1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 // This is an experiment to enable handling of cases where shadow is a non-zero 311 // compile-time constant. For some unexplainable reason they were silently 312 // ignored in the instrumentation. 313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 314 cl::desc("Insert checks for constant shadow values"), 315 cl::Hidden, cl::init(false)); 316 317 // This is off by default because of a bug in gold: 318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 319 static cl::opt<bool> ClWithComdat("msan-with-comdat", 320 cl::desc("Place MSan constructors in comdat sections"), 321 cl::Hidden, cl::init(false)); 322 323 // These options allow to specify custom memory map parameters 324 // See MemoryMapParams for details. 325 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 326 cl::desc("Define custom MSan AndMask"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 330 cl::desc("Define custom MSan XorMask"), 331 cl::Hidden, cl::init(0)); 332 333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 334 cl::desc("Define custom MSan ShadowBase"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 338 cl::desc("Define custom MSan OriginBase"), 339 cl::Hidden, cl::init(0)); 340 341 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 342 static const char *const kMsanInitName = "__msan_init"; 343 344 namespace { 345 346 // Memory map parameters used in application-to-shadow address calculation. 347 // Offset = (Addr & ~AndMask) ^ XorMask 348 // Shadow = ShadowBase + Offset 349 // Origin = OriginBase + Offset 350 struct MemoryMapParams { 351 uint64_t AndMask; 352 uint64_t XorMask; 353 uint64_t ShadowBase; 354 uint64_t OriginBase; 355 }; 356 357 struct PlatformMemoryMapParams { 358 const MemoryMapParams *bits32; 359 const MemoryMapParams *bits64; 360 }; 361 362 } // end anonymous namespace 363 364 // i386 Linux 365 static const MemoryMapParams Linux_I386_MemoryMapParams = { 366 0x000080000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x000040000000, // OriginBase 370 }; 371 372 // x86_64 Linux 373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 375 0x400000000000, // AndMask 376 0, // XorMask (not used) 377 0, // ShadowBase (not used) 378 0x200000000000, // OriginBase 379 #else 380 0, // AndMask (not used) 381 0x500000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x100000000000, // OriginBase 384 #endif 385 }; 386 387 // mips64 Linux 388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 389 0, // AndMask (not used) 390 0x008000000000, // XorMask 391 0, // ShadowBase (not used) 392 0x002000000000, // OriginBase 393 }; 394 395 // ppc64 Linux 396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 397 0xE00000000000, // AndMask 398 0x100000000000, // XorMask 399 0x080000000000, // ShadowBase 400 0x1C0000000000, // OriginBase 401 }; 402 403 // s390x Linux 404 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 405 0xC00000000000, // AndMask 406 0, // XorMask (not used) 407 0x080000000000, // ShadowBase 408 0x1C0000000000, // OriginBase 409 }; 410 411 // aarch64 Linux 412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 413 0, // AndMask (not used) 414 0x06000000000, // XorMask 415 0, // ShadowBase (not used) 416 0x01000000000, // OriginBase 417 }; 418 419 // i386 FreeBSD 420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 421 0x000180000000, // AndMask 422 0x000040000000, // XorMask 423 0x000020000000, // ShadowBase 424 0x000700000000, // OriginBase 425 }; 426 427 // x86_64 FreeBSD 428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 429 0xc00000000000, // AndMask 430 0x200000000000, // XorMask 431 0x100000000000, // ShadowBase 432 0x380000000000, // OriginBase 433 }; 434 435 // x86_64 NetBSD 436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 437 0, // AndMask 438 0x500000000000, // XorMask 439 0, // ShadowBase 440 0x100000000000, // OriginBase 441 }; 442 443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 444 &Linux_I386_MemoryMapParams, 445 &Linux_X86_64_MemoryMapParams, 446 }; 447 448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 449 nullptr, 450 &Linux_MIPS64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 454 nullptr, 455 &Linux_PowerPC64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 459 nullptr, 460 &Linux_S390X_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 464 nullptr, 465 &Linux_AArch64_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 469 &FreeBSD_I386_MemoryMapParams, 470 &FreeBSD_X86_64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 474 nullptr, 475 &NetBSD_X86_64_MemoryMapParams, 476 }; 477 478 namespace { 479 480 /// Instrument functions of a module to detect uninitialized reads. 481 /// 482 /// Instantiating MemorySanitizer inserts the msan runtime library API function 483 /// declarations into the module if they don't exist already. Instantiating 484 /// ensures the __msan_init function is in the list of global constructors for 485 /// the module. 486 class MemorySanitizer { 487 public: 488 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 489 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 490 Recover(Options.Recover) { 491 initializeModule(M); 492 } 493 494 // MSan cannot be moved or copied because of MapParams. 495 MemorySanitizer(MemorySanitizer &&) = delete; 496 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 497 MemorySanitizer(const MemorySanitizer &) = delete; 498 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 499 500 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 501 502 private: 503 friend struct MemorySanitizerVisitor; 504 friend struct VarArgAMD64Helper; 505 friend struct VarArgMIPS64Helper; 506 friend struct VarArgAArch64Helper; 507 friend struct VarArgPowerPC64Helper; 508 friend struct VarArgSystemZHelper; 509 510 void initializeModule(Module &M); 511 void initializeCallbacks(Module &M); 512 void createKernelApi(Module &M); 513 void createUserspaceApi(Module &M); 514 515 /// True if we're compiling the Linux kernel. 516 bool CompileKernel; 517 /// Track origins (allocation points) of uninitialized values. 518 int TrackOrigins; 519 bool Recover; 520 521 LLVMContext *C; 522 Type *IntptrTy; 523 Type *OriginTy; 524 525 // XxxTLS variables represent the per-thread state in MSan and per-task state 526 // in KMSAN. 527 // For the userspace these point to thread-local globals. In the kernel land 528 // they point to the members of a per-task struct obtained via a call to 529 // __msan_get_context_state(). 530 531 /// Thread-local shadow storage for function parameters. 532 Value *ParamTLS; 533 534 /// Thread-local origin storage for function parameters. 535 Value *ParamOriginTLS; 536 537 /// Thread-local shadow storage for function return value. 538 Value *RetvalTLS; 539 540 /// Thread-local origin storage for function return value. 541 Value *RetvalOriginTLS; 542 543 /// Thread-local shadow storage for in-register va_arg function 544 /// parameters (x86_64-specific). 545 Value *VAArgTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgOriginTLS; 550 551 /// Thread-local shadow storage for va_arg overflow area 552 /// (x86_64-specific). 553 Value *VAArgOverflowSizeTLS; 554 555 /// Are the instrumentation callbacks set up? 556 bool CallbacksInitialized = false; 557 558 /// The run-time callback to print a warning. 559 FunctionCallee WarningFn; 560 561 // These arrays are indexed by log2(AccessSize). 562 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 563 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 564 565 /// Run-time helper that generates a new origin value for a stack 566 /// allocation. 567 FunctionCallee MsanSetAllocaOrigin4Fn; 568 569 /// Run-time helper that poisons stack on function entry. 570 FunctionCallee MsanPoisonStackFn; 571 572 /// Run-time helper that records a store (or any event) of an 573 /// uninitialized value and returns an updated origin id encoding this info. 574 FunctionCallee MsanChainOriginFn; 575 576 /// MSan runtime replacements for memmove, memcpy and memset. 577 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 578 579 /// KMSAN callback for task-local function argument shadow. 580 StructType *MsanContextStateTy; 581 FunctionCallee MsanGetContextStateFn; 582 583 /// Functions for poisoning/unpoisoning local variables 584 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 585 586 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 587 /// pointers. 588 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 589 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 590 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 591 FunctionCallee MsanInstrumentAsmStoreFn; 592 593 /// Helper to choose between different MsanMetadataPtrXxx(). 594 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 595 596 /// Memory map parameters used in application-to-shadow calculation. 597 const MemoryMapParams *MapParams; 598 599 /// Custom memory map parameters used when -msan-shadow-base or 600 // -msan-origin-base is provided. 601 MemoryMapParams CustomMapParams; 602 603 MDNode *ColdCallWeights; 604 605 /// Branch weights for origin store. 606 MDNode *OriginStoreWeights; 607 }; 608 609 void insertModuleCtor(Module &M) { 610 getOrCreateSanitizerCtorAndInitFunctions( 611 M, kMsanModuleCtorName, kMsanInitName, 612 /*InitArgTypes=*/{}, 613 /*InitArgs=*/{}, 614 // This callback is invoked when the functions are created the first 615 // time. Hook them into the global ctors list in that case: 616 [&](Function *Ctor, FunctionCallee) { 617 if (!ClWithComdat) { 618 appendToGlobalCtors(M, Ctor, 0); 619 return; 620 } 621 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 622 Ctor->setComdat(MsanCtorComdat); 623 appendToGlobalCtors(M, Ctor, 0, Ctor); 624 }); 625 } 626 627 /// A legacy function pass for msan instrumentation. 628 /// 629 /// Instruments functions to detect uninitialized reads. 630 struct MemorySanitizerLegacyPass : public FunctionPass { 631 // Pass identification, replacement for typeid. 632 static char ID; 633 634 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 635 : FunctionPass(ID), Options(Options) { 636 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 637 } 638 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 639 640 void getAnalysisUsage(AnalysisUsage &AU) const override { 641 AU.addRequired<TargetLibraryInfoWrapperPass>(); 642 } 643 644 bool runOnFunction(Function &F) override { 645 return MSan->sanitizeFunction( 646 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 647 } 648 bool doInitialization(Module &M) override; 649 650 Optional<MemorySanitizer> MSan; 651 MemorySanitizerOptions Options; 652 }; 653 654 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 655 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 656 } 657 658 } // end anonymous namespace 659 660 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 661 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 662 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 663 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 664 665 PreservedAnalyses MemorySanitizerPass::run(Function &F, 666 FunctionAnalysisManager &FAM) { 667 MemorySanitizer Msan(*F.getParent(), Options); 668 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 669 return PreservedAnalyses::none(); 670 return PreservedAnalyses::all(); 671 } 672 673 PreservedAnalyses MemorySanitizerPass::run(Module &M, 674 ModuleAnalysisManager &AM) { 675 if (Options.Kernel) 676 return PreservedAnalyses::all(); 677 insertModuleCtor(M); 678 return PreservedAnalyses::none(); 679 } 680 681 char MemorySanitizerLegacyPass::ID = 0; 682 683 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 684 "MemorySanitizer: detects uninitialized reads.", false, 685 false) 686 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 687 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 688 "MemorySanitizer: detects uninitialized reads.", false, 689 false) 690 691 FunctionPass * 692 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 693 return new MemorySanitizerLegacyPass(Options); 694 } 695 696 /// Create a non-const global initialized with the given string. 697 /// 698 /// Creates a writable global for Str so that we can pass it to the 699 /// run-time lib. Runtime uses first 4 bytes of the string to store the 700 /// frame ID, so the string needs to be mutable. 701 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 702 StringRef Str) { 703 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 704 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 705 GlobalValue::PrivateLinkage, StrConst, ""); 706 } 707 708 /// Create KMSAN API callbacks. 709 void MemorySanitizer::createKernelApi(Module &M) { 710 IRBuilder<> IRB(*C); 711 712 // These will be initialized in insertKmsanPrologue(). 713 RetvalTLS = nullptr; 714 RetvalOriginTLS = nullptr; 715 ParamTLS = nullptr; 716 ParamOriginTLS = nullptr; 717 VAArgTLS = nullptr; 718 VAArgOriginTLS = nullptr; 719 VAArgOverflowSizeTLS = nullptr; 720 721 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 722 IRB.getInt32Ty()); 723 // Requests the per-task context state (kmsan_context_state*) from the 724 // runtime library. 725 MsanContextStateTy = StructType::get( 726 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 727 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 728 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 730 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 731 OriginTy); 732 MsanGetContextStateFn = M.getOrInsertFunction( 733 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 734 735 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 736 PointerType::get(IRB.getInt32Ty(), 0)); 737 738 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 739 std::string name_load = 740 "__msan_metadata_ptr_for_load_" + std::to_string(size); 741 std::string name_store = 742 "__msan_metadata_ptr_for_store_" + std::to_string(size); 743 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 744 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 745 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 746 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 747 } 748 749 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 750 "__msan_metadata_ptr_for_load_n", RetTy, 751 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 752 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 753 "__msan_metadata_ptr_for_store_n", RetTy, 754 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 755 756 // Functions for poisoning and unpoisoning memory. 757 MsanPoisonAllocaFn = 758 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 759 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 760 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 761 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 762 } 763 764 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 765 return M.getOrInsertGlobal(Name, Ty, [&] { 766 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 767 nullptr, Name, nullptr, 768 GlobalVariable::InitialExecTLSModel); 769 }); 770 } 771 772 /// Insert declarations for userspace-specific functions and globals. 773 void MemorySanitizer::createUserspaceApi(Module &M) { 774 IRBuilder<> IRB(*C); 775 776 // Create the callback. 777 // FIXME: this function should have "Cold" calling conv, 778 // which is not yet implemented. 779 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 780 : "__msan_warning_with_origin_noreturn"; 781 WarningFn = 782 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 783 784 // Create the global TLS variables. 785 RetvalTLS = 786 getOrInsertGlobal(M, "__msan_retval_tls", 787 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 788 789 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 790 791 ParamTLS = 792 getOrInsertGlobal(M, "__msan_param_tls", 793 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 794 795 ParamOriginTLS = 796 getOrInsertGlobal(M, "__msan_param_origin_tls", 797 ArrayType::get(OriginTy, kParamTLSSize / 4)); 798 799 VAArgTLS = 800 getOrInsertGlobal(M, "__msan_va_arg_tls", 801 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 802 803 VAArgOriginTLS = 804 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 805 ArrayType::get(OriginTy, kParamTLSSize / 4)); 806 807 VAArgOverflowSizeTLS = 808 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 809 810 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 811 AccessSizeIndex++) { 812 unsigned AccessSize = 1 << AccessSizeIndex; 813 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 814 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 815 MaybeWarningFnAttrs.push_back(std::make_pair( 816 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 817 MaybeWarningFnAttrs.push_back(std::make_pair( 818 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 819 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 820 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 821 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 822 823 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 824 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 825 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 826 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 827 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 828 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 829 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 830 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 831 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 832 IRB.getInt32Ty()); 833 } 834 835 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 836 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 837 IRB.getInt8PtrTy(), IntptrTy); 838 MsanPoisonStackFn = 839 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 840 IRB.getInt8PtrTy(), IntptrTy); 841 } 842 843 /// Insert extern declaration of runtime-provided functions and globals. 844 void MemorySanitizer::initializeCallbacks(Module &M) { 845 // Only do this once. 846 if (CallbacksInitialized) 847 return; 848 849 IRBuilder<> IRB(*C); 850 // Initialize callbacks that are common for kernel and userspace 851 // instrumentation. 852 MsanChainOriginFn = M.getOrInsertFunction( 853 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 854 MemmoveFn = M.getOrInsertFunction( 855 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 856 IRB.getInt8PtrTy(), IntptrTy); 857 MemcpyFn = M.getOrInsertFunction( 858 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 859 IntptrTy); 860 MemsetFn = M.getOrInsertFunction( 861 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 862 IntptrTy); 863 864 MsanInstrumentAsmStoreFn = 865 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 866 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 867 868 if (CompileKernel) { 869 createKernelApi(M); 870 } else { 871 createUserspaceApi(M); 872 } 873 CallbacksInitialized = true; 874 } 875 876 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 877 int size) { 878 FunctionCallee *Fns = 879 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 880 switch (size) { 881 case 1: 882 return Fns[0]; 883 case 2: 884 return Fns[1]; 885 case 4: 886 return Fns[2]; 887 case 8: 888 return Fns[3]; 889 default: 890 return nullptr; 891 } 892 } 893 894 /// Module-level initialization. 895 /// 896 /// inserts a call to __msan_init to the module's constructor list. 897 void MemorySanitizer::initializeModule(Module &M) { 898 auto &DL = M.getDataLayout(); 899 900 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 901 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 902 // Check the overrides first 903 if (ShadowPassed || OriginPassed) { 904 CustomMapParams.AndMask = ClAndMask; 905 CustomMapParams.XorMask = ClXorMask; 906 CustomMapParams.ShadowBase = ClShadowBase; 907 CustomMapParams.OriginBase = ClOriginBase; 908 MapParams = &CustomMapParams; 909 } else { 910 Triple TargetTriple(M.getTargetTriple()); 911 switch (TargetTriple.getOS()) { 912 case Triple::FreeBSD: 913 switch (TargetTriple.getArch()) { 914 case Triple::x86_64: 915 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 916 break; 917 case Triple::x86: 918 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 919 break; 920 default: 921 report_fatal_error("unsupported architecture"); 922 } 923 break; 924 case Triple::NetBSD: 925 switch (TargetTriple.getArch()) { 926 case Triple::x86_64: 927 MapParams = NetBSD_X86_MemoryMapParams.bits64; 928 break; 929 default: 930 report_fatal_error("unsupported architecture"); 931 } 932 break; 933 case Triple::Linux: 934 switch (TargetTriple.getArch()) { 935 case Triple::x86_64: 936 MapParams = Linux_X86_MemoryMapParams.bits64; 937 break; 938 case Triple::x86: 939 MapParams = Linux_X86_MemoryMapParams.bits32; 940 break; 941 case Triple::mips64: 942 case Triple::mips64el: 943 MapParams = Linux_MIPS_MemoryMapParams.bits64; 944 break; 945 case Triple::ppc64: 946 case Triple::ppc64le: 947 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 948 break; 949 case Triple::systemz: 950 MapParams = Linux_S390_MemoryMapParams.bits64; 951 break; 952 case Triple::aarch64: 953 case Triple::aarch64_be: 954 MapParams = Linux_ARM_MemoryMapParams.bits64; 955 break; 956 default: 957 report_fatal_error("unsupported architecture"); 958 } 959 break; 960 default: 961 report_fatal_error("unsupported operating system"); 962 } 963 } 964 965 C = &(M.getContext()); 966 IRBuilder<> IRB(*C); 967 IntptrTy = IRB.getIntPtrTy(DL); 968 OriginTy = IRB.getInt32Ty(); 969 970 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 971 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 972 973 if (!CompileKernel) { 974 if (TrackOrigins) 975 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 976 return new GlobalVariable( 977 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 978 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 979 }); 980 981 if (Recover) 982 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 983 return new GlobalVariable(M, IRB.getInt32Ty(), true, 984 GlobalValue::WeakODRLinkage, 985 IRB.getInt32(Recover), "__msan_keep_going"); 986 }); 987 } 988 } 989 990 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 991 if (!Options.Kernel) 992 insertModuleCtor(M); 993 MSan.emplace(M, Options); 994 return true; 995 } 996 997 namespace { 998 999 /// A helper class that handles instrumentation of VarArg 1000 /// functions on a particular platform. 