, the 1430 /// rightmost of them is picked. It does not matter which one is picked if all 1431 /// arguments are initialized. 1432 template <bool CombineShadow> 1433 class Combiner { 1434 Value *Shadow; 1435 Value *Origin; 1436 IRBuilder<> &IRB; 1437 MemorySanitizerVisitor *MSV; 1438 1439 public: 1440 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1441 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1442 1443 /// \brief Add a pair of shadow and origin values to the mix. 1444 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1445 if (CombineShadow) { 1446 assert(OpShadow); 1447 if (!Shadow) 1448 Shadow = OpShadow; 1449 else { 1450 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1451 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1452 } 1453 } 1454 1455 if (MSV->MS.TrackOrigins) { 1456 assert(OpOrigin); 1457 if (!Origin) { 1458 Origin = OpOrigin; 1459 } else { 1460 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1461 // No point in adding something that might result in 0 origin value. 1462 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1463 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1464 Value *Cond = 1465 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1466 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1467 } 1468 } 1469 } 1470 return *this; 1471 } 1472 1473 /// \brief Add an application value to the mix. 1474 Combiner &Add(Value *V) { 1475 Value *OpShadow = MSV->getShadow(V); 1476 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1477 return Add(OpShadow, OpOrigin); 1478 } 1479 1480 /// \brief Set the current combined values as the given instruction's shadow 1481 /// and origin. 1482 void Done(Instruction *I) { 1483 if (CombineShadow) { 1484 assert(Shadow); 1485 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1486 MSV->setShadow(I, Shadow); 1487 } 1488 if (MSV->MS.TrackOrigins) { 1489 assert(Origin); 1490 MSV->setOrigin(I, Origin); 1491 } 1492 } 1493 }; 1494 1495 typedef Combiner<true> ShadowAndOriginCombiner; 1496 typedef Combiner<false> OriginCombiner; 1497 1498 /// \brief Propagate origin for arbitrary operation. 1499 void setOriginForNaryOp(Instruction &I) { 1500 if (!MS.TrackOrigins) return; 1501 IRBuilder<> IRB(&I); 1502 OriginCombiner OC(this, IRB); 1503 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1504 OC.Add(OI->get()); 1505 OC.Done(&I); 1506 } 1507 1508 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1509 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1510 "Vector of pointers is not a valid shadow type"); 1511 return Ty->isVectorTy() ? 1512 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1513 Ty->getPrimitiveSizeInBits(); 1514 } 1515 1516 /// \brief Cast between two shadow types, extending or truncating as 1517 /// necessary. 1518 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1519 bool Signed = false) { 1520 Type *srcTy = V->getType(); 1521 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1522 return IRB.CreateIntCast(V, dstTy, Signed); 1523 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1524 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1525 return IRB.CreateIntCast(V, dstTy, Signed); 1526 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1527 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1528 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1529 Value *V2 = 1530 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1531 return IRB.CreateBitCast(V2, dstTy); 1532 // TODO: handle struct types. 1533 } 1534 1535 /// \brief Cast an application value to the type of its own shadow. 1536 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1537 Type *ShadowTy = getShadowTy(V); 1538 if (V->getType() == ShadowTy) 1539 return V; 1540 if (V->getType()->isPtrOrPtrVectorTy()) 1541 return IRB.CreatePtrToInt(V, ShadowTy); 1542 else 1543 return IRB.CreateBitCast(V, ShadowTy); 1544 } 1545 1546 /// \brief Propagate shadow for arbitrary operation. 1547 void handleShadowOr(Instruction &I) { 1548 IRBuilder<> IRB(&I); 1549 ShadowAndOriginCombiner SC(this, IRB); 1550 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1551 SC.Add(OI->get()); 1552 SC.Done(&I); 1553 } 1554 1555 // \brief Handle multiplication by constant. 1556 // 1557 // Handle a special case of multiplication by constant that may have one or 1558 // more zeros in the lower bits. This makes corresponding number of lower bits 1559 // of the result zero as well. We model it by shifting the other operand 1560 // shadow left by the required number of bits. Effectively, we transform 1561 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1562 // We use multiplication by 2**N instead of shift to cover the case of 1563 // multiplication by 0, which may occur in some elements of a vector operand. 1564 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1565 Value *OtherArg) { 1566 Constant *ShadowMul; 1567 Type *Ty = ConstArg->getType(); 1568 if (Ty->isVectorTy()) { 1569 unsigned NumElements = Ty->getVectorNumElements(); 1570 Type *EltTy = Ty->getSequentialElementType(); 1571 SmallVector<Constant *, 16> Elements; 1572 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1573 ConstantInt *Elt = 1574 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx)); 1575 APInt V = Elt->getValue(); 1576 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1577 Elements.push_back(ConstantInt::get(EltTy, V2)); 1578 } 1579 ShadowMul = ConstantVector::get(Elements); 1580 } else { 1581 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg); 1582 APInt V = Elt->getValue(); 1583 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1584 ShadowMul = ConstantInt::get(Elt->getType(), V2); 1585 } 1586 1587 IRBuilder<> IRB(&I); 1588 setShadow(&I, 1589 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1590 setOrigin(&I, getOrigin(OtherArg)); 1591 } 1592 1593 void visitMul(BinaryOperator &I) { 1594 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1595 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1596 if (constOp0 && !constOp1) 1597 handleMulByConstant(I, constOp0, I.getOperand(1)); 1598 else if (constOp1 && !constOp0) 1599 handleMulByConstant(I, constOp1, I.getOperand(0)); 1600 else 1601 handleShadowOr(I); 1602 } 1603 1604 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1605 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1606 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1607 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1608 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1609 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1610 1611 void handleDiv(Instruction &I) { 1612 IRBuilder<> IRB(&I); 1613 // Strict on the second argument. 1614 insertShadowCheck(I.getOperand(1), &I); 1615 setShadow(&I, getShadow(&I, 0)); 1616 setOrigin(&I, getOrigin(&I, 0)); 1617 } 1618 1619 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1620 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1621 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1622 void visitURem(BinaryOperator &I) { handleDiv(I); } 1623 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1624 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1625 1626 /// \brief Instrument == and != comparisons. 1627 /// 1628 /// Sometimes the comparison result is known even if some of the bits of the 1629 /// arguments are not. 1630 void handleEqualityComparison(ICmpInst &I) { 1631 IRBuilder<> IRB(&I); 1632 Value *A = I.getOperand(0); 1633 Value *B = I.getOperand(1); 1634 Value *Sa = getShadow(A); 1635 Value *Sb = getShadow(B); 1636 1637 // Get rid of pointers and vectors of pointers. 