1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file is a part of MemorySanitizer, a detector of uninitialized 12 /// reads. 13 /// 14 /// The algorithm of the tool is similar to Memcheck 15 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 16 /// byte of the application memory, poison the shadow of the malloc-ed 17 /// or alloca-ed memory, load the shadow bits on every memory read, 18 /// propagate the shadow bits through some of the arithmetic 19 /// instruction (including MOV), store the shadow bits on every memory 20 /// write, report a bug on some other instructions (e.g. JMP) if the 21 /// associated shadow is poisoned. 22 /// 23 /// But there are differences too. The first and the major one: 24 /// compiler instrumentation instead of binary instrumentation. This 25 /// gives us much better register allocation, possible compiler 26 /// optimizations and a fast start-up. But this brings the major issue 27 /// as well: msan needs to see all program events, including system 28 /// calls and reads/writes in system libraries, so we either need to 29 /// compile *everything* with msan or use a binary translation 30 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 31 /// Another difference from Memcheck is that we use 8 shadow bits per 32 /// byte of application memory and use a direct shadow mapping. This 33 /// greatly simplifies the instrumentation code and avoids races on 34 /// shadow updates (Memcheck is single-threaded so races are not a 35 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 36 /// path storage that uses 8 bits per byte). 37 /// 38 /// The default value of shadow is 0, which means "clean" (not poisoned). 39 /// 40 /// Every module initializer should call __msan_init to ensure that the 41 /// shadow memory is ready. On error, __msan_warning is called. Since 42 /// parameters and return values may be passed via registers, we have a 43 /// specialized thread-local shadow for return values 44 /// (__msan_retval_tls) and parameters (__msan_param_tls). 45 /// 46 /// Origin tracking. 47 /// 48 /// MemorySanitizer can track origins (allocation points) of all uninitialized 49 /// values. This behavior is controlled with a flag (msan-track-origins) and is 50 /// disabled by default. 51 /// 52 /// Origins are 4-byte values created and interpreted by the runtime library. 53 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 54 /// of application memory. Propagation of origins is basically a bunch of 55 /// "select" instructions that pick the origin of a dirty argument, if an 56 /// instruction has one. 57 /// 58 /// Every 4 aligned, consecutive bytes of application memory have one origin 59 /// value associated with them. If these bytes contain uninitialized data 60 /// coming from 2 different allocations, the last store wins. Because of this, 61 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 62 /// practice. 63 /// 64 /// Origins are meaningless for fully initialized values, so MemorySanitizer 65 /// avoids storing origin to memory when a fully initialized value is stored. 66 /// This way it avoids needless overwritting origin of the 4-byte region on 67 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 68 /// 69 /// Atomic handling. 70 /// 71 /// Ideally, every atomic store of application value should update the 72 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 73 /// of two disjoint locations can not be done without severe slowdown. 74 /// 75 /// Therefore, we implement an approximation that may err on the safe side. 76 /// In this implementation, every atomically accessed location in the program 77 /// may only change from (partially) uninitialized to fully initialized, but 78 /// not the other way around. We load the shadow _after_ the application load, 79 /// and we store the shadow _before_ the app store. Also, we always store clean 80 /// shadow (if the application store is atomic). This way, if the store-load 81 /// pair constitutes a happens-before arc, shadow store and load are correctly 82 /// ordered such that the load will get either the value that was stored, or 83 /// some later value (which is always clean). 84 /// 85 /// This does not work very well with Compare-And-Swap (CAS) and 86 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 87 /// must store the new shadow before the app operation, and load the shadow 88 /// after the app operation. Computers don't work this way. Current 89 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 90 /// value. It implements the store part as a simple atomic store by storing a 91 /// clean shadow. 92 /// 93 /// Instrumenting inline assembly. 94 /// 95 /// For inline assembly code LLVM has little idea about which memory locations 96 /// become initialized depending on the arguments. It can be possible to figure 97 /// out which arguments are meant to point to inputs and outputs, but the 98 /// actual semantics can be only visible at runtime. In the Linux kernel it's 99 /// also possible that the arguments only indicate the offset for a base taken 100 /// from a segment register, so it's dangerous to treat any asm() arguments as 101 /// pointers. We take a conservative approach generating calls to 102 /// __msan_instrument_asm_store(ptr, size) 103 /// , which defer the memory unpoisoning to the runtime library. 104 /// The latter can perform more complex address checks to figure out whether 105 /// it's safe to touch the shadow memory. 106 /// Like with atomic operations, we call __msan_instrument_asm_store() before 107 /// the assembly call, so that changes to the shadow memory will be seen by 108 /// other threads together with main memory initialization. 109 /// 110 /// KernelMemorySanitizer (KMSAN) implementation. 111 /// 112 /// The major differences between KMSAN and MSan instrumentation are: 113 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 114 /// - KMSAN allocates shadow and origin memory for each page separately, so 115 /// there are no explicit accesses to shadow and origin in the 116 /// instrumentation. 117 /// Shadow and origin values for a particular X-byte memory location 118 /// (X=1,2,4,8) are accessed through pointers obtained via the 119 /// __msan_metadata_ptr_for_load_X(ptr) 120 /// __msan_metadata_ptr_for_store_X(ptr) 121 /// functions. The corresponding functions check that the X-byte accesses 122 /// are possible and returns the pointers to shadow and origin memory. 123 /// Arbitrary sized accesses are handled with: 124 /// __msan_metadata_ptr_for_load_n(ptr, size) 125 /// __msan_metadata_ptr_for_store_n(ptr, size); 126 /// - TLS variables are stored in a single per-task struct. A call to a 127 /// function __msan_get_context_state() returning a pointer to that struct 128 /// is inserted into every instrumented function before the entry block; 129 /// - __msan_warning() takes a 32-bit origin parameter; 130 /// - local variables are poisoned with __msan_poison_alloca() upon function 131 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 132 /// function; 133 /// - the pass doesn't declare any global variables or add global constructors 134 /// to the translation unit. 135 /// 136 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 137 /// calls, making sure we're on the safe side wrt. possible false positives. 138 /// 139 /// KernelMemorySanitizer only supports X86_64 at the moment. 140 /// 141 //===----------------------------------------------------------------------===// 142 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallString.h" 147 #include "llvm/ADT/SmallVector.h" 148 #include "llvm/ADT/StringExtras.h" 149 #include "llvm/ADT/StringRef.h" 150 #include "llvm/ADT/Triple.h" 151 #include "llvm/Analysis/TargetLibraryInfo.h" 152 #include "llvm/Transforms/Utils/Local.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/Pass.h" 180 #include "llvm/Support/AtomicOrdering.h" 181 #include "llvm/Support/Casting.h" 182 #include "llvm/Support/CommandLine.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/ErrorHandling.h" 186 #include "llvm/Support/MathExtras.h" 187 #include "llvm/Support/raw_ostream.h" 188 #include "llvm/Transforms/Instrumentation.h" 189 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 190 #include "llvm/Transforms/Utils/ModuleUtils.h" 191 #include <algorithm> 192 #include <cassert> 193 #include <cstddef> 194 #include <cstdint> 195 #include <memory> 196 #include <string> 197 #include <tuple> 198 199 using namespace llvm; 200 201 #define DEBUG_TYPE "msan" 202 203 static const unsigned kOriginSize = 4; 204 static const unsigned kMinOriginAlignment = 4; 205 static const unsigned kShadowTLSAlignment = 8; 206 207 // These constants must be kept in sync with the ones in msan.h. 208 static const unsigned kParamTLSSize = 800; 209 static const unsigned kRetvalTLSSize = 800; 210 211 // Accesses sizes are powers of two: 1, 2, 4, 8. 212 static const size_t kNumberOfAccessSizes = 4; 213 214 /// Track origins of uninitialized values. 215 /// 216 /// Adds a section to MemorySanitizer report that points to the allocation 217 /// (stack or heap) the uninitialized bits came from originally. 218 static cl::opt<int> ClTrackOrigins("msan-track-origins", 219 cl::desc("Track origins (allocation sites) of poisoned memory"), 220 cl::Hidden, cl::init(0)); 221 222 static cl::opt<bool> ClKeepGoing("msan-keep-going", 223 cl::desc("keep going after reporting a UMR"), 224 cl::Hidden, cl::init(false)); 225 226 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 227 cl::desc("poison uninitialized stack variables"), 228 cl::Hidden, cl::init(true)); 229 230 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 231 cl::desc("poison uninitialized stack variables with a call"), 232 cl::Hidden, cl::init(false)); 233 234 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 235 cl::desc("poison uninitialized stack variables with the given pattern"), 236 cl::Hidden, cl::init(0xff)); 237 238 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 239 cl::desc("poison undef temps"), 240 cl::Hidden, cl::init(true)); 241 242 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 243 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 244 cl::Hidden, cl::init(true)); 245 246 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 247 cl::desc("exact handling of relational integer ICmp"), 248 cl::Hidden, cl::init(false)); 249 250 // When compiling the Linux kernel, we sometimes see false positives related to 251 // MSan being unable to understand that inline assembly calls may initialize 252 // local variables. 253 // This flag makes the compiler conservatively unpoison every memory location 254 // passed into an assembly call. Note that this may cause false positives. 255 // Because it's impossible to figure out the array sizes, we can only unpoison 256 // the first sizeof(type) bytes for each type* pointer. 257 // The instrumentation is only enabled in KMSAN builds, and only if 258 // -msan-handle-asm-conservative is on. This is done because we may want to 259 // quickly disable assembly instrumentation when it breaks. 260 static cl::opt<bool> ClHandleAsmConservative( 261 "msan-handle-asm-conservative", 262 cl::desc("conservative handling of inline assembly"), cl::Hidden, 263 cl::init(true)); 264 265 // This flag controls whether we check the shadow of the address 266 // operand of load or store. Such bugs are very rare, since load from 267 // a garbage address typically results in SEGV, but still happen 268 // (e.g. only lower bits of address are garbage, or the access happens 269 // early at program startup where malloc-ed memory is more likely to 270 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 271 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 272 cl::desc("report accesses through a pointer which has poisoned shadow"), 273 cl::Hidden, cl::init(true)); 274 275 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 276 cl::desc("print out instructions with default strict semantics"), 277 cl::Hidden, cl::init(false)); 278 279 static cl::opt<int> ClInstrumentationWithCallThreshold( 280 "msan-instrumentation-with-call-threshold", 281 cl::desc( 282 "If the function being instrumented requires more than " 283 "this number of checks and origin stores, use callbacks instead of " 284 "inline checks (-1 means never use callbacks)."), 285 cl::Hidden, cl::init(3500)); 286 287 static cl::opt<bool> 288 ClEnableKmsan("msan-kernel", 289 cl::desc("Enable KernelMemorySanitizer instrumentation"), 290 cl::Hidden, cl::init(false)); 291 292 // This is an experiment to enable handling of cases where shadow is a non-zero 293 // compile-time constant. For some unexplainable reason they were silently 294 // ignored in the instrumentation. 295 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 296 cl::desc("Insert checks for constant shadow values"), 297 cl::Hidden, cl::init(false)); 298 299 // This is off by default because of a bug in gold: 300 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 301 static cl::opt<bool> ClWithComdat("msan-with-comdat", 302 cl::desc("Place MSan constructors in comdat sections"), 303 cl::Hidden, cl::init(false)); 304 305 // These options allow to specify custom memory map parameters 306 // See MemoryMapParams for details. 307 static cl::opt<unsigned long long> ClAndMask("msan-and-mask", 308 cl::desc("Define custom MSan AndMask"), 309 cl::Hidden, cl::init(0)); 310 311 static cl::opt<unsigned long long> ClXorMask("msan-xor-mask", 312 cl::desc("Define custom MSan XorMask"), 313 cl::Hidden, cl::init(0)); 314 315 static cl::opt<unsigned long long> ClShadowBase("msan-shadow-base", 316 cl::desc("Define custom MSan ShadowBase"), 317 cl::Hidden, cl::init(0)); 318 319 static cl::opt<unsigned long long> ClOriginBase("msan-origin-base", 320 cl::desc("Define custom MSan OriginBase"), 321 cl::Hidden, cl::init(0)); 322 323 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 324 static const char *const kMsanInitName = "__msan_init"; 325 326 namespace { 327 328 // Memory map parameters used in application-to-shadow address calculation. 329 // Offset = (Addr & ~AndMask) ^ XorMask 330 // Shadow = ShadowBase + Offset 331 // Origin = OriginBase + Offset 332 struct MemoryMapParams { 333 uint64_t AndMask; 334 uint64_t XorMask; 335 uint64_t ShadowBase; 336 uint64_t OriginBase; 337 }; 338 339 struct PlatformMemoryMapParams { 340 const MemoryMapParams *bits32; 341 const MemoryMapParams *bits64; 342 }; 343 344 } // end anonymous namespace 345 346 // i386 Linux 347 static const MemoryMapParams Linux_I386_MemoryMapParams = { 348 0x000080000000, // AndMask 349 0, // XorMask (not used) 350 0, // ShadowBase (not used) 351 0x000040000000, // OriginBase 352 }; 353 354 // x86_64 Linux 355 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 356 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 357 0x400000000000, // AndMask 358 0, // XorMask (not used) 359 0, // ShadowBase (not used) 360 0x200000000000, // OriginBase 361 #else 362 0, // AndMask (not used) 363 0x500000000000, // XorMask 364 0, // ShadowBase (not used) 365 0x100000000000, // OriginBase 366 #endif 367 }; 368 369 // mips64 Linux 370 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 371 0, // AndMask (not used) 372 0x008000000000, // XorMask 373 0, // ShadowBase (not used) 374 0x002000000000, // OriginBase 375 }; 376 377 // ppc64 Linux 378 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 379 0xE00000000000, // AndMask 380 0x100000000000, // XorMask 381 0x080000000000, // ShadowBase 382 0x1C0000000000, // OriginBase 383 }; 384 385 // aarch64 Linux 386 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 387 0, // AndMask (not used) 388 0x06000000000, // XorMask 389 0, // ShadowBase (not used) 390 0x01000000000, // OriginBase 391 }; 392 393 // i386 FreeBSD 394 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 395 0x000180000000, // AndMask 396 0x000040000000, // XorMask 397 0x000020000000, // ShadowBase 398 0x000700000000, // OriginBase 399 }; 400 401 // x86_64 FreeBSD 402 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 403 0xc00000000000, // AndMask 404 0x200000000000, // XorMask 405 0x100000000000, // ShadowBase 406 0x380000000000, // OriginBase 407 }; 408 409 // x86_64 NetBSD 410 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 411 0, // AndMask 412 0x500000000000, // XorMask 413 0, // ShadowBase 414 0x100000000000, // OriginBase 415 }; 416 417 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 418 &Linux_I386_MemoryMapParams, 419 &Linux_X86_64_MemoryMapParams, 420 }; 421 422 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 423 nullptr, 424 &Linux_MIPS64_MemoryMapParams, 425 }; 426 427 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 428 nullptr, 429 &Linux_PowerPC64_MemoryMapParams, 430 }; 431 432 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 433 nullptr, 434 &Linux_AArch64_MemoryMapParams, 435 }; 436 437 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 438 &FreeBSD_I386_MemoryMapParams, 439 &FreeBSD_X86_64_MemoryMapParams, 440 }; 441 442 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 443 nullptr, 444 &NetBSD_X86_64_MemoryMapParams, 445 }; 446 447 namespace { 448 449 /// An instrumentation pass implementing detection of uninitialized 450 /// reads. 451 /// 452 /// MemorySanitizer: instrument the code in module to find 453 /// uninitialized reads. 454 class MemorySanitizer : public FunctionPass { 455 public: 456 // Pass identification, replacement for typeid. 457 static char ID; 458 459 MemorySanitizer(int TrackOrigins = 0, bool Recover = false, 460 bool EnableKmsan = false) 461 : FunctionPass(ID) { 462 this->CompileKernel = 463 ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : EnableKmsan; 464 if (ClTrackOrigins.getNumOccurrences() > 0) 465 this->TrackOrigins = ClTrackOrigins; 466 else 467 this->TrackOrigins = this->CompileKernel ? 2 : TrackOrigins; 468 this->Recover = ClKeepGoing.getNumOccurrences() > 0 469 ? ClKeepGoing 470 : (this->CompileKernel | Recover); 471 } 472 StringRef getPassName() const override { return "MemorySanitizer"; } 473 474 void getAnalysisUsage(AnalysisUsage &AU) const override { 475 AU.addRequired<TargetLibraryInfoWrapperPass>(); 476 } 477 478 bool runOnFunction(Function &F) override; 479 bool doInitialization(Module &M) override; 480 481 private: 482 friend struct MemorySanitizerVisitor; 483 friend struct VarArgAMD64Helper; 484 friend struct VarArgMIPS64Helper; 485 friend struct VarArgAArch64Helper; 486 friend struct VarArgPowerPC64Helper; 487 488 void initializeCallbacks(Module &M); 489 void createKernelApi(Module &M); 490 void createUserspaceApi(Module &M); 491 492 /// True if we're compiling the Linux kernel. 493 bool CompileKernel; 494 495 /// Track origins (allocation points) of uninitialized values. 496 int TrackOrigins; 497 bool Recover; 498 499 LLVMContext *C; 500 Type *IntptrTy; 501 Type *OriginTy; 502 503 // XxxTLS variables represent the per-thread state in MSan and per-task state 504 // in KMSAN. 505 // For the userspace these point to thread-local globals. In the kernel land 506 // they point to the members of a per-task struct obtained via a call to 507 // __msan_get_context_state(). 508 509 /// Thread-local shadow storage for function parameters. 510 Value *ParamTLS; 511 512 /// Thread-local origin storage for function parameters. 513 Value *ParamOriginTLS; 514 515 /// Thread-local shadow storage for function return value. 516 Value *RetvalTLS; 517 518 /// Thread-local origin storage for function return value. 519 Value *RetvalOriginTLS; 520 521 /// Thread-local shadow storage for in-register va_arg function 522 /// parameters (x86_64-specific). 523 Value *VAArgTLS; 524 525 /// Thread-local shadow storage for in-register va_arg function 526 /// parameters (x86_64-specific). 527 Value *VAArgOriginTLS; 528 529 /// Thread-local shadow storage for va_arg overflow area 530 /// (x86_64-specific). 531 Value *VAArgOverflowSizeTLS; 532 533 /// Thread-local space used to pass origin value to the UMR reporting 534 /// function. 535 Value *OriginTLS; 536 537 /// Are the instrumentation callbacks set up? 538 bool CallbacksInitialized = false; 539 540 /// The run-time callback to print a warning. 541 Value *WarningFn; 542 543 // These arrays are indexed by log2(AccessSize). 544 Value *MaybeWarningFn[kNumberOfAccessSizes]; 545 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 546 547 /// Run-time helper that generates a new origin value for a stack 548 /// allocation. 