1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/Transforms/Instrumentation.h" 95 #include "llvm/ADT/DepthFirstIterator.h" 96 #include "llvm/ADT/SmallString.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/ADT/StringExtras.h" 99 #include "llvm/ADT/Triple.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/Function.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/InstVisitor.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/MDBuilder.h" 108 #include "llvm/IR/Module.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/ValueMap.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ModuleUtils.h" 118 119 using namespace llvm; 120 121 #define DEBUG_TYPE "msan" 122 123 static const unsigned kOriginSize = 4; 124 static const unsigned kMinOriginAlignment = 4; 125 static const unsigned kShadowTLSAlignment = 8; 126 127 // These constants must be kept in sync with the ones in msan.h. 128 static const unsigned kParamTLSSize = 800; 129 static const unsigned kRetvalTLSSize = 800; 130 131 // Accesses sizes are powers of two: 1, 2, 4, 8. 132 static const size_t kNumberOfAccessSizes = 4; 133 134 /// \brief Track origins of uninitialized values. 135 /// 136 /// Adds a section to MemorySanitizer report that points to the allocation 137 /// (stack or heap) the uninitialized bits came from originally. 138 static cl::opt<int> ClTrackOrigins("msan-track-origins", 139 cl::desc("Track origins (allocation sites) of poisoned memory"), 140 cl::Hidden, cl::init(0)); 141 static cl::opt<bool> ClKeepGoing("msan-keep-going", 142 cl::desc("keep going after reporting a UMR"), 143 cl::Hidden, cl::init(false)); 144 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 145 cl::desc("poison uninitialized stack variables"), 146 cl::Hidden, cl::init(true)); 147 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 148 cl::desc("poison uninitialized stack variables with a call"), 149 cl::Hidden, cl::init(false)); 150 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 151 cl::desc("poison uninitialized stack variables with the given patter"), 152 cl::Hidden, cl::init(0xff)); 153 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 154 cl::desc("poison undef temps"), 155 cl::Hidden, cl::init(true)); 156 157 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 158 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 159 cl::Hidden, cl::init(true)); 160 161 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 162 cl::desc("exact handling of relational integer ICmp"), 163 cl::Hidden, cl::init(false)); 164 165 // This flag controls whether we check the shadow of the address 166 // operand of load or store. Such bugs are very rare, since load from 167 // a garbage address typically results in SEGV, but still happen 168 // (e.g. only lower bits of address are garbage, or the access happens 169 // early at program startup where malloc-ed memory is more likely to 170 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 171 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 172 cl::desc("report accesses through a pointer which has poisoned shadow"), 173 cl::Hidden, cl::init(true)); 174 175 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 176 cl::desc("print out instructions with default strict semantics"), 177 cl::Hidden, cl::init(false)); 178 179 static cl::opt<int> ClInstrumentationWithCallThreshold( 180 "msan-instrumentation-with-call-threshold", 181 cl::desc( 182 "If the function being instrumented requires more than " 183 "this number of checks and origin stores, use callbacks instead of " 184 "inline checks (-1 means never use callbacks)."), 185 cl::Hidden, cl::init(3500)); 186 187 // This is an experiment to enable handling of cases where shadow is a non-zero 188 // compile-time constant. For some unexplainable reason they were silently 189 // ignored in the instrumentation. 190 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 191 cl::desc("Insert checks for constant shadow values"), 192 cl::Hidden, cl::init(false)); 193 194 namespace { 195 196 // Memory map parameters used in application-to-shadow address calculation. 197 // Offset = (Addr & ~AndMask) ^ XorMask 198 // Shadow = ShadowBase + Offset 199 // Origin = OriginBase + Offset 200 struct MemoryMapParams { 201 uint64_t AndMask; 202 uint64_t XorMask; 203 uint64_t ShadowBase; 204 uint64_t OriginBase; 205 }; 206 207 struct PlatformMemoryMapParams { 208 const MemoryMapParams *bits32; 209 const MemoryMapParams *bits64; 210 }; 211 212 // i386 Linux 213 static const MemoryMapParams Linux_I386_MemoryMapParams = { 214 0x000080000000, // AndMask 215 0, // XorMask (not used) 216 0, // ShadowBase (not used) 217 0x000040000000, // OriginBase 218 }; 219 220 // x86_64 Linux 221 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 222 0x400000000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x200000000000, // OriginBase 226 }; 227 228 // mips64 Linux 229 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 230 0x004000000000, // AndMask 231 0, // XorMask (not used) 232 0, // ShadowBase (not used) 233 0x002000000000, // OriginBase 234 }; 235 236 // i386 FreeBSD 237 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 238 0x000180000000, // AndMask 239 0x000040000000, // XorMask 240 0x000020000000, // ShadowBase 241 0x000700000000, // OriginBase 242 }; 243 244 // x86_64 FreeBSD 245 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 246 0xc00000000000, // AndMask 247 0x200000000000, // XorMask 248 0x100000000000, // ShadowBase 249 0x380000000000, // OriginBase 250 }; 251 252 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 253 &Linux_I386_MemoryMapParams, 254 &Linux_X86_64_MemoryMapParams, 255 }; 256 257 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 258 NULL, 259 &Linux_MIPS64_MemoryMapParams, 260 }; 261 262 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 263 &FreeBSD_I386_MemoryMapParams, 264 &FreeBSD_X86_64_MemoryMapParams, 265 }; 266 267 /// \brief An instrumentation pass implementing detection of uninitialized 268 /// reads. 269 /// 270 /// MemorySanitizer: instrument the code in module to find 271 /// uninitialized reads. 272 class MemorySanitizer : public FunctionPass { 273 public: 274 MemorySanitizer(int TrackOrigins = 0) 275 : FunctionPass(ID), 276 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 277 DL(nullptr), 278 WarningFn(nullptr) {} 279 const char *getPassName() const override { return "MemorySanitizer"; } 280 bool runOnFunction(Function &F) override; 281 bool doInitialization(Module &M) override; 282 static char ID; // Pass identification, replacement for typeid. 283 284 private: 285 void initializeCallbacks(Module &M); 286 287 /// \brief Track origins (allocation points) of uninitialized values. 288 int TrackOrigins; 289 290 const DataLayout *DL; 291 LLVMContext *C; 292 Type *IntptrTy; 293 Type *OriginTy; 294 /// \brief Thread-local shadow storage for function parameters. 295 GlobalVariable *ParamTLS; 296 /// \brief Thread-local origin storage for function parameters. 297 GlobalVariable *ParamOriginTLS; 298 /// \brief Thread-local shadow storage for function return value. 299 GlobalVariable *RetvalTLS; 300 /// \brief Thread-local origin storage for function return value. 301 GlobalVariable *RetvalOriginTLS; 302 /// \brief Thread-local shadow storage for in-register va_arg function 303 /// parameters (x86_64-specific). 304 GlobalVariable *VAArgTLS; 305 /// \brief Thread-local shadow storage for va_arg overflow area 306 /// (x86_64-specific). 307 GlobalVariable *VAArgOverflowSizeTLS; 308 /// \brief Thread-local space used to pass origin value to the UMR reporting 309 /// function. 310 GlobalVariable *OriginTLS; 311 312 /// \brief The run-time callback to print a warning. 313 Value *WarningFn; 314 // These arrays are indexed by log2(AccessSize). 315 Value *MaybeWarningFn[kNumberOfAccessSizes]; 316 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 317 318 /// \brief Run-time helper that generates a new origin value for a stack 319 /// allocation. 320 Value *MsanSetAllocaOrigin4Fn; 321 /// \brief Run-time helper that poisons stack on function entry. 322 Value *MsanPoisonStackFn; 323 /// \brief Run-time helper that records a store (or any event) of an 324 /// uninitialized value and returns an updated origin id encoding this info. 325 Value *MsanChainOriginFn; 326 /// \brief MSan runtime replacements for memmove, memcpy and memset. 327 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 328 329 /// \brief Memory map parameters used in application-to-shadow calculation. 330 const MemoryMapParams *MapParams; 331 332 MDNode *ColdCallWeights; 333 /// \brief Branch weights for origin store. 334 MDNode *OriginStoreWeights; 335 /// \brief An empty volatile inline asm that prevents callback merge. 336 InlineAsm *EmptyAsm; 337 338 friend struct MemorySanitizerVisitor; 339 friend struct VarArgAMD64Helper; 340 friend struct VarArgMIPS64Helper; 341 }; 342 } // namespace 343 344 char MemorySanitizer::ID = 0; 345 INITIALIZE_PASS(MemorySanitizer, "msan", 346 "MemorySanitizer: detects uninitialized reads.", 347 false, false) 348 349 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 350 return new MemorySanitizer(TrackOrigins); 351 } 352 353 /// \brief Create a non-const global initialized with the given string. 354 /// 355 /// Creates a writable global for Str so that we can pass it to the 356 /// run-time lib. Runtime uses first 4 bytes of the string to store the 357 /// frame ID, so the string needs to be mutable. 358 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 359 StringRef Str) { 360 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 361 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 362 GlobalValue::PrivateLinkage, StrConst, ""); 363 } 364 365 366 /// \brief Insert extern declaration of runtime-provided functions and globals. 367 void MemorySanitizer::initializeCallbacks(Module &M) { 368 // Only do this once. 369 if (WarningFn) 370 return; 371 372 IRBuilder<> IRB(*C); 373 // Create the callback. 374 // FIXME: this function should have "Cold" calling conv, 375 // which is not yet implemented. 376 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 377 : "__msan_warning_noreturn"; 378 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 379 380 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 381 AccessSizeIndex++) { 382 unsigned AccessSize = 1 << AccessSizeIndex; 383 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 384 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 385 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 386 IRB.getInt32Ty(), nullptr); 387 388 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 389 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 390 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 391 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 392 } 393 394 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 395 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 396 IRB.getInt8PtrTy(), IntptrTy, nullptr); 397 MsanPoisonStackFn = 398 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 399 IRB.getInt8PtrTy(), IntptrTy, nullptr); 400 MsanChainOriginFn = M.getOrInsertFunction( 401 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 402 MemmoveFn = M.getOrInsertFunction( 403 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 404 IRB.getInt8PtrTy(), IntptrTy, nullptr); 405 MemcpyFn = M.getOrInsertFunction( 406 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 407 IntptrTy, nullptr); 408 MemsetFn = M.getOrInsertFunction( 409 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 410 IntptrTy, nullptr); 411 412 // Create globals. 413 RetvalTLS = new GlobalVariable( 414 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 415 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 416 GlobalVariable::InitialExecTLSModel); 417 RetvalOriginTLS = new GlobalVariable( 418 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 419 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 420 421 ParamTLS = new GlobalVariable( 422 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 423 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 424 GlobalVariable::InitialExecTLSModel); 425 ParamOriginTLS = new GlobalVariable( 426 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 427 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 428 nullptr, GlobalVariable::InitialExecTLSModel); 429 430 VAArgTLS = new GlobalVariable( 431 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 432 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 433 GlobalVariable::InitialExecTLSModel); 434 VAArgOverflowSizeTLS = new GlobalVariable( 435 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 436 "__msan_va_arg_overflow_size_tls", nullptr, 437 GlobalVariable::InitialExecTLSModel); 438 OriginTLS = new GlobalVariable( 439 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 440 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 441 442 // We insert an empty inline asm after __msan_report* to avoid callback merge. 