1638 // For ints (and vectors of ints), types of A and Sa match, 1639 // and this is a no-op. 1640 A = IRB.CreatePointerCast(A, Sa->getType()); 1641 B = IRB.CreatePointerCast(B, Sb->getType()); 1642 1643 // A == B <==> (C = A^B) == 0 1644 // A != B <==> (C = A^B) != 0 1645 // Sc = Sa | Sb 1646 Value *C = IRB.CreateXor(A, B); 1647 Value *Sc = IRB.CreateOr(Sa, Sb); 1648 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1649 // Result is defined if one of the following is true 1650 // * there is a defined 1 bit in C 1651 // * C is fully defined 1652 // Si = !(C & ~Sc) && Sc 1653 Value *Zero = Constant::getNullValue(Sc->getType()); 1654 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1655 Value *Si = 1656 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1657 IRB.CreateICmpEQ( 1658 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1659 Si->setName("_msprop_icmp"); 1660 setShadow(&I, Si); 1661 setOriginForNaryOp(I); 1662 } 1663 1664 /// \brief Build the lowest possible value of V, taking into account V's 1665 /// uninitialized bits. 1666 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1667 bool isSigned) { 1668 if (isSigned) { 1669 // Split shadow into sign bit and other bits. 1670 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1671 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1672 // Maximise the undefined shadow bit, minimize other undefined bits. 1673 return 1674 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1675 } else { 1676 // Minimize undefined bits. 1677 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1678 } 1679 } 1680 1681 /// \brief Build the highest possible value of V, taking into account V's 1682 /// uninitialized bits. 1683 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1684 bool isSigned) { 1685 if (isSigned) { 1686 // Split shadow into sign bit and other bits. 1687 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1688 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1689 // Minimise the undefined shadow bit, maximise other undefined bits. 1690 return 1691 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1692 } else { 1693 // Maximize undefined bits. 1694 return IRB.CreateOr(A, Sa); 1695 } 1696 } 1697 1698 /// \brief Instrument relational comparisons. 1699 /// 1700 /// This function does exact shadow propagation for all relational 1701 /// comparisons of integers, pointers and vectors of those. 1702 /// FIXME: output seems suboptimal when one of the operands is a constant 1703 void handleRelationalComparisonExact(ICmpInst &I) { 1704 IRBuilder<> IRB(&I); 1705 Value *A = I.getOperand(0); 1706 Value *B = I.getOperand(1); 1707 Value *Sa = getShadow(A); 1708 Value *Sb = getShadow(B); 1709 1710 // Get rid of pointers and vectors of pointers. 1711 // For ints (and vectors of ints), types of A and Sa match, 1712 // and this is a no-op. 1713 A = IRB.CreatePointerCast(A, Sa->getType()); 1714 B = IRB.CreatePointerCast(B, Sb->getType()); 1715 1716 // Let [a0, a1] be the interval of possible values of A, taking into account 1717 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1718 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1719 bool IsSigned = I.isSigned(); 1720 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1721 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1722 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1723 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1724 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1725 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1726 Value *Si = IRB.CreateXor(S1, S2); 1727 setShadow(&I, Si); 1728 setOriginForNaryOp(I); 1729 } 1730 1731 /// \brief Instrument signed relational comparisons. 1732 /// 1733 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by 1734 /// propagating the highest bit of the shadow. Everything else is delegated 1735 /// to handleShadowOr(). 1736 void handleSignedRelationalComparison(ICmpInst &I) { 1737 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1738 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1739 Value* op = nullptr; 1740 CmpInst::Predicate pre = I.getPredicate(); 1741 if (constOp0 && constOp0->isNullValue() && 1742 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) { 1743 op = I.getOperand(1); 1744 } else if (constOp1 && constOp1->isNullValue() && 1745 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) { 1746 op = I.getOperand(0); 1747 } 1748 if (op) { 1749 IRBuilder<> IRB(&I); 1750 Value* Shadow = 1751 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt"); 1752 setShadow(&I, Shadow); 1753 setOrigin(&I, getOrigin(op)); 1754 } else { 1755 handleShadowOr(I); 1756 } 1757 } 1758 1759 void visitICmpInst(ICmpInst &I) { 1760 if (!ClHandleICmp) { 1761 handleShadowOr(I); 1762 return; 1763 } 1764 if (I.isEquality()) { 1765 handleEqualityComparison(I); 1766 return; 1767 } 1768 1769 assert(I.isRelational()); 1770 if (ClHandleICmpExact) { 1771 handleRelationalComparisonExact(I); 1772 return; 1773 } 1774 if (I.isSigned()) { 1775 handleSignedRelationalComparison(I); 1776 return; 1777 } 1778 1779 assert(I.isUnsigned()); 1780 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1781 handleRelationalComparisonExact(I); 1782 return; 1783 } 1784 1785 handleShadowOr(I); 1786 } 1787 1788 void visitFCmpInst(FCmpInst &I) { 1789 handleShadowOr(I); 1790 } 1791 1792 void handleShift(BinaryOperator &I) { 1793 IRBuilder<> IRB(&I); 1794 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1795 // Otherwise perform the same shift on S1. 1796 Value *S1 = getShadow(&I, 0); 1797 Value *S2 = getShadow(&I, 1); 1798 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1799 S2->getType()); 1800 Value *V2 = I.getOperand(1); 1801 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1802 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1803 setOriginForNaryOp(I); 1804 } 1805 1806 void visitShl(BinaryOperator &I) { handleShift(I); } 1807 void visitAShr(BinaryOperator &I) { handleShift(I); } 1808 void visitLShr(BinaryOperator &I) { handleShift(I); } 1809 1810 /// \brief Instrument llvm.memmove 1811 /// 1812 /// At this point we don't know if llvm.memmove will be inlined or not. 1813 /// If we don't instrument it and it gets inlined, 1814 /// our interceptor will not kick in and we will lose the memmove. 1815 /// If we instrument the call here, but it does not get inlined, 1816 /// we will memove the shadow twice: which is bad in case 1817 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1818 /// 1819 /// Similar situation exists for memcpy and memset. 1820 void visitMemMoveInst(MemMoveInst &I) { 1821 IRBuilder<> IRB(&I); 1822 IRB.CreateCall( 1823 MS.MemmoveFn, 1824 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1825 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1826 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1827 I.eraseFromParent(); 1828 } 1829 1830 // Similar to memmove: avoid copying shadow twice. 1831 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1832 // FIXME: consider doing manual inline for small constant sizes and proper 1833 // alignment. 1834 void visitMemCpyInst(MemCpyInst &I) { 1835 IRBuilder<> IRB(&I); 1836 IRB.CreateCall( 1837 MS.MemcpyFn, 1838 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1839 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1840 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1841 I.eraseFromParent(); 1842 } 1843 1844 // Same as memcpy. 