549 Value *MsanSetAllocaOrigin4Fn; 550 551 /// Run-time helper that poisons stack on function entry. 552 Value *MsanPoisonStackFn; 553 554 /// Run-time helper that records a store (or any event) of an 555 /// uninitialized value and returns an updated origin id encoding this info. 556 Value *MsanChainOriginFn; 557 558 /// MSan runtime replacements for memmove, memcpy and memset. 559 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 560 561 /// KMSAN callback for task-local function argument shadow. 562 Value *MsanGetContextStateFn; 563 564 /// Functions for poisoning/unpoisoning local variables 565 Value *MsanPoisonAllocaFn, *MsanUnpoisonAllocaFn; 566 567 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 568 /// pointers. 569 Value *MsanMetadataPtrForLoadN, *MsanMetadataPtrForStoreN; 570 Value *MsanMetadataPtrForLoad_1_8[4]; 571 Value *MsanMetadataPtrForStore_1_8[4]; 572 Value *MsanInstrumentAsmStoreFn; 573 574 /// Helper to choose between different MsanMetadataPtrXxx(). 575 Value *getKmsanShadowOriginAccessFn(bool isStore, int size); 576 577 /// Memory map parameters used in application-to-shadow calculation. 578 const MemoryMapParams *MapParams; 579 580 /// Custom memory map parameters used when -msan-shadow-base or 581 // -msan-origin-base is provided. 582 MemoryMapParams CustomMapParams; 583 584 MDNode *ColdCallWeights; 585 586 /// Branch weights for origin store. 587 MDNode *OriginStoreWeights; 588 589 /// An empty volatile inline asm that prevents callback merge. 590 InlineAsm *EmptyAsm; 591 592 Function *MsanCtorFunction; 593 }; 594 595 } // end anonymous namespace 596 597 char MemorySanitizer::ID = 0; 598 599 INITIALIZE_PASS_BEGIN( 600 MemorySanitizer, "msan", 601 "MemorySanitizer: detects uninitialized reads.", false, false) 602 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 603 INITIALIZE_PASS_END( 604 MemorySanitizer, "msan", 605 "MemorySanitizer: detects uninitialized reads.", false, false) 606 607 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins, bool Recover, 608 bool CompileKernel) { 609 return new MemorySanitizer(TrackOrigins, Recover, CompileKernel); 610 } 611 612 /// Create a non-const global initialized with the given string. 613 /// 614 /// Creates a writable global for Str so that we can pass it to the 615 /// run-time lib. Runtime uses first 4 bytes of the string to store the 616 /// frame ID, so the string needs to be mutable. 617 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 618 StringRef Str) { 619 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 620 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 621 GlobalValue::PrivateLinkage, StrConst, ""); 622 } 623 624 /// Create KMSAN API callbacks. 625 void MemorySanitizer::createKernelApi(Module &M) { 626 IRBuilder<> IRB(*C); 627 628 // These will be initialized in insertKmsanPrologue(). 629 RetvalTLS = nullptr; 630 RetvalOriginTLS = nullptr; 631 ParamTLS = nullptr; 632 ParamOriginTLS = nullptr; 633 VAArgTLS = nullptr; 634 VAArgOriginTLS = nullptr; 635 VAArgOverflowSizeTLS = nullptr; 636 // OriginTLS is unused in the kernel. 637 OriginTLS = nullptr; 638 639 // __msan_warning() in the kernel takes an origin. 640 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 641 IRB.getInt32Ty()); 642 // Requests the per-task context state (kmsan_context_state*) from the 643 // runtime library. 644 MsanGetContextStateFn = M.getOrInsertFunction( 645 "__msan_get_context_state", 646 PointerType::get( 647 StructType::get(ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 648 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 649 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 650 ArrayType::get(IRB.getInt64Ty(), 651 kParamTLSSize / 8), /* va_arg_origin */ 652 IRB.getInt64Ty(), 653 ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 654 OriginTy), 655 0)); 656 657 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 658 PointerType::get(IRB.getInt32Ty(), 0)); 659 660 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 661 std::string name_load = 662 "__msan_metadata_ptr_for_load_" + std::to_string(size); 663 std::string name_store = 664 "__msan_metadata_ptr_for_store_" + std::to_string(size); 665 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 666 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 667 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 668 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 669 } 670 671 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 672 "__msan_metadata_ptr_for_load_n", RetTy, 673 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 674 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 675 "__msan_metadata_ptr_for_store_n", RetTy, 676 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 677 678 // Functions for poisoning and unpoisoning memory. 679 MsanPoisonAllocaFn = 680 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 681 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 682 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 683 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 684 } 685 686 /// Insert declarations for userspace-specific functions and globals. 687 void MemorySanitizer::createUserspaceApi(Module &M) { 688 IRBuilder<> IRB(*C); 689 // Create the callback. 690 // FIXME: this function should have "Cold" calling conv, 691 // which is not yet implemented. 692 StringRef WarningFnName = Recover ? "__msan_warning" 693 : "__msan_warning_noreturn"; 694 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 695 696 // Create the global TLS variables. 697 RetvalTLS = new GlobalVariable( 698 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 699 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 700 GlobalVariable::InitialExecTLSModel); 701 702 RetvalOriginTLS = new GlobalVariable( 703 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 704 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 705 706 ParamTLS = new GlobalVariable( 707 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 708 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 709 GlobalVariable::InitialExecTLSModel); 710 711 ParamOriginTLS = new GlobalVariable( 712 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 713 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 714 nullptr, GlobalVariable::InitialExecTLSModel); 715 716 VAArgTLS = new GlobalVariable( 717 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 718 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 719 GlobalVariable::InitialExecTLSModel); 720 721 VAArgOriginTLS = new GlobalVariable( 722 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 723 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_origin_tls", 724 nullptr, GlobalVariable::InitialExecTLSModel); 725 726 VAArgOverflowSizeTLS = new GlobalVariable( 727 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 728 "__msan_va_arg_overflow_size_tls", nullptr, 729 GlobalVariable::InitialExecTLSModel); 730 OriginTLS = new GlobalVariable( 731 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 732 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 733 734 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 735 AccessSizeIndex++) { 736 unsigned AccessSize = 1 << AccessSizeIndex; 737 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 738 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 739 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 740 IRB.getInt32Ty()); 741 742 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 743 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 744 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 745 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 746 } 747 748 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 749 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 750 IRB.getInt8PtrTy(), IntptrTy); 751 MsanPoisonStackFn = 752 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 753 IRB.getInt8PtrTy(), IntptrTy); 754 } 755 756 /// Insert extern declaration of runtime-provided functions and globals. 757 void MemorySanitizer::initializeCallbacks(Module &M) { 758 // Only do this once. 759 if (CallbacksInitialized) 760 return; 761 762 IRBuilder<> IRB(*C); 763 // Initialize callbacks that are common for kernel and userspace 764 // instrumentation. 765 MsanChainOriginFn = M.getOrInsertFunction( 766 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 767 MemmoveFn = M.getOrInsertFunction( 768 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 769 IRB.getInt8PtrTy(), IntptrTy); 770 MemcpyFn = M.getOrInsertFunction( 771 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 772 IntptrTy); 773 MemsetFn = M.getOrInsertFunction( 774 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 775 IntptrTy); 776 // We insert an empty inline asm after __msan_report* to avoid callback merge. 777 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 778 StringRef(""), StringRef(""), 779 /*hasSideEffects=*/true); 780 781 MsanInstrumentAsmStoreFn = 782 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 783 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 784 785 if (CompileKernel) { 786 createKernelApi(M); 787 } else { 788 createUserspaceApi(M); 789 } 790 CallbacksInitialized = true; 791 } 792 793 Value *MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, int size) { 794 Value **Fns = 795 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 796 switch (size) { 797 case 1: 798 return Fns[0]; 799 case 2: 800 return Fns[1]; 801 case 4: 802 return Fns[2]; 803 case 8: 804 return Fns[3]; 805 default: 806 return nullptr; 807 } 808 } 809 810 /// Module-level initialization. 811 /// 812 /// inserts a call to __msan_init to the module's constructor list. 813 bool MemorySanitizer::doInitialization(Module &M) { 814 auto &DL = M.getDataLayout(); 815 816 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 817 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 818 // Check the overrides first 819 if (ShadowPassed || OriginPassed) { 820 CustomMapParams.AndMask = ClAndMask; 821 CustomMapParams.XorMask = ClXorMask; 822 CustomMapParams.ShadowBase = ClShadowBase; 823 CustomMapParams.OriginBase = ClOriginBase; 824 MapParams = &CustomMapParams; 825 } else { 826 Triple TargetTriple(M.getTargetTriple()); 827 switch (TargetTriple.getOS()) { 828 case Triple::FreeBSD: 829 switch (TargetTriple.getArch()) { 830 case Triple::x86_64: 831 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 832 break; 833 case Triple::x86: 834 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 835 break; 836 default: 837 report_fatal_error("unsupported architecture"); 838 } 839 break; 840 case Triple::NetBSD: 841 switch (TargetTriple.getArch()) { 842 case Triple::x86_64: 843 MapParams = NetBSD_X86_MemoryMapParams.bits64; 844 break; 845 default: 846 report_fatal_error("unsupported architecture"); 847 } 848 break; 849 case Triple::Linux: 850 switch (TargetTriple.getArch()) { 851 case Triple::x86_64: 852 MapParams = Linux_X86_MemoryMapParams.bits64; 853 break; 854 case Triple::x86: 855 MapParams = Linux_X86_MemoryMapParams.bits32; 856 break; 857 case Triple::mips64: 858 case Triple::mips64el: 859 MapParams = Linux_MIPS_MemoryMapParams.bits64; 860 break; 861 case Triple::ppc64: 862 case Triple::ppc64le: 863 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 864 break; 865 case Triple::aarch64: 866 case Triple::aarch64_be: 867 MapParams = Linux_ARM_MemoryMapParams.bits64; 868 break; 869 default: 870 report_fatal_error("unsupported architecture"); 871 } 872 break; 873 default: 874 report_fatal_error("unsupported operating system"); 875 } 876 } 877 878 C = &(M.getContext()); 879 IRBuilder<> IRB(*C); 880 IntptrTy = IRB.getIntPtrTy(DL); 881 OriginTy = IRB.getInt32Ty(); 882 883 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 884 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 885 886 if (!CompileKernel) { 887 std::tie(MsanCtorFunction, std::ignore) = 888 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, 889 kMsanInitName, 890 /*InitArgTypes=*/{}, 891 /*InitArgs=*/{}); 892 if (ClWithComdat) { 893 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 894 MsanCtorFunction->setComdat(MsanCtorComdat); 895 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 896 } else { 897 appendToGlobalCtors(M, MsanCtorFunction, 0); 898 } 899 900 if (TrackOrigins) 901 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 902 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 903 904 if (Recover) 905 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 906 IRB.getInt32(Recover), "__msan_keep_going"); 907 } 908 return true; 909 } 910 911 namespace { 912 913 /// A helper class that handles instrumentation of VarArg 914 /// functions on a particular platform. 915 /// 916 /// Implementations are expected to insert the instrumentation 917 /// necessary to propagate argument shadow through VarArg function 918 /// calls. Visit* methods are called during an InstVisitor pass over 919 /// the function, and should avoid creating new basic blocks. A new 920 /// instance of this class is created for each instrumented function. 921 struct VarArgHelper { 922 virtual ~VarArgHelper() = default; 923 924 /// Visit a CallSite. 925 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 926 927 /// Visit a va_start call. 928 virtual void visitVAStartInst(VAStartInst &I) = 0; 929 930 /// Visit a va_copy call. 931 virtual void visitVACopyInst(VACopyInst &I) = 0; 932 933 /// Finalize function instrumentation. 934 /// 935 /// This method is called after visiting all interesting (see above) 936 /// instructions in a function. 937 virtual void finalizeInstrumentation() = 0; 938 }; 939 940 struct MemorySanitizerVisitor; 941 942 } // end anonymous namespace 943 944 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 945 MemorySanitizerVisitor &Visitor); 946 947 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 948 if (TypeSize <= 8) return 0; 949 return Log2_32_Ceil((TypeSize + 7) / 8); 950 } 951 952 namespace { 953 954 /// This class does all the work for a given function. Store and Load 955 /// instructions store and load corresponding shadow and origin 956 /// values. Most instructions propagate shadow from arguments to their 957 /// return values. Certain instructions (most importantly, BranchInst) 958 /// test their argument shadow and print reports (with a runtime call) if it's 959 /// non-zero. 960 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 961 Function &F; 962 MemorySanitizer &MS; 963 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 964 ValueMap<Value*, Value*> ShadowMap, OriginMap; 965 std::unique_ptr<VarArgHelper> VAHelper; 966 const TargetLibraryInfo *TLI; 967 BasicBlock *ActualFnStart; 968 969 // The following flags disable parts of MSan instrumentation based on 970 // blacklist contents and command-line options. 971 bool InsertChecks; 972 bool PropagateShadow; 973 bool PoisonStack; 974 bool PoisonUndef; 975 bool CheckReturnValue; 976 977 struct ShadowOriginAndInsertPoint { 978 Value *Shadow; 979 Value *Origin; 980 Instruction *OrigIns; 981 982 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 983 : Shadow(S), Origin(O), OrigIns(I) {} 984 }; 985 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 986 SmallVector<StoreInst *, 16> StoreList; 987 988 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 989 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 990 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 991 InsertChecks = SanitizeFunction; 992 PropagateShadow = SanitizeFunction; 993 PoisonStack = SanitizeFunction && ClPoisonStack; 994 PoisonUndef = SanitizeFunction && ClPoisonUndef; 995 // FIXME: Consider using SpecialCaseList to specify a list of functions that 996 // must always return fully initialized values. For now, we hardcode "main". 997 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 998 TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 999 1000 MS.initializeCallbacks(*F.getParent()); 1001 if (MS.CompileKernel) 1002 ActualFnStart = insertKmsanPrologue(F); 1003 else 1004 ActualFnStart = &F.getEntryBlock(); 1005 1006 LLVM_DEBUG(if (!InsertChecks) dbgs() 1007 << "MemorySanitizer is not inserting checks into '" 1008 << F.getName() << "'\n"); 1009 } 1010 1011 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1012 if (MS.TrackOrigins <= 1) return V; 1013 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1014 } 1015 1016 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1017 const DataLayout &DL = F.getParent()->getDataLayout(); 1018 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1019 if (IntptrSize == kOriginSize) return Origin; 1020 assert(IntptrSize == kOriginSize * 2); 1021 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1022 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1023 } 1024 1025 /// Fill memory range with the given origin value. 1026 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1027 unsigned Size, unsigned Alignment) { 1028 const DataLayout &DL = F.getParent()->getDataLayout(); 1029 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 1030 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1031 assert(IntptrAlignment >= kMinOriginAlignment); 1032 assert(IntptrSize >= kOriginSize); 1033 1034 unsigned Ofs = 0; 1035 unsigned CurrentAlignment = Alignment; 1036 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1037 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1038 Value *IntptrOriginPtr = 1039 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1040 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1041 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1042 : IntptrOriginPtr; 1043 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1044 Ofs += IntptrSize / kOriginSize; 1045 CurrentAlignment = IntptrAlignment; 1046 } 1047 } 1048 1049 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1050 Value *GEP = 1051 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 1052 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1053 CurrentAlignment = kMinOriginAlignment; 1054 } 1055 } 1056 1057 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1058 Value *OriginPtr, unsigned Alignment, bool AsCall) { 1059 const DataLayout &DL = F.getParent()->getDataLayout(); 1060 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1061 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1062 if (Shadow->getType()->isAggregateType()) { 1063 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1064 OriginAlignment); 1065 } else { 1066 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1067 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1068 if (ConstantShadow) { 1069 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1070 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1071 OriginAlignment); 1072 return; 1073 } 1074 1075 unsigned TypeSizeInBits = 1076 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1077 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1078 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1079 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1080 Value *ConvertedShadow2 = IRB.CreateZExt( 1081 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1082 IRB.CreateCall(Fn, {ConvertedShadow2, 1083 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1084 Origin}); 1085 } else { 1086 Value *Cmp = IRB.CreateICmpNE( 1087 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1088 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1089 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1090 IRBuilder<> IRBNew(CheckTerm); 1091 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1092 OriginAlignment); 1093 } 1094 } 1095 } 1096 1097 void materializeStores(bool InstrumentWithCalls) { 1098 for (StoreInst *SI : StoreList) { 1099 IRBuilder<> IRB(SI); 1100 Value *Val = SI->getValueOperand(); 1101 Value *Addr = SI->getPointerOperand(); 1102 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1103 Value *ShadowPtr, *OriginPtr; 1104 Type *ShadowTy = Shadow->getType(); 1105 unsigned Alignment = SI->getAlignment(); 1106 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1107 std::tie(ShadowPtr, OriginPtr) = 1108 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1109 1110 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1111 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1112 (void)NewSI; 1113 1114 if (SI->isAtomic()) 1115 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1116 1117 if (MS.TrackOrigins && !SI->isAtomic()) 1118 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1119 OriginAlignment, InstrumentWithCalls); 1120 } 1121 } 1122 1123 /// Helper function to insert a warning at IRB's current insert point. 