1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/IR/Argument.h" 157 #include "llvm/IR/Attributes.h" 158 #include "llvm/IR/BasicBlock.h" 159 #include "llvm/IR/CallingConv.h" 160 #include "llvm/IR/Constant.h" 161 #include "llvm/IR/Constants.h" 162 #include "llvm/IR/DataLayout.h" 163 #include "llvm/IR/DerivedTypes.h" 164 #include "llvm/IR/Function.h" 165 #include "llvm/IR/GlobalValue.h" 166 #include "llvm/IR/GlobalVariable.h" 167 #include "llvm/IR/IRBuilder.h" 168 #include "llvm/IR/InlineAsm.h" 169 #include "llvm/IR/InstVisitor.h" 170 #include "llvm/IR/InstrTypes.h" 171 #include "llvm/IR/Instruction.h" 172 #include "llvm/IR/Instructions.h" 173 #include "llvm/IR/IntrinsicInst.h" 174 #include "llvm/IR/Intrinsics.h" 175 #include "llvm/IR/IntrinsicsX86.h" 176 #include "llvm/IR/LLVMContext.h" 177 #include "llvm/IR/MDBuilder.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/IR/Type.h" 180 #include "llvm/IR/Value.h" 181 #include "llvm/IR/ValueMap.h" 182 #include "llvm/InitializePasses.h" 183 #include "llvm/Pass.h" 184 #include "llvm/Support/AtomicOrdering.h" 185 #include "llvm/Support/Casting.h" 186 #include "llvm/Support/CommandLine.h" 187 #include "llvm/Support/Compiler.h" 188 #include "llvm/Support/Debug.h" 189 #include "llvm/Support/ErrorHandling.h" 190 #include "llvm/Support/MathExtras.h" 191 #include "llvm/Support/raw_ostream.h" 192 #include "llvm/Transforms/Instrumentation.h" 193 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 194 #include "llvm/Transforms/Utils/Local.h" 195 #include "llvm/Transforms/Utils/ModuleUtils.h" 196 #include <algorithm> 197 #include <cassert> 198 #include <cstddef> 199 #include <cstdint> 200 #include <memory> 201 #include <string> 202 #include <tuple> 203 204 using namespace llvm; 205 206 #define DEBUG_TYPE "msan" 207 208 static const unsigned kOriginSize = 4; 209 static const Align kMinOriginAlignment = Align(4); 210 static const Align kShadowTLSAlignment = Align(8); 211 212 // These constants must be kept in sync with the ones in msan.h. 213 static const unsigned kParamTLSSize = 800; 214 static const unsigned kRetvalTLSSize = 800; 215 216 // Accesses sizes are powers of two: 1, 2, 4, 8. 217 static const size_t kNumberOfAccessSizes = 4; 218 219 /// Track origins of uninitialized values. 220 /// 221 /// Adds a section to MemorySanitizer report that points to the allocation 222 /// (stack or heap) the uninitialized bits came from originally. 223 static cl::opt<int> ClTrackOrigins("msan-track-origins", 224 cl::desc("Track origins (allocation sites) of poisoned memory"), 225 cl::Hidden, cl::init(0)); 226 227 static cl::opt<bool> ClKeepGoing("msan-keep-going", 228 cl::desc("keep going after reporting a UMR"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 232 cl::desc("poison uninitialized stack variables"), 233 cl::Hidden, cl::init(true)); 234 235 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 236 cl::desc("poison uninitialized stack variables with a call"), 237 cl::Hidden, cl::init(false)); 238 239 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 240 cl::desc("poison uninitialized stack variables with the given pattern"), 241 cl::Hidden, cl::init(0xff)); 242 243 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 244 cl::desc("poison undef temps"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 248 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 249 cl::Hidden, cl::init(true)); 250 251 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 252 cl::desc("exact handling of relational integer ICmp"), 253 cl::Hidden, cl::init(false)); 254 255 static cl::opt<bool> ClHandleLifetimeIntrinsics( 256 "msan-handle-lifetime-intrinsics", 257 cl::desc( 258 "when possible, poison scoped variables at the beginning of the scope " 259 "(slower, but more precise)"), 260 cl::Hidden, cl::init(true)); 261 262 // When compiling the Linux kernel, we sometimes see false positives related to 263 // MSan being unable to understand that inline assembly calls may initialize 264 // local variables. 265 // This flag makes the compiler conservatively unpoison every memory location 266 // passed into an assembly call. Note that this may cause false positives. 267 // Because it's impossible to figure out the array sizes, we can only unpoison 268 // the first sizeof(type) bytes for each type* pointer. 269 // The instrumentation is only enabled in KMSAN builds, and only if 270 // -msan-handle-asm-conservative is on. This is done because we may want to 271 // quickly disable assembly instrumentation when it breaks. 272 static cl::opt<bool> ClHandleAsmConservative( 273 "msan-handle-asm-conservative", 274 cl::desc("conservative handling of inline assembly"), cl::Hidden, 275 cl::init(true)); 276 277 // This flag controls whether we check the shadow of the address 278 // operand of load or store. Such bugs are very rare, since load from 279 // a garbage address typically results in SEGV, but still happen 280 // (e.g. only lower bits of address are garbage, or the access happens 281 // early at program startup where malloc-ed memory is more likely to 282 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 283 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 284 cl::desc("report accesses through a pointer which has poisoned shadow"), 285 cl::Hidden, cl::init(true)); 286 287 static cl::opt<bool> ClEagerChecks( 288 "msan-eager-checks", 289 cl::desc("check arguments and return values at function call boundaries"), 290 cl::Hidden, cl::init(false)); 291 292 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 293 cl::desc("print out instructions with default strict semantics"), 294 cl::Hidden, cl::init(false)); 295 296 static cl::opt<int> ClInstrumentationWithCallThreshold( 297 "msan-instrumentation-with-call-threshold", 298 cl::desc( 299 "If the function being instrumented requires more than " 300 "this number of checks and origin stores, use callbacks instead of " 301 "inline checks (-1 means never use callbacks)."), 302 cl::Hidden, cl::init(3500)); 303 304 static cl::opt<bool> 305 ClEnableKmsan("msan-kernel", 306 cl::desc("Enable KernelMemorySanitizer instrumentation"), 307 cl::Hidden, cl::init(false)); 308 309 // This is an experiment to enable handling of cases where shadow is a non-zero 310 // compile-time constant. For some unexplainable reason they were silently 311 // ignored in the instrumentation. 312 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 313 cl::desc("Insert checks for constant shadow values"), 314 cl::Hidden, cl::init(false)); 315 316 // This is off by default because of a bug in gold: 317 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 318 static cl::opt<bool> ClWithComdat("msan-with-comdat", 319 cl::desc("Place MSan constructors in comdat sections"), 320 cl::Hidden, cl::init(false)); 321 322 // These options allow to specify custom memory map parameters 323 // See MemoryMapParams for details. 324 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 325 cl::desc("Define custom MSan AndMask"), 326 cl::Hidden, cl::init(0)); 327 328 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 329 cl::desc("Define custom MSan XorMask"), 330 cl::Hidden, cl::init(0)); 331 332 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 333 cl::desc("Define custom MSan ShadowBase"), 334 cl::Hidden, cl::init(0)); 335 336 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 337 cl::desc("Define custom MSan OriginBase"), 338 cl::Hidden, cl::init(0)); 339 340 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 341 static const char *const kMsanInitName = "__msan_init"; 342 343 namespace { 344 345 // Memory map parameters used in application-to-shadow address calculation. 346 // Offset = (Addr & ~AndMask) ^ XorMask 347 // Shadow = ShadowBase + Offset 348 // Origin = OriginBase + Offset 349 struct MemoryMapParams { 350 uint64_t AndMask; 351 uint64_t XorMask; 352 uint64_t ShadowBase; 353 uint64_t OriginBase; 354 }; 355 356 struct PlatformMemoryMapParams { 357 const MemoryMapParams *bits32; 358 const MemoryMapParams *bits64; 359 }; 360 361 } // end anonymous namespace 362 363 // i386 Linux 364 static const MemoryMapParams Linux_I386_MemoryMapParams = { 365 0x000080000000, // AndMask 366 0, // XorMask (not used) 367 0, // ShadowBase (not used) 368 0x000040000000, // OriginBase 369 }; 370 371 // x86_64 Linux 372 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 373 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 374 0x400000000000, // AndMask 375 0, // XorMask (not used) 376 0, // ShadowBase (not used) 377 0x200000000000, // OriginBase 378 #else 379 0, // AndMask (not used) 380 0x500000000000, // XorMask 381 0, // ShadowBase (not used) 382 0x100000000000, // OriginBase 383 #endif 384 }; 385 386 // mips64 Linux 387 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 388 0, // AndMask (not used) 389 0x008000000000, // XorMask 390 0, // ShadowBase (not used) 391 0x002000000000, // OriginBase 392 }; 393 394 // ppc64 Linux 395 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 396 0xE00000000000, // AndMask 397 0x100000000000, // XorMask 398 0x080000000000, // ShadowBase 399 0x1C0000000000, // OriginBase 400 }; 401 402 // s390x Linux 403 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 404 0xC00000000000, // AndMask 405 0, // XorMask (not used) 406 0x080000000000, // ShadowBase 407 0x1C0000000000, // OriginBase 408 }; 409 410 // aarch64 Linux 411 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 412 0, // AndMask (not used) 413 0x06000000000, // XorMask 414 0, // ShadowBase (not used) 415 0x01000000000, // OriginBase 416 }; 417 418 // i386 FreeBSD 419 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 420 0x000180000000, // AndMask 421 0x000040000000, // XorMask 422 0x000020000000, // ShadowBase 423 0x000700000000, // OriginBase 424 }; 425 426 // x86_64 FreeBSD 427 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 428 0xc00000000000, // AndMask 429 0x200000000000, // XorMask 430 0x100000000000, // ShadowBase 431 0x380000000000, // OriginBase 432 }; 433 434 // x86_64 NetBSD 435 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 436 0, // AndMask 437 0x500000000000, // XorMask 438 0, // ShadowBase 439 0x100000000000, // OriginBase 440 }; 441 442 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 443 &Linux_I386_MemoryMapParams, 444 &Linux_X86_64_MemoryMapParams, 445 }; 446 447 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 448 nullptr, 449 &Linux_MIPS64_MemoryMapParams, 450 }; 451 452 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 453 nullptr, 454 &Linux_PowerPC64_MemoryMapParams, 455 }; 456 457 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 458 nullptr, 459 &Linux_S390X_MemoryMapParams, 460 }; 461 462 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 463 nullptr, 464 &Linux_AArch64_MemoryMapParams, 465 }; 466 467 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 468 &FreeBSD_I386_MemoryMapParams, 469 &FreeBSD_X86_64_MemoryMapParams, 470 }; 471 472 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 473 nullptr, 474 &NetBSD_X86_64_MemoryMapParams, 475 }; 476 477 namespace { 478 479 /// Instrument functions of a module to detect uninitialized reads. 480 /// 481 /// Instantiating MemorySanitizer inserts the msan runtime library API function 482 /// declarations into the module if they don't exist already. Instantiating 483 /// ensures the __msan_init function is in the list of global constructors for 484 /// the module. 485 class MemorySanitizer { 486 public: 487 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 488 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 489 Recover(Options.Recover) { 490 initializeModule(M); 491 } 492 493 // MSan cannot be moved or copied because of MapParams. 494 MemorySanitizer(MemorySanitizer &&) = delete; 495 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 496 MemorySanitizer(const MemorySanitizer &) = delete; 497 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 498 499 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 500 501 private: 502 friend struct MemorySanitizerVisitor; 503 friend struct VarArgAMD64Helper; 504 friend struct VarArgMIPS64Helper; 505 friend struct VarArgAArch64Helper; 506 friend struct VarArgPowerPC64Helper; 507 friend struct VarArgSystemZHelper; 508 509 void initializeModule(Module &M); 510 void initializeCallbacks(Module &M); 511 void createKernelApi(Module &M); 512 void createUserspaceApi(Module &M); 513 514 /// True if we're compiling the Linux kernel. 515 bool CompileKernel; 516 /// Track origins (allocation points) of uninitialized values. 517 int TrackOrigins; 518 bool Recover; 519 520 LLVMContext *C; 521 Type *IntptrTy; 522 Type *OriginTy; 523 524 // XxxTLS variables represent the per-thread state in MSan and per-task state 525 // in KMSAN. 526 // For the userspace these point to thread-local globals. In the kernel land 527 // they point to the members of a per-task struct obtained via a call to 528 // __msan_get_context_state(). 529 530 /// Thread-local shadow storage for function parameters. 531 Value *ParamTLS; 532 533 /// Thread-local origin storage for function parameters. 534 Value *ParamOriginTLS; 535 536 /// Thread-local shadow storage for function return value. 537 Value *RetvalTLS; 538 539 /// Thread-local origin storage for function return value. 540 Value *RetvalOriginTLS; 541 542 /// Thread-local shadow storage for in-register va_arg function 543 /// parameters (x86_64-specific). 544 Value *VAArgTLS; 545 546 /// Thread-local shadow storage for in-register va_arg function 547 /// parameters (x86_64-specific). 548 Value *VAArgOriginTLS; 549 550 /// Thread-local shadow storage for va_arg overflow area 551 /// (x86_64-specific). 552 Value *VAArgOverflowSizeTLS; 553 554 /// Are the instrumentation callbacks set up? 555 bool CallbacksInitialized = false; 556 557 /// The run-time callback to print a warning. 558 FunctionCallee WarningFn; 559 560 // These arrays are indexed by log2(AccessSize). 561 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 562 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 563 564 /// Run-time helper that generates a new origin value for a stack 565 /// allocation. 566 FunctionCallee MsanSetAllocaOrigin4Fn; 567 568 /// Run-time helper that poisons stack on function entry. 569 FunctionCallee MsanPoisonStackFn; 570 571 /// Run-time helper that records a store (or any event) of an 572 /// uninitialized value and returns an updated origin id encoding this info. 573 FunctionCallee MsanChainOriginFn; 574 575 /// Run-time helper that paints an origin over a region. 576 FunctionCallee MsanSetOriginFn; 577 578 /// MSan runtime replacements for memmove, memcpy and memset. 579 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 580 581 /// KMSAN callback for task-local function argument shadow. 582 StructType *MsanContextStateTy; 583 FunctionCallee MsanGetContextStateFn; 584 585 /// Functions for poisoning/unpoisoning local variables 586 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 587 588 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 589 /// pointers. 590 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 591 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 592 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 593 FunctionCallee MsanInstrumentAsmStoreFn; 594 595 /// Helper to choose between different MsanMetadataPtrXxx(). 596 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 597 598 /// Memory map parameters used in application-to-shadow calculation. 599 const MemoryMapParams *MapParams; 600 601 /// Custom memory map parameters used when -msan-shadow-base or 602 // -msan-origin-base is provided. 603 MemoryMapParams CustomMapParams; 604 605 MDNode *ColdCallWeights; 606 607 /// Branch weights for origin store. 608 MDNode *OriginStoreWeights; 609 }; 610 611 void insertModuleCtor(Module &M) { 612 getOrCreateSanitizerCtorAndInitFunctions( 613 M, kMsanModuleCtorName, kMsanInitName, 614 /*InitArgTypes=*/{}, 615 /*InitArgs=*/{}, 616 // This callback is invoked when the functions are created the first 617 // time. Hook them into the global ctors list in that case: 618 [&](Function *Ctor, FunctionCallee) { 619 if (!ClWithComdat) { 620 appendToGlobalCtors(M, Ctor, 0); 621 return; 622 } 623 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 624 Ctor->setComdat(MsanCtorComdat); 625 appendToGlobalCtors(M, Ctor, 0, Ctor); 626 }); 627 } 628 629 /// A legacy function pass for msan instrumentation. 630 /// 631 /// Instruments functions to detect uninitialized reads. 632 struct MemorySanitizerLegacyPass : public FunctionPass { 633 // Pass identification, replacement for typeid. 634 static char ID; 635 636 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 637 : FunctionPass(ID), Options(Options) { 638 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 639 } 640 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 641 642 void getAnalysisUsage(AnalysisUsage &AU) const override { 643 AU.addRequired<TargetLibraryInfoWrapperPass>(); 644 } 645 646 bool runOnFunction(Function &F) override { 647 return MSan->sanitizeFunction( 648 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 649 } 650 bool doInitialization(Module &M) override; 651 652 Optional<MemorySanitizer> MSan; 653 MemorySanitizerOptions Options; 654 }; 655 656 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 657 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 658 } 659 660 } // end anonymous namespace 661 662 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 663 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 664 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 665 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 666 667 PreservedAnalyses MemorySanitizerPass::run(Function &F, 668 FunctionAnalysisManager &FAM) { 669 MemorySanitizer Msan(*F.getParent(), Options); 670 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 671 return PreservedAnalyses::none(); 672 return PreservedAnalyses::all(); 673 } 674 675 PreservedAnalyses MemorySanitizerPass::run(Module &M, 676 ModuleAnalysisManager &AM) { 677 if (Options.Kernel) 678 return PreservedAnalyses::all(); 679 insertModuleCtor(M); 680 return PreservedAnalyses::none(); 681 } 682 683 char MemorySanitizerLegacyPass::ID = 0; 684 685 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 686 "MemorySanitizer: detects uninitialized reads.", false, 687 false) 688 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 689 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 690 "MemorySanitizer: detects uninitialized reads.", false, 691 false) 692 693 FunctionPass * 694 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 695 return new MemorySanitizerLegacyPass(Options); 696 } 697 698 /// Create a non-const global initialized with the given string. 699 /// 700 /// Creates a writable global for Str so that we can pass it to the 701 /// run-time lib. Runtime uses first 4 bytes of the string to store the 702 /// frame ID, so the string needs to be mutable. 703 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 704 StringRef Str) { 705 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 706 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 707 GlobalValue::PrivateLinkage, StrConst, ""); 708 } 709 710 /// Create KMSAN API callbacks. 711 void MemorySanitizer::createKernelApi(Module &M) { 712 IRBuilder<> IRB(*C); 713 714 // These will be initialized in insertKmsanPrologue(). 715 RetvalTLS = nullptr; 716 RetvalOriginTLS = nullptr; 717 ParamTLS = nullptr; 718 ParamOriginTLS = nullptr; 719 VAArgTLS = nullptr; 720 VAArgOriginTLS = nullptr; 721 VAArgOverflowSizeTLS = nullptr; 722 723 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 724 IRB.getInt32Ty()); 725 // Requests the per-task context state (kmsan_context_state*) from the 726 // runtime library. 727 MsanContextStateTy = StructType::get( 728 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 729 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 731 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 732 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 733 OriginTy); 734 MsanGetContextStateFn = M.getOrInsertFunction( 735 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 736 737 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 738 PointerType::get(IRB.getInt32Ty(), 0)); 739 740 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 741 std::string name_load = 742 "__msan_metadata_ptr_for_load_" + std::to_string(size); 743 std::string name_store = 744 "__msan_metadata_ptr_for_store_" + std::to_string(size); 745 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 746 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 747 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 748 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 749 } 750 751 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 752 "__msan_metadata_ptr_for_load_n", RetTy, 753 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 754 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 755 "__msan_metadata_ptr_for_store_n", RetTy, 756 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 757 758 // Functions for poisoning and unpoisoning memory. 759 MsanPoisonAllocaFn = 760 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 761 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 762 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 763 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 764 } 765 766 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 767 return M.getOrInsertGlobal(Name, Ty, [&] { 768 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 769 nullptr, Name, nullptr, 770 GlobalVariable::InitialExecTLSModel); 771 }); 772 } 773 774 /// Insert declarations for userspace-specific functions and globals. 775 void MemorySanitizer::createUserspaceApi(Module &M) { 776 IRBuilder<> IRB(*C); 777 778 // Create the callback. 779 // FIXME: this function should have "Cold" calling conv, 780 // which is not yet implemented. 781 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 782 : "__msan_warning_with_origin_noreturn"; 783 WarningFn = 784 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 785 786 // Create the global TLS variables. 787 RetvalTLS = 788 getOrInsertGlobal(M, "__msan_retval_tls", 789 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 790 791 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 792 793 ParamTLS = 794 getOrInsertGlobal(M, "__msan_param_tls", 795 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 796 797 ParamOriginTLS = 798 getOrInsertGlobal(M, "__msan_param_origin_tls", 799 ArrayType::get(OriginTy, kParamTLSSize / 4)); 800 801 VAArgTLS = 802 getOrInsertGlobal(M, "__msan_va_arg_tls", 803 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 804 805 VAArgOriginTLS = 806 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 807 ArrayType::get(OriginTy, kParamTLSSize / 4)); 808 809 VAArgOverflowSizeTLS = 810 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 811 812 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 813 AccessSizeIndex++) { 814 unsigned AccessSize = 1 << AccessSizeIndex; 815 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 816 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 817 MaybeWarningFnAttrs.push_back(std::make_pair( 818 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 819 MaybeWarningFnAttrs.push_back(std::make_pair( 820 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 821 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 822 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 823 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 824 825 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 826 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 827 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 828 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 829 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 830 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 831 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 832 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 833 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 834 IRB.getInt32Ty()); 835 } 836 837 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 838 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 839 IRB.getInt8PtrTy(), IntptrTy); 840 MsanPoisonStackFn = 841 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 842 IRB.getInt8PtrTy(), IntptrTy); 843 } 844 845 /// Insert extern declaration of runtime-provided functions and globals. 