1001 /// 1002 /// Implementations are expected to insert the instrumentation 1003 /// necessary to propagate argument shadow through VarArg function 1004 /// calls. Visit* methods are called during an InstVisitor pass over 1005 /// the function, and should avoid creating new basic blocks. A new 1006 /// instance of this class is created for each instrumented function. 1007 struct VarArgHelper { 1008 virtual ~VarArgHelper() = default; 1009 1010 /// Visit a CallBase. 1011 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1012 1013 /// Visit a va_start call. 1014 virtual void visitVAStartInst(VAStartInst &I) = 0; 1015 1016 /// Visit a va_copy call. 1017 virtual void visitVACopyInst(VACopyInst &I) = 0; 1018 1019 /// Finalize function instrumentation. 1020 /// 1021 /// This method is called after visiting all interesting (see above) 1022 /// instructions in a function. 1023 virtual void finalizeInstrumentation() = 0; 1024 }; 1025 1026 struct MemorySanitizerVisitor; 1027 1028 } // end anonymous namespace 1029 1030 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1031 MemorySanitizerVisitor &Visitor); 1032 1033 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1034 if (TypeSize <= 8) return 0; 1035 return Log2_32_Ceil((TypeSize + 7) / 8); 1036 } 1037 1038 namespace { 1039 1040 /// This class does all the work for a given function. Store and Load 1041 /// instructions store and load corresponding shadow and origin 1042 /// values. Most instructions propagate shadow from arguments to their 1043 /// return values. Certain instructions (most importantly, BranchInst) 1044 /// test their argument shadow and print reports (with a runtime call) if it's 1045 /// non-zero. 1046 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1047 Function &F; 1048 MemorySanitizer &MS; 1049 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1050 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1051 std::unique_ptr<VarArgHelper> VAHelper; 1052 const TargetLibraryInfo *TLI; 1053 BasicBlock *ActualFnStart; 1054 1055 // The following flags disable parts of MSan instrumentation based on 1056 // exclusion list contents and command-line options. 1057 bool InsertChecks; 1058 bool PropagateShadow; 1059 bool PoisonStack; 1060 bool PoisonUndef; 1061 1062 struct ShadowOriginAndInsertPoint { 1063 Value *Shadow; 1064 Value *Origin; 1065 Instruction *OrigIns; 1066 1067 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1068 : Shadow(S), Origin(O), OrigIns(I) {} 1069 }; 1070 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1071 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1072 SmallSet<AllocaInst *, 16> AllocaSet; 1073 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1074 SmallVector<StoreInst *, 16> StoreList; 1075 1076 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1077 const TargetLibraryInfo &TLI) 1078 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1079 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1080 InsertChecks = SanitizeFunction; 1081 PropagateShadow = SanitizeFunction; 1082 PoisonStack = SanitizeFunction && ClPoisonStack; 1083 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1084 1085 MS.initializeCallbacks(*F.getParent()); 1086 if (MS.CompileKernel) 1087 ActualFnStart = insertKmsanPrologue(F); 1088 else 1089 ActualFnStart = &F.getEntryBlock(); 1090 1091 LLVM_DEBUG(if (!InsertChecks) dbgs() 1092 << "MemorySanitizer is not inserting checks into '" 1093 << F.getName() << "'\n"); 1094 } 1095 1096 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1097 if (MS.TrackOrigins <= 1) return V; 1098 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1099 } 1100 1101 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1102 const DataLayout &DL = F.getParent()->getDataLayout(); 1103 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1104 if (IntptrSize == kOriginSize) return Origin; 1105 assert(IntptrSize == kOriginSize * 2); 1106 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1107 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1108 } 1109 1110 /// Fill memory range with the given origin value. 1111 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1112 unsigned Size, Align Alignment) { 1113 const DataLayout &DL = F.getParent()->getDataLayout(); 1114 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1115 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1116 assert(IntptrAlignment >= kMinOriginAlignment); 1117 assert(IntptrSize >= kOriginSize); 1118 1119 unsigned Ofs = 0; 1120 Align CurrentAlignment = Alignment; 1121 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1122 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1123 Value *IntptrOriginPtr = 1124 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1125 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1126 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1127 : IntptrOriginPtr; 1128 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1129 Ofs += IntptrSize / kOriginSize; 1130 CurrentAlignment = IntptrAlignment; 1131 } 1132 } 1133 1134 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1135 Value *GEP = 1136 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1137 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1138 CurrentAlignment = kMinOriginAlignment; 1139 } 1140 } 1141 1142 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1143 Value *OriginPtr, Align Alignment, bool AsCall) { 1144 const DataLayout &DL = F.getParent()->getDataLayout(); 1145 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1146 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1147 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1148 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1149 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1150 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1151 OriginAlignment); 1152 return; 1153 } 1154 1155 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1156 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1157 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1158 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1159 Value *ConvertedShadow2 = 1160 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1161 IRB.CreateCall(Fn, 1162 {ConvertedShadow2, 1163 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1164 } else { 1165 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1166 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1167 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1168 IRBuilder<> IRBNew(CheckTerm); 1169 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1170 OriginAlignment); 1171 } 1172 } 1173 1174 void materializeStores(bool InstrumentWithCalls) { 1175 for (StoreInst *SI : StoreList) { 1176 IRBuilder<> IRB(SI); 1177 Value *Val = SI->getValueOperand(); 1178 Value *Addr = SI->getPointerOperand(); 1179 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1180 Value *ShadowPtr, *OriginPtr; 1181 Type *ShadowTy = Shadow->getType(); 1182 const Align Alignment = assumeAligned(SI->getAlignment()); 1183 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1184 std::tie(ShadowPtr, OriginPtr) = 1185 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1186 1187 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1188 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1189 (void)NewSI; 1190 1191 if (SI->isAtomic()) 1192 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1193 1194 if (MS.TrackOrigins && !SI->isAtomic()) 1195 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1196 OriginAlignment, InstrumentWithCalls); 1197 } 1198 } 1199 1200 /// Helper function to insert a warning at IRB's current insert point. 1201 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1202 if (!Origin) 1203 Origin = (Value *)IRB.getInt32(0); 1204 assert(Origin->getType()->isIntegerTy()); 1205 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1206 // FIXME: Insert UnreachableInst if !MS.Recover? 1207 // This may invalidate some of the following checks and needs to be done 1208 // at the very end. 1209 } 1210 1211 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1212 bool AsCall) { 1213 IRBuilder<> IRB(OrigIns); 1214 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1215 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1216 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1217 1218 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1219 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1220 insertWarningFn(IRB, Origin); 1221 } 1222 return; 1223 } 1224 1225 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1226 1227 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1228 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1229 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1230 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1231 Value *ConvertedShadow2 = 1232 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1233 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1234 ? Origin 1235 : (Value *)IRB.getInt32(0)}); 1236 } else { 1237 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1238 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1239 Cmp, OrigIns, 1240 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1241 1242 IRB.SetInsertPoint(CheckTerm); 1243 insertWarningFn(IRB, Origin); 1244 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1245 } 1246 } 1247 1248 void materializeChecks(bool InstrumentWithCalls) { 1249 for (const auto &ShadowData : InstrumentationList) { 1250 Instruction *OrigIns = ShadowData.OrigIns; 1251 Value *Shadow = ShadowData.Shadow; 1252 Value *Origin = ShadowData.Origin; 1253 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1254 } 1255 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1256 } 1257 1258 BasicBlock *insertKmsanPrologue(Function &F) { 1259 BasicBlock *ret = 1260 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1261 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1262 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1263 Constant *Zero = IRB.getInt32(0); 1264 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1265 {Zero, IRB.getInt32(0)}, "param_shadow"); 1266 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1267 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1268 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1269 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1270 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1271 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1272 MS.VAArgOverflowSizeTLS = 1273 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1274 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1275 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(5)}, "param_origin"); 1277 MS.RetvalOriginTLS = 1278 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1279 {Zero, IRB.getInt32(6)}, "retval_origin"); 1280 return ret; 1281 } 1282 1283 /// Add MemorySanitizer instrumentation to a function. 1284 bool runOnFunction() { 1285 // In the presence of unreachable blocks, we may see Phi nodes with 1286 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1287 // blocks, such nodes will not have any shadow value associated with them. 1288 // It's easier to remove unreachable blocks than deal with missing shadow. 1289 removeUnreachableBlocks(F); 1290 1291 // Iterate all BBs in depth-first order and create shadow instructions 1292 // for all instructions (where applicable). 1293 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1294 for (BasicBlock *BB : depth_first(ActualFnStart)) 1295 visit(*BB); 1296 1297 // Finalize PHI nodes. 1298 for (PHINode *PN : ShadowPHINodes) { 1299 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1300 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1301 size_t NumValues = PN->getNumIncomingValues(); 1302 for (size_t v = 0; v < NumValues; v++) { 1303 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1304 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1305 } 1306 } 1307 1308 VAHelper->finalizeInstrumentation(); 1309 1310 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1311 // instrumenting only allocas. 1312 if (InstrumentLifetimeStart) { 1313 for (auto Item : LifetimeStartList) { 1314 instrumentAlloca(*Item.second, Item.first); 1315 AllocaSet.erase(Item.second); 1316 } 1317 } 1318 // Poison the allocas for which we didn't instrument the corresponding 1319 // lifetime intrinsics. 1320 for (AllocaInst *AI : AllocaSet) 1321 instrumentAlloca(*AI); 1322 1323 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1324 InstrumentationList.size() + StoreList.size() > 1325 (unsigned)ClInstrumentationWithCallThreshold; 1326 1327 // Insert shadow value checks. 1328 materializeChecks(InstrumentWithCalls); 1329 1330 // Delayed instrumentation of StoreInst. 1331 // This may not add new address checks. 1332 materializeStores(InstrumentWithCalls); 1333 1334 return true; 1335 } 1336 1337 /// Compute the shadow type that corresponds to a given Value. 1338 Type *getShadowTy(Value *V) { 1339 return getShadowTy(V->getType()); 1340 } 1341 1342 /// Compute the shadow type that corresponds to a given Type. 1343 Type *getShadowTy(Type *OrigTy) { 1344 if (!OrigTy->isSized()) { 1345 return nullptr; 1346 } 1347 // For integer type, shadow is the same as the original type. 1348 // This may return weird-sized types like i1. 1349 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1350 return IT; 1351 const DataLayout &DL = F.getParent()->getDataLayout(); 1352 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1353 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1354 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1355 cast<FixedVectorType>(VT)->getNumElements()); 1356 } 1357 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1358 return ArrayType::get(getShadowTy(AT->getElementType()), 1359 AT->getNumElements()); 1360 } 1361 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1362 SmallVector<Type*, 4> Elements; 1363 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1364 Elements.push_back(getShadowTy(ST->getElementType(i))); 1365 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1366 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1367 return Res; 1368 } 1369 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1370 return IntegerType::get(*MS.C, TypeSize); 1371 } 1372 1373 /// Flatten a vector type. 1374 Type *getShadowTyNoVec(Type *ty) { 1375 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1376 return IntegerType::get(*MS.C, 1377 vt->getPrimitiveSizeInBits().getFixedSize()); 1378 return ty; 1379 } 1380 1381 /// Extract combined shadow of struct elements as a bool 1382 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1383 IRBuilder<> &IRB) { 1384 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1385 Value *Aggregator = FalseVal; 1386 1387 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1388 // Combine by ORing together each element's bool shadow 1389 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1390 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1391 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1392 1393 if (Aggregator != FalseVal) 1394 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1395 else 1396 Aggregator = ShadowBool; 1397 } 1398 1399 return Aggregator; 1400 } 1401 1402 // Extract combined shadow of array elements 1403 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1404 IRBuilder<> &IRB) { 1405 if (!Array->getNumElements()) 1406 return IRB.getIntN(/* width */ 1, /* value */ 0); 1407 1408 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1409 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1410 1411 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1412 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1413 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1414 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1415 } 1416 return Aggregator; 1417 } 1418 1419 /// Convert a shadow value to it's flattened variant. The resulting 1420 /// shadow may not necessarily have the same bit width as the input 1421 /// value, but it will always be comparable to zero. 1422 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1423 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1424 return collapseStructShadow(Struct, V, IRB); 1425 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1426 return collapseArrayShadow(Array, V, IRB); 1427 Type *Ty = V->getType(); 1428 Type *NoVecTy = getShadowTyNoVec(Ty); 1429 if (Ty == NoVecTy) return V; 1430 return IRB.CreateBitCast(V, NoVecTy); 1431 } 1432 1433 // Convert a scalar value to an i1 by comparing with 0 1434 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1435 Type *VTy = V->getType(); 1436 assert(VTy->isIntegerTy()); 1437 if (VTy->getIntegerBitWidth() == 1) 1438 // Just converting a bool to a bool, so do nothing. 1439 return V; 1440 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1441 } 1442 1443 /// Compute the integer shadow offset that corresponds to a given 1444 /// application address. 1445 /// 1446 /// Offset = (Addr & ~AndMask) ^ XorMask 1447 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1448 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1449 1450 uint64_t AndMask = MS.MapParams->AndMask; 1451 if (AndMask) 1452 OffsetLong = 1453 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1454 1455 uint64_t XorMask = MS.MapParams->XorMask; 1456 if (XorMask) 1457 OffsetLong = 1458 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1459 return OffsetLong; 1460 } 1461 1462 /// Compute the shadow and origin addresses corresponding to a given 1463 /// application address. 1464 /// 1465 /// Shadow = ShadowBase + Offset 1466 /// Origin = (OriginBase + Offset) & ~3ULL 1467 std::pair<Value *, Value *> 1468 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1469 MaybeAlign Alignment) { 1470 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1471 Value *ShadowLong = ShadowOffset; 1472 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1473 if (ShadowBase != 0) { 1474 ShadowLong = 1475 IRB.CreateAdd(ShadowLong, 1476 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1477 } 1478 Value *ShadowPtr = 1479 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1480 Value *OriginPtr = nullptr; 1481 if (MS.TrackOrigins) { 1482 Value *OriginLong = ShadowOffset; 1483 uint64_t OriginBase = MS.MapParams->OriginBase; 1484 if (OriginBase != 0) 1485 OriginLong = IRB.CreateAdd(OriginLong, 1486 ConstantInt::get(MS.IntptrTy, OriginBase)); 1487 if (!Alignment || *Alignment < kMinOriginAlignment) { 1488 uint64_t Mask = kMinOriginAlignment.value() - 1; 1489 OriginLong = 1490 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1491 } 1492 OriginPtr = 1493 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1494 } 1495 return std::make_pair(ShadowPtr, OriginPtr); 1496 } 1497 1498 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1499 IRBuilder<> &IRB, 1500 Type *ShadowTy, 1501 bool isStore) { 1502 Value *ShadowOriginPtrs; 1503 const DataLayout &DL = F.getParent()->getDataLayout(); 1504 int Size = DL.getTypeStoreSize(ShadowTy); 1505 1506 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1507 Value *AddrCast = 1508 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1509 if (Getter) { 1510 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1511 } else { 1512 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1513 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1514 : MS.MsanMetadataPtrForLoadN, 1515 {AddrCast, SizeVal}); 1516 } 1517 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1518 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1519 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1520 1521 return std::make_pair(ShadowPtr, OriginPtr); 1522 } 1523 1524 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1525 Type *ShadowTy, 1526 MaybeAlign Alignment, 1527 bool isStore) { 1528 if (MS.CompileKernel) 1529 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1530 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1531 } 1532 1533 /// Compute the shadow address for a given function argument. 1534 /// 1535 /// Shadow = ParamTLS+ArgOffset. 1536 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1537 int ArgOffset) { 1538 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1539 if (ArgOffset) 1540 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1541 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1542 "_msarg"); 1543 } 1544 1545 /// Compute the origin address for a given function argument. 1546 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1547 int ArgOffset) { 1548 if (!MS.TrackOrigins) 1549 return nullptr; 1550 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1551 if (ArgOffset) 1552 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1553 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1554 "_msarg_o"); 1555 } 1556 1557 /// Compute the shadow address for a retval. 1558 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1559 return IRB.CreatePointerCast(MS.RetvalTLS, 1560 PointerType::get(getShadowTy(A), 0), 1561 "_msret"); 1562 } 1563 1564 /// Compute the origin address for a retval. 1565 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1566 // We keep a single origin for the entire retval. Might be too optimistic. 1567 return MS.RetvalOriginTLS; 1568 } 1569 1570 /// Set SV to be the shadow value for V. 1571 void setShadow(Value *V, Value *SV) { 1572 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1573 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1574 } 1575 1576 /// Set Origin to be the origin value for V. 1577 void setOrigin(Value *V, Value *Origin) { 1578 if (!MS.TrackOrigins) return; 1579 assert(!OriginMap.count(V) && "Values may only have one origin"); 1580 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1581 OriginMap[V] = Origin; 1582 } 1583 1584 Constant *getCleanShadow(Type *OrigTy) { 1585 Type *ShadowTy = getShadowTy(OrigTy); 1586 if (!ShadowTy) 1587 return nullptr; 1588 return Constant::getNullValue(ShadowTy); 1589 } 1590 1591 /// Create a clean shadow value for a given value. 