1124 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1125 if (!Origin) 1126 Origin = (Value *)IRB.getInt32(0); 1127 if (MS.CompileKernel) { 1128 IRB.CreateCall(MS.WarningFn, Origin); 1129 } else { 1130 if (MS.TrackOrigins) { 1131 IRB.CreateStore(Origin, MS.OriginTLS); 1132 } 1133 IRB.CreateCall(MS.WarningFn, {}); 1134 } 1135 IRB.CreateCall(MS.EmptyAsm, {}); 1136 // FIXME: Insert UnreachableInst if !MS.Recover? 1137 // This may invalidate some of the following checks and needs to be done 1138 // at the very end. 1139 } 1140 1141 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1142 bool AsCall) { 1143 IRBuilder<> IRB(OrigIns); 1144 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1145 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1146 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1147 1148 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1149 if (ConstantShadow) { 1150 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1151 insertWarningFn(IRB, Origin); 1152 } 1153 return; 1154 } 1155 1156 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1157 1158 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1159 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1160 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1161 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 1162 Value *ConvertedShadow2 = 1163 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1164 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1165 ? Origin 1166 : (Value *)IRB.getInt32(0)}); 1167 } else { 1168 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1169 getCleanShadow(ConvertedShadow), "_mscmp"); 1170 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1171 Cmp, OrigIns, 1172 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1173 1174 IRB.SetInsertPoint(CheckTerm); 1175 insertWarningFn(IRB, Origin); 1176 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1177 } 1178 } 1179 1180 void materializeChecks(bool InstrumentWithCalls) { 1181 for (const auto &ShadowData : InstrumentationList) { 1182 Instruction *OrigIns = ShadowData.OrigIns; 1183 Value *Shadow = ShadowData.Shadow; 1184 Value *Origin = ShadowData.Origin; 1185 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1186 } 1187 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1188 } 1189 1190 BasicBlock *insertKmsanPrologue(Function &F) { 1191 BasicBlock *ret = 1192 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1193 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1194 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1195 Constant *Zero = IRB.getInt32(0); 1196 MS.ParamTLS = 1197 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(0)}, "param_shadow"); 1198 MS.RetvalTLS = 1199 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(1)}, "retval_shadow"); 1200 MS.VAArgTLS = 1201 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1202 MS.VAArgOriginTLS = 1203 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1204 MS.VAArgOverflowSizeTLS = IRB.CreateGEP( 1205 ContextState, {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1206 MS.ParamOriginTLS = 1207 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(5)}, "param_origin"); 1208 MS.RetvalOriginTLS = 1209 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(6)}, "retval_origin"); 1210 return ret; 1211 } 1212 1213 /// Add MemorySanitizer instrumentation to a function. 1214 bool runOnFunction() { 1215 // In the presence of unreachable blocks, we may see Phi nodes with 1216 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1217 // blocks, such nodes will not have any shadow value associated with them. 1218 // It's easier to remove unreachable blocks than deal with missing shadow. 1219 removeUnreachableBlocks(F); 1220 1221 // Iterate all BBs in depth-first order and create shadow instructions 1222 // for all instructions (where applicable). 1223 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1224 for (BasicBlock *BB : depth_first(ActualFnStart)) 1225 visit(*BB); 1226 1227 // Finalize PHI nodes. 1228 for (PHINode *PN : ShadowPHINodes) { 1229 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1230 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1231 size_t NumValues = PN->getNumIncomingValues(); 1232 for (size_t v = 0; v < NumValues; v++) { 1233 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1234 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1235 } 1236 } 1237 1238 VAHelper->finalizeInstrumentation(); 1239 1240 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1241 InstrumentationList.size() + StoreList.size() > 1242 (unsigned)ClInstrumentationWithCallThreshold; 1243 1244 // Insert shadow value checks. 1245 materializeChecks(InstrumentWithCalls); 1246 1247 // Delayed instrumentation of StoreInst. 1248 // This may not add new address checks. 1249 materializeStores(InstrumentWithCalls); 1250 1251 return true; 1252 } 1253 1254 /// Compute the shadow type that corresponds to a given Value. 1255 Type *getShadowTy(Value *V) { 1256 return getShadowTy(V->getType()); 1257 } 1258 1259 /// Compute the shadow type that corresponds to a given Type. 1260 Type *getShadowTy(Type *OrigTy) { 1261 if (!OrigTy->isSized()) { 1262 return nullptr; 1263 } 1264 // For integer type, shadow is the same as the original type. 1265 // This may return weird-sized types like i1. 1266 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1267 return IT; 1268 const DataLayout &DL = F.getParent()->getDataLayout(); 1269 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1270 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1271 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1272 VT->getNumElements()); 1273 } 1274 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1275 return ArrayType::get(getShadowTy(AT->getElementType()), 1276 AT->getNumElements()); 1277 } 1278 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1279 SmallVector<Type*, 4> Elements; 1280 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1281 Elements.push_back(getShadowTy(ST->getElementType(i))); 1282 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1283 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1284 return Res; 1285 } 1286 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1287 return IntegerType::get(*MS.C, TypeSize); 1288 } 1289 1290 /// Flatten a vector type. 1291 Type *getShadowTyNoVec(Type *ty) { 1292 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1293 return IntegerType::get(*MS.C, vt->getBitWidth()); 1294 return ty; 1295 } 1296 1297 /// Convert a shadow value to it's flattened variant. 1298 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1299 Type *Ty = V->getType(); 1300 Type *NoVecTy = getShadowTyNoVec(Ty); 1301 if (Ty == NoVecTy) return V; 1302 return IRB.CreateBitCast(V, NoVecTy); 1303 } 1304 1305 /// Compute the integer shadow offset that corresponds to a given 1306 /// application address. 1307 /// 1308 /// Offset = (Addr & ~AndMask) ^ XorMask 1309 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1310 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1311 1312 uint64_t AndMask = MS.MapParams->AndMask; 1313 if (AndMask) 1314 OffsetLong = 1315 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1316 1317 uint64_t XorMask = MS.MapParams->XorMask; 1318 if (XorMask) 1319 OffsetLong = 1320 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1321 return OffsetLong; 1322 } 1323 1324 /// Compute the shadow and origin addresses corresponding to a given 1325 /// application address. 1326 /// 1327 /// Shadow = ShadowBase + Offset 1328 /// Origin = (OriginBase + Offset) & ~3ULL 1329 std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, 1330 IRBuilder<> &IRB, 1331 Type *ShadowTy, 1332 unsigned Alignment) { 1333 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1334 Value *ShadowLong = ShadowOffset; 1335 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1336 if (ShadowBase != 0) { 1337 ShadowLong = 1338 IRB.CreateAdd(ShadowLong, 1339 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1340 } 1341 Value *ShadowPtr = 1342 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1343 Value *OriginPtr = nullptr; 1344 if (MS.TrackOrigins) { 1345 Value *OriginLong = ShadowOffset; 1346 uint64_t OriginBase = MS.MapParams->OriginBase; 1347 if (OriginBase != 0) 1348 OriginLong = IRB.CreateAdd(OriginLong, 1349 ConstantInt::get(MS.IntptrTy, OriginBase)); 1350 if (Alignment < kMinOriginAlignment) { 1351 uint64_t Mask = kMinOriginAlignment - 1; 1352 OriginLong = 1353 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1354 } 1355 OriginPtr = 1356 IRB.CreateIntToPtr(OriginLong, PointerType::get(IRB.getInt32Ty(), 0)); 1357 } 1358 return std::make_pair(ShadowPtr, OriginPtr); 1359 } 1360 1361 std::pair<Value *, Value *> 1362 getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1363 unsigned Alignment, bool isStore) { 1364 Value *ShadowOriginPtrs; 1365 const DataLayout &DL = F.getParent()->getDataLayout(); 1366 int Size = DL.getTypeStoreSize(ShadowTy); 1367 1368 Value *Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1369 Value *AddrCast = 1370 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1371 if (Getter) { 1372 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1373 } else { 1374 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1375 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1376 : MS.MsanMetadataPtrForLoadN, 1377 {AddrCast, SizeVal}); 1378 } 1379 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1380 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1381 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1382 1383 return std::make_pair(ShadowPtr, OriginPtr); 1384 } 1385 1386 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1387 Type *ShadowTy, 1388 unsigned Alignment, 1389 bool isStore) { 1390 std::pair<Value *, Value *> ret; 1391 if (MS.CompileKernel) 1392 ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); 1393 else 1394 ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1395 return ret; 1396 } 1397 1398 /// Compute the shadow address for a given function argument. 1399 /// 1400 /// Shadow = ParamTLS+ArgOffset. 1401 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1402 int ArgOffset) { 1403 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1404 if (ArgOffset) 1405 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1406 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1407 "_msarg"); 1408 } 1409 1410 /// Compute the origin address for a given function argument. 1411 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1412 int ArgOffset) { 1413 if (!MS.TrackOrigins) 1414 return nullptr; 1415 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1416 if (ArgOffset) 1417 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1418 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1419 "_msarg_o"); 1420 } 1421 1422 /// Compute the shadow address for a retval. 1423 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1424 return IRB.CreatePointerCast(MS.RetvalTLS, 1425 PointerType::get(getShadowTy(A), 0), 1426 "_msret"); 1427 } 1428 1429 /// Compute the origin address for a retval. 1430 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1431 // We keep a single origin for the entire retval. Might be too optimistic. 1432 return MS.RetvalOriginTLS; 1433 } 1434 1435 /// Set SV to be the shadow value for V. 1436 void setShadow(Value *V, Value *SV) { 1437 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1438 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1439 } 1440 1441 /// Set Origin to be the origin value for V. 1442 void setOrigin(Value *V, Value *Origin) { 1443 if (!MS.TrackOrigins) return; 1444 assert(!OriginMap.count(V) && "Values may only have one origin"); 1445 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1446 OriginMap[V] = Origin; 1447 } 1448 1449 Constant *getCleanShadow(Type *OrigTy) { 1450 Type *ShadowTy = getShadowTy(OrigTy); 1451 if (!ShadowTy) 1452 return nullptr; 1453 return Constant::getNullValue(ShadowTy); 1454 } 1455 1456 /// Create a clean shadow value for a given value. 1457 /// 1458 /// Clean shadow (all zeroes) means all bits of the value are defined 1459 /// (initialized). 1460 Constant *getCleanShadow(Value *V) { 1461 return getCleanShadow(V->getType()); 1462 } 1463 1464 /// Create a dirty shadow of a given shadow type. 1465 Constant *getPoisonedShadow(Type *ShadowTy) { 1466 assert(ShadowTy); 1467 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1468 return Constant::getAllOnesValue(ShadowTy); 1469 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1470 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1471 getPoisonedShadow(AT->getElementType())); 1472 return ConstantArray::get(AT, Vals); 1473 } 1474 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1475 SmallVector<Constant *, 4> Vals; 1476 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1477 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1478 return ConstantStruct::get(ST, Vals); 1479 } 1480 llvm_unreachable("Unexpected shadow type"); 1481 } 1482 1483 /// Create a dirty shadow for a given value. 1484 Constant *getPoisonedShadow(Value *V) { 1485 Type *ShadowTy = getShadowTy(V); 1486 if (!ShadowTy) 1487 return nullptr; 1488 return getPoisonedShadow(ShadowTy); 1489 } 1490 1491 /// Create a clean (zero) origin. 1492 Value *getCleanOrigin() { 1493 return Constant::getNullValue(MS.OriginTy); 1494 } 1495 1496 /// Get the shadow value for a given Value. 1497 /// 1498 /// This function either returns the value set earlier with setShadow, 1499 /// or extracts if from ParamTLS (for function arguments). 1500 Value *getShadow(Value *V) { 1501 if (!PropagateShadow) return getCleanShadow(V); 1502 if (Instruction *I = dyn_cast<Instruction>(V)) { 1503 if (I->getMetadata("nosanitize")) 1504 return getCleanShadow(V); 1505 // For instructions the shadow is already stored in the map. 1506 Value *Shadow = ShadowMap[V]; 1507 if (!Shadow) { 1508 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1509 (void)I; 1510 assert(Shadow && "No shadow for a value"); 1511 } 1512 return Shadow; 1513 } 1514 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1515 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1516 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1517 (void)U; 1518 return AllOnes; 1519 } 1520 if (Argument *A = dyn_cast<Argument>(V)) { 1521 // For arguments we compute the shadow on demand and store it in the map. 1522 Value **ShadowPtr = &ShadowMap[V]; 1523 if (*ShadowPtr) 1524 return *ShadowPtr; 1525 Function *F = A->getParent(); 1526 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1527 unsigned ArgOffset = 0; 1528 const DataLayout &DL = F->getParent()->getDataLayout(); 1529 for (auto &FArg : F->args()) { 1530 if (!FArg.getType()->isSized()) { 1531 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1532 continue; 1533 } 1534 unsigned Size = 1535 FArg.hasByValAttr() 1536 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1537 : DL.getTypeAllocSize(FArg.getType()); 1538 if (A == &FArg) { 1539 bool Overflow = ArgOffset + Size > kParamTLSSize; 1540 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1541 if (FArg.hasByValAttr()) { 1542 // ByVal pointer itself has clean shadow. We copy the actual 1543 // argument shadow to the underlying memory. 1544 // Figure out maximal valid memcpy alignment. 1545 unsigned ArgAlign = FArg.getParamAlignment(); 1546 if (ArgAlign == 0) { 1547 Type *EltType = A->getType()->getPointerElementType(); 1548 ArgAlign = DL.getABITypeAlignment(EltType); 1549 } 1550 Value *CpShadowPtr = 1551 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1552 /*isStore*/ true) 1553 .first; 1554 // TODO(glider): need to copy origins. 1555 if (Overflow) { 1556 // ParamTLS overflow. 1557 EntryIRB.CreateMemSet( 1558 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1559 Size, ArgAlign); 1560 } else { 1561 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1562 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1563 CopyAlign, Size); 1564 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1565 (void)Cpy; 1566 } 1567 *ShadowPtr = getCleanShadow(V); 1568 } else { 1569 if (Overflow) { 1570 // ParamTLS overflow. 1571 *ShadowPtr = getCleanShadow(V); 1572 } else { 1573 *ShadowPtr = 1574 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1575 } 1576 } 1577 LLVM_DEBUG(dbgs() 1578 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1579 if (MS.TrackOrigins && !Overflow) { 1580 Value *OriginPtr = 1581 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1582 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1583 } else { 1584 setOrigin(A, getCleanOrigin()); 1585 } 1586 } 1587 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1588 } 1589 assert(*ShadowPtr && "Could not find shadow for an argument"); 1590 return *ShadowPtr; 1591 } 1592 // For everything else the shadow is zero. 1593 return getCleanShadow(V); 1594 } 1595 1596 /// Get the shadow for i-th argument of the instruction I. 1597 Value *getShadow(Instruction *I, int i) { 1598 return getShadow(I->getOperand(i)); 1599 } 1600 1601 /// Get the origin for a value. 1602 Value *getOrigin(Value *V) { 1603 if (!MS.TrackOrigins) return nullptr; 1604 if (!PropagateShadow) return getCleanOrigin(); 1605 if (isa<Constant>(V)) return getCleanOrigin(); 1606 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1607 "Unexpected value type in getOrigin()"); 1608 if (Instruction *I = dyn_cast<Instruction>(V)) { 1609 if (I->getMetadata("nosanitize")) 1610 return getCleanOrigin(); 1611 } 1612 Value *Origin = OriginMap[V]; 1613 assert(Origin && "Missing origin"); 1614 return Origin; 1615 } 1616 1617 /// Get the origin for i-th argument of the instruction I. 1618 Value *getOrigin(Instruction *I, int i) { 1619 return getOrigin(I->getOperand(i)); 1620 } 1621 1622 /// Remember the place where a shadow check should be inserted. 1623 /// 1624 /// This location will be later instrumented with a check that will print a 1625 /// UMR warning in runtime if the shadow value is not 0. 1626 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1627 assert(Shadow); 1628 if (!InsertChecks) return; 1629 #ifndef NDEBUG 1630 Type *ShadowTy = Shadow->getType(); 1631 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1632 "Can only insert checks for integer and vector shadow types"); 1633 #endif 1634 InstrumentationList.push_back( 1635 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1636 } 1637 1638 /// Remember the place where a shadow check should be inserted. 1639 /// 1640 /// This location will be later instrumented with a check that will print a 1641 /// UMR warning in runtime if the value is not fully defined. 1642 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1643 assert(Val); 1644 Value *Shadow, *Origin; 1645 if (ClCheckConstantShadow) { 1646 Shadow = getShadow(Val); 1647 if (!Shadow) return; 1648 Origin = getOrigin(Val); 1649 } else { 1650 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1651 if (!Shadow) return; 1652 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1653 } 1654 insertShadowCheck(Shadow, Origin, OrigIns); 1655 } 1656 1657 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1658 switch (a) { 1659 case AtomicOrdering::NotAtomic: 1660 return AtomicOrdering::NotAtomic; 1661 case AtomicOrdering::Unordered: 1662 case AtomicOrdering::Monotonic: 1663 case AtomicOrdering::Release: 1664 return AtomicOrdering::Release; 1665 case AtomicOrdering::Acquire: 1666 case AtomicOrdering::AcquireRelease: 1667 return AtomicOrdering::AcquireRelease; 1668 case AtomicOrdering::SequentiallyConsistent: 1669 return AtomicOrdering::SequentiallyConsistent; 1670 } 1671 llvm_unreachable("Unknown ordering"); 1672 } 1673 1674 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1675 switch (a) { 1676 case AtomicOrdering::NotAtomic: 1677 return AtomicOrdering::NotAtomic; 1678 case AtomicOrdering::Unordered: 1679 case AtomicOrdering::Monotonic: 1680 case AtomicOrdering::Acquire: 1681 return AtomicOrdering::Acquire; 1682 case AtomicOrdering::Release: 1683 case AtomicOrdering::AcquireRelease: 1684 return AtomicOrdering::AcquireRelease; 1685 case AtomicOrdering::SequentiallyConsistent: 1686 return AtomicOrdering::SequentiallyConsistent; 1687 } 1688 llvm_unreachable("Unknown ordering"); 1689 } 1690 1691 // ------------------- Visitors. 