1845 void visitMemSetInst(MemSetInst &I) { 1846 IRBuilder<> IRB(&I); 1847 IRB.CreateCall( 1848 MS.MemsetFn, 1849 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1850 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1851 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1852 I.eraseFromParent(); 1853 } 1854 1855 void visitVAStartInst(VAStartInst &I) { 1856 VAHelper->visitVAStartInst(I); 1857 } 1858 1859 void visitVACopyInst(VACopyInst &I) { 1860 VAHelper->visitVACopyInst(I); 1861 } 1862 1863 enum IntrinsicKind { 1864 IK_DoesNotAccessMemory, 1865 IK_OnlyReadsMemory, 1866 IK_WritesMemory 1867 }; 1868 1869 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) { 1870 const int DoesNotAccessMemory = IK_DoesNotAccessMemory; 1871 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory; 1872 const int OnlyReadsMemory = IK_OnlyReadsMemory; 1873 const int OnlyAccessesArgumentPointees = IK_WritesMemory; 1874 const int UnknownModRefBehavior = IK_WritesMemory; 1875 #define GET_INTRINSIC_MODREF_BEHAVIOR 1876 #define ModRefBehavior IntrinsicKind 1877 #include "llvm/IR/Intrinsics.gen" 1878 #undef ModRefBehavior 1879 #undef GET_INTRINSIC_MODREF_BEHAVIOR 1880 } 1881 1882 /// \brief Handle vector store-like intrinsics. 1883 /// 1884 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1885 /// has 1 pointer argument and 1 vector argument, returns void. 1886 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1887 IRBuilder<> IRB(&I); 1888 Value* Addr = I.getArgOperand(0); 1889 Value *Shadow = getShadow(&I, 1); 1890 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1891 1892 // We don't know the pointer alignment (could be unaligned SSE store!). 1893 // Have to assume to worst case. 1894 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1895 1896 if (ClCheckAccessAddress) 1897 insertShadowCheck(Addr, &I); 1898 1899 // FIXME: use ClStoreCleanOrigin 1900 // FIXME: factor out common code from materializeStores 1901 if (MS.TrackOrigins) 1902 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1903 return true; 1904 } 1905 1906 /// \brief Handle vector load-like intrinsics. 1907 /// 1908 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1909 /// has 1 pointer argument, returns a vector. 1910 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1911 IRBuilder<> IRB(&I); 1912 Value *Addr = I.getArgOperand(0); 1913 1914 Type *ShadowTy = getShadowTy(&I); 1915 if (PropagateShadow) { 1916 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1917 // We don't know the pointer alignment (could be unaligned SSE load!). 1918 // Have to assume to worst case. 1919 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1920 } else { 1921 setShadow(&I, getCleanShadow(&I)); 1922 } 1923 1924 if (ClCheckAccessAddress) 1925 insertShadowCheck(Addr, &I); 1926 1927 if (MS.TrackOrigins) { 1928 if (PropagateShadow) 1929 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1930 else 1931 setOrigin(&I, getCleanOrigin()); 1932 } 1933 return true; 1934 } 1935 1936 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1937 /// 1938 /// Instrument intrinsics with any number of arguments of the same type, 1939 /// equal to the return type. The type should be simple (no aggregates or 1940 /// pointers; vectors are fine). 1941 /// Caller guarantees that this intrinsic does not access memory. 1942 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1943 Type *RetTy = I.getType(); 1944 if (!(RetTy->isIntOrIntVectorTy() || 1945 RetTy->isFPOrFPVectorTy() || 1946 RetTy->isX86_MMXTy())) 1947 return false; 1948 1949 unsigned NumArgOperands = I.getNumArgOperands(); 1950 1951 for (unsigned i = 0; i < NumArgOperands; ++i) { 1952 Type *Ty = I.getArgOperand(i)->getType(); 1953 if (Ty != RetTy) 1954 return false; 1955 } 1956 1957 IRBuilder<> IRB(&I); 1958 ShadowAndOriginCombiner SC(this, IRB); 1959 for (unsigned i = 0; i < NumArgOperands; ++i) 1960 SC.Add(I.getArgOperand(i)); 1961 SC.Done(&I); 1962 1963 return true; 1964 } 1965 1966 /// \brief Heuristically instrument unknown intrinsics. 1967 /// 1968 /// The main purpose of this code is to do something reasonable with all 1969 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 1970 /// We recognize several classes of intrinsics by their argument types and 1971 /// ModRefBehaviour and apply special intrumentation when we are reasonably 1972 /// sure that we know what the intrinsic does. 1973 /// 1974 /// We special-case intrinsics where this approach fails. See llvm.bswap 1975 /// handling as an example of that. 1976 bool handleUnknownIntrinsic(IntrinsicInst &I) { 1977 unsigned NumArgOperands = I.getNumArgOperands(); 1978 if (NumArgOperands == 0) 1979 return false; 1980 1981 Intrinsic::ID iid = I.getIntrinsicID(); 1982 IntrinsicKind IK = getIntrinsicKind(iid); 1983 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory; 1984 bool WritesMemory = IK == IK_WritesMemory; 1985 assert(!(OnlyReadsMemory && WritesMemory)); 1986 1987 if (NumArgOperands == 2 && 1988 I.getArgOperand(0)->getType()->isPointerTy() && 1989 I.getArgOperand(1)->getType()->isVectorTy() && 1990 I.getType()->isVoidTy() && 1991 WritesMemory) { 1992 // This looks like a vector store. 1993 return handleVectorStoreIntrinsic(I); 1994 } 1995 1996 if (NumArgOperands == 1 && 1997 I.getArgOperand(0)->getType()->isPointerTy() && 1998 I.getType()->isVectorTy() && 1999 OnlyReadsMemory) { 2000 // This looks like a vector load. 2001 return handleVectorLoadIntrinsic(I); 2002 } 2003 2004 if (!OnlyReadsMemory && !WritesMemory) 2005 if (maybeHandleSimpleNomemIntrinsic(I)) 2006 return true; 2007 2008 // FIXME: detect and handle SSE maskstore/maskload 2009 return false; 2010 } 2011 2012 void handleBswap(IntrinsicInst &I) { 2013 IRBuilder<> IRB(&I); 2014 Value *Op = I.getArgOperand(0); 2015 Type *OpType = Op->getType(); 2016 Function *BswapFunc = Intrinsic::getDeclaration( 2017 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2018 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2019 setOrigin(&I, getOrigin(Op)); 2020 } 2021 2022 // \brief Instrument vector convert instrinsic. 2023 // 2024 // This function instruments intrinsics like cvtsi2ss: 2025 // %Out = int_xxx_cvtyyy(%ConvertOp) 2026 // or 2027 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2028 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2029 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2030 // elements from \p CopyOp. 2031 // In most cases conversion involves floating-point value which may trigger a 2032 // hardware exception when not fully initialized. For this reason we require 2033 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2034 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2035 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2036 // return a fully initialized value. 2037 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2038 IRBuilder<> IRB(&I); 2039 Value *CopyOp, *ConvertOp; 2040 2041 switch (I.getNumArgOperands()) { 2042 case 3: 2043 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2044 case 2: 2045 CopyOp = I.getArgOperand(0); 2046 ConvertOp = I.getArgOperand(1); 2047 break; 2048 case 1: 2049 ConvertOp = I.getArgOperand(0); 2050 CopyOp = nullptr; 2051 break; 2052 default: 2053 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2054 } 2055 2056 // The first *NumUsedElements* elements of ConvertOp are converted to the 2057 // same number of output elements. The rest of the output is copied from 2058 // CopyOp, or (if not available) filled with zeroes. 2059 // Combine shadow for elements of ConvertOp that are used in this operation, 2060 // and insert a check. 