846 void MemorySanitizer::initializeCallbacks(Module &M) { 847 // Only do this once. 848 if (CallbacksInitialized) 849 return; 850 851 IRBuilder<> IRB(*C); 852 // Initialize callbacks that are common for kernel and userspace 853 // instrumentation. 854 MsanChainOriginFn = M.getOrInsertFunction( 855 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 856 MsanSetOriginFn = 857 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 858 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 859 MemmoveFn = M.getOrInsertFunction( 860 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 861 IRB.getInt8PtrTy(), IntptrTy); 862 MemcpyFn = M.getOrInsertFunction( 863 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 864 IntptrTy); 865 MemsetFn = M.getOrInsertFunction( 866 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 867 IntptrTy); 868 869 MsanInstrumentAsmStoreFn = 870 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 871 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 872 873 if (CompileKernel) { 874 createKernelApi(M); 875 } else { 876 createUserspaceApi(M); 877 } 878 CallbacksInitialized = true; 879 } 880 881 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 882 int size) { 883 FunctionCallee *Fns = 884 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 885 switch (size) { 886 case 1: 887 return Fns[0]; 888 case 2: 889 return Fns[1]; 890 case 4: 891 return Fns[2]; 892 case 8: 893 return Fns[3]; 894 default: 895 return nullptr; 896 } 897 } 898 899 /// Module-level initialization. 900 /// 901 /// inserts a call to __msan_init to the module's constructor list. 902 void MemorySanitizer::initializeModule(Module &M) { 903 auto &DL = M.getDataLayout(); 904 905 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 906 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 907 // Check the overrides first 908 if (ShadowPassed || OriginPassed) { 909 CustomMapParams.AndMask = ClAndMask; 910 CustomMapParams.XorMask = ClXorMask; 911 CustomMapParams.ShadowBase = ClShadowBase; 912 CustomMapParams.OriginBase = ClOriginBase; 913 MapParams = &CustomMapParams; 914 } else { 915 Triple TargetTriple(M.getTargetTriple()); 916 switch (TargetTriple.getOS()) { 917 case Triple::FreeBSD: 918 switch (TargetTriple.getArch()) { 919 case Triple::x86_64: 920 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 921 break; 922 case Triple::x86: 923 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 924 break; 925 default: 926 report_fatal_error("unsupported architecture"); 927 } 928 break; 929 case Triple::NetBSD: 930 switch (TargetTriple.getArch()) { 931 case Triple::x86_64: 932 MapParams = NetBSD_X86_MemoryMapParams.bits64; 933 break; 934 default: 935 report_fatal_error("unsupported architecture"); 936 } 937 break; 938 case Triple::Linux: 939 switch (TargetTriple.getArch()) { 940 case Triple::x86_64: 941 MapParams = Linux_X86_MemoryMapParams.bits64; 942 break; 943 case Triple::x86: 944 MapParams = Linux_X86_MemoryMapParams.bits32; 945 break; 946 case Triple::mips64: 947 case Triple::mips64el: 948 MapParams = Linux_MIPS_MemoryMapParams.bits64; 949 break; 950 case Triple::ppc64: 951 case Triple::ppc64le: 952 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 953 break; 954 case Triple::systemz: 955 MapParams = Linux_S390_MemoryMapParams.bits64; 956 break; 957 case Triple::aarch64: 958 case Triple::aarch64_be: 959 MapParams = Linux_ARM_MemoryMapParams.bits64; 960 break; 961 default: 962 report_fatal_error("unsupported architecture"); 963 } 964 break; 965 default: 966 report_fatal_error("unsupported operating system"); 967 } 968 } 969 970 C = &(M.getContext()); 971 IRBuilder<> IRB(*C); 972 IntptrTy = IRB.getIntPtrTy(DL); 973 OriginTy = IRB.getInt32Ty(); 974 975 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 976 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 977 978 if (!CompileKernel) { 979 if (TrackOrigins) 980 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 981 return new GlobalVariable( 982 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 983 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 984 }); 985 986 if (Recover) 987 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 988 return new GlobalVariable(M, IRB.getInt32Ty(), true, 989 GlobalValue::WeakODRLinkage, 990 IRB.getInt32(Recover), "__msan_keep_going"); 991 }); 992 } 993 } 994 995 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 996 if (!Options.Kernel) 997 insertModuleCtor(M); 998 MSan.emplace(M, Options); 999 return true; 1000 } 1001 1002 namespace { 1003 1004 /// A helper class that handles instrumentation of VarArg 1005 /// functions on a particular platform. 1006 /// 1007 /// Implementations are expected to insert the instrumentation 1008 /// necessary to propagate argument shadow through VarArg function 1009 /// calls. Visit* methods are called during an InstVisitor pass over 1010 /// the function, and should avoid creating new basic blocks. A new 1011 /// instance of this class is created for each instrumented function. 1012 struct VarArgHelper { 1013 virtual ~VarArgHelper() = default; 1014 1015 /// Visit a CallBase. 1016 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1017 1018 /// Visit a va_start call. 1019 virtual void visitVAStartInst(VAStartInst &I) = 0; 1020 1021 /// Visit a va_copy call. 1022 virtual void visitVACopyInst(VACopyInst &I) = 0; 1023 1024 /// Finalize function instrumentation. 1025 /// 1026 /// This method is called after visiting all interesting (see above) 1027 /// instructions in a function. 1028 virtual void finalizeInstrumentation() = 0; 1029 }; 1030 1031 struct MemorySanitizerVisitor; 1032 1033 } // end anonymous namespace 1034 1035 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1036 MemorySanitizerVisitor &Visitor); 1037 1038 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1039 if (TypeSize <= 8) return 0; 1040 return Log2_32_Ceil((TypeSize + 7) / 8); 1041 } 1042 1043 namespace { 1044 1045 /// This class does all the work for a given function. Store and Load 1046 /// instructions store and load corresponding shadow and origin 1047 /// values. Most instructions propagate shadow from arguments to their 1048 /// return values. Certain instructions (most importantly, BranchInst) 1049 /// test their argument shadow and print reports (with a runtime call) if it's 1050 /// non-zero. 1051 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1052 Function &F; 1053 MemorySanitizer &MS; 1054 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1055 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1056 std::unique_ptr<VarArgHelper> VAHelper; 1057 const TargetLibraryInfo *TLI; 1058 BasicBlock *ActualFnStart; 1059 1060 // The following flags disable parts of MSan instrumentation based on 1061 // exclusion list contents and command-line options. 1062 bool InsertChecks; 1063 bool PropagateShadow; 1064 bool PoisonStack; 1065 bool PoisonUndef; 1066 1067 struct ShadowOriginAndInsertPoint { 1068 Value *Shadow; 1069 Value *Origin; 1070 Instruction *OrigIns; 1071 1072 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1073 : Shadow(S), Origin(O), OrigIns(I) {} 1074 }; 1075 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1076 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1077 SmallSet<AllocaInst *, 16> AllocaSet; 1078 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1079 SmallVector<StoreInst *, 16> StoreList; 1080 1081 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1082 const TargetLibraryInfo &TLI) 1083 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1084 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1085 InsertChecks = SanitizeFunction; 1086 PropagateShadow = SanitizeFunction; 1087 PoisonStack = SanitizeFunction && ClPoisonStack; 1088 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1089 1090 MS.initializeCallbacks(*F.getParent()); 1091 if (MS.CompileKernel) 1092 ActualFnStart = insertKmsanPrologue(F); 1093 else 1094 ActualFnStart = &F.getEntryBlock(); 1095 1096 LLVM_DEBUG(if (!InsertChecks) dbgs() 1097 << "MemorySanitizer is not inserting checks into '" 1098 << F.getName() << "'\n"); 1099 } 1100 1101 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1102 if (MS.TrackOrigins <= 1) return V; 1103 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1104 } 1105 1106 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1107 const DataLayout &DL = F.getParent()->getDataLayout(); 1108 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1109 if (IntptrSize == kOriginSize) return Origin; 1110 assert(IntptrSize == kOriginSize * 2); 1111 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1112 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1113 } 1114 1115 /// Fill memory range with the given origin value. 1116 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1117 unsigned Size, Align Alignment) { 1118 const DataLayout &DL = F.getParent()->getDataLayout(); 1119 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1120 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1121 assert(IntptrAlignment >= kMinOriginAlignment); 1122 assert(IntptrSize >= kOriginSize); 1123 1124 unsigned Ofs = 0; 1125 Align CurrentAlignment = Alignment; 1126 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1127 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1128 Value *IntptrOriginPtr = 1129 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1130 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1131 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1132 : IntptrOriginPtr; 1133 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1134 Ofs += IntptrSize / kOriginSize; 1135 CurrentAlignment = IntptrAlignment; 1136 } 1137 } 1138 1139 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1140 Value *GEP = 1141 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1142 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1143 CurrentAlignment = kMinOriginAlignment; 1144 } 1145 } 1146 1147 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1148 Value *OriginPtr, Align Alignment, bool AsCall) { 1149 const DataLayout &DL = F.getParent()->getDataLayout(); 1150 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1151 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1152 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1153 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1154 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1155 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1156 OriginAlignment); 1157 return; 1158 } 1159 1160 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1161 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1162 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1163 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1164 Value *ConvertedShadow2 = 1165 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1166 IRB.CreateCall(Fn, 1167 {ConvertedShadow2, 1168 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1169 } else { 1170 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1171 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1172 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1173 IRBuilder<> IRBNew(CheckTerm); 1174 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1175 OriginAlignment); 1176 } 1177 } 1178 1179 void materializeStores(bool InstrumentWithCalls) { 1180 for (StoreInst *SI : StoreList) { 1181 IRBuilder<> IRB(SI); 1182 Value *Val = SI->getValueOperand(); 1183 Value *Addr = SI->getPointerOperand(); 1184 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1185 Value *ShadowPtr, *OriginPtr; 1186 Type *ShadowTy = Shadow->getType(); 1187 const Align Alignment = assumeAligned(SI->getAlignment()); 1188 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1189 std::tie(ShadowPtr, OriginPtr) = 1190 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1191 1192 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1193 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1194 (void)NewSI; 1195 1196 if (SI->isAtomic()) 1197 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1198 1199 if (MS.TrackOrigins && !SI->isAtomic()) 1200 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1201 OriginAlignment, InstrumentWithCalls); 1202 } 1203 } 1204 1205 /// Helper function to insert a warning at IRB's current insert point. 1206 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1207 if (!Origin) 1208 Origin = (Value *)IRB.getInt32(0); 1209 assert(Origin->getType()->isIntegerTy()); 1210 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1211 // FIXME: Insert UnreachableInst if !MS.Recover? 1212 // This may invalidate some of the following checks and needs to be done 1213 // at the very end. 1214 } 1215 1216 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1217 bool AsCall) { 1218 IRBuilder<> IRB(OrigIns); 1219 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1220 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1221 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1222 1223 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1224 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1225 insertWarningFn(IRB, Origin); 1226 } 1227 return; 1228 } 1229 1230 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1231 1232 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1233 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1234 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1235 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1236 Value *ConvertedShadow2 = 1237 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1238 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1239 ? Origin 1240 : (Value *)IRB.getInt32(0)}); 1241 } else { 1242 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1243 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1244 Cmp, OrigIns, 1245 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1246 1247 IRB.SetInsertPoint(CheckTerm); 1248 insertWarningFn(IRB, Origin); 1249 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1250 } 1251 } 1252 1253 void materializeChecks(bool InstrumentWithCalls) { 1254 for (const auto &ShadowData : InstrumentationList) { 1255 Instruction *OrigIns = ShadowData.OrigIns; 1256 Value *Shadow = ShadowData.Shadow; 1257 Value *Origin = ShadowData.Origin; 1258 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1259 } 1260 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1261 } 1262 1263 BasicBlock *insertKmsanPrologue(Function &F) { 1264 BasicBlock *ret = 1265 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1266 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1267 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1268 Constant *Zero = IRB.getInt32(0); 1269 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1270 {Zero, IRB.getInt32(0)}, "param_shadow"); 1271 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1272 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1273 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1274 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1275 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1277 MS.VAArgOverflowSizeTLS = 1278 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1279 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1280 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1281 {Zero, IRB.getInt32(5)}, "param_origin"); 1282 MS.RetvalOriginTLS = 1283 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1284 {Zero, IRB.getInt32(6)}, "retval_origin"); 1285 return ret; 1286 } 1287 1288 /// Add MemorySanitizer instrumentation to a function. 1289 bool runOnFunction() { 1290 // In the presence of unreachable blocks, we may see Phi nodes with 1291 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1292 // blocks, such nodes will not have any shadow value associated with them. 1293 // It's easier to remove unreachable blocks than deal with missing shadow. 1294 removeUnreachableBlocks(F); 1295 1296 // Iterate all BBs in depth-first order and create shadow instructions 1297 // for all instructions (where applicable). 1298 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1299 for (BasicBlock *BB : depth_first(ActualFnStart)) 1300 visit(*BB); 1301 1302 // Finalize PHI nodes. 1303 for (PHINode *PN : ShadowPHINodes) { 1304 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1305 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1306 size_t NumValues = PN->getNumIncomingValues(); 1307 for (size_t v = 0; v < NumValues; v++) { 1308 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1309 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1310 } 1311 } 1312 1313 VAHelper->finalizeInstrumentation(); 1314 1315 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1316 // instrumenting only allocas. 1317 if (InstrumentLifetimeStart) { 1318 for (auto Item : LifetimeStartList) { 1319 instrumentAlloca(*Item.second, Item.first); 1320 AllocaSet.erase(Item.second); 1321 } 1322 } 1323 // Poison the allocas for which we didn't instrument the corresponding 1324 // lifetime intrinsics. 1325 for (AllocaInst *AI : AllocaSet) 1326 instrumentAlloca(*AI); 1327 1328 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1329 InstrumentationList.size() + StoreList.size() > 1330 (unsigned)ClInstrumentationWithCallThreshold; 1331 1332 // Insert shadow value checks. 1333 materializeChecks(InstrumentWithCalls); 1334 1335 // Delayed instrumentation of StoreInst. 1336 // This may not add new address checks. 1337 materializeStores(InstrumentWithCalls); 1338 1339 return true; 1340 } 1341 1342 /// Compute the shadow type that corresponds to a given Value. 1343 Type *getShadowTy(Value *V) { 1344 return getShadowTy(V->getType()); 1345 } 1346 1347 /// Compute the shadow type that corresponds to a given Type. 1348 Type *getShadowTy(Type *OrigTy) { 1349 if (!OrigTy->isSized()) { 1350 return nullptr; 1351 } 1352 // For integer type, shadow is the same as the original type. 1353 // This may return weird-sized types like i1. 1354 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1355 return IT; 1356 const DataLayout &DL = F.getParent()->getDataLayout(); 1357 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1358 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1359 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1360 cast<FixedVectorType>(VT)->getNumElements()); 1361 } 1362 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1363 return ArrayType::get(getShadowTy(AT->getElementType()), 1364 AT->getNumElements()); 1365 } 1366 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1367 SmallVector<Type*, 4> Elements; 1368 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1369 Elements.push_back(getShadowTy(ST->getElementType(i))); 1370 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1371 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1372 return Res; 1373 } 1374 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1375 return IntegerType::get(*MS.C, TypeSize); 1376 } 1377 1378 /// Flatten a vector type. 1379 Type *getShadowTyNoVec(Type *ty) { 1380 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1381 return IntegerType::get(*MS.C, 1382 vt->getPrimitiveSizeInBits().getFixedSize()); 1383 return ty; 1384 } 1385 1386 /// Extract combined shadow of struct elements as a bool 1387 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1388 IRBuilder<> &IRB) { 1389 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1390 Value *Aggregator = FalseVal; 1391 1392 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1393 // Combine by ORing together each element's bool shadow 1394 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1395 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1396 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1397 1398 if (Aggregator != FalseVal) 1399 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1400 else 1401 Aggregator = ShadowBool; 1402 } 1403 1404 return Aggregator; 1405 } 1406 1407 // Extract combined shadow of array elements 1408 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1409 IRBuilder<> &IRB) { 1410 if (!Array->getNumElements()) 1411 return IRB.getIntN(/* width */ 1, /* value */ 0); 1412 1413 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1414 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1415 1416 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1417 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1418 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1419 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1420 } 1421 return Aggregator; 1422 } 1423 1424 /// Convert a shadow value to it's flattened variant. The resulting 1425 /// shadow may not necessarily have the same bit width as the input 1426 /// value, but it will always be comparable to zero. 1427 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1428 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1429 return collapseStructShadow(Struct, V, IRB); 1430 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1431 return collapseArrayShadow(Array, V, IRB); 1432 Type *Ty = V->getType(); 1433 Type *NoVecTy = getShadowTyNoVec(Ty); 1434 if (Ty == NoVecTy) return V; 1435 return IRB.CreateBitCast(V, NoVecTy); 1436 } 1437 1438 // Convert a scalar value to an i1 by comparing with 0 1439 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1440 Type *VTy = V->getType(); 1441 assert(VTy->isIntegerTy()); 1442 if (VTy->getIntegerBitWidth() == 1) 1443 // Just converting a bool to a bool, so do nothing. 1444 return V; 1445 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1446 } 1447 1448 /// Compute the integer shadow offset that corresponds to a given 1449 /// application address. 1450 /// 1451 /// Offset = (Addr & ~AndMask) ^ XorMask 1452 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1453 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1454 1455 uint64_t AndMask = MS.MapParams->AndMask; 1456 if (AndMask) 1457 OffsetLong = 1458 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1459 1460 uint64_t XorMask = MS.MapParams->XorMask; 1461 if (XorMask) 1462 OffsetLong = 1463 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1464 return OffsetLong; 1465 } 1466 1467 /// Compute the shadow and origin addresses corresponding to a given 1468 /// application address. 