443 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 444 StringRef(""), StringRef(""), 445 /*hasSideEffects=*/true); 446 } 447 448 /// \brief Module-level initialization. 449 /// 450 /// inserts a call to __msan_init to the module's constructor list. 451 bool MemorySanitizer::doInitialization(Module &M) { 452 DL = &M.getDataLayout(); 453 454 Triple TargetTriple(M.getTargetTriple()); 455 switch (TargetTriple.getOS()) { 456 case Triple::FreeBSD: 457 switch (TargetTriple.getArch()) { 458 case Triple::x86_64: 459 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 460 break; 461 case Triple::x86: 462 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 463 break; 464 default: 465 report_fatal_error("unsupported architecture"); 466 } 467 break; 468 case Triple::Linux: 469 switch (TargetTriple.getArch()) { 470 case Triple::x86_64: 471 MapParams = Linux_X86_MemoryMapParams.bits64; 472 break; 473 case Triple::x86: 474 MapParams = Linux_X86_MemoryMapParams.bits32; 475 break; 476 case Triple::mips64: 477 case Triple::mips64el: 478 MapParams = Linux_MIPS_MemoryMapParams.bits64; 479 break; 480 default: 481 report_fatal_error("unsupported architecture"); 482 } 483 break; 484 default: 485 report_fatal_error("unsupported operating system"); 486 } 487 488 C = &(M.getContext()); 489 IRBuilder<> IRB(*C); 490 IntptrTy = IRB.getIntPtrTy(DL); 491 OriginTy = IRB.getInt32Ty(); 492 493 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 494 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 495 496 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs. 497 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction( 498 "__msan_init", IRB.getVoidTy(), nullptr)), 0); 499 500 if (TrackOrigins) 501 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 502 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 503 504 if (ClKeepGoing) 505 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 506 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 507 508 return true; 509 } 510 511 namespace { 512 513 /// \brief A helper class that handles instrumentation of VarArg 514 /// functions on a particular platform. 515 /// 516 /// Implementations are expected to insert the instrumentation 517 /// necessary to propagate argument shadow through VarArg function 518 /// calls. Visit* methods are called during an InstVisitor pass over 519 /// the function, and should avoid creating new basic blocks. A new 520 /// instance of this class is created for each instrumented function. 521 struct VarArgHelper { 522 /// \brief Visit a CallSite. 523 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 524 525 /// \brief Visit a va_start call. 526 virtual void visitVAStartInst(VAStartInst &I) = 0; 527 528 /// \brief Visit a va_copy call. 529 virtual void visitVACopyInst(VACopyInst &I) = 0; 530 531 /// \brief Finalize function instrumentation. 532 /// 533 /// This method is called after visiting all interesting (see above) 534 /// instructions in a function. 535 virtual void finalizeInstrumentation() = 0; 536 537 virtual ~VarArgHelper() {} 538 }; 539 540 struct MemorySanitizerVisitor; 541 542 VarArgHelper* 543 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 544 MemorySanitizerVisitor &Visitor); 545 546 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 547 if (TypeSize <= 8) return 0; 548 return Log2_32_Ceil(TypeSize / 8); 549 } 550 551 /// This class does all the work for a given function. Store and Load 552 /// instructions store and load corresponding shadow and origin 553 /// values. Most instructions propagate shadow from arguments to their 554 /// return values. Certain instructions (most importantly, BranchInst) 555 /// test their argument shadow and print reports (with a runtime call) if it's 556 /// non-zero. 557 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 558 Function &F; 559 MemorySanitizer &MS; 560 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 561 ValueMap<Value*, Value*> ShadowMap, OriginMap; 562 std::unique_ptr<VarArgHelper> VAHelper; 563 564 // The following flags disable parts of MSan instrumentation based on 565 // blacklist contents and command-line options. 566 bool InsertChecks; 567 bool PropagateShadow; 568 bool PoisonStack; 569 bool PoisonUndef; 570 bool CheckReturnValue; 571 572 struct ShadowOriginAndInsertPoint { 573 Value *Shadow; 574 Value *Origin; 575 Instruction *OrigIns; 576 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 577 : Shadow(S), Origin(O), OrigIns(I) { } 578 }; 579 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 580 SmallVector<Instruction*, 16> StoreList; 581 582 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 583 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 584 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 585 InsertChecks = SanitizeFunction; 586 PropagateShadow = SanitizeFunction; 587 PoisonStack = SanitizeFunction && ClPoisonStack; 588 PoisonUndef = SanitizeFunction && ClPoisonUndef; 589 // FIXME: Consider using SpecialCaseList to specify a list of functions that 590 // must always return fully initialized values. For now, we hardcode "main". 591 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 592 593 DEBUG(if (!InsertChecks) 594 dbgs() << "MemorySanitizer is not inserting checks into '" 595 << F.getName() << "'\n"); 596 } 597 598 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 599 if (MS.TrackOrigins <= 1) return V; 600 return IRB.CreateCall(MS.MsanChainOriginFn, V); 601 } 602 603 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 604 unsigned IntptrSize = MS.DL->getTypeStoreSize(MS.IntptrTy); 605 if (IntptrSize == kOriginSize) return Origin; 606 assert(IntptrSize == kOriginSize * 2); 607 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 608 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 609 } 610 611 /// \brief Fill memory range with the given origin value. 612 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 613 unsigned Size, unsigned Alignment) { 614 unsigned IntptrAlignment = MS.DL->getABITypeAlignment(MS.IntptrTy); 615 unsigned IntptrSize = MS.DL->getTypeStoreSize(MS.IntptrTy); 616 assert(IntptrAlignment >= kMinOriginAlignment); 617 assert(IntptrSize >= kOriginSize); 618 619 unsigned Ofs = 0; 620 unsigned CurrentAlignment = Alignment; 621 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 622 Value *IntptrOrigin = originToIntptr(IRB, Origin); 623 Value *IntptrOriginPtr = 624 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 625 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 626 Value *Ptr = 627 i ? IRB.CreateConstGEP1_32(IntptrOriginPtr, i) : IntptrOriginPtr; 628 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 629 Ofs += IntptrSize / kOriginSize; 630 CurrentAlignment = IntptrAlignment; 631 } 632 } 633 634 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 635 Value *GEP = i ? IRB.CreateConstGEP1_32(OriginPtr, i) : OriginPtr; 636 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 637 CurrentAlignment = kMinOriginAlignment; 638 } 639 } 640 641 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 642 unsigned Alignment, bool AsCall) { 643 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 644 unsigned StoreSize = MS.DL->getTypeStoreSize(Shadow->getType()); 645 if (isa<StructType>(Shadow->getType())) { 646 paintOrigin(IRB, updateOrigin(Origin, IRB), 647 getOriginPtr(Addr, IRB, Alignment), StoreSize, 648 OriginAlignment); 649 } else { 650 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 651 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 652 if (ConstantShadow) { 653 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 654 paintOrigin(IRB, updateOrigin(Origin, IRB), 655 getOriginPtr(Addr, IRB, Alignment), StoreSize, 656 OriginAlignment); 657 return; 658 } 659 660 unsigned TypeSizeInBits = 661 MS.DL->getTypeSizeInBits(ConvertedShadow->getType()); 662 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 663 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 664 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 665 Value *ConvertedShadow2 = IRB.CreateZExt( 666 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 667 IRB.CreateCall3(Fn, ConvertedShadow2, 668 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 669 Origin); 670 } else { 671 Value *Cmp = IRB.CreateICmpNE( 672 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 673 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 674 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 675 IRBuilder<> IRBNew(CheckTerm); 676 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 677 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 678 OriginAlignment); 679 } 680 } 681 } 682 683 void materializeStores(bool InstrumentWithCalls) { 684 for (auto Inst : StoreList) { 685 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 686 687 IRBuilder<> IRB(&SI); 688 Value *Val = SI.getValueOperand(); 689 Value *Addr = SI.getPointerOperand(); 690 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 691 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 692 693 StoreInst *NewSI = 694 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 695 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 696 (void)NewSI; 697 698 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 699 700 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 701 702 if (MS.TrackOrigins && !SI.isAtomic()) 703 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 704 InstrumentWithCalls); 705 } 706 } 707 708 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 709 bool AsCall) { 710 IRBuilder<> IRB(OrigIns); 711 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 712 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 713 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 714 715 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 716 if (ConstantShadow) { 717 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 718 if (MS.TrackOrigins) { 719 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 720 MS.OriginTLS); 721 } 722 IRB.CreateCall(MS.WarningFn); 723 IRB.CreateCall(MS.EmptyAsm); 724 // FIXME: Insert UnreachableInst if !ClKeepGoing? 725 // This may invalidate some of the following checks and needs to be done 726 // at the very end. 727 } 728 return; 729 } 730 731 unsigned TypeSizeInBits = 732 MS.DL->getTypeSizeInBits(ConvertedShadow->getType()); 733 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 734 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 735 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 736 Value *ConvertedShadow2 = 737 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 738 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin 739 ? Origin 740 : (Value *)IRB.getInt32(0)); 741 } else { 742 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 743 getCleanShadow(ConvertedShadow), "_mscmp"); 744 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 745 Cmp, OrigIns, 746 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 747 748 IRB.SetInsertPoint(CheckTerm); 749 if (MS.TrackOrigins) { 750 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 751 MS.OriginTLS); 752 } 753 IRB.CreateCall(MS.WarningFn); 754 IRB.CreateCall(MS.EmptyAsm); 755 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 756 } 757 } 758 759 void materializeChecks(bool InstrumentWithCalls) { 760 for (const auto &ShadowData : InstrumentationList) { 761 Instruction *OrigIns = ShadowData.OrigIns; 762 Value *Shadow = ShadowData.Shadow; 763 Value *Origin = ShadowData.Origin; 764 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 765 } 766 DEBUG(dbgs() << "DONE:\n" << F); 767 } 768 769 /// \brief Add MemorySanitizer instrumentation to a function. 770 bool runOnFunction() { 771 MS.initializeCallbacks(*F.getParent()); 772 if (!MS.DL) return false; 773 774 // In the presence of unreachable blocks, we may see Phi nodes with 775 // incoming nodes from such blocks. Since InstVisitor skips unreachable 776 // blocks, such nodes will not have any shadow value associated with them. 777 // It's easier to remove unreachable blocks than deal with missing shadow. 