1592 /// 1593 /// Clean shadow (all zeroes) means all bits of the value are defined 1594 /// (initialized). 1595 Constant *getCleanShadow(Value *V) { 1596 return getCleanShadow(V->getType()); 1597 } 1598 1599 /// Create a dirty shadow of a given shadow type. 1600 Constant *getPoisonedShadow(Type *ShadowTy) { 1601 assert(ShadowTy); 1602 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1603 return Constant::getAllOnesValue(ShadowTy); 1604 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1605 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1606 getPoisonedShadow(AT->getElementType())); 1607 return ConstantArray::get(AT, Vals); 1608 } 1609 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1610 SmallVector<Constant *, 4> Vals; 1611 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1612 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1613 return ConstantStruct::get(ST, Vals); 1614 } 1615 llvm_unreachable("Unexpected shadow type"); 1616 } 1617 1618 /// Create a dirty shadow for a given value. 1619 Constant *getPoisonedShadow(Value *V) { 1620 Type *ShadowTy = getShadowTy(V); 1621 if (!ShadowTy) 1622 return nullptr; 1623 return getPoisonedShadow(ShadowTy); 1624 } 1625 1626 /// Create a clean (zero) origin. 1627 Value *getCleanOrigin() { 1628 return Constant::getNullValue(MS.OriginTy); 1629 } 1630 1631 /// Get the shadow value for a given Value. 1632 /// 1633 /// This function either returns the value set earlier with setShadow, 1634 /// or extracts if from ParamTLS (for function arguments). 1635 Value *getShadow(Value *V) { 1636 if (!PropagateShadow) return getCleanShadow(V); 1637 if (Instruction *I = dyn_cast<Instruction>(V)) { 1638 if (I->getMetadata("nosanitize")) 1639 return getCleanShadow(V); 1640 // For instructions the shadow is already stored in the map. 1641 Value *Shadow = ShadowMap[V]; 1642 if (!Shadow) { 1643 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1644 (void)I; 1645 assert(Shadow && "No shadow for a value"); 1646 } 1647 return Shadow; 1648 } 1649 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1650 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1651 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1652 (void)U; 1653 return AllOnes; 1654 } 1655 if (Argument *A = dyn_cast<Argument>(V)) { 1656 // For arguments we compute the shadow on demand and store it in the map. 1657 Value **ShadowPtr = &ShadowMap[V]; 1658 if (*ShadowPtr) 1659 return *ShadowPtr; 1660 Function *F = A->getParent(); 1661 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1662 unsigned ArgOffset = 0; 1663 const DataLayout &DL = F->getParent()->getDataLayout(); 1664 for (auto &FArg : F->args()) { 1665 if (!FArg.getType()->isSized()) { 1666 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1667 continue; 1668 } 1669 1670 bool FArgByVal = FArg.hasByValAttr(); 1671 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1672 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1673 unsigned Size = 1674 FArg.hasByValAttr() 1675 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1676 : DL.getTypeAllocSize(FArg.getType()); 1677 1678 if (A == &FArg) { 1679 bool Overflow = ArgOffset + Size > kParamTLSSize; 1680 if (FArgEagerCheck) { 1681 *ShadowPtr = getCleanShadow(V); 1682 setOrigin(A, getCleanOrigin()); 1683 continue; 1684 } else if (FArgByVal) { 1685 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1686 // ByVal pointer itself has clean shadow. We copy the actual 1687 // argument shadow to the underlying memory. 1688 // Figure out maximal valid memcpy alignment. 1689 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1690 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1691 Value *CpShadowPtr = 1692 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1693 /*isStore*/ true) 1694 .first; 1695 // TODO(glider): need to copy origins. 1696 if (Overflow) { 1697 // ParamTLS overflow. 1698 EntryIRB.CreateMemSet( 1699 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1700 Size, ArgAlign); 1701 } else { 1702 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1703 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1704 CopyAlign, Size); 1705 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1706 (void)Cpy; 1707 } 1708 *ShadowPtr = getCleanShadow(V); 1709 } else { 1710 // Shadow over TLS 1711 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1712 if (Overflow) { 1713 // ParamTLS overflow. 1714 *ShadowPtr = getCleanShadow(V); 1715 } else { 1716 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1717 kShadowTLSAlignment); 1718 } 1719 } 1720 LLVM_DEBUG(dbgs() 1721 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1722 if (MS.TrackOrigins && !Overflow) { 1723 Value *OriginPtr = 1724 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1725 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1726 } else { 1727 setOrigin(A, getCleanOrigin()); 1728 } 1729 } 1730 1731 if (!FArgEagerCheck) 1732 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1733 } 1734 assert(*ShadowPtr && "Could not find shadow for an argument"); 1735 return *ShadowPtr; 1736 } 1737 // For everything else the shadow is zero. 1738 return getCleanShadow(V); 1739 } 1740 1741 /// Get the shadow for i-th argument of the instruction I. 1742 Value *getShadow(Instruction *I, int i) { 1743 return getShadow(I->getOperand(i)); 1744 } 1745 1746 /// Get the origin for a value. 1747 Value *getOrigin(Value *V) { 1748 if (!MS.TrackOrigins) return nullptr; 1749 if (!PropagateShadow) return getCleanOrigin(); 1750 if (isa<Constant>(V)) return getCleanOrigin(); 1751 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1752 "Unexpected value type in getOrigin()"); 1753 if (Instruction *I = dyn_cast<Instruction>(V)) { 1754 if (I->getMetadata("nosanitize")) 1755 return getCleanOrigin(); 1756 } 1757 Value *Origin = OriginMap[V]; 1758 assert(Origin && "Missing origin"); 1759 return Origin; 1760 } 1761 1762 /// Get the origin for i-th argument of the instruction I. 1763 Value *getOrigin(Instruction *I, int i) { 1764 return getOrigin(I->getOperand(i)); 1765 } 1766 1767 /// Remember the place where a shadow check should be inserted. 1768 /// 1769 /// This location will be later instrumented with a check that will print a 1770 /// UMR warning in runtime if the shadow value is not 0. 1771 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1772 assert(Shadow); 1773 if (!InsertChecks) return; 1774 #ifndef NDEBUG 1775 Type *ShadowTy = Shadow->getType(); 1776 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1777 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1778 "Can only insert checks for integer, vector, and aggregate shadow " 1779 "types"); 1780 #endif 1781 InstrumentationList.push_back( 1782 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1783 } 1784 1785 /// Remember the place where a shadow check should be inserted. 1786 /// 1787 /// This location will be later instrumented with a check that will print a 1788 /// UMR warning in runtime if the value is not fully defined. 1789 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1790 assert(Val); 1791 Value *Shadow, *Origin; 1792 if (ClCheckConstantShadow) { 1793 Shadow = getShadow(Val); 1794 if (!Shadow) return; 1795 Origin = getOrigin(Val); 1796 } else { 1797 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1798 if (!Shadow) return; 1799 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1800 } 1801 insertShadowCheck(Shadow, Origin, OrigIns); 1802 } 1803 1804 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1805 switch (a) { 1806 case AtomicOrdering::NotAtomic: 1807 return AtomicOrdering::NotAtomic; 1808 case AtomicOrdering::Unordered: 1809 case AtomicOrdering::Monotonic: 1810 case AtomicOrdering::Release: 1811 return AtomicOrdering::Release; 1812 case AtomicOrdering::Acquire: 1813 case AtomicOrdering::AcquireRelease: 1814 return AtomicOrdering::AcquireRelease; 1815 case AtomicOrdering::SequentiallyConsistent: 1816 return AtomicOrdering::SequentiallyConsistent; 1817 } 1818 llvm_unreachable("Unknown ordering"); 1819 } 1820 1821 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1822 switch (a) { 1823 case AtomicOrdering::NotAtomic: 1824 return AtomicOrdering::NotAtomic; 1825 case AtomicOrdering::Unordered: 1826 case AtomicOrdering::Monotonic: 1827 case AtomicOrdering::Acquire: 1828 return AtomicOrdering::Acquire; 1829 case AtomicOrdering::Release: 1830 case AtomicOrdering::AcquireRelease: 1831 return AtomicOrdering::AcquireRelease; 1832 case AtomicOrdering::SequentiallyConsistent: 1833 return AtomicOrdering::SequentiallyConsistent; 1834 } 1835 llvm_unreachable("Unknown ordering"); 1836 } 1837 1838 // ------------------- Visitors. 1839 using InstVisitor<MemorySanitizerVisitor>::visit; 1840 void visit(Instruction &I) { 1841 if (!I.getMetadata("nosanitize")) 1842 InstVisitor<MemorySanitizerVisitor>::visit(I); 1843 } 1844 1845 /// Instrument LoadInst 1846 /// 1847 /// Loads the corresponding shadow and (optionally) origin. 1848 /// Optionally, checks that the load address is fully defined. 1849 void visitLoadInst(LoadInst &I) { 1850 assert(I.getType()->isSized() && "Load type must have size"); 1851 assert(!I.getMetadata("nosanitize")); 1852 IRBuilder<> IRB(I.getNextNode()); 1853 Type *ShadowTy = getShadowTy(&I); 1854 Value *Addr = I.getPointerOperand(); 1855 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1856 const Align Alignment = assumeAligned(I.getAlignment()); 1857 if (PropagateShadow) { 1858 std::tie(ShadowPtr, OriginPtr) = 1859 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1860 setShadow(&I, 1861 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1862 } else { 1863 setShadow(&I, getCleanShadow(&I)); 1864 } 1865 1866 if (ClCheckAccessAddress) 1867 insertShadowCheck(I.getPointerOperand(), &I); 1868 1869 if (I.isAtomic()) 1870 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1871 1872 if (MS.TrackOrigins) { 1873 if (PropagateShadow) { 1874 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1875 setOrigin( 1876 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1877 } else { 1878 setOrigin(&I, getCleanOrigin()); 1879 } 1880 } 1881 } 1882 1883 /// Instrument StoreInst 1884 /// 1885 /// Stores the corresponding shadow and (optionally) origin. 1886 /// Optionally, checks that the store address is fully defined. 1887 void visitStoreInst(StoreInst &I) { 1888 StoreList.push_back(&I); 1889 if (ClCheckAccessAddress) 1890 insertShadowCheck(I.getPointerOperand(), &I); 1891 } 1892 1893 void handleCASOrRMW(Instruction &I) { 1894 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1895 1896 IRBuilder<> IRB(&I); 1897 Value *Addr = I.getOperand(0); 1898 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1899 /*isStore*/ true) 1900 .first; 1901 1902 if (ClCheckAccessAddress) 1903 insertShadowCheck(Addr, &I); 1904 1905 // Only test the conditional argument of cmpxchg instruction. 1906 // The other argument can potentially be uninitialized, but we can not 1907 // detect this situation reliably without possible false positives. 1908 if (isa<AtomicCmpXchgInst>(I)) 1909 insertShadowCheck(I.getOperand(1), &I); 1910 1911 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1912 1913 setShadow(&I, getCleanShadow(&I)); 1914 setOrigin(&I, getCleanOrigin()); 1915 } 1916 1917 void visitAtomicRMWInst(AtomicRMWInst &I) { 1918 handleCASOrRMW(I); 1919 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1920 } 1921 1922 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1923 handleCASOrRMW(I); 1924 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1925 } 1926 1927 // Vector manipulation. 1928 void visitExtractElementInst(ExtractElementInst &I) { 1929 insertShadowCheck(I.getOperand(1), &I); 1930 IRBuilder<> IRB(&I); 1931 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1932 "_msprop")); 1933 setOrigin(&I, getOrigin(&I, 0)); 1934 } 1935 1936 void visitInsertElementInst(InsertElementInst &I) { 1937 insertShadowCheck(I.getOperand(2), &I); 1938 IRBuilder<> IRB(&I); 1939 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1940 I.getOperand(2), "_msprop")); 1941 setOriginForNaryOp(I); 1942 } 1943 1944 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1945 IRBuilder<> IRB(&I); 1946 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1947 I.getShuffleMask(), "_msprop")); 1948 setOriginForNaryOp(I); 1949 } 1950 1951 // Casts. 1952 void visitSExtInst(SExtInst &I) { 1953 IRBuilder<> IRB(&I); 1954 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1955 setOrigin(&I, getOrigin(&I, 0)); 1956 } 1957 1958 void visitZExtInst(ZExtInst &I) { 1959 IRBuilder<> IRB(&I); 1960 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1961 setOrigin(&I, getOrigin(&I, 0)); 1962 } 1963 1964 void visitTruncInst(TruncInst &I) { 1965 IRBuilder<> IRB(&I); 1966 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1967 setOrigin(&I, getOrigin(&I, 0)); 1968 } 1969 1970 void visitBitCastInst(BitCastInst &I) { 1971 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1972 // a musttail call and a ret, don't instrument. New instructions are not 1973 // allowed after a musttail call. 1974 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1975 if (CI->isMustTailCall()) 1976 return; 1977 IRBuilder<> IRB(&I); 1978 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1979 setOrigin(&I, getOrigin(&I, 0)); 1980 } 1981 1982 void visitPtrToIntInst(PtrToIntInst &I) { 1983 IRBuilder<> IRB(&I); 1984 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1985 "_msprop_ptrtoint")); 1986 setOrigin(&I, getOrigin(&I, 0)); 1987 } 1988 1989 void visitIntToPtrInst(IntToPtrInst &I) { 1990 IRBuilder<> IRB(&I); 1991 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1992 "_msprop_inttoptr")); 1993 setOrigin(&I, getOrigin(&I, 0)); 1994 } 1995 1996 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1997 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1998 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1999 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2000 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2001 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2002 2003 /// Propagate shadow for bitwise AND. 2004 /// 2005 /// This code is exact, i.e. if, for example, a bit in the left argument 2006 /// is defined and 0, then neither the value not definedness of the 2007 /// corresponding bit in B don't affect the resulting shadow. 2008 void visitAnd(BinaryOperator &I) { 2009 IRBuilder<> IRB(&I); 2010 // "And" of 0 and a poisoned value results in unpoisoned value. 2011 // 1&1 => 1; 0&1 => 0; p&1 => p; 2012 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2013 // 1&p => p; 0&p => 0; p&p => p; 2014 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2015 Value *S1 = getShadow(&I, 0); 2016 Value *S2 = getShadow(&I, 1); 2017 Value *V1 = I.getOperand(0); 2018 Value *V2 = I.getOperand(1); 2019 if (V1->getType() != S1->getType()) { 2020 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2021 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2022 } 2023 Value *S1S2 = IRB.CreateAnd(S1, S2); 2024 Value *V1S2 = IRB.CreateAnd(V1, S2); 2025 Value *S1V2 = IRB.CreateAnd(S1, V2); 2026 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2027 setOriginForNaryOp(I); 2028 } 2029 2030 void visitOr(BinaryOperator &I) { 2031 IRBuilder<> IRB(&I); 2032 // "Or" of 1 and a poisoned value results in unpoisoned value. 2033 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2034 // 1|0 => 1; 0|0 => 0; p|0 => p; 2035 // 1|p => 1; 0|p => p; p|p => p; 2036 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2037 Value *S1 = getShadow(&I, 0); 2038 Value *S2 = getShadow(&I, 1); 2039 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2040 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2041 if (V1->getType() != S1->getType()) { 2042 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2043 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2044 } 2045 Value *S1S2 = IRB.CreateAnd(S1, S2); 2046 Value *V1S2 = IRB.CreateAnd(V1, S2); 2047 Value *S1V2 = IRB.CreateAnd(S1, V2); 2048 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2049 setOriginForNaryOp(I); 2050 } 2051 2052 /// Default propagation of shadow and/or origin. 2053 /// 2054 /// This class implements the general case of shadow propagation, used in all 2055 /// cases where we don't know and/or don't care about what the operation 2056 /// actually does. It converts all input shadow values to a common type 2057 /// (extending or truncating as necessary), and bitwise OR's them. 2058 /// 2059 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2060 /// fully initialized), and less prone to false positives. 2061 /// 2062 /// This class also implements the general case of origin propagation. For a 2063 /// Nary operation, result origin is set to the origin of an argument that is 2064 /// not entirely initialized. If there is more than one such arguments, the 2065 /// rightmost of them is picked. It does not matter which one is picked if all 2066 /// arguments are initialized. 2067 template <bool CombineShadow> 2068 class Combiner { 2069 Value *Shadow = nullptr; 2070 Value *Origin = nullptr; 2071 IRBuilder<> &IRB; 2072 MemorySanitizerVisitor *MSV; 2073 2074 public: 2075 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2076 : IRB(IRB), MSV(MSV) {} 2077 2078 /// Add a pair of shadow and origin values to the mix. 2079 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2080 if (CombineShadow) { 2081 assert(OpShadow); 2082 if (!Shadow) 2083 Shadow = OpShadow; 2084 else { 2085 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2086 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2087 } 2088 } 2089 2090 if (MSV->MS.TrackOrigins) { 2091 assert(OpOrigin); 2092 if (!Origin) { 2093 Origin = OpOrigin; 2094 } else { 2095 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2096 // No point in adding something that might result in 0 origin value. 2097 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2098 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2099 Value *Cond = 2100 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2101 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2102 } 2103 } 2104 } 2105 return *this; 2106 } 2107 2108 /// Add an application value to the mix. 2109 Combiner &Add(Value *V) { 2110 Value *OpShadow = MSV->getShadow(V); 2111 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2112 return Add(OpShadow, OpOrigin); 2113 } 2114 2115 /// Set the current combined values as the given instruction's shadow 2116 /// and origin. 2117 void Done(Instruction *I) { 2118 if (CombineShadow) { 2119 assert(Shadow); 2120 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2121 MSV->setShadow(I, Shadow); 2122 } 2123 if (MSV->MS.TrackOrigins) { 2124 assert(Origin); 2125 MSV->setOrigin(I, Origin); 2126 } 2127 } 2128 }; 2129 2130 using ShadowAndOriginCombiner = Combiner<true>; 2131 using OriginCombiner = Combiner<false>; 2132 2133 /// Propagate origin for arbitrary operation. 2134 void setOriginForNaryOp(Instruction &I) { 2135 if (!MS.TrackOrigins) return; 2136 IRBuilder<> IRB(&I); 2137 OriginCombiner OC(this, IRB); 2138 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2139 OC.Add(OI->get()); 2140 OC.Done(&I); 2141 } 2142 2143 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2144 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2145 "Vector of pointers is not a valid shadow type"); 2146 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2147 Ty->getScalarSizeInBits() 2148 : Ty->getPrimitiveSizeInBits(); 2149 } 2150 2151 /// Cast between two shadow types, extending or truncating as 2152 /// necessary. 2153 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2154 bool Signed = false) { 2155 Type *srcTy = V->getType(); 2156 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2157 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2158 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2159 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2160 2161 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2162 return IRB.CreateIntCast(V, dstTy, Signed); 2163 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2164 cast<FixedVectorType>(dstTy)->getNumElements() == 2165 cast<FixedVectorType>(srcTy)->getNumElements()) 2166 return IRB.CreateIntCast(V, dstTy, Signed); 2167 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2168 Value *V2 = 2169 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2170 return IRB.CreateBitCast(V2, dstTy); 2171 // TODO: handle struct types. 2172 } 2173 2174 /// Cast an application value to the type of its own shadow. 2175 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2176 Type *ShadowTy = getShadowTy(V); 2177 if (V->getType() == ShadowTy) 2178 return V; 2179 if (V->getType()->isPtrOrPtrVectorTy()) 2180 return IRB.CreatePtrToInt(V, ShadowTy); 2181 else 2182 return IRB.CreateBitCast(V, ShadowTy); 2183 } 2184 2185 /// Propagate shadow for arbitrary operation. 2186 void handleShadowOr(Instruction &I) { 2187 IRBuilder<> IRB(&I); 2188 ShadowAndOriginCombiner SC(this, IRB); 2189 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2190 SC.Add(OI->get()); 2191 SC.Done(&I); 2192 } 2193 2194 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2195 2196 // Handle multiplication by constant. 2197 // 2198 // Handle a special case of multiplication by constant that may have one or 2199 // more zeros in the lower bits. This makes corresponding number of lower bits 2200 // of the result zero as well. We model it by shifting the other operand 2201 // shadow left by the required number of bits. Effectively, we transform 2202 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2203 // We use multiplication by 2**N instead of shift to cover the case of 2204 // multiplication by 0, which may occur in some elements of a vector operand. 