1692 using InstVisitor<MemorySanitizerVisitor>::visit; 1693 void visit(Instruction &I) { 1694 if (!I.getMetadata("nosanitize")) 1695 InstVisitor<MemorySanitizerVisitor>::visit(I); 1696 } 1697 1698 /// Instrument LoadInst 1699 /// 1700 /// Loads the corresponding shadow and (optionally) origin. 1701 /// Optionally, checks that the load address is fully defined. 1702 void visitLoadInst(LoadInst &I) { 1703 assert(I.getType()->isSized() && "Load type must have size"); 1704 assert(!I.getMetadata("nosanitize")); 1705 IRBuilder<> IRB(I.getNextNode()); 1706 Type *ShadowTy = getShadowTy(&I); 1707 Value *Addr = I.getPointerOperand(); 1708 Value *ShadowPtr, *OriginPtr; 1709 unsigned Alignment = I.getAlignment(); 1710 if (PropagateShadow) { 1711 std::tie(ShadowPtr, OriginPtr) = 1712 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1713 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld")); 1714 } else { 1715 setShadow(&I, getCleanShadow(&I)); 1716 } 1717 1718 if (ClCheckAccessAddress) 1719 insertShadowCheck(I.getPointerOperand(), &I); 1720 1721 if (I.isAtomic()) 1722 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1723 1724 if (MS.TrackOrigins) { 1725 if (PropagateShadow) { 1726 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1727 setOrigin(&I, IRB.CreateAlignedLoad(OriginPtr, OriginAlignment)); 1728 } else { 1729 setOrigin(&I, getCleanOrigin()); 1730 } 1731 } 1732 } 1733 1734 /// Instrument StoreInst 1735 /// 1736 /// Stores the corresponding shadow and (optionally) origin. 1737 /// Optionally, checks that the store address is fully defined. 1738 void visitStoreInst(StoreInst &I) { 1739 StoreList.push_back(&I); 1740 if (ClCheckAccessAddress) 1741 insertShadowCheck(I.getPointerOperand(), &I); 1742 } 1743 1744 void handleCASOrRMW(Instruction &I) { 1745 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1746 1747 IRBuilder<> IRB(&I); 1748 Value *Addr = I.getOperand(0); 1749 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), 1750 /*Alignment*/ 1, /*isStore*/ true) 1751 .first; 1752 1753 if (ClCheckAccessAddress) 1754 insertShadowCheck(Addr, &I); 1755 1756 // Only test the conditional argument of cmpxchg instruction. 1757 // The other argument can potentially be uninitialized, but we can not 1758 // detect this situation reliably without possible false positives. 1759 if (isa<AtomicCmpXchgInst>(I)) 1760 insertShadowCheck(I.getOperand(1), &I); 1761 1762 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1763 1764 setShadow(&I, getCleanShadow(&I)); 1765 setOrigin(&I, getCleanOrigin()); 1766 } 1767 1768 void visitAtomicRMWInst(AtomicRMWInst &I) { 1769 handleCASOrRMW(I); 1770 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1771 } 1772 1773 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1774 handleCASOrRMW(I); 1775 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1776 } 1777 1778 // Vector manipulation. 1779 void visitExtractElementInst(ExtractElementInst &I) { 1780 insertShadowCheck(I.getOperand(1), &I); 1781 IRBuilder<> IRB(&I); 1782 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1783 "_msprop")); 1784 setOrigin(&I, getOrigin(&I, 0)); 1785 } 1786 1787 void visitInsertElementInst(InsertElementInst &I) { 1788 insertShadowCheck(I.getOperand(2), &I); 1789 IRBuilder<> IRB(&I); 1790 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1791 I.getOperand(2), "_msprop")); 1792 setOriginForNaryOp(I); 1793 } 1794 1795 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1796 insertShadowCheck(I.getOperand(2), &I); 1797 IRBuilder<> IRB(&I); 1798 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1799 I.getOperand(2), "_msprop")); 1800 setOriginForNaryOp(I); 1801 } 1802 1803 // Casts. 1804 void visitSExtInst(SExtInst &I) { 1805 IRBuilder<> IRB(&I); 1806 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1807 setOrigin(&I, getOrigin(&I, 0)); 1808 } 1809 1810 void visitZExtInst(ZExtInst &I) { 1811 IRBuilder<> IRB(&I); 1812 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1813 setOrigin(&I, getOrigin(&I, 0)); 1814 } 1815 1816 void visitTruncInst(TruncInst &I) { 1817 IRBuilder<> IRB(&I); 1818 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1819 setOrigin(&I, getOrigin(&I, 0)); 1820 } 1821 1822 void visitBitCastInst(BitCastInst &I) { 1823 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1824 // a musttail call and a ret, don't instrument. New instructions are not 1825 // allowed after a musttail call. 1826 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1827 if (CI->isMustTailCall()) 1828 return; 1829 IRBuilder<> IRB(&I); 1830 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1831 setOrigin(&I, getOrigin(&I, 0)); 1832 } 1833 1834 void visitPtrToIntInst(PtrToIntInst &I) { 1835 IRBuilder<> IRB(&I); 1836 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1837 "_msprop_ptrtoint")); 1838 setOrigin(&I, getOrigin(&I, 0)); 1839 } 1840 1841 void visitIntToPtrInst(IntToPtrInst &I) { 1842 IRBuilder<> IRB(&I); 1843 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1844 "_msprop_inttoptr")); 1845 setOrigin(&I, getOrigin(&I, 0)); 1846 } 1847 1848 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1849 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1850 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1851 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1852 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1853 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1854 1855 /// Propagate shadow for bitwise AND. 1856 /// 1857 /// This code is exact, i.e. if, for example, a bit in the left argument 1858 /// is defined and 0, then neither the value not definedness of the 1859 /// corresponding bit in B don't affect the resulting shadow. 1860 void visitAnd(BinaryOperator &I) { 1861 IRBuilder<> IRB(&I); 1862 // "And" of 0 and a poisoned value results in unpoisoned value. 1863 // 1&1 => 1; 0&1 => 0; p&1 => p; 1864 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1865 // 1&p => p; 0&p => 0; p&p => p; 1866 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1867 Value *S1 = getShadow(&I, 0); 1868 Value *S2 = getShadow(&I, 1); 1869 Value *V1 = I.getOperand(0); 1870 Value *V2 = I.getOperand(1); 1871 if (V1->getType() != S1->getType()) { 1872 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1873 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1874 } 1875 Value *S1S2 = IRB.CreateAnd(S1, S2); 1876 Value *V1S2 = IRB.CreateAnd(V1, S2); 1877 Value *S1V2 = IRB.CreateAnd(S1, V2); 1878 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1879 setOriginForNaryOp(I); 1880 } 1881 1882 void visitOr(BinaryOperator &I) { 1883 IRBuilder<> IRB(&I); 1884 // "Or" of 1 and a poisoned value results in unpoisoned value. 1885 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1886 // 1|0 => 1; 0|0 => 0; p|0 => p; 1887 // 1|p => 1; 0|p => p; p|p => p; 1888 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1889 Value *S1 = getShadow(&I, 0); 1890 Value *S2 = getShadow(&I, 1); 1891 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1892 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1893 if (V1->getType() != S1->getType()) { 1894 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1895 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1896 } 1897 Value *S1S2 = IRB.CreateAnd(S1, S2); 1898 Value *V1S2 = IRB.CreateAnd(V1, S2); 1899 Value *S1V2 = IRB.CreateAnd(S1, V2); 1900 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1901 setOriginForNaryOp(I); 1902 } 1903 1904 /// Default propagation of shadow and/or origin. 1905 /// 1906 /// This class implements the general case of shadow propagation, used in all 1907 /// cases where we don't know and/or don't care about what the operation 1908 /// actually does. It converts all input shadow values to a common type 1909 /// (extending or truncating as necessary), and bitwise OR's them. 1910 /// 1911 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1912 /// fully initialized), and less prone to false positives. 1913 /// 1914 /// This class also implements the general case of origin propagation. For a 1915 /// Nary operation, result origin is set to the origin of an argument that is 1916 /// not entirely initialized. If there is more than one such arguments, the 1917 /// rightmost of them is picked. It does not matter which one is picked if all 1918 /// arguments are initialized. 1919 template <bool CombineShadow> 1920 class Combiner { 1921 Value *Shadow = nullptr; 1922 Value *Origin = nullptr; 1923 IRBuilder<> &IRB; 1924 MemorySanitizerVisitor *MSV; 1925 1926 public: 1927 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 1928 : IRB(IRB), MSV(MSV) {} 1929 1930 /// Add a pair of shadow and origin values to the mix. 1931 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1932 if (CombineShadow) { 1933 assert(OpShadow); 1934 if (!Shadow) 1935 Shadow = OpShadow; 1936 else { 1937 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1938 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1939 } 1940 } 1941 1942 if (MSV->MS.TrackOrigins) { 1943 assert(OpOrigin); 1944 if (!Origin) { 1945 Origin = OpOrigin; 1946 } else { 1947 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1948 // No point in adding something that might result in 0 origin value. 1949 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1950 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1951 Value *Cond = 1952 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1953 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1954 } 1955 } 1956 } 1957 return *this; 1958 } 1959 1960 /// Add an application value to the mix. 1961 Combiner &Add(Value *V) { 1962 Value *OpShadow = MSV->getShadow(V); 1963 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1964 return Add(OpShadow, OpOrigin); 1965 } 1966 1967 /// Set the current combined values as the given instruction's shadow 1968 /// and origin. 1969 void Done(Instruction *I) { 1970 if (CombineShadow) { 1971 assert(Shadow); 1972 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1973 MSV->setShadow(I, Shadow); 1974 } 1975 if (MSV->MS.TrackOrigins) { 1976 assert(Origin); 1977 MSV->setOrigin(I, Origin); 1978 } 1979 } 1980 }; 1981 1982 using ShadowAndOriginCombiner = Combiner<true>; 1983 using OriginCombiner = Combiner<false>; 1984 1985 /// Propagate origin for arbitrary operation. 1986 void setOriginForNaryOp(Instruction &I) { 1987 if (!MS.TrackOrigins) return; 1988 IRBuilder<> IRB(&I); 1989 OriginCombiner OC(this, IRB); 1990 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1991 OC.Add(OI->get()); 1992 OC.Done(&I); 1993 } 1994 1995 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1996 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1997 "Vector of pointers is not a valid shadow type"); 1998 return Ty->isVectorTy() ? 1999 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2000 Ty->getPrimitiveSizeInBits(); 2001 } 2002 2003 /// Cast between two shadow types, extending or truncating as 2004 /// necessary. 2005 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2006 bool Signed = false) { 2007 Type *srcTy = V->getType(); 2008 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2009 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2010 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2011 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2012 2013 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2014 return IRB.CreateIntCast(V, dstTy, Signed); 2015 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2016 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2017 return IRB.CreateIntCast(V, dstTy, Signed); 2018 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2019 Value *V2 = 2020 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2021 return IRB.CreateBitCast(V2, dstTy); 2022 // TODO: handle struct types. 2023 } 2024 2025 /// Cast an application value to the type of its own shadow. 2026 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2027 Type *ShadowTy = getShadowTy(V); 2028 if (V->getType() == ShadowTy) 2029 return V; 2030 if (V->getType()->isPtrOrPtrVectorTy()) 2031 return IRB.CreatePtrToInt(V, ShadowTy); 2032 else 2033 return IRB.CreateBitCast(V, ShadowTy); 2034 } 2035 2036 /// Propagate shadow for arbitrary operation. 2037 void handleShadowOr(Instruction &I) { 2038 IRBuilder<> IRB(&I); 2039 ShadowAndOriginCombiner SC(this, IRB); 2040 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2041 SC.Add(OI->get()); 2042 SC.Done(&I); 2043 } 2044 2045 // Handle multiplication by constant. 2046 // 2047 // Handle a special case of multiplication by constant that may have one or 2048 // more zeros in the lower bits. This makes corresponding number of lower bits 2049 // of the result zero as well. We model it by shifting the other operand 2050 // shadow left by the required number of bits. Effectively, we transform 2051 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2052 // We use multiplication by 2**N instead of shift to cover the case of 2053 // multiplication by 0, which may occur in some elements of a vector operand. 2054 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2055 Value *OtherArg) { 2056 Constant *ShadowMul; 2057 Type *Ty = ConstArg->getType(); 2058 if (Ty->isVectorTy()) { 2059 unsigned NumElements = Ty->getVectorNumElements(); 2060 Type *EltTy = Ty->getSequentialElementType(); 2061 SmallVector<Constant *, 16> Elements; 2062 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2063 if (ConstantInt *Elt = 2064 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2065 const APInt &V = Elt->getValue(); 2066 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2067 Elements.push_back(ConstantInt::get(EltTy, V2)); 2068 } else { 2069 Elements.push_back(ConstantInt::get(EltTy, 1)); 2070 } 2071 } 2072 ShadowMul = ConstantVector::get(Elements); 2073 } else { 2074 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2075 const APInt &V = Elt->getValue(); 2076 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2077 ShadowMul = ConstantInt::get(Ty, V2); 2078 } else { 2079 ShadowMul = ConstantInt::get(Ty, 1); 2080 } 2081 } 2082 2083 IRBuilder<> IRB(&I); 2084 setShadow(&I, 2085 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2086 setOrigin(&I, getOrigin(OtherArg)); 2087 } 2088 2089 void visitMul(BinaryOperator &I) { 2090 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2091 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2092 if (constOp0 && !constOp1) 2093 handleMulByConstant(I, constOp0, I.getOperand(1)); 2094 else if (constOp1 && !constOp0) 2095 handleMulByConstant(I, constOp1, I.getOperand(0)); 2096 else 2097 handleShadowOr(I); 2098 } 2099 2100 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2101 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2102 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2103 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2104 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2105 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2106 2107 void handleIntegerDiv(Instruction &I) { 2108 IRBuilder<> IRB(&I); 2109 // Strict on the second argument. 2110 insertShadowCheck(I.getOperand(1), &I); 2111 setShadow(&I, getShadow(&I, 0)); 2112 setOrigin(&I, getOrigin(&I, 0)); 2113 } 2114 2115 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2116 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2117 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2118 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2119 2120 // Floating point division is side-effect free. We can not require that the 2121 // divisor is fully initialized and must propagate shadow. See PR37523. 2122 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2123 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2124 2125 /// Instrument == and != comparisons. 2126 /// 2127 /// Sometimes the comparison result is known even if some of the bits of the 2128 /// arguments are not. 2129 void handleEqualityComparison(ICmpInst &I) { 2130 IRBuilder<> IRB(&I); 2131 Value *A = I.getOperand(0); 2132 Value *B = I.getOperand(1); 2133 Value *Sa = getShadow(A); 2134 Value *Sb = getShadow(B); 2135 2136 // Get rid of pointers and vectors of pointers. 2137 // For ints (and vectors of ints), types of A and Sa match, 2138 // and this is a no-op. 2139 A = IRB.CreatePointerCast(A, Sa->getType()); 2140 B = IRB.CreatePointerCast(B, Sb->getType()); 2141 2142 // A == B <==> (C = A^B) == 0 2143 // A != B <==> (C = A^B) != 0 2144 // Sc = Sa | Sb 2145 Value *C = IRB.CreateXor(A, B); 2146 Value *Sc = IRB.CreateOr(Sa, Sb); 2147 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2148 // Result is defined if one of the following is true 2149 // * there is a defined 1 bit in C 2150 // * C is fully defined 2151 // Si = !(C & ~Sc) && Sc 2152 Value *Zero = Constant::getNullValue(Sc->getType()); 2153 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2154 Value *Si = 2155 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2156 IRB.CreateICmpEQ( 2157 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2158 Si->setName("_msprop_icmp"); 2159 setShadow(&I, Si); 2160 setOriginForNaryOp(I); 2161 } 2162 2163 /// Build the lowest possible value of V, taking into account V's 2164 /// uninitialized bits. 2165 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2166 bool isSigned) { 2167 if (isSigned) { 2168 // Split shadow into sign bit and other bits. 2169 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2170 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2171 // Maximise the undefined shadow bit, minimize other undefined bits. 2172 return 2173 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2174 } else { 2175 // Minimize undefined bits. 2176 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2177 } 2178 } 2179 2180 /// Build the highest possible value of V, taking into account V's 2181 /// uninitialized bits. 2182 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2183 bool isSigned) { 2184 if (isSigned) { 2185 // Split shadow into sign bit and other bits. 2186 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2187 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2188 // Minimise the undefined shadow bit, maximise other undefined bits. 2189 return 2190 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2191 } else { 2192 // Maximize undefined bits. 2193 return IRB.CreateOr(A, Sa); 2194 } 2195 } 2196 2197 /// Instrument relational comparisons. 2198 /// 2199 /// This function does exact shadow propagation for all relational 2200 /// comparisons of integers, pointers and vectors of those. 2201 /// FIXME: output seems suboptimal when one of the operands is a constant 2202 void handleRelationalComparisonExact(ICmpInst &I) { 2203 IRBuilder<> IRB(&I); 2204 Value *A = I.getOperand(0); 2205 Value *B = I.getOperand(1); 2206 Value *Sa = getShadow(A); 2207 Value *Sb = getShadow(B); 2208 2209 // Get rid of pointers and vectors of pointers. 2210 // For ints (and vectors of ints), types of A and Sa match, 2211 // and this is a no-op. 2212 A = IRB.CreatePointerCast(A, Sa->getType()); 2213 B = IRB.CreatePointerCast(B, Sb->getType()); 2214 2215 // Let [a0, a1] be the interval of possible values of A, taking into account 2216 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2217 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2218 bool IsSigned = I.isSigned(); 2219 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2220 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2221 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2222 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2223 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2224 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2225 Value *Si = IRB.CreateXor(S1, S2); 2226 setShadow(&I, Si); 2227 setOriginForNaryOp(I); 2228 } 2229 2230 /// Instrument signed relational comparisons. 