778 removeUnreachableBlocks(F); 779 780 // Iterate all BBs in depth-first order and create shadow instructions 781 // for all instructions (where applicable). 782 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 783 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 784 visit(*BB); 785 786 787 // Finalize PHI nodes. 788 for (PHINode *PN : ShadowPHINodes) { 789 PHINode *PNS = cast<PHINode>(getShadow(PN)); 790 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 791 size_t NumValues = PN->getNumIncomingValues(); 792 for (size_t v = 0; v < NumValues; v++) { 793 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 794 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 795 } 796 } 797 798 VAHelper->finalizeInstrumentation(); 799 800 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 801 InstrumentationList.size() + StoreList.size() > 802 (unsigned)ClInstrumentationWithCallThreshold; 803 804 // Delayed instrumentation of StoreInst. 805 // This may add new checks to be inserted later. 806 materializeStores(InstrumentWithCalls); 807 808 // Insert shadow value checks. 809 materializeChecks(InstrumentWithCalls); 810 811 return true; 812 } 813 814 /// \brief Compute the shadow type that corresponds to a given Value. 815 Type *getShadowTy(Value *V) { 816 return getShadowTy(V->getType()); 817 } 818 819 /// \brief Compute the shadow type that corresponds to a given Type. 820 Type *getShadowTy(Type *OrigTy) { 821 if (!OrigTy->isSized()) { 822 return nullptr; 823 } 824 // For integer type, shadow is the same as the original type. 825 // This may return weird-sized types like i1. 826 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 827 return IT; 828 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 829 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType()); 830 return VectorType::get(IntegerType::get(*MS.C, EltSize), 831 VT->getNumElements()); 832 } 833 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 834 return ArrayType::get(getShadowTy(AT->getElementType()), 835 AT->getNumElements()); 836 } 837 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 838 SmallVector<Type*, 4> Elements; 839 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 840 Elements.push_back(getShadowTy(ST->getElementType(i))); 841 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 842 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 843 return Res; 844 } 845 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy); 846 return IntegerType::get(*MS.C, TypeSize); 847 } 848 849 /// \brief Flatten a vector type. 850 Type *getShadowTyNoVec(Type *ty) { 851 if (VectorType *vt = dyn_cast<VectorType>(ty)) 852 return IntegerType::get(*MS.C, vt->getBitWidth()); 853 return ty; 854 } 855 856 /// \brief Convert a shadow value to it's flattened variant. 857 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 858 Type *Ty = V->getType(); 859 Type *NoVecTy = getShadowTyNoVec(Ty); 860 if (Ty == NoVecTy) return V; 861 return IRB.CreateBitCast(V, NoVecTy); 862 } 863 864 /// \brief Compute the integer shadow offset that corresponds to a given 865 /// application address. 866 /// 867 /// Offset = (Addr & ~AndMask) ^ XorMask 868 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 869 uint64_t AndMask = MS.MapParams->AndMask; 870 assert(AndMask != 0 && "AndMask shall be specified"); 871 Value *OffsetLong = 872 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy), 873 ConstantInt::get(MS.IntptrTy, ~AndMask)); 874 875 uint64_t XorMask = MS.MapParams->XorMask; 876 if (XorMask != 0) 877 OffsetLong = IRB.CreateXor(OffsetLong, 878 ConstantInt::get(MS.IntptrTy, XorMask)); 879 return OffsetLong; 880 } 881 882 /// \brief Compute the shadow address that corresponds to a given application 883 /// address. 884 /// 885 /// Shadow = ShadowBase + Offset 886 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 887 IRBuilder<> &IRB) { 888 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 889 uint64_t ShadowBase = MS.MapParams->ShadowBase; 890 if (ShadowBase != 0) 891 ShadowLong = 892 IRB.CreateAdd(ShadowLong, 893 ConstantInt::get(MS.IntptrTy, ShadowBase)); 894 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 895 } 896 897 /// \brief Compute the origin address that corresponds to a given application 898 /// address. 899 /// 900 /// OriginAddr = (OriginBase + Offset) & ~3ULL 901 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 902 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 903 uint64_t OriginBase = MS.MapParams->OriginBase; 904 if (OriginBase != 0) 905 OriginLong = 906 IRB.CreateAdd(OriginLong, 907 ConstantInt::get(MS.IntptrTy, OriginBase)); 908 if (Alignment < kMinOriginAlignment) { 909 uint64_t Mask = kMinOriginAlignment - 1; 910 OriginLong = IRB.CreateAnd(OriginLong, 911 ConstantInt::get(MS.IntptrTy, ~Mask)); 912 } 913 return IRB.CreateIntToPtr(OriginLong, 914 PointerType::get(IRB.getInt32Ty(), 0)); 915 } 916 917 /// \brief Compute the shadow address for a given function argument. 918 /// 919 /// Shadow = ParamTLS+ArgOffset. 920 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 921 int ArgOffset) { 922 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 923 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 924 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 925 "_msarg"); 926 } 927 928 /// \brief Compute the origin address for a given function argument. 929 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 930 int ArgOffset) { 931 if (!MS.TrackOrigins) return nullptr; 932 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 933 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 934 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 935 "_msarg_o"); 936 } 937 938 /// \brief Compute the shadow address for a retval. 939 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 940 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 941 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 942 "_msret"); 943 } 944 945 /// \brief Compute the origin address for a retval. 946 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 947 // We keep a single origin for the entire retval. Might be too optimistic. 948 return MS.RetvalOriginTLS; 949 } 950 951 /// \brief Set SV to be the shadow value for V. 952 void setShadow(Value *V, Value *SV) { 953 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 954 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 955 } 956 957 /// \brief Set Origin to be the origin value for V. 958 void setOrigin(Value *V, Value *Origin) { 959 if (!MS.TrackOrigins) return; 960 assert(!OriginMap.count(V) && "Values may only have one origin"); 961 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 962 OriginMap[V] = Origin; 963 } 964 965 /// \brief Create a clean shadow value for a given value. 966 /// 967 /// Clean shadow (all zeroes) means all bits of the value are defined 968 /// (initialized). 969 Constant *getCleanShadow(Value *V) { 970 Type *ShadowTy = getShadowTy(V); 971 if (!ShadowTy) 972 return nullptr; 973 return Constant::getNullValue(ShadowTy); 974 } 975 976 /// \brief Create a dirty shadow of a given shadow type. 977 Constant *getPoisonedShadow(Type *ShadowTy) { 978 assert(ShadowTy); 979 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 980 return Constant::getAllOnesValue(ShadowTy); 981 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 982 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 983 getPoisonedShadow(AT->getElementType())); 984 return ConstantArray::get(AT, Vals); 985 } 986 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 987 SmallVector<Constant *, 4> Vals; 988 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 989 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 990 return ConstantStruct::get(ST, Vals); 991 } 992 llvm_unreachable("Unexpected shadow type"); 993 } 994 995 /// \brief Create a dirty shadow for a given value. 996 Constant *getPoisonedShadow(Value *V) { 997 Type *ShadowTy = getShadowTy(V); 998 if (!ShadowTy) 999 return nullptr; 1000 return getPoisonedShadow(ShadowTy); 1001 } 1002 1003 /// \brief Create a clean (zero) origin. 1004 Value *getCleanOrigin() { 1005 return Constant::getNullValue(MS.OriginTy); 1006 } 1007 1008 /// \brief Get the shadow value for a given Value. 1009 /// 1010 /// This function either returns the value set earlier with setShadow, 1011 /// or extracts if from ParamTLS (for function arguments). 1012 Value *getShadow(Value *V) { 1013 if (!PropagateShadow) return getCleanShadow(V); 1014 if (Instruction *I = dyn_cast<Instruction>(V)) { 1015 // For instructions the shadow is already stored in the map. 1016 Value *Shadow = ShadowMap[V]; 1017 if (!Shadow) { 1018 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1019 (void)I; 1020 assert(Shadow && "No shadow for a value"); 1021 } 1022 return Shadow; 1023 } 1024 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1025 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1026 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1027 (void)U; 1028 return AllOnes; 1029 } 1030 if (Argument *A = dyn_cast<Argument>(V)) { 1031 // For arguments we compute the shadow on demand and store it in the map. 1032 Value **ShadowPtr = &ShadowMap[V]; 1033 if (*ShadowPtr) 1034 return *ShadowPtr; 1035 Function *F = A->getParent(); 1036 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1037 unsigned ArgOffset = 0; 1038 for (auto &FArg : F->args()) { 1039 if (!FArg.getType()->isSized()) { 1040 DEBUG(dbgs() << "Arg is not sized\n"); 1041 continue; 1042 } 1043 unsigned Size = FArg.hasByValAttr() 1044 ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType()) 1045 : MS.DL->getTypeAllocSize(FArg.getType()); 1046 if (A == &FArg) { 1047 bool Overflow = ArgOffset + Size > kParamTLSSize; 1048 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1049 if (FArg.hasByValAttr()) { 1050 // ByVal pointer itself has clean shadow. We copy the actual 1051 // argument shadow to the underlying memory. 1052 // Figure out maximal valid memcpy alignment. 1053 unsigned ArgAlign = FArg.getParamAlignment(); 1054 if (ArgAlign == 0) { 1055 Type *EltType = A->getType()->getPointerElementType(); 1056 ArgAlign = MS.DL->getABITypeAlignment(EltType); 1057 } 1058 if (Overflow) { 1059 // ParamTLS overflow. 1060 EntryIRB.CreateMemSet( 1061 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1062 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1063 } else { 1064 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1065 Value *Cpy = EntryIRB.CreateMemCpy( 1066 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1067 CopyAlign); 1068 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1069 (void)Cpy; 1070 } 1071 *ShadowPtr = getCleanShadow(V); 1072 } else { 1073 if (Overflow) { 1074 // ParamTLS overflow. 1075 *ShadowPtr = getCleanShadow(V); 1076 } else { 1077 *ShadowPtr = 1078 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1079 } 1080 } 1081 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1082 **ShadowPtr << "\n"); 1083 if (MS.TrackOrigins && !Overflow) { 1084 Value *OriginPtr = 1085 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1086 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1087 } else { 1088 setOrigin(A, getCleanOrigin()); 1089 } 1090 } 1091 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment); 1092 } 1093 assert(*ShadowPtr && "Could not find shadow for an argument"); 1094 return *ShadowPtr; 1095 } 1096 // For everything else the shadow is zero. 1097 return getCleanShadow(V); 1098 } 1099 1100 /// \brief Get the shadow for i-th argument of the instruction I. 1101 Value *getShadow(Instruction *I, int i) { 1102 return getShadow(I->getOperand(i)); 1103 } 1104 1105 /// \brief Get the origin for a value. 1106 Value *getOrigin(Value *V) { 1107 if (!MS.TrackOrigins) return nullptr; 1108 if (!PropagateShadow) return getCleanOrigin(); 1109 if (isa<Constant>(V)) return getCleanOrigin(); 1110 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1111 "Unexpected value type in getOrigin()"); 1112 Value *Origin = OriginMap[V]; 1113 assert(Origin && "Missing origin"); 1114 return Origin; 1115 } 1116 1117 /// \brief Get the origin for i-th argument of the instruction I. 1118 Value *getOrigin(Instruction *I, int i) { 1119 return getOrigin(I->getOperand(i)); 1120 } 1121 1122 /// \brief Remember the place where a shadow check should be inserted. 1123 /// 1124 /// This location will be later instrumented with a check that will print a 1125 /// UMR warning in runtime if the shadow value is not 0. 