2205 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2206 Value *OtherArg) { 2207 Constant *ShadowMul; 2208 Type *Ty = ConstArg->getType(); 2209 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2210 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2211 Type *EltTy = VTy->getElementType(); 2212 SmallVector<Constant *, 16> Elements; 2213 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2214 if (ConstantInt *Elt = 2215 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2216 const APInt &V = Elt->getValue(); 2217 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2218 Elements.push_back(ConstantInt::get(EltTy, V2)); 2219 } else { 2220 Elements.push_back(ConstantInt::get(EltTy, 1)); 2221 } 2222 } 2223 ShadowMul = ConstantVector::get(Elements); 2224 } else { 2225 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2226 const APInt &V = Elt->getValue(); 2227 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2228 ShadowMul = ConstantInt::get(Ty, V2); 2229 } else { 2230 ShadowMul = ConstantInt::get(Ty, 1); 2231 } 2232 } 2233 2234 IRBuilder<> IRB(&I); 2235 setShadow(&I, 2236 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2237 setOrigin(&I, getOrigin(OtherArg)); 2238 } 2239 2240 void visitMul(BinaryOperator &I) { 2241 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2242 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2243 if (constOp0 && !constOp1) 2244 handleMulByConstant(I, constOp0, I.getOperand(1)); 2245 else if (constOp1 && !constOp0) 2246 handleMulByConstant(I, constOp1, I.getOperand(0)); 2247 else 2248 handleShadowOr(I); 2249 } 2250 2251 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2252 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2253 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2254 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2255 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2256 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2257 2258 void handleIntegerDiv(Instruction &I) { 2259 IRBuilder<> IRB(&I); 2260 // Strict on the second argument. 2261 insertShadowCheck(I.getOperand(1), &I); 2262 setShadow(&I, getShadow(&I, 0)); 2263 setOrigin(&I, getOrigin(&I, 0)); 2264 } 2265 2266 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2267 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2268 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2269 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2270 2271 // Floating point division is side-effect free. We can not require that the 2272 // divisor is fully initialized and must propagate shadow. See PR37523. 2273 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2274 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2275 2276 /// Instrument == and != comparisons. 2277 /// 2278 /// Sometimes the comparison result is known even if some of the bits of the 2279 /// arguments are not. 2280 void handleEqualityComparison(ICmpInst &I) { 2281 IRBuilder<> IRB(&I); 2282 Value *A = I.getOperand(0); 2283 Value *B = I.getOperand(1); 2284 Value *Sa = getShadow(A); 2285 Value *Sb = getShadow(B); 2286 2287 // Get rid of pointers and vectors of pointers. 2288 // For ints (and vectors of ints), types of A and Sa match, 2289 // and this is a no-op. 2290 A = IRB.CreatePointerCast(A, Sa->getType()); 2291 B = IRB.CreatePointerCast(B, Sb->getType()); 2292 2293 // A == B <==> (C = A^B) == 0 2294 // A != B <==> (C = A^B) != 0 2295 // Sc = Sa | Sb 2296 Value *C = IRB.CreateXor(A, B); 2297 Value *Sc = IRB.CreateOr(Sa, Sb); 2298 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2299 // Result is defined if one of the following is true 2300 // * there is a defined 1 bit in C 2301 // * C is fully defined 2302 // Si = !(C & ~Sc) && Sc 2303 Value *Zero = Constant::getNullValue(Sc->getType()); 2304 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2305 Value *Si = 2306 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2307 IRB.CreateICmpEQ( 2308 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2309 Si->setName("_msprop_icmp"); 2310 setShadow(&I, Si); 2311 setOriginForNaryOp(I); 2312 } 2313 2314 /// Build the lowest possible value of V, taking into account V's 2315 /// uninitialized bits. 2316 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2317 bool isSigned) { 2318 if (isSigned) { 2319 // Split shadow into sign bit and other bits. 2320 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2321 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2322 // Maximise the undefined shadow bit, minimize other undefined bits. 2323 return 2324 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2325 } else { 2326 // Minimize undefined bits. 2327 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2328 } 2329 } 2330 2331 /// Build the highest possible value of V, taking into account V's 2332 /// uninitialized bits. 2333 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2334 bool isSigned) { 2335 if (isSigned) { 2336 // Split shadow into sign bit and other bits. 2337 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2338 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2339 // Minimise the undefined shadow bit, maximise other undefined bits. 2340 return 2341 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2342 } else { 2343 // Maximize undefined bits. 2344 return IRB.CreateOr(A, Sa); 2345 } 2346 } 2347 2348 /// Instrument relational comparisons. 2349 /// 2350 /// This function does exact shadow propagation for all relational 2351 /// comparisons of integers, pointers and vectors of those. 2352 /// FIXME: output seems suboptimal when one of the operands is a constant 2353 void handleRelationalComparisonExact(ICmpInst &I) { 2354 IRBuilder<> IRB(&I); 2355 Value *A = I.getOperand(0); 2356 Value *B = I.getOperand(1); 2357 Value *Sa = getShadow(A); 2358 Value *Sb = getShadow(B); 2359 2360 // Get rid of pointers and vectors of pointers. 2361 // For ints (and vectors of ints), types of A and Sa match, 2362 // and this is a no-op. 2363 A = IRB.CreatePointerCast(A, Sa->getType()); 2364 B = IRB.CreatePointerCast(B, Sb->getType()); 2365 2366 // Let [a0, a1] be the interval of possible values of A, taking into account 2367 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2368 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2369 bool IsSigned = I.isSigned(); 2370 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2371 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2372 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2373 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2374 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2375 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2376 Value *Si = IRB.CreateXor(S1, S2); 2377 setShadow(&I, Si); 2378 setOriginForNaryOp(I); 2379 } 2380 2381 /// Instrument signed relational comparisons. 2382 /// 2383 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2384 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2385 void handleSignedRelationalComparison(ICmpInst &I) { 2386 Constant *constOp; 2387 Value *op = nullptr; 2388 CmpInst::Predicate pre; 2389 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2390 op = I.getOperand(0); 2391 pre = I.getPredicate(); 2392 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2393 op = I.getOperand(1); 2394 pre = I.getSwappedPredicate(); 2395 } else { 2396 handleShadowOr(I); 2397 return; 2398 } 2399 2400 if ((constOp->isNullValue() && 2401 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2402 (constOp->isAllOnesValue() && 2403 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2404 IRBuilder<> IRB(&I); 2405 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2406 "_msprop_icmp_s"); 2407 setShadow(&I, Shadow); 2408 setOrigin(&I, getOrigin(op)); 2409 } else { 2410 handleShadowOr(I); 2411 } 2412 } 2413 2414 void visitICmpInst(ICmpInst &I) { 2415 if (!ClHandleICmp) { 2416 handleShadowOr(I); 2417 return; 2418 } 2419 if (I.isEquality()) { 2420 handleEqualityComparison(I); 2421 return; 2422 } 2423 2424 assert(I.isRelational()); 2425 if (ClHandleICmpExact) { 2426 handleRelationalComparisonExact(I); 2427 return; 2428 } 2429 if (I.isSigned()) { 2430 handleSignedRelationalComparison(I); 2431 return; 2432 } 2433 2434 assert(I.isUnsigned()); 2435 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2436 handleRelationalComparisonExact(I); 2437 return; 2438 } 2439 2440 handleShadowOr(I); 2441 } 2442 2443 void visitFCmpInst(FCmpInst &I) { 2444 handleShadowOr(I); 2445 } 2446 2447 void handleShift(BinaryOperator &I) { 2448 IRBuilder<> IRB(&I); 2449 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2450 // Otherwise perform the same shift on S1. 2451 Value *S1 = getShadow(&I, 0); 2452 Value *S2 = getShadow(&I, 1); 2453 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2454 S2->getType()); 2455 Value *V2 = I.getOperand(1); 2456 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2457 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2458 setOriginForNaryOp(I); 2459 } 2460 2461 void visitShl(BinaryOperator &I) { handleShift(I); } 2462 void visitAShr(BinaryOperator &I) { handleShift(I); } 2463 void visitLShr(BinaryOperator &I) { handleShift(I); } 2464 2465 /// Instrument llvm.memmove 2466 /// 2467 /// At this point we don't know if llvm.memmove will be inlined or not. 2468 /// If we don't instrument it and it gets inlined, 2469 /// our interceptor will not kick in and we will lose the memmove. 2470 /// If we instrument the call here, but it does not get inlined, 2471 /// we will memove the shadow twice: which is bad in case 2472 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2473 /// 2474 /// Similar situation exists for memcpy and memset. 2475 void visitMemMoveInst(MemMoveInst &I) { 2476 IRBuilder<> IRB(&I); 2477 IRB.CreateCall( 2478 MS.MemmoveFn, 2479 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2480 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2481 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2482 I.eraseFromParent(); 2483 } 2484 2485 // Similar to memmove: avoid copying shadow twice. 2486 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2487 // FIXME: consider doing manual inline for small constant sizes and proper 2488 // alignment. 2489 void visitMemCpyInst(MemCpyInst &I) { 2490 IRBuilder<> IRB(&I); 2491 IRB.CreateCall( 2492 MS.MemcpyFn, 2493 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2494 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2495 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2496 I.eraseFromParent(); 2497 } 2498 2499 // Same as memcpy. 2500 void visitMemSetInst(MemSetInst &I) { 2501 IRBuilder<> IRB(&I); 2502 IRB.CreateCall( 2503 MS.MemsetFn, 2504 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2505 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2506 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2507 I.eraseFromParent(); 2508 } 2509 2510 void visitVAStartInst(VAStartInst &I) { 2511 VAHelper->visitVAStartInst(I); 2512 } 2513 2514 void visitVACopyInst(VACopyInst &I) { 2515 VAHelper->visitVACopyInst(I); 2516 } 2517 2518 /// Handle vector store-like intrinsics. 2519 /// 2520 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2521 /// has 1 pointer argument and 1 vector argument, returns void. 2522 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2523 IRBuilder<> IRB(&I); 2524 Value* Addr = I.getArgOperand(0); 2525 Value *Shadow = getShadow(&I, 1); 2526 Value *ShadowPtr, *OriginPtr; 2527 2528 // We don't know the pointer alignment (could be unaligned SSE store!). 2529 // Have to assume to worst case. 2530 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2531 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2532 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2533 2534 if (ClCheckAccessAddress) 2535 insertShadowCheck(Addr, &I); 2536 2537 // FIXME: factor out common code from materializeStores 2538 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2539 return true; 2540 } 2541 2542 /// Handle vector load-like intrinsics. 2543 /// 2544 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2545 /// has 1 pointer argument, returns a vector. 2546 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2547 IRBuilder<> IRB(&I); 2548 Value *Addr = I.getArgOperand(0); 2549 2550 Type *ShadowTy = getShadowTy(&I); 2551 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2552 if (PropagateShadow) { 2553 // We don't know the pointer alignment (could be unaligned SSE load!). 2554 // Have to assume to worst case. 2555 const Align Alignment = Align(1); 2556 std::tie(ShadowPtr, OriginPtr) = 2557 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2558 setShadow(&I, 2559 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2560 } else { 2561 setShadow(&I, getCleanShadow(&I)); 2562 } 2563 2564 if (ClCheckAccessAddress) 2565 insertShadowCheck(Addr, &I); 2566 2567 if (MS.TrackOrigins) { 2568 if (PropagateShadow) 2569 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2570 else 2571 setOrigin(&I, getCleanOrigin()); 2572 } 2573 return true; 2574 } 2575 2576 /// Handle (SIMD arithmetic)-like intrinsics. 2577 /// 2578 /// Instrument intrinsics with any number of arguments of the same type, 2579 /// equal to the return type. The type should be simple (no aggregates or 2580 /// pointers; vectors are fine). 2581 /// Caller guarantees that this intrinsic does not access memory. 2582 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2583 Type *RetTy = I.getType(); 2584 if (!(RetTy->isIntOrIntVectorTy() || 2585 RetTy->isFPOrFPVectorTy() || 2586 RetTy->isX86_MMXTy())) 2587 return false; 2588 2589 unsigned NumArgOperands = I.getNumArgOperands(); 2590 2591 for (unsigned i = 0; i < NumArgOperands; ++i) { 2592 Type *Ty = I.getArgOperand(i)->getType(); 2593 if (Ty != RetTy) 2594 return false; 2595 } 2596 2597 IRBuilder<> IRB(&I); 2598 ShadowAndOriginCombiner SC(this, IRB); 2599 for (unsigned i = 0; i < NumArgOperands; ++i) 2600 SC.Add(I.getArgOperand(i)); 2601 SC.Done(&I); 2602 2603 return true; 2604 } 2605 2606 /// Heuristically instrument unknown intrinsics. 2607 /// 2608 /// The main purpose of this code is to do something reasonable with all 2609 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2610 /// We recognize several classes of intrinsics by their argument types and 2611 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2612 /// sure that we know what the intrinsic does. 2613 /// 2614 /// We special-case intrinsics where this approach fails. See llvm.bswap 2615 /// handling as an example of that. 2616 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2617 unsigned NumArgOperands = I.getNumArgOperands(); 2618 if (NumArgOperands == 0) 2619 return false; 2620 2621 if (NumArgOperands == 2 && 2622 I.getArgOperand(0)->getType()->isPointerTy() && 2623 I.getArgOperand(1)->getType()->isVectorTy() && 2624 I.getType()->isVoidTy() && 2625 !I.onlyReadsMemory()) { 2626 // This looks like a vector store. 2627 return handleVectorStoreIntrinsic(I); 2628 } 2629 2630 if (NumArgOperands == 1 && 2631 I.getArgOperand(0)->getType()->isPointerTy() && 2632 I.getType()->isVectorTy() && 2633 I.onlyReadsMemory()) { 2634 // This looks like a vector load. 2635 return handleVectorLoadIntrinsic(I); 2636 } 2637 2638 if (I.doesNotAccessMemory()) 2639 if (maybeHandleSimpleNomemIntrinsic(I)) 2640 return true; 2641 2642 // FIXME: detect and handle SSE maskstore/maskload 2643 return false; 2644 } 2645 2646 void handleInvariantGroup(IntrinsicInst &I) { 2647 setShadow(&I, getShadow(&I, 0)); 2648 setOrigin(&I, getOrigin(&I, 0)); 2649 } 2650 2651 void handleLifetimeStart(IntrinsicInst &I) { 2652 if (!PoisonStack) 2653 return; 2654 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2655 if (!AI) 2656 InstrumentLifetimeStart = false; 2657 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2658 } 2659 2660 void handleBswap(IntrinsicInst &I) { 2661 IRBuilder<> IRB(&I); 2662 Value *Op = I.getArgOperand(0); 2663 Type *OpType = Op->getType(); 2664 Function *BswapFunc = Intrinsic::getDeclaration( 2665 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2666 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2667 setOrigin(&I, getOrigin(Op)); 2668 } 2669 2670 // Instrument vector convert intrinsic. 2671 // 2672 // This function instruments intrinsics like cvtsi2ss: 2673 // %Out = int_xxx_cvtyyy(%ConvertOp) 2674 // or 2675 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2676 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2677 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2678 // elements from \p CopyOp. 2679 // In most cases conversion involves floating-point value which may trigger a 2680 // hardware exception when not fully initialized. For this reason we require 2681 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2682 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2683 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2684 // return a fully initialized value. 2685 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2686 IRBuilder<> IRB(&I); 2687 Value *CopyOp, *ConvertOp; 2688 2689 switch (I.getNumArgOperands()) { 2690 case 3: 2691 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2692 LLVM_FALLTHROUGH; 2693 case 2: 2694 CopyOp = I.getArgOperand(0); 2695 ConvertOp = I.getArgOperand(1); 2696 break; 2697 case 1: 2698 ConvertOp = I.getArgOperand(0); 2699 CopyOp = nullptr; 2700 break; 2701 default: 2702 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2703 } 2704 2705 // The first *NumUsedElements* elements of ConvertOp are converted to the 2706 // same number of output elements. The rest of the output is copied from 2707 // CopyOp, or (if not available) filled with zeroes. 2708 // Combine shadow for elements of ConvertOp that are used in this operation, 2709 // and insert a check. 2710 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2711 // int->any conversion. 2712 Value *ConvertShadow = getShadow(ConvertOp); 2713 Value *AggShadow = nullptr; 2714 if (ConvertOp->getType()->isVectorTy()) { 2715 AggShadow = IRB.CreateExtractElement( 2716 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2717 for (int i = 1; i < NumUsedElements; ++i) { 2718 Value *MoreShadow = IRB.CreateExtractElement( 2719 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2720 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2721 } 2722 } else { 2723 AggShadow = ConvertShadow; 2724 } 2725 assert(AggShadow->getType()->isIntegerTy()); 2726 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2727 2728 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2729 // ConvertOp. 2730 if (CopyOp) { 2731 assert(CopyOp->getType() == I.getType()); 2732 assert(CopyOp->getType()->isVectorTy()); 2733 Value *ResultShadow = getShadow(CopyOp); 2734 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2735 for (int i = 0; i < NumUsedElements; ++i) { 2736 ResultShadow = IRB.CreateInsertElement( 2737 ResultShadow, ConstantInt::getNullValue(EltTy), 2738 ConstantInt::get(IRB.getInt32Ty(), i)); 2739 } 2740 setShadow(&I, ResultShadow); 2741 setOrigin(&I, getOrigin(CopyOp)); 2742 } else { 2743 setShadow(&I, getCleanShadow(&I)); 2744 setOrigin(&I, getCleanOrigin()); 2745 } 2746 } 2747 2748 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2749 // zeroes if it is zero, and all ones otherwise. 2750 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2751 if (S->getType()->isVectorTy()) 2752 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2753 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2754 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2755 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2756 } 2757 2758 // Given a vector, extract its first element, and return all 2759 // zeroes if it is zero, and all ones otherwise. 2760 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2761 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2762 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2763 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2764 } 2765 2766 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2767 Type *T = S->getType(); 2768 assert(T->isVectorTy()); 2769 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2770 return IRB.CreateSExt(S2, T); 2771 } 2772 2773 // Instrument vector shift intrinsic. 2774 // 2775 // This function instruments intrinsics like int_x86_avx2_psll_w. 2776 // Intrinsic shifts %In by %ShiftSize bits. 2777 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2778 // size, and the rest is ignored. Behavior is defined even if shift size is 2779 // greater than register (or field) width. 2780 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2781 assert(I.getNumArgOperands() == 2); 2782 IRBuilder<> IRB(&I); 2783 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2784 // Otherwise perform the same shift on S1. 2785 Value *S1 = getShadow(&I, 0); 2786 Value *S2 = getShadow(&I, 1); 2787 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2788 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2789 Value *V1 = I.getOperand(0); 2790 Value *V2 = I.getOperand(1); 2791 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2792 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2793 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2794 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2795 setOriginForNaryOp(I); 2796 } 2797 2798 // Get an X86_MMX-sized vector type. 2799 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2800 const unsigned X86_MMXSizeInBits = 64; 2801 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2802 "Illegal MMX vector element size"); 2803 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2804 X86_MMXSizeInBits / EltSizeInBits); 2805 } 2806 2807 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2808 // intrinsic. 2809 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2810 switch (id) { 2811 case Intrinsic::x86_sse2_packsswb_128: 2812 case Intrinsic::x86_sse2_packuswb_128: 2813 return Intrinsic::x86_sse2_packsswb_128; 2814 2815 case Intrinsic::x86_sse2_packssdw_128: 2816 case Intrinsic::x86_sse41_packusdw: 2817 return Intrinsic::x86_sse2_packssdw_128; 2818 2819 case Intrinsic::x86_avx2_packsswb: 2820 case Intrinsic::x86_avx2_packuswb: 2821 return Intrinsic::x86_avx2_packsswb; 2822 2823 case Intrinsic::x86_avx2_packssdw: 2824 case Intrinsic::x86_avx2_packusdw: 2825 return Intrinsic::x86_avx2_packssdw; 2826 2827 case Intrinsic::x86_mmx_packsswb: 2828 case Intrinsic::x86_mmx_packuswb: 2829 return Intrinsic::x86_mmx_packsswb; 2830 2831 case Intrinsic::x86_mmx_packssdw: 2832 return Intrinsic::x86_mmx_packssdw; 2833 default: 2834 llvm_unreachable("unexpected intrinsic id"); 2835 } 2836 } 2837 2838 // Instrument vector pack intrinsic. 