2231 /// 2232 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2233 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2234 void handleSignedRelationalComparison(ICmpInst &I) { 2235 Constant *constOp; 2236 Value *op = nullptr; 2237 CmpInst::Predicate pre; 2238 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2239 op = I.getOperand(0); 2240 pre = I.getPredicate(); 2241 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2242 op = I.getOperand(1); 2243 pre = I.getSwappedPredicate(); 2244 } else { 2245 handleShadowOr(I); 2246 return; 2247 } 2248 2249 if ((constOp->isNullValue() && 2250 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2251 (constOp->isAllOnesValue() && 2252 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2253 IRBuilder<> IRB(&I); 2254 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2255 "_msprop_icmp_s"); 2256 setShadow(&I, Shadow); 2257 setOrigin(&I, getOrigin(op)); 2258 } else { 2259 handleShadowOr(I); 2260 } 2261 } 2262 2263 void visitICmpInst(ICmpInst &I) { 2264 if (!ClHandleICmp) { 2265 handleShadowOr(I); 2266 return; 2267 } 2268 if (I.isEquality()) { 2269 handleEqualityComparison(I); 2270 return; 2271 } 2272 2273 assert(I.isRelational()); 2274 if (ClHandleICmpExact) { 2275 handleRelationalComparisonExact(I); 2276 return; 2277 } 2278 if (I.isSigned()) { 2279 handleSignedRelationalComparison(I); 2280 return; 2281 } 2282 2283 assert(I.isUnsigned()); 2284 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2285 handleRelationalComparisonExact(I); 2286 return; 2287 } 2288 2289 handleShadowOr(I); 2290 } 2291 2292 void visitFCmpInst(FCmpInst &I) { 2293 handleShadowOr(I); 2294 } 2295 2296 void handleShift(BinaryOperator &I) { 2297 IRBuilder<> IRB(&I); 2298 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2299 // Otherwise perform the same shift on S1. 2300 Value *S1 = getShadow(&I, 0); 2301 Value *S2 = getShadow(&I, 1); 2302 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2303 S2->getType()); 2304 Value *V2 = I.getOperand(1); 2305 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2306 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2307 setOriginForNaryOp(I); 2308 } 2309 2310 void visitShl(BinaryOperator &I) { handleShift(I); } 2311 void visitAShr(BinaryOperator &I) { handleShift(I); } 2312 void visitLShr(BinaryOperator &I) { handleShift(I); } 2313 2314 /// Instrument llvm.memmove 2315 /// 2316 /// At this point we don't know if llvm.memmove will be inlined or not. 2317 /// If we don't instrument it and it gets inlined, 2318 /// our interceptor will not kick in and we will lose the memmove. 2319 /// If we instrument the call here, but it does not get inlined, 2320 /// we will memove the shadow twice: which is bad in case 2321 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2322 /// 2323 /// Similar situation exists for memcpy and memset. 2324 void visitMemMoveInst(MemMoveInst &I) { 2325 IRBuilder<> IRB(&I); 2326 IRB.CreateCall( 2327 MS.MemmoveFn, 2328 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2329 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2330 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2331 I.eraseFromParent(); 2332 } 2333 2334 // Similar to memmove: avoid copying shadow twice. 2335 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2336 // FIXME: consider doing manual inline for small constant sizes and proper 2337 // alignment. 2338 void visitMemCpyInst(MemCpyInst &I) { 2339 IRBuilder<> IRB(&I); 2340 IRB.CreateCall( 2341 MS.MemcpyFn, 2342 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2343 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2344 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2345 I.eraseFromParent(); 2346 } 2347 2348 // Same as memcpy. 2349 void visitMemSetInst(MemSetInst &I) { 2350 IRBuilder<> IRB(&I); 2351 IRB.CreateCall( 2352 MS.MemsetFn, 2353 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2354 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2355 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2356 I.eraseFromParent(); 2357 } 2358 2359 void visitVAStartInst(VAStartInst &I) { 2360 VAHelper->visitVAStartInst(I); 2361 } 2362 2363 void visitVACopyInst(VACopyInst &I) { 2364 VAHelper->visitVACopyInst(I); 2365 } 2366 2367 /// Handle vector store-like intrinsics. 2368 /// 2369 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2370 /// has 1 pointer argument and 1 vector argument, returns void. 2371 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2372 IRBuilder<> IRB(&I); 2373 Value* Addr = I.getArgOperand(0); 2374 Value *Shadow = getShadow(&I, 1); 2375 Value *ShadowPtr, *OriginPtr; 2376 2377 // We don't know the pointer alignment (could be unaligned SSE store!). 2378 // Have to assume to worst case. 2379 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2380 Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); 2381 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2382 2383 if (ClCheckAccessAddress) 2384 insertShadowCheck(Addr, &I); 2385 2386 // FIXME: factor out common code from materializeStores 2387 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2388 return true; 2389 } 2390 2391 /// Handle vector load-like intrinsics. 2392 /// 2393 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2394 /// has 1 pointer argument, returns a vector. 2395 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2396 IRBuilder<> IRB(&I); 2397 Value *Addr = I.getArgOperand(0); 2398 2399 Type *ShadowTy = getShadowTy(&I); 2400 Value *ShadowPtr, *OriginPtr; 2401 if (PropagateShadow) { 2402 // We don't know the pointer alignment (could be unaligned SSE load!). 2403 // Have to assume to worst case. 2404 unsigned Alignment = 1; 2405 std::tie(ShadowPtr, OriginPtr) = 2406 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2407 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld")); 2408 } else { 2409 setShadow(&I, getCleanShadow(&I)); 2410 } 2411 2412 if (ClCheckAccessAddress) 2413 insertShadowCheck(Addr, &I); 2414 2415 if (MS.TrackOrigins) { 2416 if (PropagateShadow) 2417 setOrigin(&I, IRB.CreateLoad(OriginPtr)); 2418 else 2419 setOrigin(&I, getCleanOrigin()); 2420 } 2421 return true; 2422 } 2423 2424 /// Handle (SIMD arithmetic)-like intrinsics. 2425 /// 2426 /// Instrument intrinsics with any number of arguments of the same type, 2427 /// equal to the return type. The type should be simple (no aggregates or 2428 /// pointers; vectors are fine). 2429 /// Caller guarantees that this intrinsic does not access memory. 2430 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2431 Type *RetTy = I.getType(); 2432 if (!(RetTy->isIntOrIntVectorTy() || 2433 RetTy->isFPOrFPVectorTy() || 2434 RetTy->isX86_MMXTy())) 2435 return false; 2436 2437 unsigned NumArgOperands = I.getNumArgOperands(); 2438 2439 for (unsigned i = 0; i < NumArgOperands; ++i) { 2440 Type *Ty = I.getArgOperand(i)->getType(); 2441 if (Ty != RetTy) 2442 return false; 2443 } 2444 2445 IRBuilder<> IRB(&I); 2446 ShadowAndOriginCombiner SC(this, IRB); 2447 for (unsigned i = 0; i < NumArgOperands; ++i) 2448 SC.Add(I.getArgOperand(i)); 2449 SC.Done(&I); 2450 2451 return true; 2452 } 2453 2454 /// Heuristically instrument unknown intrinsics. 2455 /// 2456 /// The main purpose of this code is to do something reasonable with all 2457 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2458 /// We recognize several classes of intrinsics by their argument types and 2459 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2460 /// sure that we know what the intrinsic does. 2461 /// 2462 /// We special-case intrinsics where this approach fails. See llvm.bswap 2463 /// handling as an example of that. 2464 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2465 unsigned NumArgOperands = I.getNumArgOperands(); 2466 if (NumArgOperands == 0) 2467 return false; 2468 2469 if (NumArgOperands == 2 && 2470 I.getArgOperand(0)->getType()->isPointerTy() && 2471 I.getArgOperand(1)->getType()->isVectorTy() && 2472 I.getType()->isVoidTy() && 2473 !I.onlyReadsMemory()) { 2474 // This looks like a vector store. 2475 return handleVectorStoreIntrinsic(I); 2476 } 2477 2478 if (NumArgOperands == 1 && 2479 I.getArgOperand(0)->getType()->isPointerTy() && 2480 I.getType()->isVectorTy() && 2481 I.onlyReadsMemory()) { 2482 // This looks like a vector load. 2483 return handleVectorLoadIntrinsic(I); 2484 } 2485 2486 if (I.doesNotAccessMemory()) 2487 if (maybeHandleSimpleNomemIntrinsic(I)) 2488 return true; 2489 2490 // FIXME: detect and handle SSE maskstore/maskload 2491 return false; 2492 } 2493 2494 void handleBswap(IntrinsicInst &I) { 2495 IRBuilder<> IRB(&I); 2496 Value *Op = I.getArgOperand(0); 2497 Type *OpType = Op->getType(); 2498 Function *BswapFunc = Intrinsic::getDeclaration( 2499 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2500 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2501 setOrigin(&I, getOrigin(Op)); 2502 } 2503 2504 // Instrument vector convert instrinsic. 2505 // 2506 // This function instruments intrinsics like cvtsi2ss: 2507 // %Out = int_xxx_cvtyyy(%ConvertOp) 2508 // or 2509 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2510 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2511 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2512 // elements from \p CopyOp. 2513 // In most cases conversion involves floating-point value which may trigger a 2514 // hardware exception when not fully initialized. For this reason we require 2515 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2516 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2517 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2518 // return a fully initialized value. 2519 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2520 IRBuilder<> IRB(&I); 2521 Value *CopyOp, *ConvertOp; 2522 2523 switch (I.getNumArgOperands()) { 2524 case 3: 2525 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2526 LLVM_FALLTHROUGH; 2527 case 2: 2528 CopyOp = I.getArgOperand(0); 2529 ConvertOp = I.getArgOperand(1); 2530 break; 2531 case 1: 2532 ConvertOp = I.getArgOperand(0); 2533 CopyOp = nullptr; 2534 break; 2535 default: 2536 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2537 } 2538 2539 // The first *NumUsedElements* elements of ConvertOp are converted to the 2540 // same number of output elements. The rest of the output is copied from 2541 // CopyOp, or (if not available) filled with zeroes. 2542 // Combine shadow for elements of ConvertOp that are used in this operation, 2543 // and insert a check. 2544 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2545 // int->any conversion. 2546 Value *ConvertShadow = getShadow(ConvertOp); 2547 Value *AggShadow = nullptr; 2548 if (ConvertOp->getType()->isVectorTy()) { 2549 AggShadow = IRB.CreateExtractElement( 2550 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2551 for (int i = 1; i < NumUsedElements; ++i) { 2552 Value *MoreShadow = IRB.CreateExtractElement( 2553 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2554 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2555 } 2556 } else { 2557 AggShadow = ConvertShadow; 2558 } 2559 assert(AggShadow->getType()->isIntegerTy()); 2560 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2561 2562 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2563 // ConvertOp. 2564 if (CopyOp) { 2565 assert(CopyOp->getType() == I.getType()); 2566 assert(CopyOp->getType()->isVectorTy()); 2567 Value *ResultShadow = getShadow(CopyOp); 2568 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2569 for (int i = 0; i < NumUsedElements; ++i) { 2570 ResultShadow = IRB.CreateInsertElement( 2571 ResultShadow, ConstantInt::getNullValue(EltTy), 2572 ConstantInt::get(IRB.getInt32Ty(), i)); 2573 } 2574 setShadow(&I, ResultShadow); 2575 setOrigin(&I, getOrigin(CopyOp)); 2576 } else { 2577 setShadow(&I, getCleanShadow(&I)); 2578 setOrigin(&I, getCleanOrigin()); 2579 } 2580 } 2581 2582 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2583 // zeroes if it is zero, and all ones otherwise. 2584 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2585 if (S->getType()->isVectorTy()) 2586 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2587 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2588 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2589 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2590 } 2591 2592 // Given a vector, extract its first element, and return all 2593 // zeroes if it is zero, and all ones otherwise. 2594 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2595 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2596 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2597 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2598 } 2599 2600 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2601 Type *T = S->getType(); 2602 assert(T->isVectorTy()); 2603 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2604 return IRB.CreateSExt(S2, T); 2605 } 2606 2607 // Instrument vector shift instrinsic. 2608 // 2609 // This function instruments intrinsics like int_x86_avx2_psll_w. 2610 // Intrinsic shifts %In by %ShiftSize bits. 2611 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2612 // size, and the rest is ignored. Behavior is defined even if shift size is 2613 // greater than register (or field) width. 2614 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2615 assert(I.getNumArgOperands() == 2); 2616 IRBuilder<> IRB(&I); 2617 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2618 // Otherwise perform the same shift on S1. 2619 Value *S1 = getShadow(&I, 0); 2620 Value *S2 = getShadow(&I, 1); 2621 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2622 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2623 Value *V1 = I.getOperand(0); 2624 Value *V2 = I.getOperand(1); 2625 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2626 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2627 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2628 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2629 setOriginForNaryOp(I); 2630 } 2631 2632 // Get an X86_MMX-sized vector type. 2633 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2634 const unsigned X86_MMXSizeInBits = 64; 2635 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2636 X86_MMXSizeInBits / EltSizeInBits); 2637 } 2638 2639 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2640 // intrinsic. 2641 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2642 switch (id) { 2643 case Intrinsic::x86_sse2_packsswb_128: 2644 case Intrinsic::x86_sse2_packuswb_128: 2645 return Intrinsic::x86_sse2_packsswb_128; 2646 2647 case Intrinsic::x86_sse2_packssdw_128: 2648 case Intrinsic::x86_sse41_packusdw: 2649 return Intrinsic::x86_sse2_packssdw_128; 2650 2651 case Intrinsic::x86_avx2_packsswb: 2652 case Intrinsic::x86_avx2_packuswb: 2653 return Intrinsic::x86_avx2_packsswb; 2654 2655 case Intrinsic::x86_avx2_packssdw: 2656 case Intrinsic::x86_avx2_packusdw: 2657 return Intrinsic::x86_avx2_packssdw; 2658 2659 case Intrinsic::x86_mmx_packsswb: 2660 case Intrinsic::x86_mmx_packuswb: 2661 return Intrinsic::x86_mmx_packsswb; 2662 2663 case Intrinsic::x86_mmx_packssdw: 2664 return Intrinsic::x86_mmx_packssdw; 2665 default: 2666 llvm_unreachable("unexpected intrinsic id"); 2667 } 2668 } 2669 2670 // Instrument vector pack instrinsic. 2671 // 2672 // This function instruments intrinsics like x86_mmx_packsswb, that 2673 // packs elements of 2 input vectors into half as many bits with saturation. 2674 // Shadow is propagated with the signed variant of the same intrinsic applied 2675 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2676 // EltSizeInBits is used only for x86mmx arguments. 2677 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2678 assert(I.getNumArgOperands() == 2); 2679 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2680 IRBuilder<> IRB(&I); 2681 Value *S1 = getShadow(&I, 0); 2682 Value *S2 = getShadow(&I, 1); 2683 assert(isX86_MMX || S1->getType()->isVectorTy()); 2684 2685 // SExt and ICmpNE below must apply to individual elements of input vectors. 2686 // In case of x86mmx arguments, cast them to appropriate vector types and 2687 // back. 2688 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2689 if (isX86_MMX) { 2690 S1 = IRB.CreateBitCast(S1, T); 2691 S2 = IRB.CreateBitCast(S2, T); 2692 } 2693 Value *S1_ext = IRB.CreateSExt( 2694 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2695 Value *S2_ext = IRB.CreateSExt( 2696 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2697 if (isX86_MMX) { 2698 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2699 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2700 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2701 } 2702 2703 Function *ShadowFn = Intrinsic::getDeclaration( 2704 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2705 2706 Value *S = 2707 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2708 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2709 setShadow(&I, S); 2710 setOriginForNaryOp(I); 2711 } 2712 2713 // Instrument sum-of-absolute-differencies intrinsic. 2714 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2715 const unsigned SignificantBitsPerResultElement = 16; 2716 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2717 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2718 unsigned ZeroBitsPerResultElement = 2719 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2720 2721 IRBuilder<> IRB(&I); 2722 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2723 S = IRB.CreateBitCast(S, ResTy); 2724 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2725 ResTy); 2726 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2727 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2728 setShadow(&I, S); 2729 setOriginForNaryOp(I); 2730 } 2731 2732 // Instrument multiply-add intrinsic. 2733 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2734 unsigned EltSizeInBits = 0) { 2735 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2736 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2737 IRBuilder<> IRB(&I); 2738 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2739 S = IRB.CreateBitCast(S, ResTy); 2740 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2741 ResTy); 2742 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2743 setShadow(&I, S); 2744 setOriginForNaryOp(I); 2745 } 2746 2747 // Instrument compare-packed intrinsic. 2748 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2749 // all-ones shadow. 2750 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2751 IRBuilder<> IRB(&I); 2752 Type *ResTy = getShadowTy(&I); 2753 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2754 Value *S = IRB.CreateSExt( 2755 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2756 setShadow(&I, S); 2757 setOriginForNaryOp(I); 2758 } 2759 2760 // Instrument compare-scalar intrinsic. 2761 // This handles both cmp* intrinsics which return the result in the first 2762 // element of a vector, and comi* which return the result as i32. 2763 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2764 IRBuilder<> IRB(&I); 2765 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2766 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2767 setShadow(&I, S); 2768 setOriginForNaryOp(I); 2769 } 2770 2771 void handleStmxcsr(IntrinsicInst &I) { 2772 IRBuilder<> IRB(&I); 2773 Value* Addr = I.getArgOperand(0); 2774 Type *Ty = IRB.getInt32Ty(); 2775 Value *ShadowPtr = 2776 getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) 2777 .first; 2778 2779 IRB.CreateStore(getCleanShadow(Ty), 2780 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2781 2782 if (ClCheckAccessAddress) 2783 insertShadowCheck(Addr, &I); 2784 } 2785 2786 void handleLdmxcsr(IntrinsicInst &I) { 2787 if (!InsertChecks) return; 2788 2789 IRBuilder<> IRB(&I); 2790 Value *Addr = I.getArgOperand(0); 2791 Type *Ty = IRB.getInt32Ty(); 2792 unsigned Alignment = 1; 2793 Value *ShadowPtr, *OriginPtr; 2794 std::tie(ShadowPtr, OriginPtr) = 2795 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2796 2797 if (ClCheckAccessAddress) 2798 insertShadowCheck(Addr, &I); 2799 2800 Value *Shadow = IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_ldmxcsr"); 2801 Value *Origin = 2802 MS.TrackOrigins ? IRB.CreateLoad(OriginPtr) : getCleanOrigin(); 2803 insertShadowCheck(Shadow, Origin, &I); 2804 } 2805 2806 void handleMaskedStore(IntrinsicInst &I) { 2807 IRBuilder<> IRB(&I); 2808 Value *V = I.getArgOperand(0); 2809 Value *Addr = I.getArgOperand(1); 2810 unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 2811 Value *Mask = I.getArgOperand(3); 2812 Value *Shadow = getShadow(V); 2813 2814 Value *ShadowPtr; 2815 Value *OriginPtr; 2816 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2817 Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); 2818 2819 if (ClCheckAccessAddress) { 2820 insertShadowCheck(Addr, &I); 2821 // Uninitialized mask is kind of like uninitialized address, but not as 2822 // scary. 