1126 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1127 assert(Shadow); 1128 if (!InsertChecks) return; 1129 #ifndef NDEBUG 1130 Type *ShadowTy = Shadow->getType(); 1131 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1132 "Can only insert checks for integer and vector shadow types"); 1133 #endif 1134 InstrumentationList.push_back( 1135 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1136 } 1137 1138 /// \brief Remember the place where a shadow check should be inserted. 1139 /// 1140 /// This location will be later instrumented with a check that will print a 1141 /// UMR warning in runtime if the value is not fully defined. 1142 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1143 assert(Val); 1144 Value *Shadow, *Origin; 1145 if (ClCheckConstantShadow) { 1146 Shadow = getShadow(Val); 1147 if (!Shadow) return; 1148 Origin = getOrigin(Val); 1149 } else { 1150 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1151 if (!Shadow) return; 1152 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1153 } 1154 insertShadowCheck(Shadow, Origin, OrigIns); 1155 } 1156 1157 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1158 switch (a) { 1159 case NotAtomic: 1160 return NotAtomic; 1161 case Unordered: 1162 case Monotonic: 1163 case Release: 1164 return Release; 1165 case Acquire: 1166 case AcquireRelease: 1167 return AcquireRelease; 1168 case SequentiallyConsistent: 1169 return SequentiallyConsistent; 1170 } 1171 llvm_unreachable("Unknown ordering"); 1172 } 1173 1174 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1175 switch (a) { 1176 case NotAtomic: 1177 return NotAtomic; 1178 case Unordered: 1179 case Monotonic: 1180 case Acquire: 1181 return Acquire; 1182 case Release: 1183 case AcquireRelease: 1184 return AcquireRelease; 1185 case SequentiallyConsistent: 1186 return SequentiallyConsistent; 1187 } 1188 llvm_unreachable("Unknown ordering"); 1189 } 1190 1191 // ------------------- Visitors. 1192 1193 /// \brief Instrument LoadInst 1194 /// 1195 /// Loads the corresponding shadow and (optionally) origin. 1196 /// Optionally, checks that the load address is fully defined. 1197 void visitLoadInst(LoadInst &I) { 1198 assert(I.getType()->isSized() && "Load type must have size"); 1199 IRBuilder<> IRB(I.getNextNode()); 1200 Type *ShadowTy = getShadowTy(&I); 1201 Value *Addr = I.getPointerOperand(); 1202 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1203 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1204 setShadow(&I, 1205 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1206 } else { 1207 setShadow(&I, getCleanShadow(&I)); 1208 } 1209 1210 if (ClCheckAccessAddress) 1211 insertShadowCheck(I.getPointerOperand(), &I); 1212 1213 if (I.isAtomic()) 1214 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1215 1216 if (MS.TrackOrigins) { 1217 if (PropagateShadow) { 1218 unsigned Alignment = I.getAlignment(); 1219 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1220 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1221 OriginAlignment)); 1222 } else { 1223 setOrigin(&I, getCleanOrigin()); 1224 } 1225 } 1226 } 1227 1228 /// \brief Instrument StoreInst 1229 /// 1230 /// Stores the corresponding shadow and (optionally) origin. 1231 /// Optionally, checks that the store address is fully defined. 1232 void visitStoreInst(StoreInst &I) { 1233 StoreList.push_back(&I); 1234 } 1235 1236 void handleCASOrRMW(Instruction &I) { 1237 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1238 1239 IRBuilder<> IRB(&I); 1240 Value *Addr = I.getOperand(0); 1241 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1242 1243 if (ClCheckAccessAddress) 1244 insertShadowCheck(Addr, &I); 1245 1246 // Only test the conditional argument of cmpxchg instruction. 1247 // The other argument can potentially be uninitialized, but we can not 1248 // detect this situation reliably without possible false positives. 1249 if (isa<AtomicCmpXchgInst>(I)) 1250 insertShadowCheck(I.getOperand(1), &I); 1251 1252 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1253 1254 setShadow(&I, getCleanShadow(&I)); 1255 setOrigin(&I, getCleanOrigin()); 1256 } 1257 1258 void visitAtomicRMWInst(AtomicRMWInst &I) { 1259 handleCASOrRMW(I); 1260 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1261 } 1262 1263 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1264 handleCASOrRMW(I); 1265 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1266 } 1267 1268 // Vector manipulation. 1269 void visitExtractElementInst(ExtractElementInst &I) { 1270 insertShadowCheck(I.getOperand(1), &I); 1271 IRBuilder<> IRB(&I); 1272 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1273 "_msprop")); 1274 setOrigin(&I, getOrigin(&I, 0)); 1275 } 1276 1277 void visitInsertElementInst(InsertElementInst &I) { 1278 insertShadowCheck(I.getOperand(2), &I); 1279 IRBuilder<> IRB(&I); 1280 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1281 I.getOperand(2), "_msprop")); 1282 setOriginForNaryOp(I); 1283 } 1284 1285 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1286 insertShadowCheck(I.getOperand(2), &I); 1287 IRBuilder<> IRB(&I); 1288 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1289 I.getOperand(2), "_msprop")); 1290 setOriginForNaryOp(I); 1291 } 1292 1293 // Casts. 1294 void visitSExtInst(SExtInst &I) { 1295 IRBuilder<> IRB(&I); 1296 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1297 setOrigin(&I, getOrigin(&I, 0)); 1298 } 1299 1300 void visitZExtInst(ZExtInst &I) { 1301 IRBuilder<> IRB(&I); 1302 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1303 setOrigin(&I, getOrigin(&I, 0)); 1304 } 1305 1306 void visitTruncInst(TruncInst &I) { 1307 IRBuilder<> IRB(&I); 1308 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1309 setOrigin(&I, getOrigin(&I, 0)); 1310 } 1311 1312 void visitBitCastInst(BitCastInst &I) { 1313 IRBuilder<> IRB(&I); 1314 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1315 setOrigin(&I, getOrigin(&I, 0)); 1316 } 1317 1318 void visitPtrToIntInst(PtrToIntInst &I) { 1319 IRBuilder<> IRB(&I); 1320 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1321 "_msprop_ptrtoint")); 1322 setOrigin(&I, getOrigin(&I, 0)); 1323 } 1324 1325 void visitIntToPtrInst(IntToPtrInst &I) { 1326 IRBuilder<> IRB(&I); 1327 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1328 "_msprop_inttoptr")); 1329 setOrigin(&I, getOrigin(&I, 0)); 1330 } 1331 1332 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1333 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1334 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1335 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1336 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1337 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1338 1339 /// \brief Propagate shadow for bitwise AND. 1340 /// 1341 /// This code is exact, i.e. if, for example, a bit in the left argument 1342 /// is defined and 0, then neither the value not definedness of the 1343 /// corresponding bit in B don't affect the resulting shadow. 1344 void visitAnd(BinaryOperator &I) { 1345 IRBuilder<> IRB(&I); 1346 // "And" of 0 and a poisoned value results in unpoisoned value. 1347 // 1&1 => 1; 0&1 => 0; p&1 => p; 1348 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1349 // 1&p => p; 0&p => 0; p&p => p; 1350 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1351 Value *S1 = getShadow(&I, 0); 1352 Value *S2 = getShadow(&I, 1); 1353 Value *V1 = I.getOperand(0); 1354 Value *V2 = I.getOperand(1); 1355 if (V1->getType() != S1->getType()) { 1356 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1357 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1358 } 1359 Value *S1S2 = IRB.CreateAnd(S1, S2); 1360 Value *V1S2 = IRB.CreateAnd(V1, S2); 1361 Value *S1V2 = IRB.CreateAnd(S1, V2); 1362 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1363 setOriginForNaryOp(I); 1364 } 1365 1366 void visitOr(BinaryOperator &I) { 1367 IRBuilder<> IRB(&I); 1368 // "Or" of 1 and a poisoned value results in unpoisoned value. 1369 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1370 // 1|0 => 1; 0|0 => 0; p|0 => p; 1371 // 1|p => 1; 0|p => p; p|p => p; 1372 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1373 Value *S1 = getShadow(&I, 0); 1374 Value *S2 = getShadow(&I, 1); 1375 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1376 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1377 if (V1->getType() != S1->getType()) { 1378 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1379 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1380 } 1381 Value *S1S2 = IRB.CreateAnd(S1, S2); 1382 Value *V1S2 = IRB.CreateAnd(V1, S2); 1383 Value *S1V2 = IRB.CreateAnd(S1, V2); 1384 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1385 setOriginForNaryOp(I); 1386 } 1387 1388 /// \brief Default propagation of shadow and/or origin. 1389 /// 1390 /// This class implements the general case of shadow propagation, used in all 1391 /// cases where we don't know and/or don't care about what the operation 1392 /// actually does. It converts all input shadow values to a common type 1393 /// (extending or truncating as necessary), and bitwise OR's them. 1394 /// 1395 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1396 /// fully initialized), and less prone to false positives. 1397 /// 1398 /// This class also implements the general case of origin propagation. For a 1399 /// Nary operation, result origin is set to the origin of an argument that is 1400 /// not entirely initialized. If there is more than one such arguments, the 1401 /// rightmost of them is picked. It does not matter which one is picked if all 1402 /// arguments are initialized. 1403 template <bool CombineShadow> 1404 class Combiner { 1405 Value *Shadow; 1406 Value *Origin; 1407 IRBuilder<> &IRB; 1408 MemorySanitizerVisitor *MSV; 1409 1410 public: 1411 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1412 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1413 1414 /// \brief Add a pair of shadow and origin values to the mix. 1415 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1416 if (CombineShadow) { 1417 assert(OpShadow); 1418 if (!Shadow) 1419 Shadow = OpShadow; 1420 else { 1421 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1422 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1423 } 1424 } 1425 1426 if (MSV->MS.TrackOrigins) { 1427 assert(OpOrigin); 1428 if (!Origin) { 1429 Origin = OpOrigin; 1430 } else { 1431 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1432 // No point in adding something that might result in 0 origin value. 1433 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1434 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1435 Value *Cond = 1436 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1437 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1438 } 1439 } 1440 } 1441 return *this; 1442 } 1443 1444 /// \brief Add an application value to the mix. 1445 Combiner &Add(Value *V) { 1446 Value *OpShadow = MSV->getShadow(V); 1447 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1448 return Add(OpShadow, OpOrigin); 1449 } 1450 1451 /// \brief Set the current combined values as the given instruction's shadow 1452 /// and origin. 1453 void Done(Instruction *I) { 1454 if (CombineShadow) { 1455 assert(Shadow); 1456 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1457 MSV->setShadow(I, Shadow); 1458 } 1459 if (MSV->MS.TrackOrigins) { 1460 assert(Origin); 1461 MSV->setOrigin(I, Origin); 1462 } 1463 } 1464 }; 1465 1466 typedef Combiner<true> ShadowAndOriginCombiner; 1467 typedef Combiner<false> OriginCombiner; 1468 1469 /// \brief Propagate origin for arbitrary operation. 1470 void setOriginForNaryOp(Instruction &I) { 1471 if (!MS.TrackOrigins) return; 1472 IRBuilder<> IRB(&I); 1473 OriginCombiner OC(this, IRB); 1474 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1475 OC.Add(OI->get()); 1476 OC.Done(&I); 1477 } 1478 1479 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1480 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1481 "Vector of pointers is not a valid shadow type"); 1482 return Ty->isVectorTy() ? 1483 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1484 Ty->getPrimitiveSizeInBits(); 1485 } 1486 1487 /// \brief Cast between two shadow types, extending or truncating as 1488 /// necessary. 