2839 // 2840 // This function instruments intrinsics like x86_mmx_packsswb, that 2841 // packs elements of 2 input vectors into half as many bits with saturation. 2842 // Shadow is propagated with the signed variant of the same intrinsic applied 2843 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2844 // EltSizeInBits is used only for x86mmx arguments. 2845 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2846 assert(I.getNumArgOperands() == 2); 2847 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2848 IRBuilder<> IRB(&I); 2849 Value *S1 = getShadow(&I, 0); 2850 Value *S2 = getShadow(&I, 1); 2851 assert(isX86_MMX || S1->getType()->isVectorTy()); 2852 2853 // SExt and ICmpNE below must apply to individual elements of input vectors. 2854 // In case of x86mmx arguments, cast them to appropriate vector types and 2855 // back. 2856 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2857 if (isX86_MMX) { 2858 S1 = IRB.CreateBitCast(S1, T); 2859 S2 = IRB.CreateBitCast(S2, T); 2860 } 2861 Value *S1_ext = IRB.CreateSExt( 2862 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2863 Value *S2_ext = IRB.CreateSExt( 2864 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2865 if (isX86_MMX) { 2866 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2867 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2868 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2869 } 2870 2871 Function *ShadowFn = Intrinsic::getDeclaration( 2872 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2873 2874 Value *S = 2875 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2876 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2877 setShadow(&I, S); 2878 setOriginForNaryOp(I); 2879 } 2880 2881 // Instrument sum-of-absolute-differences intrinsic. 2882 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2883 const unsigned SignificantBitsPerResultElement = 16; 2884 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2885 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2886 unsigned ZeroBitsPerResultElement = 2887 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2888 2889 IRBuilder<> IRB(&I); 2890 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2891 S = IRB.CreateBitCast(S, ResTy); 2892 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2893 ResTy); 2894 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2895 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2896 setShadow(&I, S); 2897 setOriginForNaryOp(I); 2898 } 2899 2900 // Instrument multiply-add intrinsic. 2901 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2902 unsigned EltSizeInBits = 0) { 2903 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2904 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2905 IRBuilder<> IRB(&I); 2906 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2907 S = IRB.CreateBitCast(S, ResTy); 2908 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2909 ResTy); 2910 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2911 setShadow(&I, S); 2912 setOriginForNaryOp(I); 2913 } 2914 2915 // Instrument compare-packed intrinsic. 2916 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2917 // all-ones shadow. 2918 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2919 IRBuilder<> IRB(&I); 2920 Type *ResTy = getShadowTy(&I); 2921 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2922 Value *S = IRB.CreateSExt( 2923 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2924 setShadow(&I, S); 2925 setOriginForNaryOp(I); 2926 } 2927 2928 // Instrument compare-scalar intrinsic. 2929 // This handles both cmp* intrinsics which return the result in the first 2930 // element of a vector, and comi* which return the result as i32. 2931 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2932 IRBuilder<> IRB(&I); 2933 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2934 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2935 setShadow(&I, S); 2936 setOriginForNaryOp(I); 2937 } 2938 2939 // Instrument generic vector reduction intrinsics 2940 // by ORing together all their fields. 2941 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2942 IRBuilder<> IRB(&I); 2943 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2944 setShadow(&I, S); 2945 setOrigin(&I, getOrigin(&I, 0)); 2946 } 2947 2948 // Instrument experimental.vector.reduce.or intrinsic. 2949 // Valid (non-poisoned) set bits in the operand pull low the 2950 // corresponding shadow bits. 2951 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 2952 IRBuilder<> IRB(&I); 2953 Value *OperandShadow = getShadow(&I, 0); 2954 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 2955 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 2956 // Bit N is clean if any field's bit N is 1 and unpoison 2957 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 2958 // Otherwise, it is clean if every field's bit N is unpoison 2959 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 2960 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 2961 2962 setShadow(&I, S); 2963 setOrigin(&I, getOrigin(&I, 0)); 2964 } 2965 2966 // Instrument experimental.vector.reduce.or intrinsic. 2967 // Valid (non-poisoned) unset bits in the operand pull down the 2968 // corresponding shadow bits. 2969 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 2970 IRBuilder<> IRB(&I); 2971 Value *OperandShadow = getShadow(&I, 0); 2972 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 2973 // Bit N is clean if any field's bit N is 0 and unpoison 2974 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 2975 // Otherwise, it is clean if every field's bit N is unpoison 2976 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 2977 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 2978 2979 setShadow(&I, S); 2980 setOrigin(&I, getOrigin(&I, 0)); 2981 } 2982 2983 void handleStmxcsr(IntrinsicInst &I) { 2984 IRBuilder<> IRB(&I); 2985 Value* Addr = I.getArgOperand(0); 2986 Type *Ty = IRB.getInt32Ty(); 2987 Value *ShadowPtr = 2988 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2989 2990 IRB.CreateStore(getCleanShadow(Ty), 2991 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2992 2993 if (ClCheckAccessAddress) 2994 insertShadowCheck(Addr, &I); 2995 } 2996 2997 void handleLdmxcsr(IntrinsicInst &I) { 2998 if (!InsertChecks) return; 2999 3000 IRBuilder<> IRB(&I); 3001 Value *Addr = I.getArgOperand(0); 3002 Type *Ty = IRB.getInt32Ty(); 3003 const Align Alignment = Align(1); 3004 Value *ShadowPtr, *OriginPtr; 3005 std::tie(ShadowPtr, OriginPtr) = 3006 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3007 3008 if (ClCheckAccessAddress) 3009 insertShadowCheck(Addr, &I); 3010 3011 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3012 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3013 : getCleanOrigin(); 3014 insertShadowCheck(Shadow, Origin, &I); 3015 } 3016 3017 void handleMaskedStore(IntrinsicInst &I) { 3018 IRBuilder<> IRB(&I); 3019 Value *V = I.getArgOperand(0); 3020 Value *Addr = I.getArgOperand(1); 3021 const Align Alignment( 3022 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3023 Value *Mask = I.getArgOperand(3); 3024 Value *Shadow = getShadow(V); 3025 3026 Value *ShadowPtr; 3027 Value *OriginPtr; 3028 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3029 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3030 3031 if (ClCheckAccessAddress) { 3032 insertShadowCheck(Addr, &I); 3033 // Uninitialized mask is kind of like uninitialized address, but not as 3034 // scary. 3035 insertShadowCheck(Mask, &I); 3036 } 3037 3038 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3039 3040 if (MS.TrackOrigins) { 3041 auto &DL = F.getParent()->getDataLayout(); 3042 paintOrigin(IRB, getOrigin(V), OriginPtr, 3043 DL.getTypeStoreSize(Shadow->getType()), 3044 std::max(Alignment, kMinOriginAlignment)); 3045 } 3046 } 3047 3048 bool handleMaskedLoad(IntrinsicInst &I) { 3049 IRBuilder<> IRB(&I); 3050 Value *Addr = I.getArgOperand(0); 3051 const Align Alignment( 3052 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3053 Value *Mask = I.getArgOperand(2); 3054 Value *PassThru = I.getArgOperand(3); 3055 3056 Type *ShadowTy = getShadowTy(&I); 3057 Value *ShadowPtr, *OriginPtr; 3058 if (PropagateShadow) { 3059 std::tie(ShadowPtr, OriginPtr) = 3060 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3061 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 3062 getShadow(PassThru), "_msmaskedld")); 3063 } else { 3064 setShadow(&I, getCleanShadow(&I)); 3065 } 3066 3067 if (ClCheckAccessAddress) { 3068 insertShadowCheck(Addr, &I); 3069 insertShadowCheck(Mask, &I); 3070 } 3071 3072 if (MS.TrackOrigins) { 3073 if (PropagateShadow) { 3074 // Choose between PassThru's and the loaded value's origins. 3075 Value *MaskedPassThruShadow = IRB.CreateAnd( 3076 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3077 3078 Value *Acc = IRB.CreateExtractElement( 3079 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3080 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3081 ->getNumElements(); 3082 i < N; ++i) { 3083 Value *More = IRB.CreateExtractElement( 3084 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3085 Acc = IRB.CreateOr(Acc, More); 3086 } 3087 3088 Value *Origin = IRB.CreateSelect( 3089 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3090 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3091 3092 setOrigin(&I, Origin); 3093 } else { 3094 setOrigin(&I, getCleanOrigin()); 3095 } 3096 } 3097 return true; 3098 } 3099 3100 // Instrument BMI / BMI2 intrinsics. 3101 // All of these intrinsics are Z = I(X, Y) 3102 // where the types of all operands and the result match, and are either i32 or i64. 3103 // The following instrumentation happens to work for all of them: 3104 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3105 void handleBmiIntrinsic(IntrinsicInst &I) { 3106 IRBuilder<> IRB(&I); 3107 Type *ShadowTy = getShadowTy(&I); 3108 3109 // If any bit of the mask operand is poisoned, then the whole thing is. 3110 Value *SMask = getShadow(&I, 1); 3111 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3112 ShadowTy); 3113 // Apply the same intrinsic to the shadow of the first operand. 3114 Value *S = IRB.CreateCall(I.getCalledFunction(), 3115 {getShadow(&I, 0), I.getOperand(1)}); 3116 S = IRB.CreateOr(SMask, S); 3117 setShadow(&I, S); 3118 setOriginForNaryOp(I); 3119 } 3120 3121 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3122 SmallVector<int, 8> Mask; 3123 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3124 Mask.append(2, X); 3125 } 3126 return Mask; 3127 } 3128 3129 // Instrument pclmul intrinsics. 3130 // These intrinsics operate either on odd or on even elements of the input 3131 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3132 // Replace the unused elements with copies of the used ones, ex: 3133 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3134 // or 3135 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3136 // and then apply the usual shadow combining logic. 3137 void handlePclmulIntrinsic(IntrinsicInst &I) { 3138 IRBuilder<> IRB(&I); 3139 Type *ShadowTy = getShadowTy(&I); 3140 unsigned Width = 3141 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3142 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3143 "pclmul 3rd operand must be a constant"); 3144 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3145 Value *Shuf0 = 3146 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3147 getPclmulMask(Width, Imm & 0x01)); 3148 Value *Shuf1 = 3149 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3150 getPclmulMask(Width, Imm & 0x10)); 3151 ShadowAndOriginCombiner SOC(this, IRB); 3152 SOC.Add(Shuf0, getOrigin(&I, 0)); 3153 SOC.Add(Shuf1, getOrigin(&I, 1)); 3154 SOC.Done(&I); 3155 } 3156 3157 // Instrument _mm_*_sd intrinsics 3158 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3159 IRBuilder<> IRB(&I); 3160 Value *First = getShadow(&I, 0); 3161 Value *Second = getShadow(&I, 1); 3162 // High word of first operand, low word of second 3163 Value *Shadow = 3164 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3165 3166 setShadow(&I, Shadow); 3167 setOriginForNaryOp(I); 3168 } 3169 3170 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3171 IRBuilder<> IRB(&I); 3172 Value *First = getShadow(&I, 0); 3173 Value *Second = getShadow(&I, 1); 3174 Value *OrShadow = IRB.CreateOr(First, Second); 3175 // High word of first operand, low word of both OR'd together 3176 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3177 llvm::makeArrayRef<int>({2, 1})); 3178 3179 setShadow(&I, Shadow); 3180 setOriginForNaryOp(I); 3181 } 3182 3183 void visitIntrinsicInst(IntrinsicInst &I) { 3184 switch (I.getIntrinsicID()) { 3185 case Intrinsic::lifetime_start: 3186 handleLifetimeStart(I); 3187 break; 3188 case Intrinsic::launder_invariant_group: 3189 case Intrinsic::strip_invariant_group: 3190 handleInvariantGroup(I); 3191 break; 3192 case Intrinsic::bswap: 3193 handleBswap(I); 3194 break; 3195 case Intrinsic::masked_store: 3196 handleMaskedStore(I); 3197 break; 3198 case Intrinsic::masked_load: 3199 handleMaskedLoad(I); 3200 break; 3201 case Intrinsic::experimental_vector_reduce_and: 3202 handleVectorReduceAndIntrinsic(I); 3203 break; 3204 case Intrinsic::experimental_vector_reduce_or: 3205 handleVectorReduceOrIntrinsic(I); 3206 break; 3207 case Intrinsic::experimental_vector_reduce_add: 3208 case Intrinsic::experimental_vector_reduce_xor: 3209 case Intrinsic::experimental_vector_reduce_mul: 3210 handleVectorReduceIntrinsic(I); 3211 break; 3212 case Intrinsic::x86_sse_stmxcsr: 3213 handleStmxcsr(I); 3214 break; 3215 case Intrinsic::x86_sse_ldmxcsr: 3216 handleLdmxcsr(I); 3217 break; 3218 case Intrinsic::x86_avx512_vcvtsd2usi64: 3219 case Intrinsic::x86_avx512_vcvtsd2usi32: 3220 case Intrinsic::x86_avx512_vcvtss2usi64: 3221 case Intrinsic::x86_avx512_vcvtss2usi32: 3222 case Intrinsic::x86_avx512_cvttss2usi64: 3223 case Intrinsic::x86_avx512_cvttss2usi: 3224 case Intrinsic::x86_avx512_cvttsd2usi64: 3225 case Intrinsic::x86_avx512_cvttsd2usi: 3226 case Intrinsic::x86_avx512_cvtusi2ss: 3227 case Intrinsic::x86_avx512_cvtusi642sd: 3228 case Intrinsic::x86_avx512_cvtusi642ss: 3229 case Intrinsic::x86_sse2_cvtsd2si64: 3230 case Intrinsic::x86_sse2_cvtsd2si: 3231 case Intrinsic::x86_sse2_cvtsd2ss: 3232 case Intrinsic::x86_sse2_cvttsd2si64: 3233 case Intrinsic::x86_sse2_cvttsd2si: 3234 case Intrinsic::x86_sse_cvtss2si64: 3235 case Intrinsic::x86_sse_cvtss2si: 3236 case Intrinsic::x86_sse_cvttss2si64: 3237 case Intrinsic::x86_sse_cvttss2si: 3238 handleVectorConvertIntrinsic(I, 1); 3239 break; 3240 case Intrinsic::x86_sse_cvtps2pi: 3241 case Intrinsic::x86_sse_cvttps2pi: 3242 handleVectorConvertIntrinsic(I, 2); 3243 break; 3244 3245 case Intrinsic::x86_avx512_psll_w_512: 3246 case Intrinsic::x86_avx512_psll_d_512: 3247 case Intrinsic::x86_avx512_psll_q_512: 3248 case Intrinsic::x86_avx512_pslli_w_512: 3249 case Intrinsic::x86_avx512_pslli_d_512: 3250 case Intrinsic::x86_avx512_pslli_q_512: 3251 case Intrinsic::x86_avx512_psrl_w_512: 3252 case Intrinsic::x86_avx512_psrl_d_512: 3253 case Intrinsic::x86_avx512_psrl_q_512: 3254 case Intrinsic::x86_avx512_psra_w_512: 3255 case Intrinsic::x86_avx512_psra_d_512: 3256 case Intrinsic::x86_avx512_psra_q_512: 3257 case Intrinsic::x86_avx512_psrli_w_512: 3258 case Intrinsic::x86_avx512_psrli_d_512: 3259 case Intrinsic::x86_avx512_psrli_q_512: 3260 case Intrinsic::x86_avx512_psrai_w_512: 3261 case Intrinsic::x86_avx512_psrai_d_512: 3262 case Intrinsic::x86_avx512_psrai_q_512: 3263 case Intrinsic::x86_avx512_psra_q_256: 3264 case Intrinsic::x86_avx512_psra_q_128: 3265 case Intrinsic::x86_avx512_psrai_q_256: 3266 case Intrinsic::x86_avx512_psrai_q_128: 3267 case Intrinsic::x86_avx2_psll_w: 3268 case Intrinsic::x86_avx2_psll_d: 3269 case Intrinsic::x86_avx2_psll_q: 3270 case Intrinsic::x86_avx2_pslli_w: 3271 case Intrinsic::x86_avx2_pslli_d: 3272 case Intrinsic::x86_avx2_pslli_q: 3273 case Intrinsic::x86_avx2_psrl_w: 3274 case Intrinsic::x86_avx2_psrl_d: 3275 case Intrinsic::x86_avx2_psrl_q: 3276 case Intrinsic::x86_avx2_psra_w: 3277 case Intrinsic::x86_avx2_psra_d: 3278 case Intrinsic::x86_avx2_psrli_w: 3279 case Intrinsic::x86_avx2_psrli_d: 3280 case Intrinsic::x86_avx2_psrli_q: 3281 case Intrinsic::x86_avx2_psrai_w: 3282 case Intrinsic::x86_avx2_psrai_d: 3283 case Intrinsic::x86_sse2_psll_w: 3284 case Intrinsic::x86_sse2_psll_d: 3285 case Intrinsic::x86_sse2_psll_q: 3286 case Intrinsic::x86_sse2_pslli_w: 3287 case Intrinsic::x86_sse2_pslli_d: 3288 case Intrinsic::x86_sse2_pslli_q: 3289 case Intrinsic::x86_sse2_psrl_w: 3290 case Intrinsic::x86_sse2_psrl_d: 3291 case Intrinsic::x86_sse2_psrl_q: 3292 case Intrinsic::x86_sse2_psra_w: 3293 case Intrinsic::x86_sse2_psra_d: 3294 case Intrinsic::x86_sse2_psrli_w: 3295 case Intrinsic::x86_sse2_psrli_d: 3296 case Intrinsic::x86_sse2_psrli_q: 3297 case Intrinsic::x86_sse2_psrai_w: 3298 case Intrinsic::x86_sse2_psrai_d: 3299 case Intrinsic::x86_mmx_psll_w: 3300 case Intrinsic::x86_mmx_psll_d: 3301 case Intrinsic::x86_mmx_psll_q: 3302 case Intrinsic::x86_mmx_pslli_w: 3303 case Intrinsic::x86_mmx_pslli_d: 3304 case Intrinsic::x86_mmx_pslli_q: 3305 case Intrinsic::x86_mmx_psrl_w: 3306 case Intrinsic::x86_mmx_psrl_d: 3307 case Intrinsic::x86_mmx_psrl_q: 3308 case Intrinsic::x86_mmx_psra_w: 3309 case Intrinsic::x86_mmx_psra_d: 3310 case Intrinsic::x86_mmx_psrli_w: 3311 case Intrinsic::x86_mmx_psrli_d: 3312 case Intrinsic::x86_mmx_psrli_q: 3313 case Intrinsic::x86_mmx_psrai_w: 3314 case Intrinsic::x86_mmx_psrai_d: 3315 handleVectorShiftIntrinsic(I, /* Variable */ false); 3316 break; 3317 case Intrinsic::x86_avx2_psllv_d: 3318 case Intrinsic::x86_avx2_psllv_d_256: 3319 case Intrinsic::x86_avx512_psllv_d_512: 3320 case Intrinsic::x86_avx2_psllv_q: 3321 case Intrinsic::x86_avx2_psllv_q_256: 3322 case Intrinsic::x86_avx512_psllv_q_512: 3323 case Intrinsic::x86_avx2_psrlv_d: 3324 case Intrinsic::x86_avx2_psrlv_d_256: 3325 case Intrinsic::x86_avx512_psrlv_d_512: 3326 case Intrinsic::x86_avx2_psrlv_q: 3327 case Intrinsic::x86_avx2_psrlv_q_256: 3328 case Intrinsic::x86_avx512_psrlv_q_512: 3329 case Intrinsic::x86_avx2_psrav_d: 3330 case Intrinsic::x86_avx2_psrav_d_256: 3331 case Intrinsic::x86_avx512_psrav_d_512: 3332 case Intrinsic::x86_avx512_psrav_q_128: 3333 case Intrinsic::x86_avx512_psrav_q_256: 3334 case Intrinsic::x86_avx512_psrav_q_512: 3335 handleVectorShiftIntrinsic(I, /* Variable */ true); 3336 break; 3337 3338 case Intrinsic::x86_sse2_packsswb_128: 3339 case Intrinsic::x86_sse2_packssdw_128: 3340 case Intrinsic::x86_sse2_packuswb_128: 3341 case Intrinsic::x86_sse41_packusdw: 3342 case Intrinsic::x86_avx2_packsswb: 3343 case Intrinsic::x86_avx2_packssdw: 3344 case Intrinsic::x86_avx2_packuswb: 3345 case Intrinsic::x86_avx2_packusdw: 3346 handleVectorPackIntrinsic(I); 3347 break; 3348 3349 case Intrinsic::x86_mmx_packsswb: 3350 case Intrinsic::x86_mmx_packuswb: 3351 handleVectorPackIntrinsic(I, 16); 3352 break; 3353 3354 case Intrinsic::x86_mmx_packssdw: 3355 handleVectorPackIntrinsic(I, 32); 3356 break; 3357 3358 case Intrinsic::x86_mmx_psad_bw: 3359 case Intrinsic::x86_sse2_psad_bw: 3360 case Intrinsic::x86_avx2_psad_bw: 3361 handleVectorSadIntrinsic(I); 3362 break; 3363 3364 case Intrinsic::x86_sse2_pmadd_wd: 3365 case Intrinsic::x86_avx2_pmadd_wd: 3366 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3367 case Intrinsic::x86_avx2_pmadd_ub_sw: 3368 handleVectorPmaddIntrinsic(I); 3369 break; 3370 3371 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3372 handleVectorPmaddIntrinsic(I, 8); 3373 break; 3374 3375 case Intrinsic::x86_mmx_pmadd_wd: 3376 handleVectorPmaddIntrinsic(I, 16); 3377 break; 3378 3379 case Intrinsic::x86_sse_cmp_ss: 3380 case Intrinsic::x86_sse2_cmp_sd: 3381 case Intrinsic::x86_sse_comieq_ss: 3382 case Intrinsic::x86_sse_comilt_ss: 3383 case Intrinsic::x86_sse_comile_ss: 3384 case Intrinsic::x86_sse_comigt_ss: 3385 case Intrinsic::x86_sse_comige_ss: 3386 case Intrinsic::x86_sse_comineq_ss: 3387 case Intrinsic::x86_sse_ucomieq_ss: 3388 case Intrinsic::x86_sse_ucomilt_ss: 3389 case Intrinsic::x86_sse_ucomile_ss: 3390 case Intrinsic::x86_sse_ucomigt_ss: 3391 case Intrinsic::x86_sse_ucomige_ss: 3392 case Intrinsic::x86_sse_ucomineq_ss: 3393 case Intrinsic::x86_sse2_comieq_sd: 3394 case Intrinsic::x86_sse2_comilt_sd: 3395 case Intrinsic::x86_sse2_comile_sd: 3396 case Intrinsic::x86_sse2_comigt_sd: 3397 case Intrinsic::x86_sse2_comige_sd: 3398 case Intrinsic::x86_sse2_comineq_sd: 3399 case Intrinsic::x86_sse2_ucomieq_sd: 3400 case Intrinsic::x86_sse2_ucomilt_sd: 3401 case Intrinsic::x86_sse2_ucomile_sd: 3402 case Intrinsic::x86_sse2_ucomigt_sd: 3403 case Intrinsic::x86_sse2_ucomige_sd: 3404 case Intrinsic::x86_sse2_ucomineq_sd: 3405 handleVectorCompareScalarIntrinsic(I); 3406 break; 3407 3408 case Intrinsic::x86_sse_cmp_ps: 3409 case Intrinsic::x86_sse2_cmp_pd: 3410 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3411 // generates reasonably looking IR that fails in the backend with "Do not 3412 // know how to split the result of this operator!". 3413 handleVectorComparePackedIntrinsic(I); 3414 break; 3415 3416 case Intrinsic::x86_bmi_bextr_32: 3417 case Intrinsic::x86_bmi_bextr_64: 3418 case Intrinsic::x86_bmi_bzhi_32: 3419 case Intrinsic::x86_bmi_bzhi_64: 3420 case Intrinsic::x86_bmi_pdep_32: 3421 case Intrinsic::x86_bmi_pdep_64: 3422 case Intrinsic::x86_bmi_pext_32: 3423 case Intrinsic::x86_bmi_pext_64: 3424 handleBmiIntrinsic(I); 3425 break; 3426 3427 case Intrinsic::x86_pclmulqdq: 3428 case Intrinsic::x86_pclmulqdq_256: 3429 case Intrinsic::x86_pclmulqdq_512: 3430 handlePclmulIntrinsic(I); 3431 break; 3432 3433 case Intrinsic::x86_sse41_round_sd: 3434 handleUnarySdIntrinsic(I); 3435 break; 3436 case Intrinsic::x86_sse2_max_sd: 3437 case Intrinsic::x86_sse2_min_sd: 3438 handleBinarySdIntrinsic(I); 3439 break; 3440 3441 case Intrinsic::is_constant: 3442 // The result of llvm.is.constant() is always defined. 