2061 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2062 // int->any conversion. 2063 Value *ConvertShadow = getShadow(ConvertOp); 2064 Value *AggShadow = nullptr; 2065 if (ConvertOp->getType()->isVectorTy()) { 2066 AggShadow = IRB.CreateExtractElement( 2067 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2068 for (int i = 1; i < NumUsedElements; ++i) { 2069 Value *MoreShadow = IRB.CreateExtractElement( 2070 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2071 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2072 } 2073 } else { 2074 AggShadow = ConvertShadow; 2075 } 2076 assert(AggShadow->getType()->isIntegerTy()); 2077 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2078 2079 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2080 // ConvertOp. 2081 if (CopyOp) { 2082 assert(CopyOp->getType() == I.getType()); 2083 assert(CopyOp->getType()->isVectorTy()); 2084 Value *ResultShadow = getShadow(CopyOp); 2085 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2086 for (int i = 0; i < NumUsedElements; ++i) { 2087 ResultShadow = IRB.CreateInsertElement( 2088 ResultShadow, ConstantInt::getNullValue(EltTy), 2089 ConstantInt::get(IRB.getInt32Ty(), i)); 2090 } 2091 setShadow(&I, ResultShadow); 2092 setOrigin(&I, getOrigin(CopyOp)); 2093 } else { 2094 setShadow(&I, getCleanShadow(&I)); 2095 setOrigin(&I, getCleanOrigin()); 2096 } 2097 } 2098 2099 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2100 // zeroes if it is zero, and all ones otherwise. 2101 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2102 if (S->getType()->isVectorTy()) 2103 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2104 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2105 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2106 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2107 } 2108 2109 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2110 Type *T = S->getType(); 2111 assert(T->isVectorTy()); 2112 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2113 return IRB.CreateSExt(S2, T); 2114 } 2115 2116 // \brief Instrument vector shift instrinsic. 2117 // 2118 // This function instruments intrinsics like int_x86_avx2_psll_w. 2119 // Intrinsic shifts %In by %ShiftSize bits. 2120 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2121 // size, and the rest is ignored. Behavior is defined even if shift size is 2122 // greater than register (or field) width. 2123 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2124 assert(I.getNumArgOperands() == 2); 2125 IRBuilder<> IRB(&I); 2126 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2127 // Otherwise perform the same shift on S1. 2128 Value *S1 = getShadow(&I, 0); 2129 Value *S2 = getShadow(&I, 1); 2130 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2131 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2132 Value *V1 = I.getOperand(0); 2133 Value *V2 = I.getOperand(1); 2134 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2135 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2136 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2137 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2138 setOriginForNaryOp(I); 2139 } 2140 2141 // \brief Get an X86_MMX-sized vector type. 2142 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2143 const unsigned X86_MMXSizeInBits = 64; 2144 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2145 X86_MMXSizeInBits / EltSizeInBits); 2146 } 2147 2148 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2149 // intrinsic. 2150 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2151 switch (id) { 2152 case llvm::Intrinsic::x86_sse2_packsswb_128: 2153 case llvm::Intrinsic::x86_sse2_packuswb_128: 2154 return llvm::Intrinsic::x86_sse2_packsswb_128; 2155 2156 case llvm::Intrinsic::x86_sse2_packssdw_128: 2157 case llvm::Intrinsic::x86_sse41_packusdw: 2158 return llvm::Intrinsic::x86_sse2_packssdw_128; 2159 2160 case llvm::Intrinsic::x86_avx2_packsswb: 2161 case llvm::Intrinsic::x86_avx2_packuswb: 2162 return llvm::Intrinsic::x86_avx2_packsswb; 2163 2164 case llvm::Intrinsic::x86_avx2_packssdw: 2165 case llvm::Intrinsic::x86_avx2_packusdw: 2166 return llvm::Intrinsic::x86_avx2_packssdw; 2167 2168 case llvm::Intrinsic::x86_mmx_packsswb: 2169 case llvm::Intrinsic::x86_mmx_packuswb: 2170 return llvm::Intrinsic::x86_mmx_packsswb; 2171 2172 case llvm::Intrinsic::x86_mmx_packssdw: 2173 return llvm::Intrinsic::x86_mmx_packssdw; 2174 default: 2175 llvm_unreachable("unexpected intrinsic id"); 2176 } 2177 } 2178 2179 // \brief Instrument vector pack instrinsic. 2180 // 2181 // This function instruments intrinsics like x86_mmx_packsswb, that 2182 // packs elements of 2 input vectors into half as many bits with saturation. 2183 // Shadow is propagated with the signed variant of the same intrinsic applied 2184 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2185 // EltSizeInBits is used only for x86mmx arguments. 2186 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2187 assert(I.getNumArgOperands() == 2); 2188 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2189 IRBuilder<> IRB(&I); 2190 Value *S1 = getShadow(&I, 0); 2191 Value *S2 = getShadow(&I, 1); 2192 assert(isX86_MMX || S1->getType()->isVectorTy()); 2193 2194 // SExt and ICmpNE below must apply to individual elements of input vectors. 2195 // In case of x86mmx arguments, cast them to appropriate vector types and 2196 // back. 2197 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2198 if (isX86_MMX) { 2199 S1 = IRB.CreateBitCast(S1, T); 2200 S2 = IRB.CreateBitCast(S2, T); 2201 } 2202 Value *S1_ext = IRB.CreateSExt( 2203 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2204 Value *S2_ext = IRB.CreateSExt( 2205 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2206 if (isX86_MMX) { 2207 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2208 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2209 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2210 } 2211 2212 Function *ShadowFn = Intrinsic::getDeclaration( 2213 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2214 2215 Value *S = 2216 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2217 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2218 setShadow(&I, S); 2219 setOriginForNaryOp(I); 2220 } 2221 2222 // \brief Instrument sum-of-absolute-differencies intrinsic. 2223 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2224 const unsigned SignificantBitsPerResultElement = 16; 2225 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2226 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2227 unsigned ZeroBitsPerResultElement = 2228 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2229 2230 IRBuilder<> IRB(&I); 2231 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2232 S = IRB.CreateBitCast(S, ResTy); 2233 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2234 ResTy); 2235 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2236 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2237 setShadow(&I, S); 2238 setOriginForNaryOp(I); 2239 } 2240 2241 // \brief Instrument multiply-add intrinsic. 