1489 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1490 bool Signed = false) { 1491 Type *srcTy = V->getType(); 1492 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1493 return IRB.CreateIntCast(V, dstTy, Signed); 1494 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1495 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1496 return IRB.CreateIntCast(V, dstTy, Signed); 1497 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1498 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1499 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1500 Value *V2 = 1501 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1502 return IRB.CreateBitCast(V2, dstTy); 1503 // TODO: handle struct types. 1504 } 1505 1506 /// \brief Cast an application value to the type of its own shadow. 1507 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1508 Type *ShadowTy = getShadowTy(V); 1509 if (V->getType() == ShadowTy) 1510 return V; 1511 if (V->getType()->isPtrOrPtrVectorTy()) 1512 return IRB.CreatePtrToInt(V, ShadowTy); 1513 else 1514 return IRB.CreateBitCast(V, ShadowTy); 1515 } 1516 1517 /// \brief Propagate shadow for arbitrary operation. 1518 void handleShadowOr(Instruction &I) { 1519 IRBuilder<> IRB(&I); 1520 ShadowAndOriginCombiner SC(this, IRB); 1521 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1522 SC.Add(OI->get()); 1523 SC.Done(&I); 1524 } 1525 1526 // \brief Handle multiplication by constant. 1527 // 1528 // Handle a special case of multiplication by constant that may have one or 1529 // more zeros in the lower bits. This makes corresponding number of lower bits 1530 // of the result zero as well. We model it by shifting the other operand 1531 // shadow left by the required number of bits. Effectively, we transform 1532 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1533 // We use multiplication by 2**N instead of shift to cover the case of 1534 // multiplication by 0, which may occur in some elements of a vector operand. 1535 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1536 Value *OtherArg) { 1537 Constant *ShadowMul; 1538 Type *Ty = ConstArg->getType(); 1539 if (Ty->isVectorTy()) { 1540 unsigned NumElements = Ty->getVectorNumElements(); 1541 Type *EltTy = Ty->getSequentialElementType(); 1542 SmallVector<Constant *, 16> Elements; 1543 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1544 ConstantInt *Elt = 1545 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx)); 1546 APInt V = Elt->getValue(); 1547 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1548 Elements.push_back(ConstantInt::get(EltTy, V2)); 1549 } 1550 ShadowMul = ConstantVector::get(Elements); 1551 } else { 1552 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg); 1553 APInt V = Elt->getValue(); 1554 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1555 ShadowMul = ConstantInt::get(Elt->getType(), V2); 1556 } 1557 1558 IRBuilder<> IRB(&I); 1559 setShadow(&I, 1560 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1561 setOrigin(&I, getOrigin(OtherArg)); 1562 } 1563 1564 void visitMul(BinaryOperator &I) { 1565 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1566 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1567 if (constOp0 && !constOp1) 1568 handleMulByConstant(I, constOp0, I.getOperand(1)); 1569 else if (constOp1 && !constOp0) 1570 handleMulByConstant(I, constOp1, I.getOperand(0)); 1571 else 1572 handleShadowOr(I); 1573 } 1574 1575 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1576 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1577 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1578 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1579 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1580 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1581 1582 void handleDiv(Instruction &I) { 1583 IRBuilder<> IRB(&I); 1584 // Strict on the second argument. 1585 insertShadowCheck(I.getOperand(1), &I); 1586 setShadow(&I, getShadow(&I, 0)); 1587 setOrigin(&I, getOrigin(&I, 0)); 1588 } 1589 1590 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1591 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1592 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1593 void visitURem(BinaryOperator &I) { handleDiv(I); } 1594 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1595 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1596 1597 /// \brief Instrument == and != comparisons. 1598 /// 1599 /// Sometimes the comparison result is known even if some of the bits of the 1600 /// arguments are not. 1601 void handleEqualityComparison(ICmpInst &I) { 1602 IRBuilder<> IRB(&I); 1603 Value *A = I.getOperand(0); 1604 Value *B = I.getOperand(1); 1605 Value *Sa = getShadow(A); 1606 Value *Sb = getShadow(B); 1607 1608 // Get rid of pointers and vectors of pointers. 1609 // For ints (and vectors of ints), types of A and Sa match, 1610 // and this is a no-op. 1611 A = IRB.CreatePointerCast(A, Sa->getType()); 1612 B = IRB.CreatePointerCast(B, Sb->getType()); 1613 1614 // A == B <==> (C = A^B) == 0 1615 // A != B <==> (C = A^B) != 0 1616 // Sc = Sa | Sb 1617 Value *C = IRB.CreateXor(A, B); 1618 Value *Sc = IRB.CreateOr(Sa, Sb); 1619 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1620 // Result is defined if one of the following is true 1621 // * there is a defined 1 bit in C 1622 // * C is fully defined 1623 // Si = !(C & ~Sc) && Sc 1624 Value *Zero = Constant::getNullValue(Sc->getType()); 1625 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1626 Value *Si = 1627 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1628 IRB.CreateICmpEQ( 1629 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1630 Si->setName("_msprop_icmp"); 1631 setShadow(&I, Si); 1632 setOriginForNaryOp(I); 1633 } 1634 1635 /// \brief Build the lowest possible value of V, taking into account V's 1636 /// uninitialized bits. 1637 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1638 bool isSigned) { 1639 if (isSigned) { 1640 // Split shadow into sign bit and other bits. 1641 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1642 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1643 // Maximise the undefined shadow bit, minimize other undefined bits. 1644 return 1645 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1646 } else { 1647 // Minimize undefined bits. 1648 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1649 } 1650 } 1651 1652 /// \brief Build the highest possible value of V, taking into account V's 1653 /// uninitialized bits. 1654 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1655 bool isSigned) { 1656 if (isSigned) { 1657 // Split shadow into sign bit and other bits. 1658 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1659 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1660 // Minimise the undefined shadow bit, maximise other undefined bits. 1661 return 1662 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1663 } else { 1664 // Maximize undefined bits. 1665 return IRB.CreateOr(A, Sa); 1666 } 1667 } 1668 1669 /// \brief Instrument relational comparisons. 1670 /// 1671 /// This function does exact shadow propagation for all relational 1672 /// comparisons of integers, pointers and vectors of those. 1673 /// FIXME: output seems suboptimal when one of the operands is a constant 1674 void handleRelationalComparisonExact(ICmpInst &I) { 1675 IRBuilder<> IRB(&I); 1676 Value *A = I.getOperand(0); 1677 Value *B = I.getOperand(1); 1678 Value *Sa = getShadow(A); 1679 Value *Sb = getShadow(B); 1680 1681 // Get rid of pointers and vectors of pointers. 1682 // For ints (and vectors of ints), types of A and Sa match, 1683 // and this is a no-op. 1684 A = IRB.CreatePointerCast(A, Sa->getType()); 1685 B = IRB.CreatePointerCast(B, Sb->getType()); 1686 1687 // Let [a0, a1] be the interval of possible values of A, taking into account 1688 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1689 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1690 bool IsSigned = I.isSigned(); 1691 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1692 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1693 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1694 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1695 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1696 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1697 Value *Si = IRB.CreateXor(S1, S2); 1698 setShadow(&I, Si); 1699 setOriginForNaryOp(I); 1700 } 1701 1702 /// \brief Instrument signed relational comparisons. 1703 /// 1704 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by 1705 /// propagating the highest bit of the shadow. Everything else is delegated 1706 /// to handleShadowOr(). 1707 void handleSignedRelationalComparison(ICmpInst &I) { 1708 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1709 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1710 Value* op = nullptr; 1711 CmpInst::Predicate pre = I.getPredicate(); 1712 if (constOp0 && constOp0->isNullValue() && 1713 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) { 1714 op = I.getOperand(1); 1715 } else if (constOp1 && constOp1->isNullValue() && 1716 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) { 1717 op = I.getOperand(0); 1718 } 1719 if (op) { 1720 IRBuilder<> IRB(&I); 1721 Value* Shadow = 1722 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt"); 1723 setShadow(&I, Shadow); 1724 setOrigin(&I, getOrigin(op)); 1725 } else { 1726 handleShadowOr(I); 1727 } 1728 } 1729 1730 void visitICmpInst(ICmpInst &I) { 1731 if (!ClHandleICmp) { 1732 handleShadowOr(I); 1733 return; 1734 } 1735 if (I.isEquality()) { 1736 handleEqualityComparison(I); 1737 return; 1738 } 1739 1740 assert(I.isRelational()); 1741 if (ClHandleICmpExact) { 1742 handleRelationalComparisonExact(I); 1743 return; 1744 } 1745 if (I.isSigned()) { 1746 handleSignedRelationalComparison(I); 1747 return; 1748 } 1749 1750 assert(I.isUnsigned()); 1751 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1752 handleRelationalComparisonExact(I); 1753 return; 1754 } 1755 1756 handleShadowOr(I); 1757 } 1758 1759 void visitFCmpInst(FCmpInst &I) { 1760 handleShadowOr(I); 1761 } 1762 1763 void handleShift(BinaryOperator &I) { 1764 IRBuilder<> IRB(&I); 1765 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1766 // Otherwise perform the same shift on S1. 1767 Value *S1 = getShadow(&I, 0); 1768 Value *S2 = getShadow(&I, 1); 1769 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1770 S2->getType()); 1771 Value *V2 = I.getOperand(1); 1772 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1773 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1774 setOriginForNaryOp(I); 1775 } 1776 1777 void visitShl(BinaryOperator &I) { handleShift(I); } 1778 void visitAShr(BinaryOperator &I) { handleShift(I); } 1779 void visitLShr(BinaryOperator &I) { handleShift(I); } 1780 1781 /// \brief Instrument llvm.memmove 1782 /// 1783 /// At this point we don't know if llvm.memmove will be inlined or not. 1784 /// If we don't instrument it and it gets inlined, 1785 /// our interceptor will not kick in and we will lose the memmove. 1786 /// If we instrument the call here, but it does not get inlined, 1787 /// we will memove the shadow twice: which is bad in case 1788 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1789 /// 1790 /// Similar situation exists for memcpy and memset. 1791 void visitMemMoveInst(MemMoveInst &I) { 1792 IRBuilder<> IRB(&I); 1793 IRB.CreateCall3( 1794 MS.MemmoveFn, 1795 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1796 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1797 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)); 1798 I.eraseFromParent(); 1799 } 1800 1801 // Similar to memmove: avoid copying shadow twice. 1802 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1803 // FIXME: consider doing manual inline for small constant sizes and proper 1804 // alignment. 1805 void visitMemCpyInst(MemCpyInst &I) { 1806 IRBuilder<> IRB(&I); 1807 IRB.CreateCall3( 1808 MS.MemcpyFn, 1809 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1810 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1811 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)); 1812 I.eraseFromParent(); 1813 } 1814 1815 // Same as memcpy. 