2823 insertShadowCheck(Mask, &I); 2824 } 2825 2826 IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); 2827 2828 if (MS.TrackOrigins) { 2829 auto &DL = F.getParent()->getDataLayout(); 2830 paintOrigin(IRB, getOrigin(V), OriginPtr, 2831 DL.getTypeStoreSize(Shadow->getType()), 2832 std::max(Align, kMinOriginAlignment)); 2833 } 2834 } 2835 2836 bool handleMaskedLoad(IntrinsicInst &I) { 2837 IRBuilder<> IRB(&I); 2838 Value *Addr = I.getArgOperand(0); 2839 unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 2840 Value *Mask = I.getArgOperand(2); 2841 Value *PassThru = I.getArgOperand(3); 2842 2843 Type *ShadowTy = getShadowTy(&I); 2844 Value *ShadowPtr, *OriginPtr; 2845 if (PropagateShadow) { 2846 std::tie(ShadowPtr, OriginPtr) = 2847 getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); 2848 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, 2849 getShadow(PassThru), "_msmaskedld")); 2850 } else { 2851 setShadow(&I, getCleanShadow(&I)); 2852 } 2853 2854 if (ClCheckAccessAddress) { 2855 insertShadowCheck(Addr, &I); 2856 insertShadowCheck(Mask, &I); 2857 } 2858 2859 if (MS.TrackOrigins) { 2860 if (PropagateShadow) { 2861 // Choose between PassThru's and the loaded value's origins. 2862 Value *MaskedPassThruShadow = IRB.CreateAnd( 2863 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2864 2865 Value *Acc = IRB.CreateExtractElement( 2866 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2867 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2868 ++i) { 2869 Value *More = IRB.CreateExtractElement( 2870 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2871 Acc = IRB.CreateOr(Acc, More); 2872 } 2873 2874 Value *Origin = IRB.CreateSelect( 2875 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2876 getOrigin(PassThru), IRB.CreateLoad(OriginPtr)); 2877 2878 setOrigin(&I, Origin); 2879 } else { 2880 setOrigin(&I, getCleanOrigin()); 2881 } 2882 } 2883 return true; 2884 } 2885 2886 2887 void visitIntrinsicInst(IntrinsicInst &I) { 2888 switch (I.getIntrinsicID()) { 2889 case Intrinsic::bswap: 2890 handleBswap(I); 2891 break; 2892 case Intrinsic::masked_store: 2893 handleMaskedStore(I); 2894 break; 2895 case Intrinsic::masked_load: 2896 handleMaskedLoad(I); 2897 break; 2898 case Intrinsic::x86_sse_stmxcsr: 2899 handleStmxcsr(I); 2900 break; 2901 case Intrinsic::x86_sse_ldmxcsr: 2902 handleLdmxcsr(I); 2903 break; 2904 case Intrinsic::x86_avx512_vcvtsd2usi64: 2905 case Intrinsic::x86_avx512_vcvtsd2usi32: 2906 case Intrinsic::x86_avx512_vcvtss2usi64: 2907 case Intrinsic::x86_avx512_vcvtss2usi32: 2908 case Intrinsic::x86_avx512_cvttss2usi64: 2909 case Intrinsic::x86_avx512_cvttss2usi: 2910 case Intrinsic::x86_avx512_cvttsd2usi64: 2911 case Intrinsic::x86_avx512_cvttsd2usi: 2912 case Intrinsic::x86_avx512_cvtusi2ss: 2913 case Intrinsic::x86_avx512_cvtusi642sd: 2914 case Intrinsic::x86_avx512_cvtusi642ss: 2915 case Intrinsic::x86_sse2_cvtsd2si64: 2916 case Intrinsic::x86_sse2_cvtsd2si: 2917 case Intrinsic::x86_sse2_cvtsd2ss: 2918 case Intrinsic::x86_sse2_cvttsd2si64: 2919 case Intrinsic::x86_sse2_cvttsd2si: 2920 case Intrinsic::x86_sse_cvtss2si64: 2921 case Intrinsic::x86_sse_cvtss2si: 2922 case Intrinsic::x86_sse_cvttss2si64: 2923 case Intrinsic::x86_sse_cvttss2si: 2924 handleVectorConvertIntrinsic(I, 1); 2925 break; 2926 case Intrinsic::x86_sse_cvtps2pi: 2927 case Intrinsic::x86_sse_cvttps2pi: 2928 handleVectorConvertIntrinsic(I, 2); 2929 break; 2930 2931 case Intrinsic::x86_avx512_psll_w_512: 2932 case Intrinsic::x86_avx512_psll_d_512: 2933 case Intrinsic::x86_avx512_psll_q_512: 2934 case Intrinsic::x86_avx512_pslli_w_512: 2935 case Intrinsic::x86_avx512_pslli_d_512: 2936 case Intrinsic::x86_avx512_pslli_q_512: 2937 case Intrinsic::x86_avx512_psrl_w_512: 2938 case Intrinsic::x86_avx512_psrl_d_512: 2939 case Intrinsic::x86_avx512_psrl_q_512: 2940 case Intrinsic::x86_avx512_psra_w_512: 2941 case Intrinsic::x86_avx512_psra_d_512: 2942 case Intrinsic::x86_avx512_psra_q_512: 2943 case Intrinsic::x86_avx512_psrli_w_512: 2944 case Intrinsic::x86_avx512_psrli_d_512: 2945 case Intrinsic::x86_avx512_psrli_q_512: 2946 case Intrinsic::x86_avx512_psrai_w_512: 2947 case Intrinsic::x86_avx512_psrai_d_512: 2948 case Intrinsic::x86_avx512_psrai_q_512: 2949 case Intrinsic::x86_avx512_psra_q_256: 2950 case Intrinsic::x86_avx512_psra_q_128: 2951 case Intrinsic::x86_avx512_psrai_q_256: 2952 case Intrinsic::x86_avx512_psrai_q_128: 2953 case Intrinsic::x86_avx2_psll_w: 2954 case Intrinsic::x86_avx2_psll_d: 2955 case Intrinsic::x86_avx2_psll_q: 2956 case Intrinsic::x86_avx2_pslli_w: 2957 case Intrinsic::x86_avx2_pslli_d: 2958 case Intrinsic::x86_avx2_pslli_q: 2959 case Intrinsic::x86_avx2_psrl_w: 2960 case Intrinsic::x86_avx2_psrl_d: 2961 case Intrinsic::x86_avx2_psrl_q: 2962 case Intrinsic::x86_avx2_psra_w: 2963 case Intrinsic::x86_avx2_psra_d: 2964 case Intrinsic::x86_avx2_psrli_w: 2965 case Intrinsic::x86_avx2_psrli_d: 2966 case Intrinsic::x86_avx2_psrli_q: 2967 case Intrinsic::x86_avx2_psrai_w: 2968 case Intrinsic::x86_avx2_psrai_d: 2969 case Intrinsic::x86_sse2_psll_w: 2970 case Intrinsic::x86_sse2_psll_d: 2971 case Intrinsic::x86_sse2_psll_q: 2972 case Intrinsic::x86_sse2_pslli_w: 2973 case Intrinsic::x86_sse2_pslli_d: 2974 case Intrinsic::x86_sse2_pslli_q: 2975 case Intrinsic::x86_sse2_psrl_w: 2976 case Intrinsic::x86_sse2_psrl_d: 2977 case Intrinsic::x86_sse2_psrl_q: 2978 case Intrinsic::x86_sse2_psra_w: 2979 case Intrinsic::x86_sse2_psra_d: 2980 case Intrinsic::x86_sse2_psrli_w: 2981 case Intrinsic::x86_sse2_psrli_d: 2982 case Intrinsic::x86_sse2_psrli_q: 2983 case Intrinsic::x86_sse2_psrai_w: 2984 case Intrinsic::x86_sse2_psrai_d: 2985 case Intrinsic::x86_mmx_psll_w: 2986 case Intrinsic::x86_mmx_psll_d: 2987 case Intrinsic::x86_mmx_psll_q: 2988 case Intrinsic::x86_mmx_pslli_w: 2989 case Intrinsic::x86_mmx_pslli_d: 2990 case Intrinsic::x86_mmx_pslli_q: 2991 case Intrinsic::x86_mmx_psrl_w: 2992 case Intrinsic::x86_mmx_psrl_d: 2993 case Intrinsic::x86_mmx_psrl_q: 2994 case Intrinsic::x86_mmx_psra_w: 2995 case Intrinsic::x86_mmx_psra_d: 2996 case Intrinsic::x86_mmx_psrli_w: 2997 case Intrinsic::x86_mmx_psrli_d: 2998 case Intrinsic::x86_mmx_psrli_q: 2999 case Intrinsic::x86_mmx_psrai_w: 3000 case Intrinsic::x86_mmx_psrai_d: 3001 handleVectorShiftIntrinsic(I, /* Variable */ false); 3002 break; 3003 case Intrinsic::x86_avx2_psllv_d: 3004 case Intrinsic::x86_avx2_psllv_d_256: 3005 case Intrinsic::x86_avx512_psllv_d_512: 3006 case Intrinsic::x86_avx2_psllv_q: 3007 case Intrinsic::x86_avx2_psllv_q_256: 3008 case Intrinsic::x86_avx512_psllv_q_512: 3009 case Intrinsic::x86_avx2_psrlv_d: 3010 case Intrinsic::x86_avx2_psrlv_d_256: 3011 case Intrinsic::x86_avx512_psrlv_d_512: 3012 case Intrinsic::x86_avx2_psrlv_q: 3013 case Intrinsic::x86_avx2_psrlv_q_256: 3014 case Intrinsic::x86_avx512_psrlv_q_512: 3015 case Intrinsic::x86_avx2_psrav_d: 3016 case Intrinsic::x86_avx2_psrav_d_256: 3017 case Intrinsic::x86_avx512_psrav_d_512: 3018 case Intrinsic::x86_avx512_psrav_q_128: 3019 case Intrinsic::x86_avx512_psrav_q_256: 3020 case Intrinsic::x86_avx512_psrav_q_512: 3021 handleVectorShiftIntrinsic(I, /* Variable */ true); 3022 break; 3023 3024 case Intrinsic::x86_sse2_packsswb_128: 3025 case Intrinsic::x86_sse2_packssdw_128: 3026 case Intrinsic::x86_sse2_packuswb_128: 3027 case Intrinsic::x86_sse41_packusdw: 3028 case Intrinsic::x86_avx2_packsswb: 3029 case Intrinsic::x86_avx2_packssdw: 3030 case Intrinsic::x86_avx2_packuswb: 3031 case Intrinsic::x86_avx2_packusdw: 3032 handleVectorPackIntrinsic(I); 3033 break; 3034 3035 case Intrinsic::x86_mmx_packsswb: 3036 case Intrinsic::x86_mmx_packuswb: 3037 handleVectorPackIntrinsic(I, 16); 3038 break; 3039 3040 case Intrinsic::x86_mmx_packssdw: 3041 handleVectorPackIntrinsic(I, 32); 3042 break; 3043 3044 case Intrinsic::x86_mmx_psad_bw: 3045 case Intrinsic::x86_sse2_psad_bw: 3046 case Intrinsic::x86_avx2_psad_bw: 3047 handleVectorSadIntrinsic(I); 3048 break; 3049 3050 case Intrinsic::x86_sse2_pmadd_wd: 3051 case Intrinsic::x86_avx2_pmadd_wd: 3052 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3053 case Intrinsic::x86_avx2_pmadd_ub_sw: 3054 handleVectorPmaddIntrinsic(I); 3055 break; 3056 3057 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3058 handleVectorPmaddIntrinsic(I, 8); 3059 break; 3060 3061 case Intrinsic::x86_mmx_pmadd_wd: 3062 handleVectorPmaddIntrinsic(I, 16); 3063 break; 3064 3065 case Intrinsic::x86_sse_cmp_ss: 3066 case Intrinsic::x86_sse2_cmp_sd: 3067 case Intrinsic::x86_sse_comieq_ss: 3068 case Intrinsic::x86_sse_comilt_ss: 3069 case Intrinsic::x86_sse_comile_ss: 3070 case Intrinsic::x86_sse_comigt_ss: 3071 case Intrinsic::x86_sse_comige_ss: 3072 case Intrinsic::x86_sse_comineq_ss: 3073 case Intrinsic::x86_sse_ucomieq_ss: 3074 case Intrinsic::x86_sse_ucomilt_ss: 3075 case Intrinsic::x86_sse_ucomile_ss: 3076 case Intrinsic::x86_sse_ucomigt_ss: 3077 case Intrinsic::x86_sse_ucomige_ss: 3078 case Intrinsic::x86_sse_ucomineq_ss: 3079 case Intrinsic::x86_sse2_comieq_sd: 3080 case Intrinsic::x86_sse2_comilt_sd: 3081 case Intrinsic::x86_sse2_comile_sd: 3082 case Intrinsic::x86_sse2_comigt_sd: 3083 case Intrinsic::x86_sse2_comige_sd: 3084 case Intrinsic::x86_sse2_comineq_sd: 3085 case Intrinsic::x86_sse2_ucomieq_sd: 3086 case Intrinsic::x86_sse2_ucomilt_sd: 3087 case Intrinsic::x86_sse2_ucomile_sd: 3088 case Intrinsic::x86_sse2_ucomigt_sd: 3089 case Intrinsic::x86_sse2_ucomige_sd: 3090 case Intrinsic::x86_sse2_ucomineq_sd: 3091 handleVectorCompareScalarIntrinsic(I); 3092 break; 3093 3094 case Intrinsic::x86_sse_cmp_ps: 3095 case Intrinsic::x86_sse2_cmp_pd: 3096 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3097 // generates reasonably looking IR that fails in the backend with "Do not 3098 // know how to split the result of this operator!". 3099 handleVectorComparePackedIntrinsic(I); 3100 break; 3101 3102 default: 3103 if (!handleUnknownIntrinsic(I)) 3104 visitInstruction(I); 3105 break; 3106 } 3107 } 3108 3109 void visitCallSite(CallSite CS) { 3110 Instruction &I = *CS.getInstruction(); 3111 assert(!I.getMetadata("nosanitize")); 3112 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 3113 if (CS.isCall()) { 3114 CallInst *Call = cast<CallInst>(&I); 3115 3116 // For inline asm, do the usual thing: check argument shadow and mark all 3117 // outputs as clean. Note that any side effects of the inline asm that are 3118 // not immediately visible in its constraints are not handled. 3119 if (Call->isInlineAsm()) { 3120 if (ClHandleAsmConservative && MS.CompileKernel) 3121 visitAsmInstruction(I); 3122 else 3123 visitInstruction(I); 3124 return; 3125 } 3126 3127 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3128 3129 // We are going to insert code that relies on the fact that the callee 3130 // will become a non-readonly function after it is instrumented by us. To 3131 // prevent this code from being optimized out, mark that function 3132 // non-readonly in advance. 3133 if (Function *Func = Call->getCalledFunction()) { 3134 // Clear out readonly/readnone attributes. 3135 AttrBuilder B; 3136 B.addAttribute(Attribute::ReadOnly) 3137 .addAttribute(Attribute::ReadNone); 3138 Func->removeAttributes(AttributeList::FunctionIndex, B); 3139 } 3140 3141 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3142 } 3143 IRBuilder<> IRB(&I); 3144 3145 unsigned ArgOffset = 0; 3146 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3147 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3148 ArgIt != End; ++ArgIt) { 3149 Value *A = *ArgIt; 3150 unsigned i = ArgIt - CS.arg_begin(); 3151 if (!A->getType()->isSized()) { 3152 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3153 continue; 3154 } 3155 unsigned Size = 0; 3156 Value *Store = nullptr; 3157 // Compute the Shadow for arg even if it is ByVal, because 3158 // in that case getShadow() will copy the actual arg shadow to 3159 // __msan_param_tls. 3160 Value *ArgShadow = getShadow(A); 3161 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3162 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3163 << " Shadow: " << *ArgShadow << "\n"); 3164 bool ArgIsInitialized = false; 3165 const DataLayout &DL = F.getParent()->getDataLayout(); 3166 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3167 assert(A->getType()->isPointerTy() && 3168 "ByVal argument is not a pointer!"); 3169 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3170 if (ArgOffset + Size > kParamTLSSize) break; 3171 unsigned ParamAlignment = CS.getParamAlignment(i); 3172 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 3173 Value *AShadowPtr = 3174 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3175 /*isStore*/ false) 3176 .first; 3177 3178 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3179 Alignment, Size); 3180 // TODO(glider): need to copy origins. 3181 } else { 3182 Size = DL.getTypeAllocSize(A->getType()); 3183 if (ArgOffset + Size > kParamTLSSize) break; 3184 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3185 kShadowTLSAlignment); 3186 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3187 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3188 } 3189 if (MS.TrackOrigins && !ArgIsInitialized) 3190 IRB.CreateStore(getOrigin(A), 3191 getOriginPtrForArgument(A, IRB, ArgOffset)); 3192 (void)Store; 3193 assert(Size != 0 && Store != nullptr); 3194 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3195 ArgOffset += alignTo(Size, 8); 3196 } 3197 LLVM_DEBUG(dbgs() << " done with call args\n"); 3198 3199 FunctionType *FT = 3200 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 3201 if (FT->isVarArg()) { 3202 VAHelper->visitCallSite(CS, IRB); 3203 } 3204 3205 // Now, get the shadow for the RetVal. 3206 if (!I.getType()->isSized()) return; 3207 // Don't emit the epilogue for musttail call returns. 3208 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3209 IRBuilder<> IRBBefore(&I); 3210 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3211 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3212 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 3213 BasicBlock::iterator NextInsn; 3214 if (CS.isCall()) { 3215 NextInsn = ++I.getIterator(); 3216 assert(NextInsn != I.getParent()->end()); 3217 } else { 3218 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3219 if (!NormalDest->getSinglePredecessor()) { 3220 // FIXME: this case is tricky, so we are just conservative here. 3221 // Perhaps we need to split the edge between this BB and NormalDest, 3222 // but a naive attempt to use SplitEdge leads to a crash. 3223 setShadow(&I, getCleanShadow(&I)); 3224 setOrigin(&I, getCleanOrigin()); 3225 return; 3226 } 3227 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3228 // Anything inserted there will be instrumented by MSan later! 3229 NextInsn = NormalDest->getFirstInsertionPt(); 3230 assert(NextInsn != NormalDest->end() && 3231 "Could not find insertion point for retval shadow load"); 3232 } 3233 IRBuilder<> IRBAfter(&*NextInsn); 3234 Value *RetvalShadow = 3235 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 3236 kShadowTLSAlignment, "_msret"); 3237 setShadow(&I, RetvalShadow); 3238 if (MS.TrackOrigins) 3239 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 3240 } 3241 3242 bool isAMustTailRetVal(Value *RetVal) { 3243 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3244 RetVal = I->getOperand(0); 3245 } 3246 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3247 return I->isMustTailCall(); 3248 } 3249 return false; 3250 } 3251 3252 void visitReturnInst(ReturnInst &I) { 3253 IRBuilder<> IRB(&I); 3254 Value *RetVal = I.getReturnValue(); 3255 if (!RetVal) return; 3256 // Don't emit the epilogue for musttail call returns. 3257 if (isAMustTailRetVal(RetVal)) return; 3258 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3259 if (CheckReturnValue) { 3260 insertShadowCheck(RetVal, &I); 3261 Value *Shadow = getCleanShadow(RetVal); 3262 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3263 } else { 3264 Value *Shadow = getShadow(RetVal); 3265 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3266 if (MS.TrackOrigins) 3267 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3268 } 3269 } 3270 3271 void visitPHINode(PHINode &I) { 3272 IRBuilder<> IRB(&I); 3273 if (!PropagateShadow) { 3274 setShadow(&I, getCleanShadow(&I)); 3275 setOrigin(&I, getCleanOrigin()); 3276 return; 3277 } 3278 3279 ShadowPHINodes.push_back(&I); 3280 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3281 "_msphi_s")); 3282 if (MS.TrackOrigins) 3283 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3284 "_msphi_o")); 3285 } 3286 3287 Value *getLocalVarDescription(AllocaInst &I) { 3288 SmallString<2048> StackDescriptionStorage; 3289 raw_svector_ostream StackDescription(StackDescriptionStorage); 3290 // We create a string with a description of the stack allocation and 3291 // pass it into __msan_set_alloca_origin. 3292 // It will be printed by the run-time if stack-originated UMR is found. 3293 // The first 4 bytes of the string are set to '----' and will be replaced 3294 // by __msan_va_arg_overflow_size_tls at the first call. 3295 StackDescription << "----" << I.getName() << "@" << F.getName(); 3296 return createPrivateNonConstGlobalForString(*F.getParent(), 3297 StackDescription.str()); 3298 } 3299 3300 void instrumentAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3301 if (PoisonStack && ClPoisonStackWithCall) { 3302 IRB.CreateCall(MS.MsanPoisonStackFn, 3303 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3304 } else { 3305 Value *ShadowBase, *OriginBase; 3306 std::tie(ShadowBase, OriginBase) = 3307 getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); 3308 3309 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3310 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); 3311 } 3312 3313 if (PoisonStack && MS.TrackOrigins) { 3314 Value *Descr = getLocalVarDescription(I); 3315 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3316 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3317 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3318 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3319 } 3320 } 3321 3322 void instrumentAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3323 Value *Descr = getLocalVarDescription(I); 3324 if (PoisonStack) { 3325 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3326 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3327 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3328 } else { 3329 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3330 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3331 } 3332 } 3333 3334 void visitAllocaInst(AllocaInst &I) { 3335 setShadow(&I, getCleanShadow(&I)); 3336 setOrigin(&I, getCleanOrigin()); 3337 IRBuilder<> IRB(I.getNextNode()); 3338 const DataLayout &DL = F.getParent()->getDataLayout(); 3339 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3340 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3341 if (I.isArrayAllocation()) 3342 Len = IRB.CreateMul(Len, I.getArraySize()); 3343 3344 if (MS.CompileKernel) 3345 instrumentAllocaKmsan(I, IRB, Len); 3346 else 3347 instrumentAllocaUserspace(I, IRB, Len); 3348 } 3349 3350 void visitSelectInst(SelectInst& I) { 3351 IRBuilder<> IRB(&I); 3352 // a = select b, c, d 3353 Value *B = I.getCondition(); 3354 Value *C = I.getTrueValue(); 3355 Value *D = I.getFalseValue(); 3356 Value *Sb = getShadow(B); 3357 Value *Sc = getShadow(C); 3358 Value *Sd = getShadow(D); 3359 3360 // Result shadow if condition shadow is 0. 3361 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3362 Value *Sa1; 3363 if (I.getType()->isAggregateType()) { 3364 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3365 // an extra "select". This results in much more compact IR. 3366 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3367 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3368 } else { 3369 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3370 // If Sb (condition is poisoned), look for bits in c and d that are equal 3371 // and both unpoisoned. 3372 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3373 3374 // Cast arguments to shadow-compatible type. 3375 C = CreateAppToShadowCast(IRB, C); 3376 D = CreateAppToShadowCast(IRB, D); 3377 3378 // Result shadow if condition shadow is 1. 3379 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 3380 } 3381 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3382 setShadow(&I, Sa); 3383 if (MS.TrackOrigins) { 3384 // Origins are always i32, so any vector conditions must be flattened. 3385 // FIXME: consider tracking vector origins for app vectors? 