2242 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2243 unsigned EltSizeInBits = 0) { 2244 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2245 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2246 IRBuilder<> IRB(&I); 2247 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2248 S = IRB.CreateBitCast(S, ResTy); 2249 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2250 ResTy); 2251 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2252 setShadow(&I, S); 2253 setOriginForNaryOp(I); 2254 } 2255 2256 void visitIntrinsicInst(IntrinsicInst &I) { 2257 switch (I.getIntrinsicID()) { 2258 case llvm::Intrinsic::bswap: 2259 handleBswap(I); 2260 break; 2261 case llvm::Intrinsic::x86_avx512_cvtsd2usi64: 2262 case llvm::Intrinsic::x86_avx512_cvtsd2usi: 2263 case llvm::Intrinsic::x86_avx512_cvtss2usi64: 2264 case llvm::Intrinsic::x86_avx512_cvtss2usi: 2265 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2266 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2267 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2268 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2269 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2270 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2271 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2272 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2273 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2274 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2275 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2276 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2277 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2278 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2279 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2280 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2281 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2282 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2283 case llvm::Intrinsic::x86_sse_cvtss2si64: 2284 case llvm::Intrinsic::x86_sse_cvtss2si: 2285 case llvm::Intrinsic::x86_sse_cvttss2si64: 2286 case llvm::Intrinsic::x86_sse_cvttss2si: 2287 handleVectorConvertIntrinsic(I, 1); 2288 break; 2289 case llvm::Intrinsic::x86_sse2_cvtdq2pd: 2290 case llvm::Intrinsic::x86_sse2_cvtps2pd: 2291 case llvm::Intrinsic::x86_sse_cvtps2pi: 2292 case llvm::Intrinsic::x86_sse_cvttps2pi: 2293 handleVectorConvertIntrinsic(I, 2); 2294 break; 2295 case llvm::Intrinsic::x86_avx2_psll_w: 2296 case llvm::Intrinsic::x86_avx2_psll_d: 2297 case llvm::Intrinsic::x86_avx2_psll_q: 2298 case llvm::Intrinsic::x86_avx2_pslli_w: 2299 case llvm::Intrinsic::x86_avx2_pslli_d: 2300 case llvm::Intrinsic::x86_avx2_pslli_q: 2301 case llvm::Intrinsic::x86_avx2_psrl_w: 2302 case llvm::Intrinsic::x86_avx2_psrl_d: 2303 case llvm::Intrinsic::x86_avx2_psrl_q: 2304 case llvm::Intrinsic::x86_avx2_psra_w: 2305 case llvm::Intrinsic::x86_avx2_psra_d: 2306 case llvm::Intrinsic::x86_avx2_psrli_w: 2307 case llvm::Intrinsic::x86_avx2_psrli_d: 2308 case llvm::Intrinsic::x86_avx2_psrli_q: 2309 case llvm::Intrinsic::x86_avx2_psrai_w: 2310 case llvm::Intrinsic::x86_avx2_psrai_d: 2311 case llvm::Intrinsic::x86_sse2_psll_w: 2312 case llvm::Intrinsic::x86_sse2_psll_d: 2313 case llvm::Intrinsic::x86_sse2_psll_q: 2314 case llvm::Intrinsic::x86_sse2_pslli_w: 2315 case llvm::Intrinsic::x86_sse2_pslli_d: 2316 case llvm::Intrinsic::x86_sse2_pslli_q: 2317 case llvm::Intrinsic::x86_sse2_psrl_w: 2318 case llvm::Intrinsic::x86_sse2_psrl_d: 2319 case llvm::Intrinsic::x86_sse2_psrl_q: 2320 case llvm::Intrinsic::x86_sse2_psra_w: 2321 case llvm::Intrinsic::x86_sse2_psra_d: 2322 case llvm::Intrinsic::x86_sse2_psrli_w: 2323 case llvm::Intrinsic::x86_sse2_psrli_d: 2324 case llvm::Intrinsic::x86_sse2_psrli_q: 2325 case llvm::Intrinsic::x86_sse2_psrai_w: 2326 case llvm::Intrinsic::x86_sse2_psrai_d: 2327 case llvm::Intrinsic::x86_mmx_psll_w: 2328 case llvm::Intrinsic::x86_mmx_psll_d: 2329 case llvm::Intrinsic::x86_mmx_psll_q: 2330 case llvm::Intrinsic::x86_mmx_pslli_w: 2331 case llvm::Intrinsic::x86_mmx_pslli_d: 2332 case llvm::Intrinsic::x86_mmx_pslli_q: 2333 case llvm::Intrinsic::x86_mmx_psrl_w: 2334 case llvm::Intrinsic::x86_mmx_psrl_d: 2335 case llvm::Intrinsic::x86_mmx_psrl_q: 2336 case llvm::Intrinsic::x86_mmx_psra_w: 2337 case llvm::Intrinsic::x86_mmx_psra_d: 2338 case llvm::Intrinsic::x86_mmx_psrli_w: 2339 case llvm::Intrinsic::x86_mmx_psrli_d: 2340 case llvm::Intrinsic::x86_mmx_psrli_q: 2341 case llvm::Intrinsic::x86_mmx_psrai_w: 2342 case llvm::Intrinsic::x86_mmx_psrai_d: 2343 handleVectorShiftIntrinsic(I, /* Variable */ false); 2344 break; 2345 case llvm::Intrinsic::x86_avx2_psllv_d: 2346 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2347 case llvm::Intrinsic::x86_avx2_psllv_q: 2348 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2349 case llvm::Intrinsic::x86_avx2_psrlv_d: 2350 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2351 case llvm::Intrinsic::x86_avx2_psrlv_q: 2352 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2353 case llvm::Intrinsic::x86_avx2_psrav_d: 2354 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2355 handleVectorShiftIntrinsic(I, /* Variable */ true); 2356 break; 2357 2358 case llvm::Intrinsic::x86_sse2_packsswb_128: 2359 case llvm::Intrinsic::x86_sse2_packssdw_128: 2360 case llvm::Intrinsic::x86_sse2_packuswb_128: 2361 case llvm::Intrinsic::x86_sse41_packusdw: 2362 case llvm::Intrinsic::x86_avx2_packsswb: 2363 case llvm::Intrinsic::x86_avx2_packssdw: 2364 case llvm::Intrinsic::x86_avx2_packuswb: 2365 case llvm::Intrinsic::x86_avx2_packusdw: 2366 handleVectorPackIntrinsic(I); 2367 break; 2368 2369 case llvm::Intrinsic::x86_mmx_packsswb: 2370 case llvm::Intrinsic::x86_mmx_packuswb: 2371 handleVectorPackIntrinsic(I, 16); 2372 break; 2373 2374 case llvm::Intrinsic::x86_mmx_packssdw: 2375 handleVectorPackIntrinsic(I, 32); 2376 break; 2377 2378 case llvm::Intrinsic::x86_mmx_psad_bw: 2379 case llvm::Intrinsic::x86_sse2_psad_bw: 2380 case llvm::Intrinsic::x86_avx2_psad_bw: 2381 handleVectorSadIntrinsic(I); 2382 break; 2383 2384 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2385 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2386 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2387 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2388 handleVectorPmaddIntrinsic(I); 2389 break; 2390 2391 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2392 handleVectorPmaddIntrinsic(I, 8); 2393 break; 2394 2395 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2396 handleVectorPmaddIntrinsic(I, 16); 2397 break; 2398 2399 default: 2400 if (!handleUnknownIntrinsic(I)) 2401 visitInstruction(I); 2402 break; 2403 } 2404 } 2405 2406 void visitCallSite(CallSite CS) { 2407 Instruction &I = *CS.getInstruction(); 2408 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2409 if (CS.isCall()) { 2410 CallInst *Call = cast<CallInst>(&I); 2411 2412 // For inline asm, do the usual thing: check argument shadow and mark all 2413 // outputs as clean. Note that any side effects of the inline asm that are 2414 // not immediately visible in its constraints are not handled. 2415 if (Call->isInlineAsm()) { 2416 visitInstruction(I); 2417 return; 2418 } 2419 2420 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2421 2422 // We are going to insert code that relies on the fact that the callee 2423 // will become a non-readonly function after it is instrumented by us. To 2424 // prevent this code from being optimized out, mark that function 2425 // non-readonly in advance. 2426 if (Function *Func = Call->getCalledFunction()) { 2427 // Clear out readonly/readnone attributes. 