3443 setShadow(&I, getCleanShadow(&I)); 3444 setOrigin(&I, getCleanOrigin()); 3445 break; 3446 3447 default: 3448 if (!handleUnknownIntrinsic(I)) 3449 visitInstruction(I); 3450 break; 3451 } 3452 } 3453 3454 void visitCallBase(CallBase &CB) { 3455 assert(!CB.getMetadata("nosanitize")); 3456 if (CB.isInlineAsm()) { 3457 // For inline asm (either a call to asm function, or callbr instruction), 3458 // do the usual thing: check argument shadow and mark all outputs as 3459 // clean. Note that any side effects of the inline asm that are not 3460 // immediately visible in its constraints are not handled. 3461 if (ClHandleAsmConservative && MS.CompileKernel) 3462 visitAsmInstruction(CB); 3463 else 3464 visitInstruction(CB); 3465 return; 3466 } 3467 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3468 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3469 3470 // We are going to insert code that relies on the fact that the callee 3471 // will become a non-readonly function after it is instrumented by us. To 3472 // prevent this code from being optimized out, mark that function 3473 // non-readonly in advance. 3474 AttrBuilder B; 3475 B.addAttribute(Attribute::ReadOnly) 3476 .addAttribute(Attribute::ReadNone) 3477 .addAttribute(Attribute::WriteOnly) 3478 .addAttribute(Attribute::ArgMemOnly) 3479 .addAttribute(Attribute::Speculatable); 3480 3481 Call->removeAttributes(AttributeList::FunctionIndex, B); 3482 if (Function *Func = Call->getCalledFunction()) { 3483 Func->removeAttributes(AttributeList::FunctionIndex, B); 3484 } 3485 3486 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3487 } 3488 IRBuilder<> IRB(&CB); 3489 bool MayCheckCall = ClEagerChecks; 3490 if (Function *Func = CB.getCalledFunction()) { 3491 // __sanitizer_unaligned_{load,store} functions may be called by users 3492 // and always expects shadows in the TLS. So don't check them. 3493 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3494 } 3495 3496 unsigned ArgOffset = 0; 3497 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3498 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3499 ++ArgIt) { 3500 Value *A = *ArgIt; 3501 unsigned i = ArgIt - CB.arg_begin(); 3502 if (!A->getType()->isSized()) { 3503 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3504 continue; 3505 } 3506 unsigned Size = 0; 3507 Value *Store = nullptr; 3508 // Compute the Shadow for arg even if it is ByVal, because 3509 // in that case getShadow() will copy the actual arg shadow to 3510 // __msan_param_tls. 3511 Value *ArgShadow = getShadow(A); 3512 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3513 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3514 << " Shadow: " << *ArgShadow << "\n"); 3515 bool ArgIsInitialized = false; 3516 const DataLayout &DL = F.getParent()->getDataLayout(); 3517 3518 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3519 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3520 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3521 3522 if (EagerCheck) { 3523 insertShadowCheck(A, &CB); 3524 continue; 3525 } 3526 if (ByVal) { 3527 // ByVal requires some special handling as it's too big for a single 3528 // load 3529 assert(A->getType()->isPointerTy() && 3530 "ByVal argument is not a pointer!"); 3531 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3532 if (ArgOffset + Size > kParamTLSSize) break; 3533 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3534 MaybeAlign Alignment = llvm::None; 3535 if (ParamAlignment) 3536 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3537 Value *AShadowPtr = 3538 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3539 /*isStore*/ false) 3540 .first; 3541 3542 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3543 Alignment, Size); 3544 // TODO(glider): need to copy origins. 3545 } else { 3546 // Any other parameters mean we need bit-grained tracking of uninit data 3547 Size = DL.getTypeAllocSize(A->getType()); 3548 if (ArgOffset + Size > kParamTLSSize) break; 3549 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3550 kShadowTLSAlignment); 3551 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3552 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3553 } 3554 if (MS.TrackOrigins && !ArgIsInitialized) 3555 IRB.CreateStore(getOrigin(A), 3556 getOriginPtrForArgument(A, IRB, ArgOffset)); 3557 (void)Store; 3558 assert(Size != 0 && Store != nullptr); 3559 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3560 ArgOffset += alignTo(Size, 8); 3561 } 3562 LLVM_DEBUG(dbgs() << " done with call args\n"); 3563 3564 FunctionType *FT = CB.getFunctionType(); 3565 if (FT->isVarArg()) { 3566 VAHelper->visitCallBase(CB, IRB); 3567 } 3568 3569 // Now, get the shadow for the RetVal. 3570 if (!CB.getType()->isSized()) 3571 return; 3572 // Don't emit the epilogue for musttail call returns. 3573 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3574 return; 3575 3576 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3577 setShadow(&CB, getCleanShadow(&CB)); 3578 setOrigin(&CB, getCleanOrigin()); 3579 return; 3580 } 3581 3582 IRBuilder<> IRBBefore(&CB); 3583 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3584 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3585 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3586 kShadowTLSAlignment); 3587 BasicBlock::iterator NextInsn; 3588 if (isa<CallInst>(CB)) { 3589 NextInsn = ++CB.getIterator(); 3590 assert(NextInsn != CB.getParent()->end()); 3591 } else { 3592 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3593 if (!NormalDest->getSinglePredecessor()) { 3594 // FIXME: this case is tricky, so we are just conservative here. 3595 // Perhaps we need to split the edge between this BB and NormalDest, 3596 // but a naive attempt to use SplitEdge leads to a crash. 3597 setShadow(&CB, getCleanShadow(&CB)); 3598 setOrigin(&CB, getCleanOrigin()); 3599 return; 3600 } 3601 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3602 // Anything inserted there will be instrumented by MSan later! 3603 NextInsn = NormalDest->getFirstInsertionPt(); 3604 assert(NextInsn != NormalDest->end() && 3605 "Could not find insertion point for retval shadow load"); 3606 } 3607 IRBuilder<> IRBAfter(&*NextInsn); 3608 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3609 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3610 kShadowTLSAlignment, "_msret"); 3611 setShadow(&CB, RetvalShadow); 3612 if (MS.TrackOrigins) 3613 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3614 getOriginPtrForRetval(IRBAfter))); 3615 } 3616 3617 bool isAMustTailRetVal(Value *RetVal) { 3618 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3619 RetVal = I->getOperand(0); 3620 } 3621 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3622 return I->isMustTailCall(); 3623 } 3624 return false; 3625 } 3626 3627 void visitReturnInst(ReturnInst &I) { 3628 IRBuilder<> IRB(&I); 3629 Value *RetVal = I.getReturnValue(); 3630 if (!RetVal) return; 3631 // Don't emit the epilogue for musttail call returns. 3632 if (isAMustTailRetVal(RetVal)) return; 3633 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3634 bool HasNoUndef = 3635 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3636 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3637 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3638 // must always return fully initialized values. For now, we hardcode "main". 3639 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3640 3641 Value *Shadow = getShadow(RetVal); 3642 bool StoreOrigin = true; 3643 if (EagerCheck) { 3644 insertShadowCheck(RetVal, &I); 3645 Shadow = getCleanShadow(RetVal); 3646 StoreOrigin = false; 3647 } 3648 3649 // The caller may still expect information passed over TLS if we pass our 3650 // check 3651 if (StoreShadow) { 3652 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3653 if (MS.TrackOrigins && StoreOrigin) 3654 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3655 } 3656 } 3657 3658 void visitPHINode(PHINode &I) { 3659 IRBuilder<> IRB(&I); 3660 if (!PropagateShadow) { 3661 setShadow(&I, getCleanShadow(&I)); 3662 setOrigin(&I, getCleanOrigin()); 3663 return; 3664 } 3665 3666 ShadowPHINodes.push_back(&I); 3667 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3668 "_msphi_s")); 3669 if (MS.TrackOrigins) 3670 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3671 "_msphi_o")); 3672 } 3673 3674 Value *getLocalVarDescription(AllocaInst &I) { 3675 SmallString<2048> StackDescriptionStorage; 3676 raw_svector_ostream StackDescription(StackDescriptionStorage); 3677 // We create a string with a description of the stack allocation and 3678 // pass it into __msan_set_alloca_origin. 3679 // It will be printed by the run-time if stack-originated UMR is found. 3680 // The first 4 bytes of the string are set to '----' and will be replaced 3681 // by __msan_va_arg_overflow_size_tls at the first call. 3682 StackDescription << "----" << I.getName() << "@" << F.getName(); 3683 return createPrivateNonConstGlobalForString(*F.getParent(), 3684 StackDescription.str()); 3685 } 3686 3687 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3688 if (PoisonStack && ClPoisonStackWithCall) { 3689 IRB.CreateCall(MS.MsanPoisonStackFn, 3690 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3691 } else { 3692 Value *ShadowBase, *OriginBase; 3693 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3694 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3695 3696 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3697 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3698 MaybeAlign(I.getAlignment())); 3699 } 3700 3701 if (PoisonStack && MS.TrackOrigins) { 3702 Value *Descr = getLocalVarDescription(I); 3703 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3704 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3705 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3706 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3707 } 3708 } 3709 3710 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3711 Value *Descr = getLocalVarDescription(I); 3712 if (PoisonStack) { 3713 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3714 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3715 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3716 } else { 3717 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3718 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3719 } 3720 } 3721 3722 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3723 if (!InsPoint) 3724 InsPoint = &I; 3725 IRBuilder<> IRB(InsPoint->getNextNode()); 3726 const DataLayout &DL = F.getParent()->getDataLayout(); 3727 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3728 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3729 if (I.isArrayAllocation()) 3730 Len = IRB.CreateMul(Len, I.getArraySize()); 3731 3732 if (MS.CompileKernel) 3733 poisonAllocaKmsan(I, IRB, Len); 3734 else 3735 poisonAllocaUserspace(I, IRB, Len); 3736 } 3737 3738 void visitAllocaInst(AllocaInst &I) { 3739 setShadow(&I, getCleanShadow(&I)); 3740 setOrigin(&I, getCleanOrigin()); 3741 // We'll get to this alloca later unless it's poisoned at the corresponding 3742 // llvm.lifetime.start. 3743 AllocaSet.insert(&I); 3744 } 3745 3746 void visitSelectInst(SelectInst& I) { 3747 IRBuilder<> IRB(&I); 3748 // a = select b, c, d 3749 Value *B = I.getCondition(); 3750 Value *C = I.getTrueValue(); 3751 Value *D = I.getFalseValue(); 3752 Value *Sb = getShadow(B); 3753 Value *Sc = getShadow(C); 3754 Value *Sd = getShadow(D); 3755 3756 // Result shadow if condition shadow is 0. 3757 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3758 Value *Sa1; 3759 if (I.getType()->isAggregateType()) { 3760 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3761 // an extra "select". This results in much more compact IR. 3762 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3763 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3764 } else { 3765 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3766 // If Sb (condition is poisoned), look for bits in c and d that are equal 3767 // and both unpoisoned. 3768 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3769 3770 // Cast arguments to shadow-compatible type. 3771 C = CreateAppToShadowCast(IRB, C); 3772 D = CreateAppToShadowCast(IRB, D); 3773 3774 // Result shadow if condition shadow is 1. 3775 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3776 } 3777 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3778 setShadow(&I, Sa); 3779 if (MS.TrackOrigins) { 3780 // Origins are always i32, so any vector conditions must be flattened. 3781 // FIXME: consider tracking vector origins for app vectors? 3782 if (B->getType()->isVectorTy()) { 3783 Type *FlatTy = getShadowTyNoVec(B->getType()); 3784 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3785 ConstantInt::getNullValue(FlatTy)); 3786 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3787 ConstantInt::getNullValue(FlatTy)); 3788 } 3789 // a = select b, c, d 3790 // Oa = Sb ? Ob : (b ? Oc : Od) 3791 setOrigin( 3792 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3793 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3794 getOrigin(I.getFalseValue())))); 3795 } 3796 } 3797 3798 void visitLandingPadInst(LandingPadInst &I) { 3799 // Do nothing. 3800 // See https://github.com/google/sanitizers/issues/504 3801 setShadow(&I, getCleanShadow(&I)); 3802 setOrigin(&I, getCleanOrigin()); 3803 } 3804 3805 void visitCatchSwitchInst(CatchSwitchInst &I) { 3806 setShadow(&I, getCleanShadow(&I)); 3807 setOrigin(&I, getCleanOrigin()); 3808 } 3809 3810 void visitFuncletPadInst(FuncletPadInst &I) { 3811 setShadow(&I, getCleanShadow(&I)); 3812 setOrigin(&I, getCleanOrigin()); 3813 } 3814 3815 void visitGetElementPtrInst(GetElementPtrInst &I) { 3816 handleShadowOr(I); 3817 } 3818 3819 void visitExtractValueInst(ExtractValueInst &I) { 3820 IRBuilder<> IRB(&I); 3821 Value *Agg = I.getAggregateOperand(); 3822 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3823 Value *AggShadow = getShadow(Agg); 3824 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3825 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3826 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3827 setShadow(&I, ResShadow); 3828 setOriginForNaryOp(I); 3829 } 3830 3831 void visitInsertValueInst(InsertValueInst &I) { 3832 IRBuilder<> IRB(&I); 3833 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3834 Value *AggShadow = getShadow(I.getAggregateOperand()); 3835 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3836 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3837 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3838 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3839 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3840 setShadow(&I, Res); 3841 setOriginForNaryOp(I); 3842 } 3843 3844 void dumpInst(Instruction &I) { 3845 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3846 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3847 } else { 3848 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3849 } 3850 errs() << "QQQ " << I << "\n"; 3851 } 3852 3853 void visitResumeInst(ResumeInst &I) { 3854 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3855 // Nothing to do here. 3856 } 3857 3858 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3859 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3860 // Nothing to do here. 3861 } 3862 3863 void visitCatchReturnInst(CatchReturnInst &CRI) { 3864 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3865 // Nothing to do here. 3866 } 3867 3868 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3869 const DataLayout &DL, bool isOutput) { 3870 // For each assembly argument, we check its value for being initialized. 3871 // If the argument is a pointer, we assume it points to a single element 3872 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3873 // Each such pointer is instrumented with a call to the runtime library. 3874 Type *OpType = Operand->getType(); 3875 // Check the operand value itself. 3876 insertShadowCheck(Operand, &I); 3877 if (!OpType->isPointerTy() || !isOutput) { 3878 assert(!isOutput); 3879 return; 3880 } 3881 Type *ElType = OpType->getPointerElementType(); 3882 if (!ElType->isSized()) 3883 return; 3884 int Size = DL.getTypeStoreSize(ElType); 3885 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3886 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3887 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3888 } 3889 3890 /// Get the number of output arguments returned by pointers. 3891 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3892 int NumRetOutputs = 0; 3893 int NumOutputs = 0; 3894 Type *RetTy = cast<Value>(CB)->getType(); 3895 if (!RetTy->isVoidTy()) { 3896 // Register outputs are returned via the CallInst return value. 3897 auto *ST = dyn_cast<StructType>(RetTy); 3898 if (ST) 3899 NumRetOutputs = ST->getNumElements(); 3900 else 3901 NumRetOutputs = 1; 3902 } 3903 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3904 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3905 InlineAsm::ConstraintInfo Info = Constraints[i]; 3906 switch (Info.Type) { 3907 case InlineAsm::isOutput: 3908 NumOutputs++; 3909 break; 3910 default: 3911 break; 3912 } 3913 } 3914 return NumOutputs - NumRetOutputs; 3915 } 3916 3917 void visitAsmInstruction(Instruction &I) { 3918 // Conservative inline assembly handling: check for poisoned shadow of 3919 // asm() arguments, then unpoison the result and all the memory locations 3920 // pointed to by those arguments. 3921 // An inline asm() statement in C++ contains lists of input and output 3922 // arguments used by the assembly code. These are mapped to operands of the 3923 // CallInst as follows: 3924 // - nR register outputs ("=r) are returned by value in a single structure 3925 // (SSA value of the CallInst); 3926 // - nO other outputs ("=m" and others) are returned by pointer as first 3927 // nO operands of the CallInst; 3928 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3929 // remaining nI operands. 3930 // The total number of asm() arguments in the source is nR+nO+nI, and the 3931 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3932 // function to be called). 3933 const DataLayout &DL = F.getParent()->getDataLayout(); 3934 CallBase *CB = cast<CallBase>(&I); 3935 IRBuilder<> IRB(&I); 3936 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3937 int OutputArgs = getNumOutputArgs(IA, CB); 3938 // The last operand of a CallInst is the function itself. 3939 int NumOperands = CB->getNumOperands() - 1; 3940 3941 // Check input arguments. Doing so before unpoisoning output arguments, so 3942 // that we won't overwrite uninit values before checking them. 3943 for (int i = OutputArgs; i < NumOperands; i++) { 3944 Value *Operand = CB->getOperand(i); 3945 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3946 } 3947 // Unpoison output arguments. This must happen before the actual InlineAsm 3948 // call, so that the shadow for memory published in the asm() statement 3949 // remains valid. 3950 for (int i = 0; i < OutputArgs; i++) { 3951 Value *Operand = CB->getOperand(i); 3952 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3953 } 3954 3955 setShadow(&I, getCleanShadow(&I)); 3956 setOrigin(&I, getCleanOrigin()); 3957 } 3958 3959 void visitFreezeInst(FreezeInst &I) { 3960 // Freeze always returns a fully defined value. 3961 setShadow(&I, getCleanShadow(&I)); 3962 setOrigin(&I, getCleanOrigin()); 3963 } 3964 3965 void visitInstruction(Instruction &I) { 3966 // Everything else: stop propagating and check for poisoned shadow. 3967 if (ClDumpStrictInstructions) 3968 dumpInst(I); 3969 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3970 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3971 Value *Operand = I.getOperand(i); 3972 if (Operand->getType()->isSized()) 3973 insertShadowCheck(Operand, &I); 3974 } 3975 setShadow(&I, getCleanShadow(&I)); 3976 setOrigin(&I, getCleanOrigin()); 3977 } 3978 }; 3979 3980 /// AMD64-specific implementation of VarArgHelper. 3981 struct VarArgAMD64Helper : public VarArgHelper { 3982 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3983 // See a comment in visitCallBase for more details. 3984 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3985 static const unsigned AMD64FpEndOffsetSSE = 176; 3986 // If SSE is disabled, fp_offset in va_list is zero. 3987 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3988 3989 unsigned AMD64FpEndOffset; 3990 Function &F; 3991 MemorySanitizer &MS; 3992 MemorySanitizerVisitor &MSV; 3993 Value *VAArgTLSCopy = nullptr; 3994 Value *VAArgTLSOriginCopy = nullptr; 3995 Value *VAArgOverflowSize = nullptr; 3996 3997 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3998 3999 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4000 4001 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4002 MemorySanitizerVisitor &MSV) 4003 : F(F), MS(MS), MSV(MSV) { 4004 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4005 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 4006 if (Attr.isStringAttribute() && 4007 (Attr.getKindAsString() == "target-features")) { 4008 if (Attr.getValueAsString().contains("-sse")) 4009 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4010 break; 4011 } 4012 } 4013 } 4014 4015 ArgKind classifyArgument(Value* arg) { 4016 // A very rough approximation of X86_64 argument classification rules. 4017 Type *T = arg->getType(); 4018 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4019 return AK_FloatingPoint; 4020 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4021 return AK_GeneralPurpose; 4022 if (T->isPointerTy()) 4023 return AK_GeneralPurpose; 4024 return AK_Memory; 4025 } 4026 4027 // For VarArg functions, store the argument shadow in an ABI-specific format 4028 // that corresponds to va_list layout. 