1816 void visitMemSetInst(MemSetInst &I) { 1817 IRBuilder<> IRB(&I); 1818 IRB.CreateCall3( 1819 MS.MemsetFn, 1820 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1821 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1822 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)); 1823 I.eraseFromParent(); 1824 } 1825 1826 void visitVAStartInst(VAStartInst &I) { 1827 VAHelper->visitVAStartInst(I); 1828 } 1829 1830 void visitVACopyInst(VACopyInst &I) { 1831 VAHelper->visitVACopyInst(I); 1832 } 1833 1834 enum IntrinsicKind { 1835 IK_DoesNotAccessMemory, 1836 IK_OnlyReadsMemory, 1837 IK_WritesMemory 1838 }; 1839 1840 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) { 1841 const int DoesNotAccessMemory = IK_DoesNotAccessMemory; 1842 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory; 1843 const int OnlyReadsMemory = IK_OnlyReadsMemory; 1844 const int OnlyAccessesArgumentPointees = IK_WritesMemory; 1845 const int UnknownModRefBehavior = IK_WritesMemory; 1846 #define GET_INTRINSIC_MODREF_BEHAVIOR 1847 #define ModRefBehavior IntrinsicKind 1848 #include "llvm/IR/Intrinsics.gen" 1849 #undef ModRefBehavior 1850 #undef GET_INTRINSIC_MODREF_BEHAVIOR 1851 } 1852 1853 /// \brief Handle vector store-like intrinsics. 1854 /// 1855 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1856 /// has 1 pointer argument and 1 vector argument, returns void. 1857 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1858 IRBuilder<> IRB(&I); 1859 Value* Addr = I.getArgOperand(0); 1860 Value *Shadow = getShadow(&I, 1); 1861 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1862 1863 // We don't know the pointer alignment (could be unaligned SSE store!). 1864 // Have to assume to worst case. 1865 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1866 1867 if (ClCheckAccessAddress) 1868 insertShadowCheck(Addr, &I); 1869 1870 // FIXME: use ClStoreCleanOrigin 1871 // FIXME: factor out common code from materializeStores 1872 if (MS.TrackOrigins) 1873 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1874 return true; 1875 } 1876 1877 /// \brief Handle vector load-like intrinsics. 1878 /// 1879 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1880 /// has 1 pointer argument, returns a vector. 1881 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1882 IRBuilder<> IRB(&I); 1883 Value *Addr = I.getArgOperand(0); 1884 1885 Type *ShadowTy = getShadowTy(&I); 1886 if (PropagateShadow) { 1887 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1888 // We don't know the pointer alignment (could be unaligned SSE load!). 1889 // Have to assume to worst case. 1890 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1891 } else { 1892 setShadow(&I, getCleanShadow(&I)); 1893 } 1894 1895 if (ClCheckAccessAddress) 1896 insertShadowCheck(Addr, &I); 1897 1898 if (MS.TrackOrigins) { 1899 if (PropagateShadow) 1900 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1901 else 1902 setOrigin(&I, getCleanOrigin()); 1903 } 1904 return true; 1905 } 1906 1907 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1908 /// 1909 /// Instrument intrinsics with any number of arguments of the same type, 1910 /// equal to the return type. The type should be simple (no aggregates or 1911 /// pointers; vectors are fine). 1912 /// Caller guarantees that this intrinsic does not access memory. 1913 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1914 Type *RetTy = I.getType(); 1915 if (!(RetTy->isIntOrIntVectorTy() || 1916 RetTy->isFPOrFPVectorTy() || 1917 RetTy->isX86_MMXTy())) 1918 return false; 1919 1920 unsigned NumArgOperands = I.getNumArgOperands(); 1921 1922 for (unsigned i = 0; i < NumArgOperands; ++i) { 1923 Type *Ty = I.getArgOperand(i)->getType(); 1924 if (Ty != RetTy) 1925 return false; 1926 } 1927 1928 IRBuilder<> IRB(&I); 1929 ShadowAndOriginCombiner SC(this, IRB); 1930 for (unsigned i = 0; i < NumArgOperands; ++i) 1931 SC.Add(I.getArgOperand(i)); 1932 SC.Done(&I); 1933 1934 return true; 1935 } 1936 1937 /// \brief Heuristically instrument unknown intrinsics. 1938 /// 1939 /// The main purpose of this code is to do something reasonable with all 1940 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 1941 /// We recognize several classes of intrinsics by their argument types and 1942 /// ModRefBehaviour and apply special intrumentation when we are reasonably 1943 /// sure that we know what the intrinsic does. 1944 /// 1945 /// We special-case intrinsics where this approach fails. See llvm.bswap 1946 /// handling as an example of that. 1947 bool handleUnknownIntrinsic(IntrinsicInst &I) { 1948 unsigned NumArgOperands = I.getNumArgOperands(); 1949 if (NumArgOperands == 0) 1950 return false; 1951 1952 Intrinsic::ID iid = I.getIntrinsicID(); 1953 IntrinsicKind IK = getIntrinsicKind(iid); 1954 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory; 1955 bool WritesMemory = IK == IK_WritesMemory; 1956 assert(!(OnlyReadsMemory && WritesMemory)); 1957 1958 if (NumArgOperands == 2 && 1959 I.getArgOperand(0)->getType()->isPointerTy() && 1960 I.getArgOperand(1)->getType()->isVectorTy() && 1961 I.getType()->isVoidTy() && 1962 WritesMemory) { 1963 // This looks like a vector store. 1964 return handleVectorStoreIntrinsic(I); 1965 } 1966 1967 if (NumArgOperands == 1 && 1968 I.getArgOperand(0)->getType()->isPointerTy() && 1969 I.getType()->isVectorTy() && 1970 OnlyReadsMemory) { 1971 // This looks like a vector load. 1972 return handleVectorLoadIntrinsic(I); 1973 } 1974 1975 if (!OnlyReadsMemory && !WritesMemory) 1976 if (maybeHandleSimpleNomemIntrinsic(I)) 1977 return true; 1978 1979 // FIXME: detect and handle SSE maskstore/maskload 1980 return false; 1981 } 1982 1983 void handleBswap(IntrinsicInst &I) { 1984 IRBuilder<> IRB(&I); 1985 Value *Op = I.getArgOperand(0); 1986 Type *OpType = Op->getType(); 1987 Function *BswapFunc = Intrinsic::getDeclaration( 1988 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 1989 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 1990 setOrigin(&I, getOrigin(Op)); 1991 } 1992 1993 // \brief Instrument vector convert instrinsic. 1994 // 1995 // This function instruments intrinsics like cvtsi2ss: 1996 // %Out = int_xxx_cvtyyy(%ConvertOp) 1997 // or 1998 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 1999 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2000 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2001 // elements from \p CopyOp. 2002 // In most cases conversion involves floating-point value which may trigger a 2003 // hardware exception when not fully initialized. For this reason we require 2004 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2005 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2006 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2007 // return a fully initialized value. 2008 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2009 IRBuilder<> IRB(&I); 2010 Value *CopyOp, *ConvertOp; 2011 2012 switch (I.getNumArgOperands()) { 2013 case 2: 2014 CopyOp = I.getArgOperand(0); 2015 ConvertOp = I.getArgOperand(1); 2016 break; 2017 case 1: 2018 ConvertOp = I.getArgOperand(0); 2019 CopyOp = nullptr; 2020 break; 2021 default: 2022 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2023 } 2024 2025 // The first *NumUsedElements* elements of ConvertOp are converted to the 2026 // same number of output elements. The rest of the output is copied from 2027 // CopyOp, or (if not available) filled with zeroes. 2028 // Combine shadow for elements of ConvertOp that are used in this operation, 2029 // and insert a check. 2030 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2031 // int->any conversion. 2032 Value *ConvertShadow = getShadow(ConvertOp); 2033 Value *AggShadow = nullptr; 2034 if (ConvertOp->getType()->isVectorTy()) { 2035 AggShadow = IRB.CreateExtractElement( 2036 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2037 for (int i = 1; i < NumUsedElements; ++i) { 2038 Value *MoreShadow = IRB.CreateExtractElement( 2039 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2040 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2041 } 2042 } else { 2043 AggShadow = ConvertShadow; 2044 } 2045 assert(AggShadow->getType()->isIntegerTy()); 2046 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2047 2048 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2049 // ConvertOp. 2050 if (CopyOp) { 2051 assert(CopyOp->getType() == I.getType()); 2052 assert(CopyOp->getType()->isVectorTy()); 2053 Value *ResultShadow = getShadow(CopyOp); 2054 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2055 for (int i = 0; i < NumUsedElements; ++i) { 2056 ResultShadow = IRB.CreateInsertElement( 2057 ResultShadow, ConstantInt::getNullValue(EltTy), 2058 ConstantInt::get(IRB.getInt32Ty(), i)); 2059 } 2060 setShadow(&I, ResultShadow); 2061 setOrigin(&I, getOrigin(CopyOp)); 2062 } else { 2063 setShadow(&I, getCleanShadow(&I)); 2064 setOrigin(&I, getCleanOrigin()); 2065 } 2066 } 2067 2068 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2069 // zeroes if it is zero, and all ones otherwise. 2070 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2071 if (S->getType()->isVectorTy()) 2072 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2073 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2074 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2075 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2076 } 2077 2078 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2079 Type *T = S->getType(); 2080 assert(T->isVectorTy()); 2081 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2082 return IRB.CreateSExt(S2, T); 2083 } 2084 2085 // \brief Instrument vector shift instrinsic. 2086 // 2087 // This function instruments intrinsics like int_x86_avx2_psll_w. 2088 // Intrinsic shifts %In by %ShiftSize bits. 2089 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2090 // size, and the rest is ignored. Behavior is defined even if shift size is 2091 // greater than register (or field) width. 2092 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2093 assert(I.getNumArgOperands() == 2); 2094 IRBuilder<> IRB(&I); 2095 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2096 // Otherwise perform the same shift on S1. 2097 Value *S1 = getShadow(&I, 0); 2098 Value *S2 = getShadow(&I, 1); 2099 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2100 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2101 Value *V1 = I.getOperand(0); 2102 Value *V2 = I.getOperand(1); 2103 Value *Shift = IRB.CreateCall2(I.getCalledValue(), 2104 IRB.CreateBitCast(S1, V1->getType()), V2); 2105 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2106 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2107 setOriginForNaryOp(I); 2108 } 2109 2110 // \brief Get an X86_MMX-sized vector type. 2111 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2112 const unsigned X86_MMXSizeInBits = 64; 2113 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2114 X86_MMXSizeInBits / EltSizeInBits); 2115 } 2116 2117 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2118 // intrinsic. 2119 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2120 switch (id) { 2121 case llvm::Intrinsic::x86_sse2_packsswb_128: 2122 case llvm::Intrinsic::x86_sse2_packuswb_128: 2123 return llvm::Intrinsic::x86_sse2_packsswb_128; 2124 2125 case llvm::Intrinsic::x86_sse2_packssdw_128: 2126 case llvm::Intrinsic::x86_sse41_packusdw: 2127 return llvm::Intrinsic::x86_sse2_packssdw_128; 2128 2129 case llvm::Intrinsic::x86_avx2_packsswb: 2130 case llvm::Intrinsic::x86_avx2_packuswb: 2131 return llvm::Intrinsic::x86_avx2_packsswb; 2132 2133 case llvm::Intrinsic::x86_avx2_packssdw: 2134 case llvm::Intrinsic::x86_avx2_packusdw: 2135 return llvm::Intrinsic::x86_avx2_packssdw; 2136 2137 case llvm::Intrinsic::x86_mmx_packsswb: 2138 case llvm::Intrinsic::x86_mmx_packuswb: 2139 return llvm::Intrinsic::x86_mmx_packsswb; 2140 2141 case llvm::Intrinsic::x86_mmx_packssdw: 2142 return llvm::Intrinsic::x86_mmx_packssdw; 2143 default: 2144 llvm_unreachable("unexpected intrinsic id"); 2145 } 2146 } 2147 2148 // \brief Instrument vector pack instrinsic. 2149 // 2150 // This function instruments intrinsics like x86_mmx_packsswb, that 2151 // packs elements of 2 input vectors into half as many bits with saturation. 2152 // Shadow is propagated with the signed variant of the same intrinsic applied 2153 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2154 // EltSizeInBits is used only for x86mmx arguments. 2155 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2156 assert(I.getNumArgOperands() == 2); 2157 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2158 IRBuilder<> IRB(&I); 2159 Value *S1 = getShadow(&I, 0); 2160 Value *S2 = getShadow(&I, 1); 2161 assert(isX86_MMX || S1->getType()->isVectorTy()); 2162 2163 // SExt and ICmpNE below must apply to individual elements of input vectors. 