2428 AttrBuilder B; 2429 B.addAttribute(Attribute::ReadOnly) 2430 .addAttribute(Attribute::ReadNone); 2431 Func->removeAttributes(AttributeSet::FunctionIndex, 2432 AttributeSet::get(Func->getContext(), 2433 AttributeSet::FunctionIndex, 2434 B)); 2435 } 2436 } 2437 IRBuilder<> IRB(&I); 2438 2439 unsigned ArgOffset = 0; 2440 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2441 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2442 ArgIt != End; ++ArgIt) { 2443 Value *A = *ArgIt; 2444 unsigned i = ArgIt - CS.arg_begin(); 2445 if (!A->getType()->isSized()) { 2446 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2447 continue; 2448 } 2449 unsigned Size = 0; 2450 Value *Store = nullptr; 2451 // Compute the Shadow for arg even if it is ByVal, because 2452 // in that case getShadow() will copy the actual arg shadow to 2453 // __msan_param_tls. 2454 Value *ArgShadow = getShadow(A); 2455 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2456 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2457 " Shadow: " << *ArgShadow << "\n"); 2458 bool ArgIsInitialized = false; 2459 const DataLayout &DL = F.getParent()->getDataLayout(); 2460 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2461 assert(A->getType()->isPointerTy() && 2462 "ByVal argument is not a pointer!"); 2463 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2464 if (ArgOffset + Size > kParamTLSSize) break; 2465 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2466 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2467 Store = IRB.CreateMemCpy(ArgShadowBase, 2468 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2469 Size, Alignment); 2470 } else { 2471 Size = DL.getTypeAllocSize(A->getType()); 2472 if (ArgOffset + Size > kParamTLSSize) break; 2473 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2474 kShadowTLSAlignment); 2475 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2476 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2477 } 2478 if (MS.TrackOrigins && !ArgIsInitialized) 2479 IRB.CreateStore(getOrigin(A), 2480 getOriginPtrForArgument(A, IRB, ArgOffset)); 2481 (void)Store; 2482 assert(Size != 0 && Store != nullptr); 2483 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2484 ArgOffset += RoundUpToAlignment(Size, 8); 2485 } 2486 DEBUG(dbgs() << " done with call args\n"); 2487 2488 FunctionType *FT = 2489 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2490 if (FT->isVarArg()) { 2491 VAHelper->visitCallSite(CS, IRB); 2492 } 2493 2494 // Now, get the shadow for the RetVal. 2495 if (!I.getType()->isSized()) return; 2496 IRBuilder<> IRBBefore(&I); 2497 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2498 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2499 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2500 Instruction *NextInsn = nullptr; 2501 if (CS.isCall()) { 2502 NextInsn = I.getNextNode(); 2503 } else { 2504 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2505 if (!NormalDest->getSinglePredecessor()) { 2506 // FIXME: this case is tricky, so we are just conservative here. 2507 // Perhaps we need to split the edge between this BB and NormalDest, 2508 // but a naive attempt to use SplitEdge leads to a crash. 2509 setShadow(&I, getCleanShadow(&I)); 2510 setOrigin(&I, getCleanOrigin()); 2511 return; 2512 } 2513 NextInsn = NormalDest->getFirstInsertionPt(); 2514 assert(NextInsn && 2515 "Could not find insertion point for retval shadow load"); 2516 } 2517 IRBuilder<> IRBAfter(NextInsn); 2518 Value *RetvalShadow = 2519 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2520 kShadowTLSAlignment, "_msret"); 2521 setShadow(&I, RetvalShadow); 2522 if (MS.TrackOrigins) 2523 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2524 } 2525 2526 void visitReturnInst(ReturnInst &I) { 2527 IRBuilder<> IRB(&I); 2528 Value *RetVal = I.getReturnValue(); 2529 if (!RetVal) return; 2530 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2531 if (CheckReturnValue) { 2532 insertShadowCheck(RetVal, &I); 2533 Value *Shadow = getCleanShadow(RetVal); 2534 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2535 } else { 2536 Value *Shadow = getShadow(RetVal); 2537 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2538 // FIXME: make it conditional if ClStoreCleanOrigin==0 2539 if (MS.TrackOrigins) 2540 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2541 } 2542 } 2543 2544 void visitPHINode(PHINode &I) { 2545 IRBuilder<> IRB(&I); 2546 if (!PropagateShadow) { 2547 setShadow(&I, getCleanShadow(&I)); 2548 setOrigin(&I, getCleanOrigin()); 2549 return; 2550 } 2551 2552 ShadowPHINodes.push_back(&I); 2553 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2554 "_msphi_s")); 2555 if (MS.TrackOrigins) 2556 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2557 "_msphi_o")); 2558 } 2559 2560 void visitAllocaInst(AllocaInst &I) { 2561 setShadow(&I, getCleanShadow(&I)); 2562 setOrigin(&I, getCleanOrigin()); 2563 IRBuilder<> IRB(I.getNextNode()); 2564 const DataLayout &DL = F.getParent()->getDataLayout(); 2565 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2566 if (PoisonStack && ClPoisonStackWithCall) { 2567 IRB.CreateCall(MS.MsanPoisonStackFn, 2568 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2569 ConstantInt::get(MS.IntptrTy, Size)}); 2570 } else { 2571 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2572 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2573 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2574 } 2575 2576 if (PoisonStack && MS.TrackOrigins) { 2577 SmallString<2048> StackDescriptionStorage; 2578 raw_svector_ostream StackDescription(StackDescriptionStorage); 2579 // We create a string with a description of the stack allocation and 2580 // pass it into __msan_set_alloca_origin. 2581 // It will be printed by the run-time if stack-originated UMR is found. 2582 // The first 4 bytes of the string are set to '----' and will be replaced 2583 // by __msan_va_arg_overflow_size_tls at the first call. 2584 StackDescription << "----" << I.getName() << "@" << F.getName(); 2585 Value *Descr = 2586 createPrivateNonConstGlobalForString(*F.getParent(), 2587 StackDescription.str()); 2588 2589 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2590 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2591 ConstantInt::get(MS.IntptrTy, Size), 2592 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2593 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2594 } 2595 } 2596 2597 void visitSelectInst(SelectInst& I) { 2598 IRBuilder<> IRB(&I); 2599 // a = select b, c, d 2600 Value *B = I.getCondition(); 2601 Value *C = I.getTrueValue(); 2602 Value *D = I.getFalseValue(); 2603 Value *Sb = getShadow(B); 2604 Value *Sc = getShadow(C); 2605 Value *Sd = getShadow(D); 2606 2607 // Result shadow if condition shadow is 0. 2608 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2609 Value *Sa1; 2610 if (I.getType()->isAggregateType()) { 2611 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2612 // an extra "select". This results in much more compact IR. 2613 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2614 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2615 } else { 2616 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2617 // If Sb (condition is poisoned), look for bits in c and d that are equal 2618 // and both unpoisoned. 2619 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2620 2621 // Cast arguments to shadow-compatible type. 2622 C = CreateAppToShadowCast(IRB, C); 2623 D = CreateAppToShadowCast(IRB, D); 2624 2625 // Result shadow if condition shadow is 1. 2626 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2627 } 2628 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2629 setShadow(&I, Sa); 2630 if (MS.TrackOrigins) { 2631 // Origins are always i32, so any vector conditions must be flattened. 