4029 // We do this because Clang lowers va_arg in the frontend, and this pass 4030 // only sees the low level code that deals with va_list internals. 4031 // A much easier alternative (provided that Clang emits va_arg instructions) 4032 // would have been to associate each live instance of va_list with a copy of 4033 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4034 // order. 4035 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4036 unsigned GpOffset = 0; 4037 unsigned FpOffset = AMD64GpEndOffset; 4038 unsigned OverflowOffset = AMD64FpEndOffset; 4039 const DataLayout &DL = F.getParent()->getDataLayout(); 4040 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4041 ++ArgIt) { 4042 Value *A = *ArgIt; 4043 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4044 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4045 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4046 if (IsByVal) { 4047 // ByVal arguments always go to the overflow area. 4048 // Fixed arguments passed through the overflow area will be stepped 4049 // over by va_start, so don't count them towards the offset. 4050 if (IsFixed) 4051 continue; 4052 assert(A->getType()->isPointerTy()); 4053 Type *RealTy = CB.getParamByValType(ArgNo); 4054 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4055 Value *ShadowBase = getShadowPtrForVAArgument( 4056 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4057 Value *OriginBase = nullptr; 4058 if (MS.TrackOrigins) 4059 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4060 OverflowOffset += alignTo(ArgSize, 8); 4061 if (!ShadowBase) 4062 continue; 4063 Value *ShadowPtr, *OriginPtr; 4064 std::tie(ShadowPtr, OriginPtr) = 4065 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4066 /*isStore*/ false); 4067 4068 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4069 kShadowTLSAlignment, ArgSize); 4070 if (MS.TrackOrigins) 4071 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4072 kShadowTLSAlignment, ArgSize); 4073 } else { 4074 ArgKind AK = classifyArgument(A); 4075 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4076 AK = AK_Memory; 4077 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4078 AK = AK_Memory; 4079 Value *ShadowBase, *OriginBase = nullptr; 4080 switch (AK) { 4081 case AK_GeneralPurpose: 4082 ShadowBase = 4083 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4084 if (MS.TrackOrigins) 4085 OriginBase = 4086 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4087 GpOffset += 8; 4088 break; 4089 case AK_FloatingPoint: 4090 ShadowBase = 4091 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4092 if (MS.TrackOrigins) 4093 OriginBase = 4094 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4095 FpOffset += 16; 4096 break; 4097 case AK_Memory: 4098 if (IsFixed) 4099 continue; 4100 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4101 ShadowBase = 4102 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4103 if (MS.TrackOrigins) 4104 OriginBase = 4105 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4106 OverflowOffset += alignTo(ArgSize, 8); 4107 } 4108 // Take fixed arguments into account for GpOffset and FpOffset, 4109 // but don't actually store shadows for them. 4110 // TODO(glider): don't call get*PtrForVAArgument() for them. 4111 if (IsFixed) 4112 continue; 4113 if (!ShadowBase) 4114 continue; 4115 Value *Shadow = MSV.getShadow(A); 4116 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4117 if (MS.TrackOrigins) { 4118 Value *Origin = MSV.getOrigin(A); 4119 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4120 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4121 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4122 } 4123 } 4124 } 4125 Constant *OverflowSize = 4126 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4127 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4128 } 4129 4130 /// Compute the shadow address for a given va_arg. 4131 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4132 unsigned ArgOffset, unsigned ArgSize) { 4133 // Make sure we don't overflow __msan_va_arg_tls. 4134 if (ArgOffset + ArgSize > kParamTLSSize) 4135 return nullptr; 4136 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4137 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4138 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4139 "_msarg_va_s"); 4140 } 4141 4142 /// Compute the origin address for a given va_arg. 4143 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4144 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4145 // getOriginPtrForVAArgument() is always called after 4146 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4147 // overflow. 4148 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4149 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4150 "_msarg_va_o"); 4151 } 4152 4153 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4154 IRBuilder<> IRB(&I); 4155 Value *VAListTag = I.getArgOperand(0); 4156 Value *ShadowPtr, *OriginPtr; 4157 const Align Alignment = Align(8); 4158 std::tie(ShadowPtr, OriginPtr) = 4159 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4160 /*isStore*/ true); 4161 4162 // Unpoison the whole __va_list_tag. 4163 // FIXME: magic ABI constants. 4164 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4165 /* size */ 24, Alignment, false); 4166 // We shouldn't need to zero out the origins, as they're only checked for 4167 // nonzero shadow. 4168 } 4169 4170 void visitVAStartInst(VAStartInst &I) override { 4171 if (F.getCallingConv() == CallingConv::Win64) 4172 return; 4173 VAStartInstrumentationList.push_back(&I); 4174 unpoisonVAListTagForInst(I); 4175 } 4176 4177 void visitVACopyInst(VACopyInst &I) override { 4178 if (F.getCallingConv() == CallingConv::Win64) return; 4179 unpoisonVAListTagForInst(I); 4180 } 4181 4182 void finalizeInstrumentation() override { 4183 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4184 "finalizeInstrumentation called twice"); 4185 if (!VAStartInstrumentationList.empty()) { 4186 // If there is a va_start in this function, make a backup copy of 4187 // va_arg_tls somewhere in the function entry block. 4188 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4189 VAArgOverflowSize = 4190 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4191 Value *CopySize = 4192 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4193 VAArgOverflowSize); 4194 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4195 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4196 if (MS.TrackOrigins) { 4197 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4198 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4199 Align(8), CopySize); 4200 } 4201 } 4202 4203 // Instrument va_start. 4204 // Copy va_list shadow from the backup copy of the TLS contents. 4205 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4206 CallInst *OrigInst = VAStartInstrumentationList[i]; 4207 IRBuilder<> IRB(OrigInst->getNextNode()); 4208 Value *VAListTag = OrigInst->getArgOperand(0); 4209 4210 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4211 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4212 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4213 ConstantInt::get(MS.IntptrTy, 16)), 4214 PointerType::get(RegSaveAreaPtrTy, 0)); 4215 Value *RegSaveAreaPtr = 4216 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4217 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4218 const Align Alignment = Align(16); 4219 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4220 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4221 Alignment, /*isStore*/ true); 4222 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4223 AMD64FpEndOffset); 4224 if (MS.TrackOrigins) 4225 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4226 Alignment, AMD64FpEndOffset); 4227 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4228 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4229 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4230 ConstantInt::get(MS.IntptrTy, 8)), 4231 PointerType::get(OverflowArgAreaPtrTy, 0)); 4232 Value *OverflowArgAreaPtr = 4233 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4234 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4235 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4236 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4237 Alignment, /*isStore*/ true); 4238 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4239 AMD64FpEndOffset); 4240 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4241 VAArgOverflowSize); 4242 if (MS.TrackOrigins) { 4243 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4244 AMD64FpEndOffset); 4245 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4246 VAArgOverflowSize); 4247 } 4248 } 4249 } 4250 }; 4251 4252 /// MIPS64-specific implementation of VarArgHelper. 4253 struct VarArgMIPS64Helper : public VarArgHelper { 4254 Function &F; 4255 MemorySanitizer &MS; 4256 MemorySanitizerVisitor &MSV; 4257 Value *VAArgTLSCopy = nullptr; 4258 Value *VAArgSize = nullptr; 4259 4260 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4261 4262 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4263 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4264 4265 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4266 unsigned VAArgOffset = 0; 4267 const DataLayout &DL = F.getParent()->getDataLayout(); 4268 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4269 End = CB.arg_end(); 4270 ArgIt != End; ++ArgIt) { 4271 Triple TargetTriple(F.getParent()->getTargetTriple()); 4272 Value *A = *ArgIt; 4273 Value *Base; 4274 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4275 if (TargetTriple.getArch() == Triple::mips64) { 4276 // Adjusting the shadow for argument with size < 8 to match the placement 4277 // of bits in big endian system 4278 if (ArgSize < 8) 4279 VAArgOffset += (8 - ArgSize); 4280 } 4281 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4282 VAArgOffset += ArgSize; 4283 VAArgOffset = alignTo(VAArgOffset, 8); 4284 if (!Base) 4285 continue; 4286 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4287 } 4288 4289 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4290 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4291 // a new class member i.e. it is the total size of all VarArgs. 4292 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4293 } 4294 4295 /// Compute the shadow address for a given va_arg. 4296 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4297 unsigned ArgOffset, unsigned ArgSize) { 4298 // Make sure we don't overflow __msan_va_arg_tls. 4299 if (ArgOffset + ArgSize > kParamTLSSize) 4300 return nullptr; 4301 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4302 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4303 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4304 "_msarg"); 4305 } 4306 4307 void visitVAStartInst(VAStartInst &I) override { 4308 IRBuilder<> IRB(&I); 4309 VAStartInstrumentationList.push_back(&I); 4310 Value *VAListTag = I.getArgOperand(0); 4311 Value *ShadowPtr, *OriginPtr; 4312 const Align Alignment = Align(8); 4313 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4314 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4315 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4316 /* size */ 8, Alignment, false); 4317 } 4318 4319 void visitVACopyInst(VACopyInst &I) override { 4320 IRBuilder<> IRB(&I); 4321 VAStartInstrumentationList.push_back(&I); 4322 Value *VAListTag = I.getArgOperand(0); 4323 Value *ShadowPtr, *OriginPtr; 4324 const Align Alignment = Align(8); 4325 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4326 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4327 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4328 /* size */ 8, Alignment, false); 4329 } 4330 4331 void finalizeInstrumentation() override { 4332 assert(!VAArgSize && !VAArgTLSCopy && 4333 "finalizeInstrumentation called twice"); 4334 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4335 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4336 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4337 VAArgSize); 4338 4339 if (!VAStartInstrumentationList.empty()) { 4340 // If there is a va_start in this function, make a backup copy of 4341 // va_arg_tls somewhere in the function entry block. 4342 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4343 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4344 } 4345 4346 // Instrument va_start. 4347 // Copy va_list shadow from the backup copy of the TLS contents. 4348 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4349 CallInst *OrigInst = VAStartInstrumentationList[i]; 4350 IRBuilder<> IRB(OrigInst->getNextNode()); 4351 Value *VAListTag = OrigInst->getArgOperand(0); 4352 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4353 Value *RegSaveAreaPtrPtr = 4354 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4355 PointerType::get(RegSaveAreaPtrTy, 0)); 4356 Value *RegSaveAreaPtr = 4357 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4358 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4359 const Align Alignment = Align(8); 4360 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4361 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4362 Alignment, /*isStore*/ true); 4363 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4364 CopySize); 4365 } 4366 } 4367 }; 4368 4369 /// AArch64-specific implementation of VarArgHelper. 4370 struct VarArgAArch64Helper : public VarArgHelper { 4371 static const unsigned kAArch64GrArgSize = 64; 4372 static const unsigned kAArch64VrArgSize = 128; 4373 4374 static const unsigned AArch64GrBegOffset = 0; 4375 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4376 // Make VR space aligned to 16 bytes. 4377 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4378 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4379 + kAArch64VrArgSize; 4380 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4381 4382 Function &F; 4383 MemorySanitizer &MS; 4384 MemorySanitizerVisitor &MSV; 4385 Value *VAArgTLSCopy = nullptr; 4386 Value *VAArgOverflowSize = nullptr; 4387 4388 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4389 4390 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4391 4392 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4393 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4394 4395 ArgKind classifyArgument(Value* arg) { 4396 Type *T = arg->getType(); 4397 if (T->isFPOrFPVectorTy()) 4398 return AK_FloatingPoint; 4399 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4400 || (T->isPointerTy())) 4401 return AK_GeneralPurpose; 4402 return AK_Memory; 4403 } 4404 4405 // The instrumentation stores the argument shadow in a non ABI-specific 4406 // format because it does not know which argument is named (since Clang, 4407 // like x86_64 case, lowers the va_args in the frontend and this pass only 4408 // sees the low level code that deals with va_list internals). 4409 // The first seven GR registers are saved in the first 56 bytes of the 4410 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4411 // the remaining arguments. 4412 // Using constant offset within the va_arg TLS array allows fast copy 4413 // in the finalize instrumentation. 4414 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4415 unsigned GrOffset = AArch64GrBegOffset; 4416 unsigned VrOffset = AArch64VrBegOffset; 4417 unsigned OverflowOffset = AArch64VAEndOffset; 4418 4419 const DataLayout &DL = F.getParent()->getDataLayout(); 4420 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4421 ++ArgIt) { 4422 Value *A = *ArgIt; 4423 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4424 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4425 ArgKind AK = classifyArgument(A); 4426 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4427 AK = AK_Memory; 4428 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4429 AK = AK_Memory; 4430 Value *Base; 4431 switch (AK) { 4432 case AK_GeneralPurpose: 4433 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4434 GrOffset += 8; 4435 break; 4436 case AK_FloatingPoint: 4437 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4438 VrOffset += 16; 4439 break; 4440 case AK_Memory: 4441 // Don't count fixed arguments in the overflow area - va_start will 4442 // skip right over them. 4443 if (IsFixed) 4444 continue; 4445 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4446 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4447 alignTo(ArgSize, 8)); 4448 OverflowOffset += alignTo(ArgSize, 8); 4449 break; 4450 } 4451 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4452 // bother to actually store a shadow. 4453 if (IsFixed) 4454 continue; 4455 if (!Base) 4456 continue; 4457 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4458 } 4459 Constant *OverflowSize = 4460 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4461 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4462 } 4463 4464 /// Compute the shadow address for a given va_arg. 4465 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4466 unsigned ArgOffset, unsigned ArgSize) { 4467 // Make sure we don't overflow __msan_va_arg_tls. 4468 if (ArgOffset + ArgSize > kParamTLSSize) 4469 return nullptr; 4470 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4471 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4472 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4473 "_msarg"); 4474 } 4475 4476 void visitVAStartInst(VAStartInst &I) override { 4477 IRBuilder<> IRB(&I); 4478 VAStartInstrumentationList.push_back(&I); 4479 Value *VAListTag = I.getArgOperand(0); 4480 Value *ShadowPtr, *OriginPtr; 4481 const Align Alignment = Align(8); 4482 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4483 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4484 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4485 /* size */ 32, Alignment, false); 4486 } 4487 4488 void visitVACopyInst(VACopyInst &I) override { 4489 IRBuilder<> IRB(&I); 4490 VAStartInstrumentationList.push_back(&I); 4491 Value *VAListTag = I.getArgOperand(0); 4492 Value *ShadowPtr, *OriginPtr; 4493 const Align Alignment = Align(8); 4494 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4495 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4496 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4497 /* size */ 32, Alignment, false); 4498 } 4499 4500 // Retrieve a va_list field of 'void*' size. 4501 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4502 Value *SaveAreaPtrPtr = 4503 IRB.CreateIntToPtr( 4504 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4505 ConstantInt::get(MS.IntptrTy, offset)), 4506 Type::getInt64PtrTy(*MS.C)); 4507 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4508 } 4509 4510 // Retrieve a va_list field of 'int' size. 4511 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4512 Value *SaveAreaPtr = 4513 IRB.CreateIntToPtr( 4514 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4515 ConstantInt::get(MS.IntptrTy, offset)), 4516 Type::getInt32PtrTy(*MS.C)); 4517 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4518 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4519 } 4520 4521 void finalizeInstrumentation() override { 4522 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4523 "finalizeInstrumentation called twice"); 4524 if (!VAStartInstrumentationList.empty()) { 4525 // If there is a va_start in this function, make a backup copy of 4526 // va_arg_tls somewhere in the function entry block. 4527 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4528 VAArgOverflowSize = 4529 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4530 Value *CopySize = 4531 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4532 VAArgOverflowSize); 4533 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4534 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4535 } 4536 4537 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4538 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4539 4540 // Instrument va_start, copy va_list shadow from the backup copy of 4541 // the TLS contents. 4542 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4543 CallInst *OrigInst = VAStartInstrumentationList[i]; 4544 IRBuilder<> IRB(OrigInst->getNextNode()); 4545 4546 Value *VAListTag = OrigInst->getArgOperand(0); 4547 4548 // The variadic ABI for AArch64 creates two areas to save the incoming 4549 // argument registers (one for 64-bit general register xn-x7 and another 4550 // for 128-bit FP/SIMD vn-v7). 4551 // We need then to propagate the shadow arguments on both regions 4552 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4553 // The remaining arguments are saved on shadow for 'va::stack'. 4554 // One caveat is it requires only to propagate the non-named arguments, 4555 // however on the call site instrumentation 'all' the arguments are 4556 // saved. So to copy the shadow values from the va_arg TLS array 4557 // we need to adjust the offset for both GR and VR fields based on 4558 // the __{gr,vr}_offs value (since they are stores based on incoming 4559 // named arguments). 4560 4561 // Read the stack pointer from the va_list. 4562 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4563 4564 // Read both the __gr_top and __gr_off and add them up. 4565 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4566 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4567 4568 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4569 4570 // Read both the __vr_top and __vr_off and add them up. 4571 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4572 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4573 4574 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4575 4576 // It does not know how many named arguments is being used and, on the 4577 // callsite all the arguments were saved. Since __gr_off is defined as 4578 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4579 // argument by ignoring the bytes of shadow from named arguments. 