1469 /// 1470 /// Shadow = ShadowBase + Offset 1471 /// Origin = (OriginBase + Offset) & ~3ULL 1472 std::pair<Value *, Value *> 1473 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1474 MaybeAlign Alignment) { 1475 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1476 Value *ShadowLong = ShadowOffset; 1477 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1478 if (ShadowBase != 0) { 1479 ShadowLong = 1480 IRB.CreateAdd(ShadowLong, 1481 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1482 } 1483 Value *ShadowPtr = 1484 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1485 Value *OriginPtr = nullptr; 1486 if (MS.TrackOrigins) { 1487 Value *OriginLong = ShadowOffset; 1488 uint64_t OriginBase = MS.MapParams->OriginBase; 1489 if (OriginBase != 0) 1490 OriginLong = IRB.CreateAdd(OriginLong, 1491 ConstantInt::get(MS.IntptrTy, OriginBase)); 1492 if (!Alignment || *Alignment < kMinOriginAlignment) { 1493 uint64_t Mask = kMinOriginAlignment.value() - 1; 1494 OriginLong = 1495 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1496 } 1497 OriginPtr = 1498 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1499 } 1500 return std::make_pair(ShadowPtr, OriginPtr); 1501 } 1502 1503 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1504 IRBuilder<> &IRB, 1505 Type *ShadowTy, 1506 bool isStore) { 1507 Value *ShadowOriginPtrs; 1508 const DataLayout &DL = F.getParent()->getDataLayout(); 1509 int Size = DL.getTypeStoreSize(ShadowTy); 1510 1511 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1512 Value *AddrCast = 1513 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1514 if (Getter) { 1515 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1516 } else { 1517 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1518 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1519 : MS.MsanMetadataPtrForLoadN, 1520 {AddrCast, SizeVal}); 1521 } 1522 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1523 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1524 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1525 1526 return std::make_pair(ShadowPtr, OriginPtr); 1527 } 1528 1529 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1530 Type *ShadowTy, 1531 MaybeAlign Alignment, 1532 bool isStore) { 1533 if (MS.CompileKernel) 1534 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1535 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1536 } 1537 1538 /// Compute the shadow address for a given function argument. 1539 /// 1540 /// Shadow = ParamTLS+ArgOffset. 1541 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1542 int ArgOffset) { 1543 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1544 if (ArgOffset) 1545 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1546 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1547 "_msarg"); 1548 } 1549 1550 /// Compute the origin address for a given function argument. 1551 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1552 int ArgOffset) { 1553 if (!MS.TrackOrigins) 1554 return nullptr; 1555 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1556 if (ArgOffset) 1557 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1558 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1559 "_msarg_o"); 1560 } 1561 1562 /// Compute the shadow address for a retval. 1563 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1564 return IRB.CreatePointerCast(MS.RetvalTLS, 1565 PointerType::get(getShadowTy(A), 0), 1566 "_msret"); 1567 } 1568 1569 /// Compute the origin address for a retval. 1570 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1571 // We keep a single origin for the entire retval. Might be too optimistic. 1572 return MS.RetvalOriginTLS; 1573 } 1574 1575 /// Set SV to be the shadow value for V. 1576 void setShadow(Value *V, Value *SV) { 1577 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1578 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1579 } 1580 1581 /// Set Origin to be the origin value for V. 1582 void setOrigin(Value *V, Value *Origin) { 1583 if (!MS.TrackOrigins) return; 1584 assert(!OriginMap.count(V) && "Values may only have one origin"); 1585 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1586 OriginMap[V] = Origin; 1587 } 1588 1589 Constant *getCleanShadow(Type *OrigTy) { 1590 Type *ShadowTy = getShadowTy(OrigTy); 1591 if (!ShadowTy) 1592 return nullptr; 1593 return Constant::getNullValue(ShadowTy); 1594 } 1595 1596 /// Create a clean shadow value for a given value. 1597 /// 1598 /// Clean shadow (all zeroes) means all bits of the value are defined 1599 /// (initialized). 1600 Constant *getCleanShadow(Value *V) { 1601 return getCleanShadow(V->getType()); 1602 } 1603 1604 /// Create a dirty shadow of a given shadow type. 1605 Constant *getPoisonedShadow(Type *ShadowTy) { 1606 assert(ShadowTy); 1607 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1608 return Constant::getAllOnesValue(ShadowTy); 1609 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1610 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1611 getPoisonedShadow(AT->getElementType())); 1612 return ConstantArray::get(AT, Vals); 1613 } 1614 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1615 SmallVector<Constant *, 4> Vals; 1616 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1617 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1618 return ConstantStruct::get(ST, Vals); 1619 } 1620 llvm_unreachable("Unexpected shadow type"); 1621 } 1622 1623 /// Create a dirty shadow for a given value. 1624 Constant *getPoisonedShadow(Value *V) { 1625 Type *ShadowTy = getShadowTy(V); 1626 if (!ShadowTy) 1627 return nullptr; 1628 return getPoisonedShadow(ShadowTy); 1629 } 1630 1631 /// Create a clean (zero) origin. 1632 Value *getCleanOrigin() { 1633 return Constant::getNullValue(MS.OriginTy); 1634 } 1635 1636 /// Get the shadow value for a given Value. 1637 /// 1638 /// This function either returns the value set earlier with setShadow, 1639 /// or extracts if from ParamTLS (for function arguments). 1640 Value *getShadow(Value *V) { 1641 if (!PropagateShadow) return getCleanShadow(V); 1642 if (Instruction *I = dyn_cast<Instruction>(V)) { 1643 if (I->getMetadata("nosanitize")) 1644 return getCleanShadow(V); 1645 // For instructions the shadow is already stored in the map. 1646 Value *Shadow = ShadowMap[V]; 1647 if (!Shadow) { 1648 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1649 (void)I; 1650 assert(Shadow && "No shadow for a value"); 1651 } 1652 return Shadow; 1653 } 1654 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1655 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1656 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1657 (void)U; 1658 return AllOnes; 1659 } 1660 if (Argument *A = dyn_cast<Argument>(V)) { 1661 // For arguments we compute the shadow on demand and store it in the map. 1662 Value **ShadowPtr = &ShadowMap[V]; 1663 if (*ShadowPtr) 1664 return *ShadowPtr; 1665 Function *F = A->getParent(); 1666 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1667 unsigned ArgOffset = 0; 1668 const DataLayout &DL = F->getParent()->getDataLayout(); 1669 for (auto &FArg : F->args()) { 1670 if (!FArg.getType()->isSized()) { 1671 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1672 continue; 1673 } 1674 1675 bool FArgByVal = FArg.hasByValAttr(); 1676 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1677 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1678 unsigned Size = 1679 FArg.hasByValAttr() 1680 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1681 : DL.getTypeAllocSize(FArg.getType()); 1682 1683 if (A == &FArg) { 1684 bool Overflow = ArgOffset + Size > kParamTLSSize; 1685 if (FArgEagerCheck) { 1686 *ShadowPtr = getCleanShadow(V); 1687 setOrigin(A, getCleanOrigin()); 1688 continue; 1689 } else if (FArgByVal) { 1690 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1691 // ByVal pointer itself has clean shadow. We copy the actual 1692 // argument shadow to the underlying memory. 1693 // Figure out maximal valid memcpy alignment. 1694 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1695 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1696 Value *CpShadowPtr = 1697 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1698 /*isStore*/ true) 1699 .first; 1700 // TODO(glider): need to copy origins. 1701 if (Overflow) { 1702 // ParamTLS overflow. 1703 EntryIRB.CreateMemSet( 1704 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1705 Size, ArgAlign); 1706 } else { 1707 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1708 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1709 CopyAlign, Size); 1710 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1711 (void)Cpy; 1712 } 1713 *ShadowPtr = getCleanShadow(V); 1714 } else { 1715 // Shadow over TLS 1716 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1717 if (Overflow) { 1718 // ParamTLS overflow. 1719 *ShadowPtr = getCleanShadow(V); 1720 } else { 1721 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1722 kShadowTLSAlignment); 1723 } 1724 } 1725 LLVM_DEBUG(dbgs() 1726 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1727 if (MS.TrackOrigins && !Overflow) { 1728 Value *OriginPtr = 1729 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1730 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1731 } else { 1732 setOrigin(A, getCleanOrigin()); 1733 } 1734 } 1735 1736 if (!FArgEagerCheck) 1737 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1738 } 1739 assert(*ShadowPtr && "Could not find shadow for an argument"); 1740 return *ShadowPtr; 1741 } 1742 // For everything else the shadow is zero. 1743 return getCleanShadow(V); 1744 } 1745 1746 /// Get the shadow for i-th argument of the instruction I. 1747 Value *getShadow(Instruction *I, int i) { 1748 return getShadow(I->getOperand(i)); 1749 } 1750 1751 /// Get the origin for a value. 1752 Value *getOrigin(Value *V) { 1753 if (!MS.TrackOrigins) return nullptr; 1754 if (!PropagateShadow) return getCleanOrigin(); 1755 if (isa<Constant>(V)) return getCleanOrigin(); 1756 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1757 "Unexpected value type in getOrigin()"); 1758 if (Instruction *I = dyn_cast<Instruction>(V)) { 1759 if (I->getMetadata("nosanitize")) 1760 return getCleanOrigin(); 1761 } 1762 Value *Origin = OriginMap[V]; 1763 assert(Origin && "Missing origin"); 1764 return Origin; 1765 } 1766 1767 /// Get the origin for i-th argument of the instruction I. 1768 Value *getOrigin(Instruction *I, int i) { 1769 return getOrigin(I->getOperand(i)); 1770 } 1771 1772 /// Remember the place where a shadow check should be inserted. 1773 /// 1774 /// This location will be later instrumented with a check that will print a 1775 /// UMR warning in runtime if the shadow value is not 0. 1776 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1777 assert(Shadow); 1778 if (!InsertChecks) return; 1779 #ifndef NDEBUG 1780 Type *ShadowTy = Shadow->getType(); 1781 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1782 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1783 "Can only insert checks for integer, vector, and aggregate shadow " 1784 "types"); 1785 #endif 1786 InstrumentationList.push_back( 1787 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1788 } 1789 1790 /// Remember the place where a shadow check should be inserted. 1791 /// 1792 /// This location will be later instrumented with a check that will print a 1793 /// UMR warning in runtime if the value is not fully defined. 1794 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1795 assert(Val); 1796 Value *Shadow, *Origin; 1797 if (ClCheckConstantShadow) { 1798 Shadow = getShadow(Val); 1799 if (!Shadow) return; 1800 Origin = getOrigin(Val); 1801 } else { 1802 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1803 if (!Shadow) return; 1804 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1805 } 1806 insertShadowCheck(Shadow, Origin, OrigIns); 1807 } 1808 1809 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1810 switch (a) { 1811 case AtomicOrdering::NotAtomic: 1812 return AtomicOrdering::NotAtomic; 1813 case AtomicOrdering::Unordered: 1814 case AtomicOrdering::Monotonic: 1815 case AtomicOrdering::Release: 1816 return AtomicOrdering::Release; 1817 case AtomicOrdering::Acquire: 1818 case AtomicOrdering::AcquireRelease: 1819 return AtomicOrdering::AcquireRelease; 1820 case AtomicOrdering::SequentiallyConsistent: 1821 return AtomicOrdering::SequentiallyConsistent; 1822 } 1823 llvm_unreachable("Unknown ordering"); 1824 } 1825 1826 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1827 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1828 uint32_t OrderingTable[NumOrderings] = {}; 1829 1830 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1831 OrderingTable[(int)AtomicOrderingCABI::release] = 1832 (int)AtomicOrderingCABI::release; 1833 OrderingTable[(int)AtomicOrderingCABI::consume] = 1834 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1835 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1836 (int)AtomicOrderingCABI::acq_rel; 1837 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1838 (int)AtomicOrderingCABI::seq_cst; 1839 1840 return ConstantDataVector::get(IRB.getContext(), 1841 makeArrayRef(OrderingTable, NumOrderings)); 1842 } 1843 1844 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1845 switch (a) { 1846 case AtomicOrdering::NotAtomic: 1847 return AtomicOrdering::NotAtomic; 1848 case AtomicOrdering::Unordered: 1849 case AtomicOrdering::Monotonic: 1850 case AtomicOrdering::Acquire: 1851 return AtomicOrdering::Acquire; 1852 case AtomicOrdering::Release: 1853 case AtomicOrdering::AcquireRelease: 1854 return AtomicOrdering::AcquireRelease; 1855 case AtomicOrdering::SequentiallyConsistent: 1856 return AtomicOrdering::SequentiallyConsistent; 1857 } 1858 llvm_unreachable("Unknown ordering"); 1859 } 1860 1861 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1862 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1863 uint32_t OrderingTable[NumOrderings] = {}; 1864 1865 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1866 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1867 OrderingTable[(int)AtomicOrderingCABI::consume] = 1868 (int)AtomicOrderingCABI::acquire; 1869 OrderingTable[(int)AtomicOrderingCABI::release] = 1870 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1871 (int)AtomicOrderingCABI::acq_rel; 1872 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1873 (int)AtomicOrderingCABI::seq_cst; 1874 1875 return ConstantDataVector::get(IRB.getContext(), 1876 makeArrayRef(OrderingTable, NumOrderings)); 1877 } 1878 1879 // ------------------- Visitors. 1880 using InstVisitor<MemorySanitizerVisitor>::visit; 1881 void visit(Instruction &I) { 1882 if (!I.getMetadata("nosanitize")) 1883 InstVisitor<MemorySanitizerVisitor>::visit(I); 1884 } 1885 1886 /// Instrument LoadInst 1887 /// 1888 /// Loads the corresponding shadow and (optionally) origin. 1889 /// Optionally, checks that the load address is fully defined. 1890 void visitLoadInst(LoadInst &I) { 1891 assert(I.getType()->isSized() && "Load type must have size"); 1892 assert(!I.getMetadata("nosanitize")); 1893 IRBuilder<> IRB(I.getNextNode()); 1894 Type *ShadowTy = getShadowTy(&I); 1895 Value *Addr = I.getPointerOperand(); 1896 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1897 const Align Alignment = assumeAligned(I.getAlignment()); 1898 if (PropagateShadow) { 1899 std::tie(ShadowPtr, OriginPtr) = 1900 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1901 setShadow(&I, 1902 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1903 } else { 1904 setShadow(&I, getCleanShadow(&I)); 1905 } 1906 1907 if (ClCheckAccessAddress) 1908 insertShadowCheck(I.getPointerOperand(), &I); 1909 1910 if (I.isAtomic()) 1911 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1912 1913 if (MS.TrackOrigins) { 1914 if (PropagateShadow) { 1915 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1916 setOrigin( 1917 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1918 } else { 1919 setOrigin(&I, getCleanOrigin()); 1920 } 1921 } 1922 } 1923 1924 /// Instrument StoreInst 1925 /// 1926 /// Stores the corresponding shadow and (optionally) origin. 1927 /// Optionally, checks that the store address is fully defined. 1928 void visitStoreInst(StoreInst &I) { 1929 StoreList.push_back(&I); 1930 if (ClCheckAccessAddress) 1931 insertShadowCheck(I.getPointerOperand(), &I); 1932 } 1933 1934 void handleCASOrRMW(Instruction &I) { 1935 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1936 1937 IRBuilder<> IRB(&I); 1938 Value *Addr = I.getOperand(0); 1939 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1940 /*isStore*/ true) 1941 .first; 1942 1943 if (ClCheckAccessAddress) 1944 insertShadowCheck(Addr, &I); 1945 1946 // Only test the conditional argument of cmpxchg instruction. 1947 // The other argument can potentially be uninitialized, but we can not 1948 // detect this situation reliably without possible false positives. 1949 if (isa<AtomicCmpXchgInst>(I)) 1950 insertShadowCheck(I.getOperand(1), &I); 1951 1952 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1953 1954 setShadow(&I, getCleanShadow(&I)); 1955 setOrigin(&I, getCleanOrigin()); 1956 } 1957 1958 void visitAtomicRMWInst(AtomicRMWInst &I) { 1959 handleCASOrRMW(I); 1960 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1961 } 1962 1963 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1964 handleCASOrRMW(I); 1965 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1966 } 1967 1968 // Vector manipulation. 1969 void visitExtractElementInst(ExtractElementInst &I) { 1970 insertShadowCheck(I.getOperand(1), &I); 1971 IRBuilder<> IRB(&I); 1972 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1973 "_msprop")); 1974 setOrigin(&I, getOrigin(&I, 0)); 1975 } 1976 1977 void visitInsertElementInst(InsertElementInst &I) { 1978 insertShadowCheck(I.getOperand(2), &I); 1979 IRBuilder<> IRB(&I); 1980 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1981 I.getOperand(2), "_msprop")); 1982 setOriginForNaryOp(I); 1983 } 1984 1985 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1986 IRBuilder<> IRB(&I); 1987 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1988 I.getShuffleMask(), "_msprop")); 1989 setOriginForNaryOp(I); 1990 } 1991 1992 // Casts. 1993 void visitSExtInst(SExtInst &I) { 1994 IRBuilder<> IRB(&I); 1995 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1996 setOrigin(&I, getOrigin(&I, 0)); 1997 } 1998 1999 void visitZExtInst(ZExtInst &I) { 2000 IRBuilder<> IRB(&I); 2001 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2002 setOrigin(&I, getOrigin(&I, 0)); 2003 } 2004 2005 void visitTruncInst(TruncInst &I) { 2006 IRBuilder<> IRB(&I); 2007 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2008 setOrigin(&I, getOrigin(&I, 0)); 2009 } 2010 2011 void visitBitCastInst(BitCastInst &I) { 2012 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2013 // a musttail call and a ret, don't instrument. New instructions are not 2014 // allowed after a musttail call. 2015 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2016 if (CI->isMustTailCall()) 2017 return; 2018 IRBuilder<> IRB(&I); 2019 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2020 setOrigin(&I, getOrigin(&I, 0)); 2021 } 2022 2023 void visitPtrToIntInst(PtrToIntInst &I) { 2024 IRBuilder<> IRB(&I); 2025 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2026 "_msprop_ptrtoint")); 2027 setOrigin(&I, getOrigin(&I, 0)); 2028 } 2029 2030 void visitIntToPtrInst(IntToPtrInst &I) { 2031 IRBuilder<> IRB(&I); 2032 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2033 "_msprop_inttoptr")); 2034 setOrigin(&I, getOrigin(&I, 0)); 2035 } 2036 2037 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2038 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2039 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2040 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2041 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2042 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2043 2044 /// Propagate shadow for bitwise AND. 2045 /// 2046 /// This code is exact, i.e. if, for example, a bit in the left argument 2047 /// is defined and 0, then neither the value not definedness of the 2048 /// corresponding bit in B don't affect the resulting shadow. 2049 void visitAnd(BinaryOperator &I) { 2050 IRBuilder<> IRB(&I); 2051 // "And" of 0 and a poisoned value results in unpoisoned value. 2052 // 1&1 => 1; 0&1 => 0; p&1 => p; 2053 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2054 // 1&p => p; 0&p => 0; p&p => p; 2055 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2056 Value *S1 = getShadow(&I, 0); 2057 Value *S2 = getShadow(&I, 1); 2058 Value *V1 = I.getOperand(0); 2059 Value *V2 = I.getOperand(1); 2060 if (V1->getType() != S1->getType()) { 2061 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2062 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2063 } 2064 Value *S1S2 = IRB.CreateAnd(S1, S2); 2065 Value *V1S2 = IRB.CreateAnd(V1, S2); 2066 Value *S1V2 = IRB.CreateAnd(S1, V2); 2067 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2068 setOriginForNaryOp(I); 2069 } 2070 2071 void visitOr(BinaryOperator &I) { 2072 IRBuilder<> IRB(&I); 2073 // "Or" of 1 and a poisoned value results in unpoisoned value. 2074 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2075 // 1|0 => 1; 0|0 => 0; p|0 => p; 2076 // 1|p => 1; 0|p => p; p|p => p; 2077 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2078 Value *S1 = getShadow(&I, 0); 2079 Value *S2 = getShadow(&I, 1); 2080 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2081 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2082 if (V1->getType() != S1->getType()) { 2083 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2084 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2085 } 2086 Value *S1S2 = IRB.CreateAnd(S1, S2); 2087 Value *V1S2 = IRB.CreateAnd(V1, S2); 2088 Value *S1V2 = IRB.CreateAnd(S1, V2); 2089 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2090 setOriginForNaryOp(I); 2091 } 2092 2093 /// Default propagation of shadow and/or origin. 2094 /// 2095 /// This class implements the general case of shadow propagation, used in all 2096 /// cases where we don't know and/or don't care about what the operation 2097 /// actually does. It converts all input shadow values to a common type 2098 /// (extending or truncating as necessary), and bitwise OR's them. 2099 /// 2100 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2101 /// fully initialized), and less prone to false positives. 2102 /// 2103 /// This class also implements the general case of origin propagation. For a 2104 /// Nary operation, result origin is set to the origin of an argument that is 2105 /// not entirely initialized. If there is more than one such arguments, the 2106 /// rightmost of them is picked. It does not matter which one is picked if all 2107 /// arguments are initialized. 2108 template <bool CombineShadow> 2109 class Combiner { 2110 Value *Shadow = nullptr; 2111 Value *Origin = nullptr; 2112 IRBuilder<> &IRB; 2113 MemorySanitizerVisitor *MSV; 2114 2115 public: 2116 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2117 : IRB(IRB), MSV(MSV) {} 2118 2119 /// Add a pair of shadow and origin values to the mix. 2120 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2121 if (CombineShadow) { 2122 assert(OpShadow); 2123 if (!Shadow) 2124 Shadow = OpShadow; 2125 else { 2126 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2127 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2128 } 2129 } 2130 2131 if (MSV->MS.TrackOrigins) { 2132 assert(OpOrigin); 2133 if (!Origin) { 2134 Origin = OpOrigin; 2135 } else { 2136 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2137 // No point in adding something that might result in 0 origin value. 