2164 // In case of x86mmx arguments, cast them to appropriate vector types and 2165 // back. 2166 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2167 if (isX86_MMX) { 2168 S1 = IRB.CreateBitCast(S1, T); 2169 S2 = IRB.CreateBitCast(S2, T); 2170 } 2171 Value *S1_ext = IRB.CreateSExt( 2172 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2173 Value *S2_ext = IRB.CreateSExt( 2174 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2175 if (isX86_MMX) { 2176 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2177 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2178 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2179 } 2180 2181 Function *ShadowFn = Intrinsic::getDeclaration( 2182 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2183 2184 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack"); 2185 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2186 setShadow(&I, S); 2187 setOriginForNaryOp(I); 2188 } 2189 2190 // \brief Instrument sum-of-absolute-differencies intrinsic. 2191 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2192 const unsigned SignificantBitsPerResultElement = 16; 2193 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2194 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2195 unsigned ZeroBitsPerResultElement = 2196 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2197 2198 IRBuilder<> IRB(&I); 2199 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2200 S = IRB.CreateBitCast(S, ResTy); 2201 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2202 ResTy); 2203 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2204 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2205 setShadow(&I, S); 2206 setOriginForNaryOp(I); 2207 } 2208 2209 // \brief Instrument multiply-add intrinsic. 2210 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2211 unsigned EltSizeInBits = 0) { 2212 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2213 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2214 IRBuilder<> IRB(&I); 2215 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2216 S = IRB.CreateBitCast(S, ResTy); 2217 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2218 ResTy); 2219 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2220 setShadow(&I, S); 2221 setOriginForNaryOp(I); 2222 } 2223 2224 void visitIntrinsicInst(IntrinsicInst &I) { 2225 switch (I.getIntrinsicID()) { 2226 case llvm::Intrinsic::bswap: 2227 handleBswap(I); 2228 break; 2229 case llvm::Intrinsic::x86_avx512_cvtsd2usi64: 2230 case llvm::Intrinsic::x86_avx512_cvtsd2usi: 2231 case llvm::Intrinsic::x86_avx512_cvtss2usi64: 2232 case llvm::Intrinsic::x86_avx512_cvtss2usi: 2233 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2234 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2235 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2236 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2237 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2238 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2239 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2240 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2241 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2242 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2243 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2244 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2245 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2246 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2247 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2248 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2249 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2250 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2251 case llvm::Intrinsic::x86_sse_cvtss2si64: 2252 case llvm::Intrinsic::x86_sse_cvtss2si: 2253 case llvm::Intrinsic::x86_sse_cvttss2si64: 2254 case llvm::Intrinsic::x86_sse_cvttss2si: 2255 handleVectorConvertIntrinsic(I, 1); 2256 break; 2257 case llvm::Intrinsic::x86_sse2_cvtdq2pd: 2258 case llvm::Intrinsic::x86_sse2_cvtps2pd: 2259 case llvm::Intrinsic::x86_sse_cvtps2pi: 2260 case llvm::Intrinsic::x86_sse_cvttps2pi: 2261 handleVectorConvertIntrinsic(I, 2); 2262 break; 2263 case llvm::Intrinsic::x86_avx2_psll_w: 2264 case llvm::Intrinsic::x86_avx2_psll_d: 2265 case llvm::Intrinsic::x86_avx2_psll_q: 2266 case llvm::Intrinsic::x86_avx2_pslli_w: 2267 case llvm::Intrinsic::x86_avx2_pslli_d: 2268 case llvm::Intrinsic::x86_avx2_pslli_q: 2269 case llvm::Intrinsic::x86_avx2_psrl_w: 2270 case llvm::Intrinsic::x86_avx2_psrl_d: 2271 case llvm::Intrinsic::x86_avx2_psrl_q: 2272 case llvm::Intrinsic::x86_avx2_psra_w: 2273 case llvm::Intrinsic::x86_avx2_psra_d: 2274 case llvm::Intrinsic::x86_avx2_psrli_w: 2275 case llvm::Intrinsic::x86_avx2_psrli_d: 2276 case llvm::Intrinsic::x86_avx2_psrli_q: 2277 case llvm::Intrinsic::x86_avx2_psrai_w: 2278 case llvm::Intrinsic::x86_avx2_psrai_d: 2279 case llvm::Intrinsic::x86_sse2_psll_w: 2280 case llvm::Intrinsic::x86_sse2_psll_d: 2281 case llvm::Intrinsic::x86_sse2_psll_q: 2282 case llvm::Intrinsic::x86_sse2_pslli_w: 2283 case llvm::Intrinsic::x86_sse2_pslli_d: 2284 case llvm::Intrinsic::x86_sse2_pslli_q: 2285 case llvm::Intrinsic::x86_sse2_psrl_w: 2286 case llvm::Intrinsic::x86_sse2_psrl_d: 2287 case llvm::Intrinsic::x86_sse2_psrl_q: 2288 case llvm::Intrinsic::x86_sse2_psra_w: 2289 case llvm::Intrinsic::x86_sse2_psra_d: 2290 case llvm::Intrinsic::x86_sse2_psrli_w: 2291 case llvm::Intrinsic::x86_sse2_psrli_d: 2292 case llvm::Intrinsic::x86_sse2_psrli_q: 2293 case llvm::Intrinsic::x86_sse2_psrai_w: 2294 case llvm::Intrinsic::x86_sse2_psrai_d: 2295 case llvm::Intrinsic::x86_mmx_psll_w: 2296 case llvm::Intrinsic::x86_mmx_psll_d: 2297 case llvm::Intrinsic::x86_mmx_psll_q: 2298 case llvm::Intrinsic::x86_mmx_pslli_w: 2299 case llvm::Intrinsic::x86_mmx_pslli_d: 2300 case llvm::Intrinsic::x86_mmx_pslli_q: 2301 case llvm::Intrinsic::x86_mmx_psrl_w: 2302 case llvm::Intrinsic::x86_mmx_psrl_d: 2303 case llvm::Intrinsic::x86_mmx_psrl_q: 2304 case llvm::Intrinsic::x86_mmx_psra_w: 2305 case llvm::Intrinsic::x86_mmx_psra_d: 2306 case llvm::Intrinsic::x86_mmx_psrli_w: 2307 case llvm::Intrinsic::x86_mmx_psrli_d: 2308 case llvm::Intrinsic::x86_mmx_psrli_q: 2309 case llvm::Intrinsic::x86_mmx_psrai_w: 2310 case llvm::Intrinsic::x86_mmx_psrai_d: 2311 handleVectorShiftIntrinsic(I, /* Variable */ false); 2312 break; 2313 case llvm::Intrinsic::x86_avx2_psllv_d: 2314 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2315 case llvm::Intrinsic::x86_avx2_psllv_q: 2316 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2317 case llvm::Intrinsic::x86_avx2_psrlv_d: 2318 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2319 case llvm::Intrinsic::x86_avx2_psrlv_q: 2320 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2321 case llvm::Intrinsic::x86_avx2_psrav_d: 2322 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2323 handleVectorShiftIntrinsic(I, /* Variable */ true); 2324 break; 2325 2326 case llvm::Intrinsic::x86_sse2_packsswb_128: 2327 case llvm::Intrinsic::x86_sse2_packssdw_128: 2328 case llvm::Intrinsic::x86_sse2_packuswb_128: 2329 case llvm::Intrinsic::x86_sse41_packusdw: 2330 case llvm::Intrinsic::x86_avx2_packsswb: 2331 case llvm::Intrinsic::x86_avx2_packssdw: 2332 case llvm::Intrinsic::x86_avx2_packuswb: 2333 case llvm::Intrinsic::x86_avx2_packusdw: 2334 handleVectorPackIntrinsic(I); 2335 break; 2336 2337 case llvm::Intrinsic::x86_mmx_packsswb: 2338 case llvm::Intrinsic::x86_mmx_packuswb: 2339 handleVectorPackIntrinsic(I, 16); 2340 break; 2341 2342 case llvm::Intrinsic::x86_mmx_packssdw: 2343 handleVectorPackIntrinsic(I, 32); 2344 break; 2345 2346 case llvm::Intrinsic::x86_mmx_psad_bw: 2347 case llvm::Intrinsic::x86_sse2_psad_bw: 2348 case llvm::Intrinsic::x86_avx2_psad_bw: 2349 handleVectorSadIntrinsic(I); 2350 break; 2351 2352 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2353 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2354 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2355 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2356 handleVectorPmaddIntrinsic(I); 2357 break; 2358 2359 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2360 handleVectorPmaddIntrinsic(I, 8); 2361 break; 2362 2363 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2364 handleVectorPmaddIntrinsic(I, 16); 2365 break; 2366 2367 default: 2368 if (!handleUnknownIntrinsic(I)) 2369 visitInstruction(I); 2370 break; 2371 } 2372 } 2373 2374 void visitCallSite(CallSite CS) { 2375 Instruction &I = *CS.getInstruction(); 2376 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2377 if (CS.isCall()) { 2378 CallInst *Call = cast<CallInst>(&I); 2379 2380 // For inline asm, do the usual thing: check argument shadow and mark all 2381 // outputs as clean. Note that any side effects of the inline asm that are 2382 // not immediately visible in its constraints are not handled. 2383 if (Call->isInlineAsm()) { 2384 visitInstruction(I); 2385 return; 2386 } 2387 2388 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2389 2390 // We are going to insert code that relies on the fact that the callee 2391 // will become a non-readonly function after it is instrumented by us. To 2392 // prevent this code from being optimized out, mark that function 2393 // non-readonly in advance. 2394 if (Function *Func = Call->getCalledFunction()) { 2395 // Clear out readonly/readnone attributes. 2396 AttrBuilder B; 2397 B.addAttribute(Attribute::ReadOnly) 2398 .addAttribute(Attribute::ReadNone); 2399 Func->removeAttributes(AttributeSet::FunctionIndex, 2400 AttributeSet::get(Func->getContext(), 2401 AttributeSet::FunctionIndex, 2402 B)); 2403 } 2404 } 2405 IRBuilder<> IRB(&I); 2406 2407 unsigned ArgOffset = 0; 2408 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2409 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2410 ArgIt != End; ++ArgIt) { 2411 Value *A = *ArgIt; 2412 unsigned i = ArgIt - CS.arg_begin(); 2413 if (!A->getType()->isSized()) { 2414 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2415 continue; 2416 } 2417 unsigned Size = 0; 2418 Value *Store = nullptr; 2419 // Compute the Shadow for arg even if it is ByVal, because 2420 // in that case getShadow() will copy the actual arg shadow to 2421 // __msan_param_tls. 2422 Value *ArgShadow = getShadow(A); 2423 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2424 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2425 " Shadow: " << *ArgShadow << "\n"); 2426 bool ArgIsInitialized = false; 2427 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2428 assert(A->getType()->isPointerTy() && 2429 "ByVal argument is not a pointer!"); 2430 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType()); 2431 if (ArgOffset + Size > kParamTLSSize) break; 2432 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2433 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2434 Store = IRB.CreateMemCpy(ArgShadowBase, 2435 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2436 Size, Alignment); 2437 } else { 2438 Size = MS.DL->getTypeAllocSize(A->getType()); 2439 if (ArgOffset + Size > kParamTLSSize) break; 2440 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2441 kShadowTLSAlignment); 2442 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2443 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2444 } 2445 if (MS.TrackOrigins && !ArgIsInitialized) 2446 IRB.CreateStore(getOrigin(A), 2447 getOriginPtrForArgument(A, IRB, ArgOffset)); 2448 (void)Store; 2449 assert(Size != 0 && Store != nullptr); 2450 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2451 ArgOffset += RoundUpToAlignment(Size, 8); 2452 } 2453 DEBUG(dbgs() << " done with call args\n"); 2454 2455 FunctionType *FT = 2456 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2457 if (FT->isVarArg()) { 2458 VAHelper->visitCallSite(CS, IRB); 2459 } 2460 2461 // Now, get the shadow for the RetVal. 2462 if (!I.getType()->isSized()) return; 2463 IRBuilder<> IRBBefore(&I); 2464 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2465 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2466 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2467 Instruction *NextInsn = nullptr; 2468 if (CS.isCall()) { 2469 NextInsn = I.getNextNode(); 2470 } else { 2471 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2472 if (!NormalDest->getSinglePredecessor()) { 2473 // FIXME: this case is tricky, so we are just conservative here. 2474 // Perhaps we need to split the edge between this BB and NormalDest, 2475 // but a naive attempt to use SplitEdge leads to a crash. 