2632 // FIXME: consider tracking vector origins for app vectors? 2633 if (B->getType()->isVectorTy()) { 2634 Type *FlatTy = getShadowTyNoVec(B->getType()); 2635 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2636 ConstantInt::getNullValue(FlatTy)); 2637 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2638 ConstantInt::getNullValue(FlatTy)); 2639 } 2640 // a = select b, c, d 2641 // Oa = Sb ? Ob : (b ? Oc : Od) 2642 setOrigin( 2643 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2644 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2645 getOrigin(I.getFalseValue())))); 2646 } 2647 } 2648 2649 void visitLandingPadInst(LandingPadInst &I) { 2650 // Do nothing. 2651 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2652 setShadow(&I, getCleanShadow(&I)); 2653 setOrigin(&I, getCleanOrigin()); 2654 } 2655 2656 void visitGetElementPtrInst(GetElementPtrInst &I) { 2657 handleShadowOr(I); 2658 } 2659 2660 void visitExtractValueInst(ExtractValueInst &I) { 2661 IRBuilder<> IRB(&I); 2662 Value *Agg = I.getAggregateOperand(); 2663 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2664 Value *AggShadow = getShadow(Agg); 2665 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2666 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2667 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2668 setShadow(&I, ResShadow); 2669 setOriginForNaryOp(I); 2670 } 2671 2672 void visitInsertValueInst(InsertValueInst &I) { 2673 IRBuilder<> IRB(&I); 2674 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2675 Value *AggShadow = getShadow(I.getAggregateOperand()); 2676 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2677 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2678 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2679 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2680 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2681 setShadow(&I, Res); 2682 setOriginForNaryOp(I); 2683 } 2684 2685 void dumpInst(Instruction &I) { 2686 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2687 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2688 } else { 2689 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2690 } 2691 errs() << "QQQ " << I << "\n"; 2692 } 2693 2694 void visitResumeInst(ResumeInst &I) { 2695 DEBUG(dbgs() << "Resume: " << I << "\n"); 2696 // Nothing to do here. 2697 } 2698 2699 void visitInstruction(Instruction &I) { 2700 // Everything else: stop propagating and check for poisoned shadow. 2701 if (ClDumpStrictInstructions) 2702 dumpInst(I); 2703 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2704 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2705 insertShadowCheck(I.getOperand(i), &I); 2706 setShadow(&I, getCleanShadow(&I)); 2707 setOrigin(&I, getCleanOrigin()); 2708 } 2709 }; 2710 2711 /// \brief AMD64-specific implementation of VarArgHelper. 2712 struct VarArgAMD64Helper : public VarArgHelper { 2713 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2714 // See a comment in visitCallSite for more details. 2715 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2716 static const unsigned AMD64FpEndOffset = 176; 2717 2718 Function &F; 2719 MemorySanitizer &MS; 2720 MemorySanitizerVisitor &MSV; 2721 Value *VAArgTLSCopy; 2722 Value *VAArgOverflowSize; 2723 2724 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2725 2726 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2727 MemorySanitizerVisitor &MSV) 2728 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2729 VAArgOverflowSize(nullptr) {} 2730 2731 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2732 2733 ArgKind classifyArgument(Value* arg) { 2734 // A very rough approximation of X86_64 argument classification rules. 2735 Type *T = arg->getType(); 2736 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2737 return AK_FloatingPoint; 2738 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2739 return AK_GeneralPurpose; 2740 if (T->isPointerTy()) 2741 return AK_GeneralPurpose; 2742 return AK_Memory; 2743 } 2744 2745 // For VarArg functions, store the argument shadow in an ABI-specific format 2746 // that corresponds to va_list layout. 2747 // We do this because Clang lowers va_arg in the frontend, and this pass 2748 // only sees the low level code that deals with va_list internals. 2749 // A much easier alternative (provided that Clang emits va_arg instructions) 2750 // would have been to associate each live instance of va_list with a copy of 2751 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2752 // order. 2753 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2754 unsigned GpOffset = 0; 2755 unsigned FpOffset = AMD64GpEndOffset; 2756 unsigned OverflowOffset = AMD64FpEndOffset; 2757 const DataLayout &DL = F.getParent()->getDataLayout(); 2758 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2759 ArgIt != End; ++ArgIt) { 2760 Value *A = *ArgIt; 2761 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2762 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2763 if (IsByVal) { 2764 // ByVal arguments always go to the overflow area. 2765 assert(A->getType()->isPointerTy()); 2766 Type *RealTy = A->getType()->getPointerElementType(); 2767 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2768 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2769 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2770 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2771 ArgSize, kShadowTLSAlignment); 2772 } else { 2773 ArgKind AK = classifyArgument(A); 2774 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2775 AK = AK_Memory; 2776 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2777 AK = AK_Memory; 2778 Value *Base; 2779 switch (AK) { 2780 case AK_GeneralPurpose: 2781 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2782 GpOffset += 8; 2783 break; 2784 case AK_FloatingPoint: 2785 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2786 FpOffset += 16; 2787 break; 2788 case AK_Memory: 2789 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2790 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2791 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2792 } 2793 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2794 } 2795 } 2796 Constant *OverflowSize = 2797 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2798 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2799 } 2800 2801 /// \brief Compute the shadow address for a given va_arg. 2802 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2803 int ArgOffset) { 2804 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2805 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2806 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2807 "_msarg"); 2808 } 2809 2810 void visitVAStartInst(VAStartInst &I) override { 2811 IRBuilder<> IRB(&I); 2812 VAStartInstrumentationList.push_back(&I); 2813 Value *VAListTag = I.getArgOperand(0); 2814 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2815 2816 // Unpoison the whole __va_list_tag. 2817 // FIXME: magic ABI constants. 2818 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2819 /* size */24, /* alignment */8, false); 2820 } 2821 2822 void visitVACopyInst(VACopyInst &I) override { 2823 IRBuilder<> IRB(&I); 2824 Value *VAListTag = I.getArgOperand(0); 2825 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2826 2827 // Unpoison the whole __va_list_tag. 2828 // FIXME: magic ABI constants. 