2138 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2139 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2140 Value *Cond = 2141 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2142 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2143 } 2144 } 2145 } 2146 return *this; 2147 } 2148 2149 /// Add an application value to the mix. 2150 Combiner &Add(Value *V) { 2151 Value *OpShadow = MSV->getShadow(V); 2152 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2153 return Add(OpShadow, OpOrigin); 2154 } 2155 2156 /// Set the current combined values as the given instruction's shadow 2157 /// and origin. 2158 void Done(Instruction *I) { 2159 if (CombineShadow) { 2160 assert(Shadow); 2161 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2162 MSV->setShadow(I, Shadow); 2163 } 2164 if (MSV->MS.TrackOrigins) { 2165 assert(Origin); 2166 MSV->setOrigin(I, Origin); 2167 } 2168 } 2169 }; 2170 2171 using ShadowAndOriginCombiner = Combiner<true>; 2172 using OriginCombiner = Combiner<false>; 2173 2174 /// Propagate origin for arbitrary operation. 2175 void setOriginForNaryOp(Instruction &I) { 2176 if (!MS.TrackOrigins) return; 2177 IRBuilder<> IRB(&I); 2178 OriginCombiner OC(this, IRB); 2179 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2180 OC.Add(OI->get()); 2181 OC.Done(&I); 2182 } 2183 2184 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2185 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2186 "Vector of pointers is not a valid shadow type"); 2187 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2188 Ty->getScalarSizeInBits() 2189 : Ty->getPrimitiveSizeInBits(); 2190 } 2191 2192 /// Cast between two shadow types, extending or truncating as 2193 /// necessary. 2194 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2195 bool Signed = false) { 2196 Type *srcTy = V->getType(); 2197 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2198 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2199 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2200 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2201 2202 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2203 return IRB.CreateIntCast(V, dstTy, Signed); 2204 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2205 cast<FixedVectorType>(dstTy)->getNumElements() == 2206 cast<FixedVectorType>(srcTy)->getNumElements()) 2207 return IRB.CreateIntCast(V, dstTy, Signed); 2208 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2209 Value *V2 = 2210 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2211 return IRB.CreateBitCast(V2, dstTy); 2212 // TODO: handle struct types. 2213 } 2214 2215 /// Cast an application value to the type of its own shadow. 2216 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2217 Type *ShadowTy = getShadowTy(V); 2218 if (V->getType() == ShadowTy) 2219 return V; 2220 if (V->getType()->isPtrOrPtrVectorTy()) 2221 return IRB.CreatePtrToInt(V, ShadowTy); 2222 else 2223 return IRB.CreateBitCast(V, ShadowTy); 2224 } 2225 2226 /// Propagate shadow for arbitrary operation. 2227 void handleShadowOr(Instruction &I) { 2228 IRBuilder<> IRB(&I); 2229 ShadowAndOriginCombiner SC(this, IRB); 2230 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2231 SC.Add(OI->get()); 2232 SC.Done(&I); 2233 } 2234 2235 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2236 2237 // Handle multiplication by constant. 2238 // 2239 // Handle a special case of multiplication by constant that may have one or 2240 // more zeros in the lower bits. This makes corresponding number of lower bits 2241 // of the result zero as well. We model it by shifting the other operand 2242 // shadow left by the required number of bits. Effectively, we transform 2243 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2244 // We use multiplication by 2**N instead of shift to cover the case of 2245 // multiplication by 0, which may occur in some elements of a vector operand. 2246 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2247 Value *OtherArg) { 2248 Constant *ShadowMul; 2249 Type *Ty = ConstArg->getType(); 2250 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2251 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2252 Type *EltTy = VTy->getElementType(); 2253 SmallVector<Constant *, 16> Elements; 2254 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2255 if (ConstantInt *Elt = 2256 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2257 const APInt &V = Elt->getValue(); 2258 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2259 Elements.push_back(ConstantInt::get(EltTy, V2)); 2260 } else { 2261 Elements.push_back(ConstantInt::get(EltTy, 1)); 2262 } 2263 } 2264 ShadowMul = ConstantVector::get(Elements); 2265 } else { 2266 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2267 const APInt &V = Elt->getValue(); 2268 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2269 ShadowMul = ConstantInt::get(Ty, V2); 2270 } else { 2271 ShadowMul = ConstantInt::get(Ty, 1); 2272 } 2273 } 2274 2275 IRBuilder<> IRB(&I); 2276 setShadow(&I, 2277 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2278 setOrigin(&I, getOrigin(OtherArg)); 2279 } 2280 2281 void visitMul(BinaryOperator &I) { 2282 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2283 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2284 if (constOp0 && !constOp1) 2285 handleMulByConstant(I, constOp0, I.getOperand(1)); 2286 else if (constOp1 && !constOp0) 2287 handleMulByConstant(I, constOp1, I.getOperand(0)); 2288 else 2289 handleShadowOr(I); 2290 } 2291 2292 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2293 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2294 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2295 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2296 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2297 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2298 2299 void handleIntegerDiv(Instruction &I) { 2300 IRBuilder<> IRB(&I); 2301 // Strict on the second argument. 2302 insertShadowCheck(I.getOperand(1), &I); 2303 setShadow(&I, getShadow(&I, 0)); 2304 setOrigin(&I, getOrigin(&I, 0)); 2305 } 2306 2307 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2308 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2309 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2310 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2311 2312 // Floating point division is side-effect free. We can not require that the 2313 // divisor is fully initialized and must propagate shadow. See PR37523. 2314 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2315 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2316 2317 /// Instrument == and != comparisons. 2318 /// 2319 /// Sometimes the comparison result is known even if some of the bits of the 2320 /// arguments are not. 2321 void handleEqualityComparison(ICmpInst &I) { 2322 IRBuilder<> IRB(&I); 2323 Value *A = I.getOperand(0); 2324 Value *B = I.getOperand(1); 2325 Value *Sa = getShadow(A); 2326 Value *Sb = getShadow(B); 2327 2328 // Get rid of pointers and vectors of pointers. 2329 // For ints (and vectors of ints), types of A and Sa match, 2330 // and this is a no-op. 2331 A = IRB.CreatePointerCast(A, Sa->getType()); 2332 B = IRB.CreatePointerCast(B, Sb->getType()); 2333 2334 // A == B <==> (C = A^B) == 0 2335 // A != B <==> (C = A^B) != 0 2336 // Sc = Sa | Sb 2337 Value *C = IRB.CreateXor(A, B); 2338 Value *Sc = IRB.CreateOr(Sa, Sb); 2339 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2340 // Result is defined if one of the following is true 2341 // * there is a defined 1 bit in C 2342 // * C is fully defined 2343 // Si = !(C & ~Sc) && Sc 2344 Value *Zero = Constant::getNullValue(Sc->getType()); 2345 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2346 Value *Si = 2347 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2348 IRB.CreateICmpEQ( 2349 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2350 Si->setName("_msprop_icmp"); 2351 setShadow(&I, Si); 2352 setOriginForNaryOp(I); 2353 } 2354 2355 /// Build the lowest possible value of V, taking into account V's 2356 /// uninitialized bits. 2357 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2358 bool isSigned) { 2359 if (isSigned) { 2360 // Split shadow into sign bit and other bits. 2361 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2362 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2363 // Maximise the undefined shadow bit, minimize other undefined bits. 2364 return 2365 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2366 } else { 2367 // Minimize undefined bits. 2368 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2369 } 2370 } 2371 2372 /// Build the highest possible value of V, taking into account V's 2373 /// uninitialized bits. 2374 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2375 bool isSigned) { 2376 if (isSigned) { 2377 // Split shadow into sign bit and other bits. 2378 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2379 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2380 // Minimise the undefined shadow bit, maximise other undefined bits. 2381 return 2382 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2383 } else { 2384 // Maximize undefined bits. 2385 return IRB.CreateOr(A, Sa); 2386 } 2387 } 2388 2389 /// Instrument relational comparisons. 2390 /// 2391 /// This function does exact shadow propagation for all relational 2392 /// comparisons of integers, pointers and vectors of those. 2393 /// FIXME: output seems suboptimal when one of the operands is a constant 2394 void handleRelationalComparisonExact(ICmpInst &I) { 2395 IRBuilder<> IRB(&I); 2396 Value *A = I.getOperand(0); 2397 Value *B = I.getOperand(1); 2398 Value *Sa = getShadow(A); 2399 Value *Sb = getShadow(B); 2400 2401 // Get rid of pointers and vectors of pointers. 2402 // For ints (and vectors of ints), types of A and Sa match, 2403 // and this is a no-op. 2404 A = IRB.CreatePointerCast(A, Sa->getType()); 2405 B = IRB.CreatePointerCast(B, Sb->getType()); 2406 2407 // Let [a0, a1] be the interval of possible values of A, taking into account 2408 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2409 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2410 bool IsSigned = I.isSigned(); 2411 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2412 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2413 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2414 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2415 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2416 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2417 Value *Si = IRB.CreateXor(S1, S2); 2418 setShadow(&I, Si); 2419 setOriginForNaryOp(I); 2420 } 2421 2422 /// Instrument signed relational comparisons. 2423 /// 2424 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2425 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2426 void handleSignedRelationalComparison(ICmpInst &I) { 2427 Constant *constOp; 2428 Value *op = nullptr; 2429 CmpInst::Predicate pre; 2430 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2431 op = I.getOperand(0); 2432 pre = I.getPredicate(); 2433 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2434 op = I.getOperand(1); 2435 pre = I.getSwappedPredicate(); 2436 } else { 2437 handleShadowOr(I); 2438 return; 2439 } 2440 2441 if ((constOp->isNullValue() && 2442 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2443 (constOp->isAllOnesValue() && 2444 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2445 IRBuilder<> IRB(&I); 2446 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2447 "_msprop_icmp_s"); 2448 setShadow(&I, Shadow); 2449 setOrigin(&I, getOrigin(op)); 2450 } else { 2451 handleShadowOr(I); 2452 } 2453 } 2454 2455 void visitICmpInst(ICmpInst &I) { 2456 if (!ClHandleICmp) { 2457 handleShadowOr(I); 2458 return; 2459 } 2460 if (I.isEquality()) { 2461 handleEqualityComparison(I); 2462 return; 2463 } 2464 2465 assert(I.isRelational()); 2466 if (ClHandleICmpExact) { 2467 handleRelationalComparisonExact(I); 2468 return; 2469 } 2470 if (I.isSigned()) { 2471 handleSignedRelationalComparison(I); 2472 return; 2473 } 2474 2475 assert(I.isUnsigned()); 2476 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2477 handleRelationalComparisonExact(I); 2478 return; 2479 } 2480 2481 handleShadowOr(I); 2482 } 2483 2484 void visitFCmpInst(FCmpInst &I) { 2485 handleShadowOr(I); 2486 } 2487 2488 void handleShift(BinaryOperator &I) { 2489 IRBuilder<> IRB(&I); 2490 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2491 // Otherwise perform the same shift on S1. 2492 Value *S1 = getShadow(&I, 0); 2493 Value *S2 = getShadow(&I, 1); 2494 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2495 S2->getType()); 2496 Value *V2 = I.getOperand(1); 2497 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2498 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2499 setOriginForNaryOp(I); 2500 } 2501 2502 void visitShl(BinaryOperator &I) { handleShift(I); } 2503 void visitAShr(BinaryOperator &I) { handleShift(I); } 2504 void visitLShr(BinaryOperator &I) { handleShift(I); } 2505 2506 /// Instrument llvm.memmove 2507 /// 2508 /// At this point we don't know if llvm.memmove will be inlined or not. 2509 /// If we don't instrument it and it gets inlined, 2510 /// our interceptor will not kick in and we will lose the memmove. 2511 /// If we instrument the call here, but it does not get inlined, 2512 /// we will memove the shadow twice: which is bad in case 2513 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2514 /// 2515 /// Similar situation exists for memcpy and memset. 2516 void visitMemMoveInst(MemMoveInst &I) { 2517 IRBuilder<> IRB(&I); 2518 IRB.CreateCall( 2519 MS.MemmoveFn, 2520 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2521 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2522 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2523 I.eraseFromParent(); 2524 } 2525 2526 // Similar to memmove: avoid copying shadow twice. 2527 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2528 // FIXME: consider doing manual inline for small constant sizes and proper 2529 // alignment. 2530 void visitMemCpyInst(MemCpyInst &I) { 2531 IRBuilder<> IRB(&I); 2532 IRB.CreateCall( 2533 MS.MemcpyFn, 2534 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2535 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2536 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2537 I.eraseFromParent(); 2538 } 2539 2540 // Same as memcpy. 2541 void visitMemSetInst(MemSetInst &I) { 2542 IRBuilder<> IRB(&I); 2543 IRB.CreateCall( 2544 MS.MemsetFn, 2545 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2546 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2547 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2548 I.eraseFromParent(); 2549 } 2550 2551 void visitVAStartInst(VAStartInst &I) { 2552 VAHelper->visitVAStartInst(I); 2553 } 2554 2555 void visitVACopyInst(VACopyInst &I) { 2556 VAHelper->visitVACopyInst(I); 2557 } 2558 2559 /// Handle vector store-like intrinsics. 2560 /// 2561 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2562 /// has 1 pointer argument and 1 vector argument, returns void. 2563 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2564 IRBuilder<> IRB(&I); 2565 Value* Addr = I.getArgOperand(0); 2566 Value *Shadow = getShadow(&I, 1); 2567 Value *ShadowPtr, *OriginPtr; 2568 2569 // We don't know the pointer alignment (could be unaligned SSE store!). 2570 // Have to assume to worst case. 2571 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2572 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2573 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2574 2575 if (ClCheckAccessAddress) 2576 insertShadowCheck(Addr, &I); 2577 2578 // FIXME: factor out common code from materializeStores 2579 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2580 return true; 2581 } 2582 2583 /// Handle vector load-like intrinsics. 2584 /// 2585 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2586 /// has 1 pointer argument, returns a vector. 2587 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2588 IRBuilder<> IRB(&I); 2589 Value *Addr = I.getArgOperand(0); 2590 2591 Type *ShadowTy = getShadowTy(&I); 2592 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2593 if (PropagateShadow) { 2594 // We don't know the pointer alignment (could be unaligned SSE load!). 2595 // Have to assume to worst case. 2596 const Align Alignment = Align(1); 2597 std::tie(ShadowPtr, OriginPtr) = 2598 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2599 setShadow(&I, 2600 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2601 } else { 2602 setShadow(&I, getCleanShadow(&I)); 2603 } 2604 2605 if (ClCheckAccessAddress) 2606 insertShadowCheck(Addr, &I); 2607 2608 if (MS.TrackOrigins) { 2609 if (PropagateShadow) 2610 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2611 else 2612 setOrigin(&I, getCleanOrigin()); 2613 } 2614 return true; 2615 } 2616 2617 /// Handle (SIMD arithmetic)-like intrinsics. 2618 /// 2619 /// Instrument intrinsics with any number of arguments of the same type, 2620 /// equal to the return type. The type should be simple (no aggregates or 2621 /// pointers; vectors are fine). 2622 /// Caller guarantees that this intrinsic does not access memory. 2623 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2624 Type *RetTy = I.getType(); 2625 if (!(RetTy->isIntOrIntVectorTy() || 2626 RetTy->isFPOrFPVectorTy() || 2627 RetTy->isX86_MMXTy())) 2628 return false; 2629 2630 unsigned NumArgOperands = I.getNumArgOperands(); 2631 2632 for (unsigned i = 0; i < NumArgOperands; ++i) { 2633 Type *Ty = I.getArgOperand(i)->getType(); 2634 if (Ty != RetTy) 2635 return false; 2636 } 2637 2638 IRBuilder<> IRB(&I); 2639 ShadowAndOriginCombiner SC(this, IRB); 2640 for (unsigned i = 0; i < NumArgOperands; ++i) 2641 SC.Add(I.getArgOperand(i)); 2642 SC.Done(&I); 2643 2644 return true; 2645 } 2646 2647 /// Heuristically instrument unknown intrinsics. 2648 /// 2649 /// The main purpose of this code is to do something reasonable with all 2650 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2651 /// We recognize several classes of intrinsics by their argument types and 2652 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2653 /// sure that we know what the intrinsic does. 2654 /// 2655 /// We special-case intrinsics where this approach fails. See llvm.bswap 2656 /// handling as an example of that. 2657 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2658 unsigned NumArgOperands = I.getNumArgOperands(); 2659 if (NumArgOperands == 0) 2660 return false; 2661 2662 if (NumArgOperands == 2 && 2663 I.getArgOperand(0)->getType()->isPointerTy() && 2664 I.getArgOperand(1)->getType()->isVectorTy() && 2665 I.getType()->isVoidTy() && 2666 !I.onlyReadsMemory()) { 2667 // This looks like a vector store. 2668 return handleVectorStoreIntrinsic(I); 2669 } 2670 2671 if (NumArgOperands == 1 && 2672 I.getArgOperand(0)->getType()->isPointerTy() && 2673 I.getType()->isVectorTy() && 2674 I.onlyReadsMemory()) { 2675 // This looks like a vector load. 2676 return handleVectorLoadIntrinsic(I); 2677 } 2678 2679 if (I.doesNotAccessMemory()) 2680 if (maybeHandleSimpleNomemIntrinsic(I)) 2681 return true; 2682 2683 // FIXME: detect and handle SSE maskstore/maskload 2684 return false; 2685 } 2686 2687 void handleInvariantGroup(IntrinsicInst &I) { 2688 setShadow(&I, getShadow(&I, 0)); 2689 setOrigin(&I, getOrigin(&I, 0)); 2690 } 2691 2692 void handleLifetimeStart(IntrinsicInst &I) { 2693 if (!PoisonStack) 2694 return; 2695 DenseMap<Value *, AllocaInst *> AllocaForValue; 2696 AllocaInst *AI = 2697 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2698 if (!AI) 2699 InstrumentLifetimeStart = false; 2700 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2701 } 2702 2703 void handleBswap(IntrinsicInst &I) { 2704 IRBuilder<> IRB(&I); 2705 Value *Op = I.getArgOperand(0); 2706 Type *OpType = Op->getType(); 2707 Function *BswapFunc = Intrinsic::getDeclaration( 2708 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2709 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2710 setOrigin(&I, getOrigin(Op)); 2711 } 2712 2713 // Instrument vector convert intrinsic. 2714 // 2715 // This function instruments intrinsics like cvtsi2ss: 2716 // %Out = int_xxx_cvtyyy(%ConvertOp) 2717 // or 2718 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2719 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2720 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2721 // elements from \p CopyOp. 2722 // In most cases conversion involves floating-point value which may trigger a 2723 // hardware exception when not fully initialized. For this reason we require 2724 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2725 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2726 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2727 // return a fully initialized value. 2728 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2729 IRBuilder<> IRB(&I); 2730 Value *CopyOp, *ConvertOp; 2731 2732 switch (I.getNumArgOperands()) { 2733 case 3: 2734 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2735 LLVM_FALLTHROUGH; 2736 case 2: 2737 CopyOp = I.getArgOperand(0); 2738 ConvertOp = I.getArgOperand(1); 2739 break; 2740 case 1: 2741 ConvertOp = I.getArgOperand(0); 2742 CopyOp = nullptr; 2743 break; 2744 default: 2745 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2746 } 2747 2748 // The first *NumUsedElements* elements of ConvertOp are converted to the 2749 // same number of output elements. The rest of the output is copied from 2750 // CopyOp, or (if not available) filled with zeroes. 2751 // Combine shadow for elements of ConvertOp that are used in this operation, 2752 // and insert a check. 2753 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2754 // int->any conversion. 2755 Value *ConvertShadow = getShadow(ConvertOp); 2756 Value *AggShadow = nullptr; 2757 if (ConvertOp->getType()->isVectorTy()) { 2758 AggShadow = IRB.CreateExtractElement( 2759 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2760 for (int i = 1; i < NumUsedElements; ++i) { 2761 Value *MoreShadow = IRB.CreateExtractElement( 2762 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2763 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2764 } 2765 } else { 2766 AggShadow = ConvertShadow; 2767 } 2768 assert(AggShadow->getType()->isIntegerTy()); 2769 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2770 2771 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2772 // ConvertOp. 2773 if (CopyOp) { 2774 assert(CopyOp->getType() == I.getType()); 2775 assert(CopyOp->getType()->isVectorTy()); 2776 Value *ResultShadow = getShadow(CopyOp); 2777 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2778 for (int i = 0; i < NumUsedElements; ++i) { 2779 ResultShadow = IRB.CreateInsertElement( 2780 ResultShadow, ConstantInt::getNullValue(EltTy), 2781 ConstantInt::get(IRB.getInt32Ty(), i)); 2782 } 2783 setShadow(&I, ResultShadow); 2784 setOrigin(&I, getOrigin(CopyOp)); 2785 } else { 2786 setShadow(&I, getCleanShadow(&I)); 2787 setOrigin(&I, getCleanOrigin()); 2788 } 2789 } 2790 2791 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2792 // zeroes if it is zero, and all ones otherwise. 