4580 Value *GrRegSaveAreaShadowPtrOff = 4581 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4582 4583 Value *GrRegSaveAreaShadowPtr = 4584 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4585 Align(8), /*isStore*/ true) 4586 .first; 4587 4588 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4589 GrRegSaveAreaShadowPtrOff); 4590 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4591 4592 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4593 GrCopySize); 4594 4595 // Again, but for FP/SIMD values. 4596 Value *VrRegSaveAreaShadowPtrOff = 4597 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4598 4599 Value *VrRegSaveAreaShadowPtr = 4600 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4601 Align(8), /*isStore*/ true) 4602 .first; 4603 4604 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4605 IRB.getInt8Ty(), 4606 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4607 IRB.getInt32(AArch64VrBegOffset)), 4608 VrRegSaveAreaShadowPtrOff); 4609 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4610 4611 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4612 VrCopySize); 4613 4614 // And finally for remaining arguments. 4615 Value *StackSaveAreaShadowPtr = 4616 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4617 Align(16), /*isStore*/ true) 4618 .first; 4619 4620 Value *StackSrcPtr = 4621 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4622 IRB.getInt32(AArch64VAEndOffset)); 4623 4624 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4625 Align(16), VAArgOverflowSize); 4626 } 4627 } 4628 }; 4629 4630 /// PowerPC64-specific implementation of VarArgHelper. 4631 struct VarArgPowerPC64Helper : public VarArgHelper { 4632 Function &F; 4633 MemorySanitizer &MS; 4634 MemorySanitizerVisitor &MSV; 4635 Value *VAArgTLSCopy = nullptr; 4636 Value *VAArgSize = nullptr; 4637 4638 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4639 4640 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4641 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4642 4643 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4644 // For PowerPC, we need to deal with alignment of stack arguments - 4645 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4646 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4647 // For that reason, we compute current offset from stack pointer (which is 4648 // always properly aligned), and offset for the first vararg, then subtract 4649 // them. 4650 unsigned VAArgBase; 4651 Triple TargetTriple(F.getParent()->getTargetTriple()); 4652 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4653 // and 32 bytes for ABIv2. This is usually determined by target 4654 // endianness, but in theory could be overridden by function attribute. 4655 if (TargetTriple.getArch() == Triple::ppc64) 4656 VAArgBase = 48; 4657 else 4658 VAArgBase = 32; 4659 unsigned VAArgOffset = VAArgBase; 4660 const DataLayout &DL = F.getParent()->getDataLayout(); 4661 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4662 ++ArgIt) { 4663 Value *A = *ArgIt; 4664 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4665 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4666 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4667 if (IsByVal) { 4668 assert(A->getType()->isPointerTy()); 4669 Type *RealTy = CB.getParamByValType(ArgNo); 4670 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4671 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4672 if (!ArgAlign || *ArgAlign < Align(8)) 4673 ArgAlign = Align(8); 4674 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4675 if (!IsFixed) { 4676 Value *Base = getShadowPtrForVAArgument( 4677 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4678 if (Base) { 4679 Value *AShadowPtr, *AOriginPtr; 4680 std::tie(AShadowPtr, AOriginPtr) = 4681 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4682 kShadowTLSAlignment, /*isStore*/ false); 4683 4684 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4685 kShadowTLSAlignment, ArgSize); 4686 } 4687 } 4688 VAArgOffset += alignTo(ArgSize, 8); 4689 } else { 4690 Value *Base; 4691 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4692 uint64_t ArgAlign = 8; 4693 if (A->getType()->isArrayTy()) { 4694 // Arrays are aligned to element size, except for long double 4695 // arrays, which are aligned to 8 bytes. 4696 Type *ElementTy = A->getType()->getArrayElementType(); 4697 if (!ElementTy->isPPC_FP128Ty()) 4698 ArgAlign = DL.getTypeAllocSize(ElementTy); 4699 } else if (A->getType()->isVectorTy()) { 4700 // Vectors are naturally aligned. 4701 ArgAlign = DL.getTypeAllocSize(A->getType()); 4702 } 4703 if (ArgAlign < 8) 4704 ArgAlign = 8; 4705 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4706 if (DL.isBigEndian()) { 4707 // Adjusting the shadow for argument with size < 8 to match the placement 4708 // of bits in big endian system 4709 if (ArgSize < 8) 4710 VAArgOffset += (8 - ArgSize); 4711 } 4712 if (!IsFixed) { 4713 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4714 VAArgOffset - VAArgBase, ArgSize); 4715 if (Base) 4716 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4717 } 4718 VAArgOffset += ArgSize; 4719 VAArgOffset = alignTo(VAArgOffset, 8); 4720 } 4721 if (IsFixed) 4722 VAArgBase = VAArgOffset; 4723 } 4724 4725 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4726 VAArgOffset - VAArgBase); 4727 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4728 // a new class member i.e. it is the total size of all VarArgs. 4729 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4730 } 4731 4732 /// Compute the shadow address for a given va_arg. 4733 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4734 unsigned ArgOffset, unsigned ArgSize) { 4735 // Make sure we don't overflow __msan_va_arg_tls. 4736 if (ArgOffset + ArgSize > kParamTLSSize) 4737 return nullptr; 4738 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4739 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4740 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4741 "_msarg"); 4742 } 4743 4744 void visitVAStartInst(VAStartInst &I) override { 4745 IRBuilder<> IRB(&I); 4746 VAStartInstrumentationList.push_back(&I); 4747 Value *VAListTag = I.getArgOperand(0); 4748 Value *ShadowPtr, *OriginPtr; 4749 const Align Alignment = Align(8); 4750 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4751 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4752 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4753 /* size */ 8, Alignment, false); 4754 } 4755 4756 void visitVACopyInst(VACopyInst &I) override { 4757 IRBuilder<> IRB(&I); 4758 Value *VAListTag = I.getArgOperand(0); 4759 Value *ShadowPtr, *OriginPtr; 4760 const Align Alignment = Align(8); 4761 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4762 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4763 // Unpoison the whole __va_list_tag. 4764 // FIXME: magic ABI constants. 4765 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4766 /* size */ 8, Alignment, false); 4767 } 4768 4769 void finalizeInstrumentation() override { 4770 assert(!VAArgSize && !VAArgTLSCopy && 4771 "finalizeInstrumentation called twice"); 4772 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4773 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4774 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4775 VAArgSize); 4776 4777 if (!VAStartInstrumentationList.empty()) { 4778 // If there is a va_start in this function, make a backup copy of 4779 // va_arg_tls somewhere in the function entry block. 4780 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4781 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4782 } 4783 4784 // Instrument va_start. 4785 // Copy va_list shadow from the backup copy of the TLS contents. 4786 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4787 CallInst *OrigInst = VAStartInstrumentationList[i]; 4788 IRBuilder<> IRB(OrigInst->getNextNode()); 4789 Value *VAListTag = OrigInst->getArgOperand(0); 4790 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4791 Value *RegSaveAreaPtrPtr = 4792 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4793 PointerType::get(RegSaveAreaPtrTy, 0)); 4794 Value *RegSaveAreaPtr = 4795 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4796 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4797 const Align Alignment = Align(8); 4798 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4799 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4800 Alignment, /*isStore*/ true); 4801 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4802 CopySize); 4803 } 4804 } 4805 }; 4806 4807 /// SystemZ-specific implementation of VarArgHelper. 4808 struct VarArgSystemZHelper : public VarArgHelper { 4809 static const unsigned SystemZGpOffset = 16; 4810 static const unsigned SystemZGpEndOffset = 56; 4811 static const unsigned SystemZFpOffset = 128; 4812 static const unsigned SystemZFpEndOffset = 160; 4813 static const unsigned SystemZMaxVrArgs = 8; 4814 static const unsigned SystemZRegSaveAreaSize = 160; 4815 static const unsigned SystemZOverflowOffset = 160; 4816 static const unsigned SystemZVAListTagSize = 32; 4817 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4818 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4819 4820 Function &F; 4821 MemorySanitizer &MS; 4822 MemorySanitizerVisitor &MSV; 4823 Value *VAArgTLSCopy = nullptr; 4824 Value *VAArgTLSOriginCopy = nullptr; 4825 Value *VAArgOverflowSize = nullptr; 4826 4827 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4828 4829 enum class ArgKind { 4830 GeneralPurpose, 4831 FloatingPoint, 4832 Vector, 4833 Memory, 4834 Indirect, 4835 }; 4836 4837 enum class ShadowExtension { None, Zero, Sign }; 4838 4839 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4840 MemorySanitizerVisitor &MSV) 4841 : F(F), MS(MS), MSV(MSV) {} 4842 4843 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4844 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4845 // only a few possibilities of what it can be. In particular, enums, single 4846 // element structs and large types have already been taken care of. 4847 4848 // Some i128 and fp128 arguments are converted to pointers only in the 4849 // back end. 4850 if (T->isIntegerTy(128) || T->isFP128Ty()) 4851 return ArgKind::Indirect; 4852 if (T->isFloatingPointTy()) 4853 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4854 if (T->isIntegerTy() || T->isPointerTy()) 4855 return ArgKind::GeneralPurpose; 4856 if (T->isVectorTy()) 4857 return ArgKind::Vector; 4858 return ArgKind::Memory; 4859 } 4860 4861 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4862 // ABI says: "One of the simple integer types no more than 64 bits wide. 4863 // ... If such an argument is shorter than 64 bits, replace it by a full 4864 // 64-bit integer representing the same number, using sign or zero 4865 // extension". Shadow for an integer argument has the same type as the 4866 // argument itself, so it can be sign or zero extended as well. 4867 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4868 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4869 if (ZExt) { 4870 assert(!SExt); 4871 return ShadowExtension::Zero; 4872 } 4873 if (SExt) { 4874 assert(!ZExt); 4875 return ShadowExtension::Sign; 4876 } 4877 return ShadowExtension::None; 4878 } 4879 4880 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4881 bool IsSoftFloatABI = CB.getCalledFunction() 4882 ->getFnAttribute("use-soft-float") 4883 .getValueAsString() == "true"; 4884 unsigned GpOffset = SystemZGpOffset; 4885 unsigned FpOffset = SystemZFpOffset; 4886 unsigned VrIndex = 0; 4887 unsigned OverflowOffset = SystemZOverflowOffset; 4888 const DataLayout &DL = F.getParent()->getDataLayout(); 4889 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4890 ++ArgIt) { 4891 Value *A = *ArgIt; 4892 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4893 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4894 // SystemZABIInfo does not produce ByVal parameters. 4895 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 4896 Type *T = A->getType(); 4897 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 4898 if (AK == ArgKind::Indirect) { 4899 T = PointerType::get(T, 0); 4900 AK = ArgKind::GeneralPurpose; 4901 } 4902 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 4903 AK = ArgKind::Memory; 4904 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 4905 AK = ArgKind::Memory; 4906 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 4907 AK = ArgKind::Memory; 4908 Value *ShadowBase = nullptr; 4909 Value *OriginBase = nullptr; 4910 ShadowExtension SE = ShadowExtension::None; 4911 switch (AK) { 4912 case ArgKind::GeneralPurpose: { 4913 // Always keep track of GpOffset, but store shadow only for varargs. 4914 uint64_t ArgSize = 8; 4915 if (GpOffset + ArgSize <= kParamTLSSize) { 4916 if (!IsFixed) { 4917 SE = getShadowExtension(CB, ArgNo); 4918 uint64_t GapSize = 0; 4919 if (SE == ShadowExtension::None) { 4920 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4921 assert(ArgAllocSize <= ArgSize); 4922 GapSize = ArgSize - ArgAllocSize; 4923 } 4924 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 4925 if (MS.TrackOrigins) 4926 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 4927 } 4928 GpOffset += ArgSize; 4929 } else { 4930 GpOffset = kParamTLSSize; 4931 } 4932 break; 4933 } 4934 case ArgKind::FloatingPoint: { 4935 // Always keep track of FpOffset, but store shadow only for varargs. 4936 uint64_t ArgSize = 8; 4937 if (FpOffset + ArgSize <= kParamTLSSize) { 4938 if (!IsFixed) { 4939 // PoP says: "A short floating-point datum requires only the 4940 // left-most 32 bit positions of a floating-point register". 4941 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 4942 // don't extend shadow and don't mind the gap. 4943 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 4944 if (MS.TrackOrigins) 4945 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4946 } 4947 FpOffset += ArgSize; 4948 } else { 4949 FpOffset = kParamTLSSize; 4950 } 4951 break; 4952 } 4953 case ArgKind::Vector: { 4954 // Keep track of VrIndex. No need to store shadow, since vector varargs 4955 // go through AK_Memory. 4956 assert(IsFixed); 4957 VrIndex++; 4958 break; 4959 } 4960 case ArgKind::Memory: { 4961 // Keep track of OverflowOffset and store shadow only for varargs. 4962 // Ignore fixed args, since we need to copy only the vararg portion of 4963 // the overflow area shadow. 4964 if (!IsFixed) { 4965 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4966 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 4967 if (OverflowOffset + ArgSize <= kParamTLSSize) { 4968 SE = getShadowExtension(CB, ArgNo); 4969 uint64_t GapSize = 4970 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 4971 ShadowBase = 4972 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 4973 if (MS.TrackOrigins) 4974 OriginBase = 4975 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 4976 OverflowOffset += ArgSize; 4977 } else { 4978 OverflowOffset = kParamTLSSize; 4979 } 4980 } 4981 break; 4982 } 4983 case ArgKind::Indirect: 4984 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 4985 } 4986 if (ShadowBase == nullptr) 4987 continue; 4988 Value *Shadow = MSV.getShadow(A); 4989 if (SE != ShadowExtension::None) 4990 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 4991 /*Signed*/ SE == ShadowExtension::Sign); 4992 ShadowBase = IRB.CreateIntToPtr( 4993 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 4994 IRB.CreateStore(Shadow, ShadowBase); 4995 if (MS.TrackOrigins) { 4996 Value *Origin = MSV.getOrigin(A); 4997 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4998 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4999 kMinOriginAlignment); 5000 } 5001 } 5002 Constant *OverflowSize = ConstantInt::get( 5003 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5004 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5005 } 5006 5007 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5008 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5009 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5010 } 5011 5012 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5013 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5014 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5015 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5016 "_msarg_va_o"); 5017 } 5018 5019 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5020 IRBuilder<> IRB(&I); 5021 Value *VAListTag = I.getArgOperand(0); 5022 Value *ShadowPtr, *OriginPtr; 5023 const Align Alignment = Align(8); 5024 std::tie(ShadowPtr, OriginPtr) = 5025 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5026 /*isStore*/ true); 5027 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5028 SystemZVAListTagSize, Alignment, false); 5029 } 5030 5031 void visitVAStartInst(VAStartInst &I) override { 5032 VAStartInstrumentationList.push_back(&I); 5033 unpoisonVAListTagForInst(I); 5034 } 5035 5036 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5037 5038 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5039 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5040 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5041 IRB.CreateAdd( 5042 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5043 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5044 PointerType::get(RegSaveAreaPtrTy, 0)); 5045 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5046 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5047 const Align Alignment = Align(8); 5048 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5049 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5050 /*isStore*/ true); 5051 // TODO(iii): copy only fragments filled by visitCallBase() 5052 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5053 SystemZRegSaveAreaSize); 5054 if (MS.TrackOrigins) 5055 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5056 Alignment, SystemZRegSaveAreaSize); 5057 } 5058 5059 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5060 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5061 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5062 IRB.CreateAdd( 5063 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5064 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5065 PointerType::get(OverflowArgAreaPtrTy, 0)); 5066 Value *OverflowArgAreaPtr = 5067 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5068 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5069 const Align Alignment = Align(8); 5070 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5071 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5072 Alignment, /*isStore*/ true); 5073 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5074 SystemZOverflowOffset); 5075 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5076 VAArgOverflowSize); 5077 if (MS.TrackOrigins) { 5078 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5079 SystemZOverflowOffset); 5080 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5081 VAArgOverflowSize); 5082 } 5083 } 5084 5085 void finalizeInstrumentation() override { 5086 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5087 "finalizeInstrumentation called twice"); 5088 if (!VAStartInstrumentationList.empty()) { 5089 // If there is a va_start in this function, make a backup copy of 5090 // va_arg_tls somewhere in the function entry block. 5091 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 5092 VAArgOverflowSize = 5093 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5094 Value *CopySize = 5095 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5096 VAArgOverflowSize); 5097 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5098 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5099 if (MS.TrackOrigins) { 5100 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5101 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5102 Align(8), CopySize); 5103 } 5104 } 5105 5106 // Instrument va_start. 5107 // Copy va_list shadow from the backup copy of the TLS contents. 5108 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5109 VaStartNo < VaStartNum; VaStartNo++) { 5110 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5111 IRBuilder<> IRB(OrigInst->getNextNode()); 5112 Value *VAListTag = OrigInst->getArgOperand(0); 5113 copyRegSaveArea(IRB, VAListTag); 5114 copyOverflowArea(IRB, VAListTag); 5115 } 5116 } 5117 }; 5118 5119 /// A no-op implementation of VarArgHelper. 5120 struct VarArgNoOpHelper : public VarArgHelper { 5121 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5122 MemorySanitizerVisitor &MSV) {} 5123 5124 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5125 5126 void visitVAStartInst(VAStartInst &I) override {} 5127 5128 void visitVACopyInst(VACopyInst &I) override {} 5129 5130 void finalizeInstrumentation() override {} 5131 }; 5132 5133 } // end anonymous namespace 5134 5135 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5136 MemorySanitizerVisitor &Visitor) { 5137 // VarArg handling is only implemented on AMD64. False positives are possible 5138 // on other platforms. 5139 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5140 if (TargetTriple.getArch() == Triple::x86_64) 5141 return new VarArgAMD64Helper(Func, Msan, Visitor); 5142 else if (TargetTriple.isMIPS64()) 5143 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5144 else if (TargetTriple.getArch() == Triple::aarch64) 5145 return new VarArgAArch64Helper(Func, Msan, Visitor); 5146 else if (TargetTriple.getArch() == Triple::ppc64 || 5147 TargetTriple.getArch() == Triple::ppc64le) 5148 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5149 else if (TargetTriple.getArch() == Triple::systemz) 5150 return new VarArgSystemZHelper(Func, Msan, Visitor); 5151 else 5152 return new VarArgNoOpHelper(Func, Msan, Visitor); 5153 } 5154 5155 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5156 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5157 return false; 5158 5159 MemorySanitizerVisitor Visitor(F, *this, TLI); 5160 5161 // Clear out readonly/readnone attributes. 5162 AttrBuilder B; 5163 B.addAttribute(Attribute::ReadOnly) 5164 .addAttribute(Attribute::ReadNone) 5165 .addAttribute(Attribute::WriteOnly) 5166 .addAttribute(Attribute::ArgMemOnly) 5167 .addAttribute(Attribute::Speculatable); 5168 F.removeAttributes(AttributeList::FunctionIndex, B); 5169 5170 return Visitor.runOnFunction(); 5171 } 5172