3386 if (B->getType()->isVectorTy()) { 3387 Type *FlatTy = getShadowTyNoVec(B->getType()); 3388 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3389 ConstantInt::getNullValue(FlatTy)); 3390 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3391 ConstantInt::getNullValue(FlatTy)); 3392 } 3393 // a = select b, c, d 3394 // Oa = Sb ? Ob : (b ? Oc : Od) 3395 setOrigin( 3396 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3397 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3398 getOrigin(I.getFalseValue())))); 3399 } 3400 } 3401 3402 void visitLandingPadInst(LandingPadInst &I) { 3403 // Do nothing. 3404 // See https://github.com/google/sanitizers/issues/504 3405 setShadow(&I, getCleanShadow(&I)); 3406 setOrigin(&I, getCleanOrigin()); 3407 } 3408 3409 void visitCatchSwitchInst(CatchSwitchInst &I) { 3410 setShadow(&I, getCleanShadow(&I)); 3411 setOrigin(&I, getCleanOrigin()); 3412 } 3413 3414 void visitFuncletPadInst(FuncletPadInst &I) { 3415 setShadow(&I, getCleanShadow(&I)); 3416 setOrigin(&I, getCleanOrigin()); 3417 } 3418 3419 void visitGetElementPtrInst(GetElementPtrInst &I) { 3420 handleShadowOr(I); 3421 } 3422 3423 void visitExtractValueInst(ExtractValueInst &I) { 3424 IRBuilder<> IRB(&I); 3425 Value *Agg = I.getAggregateOperand(); 3426 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3427 Value *AggShadow = getShadow(Agg); 3428 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3429 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3430 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3431 setShadow(&I, ResShadow); 3432 setOriginForNaryOp(I); 3433 } 3434 3435 void visitInsertValueInst(InsertValueInst &I) { 3436 IRBuilder<> IRB(&I); 3437 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3438 Value *AggShadow = getShadow(I.getAggregateOperand()); 3439 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3440 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3441 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3442 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3443 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3444 setShadow(&I, Res); 3445 setOriginForNaryOp(I); 3446 } 3447 3448 void dumpInst(Instruction &I) { 3449 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3450 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3451 } else { 3452 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3453 } 3454 errs() << "QQQ " << I << "\n"; 3455 } 3456 3457 void visitResumeInst(ResumeInst &I) { 3458 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3459 // Nothing to do here. 3460 } 3461 3462 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3463 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3464 // Nothing to do here. 3465 } 3466 3467 void visitCatchReturnInst(CatchReturnInst &CRI) { 3468 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3469 // Nothing to do here. 3470 } 3471 3472 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3473 const DataLayout &DL, bool isOutput) { 3474 // For each assembly argument, we check its value for being initialized. 3475 // If the argument is a pointer, we assume it points to a single element 3476 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3477 // Each such pointer is instrumented with a call to the runtime library. 3478 Type *OpType = Operand->getType(); 3479 // Check the operand value itself. 3480 insertShadowCheck(Operand, &I); 3481 if (!OpType->isPointerTy() || !isOutput) { 3482 assert(!isOutput); 3483 return; 3484 } 3485 Type *ElType = OpType->getPointerElementType(); 3486 if (!ElType->isSized()) 3487 return; 3488 int Size = DL.getTypeStoreSize(ElType); 3489 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3490 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3491 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3492 } 3493 3494 /// Get the number of output arguments returned by pointers. 3495 int getNumOutputArgs(InlineAsm *IA, CallInst *CI) { 3496 int NumRetOutputs = 0; 3497 int NumOutputs = 0; 3498 Type *RetTy = dyn_cast<Value>(CI)->getType(); 3499 if (!RetTy->isVoidTy()) { 3500 // Register outputs are returned via the CallInst return value. 3501 StructType *ST = dyn_cast_or_null<StructType>(RetTy); 3502 if (ST) 3503 NumRetOutputs = ST->getNumElements(); 3504 else 3505 NumRetOutputs = 1; 3506 } 3507 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3508 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3509 InlineAsm::ConstraintInfo Info = Constraints[i]; 3510 switch (Info.Type) { 3511 case InlineAsm::isOutput: 3512 NumOutputs++; 3513 break; 3514 default: 3515 break; 3516 } 3517 } 3518 return NumOutputs - NumRetOutputs; 3519 } 3520 3521 void visitAsmInstruction(Instruction &I) { 3522 // Conservative inline assembly handling: check for poisoned shadow of 3523 // asm() arguments, then unpoison the result and all the memory locations 3524 // pointed to by those arguments. 3525 // An inline asm() statement in C++ contains lists of input and output 3526 // arguments used by the assembly code. These are mapped to operands of the 3527 // CallInst as follows: 3528 // - nR register outputs ("=r) are returned by value in a single structure 3529 // (SSA value of the CallInst); 3530 // - nO other outputs ("=m" and others) are returned by pointer as first 3531 // nO operands of the CallInst; 3532 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3533 // remaining nI operands. 3534 // The total number of asm() arguments in the source is nR+nO+nI, and the 3535 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3536 // function to be called). 3537 const DataLayout &DL = F.getParent()->getDataLayout(); 3538 CallInst *CI = dyn_cast<CallInst>(&I); 3539 IRBuilder<> IRB(&I); 3540 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 3541 int OutputArgs = getNumOutputArgs(IA, CI); 3542 // The last operand of a CallInst is the function itself. 3543 int NumOperands = CI->getNumOperands() - 1; 3544 3545 // Check input arguments. Doing so before unpoisoning output arguments, so 3546 // that we won't overwrite uninit values before checking them. 3547 for (int i = OutputArgs; i < NumOperands; i++) { 3548 Value *Operand = CI->getOperand(i); 3549 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3550 } 3551 // Unpoison output arguments. This must happen before the actual InlineAsm 3552 // call, so that the shadow for memory published in the asm() statement 3553 // remains valid. 3554 for (int i = 0; i < OutputArgs; i++) { 3555 Value *Operand = CI->getOperand(i); 3556 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3557 } 3558 3559 setShadow(&I, getCleanShadow(&I)); 3560 setOrigin(&I, getCleanOrigin()); 3561 } 3562 3563 void visitInstruction(Instruction &I) { 3564 // Everything else: stop propagating and check for poisoned shadow. 3565 if (ClDumpStrictInstructions) 3566 dumpInst(I); 3567 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3568 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3569 Value *Operand = I.getOperand(i); 3570 if (Operand->getType()->isSized()) 3571 insertShadowCheck(Operand, &I); 3572 } 3573 setShadow(&I, getCleanShadow(&I)); 3574 setOrigin(&I, getCleanOrigin()); 3575 } 3576 }; 3577 3578 /// AMD64-specific implementation of VarArgHelper. 3579 struct VarArgAMD64Helper : public VarArgHelper { 3580 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3581 // See a comment in visitCallSite for more details. 3582 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3583 static const unsigned AMD64FpEndOffsetSSE = 176; 3584 // If SSE is disabled, fp_offset in va_list is zero. 3585 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3586 3587 unsigned AMD64FpEndOffset; 3588 Function &F; 3589 MemorySanitizer &MS; 3590 MemorySanitizerVisitor &MSV; 3591 Value *VAArgTLSCopy = nullptr; 3592 Value *VAArgTLSOriginCopy = nullptr; 3593 Value *VAArgOverflowSize = nullptr; 3594 3595 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3596 3597 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3598 3599 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3600 MemorySanitizerVisitor &MSV) 3601 : F(F), MS(MS), MSV(MSV) { 3602 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3603 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3604 if (Attr.isStringAttribute() && 3605 (Attr.getKindAsString() == "target-features")) { 3606 if (Attr.getValueAsString().contains("-sse")) 3607 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3608 break; 3609 } 3610 } 3611 } 3612 3613 ArgKind classifyArgument(Value* arg) { 3614 // A very rough approximation of X86_64 argument classification rules. 3615 Type *T = arg->getType(); 3616 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3617 return AK_FloatingPoint; 3618 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3619 return AK_GeneralPurpose; 3620 if (T->isPointerTy()) 3621 return AK_GeneralPurpose; 3622 return AK_Memory; 3623 } 3624 3625 // For VarArg functions, store the argument shadow in an ABI-specific format 3626 // that corresponds to va_list layout. 3627 // We do this because Clang lowers va_arg in the frontend, and this pass 3628 // only sees the low level code that deals with va_list internals. 3629 // A much easier alternative (provided that Clang emits va_arg instructions) 3630 // would have been to associate each live instance of va_list with a copy of 3631 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3632 // order. 3633 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3634 unsigned GpOffset = 0; 3635 unsigned FpOffset = AMD64GpEndOffset; 3636 unsigned OverflowOffset = AMD64FpEndOffset; 3637 const DataLayout &DL = F.getParent()->getDataLayout(); 3638 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3639 ArgIt != End; ++ArgIt) { 3640 Value *A = *ArgIt; 3641 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3642 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3643 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3644 if (IsByVal) { 3645 // ByVal arguments always go to the overflow area. 3646 // Fixed arguments passed through the overflow area will be stepped 3647 // over by va_start, so don't count them towards the offset. 3648 if (IsFixed) 3649 continue; 3650 assert(A->getType()->isPointerTy()); 3651 Type *RealTy = A->getType()->getPointerElementType(); 3652 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3653 Value *ShadowBase = getShadowPtrForVAArgument( 3654 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3655 Value *OriginBase = nullptr; 3656 if (MS.TrackOrigins) 3657 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3658 OverflowOffset += alignTo(ArgSize, 8); 3659 if (!ShadowBase) 3660 continue; 3661 Value *ShadowPtr, *OriginPtr; 3662 std::tie(ShadowPtr, OriginPtr) = 3663 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3664 /*isStore*/ false); 3665 3666 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3667 kShadowTLSAlignment, ArgSize); 3668 if (MS.TrackOrigins) 3669 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3670 kShadowTLSAlignment, ArgSize); 3671 } else { 3672 ArgKind AK = classifyArgument(A); 3673 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3674 AK = AK_Memory; 3675 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3676 AK = AK_Memory; 3677 Value *ShadowBase, *OriginBase = nullptr; 3678 switch (AK) { 3679 case AK_GeneralPurpose: 3680 ShadowBase = 3681 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3682 if (MS.TrackOrigins) 3683 OriginBase = 3684 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3685 GpOffset += 8; 3686 break; 3687 case AK_FloatingPoint: 3688 ShadowBase = 3689 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3690 if (MS.TrackOrigins) 3691 OriginBase = 3692 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3693 FpOffset += 16; 3694 break; 3695 case AK_Memory: 3696 if (IsFixed) 3697 continue; 3698 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3699 ShadowBase = 3700 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3701 if (MS.TrackOrigins) 3702 OriginBase = 3703 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3704 OverflowOffset += alignTo(ArgSize, 8); 3705 } 3706 // Take fixed arguments into account for GpOffset and FpOffset, 3707 // but don't actually store shadows for them. 3708 // TODO(glider): don't call get*PtrForVAArgument() for them. 3709 if (IsFixed) 3710 continue; 3711 if (!ShadowBase) 3712 continue; 3713 Value *Shadow = MSV.getShadow(A); 3714 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3715 if (MS.TrackOrigins) { 3716 Value *Origin = MSV.getOrigin(A); 3717 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3718 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3719 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3720 } 3721 } 3722 } 3723 Constant *OverflowSize = 3724 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3725 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3726 } 3727 3728 /// Compute the shadow address for a given va_arg. 3729 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3730 unsigned ArgOffset, unsigned ArgSize) { 3731 // Make sure we don't overflow __msan_va_arg_tls. 3732 if (ArgOffset + ArgSize > kParamTLSSize) 3733 return nullptr; 3734 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3735 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3736 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3737 "_msarg_va_s"); 3738 } 3739 3740 /// Compute the origin address for a given va_arg. 3741 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3742 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3743 // getOriginPtrForVAArgument() is always called after 3744 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3745 // overflow. 3746 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3747 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3748 "_msarg_va_o"); 3749 } 3750 3751 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3752 IRBuilder<> IRB(&I); 3753 Value *VAListTag = I.getArgOperand(0); 3754 Value *ShadowPtr, *OriginPtr; 3755 unsigned Alignment = 8; 3756 std::tie(ShadowPtr, OriginPtr) = 3757 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3758 /*isStore*/ true); 3759 3760 // Unpoison the whole __va_list_tag. 3761 // FIXME: magic ABI constants. 3762 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3763 /* size */ 24, Alignment, false); 3764 // We shouldn't need to zero out the origins, as they're only checked for 3765 // nonzero shadow. 3766 } 3767 3768 void visitVAStartInst(VAStartInst &I) override { 3769 if (F.getCallingConv() == CallingConv::Win64) 3770 return; 3771 VAStartInstrumentationList.push_back(&I); 3772 unpoisonVAListTagForInst(I); 3773 } 3774 3775 void visitVACopyInst(VACopyInst &I) override { 3776 if (F.getCallingConv() == CallingConv::Win64) return; 3777 unpoisonVAListTagForInst(I); 3778 } 3779 3780 void finalizeInstrumentation() override { 3781 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3782 "finalizeInstrumentation called twice"); 3783 if (!VAStartInstrumentationList.empty()) { 3784 // If there is a va_start in this function, make a backup copy of 3785 // va_arg_tls somewhere in the function entry block. 3786 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3787 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3788 Value *CopySize = 3789 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3790 VAArgOverflowSize); 3791 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3792 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3793 if (MS.TrackOrigins) { 3794 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3795 IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); 3796 } 3797 } 3798 3799 // Instrument va_start. 3800 // Copy va_list shadow from the backup copy of the TLS contents. 3801 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3802 CallInst *OrigInst = VAStartInstrumentationList[i]; 3803 IRBuilder<> IRB(OrigInst->getNextNode()); 3804 Value *VAListTag = OrigInst->getArgOperand(0); 3805 3806 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 3807 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3808 ConstantInt::get(MS.IntptrTy, 16)), 3809 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 3810 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3811 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3812 unsigned Alignment = 16; 3813 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3814 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3815 Alignment, /*isStore*/ true); 3816 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3817 AMD64FpEndOffset); 3818 if (MS.TrackOrigins) 3819 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 3820 Alignment, AMD64FpEndOffset); 3821 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 3822 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3823 ConstantInt::get(MS.IntptrTy, 8)), 3824 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 3825 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3826 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 3827 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 3828 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 3829 Alignment, /*isStore*/ true); 3830 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3831 AMD64FpEndOffset); 3832 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 3833 VAArgOverflowSize); 3834 if (MS.TrackOrigins) { 3835 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 3836 AMD64FpEndOffset); 3837 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 3838 VAArgOverflowSize); 3839 } 3840 } 3841 } 3842 }; 3843 3844 /// MIPS64-specific implementation of VarArgHelper. 3845 struct VarArgMIPS64Helper : public VarArgHelper { 3846 Function &F; 3847 MemorySanitizer &MS; 3848 MemorySanitizerVisitor &MSV; 3849 Value *VAArgTLSCopy = nullptr; 3850 Value *VAArgSize = nullptr; 3851 3852 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3853 3854 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3855 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 3856 3857 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3858 unsigned VAArgOffset = 0; 3859 const DataLayout &DL = F.getParent()->getDataLayout(); 3860 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3861 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3862 ArgIt != End; ++ArgIt) { 3863 Triple TargetTriple(F.getParent()->getTargetTriple()); 3864 Value *A = *ArgIt; 3865 Value *Base; 3866 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3867 if (TargetTriple.getArch() == Triple::mips64) { 3868 // Adjusting the shadow for argument with size < 8 to match the placement 3869 // of bits in big endian system 3870 if (ArgSize < 8) 3871 VAArgOffset += (8 - ArgSize); 3872 } 3873 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 3874 VAArgOffset += ArgSize; 3875 VAArgOffset = alignTo(VAArgOffset, 8); 3876 if (!Base) 3877 continue; 3878 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3879 } 3880 3881 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3882 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3883 // a new class member i.e. it is the total size of all VarArgs. 3884 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3885 } 3886 3887 /// Compute the shadow address for a given va_arg. 3888 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3889 unsigned ArgOffset, unsigned ArgSize) { 3890 // Make sure we don't overflow __msan_va_arg_tls. 3891 if (ArgOffset + ArgSize > kParamTLSSize) 3892 return nullptr; 3893 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3894 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3895 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3896 "_msarg"); 3897 } 3898 3899 void visitVAStartInst(VAStartInst &I) override { 3900 IRBuilder<> IRB(&I); 3901 VAStartInstrumentationList.push_back(&I); 3902 Value *VAListTag = I.getArgOperand(0); 3903 Value *ShadowPtr, *OriginPtr; 3904 unsigned Alignment = 8; 3905 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 3906 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 3907 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3908 /* size */ 8, Alignment, false); 3909 } 3910 3911 void visitVACopyInst(VACopyInst &I) override { 3912 IRBuilder<> IRB(&I); 3913 VAStartInstrumentationList.push_back(&I); 3914 Value *VAListTag = I.getArgOperand(0); 3915 Value *ShadowPtr, *OriginPtr; 3916 unsigned Alignment = 8; 3917 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 3918 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 3919 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3920 /* size */ 8, Alignment, false); 3921 } 3922 3923 void finalizeInstrumentation() override { 3924 assert(!VAArgSize && !VAArgTLSCopy && 3925 "finalizeInstrumentation called twice"); 3926 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3927 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3928 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3929 VAArgSize); 3930 3931 if (!VAStartInstrumentationList.empty()) { 3932 // If there is a va_start in this function, make a backup copy of 3933 // va_arg_tls somewhere in the function entry block. 