2793 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2794 if (S->getType()->isVectorTy()) 2795 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2796 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2797 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2798 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2799 } 2800 2801 // Given a vector, extract its first element, and return all 2802 // zeroes if it is zero, and all ones otherwise. 2803 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2804 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2805 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2806 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2807 } 2808 2809 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2810 Type *T = S->getType(); 2811 assert(T->isVectorTy()); 2812 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2813 return IRB.CreateSExt(S2, T); 2814 } 2815 2816 // Instrument vector shift intrinsic. 2817 // 2818 // This function instruments intrinsics like int_x86_avx2_psll_w. 2819 // Intrinsic shifts %In by %ShiftSize bits. 2820 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2821 // size, and the rest is ignored. Behavior is defined even if shift size is 2822 // greater than register (or field) width. 2823 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2824 assert(I.getNumArgOperands() == 2); 2825 IRBuilder<> IRB(&I); 2826 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2827 // Otherwise perform the same shift on S1. 2828 Value *S1 = getShadow(&I, 0); 2829 Value *S2 = getShadow(&I, 1); 2830 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2831 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2832 Value *V1 = I.getOperand(0); 2833 Value *V2 = I.getOperand(1); 2834 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2835 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2836 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2837 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2838 setOriginForNaryOp(I); 2839 } 2840 2841 // Get an X86_MMX-sized vector type. 2842 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2843 const unsigned X86_MMXSizeInBits = 64; 2844 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2845 "Illegal MMX vector element size"); 2846 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2847 X86_MMXSizeInBits / EltSizeInBits); 2848 } 2849 2850 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2851 // intrinsic. 2852 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2853 switch (id) { 2854 case Intrinsic::x86_sse2_packsswb_128: 2855 case Intrinsic::x86_sse2_packuswb_128: 2856 return Intrinsic::x86_sse2_packsswb_128; 2857 2858 case Intrinsic::x86_sse2_packssdw_128: 2859 case Intrinsic::x86_sse41_packusdw: 2860 return Intrinsic::x86_sse2_packssdw_128; 2861 2862 case Intrinsic::x86_avx2_packsswb: 2863 case Intrinsic::x86_avx2_packuswb: 2864 return Intrinsic::x86_avx2_packsswb; 2865 2866 case Intrinsic::x86_avx2_packssdw: 2867 case Intrinsic::x86_avx2_packusdw: 2868 return Intrinsic::x86_avx2_packssdw; 2869 2870 case Intrinsic::x86_mmx_packsswb: 2871 case Intrinsic::x86_mmx_packuswb: 2872 return Intrinsic::x86_mmx_packsswb; 2873 2874 case Intrinsic::x86_mmx_packssdw: 2875 return Intrinsic::x86_mmx_packssdw; 2876 default: 2877 llvm_unreachable("unexpected intrinsic id"); 2878 } 2879 } 2880 2881 // Instrument vector pack intrinsic. 2882 // 2883 // This function instruments intrinsics like x86_mmx_packsswb, that 2884 // packs elements of 2 input vectors into half as many bits with saturation. 2885 // Shadow is propagated with the signed variant of the same intrinsic applied 2886 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2887 // EltSizeInBits is used only for x86mmx arguments. 2888 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2889 assert(I.getNumArgOperands() == 2); 2890 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2891 IRBuilder<> IRB(&I); 2892 Value *S1 = getShadow(&I, 0); 2893 Value *S2 = getShadow(&I, 1); 2894 assert(isX86_MMX || S1->getType()->isVectorTy()); 2895 2896 // SExt and ICmpNE below must apply to individual elements of input vectors. 2897 // In case of x86mmx arguments, cast them to appropriate vector types and 2898 // back. 2899 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2900 if (isX86_MMX) { 2901 S1 = IRB.CreateBitCast(S1, T); 2902 S2 = IRB.CreateBitCast(S2, T); 2903 } 2904 Value *S1_ext = IRB.CreateSExt( 2905 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2906 Value *S2_ext = IRB.CreateSExt( 2907 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2908 if (isX86_MMX) { 2909 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2910 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2911 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2912 } 2913 2914 Function *ShadowFn = Intrinsic::getDeclaration( 2915 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2916 2917 Value *S = 2918 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2919 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2920 setShadow(&I, S); 2921 setOriginForNaryOp(I); 2922 } 2923 2924 // Instrument sum-of-absolute-differences intrinsic. 2925 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2926 const unsigned SignificantBitsPerResultElement = 16; 2927 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2928 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2929 unsigned ZeroBitsPerResultElement = 2930 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2931 2932 IRBuilder<> IRB(&I); 2933 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2934 S = IRB.CreateBitCast(S, ResTy); 2935 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2936 ResTy); 2937 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2938 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2939 setShadow(&I, S); 2940 setOriginForNaryOp(I); 2941 } 2942 2943 // Instrument multiply-add intrinsic. 2944 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2945 unsigned EltSizeInBits = 0) { 2946 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2947 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2948 IRBuilder<> IRB(&I); 2949 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2950 S = IRB.CreateBitCast(S, ResTy); 2951 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2952 ResTy); 2953 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2954 setShadow(&I, S); 2955 setOriginForNaryOp(I); 2956 } 2957 2958 // Instrument compare-packed intrinsic. 2959 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2960 // all-ones shadow. 2961 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2962 IRBuilder<> IRB(&I); 2963 Type *ResTy = getShadowTy(&I); 2964 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2965 Value *S = IRB.CreateSExt( 2966 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2967 setShadow(&I, S); 2968 setOriginForNaryOp(I); 2969 } 2970 2971 // Instrument compare-scalar intrinsic. 2972 // This handles both cmp* intrinsics which return the result in the first 2973 // element of a vector, and comi* which return the result as i32. 2974 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2975 IRBuilder<> IRB(&I); 2976 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2977 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2978 setShadow(&I, S); 2979 setOriginForNaryOp(I); 2980 } 2981 2982 // Instrument generic vector reduction intrinsics 2983 // by ORing together all their fields. 2984 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2985 IRBuilder<> IRB(&I); 2986 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2987 setShadow(&I, S); 2988 setOrigin(&I, getOrigin(&I, 0)); 2989 } 2990 2991 // Instrument experimental.vector.reduce.or intrinsic. 2992 // Valid (non-poisoned) set bits in the operand pull low the 2993 // corresponding shadow bits. 2994 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 2995 IRBuilder<> IRB(&I); 2996 Value *OperandShadow = getShadow(&I, 0); 2997 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 2998 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 2999 // Bit N is clean if any field's bit N is 1 and unpoison 3000 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3001 // Otherwise, it is clean if every field's bit N is unpoison 3002 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3003 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3004 3005 setShadow(&I, S); 3006 setOrigin(&I, getOrigin(&I, 0)); 3007 } 3008 3009 // Instrument experimental.vector.reduce.or intrinsic. 3010 // Valid (non-poisoned) unset bits in the operand pull down the 3011 // corresponding shadow bits. 3012 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3013 IRBuilder<> IRB(&I); 3014 Value *OperandShadow = getShadow(&I, 0); 3015 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3016 // Bit N is clean if any field's bit N is 0 and unpoison 3017 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3018 // Otherwise, it is clean if every field's bit N is unpoison 3019 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3020 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3021 3022 setShadow(&I, S); 3023 setOrigin(&I, getOrigin(&I, 0)); 3024 } 3025 3026 void handleStmxcsr(IntrinsicInst &I) { 3027 IRBuilder<> IRB(&I); 3028 Value* Addr = I.getArgOperand(0); 3029 Type *Ty = IRB.getInt32Ty(); 3030 Value *ShadowPtr = 3031 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3032 3033 IRB.CreateStore(getCleanShadow(Ty), 3034 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3035 3036 if (ClCheckAccessAddress) 3037 insertShadowCheck(Addr, &I); 3038 } 3039 3040 void handleLdmxcsr(IntrinsicInst &I) { 3041 if (!InsertChecks) return; 3042 3043 IRBuilder<> IRB(&I); 3044 Value *Addr = I.getArgOperand(0); 3045 Type *Ty = IRB.getInt32Ty(); 3046 const Align Alignment = Align(1); 3047 Value *ShadowPtr, *OriginPtr; 3048 std::tie(ShadowPtr, OriginPtr) = 3049 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3050 3051 if (ClCheckAccessAddress) 3052 insertShadowCheck(Addr, &I); 3053 3054 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3055 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3056 : getCleanOrigin(); 3057 insertShadowCheck(Shadow, Origin, &I); 3058 } 3059 3060 void handleMaskedStore(IntrinsicInst &I) { 3061 IRBuilder<> IRB(&I); 3062 Value *V = I.getArgOperand(0); 3063 Value *Addr = I.getArgOperand(1); 3064 const Align Alignment( 3065 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3066 Value *Mask = I.getArgOperand(3); 3067 Value *Shadow = getShadow(V); 3068 3069 Value *ShadowPtr; 3070 Value *OriginPtr; 3071 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3072 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3073 3074 if (ClCheckAccessAddress) { 3075 insertShadowCheck(Addr, &I); 3076 // Uninitialized mask is kind of like uninitialized address, but not as 3077 // scary. 3078 insertShadowCheck(Mask, &I); 3079 } 3080 3081 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3082 3083 if (MS.TrackOrigins) { 3084 auto &DL = F.getParent()->getDataLayout(); 3085 paintOrigin(IRB, getOrigin(V), OriginPtr, 3086 DL.getTypeStoreSize(Shadow->getType()), 3087 std::max(Alignment, kMinOriginAlignment)); 3088 } 3089 } 3090 3091 bool handleMaskedLoad(IntrinsicInst &I) { 3092 IRBuilder<> IRB(&I); 3093 Value *Addr = I.getArgOperand(0); 3094 const Align Alignment( 3095 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3096 Value *Mask = I.getArgOperand(2); 3097 Value *PassThru = I.getArgOperand(3); 3098 3099 Type *ShadowTy = getShadowTy(&I); 3100 Value *ShadowPtr, *OriginPtr; 3101 if (PropagateShadow) { 3102 std::tie(ShadowPtr, OriginPtr) = 3103 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3104 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 3105 getShadow(PassThru), "_msmaskedld")); 3106 } else { 3107 setShadow(&I, getCleanShadow(&I)); 3108 } 3109 3110 if (ClCheckAccessAddress) { 3111 insertShadowCheck(Addr, &I); 3112 insertShadowCheck(Mask, &I); 3113 } 3114 3115 if (MS.TrackOrigins) { 3116 if (PropagateShadow) { 3117 // Choose between PassThru's and the loaded value's origins. 3118 Value *MaskedPassThruShadow = IRB.CreateAnd( 3119 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3120 3121 Value *Acc = IRB.CreateExtractElement( 3122 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3123 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3124 ->getNumElements(); 3125 i < N; ++i) { 3126 Value *More = IRB.CreateExtractElement( 3127 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3128 Acc = IRB.CreateOr(Acc, More); 3129 } 3130 3131 Value *Origin = IRB.CreateSelect( 3132 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3133 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3134 3135 setOrigin(&I, Origin); 3136 } else { 3137 setOrigin(&I, getCleanOrigin()); 3138 } 3139 } 3140 return true; 3141 } 3142 3143 // Instrument BMI / BMI2 intrinsics. 3144 // All of these intrinsics are Z = I(X, Y) 3145 // where the types of all operands and the result match, and are either i32 or i64. 3146 // The following instrumentation happens to work for all of them: 3147 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3148 void handleBmiIntrinsic(IntrinsicInst &I) { 3149 IRBuilder<> IRB(&I); 3150 Type *ShadowTy = getShadowTy(&I); 3151 3152 // If any bit of the mask operand is poisoned, then the whole thing is. 3153 Value *SMask = getShadow(&I, 1); 3154 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3155 ShadowTy); 3156 // Apply the same intrinsic to the shadow of the first operand. 3157 Value *S = IRB.CreateCall(I.getCalledFunction(), 3158 {getShadow(&I, 0), I.getOperand(1)}); 3159 S = IRB.CreateOr(SMask, S); 3160 setShadow(&I, S); 3161 setOriginForNaryOp(I); 3162 } 3163 3164 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3165 SmallVector<int, 8> Mask; 3166 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3167 Mask.append(2, X); 3168 } 3169 return Mask; 3170 } 3171 3172 // Instrument pclmul intrinsics. 3173 // These intrinsics operate either on odd or on even elements of the input 3174 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3175 // Replace the unused elements with copies of the used ones, ex: 3176 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3177 // or 3178 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3179 // and then apply the usual shadow combining logic. 3180 void handlePclmulIntrinsic(IntrinsicInst &I) { 3181 IRBuilder<> IRB(&I); 3182 Type *ShadowTy = getShadowTy(&I); 3183 unsigned Width = 3184 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3185 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3186 "pclmul 3rd operand must be a constant"); 3187 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3188 Value *Shuf0 = 3189 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3190 getPclmulMask(Width, Imm & 0x01)); 3191 Value *Shuf1 = 3192 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3193 getPclmulMask(Width, Imm & 0x10)); 3194 ShadowAndOriginCombiner SOC(this, IRB); 3195 SOC.Add(Shuf0, getOrigin(&I, 0)); 3196 SOC.Add(Shuf1, getOrigin(&I, 1)); 3197 SOC.Done(&I); 3198 } 3199 3200 // Instrument _mm_*_sd intrinsics 3201 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3202 IRBuilder<> IRB(&I); 3203 Value *First = getShadow(&I, 0); 3204 Value *Second = getShadow(&I, 1); 3205 // High word of first operand, low word of second 3206 Value *Shadow = 3207 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3208 3209 setShadow(&I, Shadow); 3210 setOriginForNaryOp(I); 3211 } 3212 3213 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3214 IRBuilder<> IRB(&I); 3215 Value *First = getShadow(&I, 0); 3216 Value *Second = getShadow(&I, 1); 3217 Value *OrShadow = IRB.CreateOr(First, Second); 3218 // High word of first operand, low word of both OR'd together 3219 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3220 llvm::makeArrayRef<int>({2, 1})); 3221 3222 setShadow(&I, Shadow); 3223 setOriginForNaryOp(I); 3224 } 3225 3226 void visitIntrinsicInst(IntrinsicInst &I) { 3227 switch (I.getIntrinsicID()) { 3228 case Intrinsic::lifetime_start: 3229 handleLifetimeStart(I); 3230 break; 3231 case Intrinsic::launder_invariant_group: 3232 case Intrinsic::strip_invariant_group: 3233 handleInvariantGroup(I); 3234 break; 3235 case Intrinsic::bswap: 3236 handleBswap(I); 3237 break; 3238 case Intrinsic::masked_store: 3239 handleMaskedStore(I); 3240 break; 3241 case Intrinsic::masked_load: 3242 handleMaskedLoad(I); 3243 break; 3244 case Intrinsic::experimental_vector_reduce_and: 3245 handleVectorReduceAndIntrinsic(I); 3246 break; 3247 case Intrinsic::experimental_vector_reduce_or: 3248 handleVectorReduceOrIntrinsic(I); 3249 break; 3250 case Intrinsic::experimental_vector_reduce_add: 3251 case Intrinsic::experimental_vector_reduce_xor: 3252 case Intrinsic::experimental_vector_reduce_mul: 3253 handleVectorReduceIntrinsic(I); 3254 break; 3255 case Intrinsic::x86_sse_stmxcsr: 3256 handleStmxcsr(I); 3257 break; 3258 case Intrinsic::x86_sse_ldmxcsr: 3259 handleLdmxcsr(I); 3260 break; 3261 case Intrinsic::x86_avx512_vcvtsd2usi64: 3262 case Intrinsic::x86_avx512_vcvtsd2usi32: 3263 case Intrinsic::x86_avx512_vcvtss2usi64: 3264 case Intrinsic::x86_avx512_vcvtss2usi32: 3265 case Intrinsic::x86_avx512_cvttss2usi64: 3266 case Intrinsic::x86_avx512_cvttss2usi: 3267 case Intrinsic::x86_avx512_cvttsd2usi64: 3268 case Intrinsic::x86_avx512_cvttsd2usi: 3269 case Intrinsic::x86_avx512_cvtusi2ss: 3270 case Intrinsic::x86_avx512_cvtusi642sd: 3271 case Intrinsic::x86_avx512_cvtusi642ss: 3272 case Intrinsic::x86_sse2_cvtsd2si64: 3273 case Intrinsic::x86_sse2_cvtsd2si: 3274 case Intrinsic::x86_sse2_cvtsd2ss: 3275 case Intrinsic::x86_sse2_cvttsd2si64: 3276 case Intrinsic::x86_sse2_cvttsd2si: 3277 case Intrinsic::x86_sse_cvtss2si64: 3278 case Intrinsic::x86_sse_cvtss2si: 3279 case Intrinsic::x86_sse_cvttss2si64: 3280 case Intrinsic::x86_sse_cvttss2si: 3281 handleVectorConvertIntrinsic(I, 1); 3282 break; 3283 case Intrinsic::x86_sse_cvtps2pi: 3284 case Intrinsic::x86_sse_cvttps2pi: 3285 handleVectorConvertIntrinsic(I, 2); 3286 break; 3287 3288 case Intrinsic::x86_avx512_psll_w_512: 3289 case Intrinsic::x86_avx512_psll_d_512: 3290 case Intrinsic::x86_avx512_psll_q_512: 3291 case Intrinsic::x86_avx512_pslli_w_512: 3292 case Intrinsic::x86_avx512_pslli_d_512: 3293 case Intrinsic::x86_avx512_pslli_q_512: 3294 case Intrinsic::x86_avx512_psrl_w_512: 3295 case Intrinsic::x86_avx512_psrl_d_512: 3296 case Intrinsic::x86_avx512_psrl_q_512: 3297 case Intrinsic::x86_avx512_psra_w_512: 3298 case Intrinsic::x86_avx512_psra_d_512: 3299 case Intrinsic::x86_avx512_psra_q_512: 3300 case Intrinsic::x86_avx512_psrli_w_512: 3301 case Intrinsic::x86_avx512_psrli_d_512: 3302 case Intrinsic::x86_avx512_psrli_q_512: 3303 case Intrinsic::x86_avx512_psrai_w_512: 3304 case Intrinsic::x86_avx512_psrai_d_512: 3305 case Intrinsic::x86_avx512_psrai_q_512: 3306 case Intrinsic::x86_avx512_psra_q_256: 3307 case Intrinsic::x86_avx512_psra_q_128: 3308 case Intrinsic::x86_avx512_psrai_q_256: 3309 case Intrinsic::x86_avx512_psrai_q_128: 3310 case Intrinsic::x86_avx2_psll_w: 3311 case Intrinsic::x86_avx2_psll_d: 3312 case Intrinsic::x86_avx2_psll_q: 3313 case Intrinsic::x86_avx2_pslli_w: 3314 case Intrinsic::x86_avx2_pslli_d: 3315 case Intrinsic::x86_avx2_pslli_q: 3316 case Intrinsic::x86_avx2_psrl_w: 3317 case Intrinsic::x86_avx2_psrl_d: 3318 case Intrinsic::x86_avx2_psrl_q: 3319 case Intrinsic::x86_avx2_psra_w: 3320 case Intrinsic::x86_avx2_psra_d: 3321 case Intrinsic::x86_avx2_psrli_w: 3322 case Intrinsic::x86_avx2_psrli_d: 3323 case Intrinsic::x86_avx2_psrli_q: 3324 case Intrinsic::x86_avx2_psrai_w: 3325 case Intrinsic::x86_avx2_psrai_d: 3326 case Intrinsic::x86_sse2_psll_w: 3327 case Intrinsic::x86_sse2_psll_d: 3328 case Intrinsic::x86_sse2_psll_q: 3329 case Intrinsic::x86_sse2_pslli_w: 3330 case Intrinsic::x86_sse2_pslli_d: 3331 case Intrinsic::x86_sse2_pslli_q: 3332 case Intrinsic::x86_sse2_psrl_w: 3333 case Intrinsic::x86_sse2_psrl_d: 3334 case Intrinsic::x86_sse2_psrl_q: 3335 case Intrinsic::x86_sse2_psra_w: 3336 case Intrinsic::x86_sse2_psra_d: 3337 case Intrinsic::x86_sse2_psrli_w: 3338 case Intrinsic::x86_sse2_psrli_d: 3339 case Intrinsic::x86_sse2_psrli_q: 3340 case Intrinsic::x86_sse2_psrai_w: 3341 case Intrinsic::x86_sse2_psrai_d: 3342 case Intrinsic::x86_mmx_psll_w: 3343 case Intrinsic::x86_mmx_psll_d: 3344 case Intrinsic::x86_mmx_psll_q: 3345 case Intrinsic::x86_mmx_pslli_w: 3346 case Intrinsic::x86_mmx_pslli_d: 3347 case Intrinsic::x86_mmx_pslli_q: 3348 case Intrinsic::x86_mmx_psrl_w: 3349 case Intrinsic::x86_mmx_psrl_d: 3350 case Intrinsic::x86_mmx_psrl_q: 3351 case Intrinsic::x86_mmx_psra_w: 3352 case Intrinsic::x86_mmx_psra_d: 3353 case Intrinsic::x86_mmx_psrli_w: 3354 case Intrinsic::x86_mmx_psrli_d: 3355 case Intrinsic::x86_mmx_psrli_q: 3356 case Intrinsic::x86_mmx_psrai_w: 3357 case Intrinsic::x86_mmx_psrai_d: 3358 handleVectorShiftIntrinsic(I, /* Variable */ false); 3359 break; 3360 case Intrinsic::x86_avx2_psllv_d: 3361 case Intrinsic::x86_avx2_psllv_d_256: 3362 case Intrinsic::x86_avx512_psllv_d_512: 3363 case Intrinsic::x86_avx2_psllv_q: 3364 case Intrinsic::x86_avx2_psllv_q_256: 3365 case Intrinsic::x86_avx512_psllv_q_512: 3366 case Intrinsic::x86_avx2_psrlv_d: 3367 case Intrinsic::x86_avx2_psrlv_d_256: 3368 case Intrinsic::x86_avx512_psrlv_d_512: 3369 case Intrinsic::x86_avx2_psrlv_q: 3370 case Intrinsic::x86_avx2_psrlv_q_256: 3371 case Intrinsic::x86_avx512_psrlv_q_512: 3372 case Intrinsic::x86_avx2_psrav_d: 3373 case Intrinsic::x86_avx2_psrav_d_256: 3374 case Intrinsic::x86_avx512_psrav_d_512: 3375 case Intrinsic::x86_avx512_psrav_q_128: 3376 case Intrinsic::x86_avx512_psrav_q_256: 3377 case Intrinsic::x86_avx512_psrav_q_512: 3378 handleVectorShiftIntrinsic(I, /* Variable */ true); 3379 break; 3380 3381 case Intrinsic::x86_sse2_packsswb_128: 3382 case Intrinsic::x86_sse2_packssdw_128: 3383 case Intrinsic::x86_sse2_packuswb_128: 3384 case Intrinsic::x86_sse41_packusdw: 3385 case Intrinsic::x86_avx2_packsswb: 3386 case Intrinsic::x86_avx2_packssdw: 3387 case Intrinsic::x86_avx2_packuswb: 3388 case Intrinsic::x86_avx2_packusdw: 3389 handleVectorPackIntrinsic(I); 3390 break; 3391 3392 case Intrinsic::x86_mmx_packsswb: 3393 case Intrinsic::x86_mmx_packuswb: 3394 handleVectorPackIntrinsic(I, 16); 3395 break; 3396 3397 case Intrinsic::x86_mmx_packssdw: 3398 handleVectorPackIntrinsic(I, 32); 3399 break; 3400 3401 case Intrinsic::x86_mmx_psad_bw: 3402 case Intrinsic::x86_sse2_psad_bw: 3403 case Intrinsic::x86_avx2_psad_bw: 3404 handleVectorSadIntrinsic(I); 3405 break; 3406 3407 case Intrinsic::x86_sse2_pmadd_wd: 3408 case Intrinsic::x86_avx2_pmadd_wd: 3409 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3410 case Intrinsic::x86_avx2_pmadd_ub_sw: 3411 handleVectorPmaddIntrinsic(I); 3412 break; 3413 3414 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3415 handleVectorPmaddIntrinsic(I, 8); 3416 break; 3417 3418 case Intrinsic::x86_mmx_pmadd_wd: 3419 handleVectorPmaddIntrinsic(I, 16); 3420 break; 3421 3422 case Intrinsic::x86_sse_cmp_ss: 3423 case Intrinsic::x86_sse2_cmp_sd: 3424 case Intrinsic::x86_sse_comieq_ss: 3425 case Intrinsic::x86_sse_comilt_ss: 3426 case Intrinsic::x86_sse_comile_ss: 3427 case Intrinsic::x86_sse_comigt_ss: 3428 case Intrinsic::x86_sse_comige_ss: 3429 case Intrinsic::x86_sse_comineq_ss: 3430 case Intrinsic::x86_sse_ucomieq_ss: 3431 case Intrinsic::x86_sse_ucomilt_ss: 3432 case Intrinsic::x86_sse_ucomile_ss: 3433 case Intrinsic::x86_sse_ucomigt_ss: 3434 case Intrinsic::x86_sse_ucomige_ss: 3435 case Intrinsic::x86_sse_ucomineq_ss: 3436 case Intrinsic::x86_sse2_comieq_sd: 3437 case Intrinsic::x86_sse2_comilt_sd: 3438 case Intrinsic::x86_sse2_comile_sd: 3439 case Intrinsic::x86_sse2_comigt_sd: 3440 case Intrinsic::x86_sse2_comige_sd: 3441 case Intrinsic::x86_sse2_comineq_sd: 3442 case Intrinsic::x86_sse2_ucomieq_sd: 3443 case Intrinsic::x86_sse2_ucomilt_sd: 3444 case Intrinsic::x86_sse2_ucomile_sd: 3445 case Intrinsic::x86_sse2_ucomigt_sd: 3446 case Intrinsic::x86_sse2_ucomige_sd: 3447 case Intrinsic::x86_sse2_ucomineq_sd: 3448 handleVectorCompareScalarIntrinsic(I); 3449 break; 3450 3451 case Intrinsic::x86_sse_cmp_ps: 3452 case Intrinsic::x86_sse2_cmp_pd: 3453 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3454 // generates reasonably looking IR that fails in the backend with "Do not 3455 // know how to split the result of this operator!". 