2829 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2830 /* size */24, /* alignment */8, false); 2831 } 2832 2833 void finalizeInstrumentation() override { 2834 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2835 "finalizeInstrumentation called twice"); 2836 if (!VAStartInstrumentationList.empty()) { 2837 // If there is a va_start in this function, make a backup copy of 2838 // va_arg_tls somewhere in the function entry block. 2839 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2840 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2841 Value *CopySize = 2842 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2843 VAArgOverflowSize); 2844 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2845 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2846 } 2847 2848 // Instrument va_start. 2849 // Copy va_list shadow from the backup copy of the TLS contents. 2850 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2851 CallInst *OrigInst = VAStartInstrumentationList[i]; 2852 IRBuilder<> IRB(OrigInst->getNextNode()); 2853 Value *VAListTag = OrigInst->getArgOperand(0); 2854 2855 Value *RegSaveAreaPtrPtr = 2856 IRB.CreateIntToPtr( 2857 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2858 ConstantInt::get(MS.IntptrTy, 16)), 2859 Type::getInt64PtrTy(*MS.C)); 2860 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2861 Value *RegSaveAreaShadowPtr = 2862 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2863 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 2864 AMD64FpEndOffset, 16); 2865 2866 Value *OverflowArgAreaPtrPtr = 2867 IRB.CreateIntToPtr( 2868 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2869 ConstantInt::get(MS.IntptrTy, 8)), 2870 Type::getInt64PtrTy(*MS.C)); 2871 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 2872 Value *OverflowArgAreaShadowPtr = 2873 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 2874 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 2875 AMD64FpEndOffset); 2876 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 2877 } 2878 } 2879 }; 2880 2881 /// \brief MIPS64-specific implementation of VarArgHelper. 2882 struct VarArgMIPS64Helper : public VarArgHelper { 2883 Function &F; 2884 MemorySanitizer &MS; 2885 MemorySanitizerVisitor &MSV; 2886 Value *VAArgTLSCopy; 2887 Value *VAArgSize; 2888 2889 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2890 2891 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 2892 MemorySanitizerVisitor &MSV) 2893 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2894 VAArgSize(nullptr) {} 2895 2896 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2897 unsigned VAArgOffset = 0; 2898 const DataLayout &DL = F.getParent()->getDataLayout(); 2899 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 2900 ArgIt != End; ++ArgIt) { 2901 Value *A = *ArgIt; 2902 Value *Base; 2903 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2904 #if defined(__MIPSEB__) || defined(MIPSEB) 2905 // Adjusting the shadow for argument with size < 8 to match the placement 2906 // of bits in big endian system 2907 if (ArgSize < 8) 2908 VAArgOffset += (8 - ArgSize); 2909 #endif 2910 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 2911 VAArgOffset += ArgSize; 2912 VAArgOffset = RoundUpToAlignment(VAArgOffset, 8); 2913 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2914 } 2915 2916 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 2917 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 2918 // a new class member i.e. it is the total size of all VarArgs. 2919 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 2920 } 2921 2922 /// \brief Compute the shadow address for a given va_arg. 2923 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2924 int ArgOffset) { 2925 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2926 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2927 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2928 "_msarg"); 2929 } 2930 2931 void visitVAStartInst(VAStartInst &I) override { 2932 IRBuilder<> IRB(&I); 2933 VAStartInstrumentationList.push_back(&I); 2934 Value *VAListTag = I.getArgOperand(0); 2935 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2936 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2937 /* size */8, /* alignment */8, false); 2938 } 2939 2940 void visitVACopyInst(VACopyInst &I) override { 2941 IRBuilder<> IRB(&I); 2942 Value *VAListTag = I.getArgOperand(0); 2943 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2944 // Unpoison the whole __va_list_tag. 2945 // FIXME: magic ABI constants. 2946 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2947 /* size */8, /* alignment */8, false); 2948 } 2949 2950 void finalizeInstrumentation() override { 2951 assert(!VAArgSize && !VAArgTLSCopy && 2952 "finalizeInstrumentation called twice"); 2953 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2954 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2955 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 2956 VAArgSize); 2957 2958 if (!VAStartInstrumentationList.empty()) { 2959 // If there is a va_start in this function, make a backup copy of 2960 // va_arg_tls somewhere in the function entry block. 2961 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2962 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2963 } 2964 2965 // Instrument va_start. 2966 // Copy va_list shadow from the backup copy of the TLS contents. 2967 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2968 CallInst *OrigInst = VAStartInstrumentationList[i]; 2969 IRBuilder<> IRB(OrigInst->getNextNode()); 2970 Value *VAListTag = OrigInst->getArgOperand(0); 2971 Value *RegSaveAreaPtrPtr = 2972 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2973 Type::getInt64PtrTy(*MS.C)); 2974 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2975 Value *RegSaveAreaShadowPtr = 2976 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2977 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 2978 } 2979 } 2980 }; 2981 2982 /// \brief A no-op implementation of VarArgHelper. 2983 struct VarArgNoOpHelper : public VarArgHelper { 2984 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 2985 MemorySanitizerVisitor &MSV) {} 2986 2987 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 2988 2989 void visitVAStartInst(VAStartInst &I) override {} 2990 2991 void visitVACopyInst(VACopyInst &I) override {} 2992 2993 void finalizeInstrumentation() override {} 2994 }; 2995 2996 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 2997 MemorySanitizerVisitor &Visitor) { 2998 // VarArg handling is only implemented on AMD64. False positives are possible 2999 // on other platforms. 3000 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3001 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3002 return new VarArgAMD64Helper(Func, Msan, Visitor); 3003 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3004 TargetTriple.getArch() == llvm::Triple::mips64el) 3005 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3006 else 3007 return new VarArgNoOpHelper(Func, Msan, Visitor); 3008 } 3009 3010 } // namespace 3011 3012 bool MemorySanitizer::runOnFunction(Function &F) { 3013 if (&F == MsanCtorFunction) 3014 return false; 3015 MemorySanitizerVisitor Visitor(F, *this); 3016 3017 // Clear out readonly/readnone attributes. 3018 AttrBuilder B; 3019 B.addAttribute(Attribute::ReadOnly) 3020 .addAttribute(Attribute::ReadNone); 3021 F.removeAttributes(AttributeSet::FunctionIndex, 3022 AttributeSet::get(F.getContext(), 3023 AttributeSet::FunctionIndex, B)); 3024 3025 return Visitor.runOnFunction(); 3026 } 3027