3934 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3935 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3936 } 3937 3938 // Instrument va_start. 3939 // Copy va_list shadow from the backup copy of the TLS contents. 3940 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3941 CallInst *OrigInst = VAStartInstrumentationList[i]; 3942 IRBuilder<> IRB(OrigInst->getNextNode()); 3943 Value *VAListTag = OrigInst->getArgOperand(0); 3944 Value *RegSaveAreaPtrPtr = 3945 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3946 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 3947 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3948 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3949 unsigned Alignment = 8; 3950 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3951 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3952 Alignment, /*isStore*/ true); 3953 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3954 CopySize); 3955 } 3956 } 3957 }; 3958 3959 /// AArch64-specific implementation of VarArgHelper. 3960 struct VarArgAArch64Helper : public VarArgHelper { 3961 static const unsigned kAArch64GrArgSize = 64; 3962 static const unsigned kAArch64VrArgSize = 128; 3963 3964 static const unsigned AArch64GrBegOffset = 0; 3965 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3966 // Make VR space aligned to 16 bytes. 3967 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 3968 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3969 + kAArch64VrArgSize; 3970 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3971 3972 Function &F; 3973 MemorySanitizer &MS; 3974 MemorySanitizerVisitor &MSV; 3975 Value *VAArgTLSCopy = nullptr; 3976 Value *VAArgOverflowSize = nullptr; 3977 3978 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3979 3980 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3981 3982 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3983 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 3984 3985 ArgKind classifyArgument(Value* arg) { 3986 Type *T = arg->getType(); 3987 if (T->isFPOrFPVectorTy()) 3988 return AK_FloatingPoint; 3989 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3990 || (T->isPointerTy())) 3991 return AK_GeneralPurpose; 3992 return AK_Memory; 3993 } 3994 3995 // The instrumentation stores the argument shadow in a non ABI-specific 3996 // format because it does not know which argument is named (since Clang, 3997 // like x86_64 case, lowers the va_args in the frontend and this pass only 3998 // sees the low level code that deals with va_list internals). 3999 // The first seven GR registers are saved in the first 56 bytes of the 4000 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4001 // the remaining arguments. 4002 // Using constant offset within the va_arg TLS array allows fast copy 4003 // in the finalize instrumentation. 4004 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4005 unsigned GrOffset = AArch64GrBegOffset; 4006 unsigned VrOffset = AArch64VrBegOffset; 4007 unsigned OverflowOffset = AArch64VAEndOffset; 4008 4009 const DataLayout &DL = F.getParent()->getDataLayout(); 4010 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4011 ArgIt != End; ++ArgIt) { 4012 Value *A = *ArgIt; 4013 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4014 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4015 ArgKind AK = classifyArgument(A); 4016 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4017 AK = AK_Memory; 4018 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4019 AK = AK_Memory; 4020 Value *Base; 4021 switch (AK) { 4022 case AK_GeneralPurpose: 4023 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4024 GrOffset += 8; 4025 break; 4026 case AK_FloatingPoint: 4027 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4028 VrOffset += 16; 4029 break; 4030 case AK_Memory: 4031 // Don't count fixed arguments in the overflow area - va_start will 4032 // skip right over them. 4033 if (IsFixed) 4034 continue; 4035 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4036 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4037 alignTo(ArgSize, 8)); 4038 OverflowOffset += alignTo(ArgSize, 8); 4039 break; 4040 } 4041 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4042 // bother to actually store a shadow. 4043 if (IsFixed) 4044 continue; 4045 if (!Base) 4046 continue; 4047 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4048 } 4049 Constant *OverflowSize = 4050 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4051 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4052 } 4053 4054 /// Compute the shadow address for a given va_arg. 4055 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4056 unsigned ArgOffset, unsigned ArgSize) { 4057 // Make sure we don't overflow __msan_va_arg_tls. 4058 if (ArgOffset + ArgSize > kParamTLSSize) 4059 return nullptr; 4060 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4061 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4062 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4063 "_msarg"); 4064 } 4065 4066 void visitVAStartInst(VAStartInst &I) override { 4067 IRBuilder<> IRB(&I); 4068 VAStartInstrumentationList.push_back(&I); 4069 Value *VAListTag = I.getArgOperand(0); 4070 Value *ShadowPtr, *OriginPtr; 4071 unsigned Alignment = 8; 4072 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4073 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4074 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4075 /* size */ 32, Alignment, false); 4076 } 4077 4078 void visitVACopyInst(VACopyInst &I) override { 4079 IRBuilder<> IRB(&I); 4080 VAStartInstrumentationList.push_back(&I); 4081 Value *VAListTag = I.getArgOperand(0); 4082 Value *ShadowPtr, *OriginPtr; 4083 unsigned Alignment = 8; 4084 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4085 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4086 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4087 /* size */ 32, Alignment, false); 4088 } 4089 4090 // Retrieve a va_list field of 'void*' size. 4091 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4092 Value *SaveAreaPtrPtr = 4093 IRB.CreateIntToPtr( 4094 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4095 ConstantInt::get(MS.IntptrTy, offset)), 4096 Type::getInt64PtrTy(*MS.C)); 4097 return IRB.CreateLoad(SaveAreaPtrPtr); 4098 } 4099 4100 // Retrieve a va_list field of 'int' size. 4101 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4102 Value *SaveAreaPtr = 4103 IRB.CreateIntToPtr( 4104 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4105 ConstantInt::get(MS.IntptrTy, offset)), 4106 Type::getInt32PtrTy(*MS.C)); 4107 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 4108 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4109 } 4110 4111 void finalizeInstrumentation() override { 4112 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4113 "finalizeInstrumentation called twice"); 4114 if (!VAStartInstrumentationList.empty()) { 4115 // If there is a va_start in this function, make a backup copy of 4116 // va_arg_tls somewhere in the function entry block. 4117 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4118 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 4119 Value *CopySize = 4120 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4121 VAArgOverflowSize); 4122 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4123 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4124 } 4125 4126 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4127 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4128 4129 // Instrument va_start, copy va_list shadow from the backup copy of 4130 // the TLS contents. 4131 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4132 CallInst *OrigInst = VAStartInstrumentationList[i]; 4133 IRBuilder<> IRB(OrigInst->getNextNode()); 4134 4135 Value *VAListTag = OrigInst->getArgOperand(0); 4136 4137 // The variadic ABI for AArch64 creates two areas to save the incoming 4138 // argument registers (one for 64-bit general register xn-x7 and another 4139 // for 128-bit FP/SIMD vn-v7). 4140 // We need then to propagate the shadow arguments on both regions 4141 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4142 // The remaning arguments are saved on shadow for 'va::stack'. 4143 // One caveat is it requires only to propagate the non-named arguments, 4144 // however on the call site instrumentation 'all' the arguments are 4145 // saved. So to copy the shadow values from the va_arg TLS array 4146 // we need to adjust the offset for both GR and VR fields based on 4147 // the __{gr,vr}_offs value (since they are stores based on incoming 4148 // named arguments). 4149 4150 // Read the stack pointer from the va_list. 4151 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4152 4153 // Read both the __gr_top and __gr_off and add them up. 4154 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4155 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4156 4157 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4158 4159 // Read both the __vr_top and __vr_off and add them up. 4160 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4161 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4162 4163 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4164 4165 // It does not know how many named arguments is being used and, on the 4166 // callsite all the arguments were saved. Since __gr_off is defined as 4167 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4168 // argument by ignoring the bytes of shadow from named arguments. 4169 Value *GrRegSaveAreaShadowPtrOff = 4170 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4171 4172 Value *GrRegSaveAreaShadowPtr = 4173 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4174 /*Alignment*/ 8, /*isStore*/ true) 4175 .first; 4176 4177 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4178 GrRegSaveAreaShadowPtrOff); 4179 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4180 4181 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); 4182 4183 // Again, but for FP/SIMD values. 4184 Value *VrRegSaveAreaShadowPtrOff = 4185 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4186 4187 Value *VrRegSaveAreaShadowPtr = 4188 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4189 /*Alignment*/ 8, /*isStore*/ true) 4190 .first; 4191 4192 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4193 IRB.getInt8Ty(), 4194 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4195 IRB.getInt32(AArch64VrBegOffset)), 4196 VrRegSaveAreaShadowPtrOff); 4197 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4198 4199 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); 4200 4201 // And finally for remaining arguments. 4202 Value *StackSaveAreaShadowPtr = 4203 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4204 /*Alignment*/ 16, /*isStore*/ true) 4205 .first; 4206 4207 Value *StackSrcPtr = 4208 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4209 IRB.getInt32(AArch64VAEndOffset)); 4210 4211 IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, 4212 VAArgOverflowSize); 4213 } 4214 } 4215 }; 4216 4217 /// PowerPC64-specific implementation of VarArgHelper. 4218 struct VarArgPowerPC64Helper : public VarArgHelper { 4219 Function &F; 4220 MemorySanitizer &MS; 4221 MemorySanitizerVisitor &MSV; 4222 Value *VAArgTLSCopy = nullptr; 4223 Value *VAArgSize = nullptr; 4224 4225 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4226 4227 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4228 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4229 4230 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4231 // For PowerPC, we need to deal with alignment of stack arguments - 4232 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4233 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4234 // and QPX vectors are aligned to 32 bytes. For that reason, we 4235 // compute current offset from stack pointer (which is always properly 4236 // aligned), and offset for the first vararg, then subtract them. 4237 unsigned VAArgBase; 4238 Triple TargetTriple(F.getParent()->getTargetTriple()); 4239 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4240 // and 32 bytes for ABIv2. This is usually determined by target 4241 // endianness, but in theory could be overriden by function attribute. 4242 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4243 if (TargetTriple.getArch() == Triple::ppc64) 4244 VAArgBase = 48; 4245 else 4246 VAArgBase = 32; 4247 unsigned VAArgOffset = VAArgBase; 4248 const DataLayout &DL = F.getParent()->getDataLayout(); 4249 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4250 ArgIt != End; ++ArgIt) { 4251 Value *A = *ArgIt; 4252 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4253 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4254 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4255 if (IsByVal) { 4256 assert(A->getType()->isPointerTy()); 4257 Type *RealTy = A->getType()->getPointerElementType(); 4258 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4259 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4260 if (ArgAlign < 8) 4261 ArgAlign = 8; 4262 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4263 if (!IsFixed) { 4264 Value *Base = getShadowPtrForVAArgument( 4265 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4266 if (Base) { 4267 Value *AShadowPtr, *AOriginPtr; 4268 std::tie(AShadowPtr, AOriginPtr) = 4269 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4270 kShadowTLSAlignment, /*isStore*/ false); 4271 4272 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4273 kShadowTLSAlignment, ArgSize); 4274 } 4275 } 4276 VAArgOffset += alignTo(ArgSize, 8); 4277 } else { 4278 Value *Base; 4279 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4280 uint64_t ArgAlign = 8; 4281 if (A->getType()->isArrayTy()) { 4282 // Arrays are aligned to element size, except for long double 4283 // arrays, which are aligned to 8 bytes. 4284 Type *ElementTy = A->getType()->getArrayElementType(); 4285 if (!ElementTy->isPPC_FP128Ty()) 4286 ArgAlign = DL.getTypeAllocSize(ElementTy); 4287 } else if (A->getType()->isVectorTy()) { 4288 // Vectors are naturally aligned. 4289 ArgAlign = DL.getTypeAllocSize(A->getType()); 4290 } 4291 if (ArgAlign < 8) 4292 ArgAlign = 8; 4293 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4294 if (DL.isBigEndian()) { 4295 // Adjusting the shadow for argument with size < 8 to match the placement 4296 // of bits in big endian system 4297 if (ArgSize < 8) 4298 VAArgOffset += (8 - ArgSize); 4299 } 4300 if (!IsFixed) { 4301 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4302 VAArgOffset - VAArgBase, ArgSize); 4303 if (Base) 4304 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4305 } 4306 VAArgOffset += ArgSize; 4307 VAArgOffset = alignTo(VAArgOffset, 8); 4308 } 4309 if (IsFixed) 4310 VAArgBase = VAArgOffset; 4311 } 4312 4313 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4314 VAArgOffset - VAArgBase); 4315 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4316 // a new class member i.e. it is the total size of all VarArgs. 4317 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4318 } 4319 4320 /// Compute the shadow address for a given va_arg. 4321 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4322 unsigned ArgOffset, unsigned ArgSize) { 4323 // Make sure we don't overflow __msan_va_arg_tls. 4324 if (ArgOffset + ArgSize > kParamTLSSize) 4325 return nullptr; 4326 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4327 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4328 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4329 "_msarg"); 4330 } 4331 4332 void visitVAStartInst(VAStartInst &I) override { 4333 IRBuilder<> IRB(&I); 4334 VAStartInstrumentationList.push_back(&I); 4335 Value *VAListTag = I.getArgOperand(0); 4336 Value *ShadowPtr, *OriginPtr; 4337 unsigned Alignment = 8; 4338 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4339 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4340 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4341 /* size */ 8, Alignment, false); 4342 } 4343 4344 void visitVACopyInst(VACopyInst &I) override { 4345 IRBuilder<> IRB(&I); 4346 Value *VAListTag = I.getArgOperand(0); 4347 Value *ShadowPtr, *OriginPtr; 4348 unsigned Alignment = 8; 4349 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4350 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4351 // Unpoison the whole __va_list_tag. 4352 // FIXME: magic ABI constants. 4353 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4354 /* size */ 8, Alignment, false); 4355 } 4356 4357 void finalizeInstrumentation() override { 4358 assert(!VAArgSize && !VAArgTLSCopy && 4359 "finalizeInstrumentation called twice"); 4360 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4361 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 4362 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4363 VAArgSize); 4364 4365 if (!VAStartInstrumentationList.empty()) { 4366 // If there is a va_start in this function, make a backup copy of 4367 // va_arg_tls somewhere in the function entry block. 4368 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4369 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4370 } 4371 4372 // Instrument va_start. 4373 // Copy va_list shadow from the backup copy of the TLS contents. 4374 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4375 CallInst *OrigInst = VAStartInstrumentationList[i]; 4376 IRBuilder<> IRB(OrigInst->getNextNode()); 4377 Value *VAListTag = OrigInst->getArgOperand(0); 4378 Value *RegSaveAreaPtrPtr = 4379 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4380 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 4381 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 4382 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4383 unsigned Alignment = 8; 4384 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4385 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4386 Alignment, /*isStore*/ true); 4387 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4388 CopySize); 4389 } 4390 } 4391 }; 4392 4393 /// A no-op implementation of VarArgHelper. 4394 struct VarArgNoOpHelper : public VarArgHelper { 4395 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4396 MemorySanitizerVisitor &MSV) {} 4397 4398 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4399 4400 void visitVAStartInst(VAStartInst &I) override {} 4401 4402 void visitVACopyInst(VACopyInst &I) override {} 4403 4404 void finalizeInstrumentation() override {} 4405 }; 4406 4407 } // end anonymous namespace 4408 4409 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4410 MemorySanitizerVisitor &Visitor) { 4411 // VarArg handling is only implemented on AMD64. False positives are possible 4412 // on other platforms. 4413 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4414 if (TargetTriple.getArch() == Triple::x86_64) 4415 return new VarArgAMD64Helper(Func, Msan, Visitor); 4416 else if (TargetTriple.isMIPS64()) 4417 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4418 else if (TargetTriple.getArch() == Triple::aarch64) 4419 return new VarArgAArch64Helper(Func, Msan, Visitor); 4420 else if (TargetTriple.getArch() == Triple::ppc64 || 4421 TargetTriple.getArch() == Triple::ppc64le) 4422 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4423 else 4424 return new VarArgNoOpHelper(Func, Msan, Visitor); 4425 } 4426 4427 bool MemorySanitizer::runOnFunction(Function &F) { 4428 if (!CompileKernel && (&F == MsanCtorFunction)) 4429 return false; 4430 MemorySanitizerVisitor Visitor(F, *this); 4431 4432 // Clear out readonly/readnone attributes. 4433 AttrBuilder B; 4434 B.addAttribute(Attribute::ReadOnly) 4435 .addAttribute(Attribute::ReadNone); 4436 F.removeAttributes(AttributeList::FunctionIndex, B); 4437 4438 return Visitor.runOnFunction(); 4439 } 4440