3456 handleVectorComparePackedIntrinsic(I); 3457 break; 3458 3459 case Intrinsic::x86_bmi_bextr_32: 3460 case Intrinsic::x86_bmi_bextr_64: 3461 case Intrinsic::x86_bmi_bzhi_32: 3462 case Intrinsic::x86_bmi_bzhi_64: 3463 case Intrinsic::x86_bmi_pdep_32: 3464 case Intrinsic::x86_bmi_pdep_64: 3465 case Intrinsic::x86_bmi_pext_32: 3466 case Intrinsic::x86_bmi_pext_64: 3467 handleBmiIntrinsic(I); 3468 break; 3469 3470 case Intrinsic::x86_pclmulqdq: 3471 case Intrinsic::x86_pclmulqdq_256: 3472 case Intrinsic::x86_pclmulqdq_512: 3473 handlePclmulIntrinsic(I); 3474 break; 3475 3476 case Intrinsic::x86_sse41_round_sd: 3477 handleUnarySdIntrinsic(I); 3478 break; 3479 case Intrinsic::x86_sse2_max_sd: 3480 case Intrinsic::x86_sse2_min_sd: 3481 handleBinarySdIntrinsic(I); 3482 break; 3483 3484 case Intrinsic::is_constant: 3485 // The result of llvm.is.constant() is always defined. 3486 setShadow(&I, getCleanShadow(&I)); 3487 setOrigin(&I, getCleanOrigin()); 3488 break; 3489 3490 default: 3491 if (!handleUnknownIntrinsic(I)) 3492 visitInstruction(I); 3493 break; 3494 } 3495 } 3496 3497 void visitLibAtomicLoad(CallBase &CB) { 3498 IRBuilder<> IRB(&CB); 3499 Value *Size = CB.getArgOperand(0); 3500 Value *SrcPtr = CB.getArgOperand(1); 3501 Value *DstPtr = CB.getArgOperand(2); 3502 Value *Ordering = CB.getArgOperand(3); 3503 // Convert the call to have at least Acquire ordering to make sure 3504 // the shadow operations aren't reordered before it. 3505 Value *NewOrdering = 3506 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3507 CB.setArgOperand(3, NewOrdering); 3508 3509 IRBuilder<> NextIRB(CB.getNextNode()); 3510 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3511 3512 Value *SrcShadowPtr, *SrcOriginPtr; 3513 std::tie(SrcShadowPtr, SrcOriginPtr) = 3514 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3515 /*isStore*/ false); 3516 Value *DstShadowPtr = 3517 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3518 /*isStore*/ true) 3519 .first; 3520 3521 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3522 if (MS.TrackOrigins) { 3523 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3524 kMinOriginAlignment); 3525 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3526 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3527 } 3528 } 3529 3530 void visitLibAtomicStore(CallBase &CB) { 3531 IRBuilder<> IRB(&CB); 3532 Value *Size = CB.getArgOperand(0); 3533 Value *DstPtr = CB.getArgOperand(2); 3534 Value *Ordering = CB.getArgOperand(3); 3535 // Convert the call to have at least Release ordering to make sure 3536 // the shadow operations aren't reordered after it. 3537 Value *NewOrdering = 3538 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3539 CB.setArgOperand(3, NewOrdering); 3540 3541 Value *DstShadowPtr = 3542 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3543 /*isStore*/ true) 3544 .first; 3545 3546 // Atomic store always paints clean shadow/origin. See file header. 3547 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3548 Align(1)); 3549 } 3550 3551 void visitCallBase(CallBase &CB) { 3552 assert(!CB.getMetadata("nosanitize")); 3553 if (CB.isInlineAsm()) { 3554 // For inline asm (either a call to asm function, or callbr instruction), 3555 // do the usual thing: check argument shadow and mark all outputs as 3556 // clean. Note that any side effects of the inline asm that are not 3557 // immediately visible in its constraints are not handled. 3558 if (ClHandleAsmConservative && MS.CompileKernel) 3559 visitAsmInstruction(CB); 3560 else 3561 visitInstruction(CB); 3562 return; 3563 } 3564 LibFunc LF; 3565 if (TLI->getLibFunc(CB, LF)) { 3566 // libatomic.a functions need to have special handling because there isn't 3567 // a good way to intercept them or compile the library with 3568 // instrumentation. 3569 switch (LF) { 3570 case LibFunc_atomic_load: 3571 visitLibAtomicLoad(CB); 3572 return; 3573 case LibFunc_atomic_store: 3574 visitLibAtomicStore(CB); 3575 return; 3576 default: 3577 break; 3578 } 3579 } 3580 3581 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3582 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3583 3584 // We are going to insert code that relies on the fact that the callee 3585 // will become a non-readonly function after it is instrumented by us. To 3586 // prevent this code from being optimized out, mark that function 3587 // non-readonly in advance. 3588 if (Function *Func = Call->getCalledFunction()) { 3589 // Clear out readonly/readnone attributes. 3590 AttrBuilder B; 3591 B.addAttribute(Attribute::ReadOnly) 3592 .addAttribute(Attribute::ReadNone) 3593 .addAttribute(Attribute::WriteOnly) 3594 .addAttribute(Attribute::ArgMemOnly) 3595 .addAttribute(Attribute::Speculatable); 3596 Func->removeAttributes(AttributeList::FunctionIndex, B); 3597 } 3598 3599 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3600 } 3601 IRBuilder<> IRB(&CB); 3602 bool MayCheckCall = ClEagerChecks; 3603 if (Function *Func = CB.getCalledFunction()) { 3604 // __sanitizer_unaligned_{load,store} functions may be called by users 3605 // and always expects shadows in the TLS. So don't check them. 3606 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3607 } 3608 3609 unsigned ArgOffset = 0; 3610 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3611 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3612 ++ArgIt) { 3613 Value *A = *ArgIt; 3614 unsigned i = ArgIt - CB.arg_begin(); 3615 if (!A->getType()->isSized()) { 3616 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3617 continue; 3618 } 3619 unsigned Size = 0; 3620 Value *Store = nullptr; 3621 // Compute the Shadow for arg even if it is ByVal, because 3622 // in that case getShadow() will copy the actual arg shadow to 3623 // __msan_param_tls. 3624 Value *ArgShadow = getShadow(A); 3625 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3626 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3627 << " Shadow: " << *ArgShadow << "\n"); 3628 bool ArgIsInitialized = false; 3629 const DataLayout &DL = F.getParent()->getDataLayout(); 3630 3631 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3632 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3633 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3634 3635 if (EagerCheck) { 3636 insertShadowCheck(A, &CB); 3637 continue; 3638 } 3639 if (ByVal) { 3640 // ByVal requires some special handling as it's too big for a single 3641 // load 3642 assert(A->getType()->isPointerTy() && 3643 "ByVal argument is not a pointer!"); 3644 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3645 if (ArgOffset + Size > kParamTLSSize) break; 3646 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3647 MaybeAlign Alignment = llvm::None; 3648 if (ParamAlignment) 3649 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3650 Value *AShadowPtr = 3651 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3652 /*isStore*/ false) 3653 .first; 3654 3655 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3656 Alignment, Size); 3657 // TODO(glider): need to copy origins. 3658 } else { 3659 // Any other parameters mean we need bit-grained tracking of uninit data 3660 Size = DL.getTypeAllocSize(A->getType()); 3661 if (ArgOffset + Size > kParamTLSSize) break; 3662 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3663 kShadowTLSAlignment); 3664 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3665 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3666 } 3667 if (MS.TrackOrigins && !ArgIsInitialized) 3668 IRB.CreateStore(getOrigin(A), 3669 getOriginPtrForArgument(A, IRB, ArgOffset)); 3670 (void)Store; 3671 assert(Size != 0 && Store != nullptr); 3672 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3673 ArgOffset += alignTo(Size, 8); 3674 } 3675 LLVM_DEBUG(dbgs() << " done with call args\n"); 3676 3677 FunctionType *FT = CB.getFunctionType(); 3678 if (FT->isVarArg()) { 3679 VAHelper->visitCallBase(CB, IRB); 3680 } 3681 3682 // Now, get the shadow for the RetVal. 3683 if (!CB.getType()->isSized()) 3684 return; 3685 // Don't emit the epilogue for musttail call returns. 3686 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3687 return; 3688 3689 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3690 setShadow(&CB, getCleanShadow(&CB)); 3691 setOrigin(&CB, getCleanOrigin()); 3692 return; 3693 } 3694 3695 IRBuilder<> IRBBefore(&CB); 3696 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3697 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3698 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3699 kShadowTLSAlignment); 3700 BasicBlock::iterator NextInsn; 3701 if (isa<CallInst>(CB)) { 3702 NextInsn = ++CB.getIterator(); 3703 assert(NextInsn != CB.getParent()->end()); 3704 } else { 3705 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3706 if (!NormalDest->getSinglePredecessor()) { 3707 // FIXME: this case is tricky, so we are just conservative here. 3708 // Perhaps we need to split the edge between this BB and NormalDest, 3709 // but a naive attempt to use SplitEdge leads to a crash. 3710 setShadow(&CB, getCleanShadow(&CB)); 3711 setOrigin(&CB, getCleanOrigin()); 3712 return; 3713 } 3714 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3715 // Anything inserted there will be instrumented by MSan later! 3716 NextInsn = NormalDest->getFirstInsertionPt(); 3717 assert(NextInsn != NormalDest->end() && 3718 "Could not find insertion point for retval shadow load"); 3719 } 3720 IRBuilder<> IRBAfter(&*NextInsn); 3721 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3722 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3723 kShadowTLSAlignment, "_msret"); 3724 setShadow(&CB, RetvalShadow); 3725 if (MS.TrackOrigins) 3726 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3727 getOriginPtrForRetval(IRBAfter))); 3728 } 3729 3730 bool isAMustTailRetVal(Value *RetVal) { 3731 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3732 RetVal = I->getOperand(0); 3733 } 3734 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3735 return I->isMustTailCall(); 3736 } 3737 return false; 3738 } 3739 3740 void visitReturnInst(ReturnInst &I) { 3741 IRBuilder<> IRB(&I); 3742 Value *RetVal = I.getReturnValue(); 3743 if (!RetVal) return; 3744 // Don't emit the epilogue for musttail call returns. 3745 if (isAMustTailRetVal(RetVal)) return; 3746 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3747 bool HasNoUndef = 3748 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3749 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3750 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3751 // must always return fully initialized values. For now, we hardcode "main". 3752 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3753 3754 Value *Shadow = getShadow(RetVal); 3755 bool StoreOrigin = true; 3756 if (EagerCheck) { 3757 insertShadowCheck(RetVal, &I); 3758 Shadow = getCleanShadow(RetVal); 3759 StoreOrigin = false; 3760 } 3761 3762 // The caller may still expect information passed over TLS if we pass our 3763 // check 3764 if (StoreShadow) { 3765 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3766 if (MS.TrackOrigins && StoreOrigin) 3767 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3768 } 3769 } 3770 3771 void visitPHINode(PHINode &I) { 3772 IRBuilder<> IRB(&I); 3773 if (!PropagateShadow) { 3774 setShadow(&I, getCleanShadow(&I)); 3775 setOrigin(&I, getCleanOrigin()); 3776 return; 3777 } 3778 3779 ShadowPHINodes.push_back(&I); 3780 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3781 "_msphi_s")); 3782 if (MS.TrackOrigins) 3783 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3784 "_msphi_o")); 3785 } 3786 3787 Value *getLocalVarDescription(AllocaInst &I) { 3788 SmallString<2048> StackDescriptionStorage; 3789 raw_svector_ostream StackDescription(StackDescriptionStorage); 3790 // We create a string with a description of the stack allocation and 3791 // pass it into __msan_set_alloca_origin. 3792 // It will be printed by the run-time if stack-originated UMR is found. 3793 // The first 4 bytes of the string are set to '----' and will be replaced 3794 // by __msan_va_arg_overflow_size_tls at the first call. 3795 StackDescription << "----" << I.getName() << "@" << F.getName(); 3796 return createPrivateNonConstGlobalForString(*F.getParent(), 3797 StackDescription.str()); 3798 } 3799 3800 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3801 if (PoisonStack && ClPoisonStackWithCall) { 3802 IRB.CreateCall(MS.MsanPoisonStackFn, 3803 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3804 } else { 3805 Value *ShadowBase, *OriginBase; 3806 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3807 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3808 3809 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3810 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3811 MaybeAlign(I.getAlignment())); 3812 } 3813 3814 if (PoisonStack && MS.TrackOrigins) { 3815 Value *Descr = getLocalVarDescription(I); 3816 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3817 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3818 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3819 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3820 } 3821 } 3822 3823 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3824 Value *Descr = getLocalVarDescription(I); 3825 if (PoisonStack) { 3826 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3827 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3828 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3829 } else { 3830 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3831 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3832 } 3833 } 3834 3835 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3836 if (!InsPoint) 3837 InsPoint = &I; 3838 IRBuilder<> IRB(InsPoint->getNextNode()); 3839 const DataLayout &DL = F.getParent()->getDataLayout(); 3840 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3841 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3842 if (I.isArrayAllocation()) 3843 Len = IRB.CreateMul(Len, I.getArraySize()); 3844 3845 if (MS.CompileKernel) 3846 poisonAllocaKmsan(I, IRB, Len); 3847 else 3848 poisonAllocaUserspace(I, IRB, Len); 3849 } 3850 3851 void visitAllocaInst(AllocaInst &I) { 3852 setShadow(&I, getCleanShadow(&I)); 3853 setOrigin(&I, getCleanOrigin()); 3854 // We'll get to this alloca later unless it's poisoned at the corresponding 3855 // llvm.lifetime.start. 3856 AllocaSet.insert(&I); 3857 } 3858 3859 void visitSelectInst(SelectInst& I) { 3860 IRBuilder<> IRB(&I); 3861 // a = select b, c, d 3862 Value *B = I.getCondition(); 3863 Value *C = I.getTrueValue(); 3864 Value *D = I.getFalseValue(); 3865 Value *Sb = getShadow(B); 3866 Value *Sc = getShadow(C); 3867 Value *Sd = getShadow(D); 3868 3869 // Result shadow if condition shadow is 0. 3870 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3871 Value *Sa1; 3872 if (I.getType()->isAggregateType()) { 3873 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3874 // an extra "select". This results in much more compact IR. 3875 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3876 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3877 } else { 3878 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3879 // If Sb (condition is poisoned), look for bits in c and d that are equal 3880 // and both unpoisoned. 3881 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3882 3883 // Cast arguments to shadow-compatible type. 3884 C = CreateAppToShadowCast(IRB, C); 3885 D = CreateAppToShadowCast(IRB, D); 3886 3887 // Result shadow if condition shadow is 1. 3888 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3889 } 3890 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3891 setShadow(&I, Sa); 3892 if (MS.TrackOrigins) { 3893 // Origins are always i32, so any vector conditions must be flattened. 3894 // FIXME: consider tracking vector origins for app vectors? 3895 if (B->getType()->isVectorTy()) { 3896 Type *FlatTy = getShadowTyNoVec(B->getType()); 3897 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3898 ConstantInt::getNullValue(FlatTy)); 3899 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3900 ConstantInt::getNullValue(FlatTy)); 3901 } 3902 // a = select b, c, d 3903 // Oa = Sb ? Ob : (b ? Oc : Od) 3904 setOrigin( 3905 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3906 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3907 getOrigin(I.getFalseValue())))); 3908 } 3909 } 3910 3911 void visitLandingPadInst(LandingPadInst &I) { 3912 // Do nothing. 3913 // See https://github.com/google/sanitizers/issues/504 3914 setShadow(&I, getCleanShadow(&I)); 3915 setOrigin(&I, getCleanOrigin()); 3916 } 3917 3918 void visitCatchSwitchInst(CatchSwitchInst &I) { 3919 setShadow(&I, getCleanShadow(&I)); 3920 setOrigin(&I, getCleanOrigin()); 3921 } 3922 3923 void visitFuncletPadInst(FuncletPadInst &I) { 3924 setShadow(&I, getCleanShadow(&I)); 3925 setOrigin(&I, getCleanOrigin()); 3926 } 3927 3928 void visitGetElementPtrInst(GetElementPtrInst &I) { 3929 handleShadowOr(I); 3930 } 3931 3932 void visitExtractValueInst(ExtractValueInst &I) { 3933 IRBuilder<> IRB(&I); 3934 Value *Agg = I.getAggregateOperand(); 3935 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3936 Value *AggShadow = getShadow(Agg); 3937 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3938 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3939 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3940 setShadow(&I, ResShadow); 3941 setOriginForNaryOp(I); 3942 } 3943 3944 void visitInsertValueInst(InsertValueInst &I) { 3945 IRBuilder<> IRB(&I); 3946 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3947 Value *AggShadow = getShadow(I.getAggregateOperand()); 3948 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3949 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3950 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3951 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3952 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3953 setShadow(&I, Res); 3954 setOriginForNaryOp(I); 3955 } 3956 3957 void dumpInst(Instruction &I) { 3958 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3959 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3960 } else { 3961 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3962 } 3963 errs() << "QQQ " << I << "\n"; 3964 } 3965 3966 void visitResumeInst(ResumeInst &I) { 3967 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3968 // Nothing to do here. 3969 } 3970 3971 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3972 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3973 // Nothing to do here. 3974 } 3975 3976 void visitCatchReturnInst(CatchReturnInst &CRI) { 3977 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3978 // Nothing to do here. 3979 } 3980 3981 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3982 const DataLayout &DL, bool isOutput) { 3983 // For each assembly argument, we check its value for being initialized. 3984 // If the argument is a pointer, we assume it points to a single element 3985 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3986 // Each such pointer is instrumented with a call to the runtime library. 3987 Type *OpType = Operand->getType(); 3988 // Check the operand value itself. 3989 insertShadowCheck(Operand, &I); 3990 if (!OpType->isPointerTy() || !isOutput) { 3991 assert(!isOutput); 3992 return; 3993 } 3994 Type *ElType = OpType->getPointerElementType(); 3995 if (!ElType->isSized()) 3996 return; 3997 int Size = DL.getTypeStoreSize(ElType); 3998 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3999 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4000 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4001 } 4002 4003 /// Get the number of output arguments returned by pointers. 4004 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4005 int NumRetOutputs = 0; 4006 int NumOutputs = 0; 4007 Type *RetTy = cast<Value>(CB)->getType(); 4008 if (!RetTy->isVoidTy()) { 4009 // Register outputs are returned via the CallInst return value. 4010 auto *ST = dyn_cast<StructType>(RetTy); 4011 if (ST) 4012 NumRetOutputs = ST->getNumElements(); 4013 else 4014 NumRetOutputs = 1; 4015 } 4016 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4017 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 4018 InlineAsm::ConstraintInfo Info = Constraints[i]; 4019 switch (Info.Type) { 4020 case InlineAsm::isOutput: 4021 NumOutputs++; 4022 break; 4023 default: 4024 break; 4025 } 4026 } 4027 return NumOutputs - NumRetOutputs; 4028 } 4029 4030 void visitAsmInstruction(Instruction &I) { 4031 // Conservative inline assembly handling: check for poisoned shadow of 4032 // asm() arguments, then unpoison the result and all the memory locations 4033 // pointed to by those arguments. 4034 // An inline asm() statement in C++ contains lists of input and output 4035 // arguments used by the assembly code. These are mapped to operands of the 4036 // CallInst as follows: 4037 // - nR register outputs ("=r) are returned by value in a single structure 4038 // (SSA value of the CallInst); 4039 // - nO other outputs ("=m" and others) are returned by pointer as first 4040 // nO operands of the CallInst; 4041 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4042 // remaining nI operands. 4043 // The total number of asm() arguments in the source is nR+nO+nI, and the 4044 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4045 // function to be called). 4046 const DataLayout &DL = F.getParent()->getDataLayout(); 4047 CallBase *CB = cast<CallBase>(&I); 4048 IRBuilder<> IRB(&I); 4049 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4050 int OutputArgs = getNumOutputArgs(IA, CB); 4051 // The last operand of a CallInst is the function itself. 4052 int NumOperands = CB->getNumOperands() - 1; 4053 4054 // Check input arguments. Doing so before unpoisoning output arguments, so 4055 // that we won't overwrite uninit values before checking them. 4056 for (int i = OutputArgs; i < NumOperands; i++) { 4057 Value *Operand = CB->getOperand(i); 4058 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4059 } 4060 // Unpoison output arguments. This must happen before the actual InlineAsm 4061 // call, so that the shadow for memory published in the asm() statement 4062 // remains valid. 4063 for (int i = 0; i < OutputArgs; i++) { 4064 Value *Operand = CB->getOperand(i); 4065 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4066 } 4067 4068 setShadow(&I, getCleanShadow(&I)); 4069 setOrigin(&I, getCleanOrigin()); 4070 } 4071 4072 void visitInstruction(Instruction &I) { 4073 // Everything else: stop propagating and check for poisoned shadow. 4074 if (ClDumpStrictInstructions) 4075 dumpInst(I); 4076 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4077 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4078 Value *Operand = I.getOperand(i); 4079 if (Operand->getType()->isSized()) 4080 insertShadowCheck(Operand, &I); 4081 } 4082 setShadow(&I, getCleanShadow(&I)); 4083 setOrigin(&I, getCleanOrigin()); 4084 } 4085 }; 4086 4087 /// AMD64-specific implementation of VarArgHelper. 4088 struct VarArgAMD64Helper : public VarArgHelper { 4089 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4090 // See a comment in visitCallBase for more details. 4091 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4092 static const unsigned AMD64FpEndOffsetSSE = 176; 4093 // If SSE is disabled, fp_offset in va_list is zero. 4094 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4095 4096 unsigned AMD64FpEndOffset; 4097 Function &F; 4098 MemorySanitizer &MS; 4099 MemorySanitizerVisitor &MSV; 4100 Value *VAArgTLSCopy = nullptr; 4101 Value *VAArgTLSOriginCopy = nullptr; 4102 Value *VAArgOverflowSize = nullptr; 4103 4104 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4105 4106 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4107 4108 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4109 MemorySanitizerVisitor &MSV) 4110 : F(F), MS(MS), MSV(MSV) { 4111 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4112 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 4113 if (Attr.isStringAttribute() && 4114 (Attr.getKindAsString() == "target-features")) { 4115 if (Attr.getValueAsString().contains("-sse")) 4116 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4117 break; 4118 } 4119 } 4120 } 4121 4122 ArgKind classifyArgument(Value* arg) { 4123 // A very rough approximation of X86_64 argument classification rules. 4124 Type *T = arg->getType(); 4125 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4126 return AK_FloatingPoint; 4127 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4128 return AK_GeneralPurpose; 4129 if (T->isPointerTy()) 4130 return AK_GeneralPurpose; 4131 return AK_Memory; 4132 } 4133 4134 // For VarArg functions, store the argument shadow in an ABI-specific format 4135 // that corresponds to va_list layout. 4136 // We do this because Clang lowers va_arg in the frontend, and this pass 4137 // only sees the low level code that deals with va_list internals. 4138 // A much easier alternative (provided that Clang emits va_arg instructions) 4139 // would have been to associate each live instance of va_list with a copy of 4140 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4141 // order. 4142 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4143 unsigned GpOffset = 0; 4144 unsigned FpOffset = AMD64GpEndOffset; 4145 unsigned OverflowOffset = AMD64FpEndOffset; 4146 const DataLayout &DL = F.getParent()->getDataLayout(); 4147 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4148 ++ArgIt) { 4149 Value *A = *ArgIt; 4150 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4151 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4152 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4153 if (IsByVal) { 4154 // ByVal arguments always go to the overflow area. 4155 // Fixed arguments passed through the overflow area will be stepped 4156 // over by va_start, so don't count them towards the offset. 4157 if (IsFixed) 4158 continue; 4159 assert(A->getType()->isPointerTy()); 4160 Type *RealTy = CB.getParamByValType(ArgNo); 4161 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4162 Value *ShadowBase = getShadowPtrForVAArgument( 4163 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4164 Value *OriginBase = nullptr; 4165 if (MS.TrackOrigins) 4166 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4167 OverflowOffset += alignTo(ArgSize, 8); 4168 if (!ShadowBase) 4169 continue; 4170 Value *ShadowPtr, *OriginPtr; 4171 std::tie(ShadowPtr, OriginPtr) = 4172 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4173 /*isStore*/ false); 4174 4175 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4176 kShadowTLSAlignment, ArgSize); 4177 if (MS.TrackOrigins) 4178 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4179 kShadowTLSAlignment, ArgSize); 4180 } else { 4181 ArgKind AK = classifyArgument(A); 4182 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4183 AK = AK_Memory; 4184 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4185 AK = AK_Memory; 4186 Value *ShadowBase, *OriginBase = nullptr; 4187 switch (AK) { 4188 case AK_GeneralPurpose: 4189 ShadowBase = 4190 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4191 if (MS.TrackOrigins) 4192 OriginBase = 4193 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4194 GpOffset += 8; 4195 break; 4196 case AK_FloatingPoint: 4197 ShadowBase = 4198 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4199 if (MS.TrackOrigins) 4200 OriginBase = 4201 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4202 FpOffset += 16; 4203 break; 4204 case AK_Memory: 4205 if (IsFixed) 4206 continue; 4207 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4208 ShadowBase = 4209 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4210 if (MS.TrackOrigins) 4211 OriginBase = 4212 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4213 OverflowOffset += alignTo(ArgSize, 8); 4214 } 4215 // Take fixed arguments into account for GpOffset and FpOffset, 4216 // but don't actually store shadows for them. 4217 // TODO(glider): don't call get*PtrForVAArgument() for them. 4218 if (IsFixed) 4219 continue; 4220 if (!ShadowBase) 4221 continue; 4222 Value *Shadow = MSV.getShadow(A); 4223 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4224 if (MS.TrackOrigins) { 4225 Value *Origin = MSV.getOrigin(A); 4226 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4227 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4228 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4229 } 4230 } 4231 } 4232 Constant *OverflowSize = 4233 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4234 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4235 } 4236 4237 /// Compute the shadow address for a given va_arg. 4238 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4239 unsigned ArgOffset, unsigned ArgSize) { 4240 // Make sure we don't overflow __msan_va_arg_tls. 4241 if (ArgOffset + ArgSize > kParamTLSSize) 4242 return nullptr; 4243 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4244 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4245 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4246 "_msarg_va_s"); 4247 } 4248 4249 /// Compute the origin address for a given va_arg. 4250 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4251 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4252 // getOriginPtrForVAArgument() is always called after 4253 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4254 // overflow. 4255 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4256 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4257 "_msarg_va_o"); 4258 } 4259 4260 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4261 IRBuilder<> IRB(&I); 4262 Value *VAListTag = I.getArgOperand(0); 4263 Value *ShadowPtr, *OriginPtr; 4264 const Align Alignment = Align(8); 4265 std::tie(ShadowPtr, OriginPtr) = 4266 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4267 /*isStore*/ true); 4268 4269 // Unpoison the whole __va_list_tag. 4270 // FIXME: magic ABI constants. 4271 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4272 /* size */ 24, Alignment, false); 4273 // We shouldn't need to zero out the origins, as they're only checked for 4274 // nonzero shadow. 4275 } 4276 4277 void visitVAStartInst(VAStartInst &I) override { 4278 if (F.getCallingConv() == CallingConv::Win64) 4279 return; 4280 VAStartInstrumentationList.push_back(&I); 4281 unpoisonVAListTagForInst(I); 4282 } 4283 4284 void visitVACopyInst(VACopyInst &I) override { 4285 if (F.getCallingConv() == CallingConv::Win64) return; 4286 unpoisonVAListTagForInst(I); 4287 } 4288 4289 void finalizeInstrumentation() override { 4290 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4291 "finalizeInstrumentation called twice"); 4292 if (!VAStartInstrumentationList.empty()) { 4293 // If there is a va_start in this function, make a backup copy of 4294 // va_arg_tls somewhere in the function entry block. 4295 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4296 VAArgOverflowSize = 4297 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4298 Value *CopySize = 4299 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4300 VAArgOverflowSize); 4301 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4302 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4303 if (MS.TrackOrigins) { 4304 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4305 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4306 Align(8), CopySize); 4307 } 4308 } 4309 4310 // Instrument va_start. 4311 // Copy va_list shadow from the backup copy of the TLS contents. 4312 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4313 CallInst *OrigInst = VAStartInstrumentationList[i]; 4314 IRBuilder<> IRB(OrigInst->getNextNode()); 4315 Value *VAListTag = OrigInst->getArgOperand(0); 4316 4317 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4318 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4319 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4320 ConstantInt::get(MS.IntptrTy, 16)), 4321 PointerType::get(RegSaveAreaPtrTy, 0)); 4322 Value *RegSaveAreaPtr = 4323 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4324 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4325 const Align Alignment = Align(16); 4326 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4327 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4328 Alignment, /*isStore*/ true); 4329 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4330 AMD64FpEndOffset); 4331 if (MS.TrackOrigins) 4332 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4333 Alignment, AMD64FpEndOffset); 4334 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4335 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4336 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4337 ConstantInt::get(MS.IntptrTy, 8)), 4338 PointerType::get(OverflowArgAreaPtrTy, 0)); 4339 Value *OverflowArgAreaPtr = 4340 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4341 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4342 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4343 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4344 Alignment, /*isStore*/ true); 4345 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4346 AMD64FpEndOffset); 4347 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4348 VAArgOverflowSize); 4349 if (MS.TrackOrigins) { 4350 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4351 AMD64FpEndOffset); 4352 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4353 VAArgOverflowSize); 4354 } 4355 } 4356 } 4357 }; 4358 4359 /// MIPS64-specific implementation of VarArgHelper. 4360 struct VarArgMIPS64Helper : public VarArgHelper { 4361 Function &F; 4362 MemorySanitizer &MS; 4363 MemorySanitizerVisitor &MSV; 4364 Value *VAArgTLSCopy = nullptr; 4365 Value *VAArgSize = nullptr; 4366 4367 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4368 4369 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4370 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4371 4372 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4373 unsigned VAArgOffset = 0; 4374 const DataLayout &DL = F.getParent()->getDataLayout(); 4375 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4376 End = CB.arg_end(); 4377 ArgIt != End; ++ArgIt) { 4378 Triple TargetTriple(F.getParent()->getTargetTriple()); 4379 Value *A = *ArgIt; 4380 Value *Base; 4381 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4382 if (TargetTriple.getArch() == Triple::mips64) { 4383 // Adjusting the shadow for argument with size < 8 to match the placement 4384 // of bits in big endian system 4385 if (ArgSize < 8) 4386 VAArgOffset += (8 - ArgSize); 4387 } 4388 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4389 VAArgOffset += ArgSize; 4390 VAArgOffset = alignTo(VAArgOffset, 8); 4391 if (!Base) 4392 continue; 4393 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4394 } 4395 4396 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4397 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4398 // a new class member i.e. it is the total size of all VarArgs. 4399 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4400 } 4401 4402 /// Compute the shadow address for a given va_arg. 4403 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4404 unsigned ArgOffset, unsigned ArgSize) { 4405 // Make sure we don't overflow __msan_va_arg_tls. 4406 if (ArgOffset + ArgSize > kParamTLSSize) 4407 return nullptr; 4408 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4409 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4410 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4411 "_msarg"); 4412 } 4413 4414 void visitVAStartInst(VAStartInst &I) override { 4415 IRBuilder<> IRB(&I); 4416 VAStartInstrumentationList.push_back(&I); 4417 Value *VAListTag = I.getArgOperand(0); 4418 Value *ShadowPtr, *OriginPtr; 4419 const Align Alignment = Align(8); 4420 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4421 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4422 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4423 /* size */ 8, Alignment, false); 4424 } 4425 4426 void visitVACopyInst(VACopyInst &I) override { 4427 IRBuilder<> IRB(&I); 4428 VAStartInstrumentationList.push_back(&I); 4429 Value *VAListTag = I.getArgOperand(0); 4430 Value *ShadowPtr, *OriginPtr; 4431 const Align Alignment = Align(8); 4432 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4433 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4434 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4435 /* size */ 8, Alignment, false); 4436 } 4437 4438 void finalizeInstrumentation() override { 4439 assert(!VAArgSize && !VAArgTLSCopy && 4440 "finalizeInstrumentation called twice"); 4441 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4442 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4443 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4444 VAArgSize); 4445 4446 if (!VAStartInstrumentationList.empty()) { 4447 // If there is a va_start in this function, make a backup copy of 4448 // va_arg_tls somewhere in the function entry block. 4449 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4450 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4451 } 4452 4453 // Instrument va_start. 4454 // Copy va_list shadow from the backup copy of the TLS contents. 4455 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4456 CallInst *OrigInst = VAStartInstrumentationList[i]; 4457 IRBuilder<> IRB(OrigInst->getNextNode()); 4458 Value *VAListTag = OrigInst->getArgOperand(0); 4459 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4460 Value *RegSaveAreaPtrPtr = 4461 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4462 PointerType::get(RegSaveAreaPtrTy, 0)); 4463 Value *RegSaveAreaPtr = 4464 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4465 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4466 const Align Alignment = Align(8); 4467 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4468 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4469 Alignment, /*isStore*/ true); 4470 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4471 CopySize); 4472 } 4473 } 4474 }; 4475 4476 /// AArch64-specific implementation of VarArgHelper. 4477 struct VarArgAArch64Helper : public VarArgHelper { 4478 static const unsigned kAArch64GrArgSize = 64; 4479 static const unsigned kAArch64VrArgSize = 128; 4480 4481 static const unsigned AArch64GrBegOffset = 0; 4482 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4483 // Make VR space aligned to 16 bytes. 4484 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4485 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4486 + kAArch64VrArgSize; 4487 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4488 4489 Function &F; 4490 MemorySanitizer &MS; 4491 MemorySanitizerVisitor &MSV; 4492 Value *VAArgTLSCopy = nullptr; 4493 Value *VAArgOverflowSize = nullptr; 4494 4495 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4496 4497 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4498 4499 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4500 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4501 4502 ArgKind classifyArgument(Value* arg) { 4503 Type *T = arg->getType(); 4504 if (T->isFPOrFPVectorTy()) 4505 return AK_FloatingPoint; 4506 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4507 || (T->isPointerTy())) 4508 return AK_GeneralPurpose; 4509 return AK_Memory; 4510 } 4511 4512 // The instrumentation stores the argument shadow in a non ABI-specific 4513 // format because it does not know which argument is named (since Clang, 4514 // like x86_64 case, lowers the va_args in the frontend and this pass only 4515 // sees the low level code that deals with va_list internals). 4516 // The first seven GR registers are saved in the first 56 bytes of the 4517 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4518 // the remaining arguments. 4519 // Using constant offset within the va_arg TLS array allows fast copy 4520 // in the finalize instrumentation. 4521 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4522 unsigned GrOffset = AArch64GrBegOffset; 4523 unsigned VrOffset = AArch64VrBegOffset; 4524 unsigned OverflowOffset = AArch64VAEndOffset; 4525 4526 const DataLayout &DL = F.getParent()->getDataLayout(); 4527 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4528 ++ArgIt) { 4529 Value *A = *ArgIt; 4530 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4531 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4532 ArgKind AK = classifyArgument(A); 4533 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4534 AK = AK_Memory; 4535 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4536 AK = AK_Memory; 4537 Value *Base; 4538 switch (AK) { 4539 case AK_GeneralPurpose: 4540 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4541 GrOffset += 8; 4542 break; 4543 case AK_FloatingPoint: 4544 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4545 VrOffset += 16; 4546 break; 4547 case AK_Memory: 4548 // Don't count fixed arguments in the overflow area - va_start will 4549 // skip right over them. 4550 if (IsFixed) 4551 continue; 4552 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4553 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4554 alignTo(ArgSize, 8)); 4555 OverflowOffset += alignTo(ArgSize, 8); 4556 break; 4557 } 4558 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4559 // bother to actually store a shadow. 4560 if (IsFixed) 4561 continue; 4562 if (!Base) 4563 continue; 4564 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4565 } 4566 Constant *OverflowSize = 4567 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4568 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4569 } 4570 4571 /// Compute the shadow address for a given va_arg. 4572 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4573 unsigned ArgOffset, unsigned ArgSize) { 4574 // Make sure we don't overflow __msan_va_arg_tls. 4575 if (ArgOffset + ArgSize > kParamTLSSize) 4576 return nullptr; 4577 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4578 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4579 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4580 "_msarg"); 4581 } 4582 4583 void visitVAStartInst(VAStartInst &I) override { 4584 IRBuilder<> IRB(&I); 4585 VAStartInstrumentationList.push_back(&I); 4586 Value *VAListTag = I.getArgOperand(0); 4587 Value *ShadowPtr, *OriginPtr; 4588 const Align Alignment = Align(8); 4589 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4590 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4591 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4592 /* size */ 32, Alignment, false); 4593 } 4594 4595 void visitVACopyInst(VACopyInst &I) override { 4596 IRBuilder<> IRB(&I); 4597 VAStartInstrumentationList.push_back(&I); 4598 Value *VAListTag = I.getArgOperand(0); 4599 Value *ShadowPtr, *OriginPtr; 4600 const Align Alignment = Align(8); 4601 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4602 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4603 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4604 /* size */ 32, Alignment, false); 4605 } 4606 4607 // Retrieve a va_list field of 'void*' size. 4608 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4609 Value *SaveAreaPtrPtr = 4610 IRB.CreateIntToPtr( 4611 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4612 ConstantInt::get(MS.IntptrTy, offset)), 4613 Type::getInt64PtrTy(*MS.C)); 4614 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4615 } 4616 4617 // Retrieve a va_list field of 'int' size. 4618 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4619 Value *SaveAreaPtr = 4620 IRB.CreateIntToPtr( 4621 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4622 ConstantInt::get(MS.IntptrTy, offset)), 4623 Type::getInt32PtrTy(*MS.C)); 4624 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4625 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4626 } 4627 4628 void finalizeInstrumentation() override { 4629 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4630 "finalizeInstrumentation called twice"); 4631 if (!VAStartInstrumentationList.empty()) { 4632 // If there is a va_start in this function, make a backup copy of 4633 // va_arg_tls somewhere in the function entry block. 4634 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4635 VAArgOverflowSize = 4636 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4637 Value *CopySize = 4638 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4639 VAArgOverflowSize); 4640 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4641 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4642 } 4643 4644 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4645 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4646 4647 // Instrument va_start, copy va_list shadow from the backup copy of 4648 // the TLS contents. 4649 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4650 CallInst *OrigInst = VAStartInstrumentationList[i]; 4651 IRBuilder<> IRB(OrigInst->getNextNode()); 4652 4653 Value *VAListTag = OrigInst->getArgOperand(0); 4654 4655 // The variadic ABI for AArch64 creates two areas to save the incoming 4656 // argument registers (one for 64-bit general register xn-x7 and another 4657 // for 128-bit FP/SIMD vn-v7). 4658 // We need then to propagate the shadow arguments on both regions 4659 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4660 // The remaining arguments are saved on shadow for 'va::stack'. 4661 // One caveat is it requires only to propagate the non-named arguments, 4662 // however on the call site instrumentation 'all' the arguments are 4663 // saved. So to copy the shadow values from the va_arg TLS array 4664 // we need to adjust the offset for both GR and VR fields based on 4665 // the __{gr,vr}_offs value (since they are stores based on incoming 4666 // named arguments). 4667 4668 // Read the stack pointer from the va_list. 4669 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4670 4671 // Read both the __gr_top and __gr_off and add them up. 4672 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4673 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4674 4675 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4676 4677 // Read both the __vr_top and __vr_off and add them up. 4678 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4679 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4680 4681 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4682 4683 // It does not know how many named arguments is being used and, on the 4684 // callsite all the arguments were saved. Since __gr_off is defined as 4685 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4686 // argument by ignoring the bytes of shadow from named arguments. 4687 Value *GrRegSaveAreaShadowPtrOff = 4688 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4689 4690 Value *GrRegSaveAreaShadowPtr = 4691 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4692 Align(8), /*isStore*/ true) 4693 .first; 4694 4695 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4696 GrRegSaveAreaShadowPtrOff); 4697 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4698 4699 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4700 GrCopySize); 4701 4702 // Again, but for FP/SIMD values. 4703 Value *VrRegSaveAreaShadowPtrOff = 4704 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4705 4706 Value *VrRegSaveAreaShadowPtr = 4707 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4708 Align(8), /*isStore*/ true) 4709 .first; 4710 4711 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4712 IRB.getInt8Ty(), 4713 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4714 IRB.getInt32(AArch64VrBegOffset)), 4715 VrRegSaveAreaShadowPtrOff); 4716 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4717 4718 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4719 VrCopySize); 4720 4721 // And finally for remaining arguments. 4722 Value *StackSaveAreaShadowPtr = 4723 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4724 Align(16), /*isStore*/ true) 4725 .first; 4726 4727 Value *StackSrcPtr = 4728 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4729 IRB.getInt32(AArch64VAEndOffset)); 4730 4731 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4732 Align(16), VAArgOverflowSize); 4733 } 4734 } 4735 }; 4736 4737 /// PowerPC64-specific implementation of VarArgHelper. 4738 struct VarArgPowerPC64Helper : public VarArgHelper { 4739 Function &F; 4740 MemorySanitizer &MS; 4741 MemorySanitizerVisitor &MSV; 4742 Value *VAArgTLSCopy = nullptr; 4743 Value *VAArgSize = nullptr; 4744 4745 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4746 4747 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4748 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4749 4750 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4751 // For PowerPC, we need to deal with alignment of stack arguments - 4752 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4753 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4754 // For that reason, we compute current offset from stack pointer (which is 4755 // always properly aligned), and offset for the first vararg, then subtract 4756 // them. 4757 unsigned VAArgBase; 4758 Triple TargetTriple(F.getParent()->getTargetTriple()); 4759 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4760 // and 32 bytes for ABIv2. This is usually determined by target 4761 // endianness, but in theory could be overridden by function attribute. 4762 if (TargetTriple.getArch() == Triple::ppc64) 4763 VAArgBase = 48; 4764 else 4765 VAArgBase = 32; 4766 unsigned VAArgOffset = VAArgBase; 4767 const DataLayout &DL = F.getParent()->getDataLayout(); 4768 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4769 ++ArgIt) { 4770 Value *A = *ArgIt; 4771 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4772 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4773 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4774 if (IsByVal) { 4775 assert(A->getType()->isPointerTy()); 4776 Type *RealTy = CB.getParamByValType(ArgNo); 4777 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4778 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4779 if (!ArgAlign || *ArgAlign < Align(8)) 4780 ArgAlign = Align(8); 4781 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4782 if (!IsFixed) { 4783 Value *Base = getShadowPtrForVAArgument( 4784 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4785 if (Base) { 4786 Value *AShadowPtr, *AOriginPtr; 4787 std::tie(AShadowPtr, AOriginPtr) = 4788 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4789 kShadowTLSAlignment, /*isStore*/ false); 4790 4791 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4792 kShadowTLSAlignment, ArgSize); 4793 } 4794 } 4795 VAArgOffset += alignTo(ArgSize, 8); 4796 } else { 4797 Value *Base; 4798 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4799 uint64_t ArgAlign = 8; 4800 if (A->getType()->isArrayTy()) { 4801 // Arrays are aligned to element size, except for long double 4802 // arrays, which are aligned to 8 bytes. 4803 Type *ElementTy = A->getType()->getArrayElementType(); 4804 if (!ElementTy->isPPC_FP128Ty()) 4805 ArgAlign = DL.getTypeAllocSize(ElementTy); 4806 } else if (A->getType()->isVectorTy()) { 4807 // Vectors are naturally aligned. 4808 ArgAlign = DL.getTypeAllocSize(A->getType()); 4809 } 4810 if (ArgAlign < 8) 4811 ArgAlign = 8; 4812 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4813 if (DL.isBigEndian()) { 4814 // Adjusting the shadow for argument with size < 8 to match the placement 4815 // of bits in big endian system 4816 if (ArgSize < 8) 4817 VAArgOffset += (8 - ArgSize); 4818 } 4819 if (!IsFixed) { 4820 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4821 VAArgOffset - VAArgBase, ArgSize); 4822 if (Base) 4823 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4824 } 4825 VAArgOffset += ArgSize; 4826 VAArgOffset = alignTo(VAArgOffset, 8); 4827 } 4828 if (IsFixed) 4829 VAArgBase = VAArgOffset; 4830 } 4831 4832 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4833 VAArgOffset - VAArgBase); 4834 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4835 // a new class member i.e. it is the total size of all VarArgs. 4836 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4837 } 4838 4839 /// Compute the shadow address for a given va_arg. 4840 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4841 unsigned ArgOffset, unsigned ArgSize) { 4842 // Make sure we don't overflow __msan_va_arg_tls. 4843 if (ArgOffset + ArgSize > kParamTLSSize) 4844 return nullptr; 4845 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4846 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4847 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4848 "_msarg"); 4849 } 4850 4851 void visitVAStartInst(VAStartInst &I) override { 4852 IRBuilder<> IRB(&I); 4853 VAStartInstrumentationList.push_back(&I); 4854 Value *VAListTag = I.getArgOperand(0); 4855 Value *ShadowPtr, *OriginPtr; 4856 const Align Alignment = Align(8); 4857 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4858 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4859 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4860 /* size */ 8, Alignment, false); 4861 } 4862 4863 void visitVACopyInst(VACopyInst &I) override { 4864 IRBuilder<> IRB(&I); 4865 Value *VAListTag = I.getArgOperand(0); 4866 Value *ShadowPtr, *OriginPtr; 4867 const Align Alignment = Align(8); 4868 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4869 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4870 // Unpoison the whole __va_list_tag. 4871 // FIXME: magic ABI constants. 4872 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4873 /* size */ 8, Alignment, false); 4874 } 4875 4876 void finalizeInstrumentation() override { 4877 assert(!VAArgSize && !VAArgTLSCopy && 4878 "finalizeInstrumentation called twice"); 4879 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4880 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4881 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4882 VAArgSize); 4883 4884 if (!VAStartInstrumentationList.empty()) { 4885 // If there is a va_start in this function, make a backup copy of 4886 // va_arg_tls somewhere in the function entry block. 4887 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4888 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4889 } 4890 4891 // Instrument va_start. 4892 // Copy va_list shadow from the backup copy of the TLS contents. 4893 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4894 CallInst *OrigInst = VAStartInstrumentationList[i]; 4895 IRBuilder<> IRB(OrigInst->getNextNode()); 4896 Value *VAListTag = OrigInst->getArgOperand(0); 4897 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4898 Value *RegSaveAreaPtrPtr = 4899 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4900 PointerType::get(RegSaveAreaPtrTy, 0)); 4901 Value *RegSaveAreaPtr = 4902 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4903 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4904 const Align Alignment = Align(8); 4905 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4906 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4907 Alignment, /*isStore*/ true); 4908 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4909 CopySize); 4910 } 4911 } 4912 }; 4913 4914 /// SystemZ-specific implementation of VarArgHelper. 4915 struct VarArgSystemZHelper : public VarArgHelper { 4916 static const unsigned SystemZGpOffset = 16; 4917 static const unsigned SystemZGpEndOffset = 56; 4918 static const unsigned SystemZFpOffset = 128; 4919 static const unsigned SystemZFpEndOffset = 160; 4920 static const unsigned SystemZMaxVrArgs = 8; 4921 static const unsigned SystemZRegSaveAreaSize = 160; 4922 static const unsigned SystemZOverflowOffset = 160; 4923 static const unsigned SystemZVAListTagSize = 32; 4924 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4925 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4926 4927 Function &F; 4928 MemorySanitizer &MS; 4929 MemorySanitizerVisitor &MSV; 4930 Value *VAArgTLSCopy = nullptr; 4931 Value *VAArgTLSOriginCopy = nullptr; 4932 Value *VAArgOverflowSize = nullptr; 4933 4934 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4935 4936 enum class ArgKind { 4937 GeneralPurpose, 4938 FloatingPoint, 4939 Vector, 4940 Memory, 4941 Indirect, 4942 }; 4943 4944 enum class ShadowExtension { None, Zero, Sign }; 4945 4946 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4947 MemorySanitizerVisitor &MSV) 4948 : F(F), MS(MS), MSV(MSV) {} 4949 4950 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4951 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4952 // only a few possibilities of what it can be. In particular, enums, single 4953 // element structs and large types have already been taken care of. 4954 4955 // Some i128 and fp128 arguments are converted to pointers only in the 4956 // back end. 4957 if (T->isIntegerTy(128) || T->isFP128Ty()) 4958 return ArgKind::Indirect; 4959 if (T->isFloatingPointTy()) 4960 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4961 if (T->isIntegerTy() || T->isPointerTy()) 4962 return ArgKind::GeneralPurpose; 4963 if (T->isVectorTy()) 4964 return ArgKind::Vector; 4965 return ArgKind::Memory; 4966 } 4967 4968 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4969 // ABI says: "One of the simple integer types no more than 64 bits wide. 4970 // ... If such an argument is shorter than 64 bits, replace it by a full 4971 // 64-bit integer representing the same number, using sign or zero 4972 // extension". Shadow for an integer argument has the same type as the 4973 // argument itself, so it can be sign or zero extended as well. 4974 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4975 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4976 if (ZExt) { 4977 assert(!SExt); 4978 return ShadowExtension::Zero; 4979 } 4980 if (SExt) { 4981 assert(!ZExt); 4982 return ShadowExtension::Sign; 4983 } 4984 return ShadowExtension::None; 4985 } 4986 4987 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4988 bool IsSoftFloatABI = CB.getCalledFunction() 4989 ->getFnAttribute("use-soft-float") 4990 .getValueAsString() == "true"; 4991 unsigned GpOffset = SystemZGpOffset; 4992 unsigned FpOffset = SystemZFpOffset; 4993 unsigned VrIndex = 0; 4994 unsigned OverflowOffset = SystemZOverflowOffset; 4995 const DataLayout &DL = F.getParent()->getDataLayout(); 4996 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4997 ++ArgIt) { 4998 Value *A = *ArgIt; 4999 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5000 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5001 // SystemZABIInfo does not produce ByVal parameters. 5002 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5003 Type *T = A->getType(); 5004 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5005 if (AK == ArgKind::Indirect) { 5006 T = PointerType::get(T, 0); 5007 AK = ArgKind::GeneralPurpose; 5008 } 5009 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5010 AK = ArgKind::Memory; 5011 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5012 AK = ArgKind::Memory; 5013 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5014 AK = ArgKind::Memory; 5015 Value *ShadowBase = nullptr; 5016 Value *OriginBase = nullptr; 5017 ShadowExtension SE = ShadowExtension::None; 5018 switch (AK) { 5019 case ArgKind::GeneralPurpose: { 5020 // Always keep track of GpOffset, but store shadow only for varargs. 5021 uint64_t ArgSize = 8; 5022 if (GpOffset + ArgSize <= kParamTLSSize) { 5023 if (!IsFixed) { 5024 SE = getShadowExtension(CB, ArgNo); 5025 uint64_t GapSize = 0; 5026 if (SE == ShadowExtension::None) { 5027 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5028 assert(ArgAllocSize <= ArgSize); 5029 GapSize = ArgSize - ArgAllocSize; 5030 } 5031 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5032 if (MS.TrackOrigins) 5033 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5034 } 5035 GpOffset += ArgSize; 5036 } else { 5037 GpOffset = kParamTLSSize; 5038 } 5039 break; 5040 } 5041 case ArgKind::FloatingPoint: { 5042 // Always keep track of FpOffset, but store shadow only for varargs. 5043 uint64_t ArgSize = 8; 5044 if (FpOffset + ArgSize <= kParamTLSSize) { 5045 if (!IsFixed) { 5046 // PoP says: "A short floating-point datum requires only the 5047 // left-most 32 bit positions of a floating-point register". 5048 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5049 // don't extend shadow and don't mind the gap. 5050 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5051 if (MS.TrackOrigins) 5052 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5053 } 5054 FpOffset += ArgSize; 5055 } else { 5056 FpOffset = kParamTLSSize; 5057 } 5058 break; 5059 } 5060 case ArgKind::Vector: { 5061 // Keep track of VrIndex. No need to store shadow, since vector varargs 5062 // go through AK_Memory. 5063 assert(IsFixed); 5064 VrIndex++; 5065 break; 5066 } 5067 case ArgKind::Memory: { 5068 // Keep track of OverflowOffset and store shadow only for varargs. 5069 // Ignore fixed args, since we need to copy only the vararg portion of 5070 // the overflow area shadow. 5071 if (!IsFixed) { 5072 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5073 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5074 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5075 SE = getShadowExtension(CB, ArgNo); 5076 uint64_t GapSize = 5077 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5078 ShadowBase = 5079 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5080 if (MS.TrackOrigins) 5081 OriginBase = 5082 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5083 OverflowOffset += ArgSize; 5084 } else { 5085 OverflowOffset = kParamTLSSize; 5086 } 5087 } 5088 break; 5089 } 5090 case ArgKind::Indirect: 5091 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5092 } 5093 if (ShadowBase == nullptr) 5094 continue; 5095 Value *Shadow = MSV.getShadow(A); 5096 if (SE != ShadowExtension::None) 5097 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5098 /*Signed*/ SE == ShadowExtension::Sign); 5099 ShadowBase = IRB.CreateIntToPtr( 5100 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5101 IRB.CreateStore(Shadow, ShadowBase); 5102 if (MS.TrackOrigins) { 5103 Value *Origin = MSV.getOrigin(A); 5104 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5105 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5106 kMinOriginAlignment); 5107 } 5108 } 5109 Constant *OverflowSize = ConstantInt::get( 5110 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5111 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5112 } 5113 5114 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5115 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5116 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5117 } 5118 5119 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5120 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5121 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5122 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5123 "_msarg_va_o"); 5124 } 5125 5126 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5127 IRBuilder<> IRB(&I); 5128 Value *VAListTag = I.getArgOperand(0); 5129 Value *ShadowPtr, *OriginPtr; 5130 const Align Alignment = Align(8); 5131 std::tie(ShadowPtr, OriginPtr) = 5132 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5133 /*isStore*/ true); 5134 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5135 SystemZVAListTagSize, Alignment, false); 5136 } 5137 5138 void visitVAStartInst(VAStartInst &I) override { 5139 VAStartInstrumentationList.push_back(&I); 5140 unpoisonVAListTagForInst(I); 5141 } 5142 5143 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5144 5145 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5146 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5147 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5148 IRB.CreateAdd( 5149 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5150 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5151 PointerType::get(RegSaveAreaPtrTy, 0)); 5152 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5153 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5154 const Align Alignment = Align(8); 5155 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5156 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5157 /*isStore*/ true); 5158 // TODO(iii): copy only fragments filled by visitCallBase() 5159 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5160 SystemZRegSaveAreaSize); 5161 if (MS.TrackOrigins) 5162 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5163 Alignment, SystemZRegSaveAreaSize); 5164 } 5165 5166 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5167 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5168 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5169 IRB.CreateAdd( 5170 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5171 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5172 PointerType::get(OverflowArgAreaPtrTy, 0)); 5173 Value *OverflowArgAreaPtr = 5174 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5175 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5176 const Align Alignment = Align(8); 5177 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5178 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5179 Alignment, /*isStore*/ true); 5180 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5181 SystemZOverflowOffset); 5182 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5183 VAArgOverflowSize); 5184 if (MS.TrackOrigins) { 5185 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5186 SystemZOverflowOffset); 5187 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5188 VAArgOverflowSize); 5189 } 5190 } 5191 5192 void finalizeInstrumentation() override { 5193 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5194 "finalizeInstrumentation called twice"); 5195 if (!VAStartInstrumentationList.empty()) { 5196 // If there is a va_start in this function, make a backup copy of 5197 // va_arg_tls somewhere in the function entry block. 5198 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 5199 VAArgOverflowSize = 5200 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5201 Value *CopySize = 5202 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5203 VAArgOverflowSize); 5204 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5205 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5206 if (MS.TrackOrigins) { 5207 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5208 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5209 Align(8), CopySize); 5210 } 5211 } 5212 5213 // Instrument va_start. 5214 // Copy va_list shadow from the backup copy of the TLS contents. 5215 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5216 VaStartNo < VaStartNum; VaStartNo++) { 5217 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5218 IRBuilder<> IRB(OrigInst->getNextNode()); 5219 Value *VAListTag = OrigInst->getArgOperand(0); 5220 copyRegSaveArea(IRB, VAListTag); 5221 copyOverflowArea(IRB, VAListTag); 5222 } 5223 } 5224 }; 5225 5226 /// A no-op implementation of VarArgHelper. 5227 struct VarArgNoOpHelper : public VarArgHelper { 5228 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5229 MemorySanitizerVisitor &MSV) {} 5230 5231 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5232 5233 void visitVAStartInst(VAStartInst &I) override {} 5234 5235 void visitVACopyInst(VACopyInst &I) override {} 5236 5237 void finalizeInstrumentation() override {} 5238 }; 5239 5240 } // end anonymous namespace 5241 5242 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5243 MemorySanitizerVisitor &Visitor) { 5244 // VarArg handling is only implemented on AMD64. False positives are possible 5245 // on other platforms. 5246 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5247 if (TargetTriple.getArch() == Triple::x86_64) 5248 return new VarArgAMD64Helper(Func, Msan, Visitor); 5249 else if (TargetTriple.isMIPS64()) 5250 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5251 else if (TargetTriple.getArch() == Triple::aarch64) 5252 return new VarArgAArch64Helper(Func, Msan, Visitor); 5253 else if (TargetTriple.getArch() == Triple::ppc64 || 5254 TargetTriple.getArch() == Triple::ppc64le) 5255 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5256 else if (TargetTriple.getArch() == Triple::systemz) 5257 return new VarArgSystemZHelper(Func, Msan, Visitor); 5258 else 5259 return new VarArgNoOpHelper(Func, Msan, Visitor); 5260 } 5261 5262 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5263 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5264 return false; 5265 5266 MemorySanitizerVisitor Visitor(F, *this, TLI); 5267 5268 // Clear out readonly/readnone attributes. 5269 AttrBuilder B; 5270 B.addAttribute(Attribute::ReadOnly) 5271 .addAttribute(Attribute::ReadNone) 5272 .addAttribute(Attribute::WriteOnly) 5273 .addAttribute(Attribute::ArgMemOnly) 5274 .addAttribute(Attribute::Speculatable); 5275 F.removeAttributes(AttributeList::FunctionIndex, B); 5276 5277 return Visitor.runOnFunction(); 5278 } 5279