2476 setShadow(&I, getCleanShadow(&I)); 2477 setOrigin(&I, getCleanOrigin()); 2478 return; 2479 } 2480 NextInsn = NormalDest->getFirstInsertionPt(); 2481 assert(NextInsn && 2482 "Could not find insertion point for retval shadow load"); 2483 } 2484 IRBuilder<> IRBAfter(NextInsn); 2485 Value *RetvalShadow = 2486 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2487 kShadowTLSAlignment, "_msret"); 2488 setShadow(&I, RetvalShadow); 2489 if (MS.TrackOrigins) 2490 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2491 } 2492 2493 void visitReturnInst(ReturnInst &I) { 2494 IRBuilder<> IRB(&I); 2495 Value *RetVal = I.getReturnValue(); 2496 if (!RetVal) return; 2497 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2498 if (CheckReturnValue) { 2499 insertShadowCheck(RetVal, &I); 2500 Value *Shadow = getCleanShadow(RetVal); 2501 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2502 } else { 2503 Value *Shadow = getShadow(RetVal); 2504 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2505 // FIXME: make it conditional if ClStoreCleanOrigin==0 2506 if (MS.TrackOrigins) 2507 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2508 } 2509 } 2510 2511 void visitPHINode(PHINode &I) { 2512 IRBuilder<> IRB(&I); 2513 if (!PropagateShadow) { 2514 setShadow(&I, getCleanShadow(&I)); 2515 setOrigin(&I, getCleanOrigin()); 2516 return; 2517 } 2518 2519 ShadowPHINodes.push_back(&I); 2520 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2521 "_msphi_s")); 2522 if (MS.TrackOrigins) 2523 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2524 "_msphi_o")); 2525 } 2526 2527 void visitAllocaInst(AllocaInst &I) { 2528 setShadow(&I, getCleanShadow(&I)); 2529 setOrigin(&I, getCleanOrigin()); 2530 IRBuilder<> IRB(I.getNextNode()); 2531 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType()); 2532 if (PoisonStack && ClPoisonStackWithCall) { 2533 IRB.CreateCall2(MS.MsanPoisonStackFn, 2534 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2535 ConstantInt::get(MS.IntptrTy, Size)); 2536 } else { 2537 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2538 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2539 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2540 } 2541 2542 if (PoisonStack && MS.TrackOrigins) { 2543 SmallString<2048> StackDescriptionStorage; 2544 raw_svector_ostream StackDescription(StackDescriptionStorage); 2545 // We create a string with a description of the stack allocation and 2546 // pass it into __msan_set_alloca_origin. 2547 // It will be printed by the run-time if stack-originated UMR is found. 2548 // The first 4 bytes of the string are set to '----' and will be replaced 2549 // by __msan_va_arg_overflow_size_tls at the first call. 2550 StackDescription << "----" << I.getName() << "@" << F.getName(); 2551 Value *Descr = 2552 createPrivateNonConstGlobalForString(*F.getParent(), 2553 StackDescription.str()); 2554 2555 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn, 2556 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2557 ConstantInt::get(MS.IntptrTy, Size), 2558 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2559 IRB.CreatePointerCast(&F, MS.IntptrTy)); 2560 } 2561 } 2562 2563 void visitSelectInst(SelectInst& I) { 2564 IRBuilder<> IRB(&I); 2565 // a = select b, c, d 2566 Value *B = I.getCondition(); 2567 Value *C = I.getTrueValue(); 2568 Value *D = I.getFalseValue(); 2569 Value *Sb = getShadow(B); 2570 Value *Sc = getShadow(C); 2571 Value *Sd = getShadow(D); 2572 2573 // Result shadow if condition shadow is 0. 2574 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2575 Value *Sa1; 2576 if (I.getType()->isAggregateType()) { 2577 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2578 // an extra "select". This results in much more compact IR. 2579 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2580 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2581 } else { 2582 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2583 // If Sb (condition is poisoned), look for bits in c and d that are equal 2584 // and both unpoisoned. 2585 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2586 2587 // Cast arguments to shadow-compatible type. 2588 C = CreateAppToShadowCast(IRB, C); 2589 D = CreateAppToShadowCast(IRB, D); 2590 2591 // Result shadow if condition shadow is 1. 2592 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2593 } 2594 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2595 setShadow(&I, Sa); 2596 if (MS.TrackOrigins) { 2597 // Origins are always i32, so any vector conditions must be flattened. 2598 // FIXME: consider tracking vector origins for app vectors? 2599 if (B->getType()->isVectorTy()) { 2600 Type *FlatTy = getShadowTyNoVec(B->getType()); 2601 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2602 ConstantInt::getNullValue(FlatTy)); 2603 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2604 ConstantInt::getNullValue(FlatTy)); 2605 } 2606 // a = select b, c, d 2607 // Oa = Sb ? Ob : (b ? Oc : Od) 2608 setOrigin( 2609 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2610 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2611 getOrigin(I.getFalseValue())))); 2612 } 2613 } 2614 2615 void visitLandingPadInst(LandingPadInst &I) { 2616 // Do nothing. 2617 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2618 setShadow(&I, getCleanShadow(&I)); 2619 setOrigin(&I, getCleanOrigin()); 2620 } 2621 2622 void visitGetElementPtrInst(GetElementPtrInst &I) { 2623 handleShadowOr(I); 2624 } 2625 2626 void visitExtractValueInst(ExtractValueInst &I) { 2627 IRBuilder<> IRB(&I); 2628 Value *Agg = I.getAggregateOperand(); 2629 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2630 Value *AggShadow = getShadow(Agg); 2631 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2632 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2633 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2634 setShadow(&I, ResShadow); 2635 setOriginForNaryOp(I); 2636 } 2637 2638 void visitInsertValueInst(InsertValueInst &I) { 2639 IRBuilder<> IRB(&I); 2640 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2641 Value *AggShadow = getShadow(I.getAggregateOperand()); 2642 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2643 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2644 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2645 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2646 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2647 setShadow(&I, Res); 2648 setOriginForNaryOp(I); 2649 } 2650 2651 void dumpInst(Instruction &I) { 2652 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2653 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2654 } else { 2655 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2656 } 2657 errs() << "QQQ " << I << "\n"; 2658 } 2659 2660 void visitResumeInst(ResumeInst &I) { 2661 DEBUG(dbgs() << "Resume: " << I << "\n"); 2662 // Nothing to do here. 2663 } 2664 2665 void visitInstruction(Instruction &I) { 2666 // Everything else: stop propagating and check for poisoned shadow. 2667 if (ClDumpStrictInstructions) 2668 dumpInst(I); 2669 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2670 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2671 insertShadowCheck(I.getOperand(i), &I); 2672 setShadow(&I, getCleanShadow(&I)); 2673 setOrigin(&I, getCleanOrigin()); 2674 } 2675 }; 2676 2677 /// \brief AMD64-specific implementation of VarArgHelper. 2678 struct VarArgAMD64Helper : public VarArgHelper { 2679 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2680 // See a comment in visitCallSite for more details. 2681 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2682 static const unsigned AMD64FpEndOffset = 176; 2683 2684 Function &F; 2685 MemorySanitizer &MS; 2686 MemorySanitizerVisitor &MSV; 2687 Value *VAArgTLSCopy; 2688 Value *VAArgOverflowSize; 2689 2690 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2691 2692 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2693 MemorySanitizerVisitor &MSV) 2694 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2695 VAArgOverflowSize(nullptr) {} 2696 2697 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2698 2699 ArgKind classifyArgument(Value* arg) { 2700 // A very rough approximation of X86_64 argument classification rules. 2701 Type *T = arg->getType(); 2702 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2703 return AK_FloatingPoint; 2704 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2705 return AK_GeneralPurpose; 2706 if (T->isPointerTy()) 2707 return AK_GeneralPurpose; 2708 return AK_Memory; 2709 } 2710 2711 // For VarArg functions, store the argument shadow in an ABI-specific format 2712 // that corresponds to va_list layout. 2713 // We do this because Clang lowers va_arg in the frontend, and this pass 2714 // only sees the low level code that deals with va_list internals. 2715 // A much easier alternative (provided that Clang emits va_arg instructions) 2716 // would have been to associate each live instance of va_list with a copy of 2717 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2718 // order. 2719 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2720 unsigned GpOffset = 0; 2721 unsigned FpOffset = AMD64GpEndOffset; 2722 unsigned OverflowOffset = AMD64FpEndOffset; 2723 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2724 ArgIt != End; ++ArgIt) { 2725 Value *A = *ArgIt; 2726 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2727 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2728 if (IsByVal) { 2729 // ByVal arguments always go to the overflow area. 2730 assert(A->getType()->isPointerTy()); 2731 Type *RealTy = A->getType()->getPointerElementType(); 2732 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy); 2733 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2734 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2735 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2736 ArgSize, kShadowTLSAlignment); 2737 } else { 2738 ArgKind AK = classifyArgument(A); 2739 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2740 AK = AK_Memory; 2741 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2742 AK = AK_Memory; 2743 Value *Base; 2744 switch (AK) { 2745 case AK_GeneralPurpose: 2746 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2747 GpOffset += 8; 2748 break; 2749 case AK_FloatingPoint: 2750 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2751 FpOffset += 16; 2752 break; 2753 case AK_Memory: 2754 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType()); 2755 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2756 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2757 } 2758 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2759 } 2760 } 2761 Constant *OverflowSize = 2762 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2763 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2764 } 2765 2766 /// \brief Compute the shadow address for a given va_arg. 2767 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2768 int ArgOffset) { 2769 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2770 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2771 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2772 "_msarg"); 2773 } 2774 2775 void visitVAStartInst(VAStartInst &I) override { 2776 IRBuilder<> IRB(&I); 2777 VAStartInstrumentationList.push_back(&I); 2778 Value *VAListTag = I.getArgOperand(0); 2779 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2780 2781 // Unpoison the whole __va_list_tag. 2782 // FIXME: magic ABI constants. 2783 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2784 /* size */24, /* alignment */8, false); 2785 } 2786 2787 void visitVACopyInst(VACopyInst &I) override { 2788 IRBuilder<> IRB(&I); 2789 Value *VAListTag = I.getArgOperand(0); 2790 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2791 2792 // Unpoison the whole __va_list_tag. 2793 // FIXME: magic ABI constants. 2794 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2795 /* size */24, /* alignment */8, false); 2796 } 2797 2798 void finalizeInstrumentation() override { 2799 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2800 "finalizeInstrumentation called twice"); 2801 if (!VAStartInstrumentationList.empty()) { 2802 // If there is a va_start in this function, make a backup copy of 2803 // va_arg_tls somewhere in the function entry block. 2804 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2805 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2806 Value *CopySize = 2807 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2808 VAArgOverflowSize); 2809 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2810 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2811 } 2812 2813 // Instrument va_start. 2814 // Copy va_list shadow from the backup copy of the TLS contents. 2815 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2816 CallInst *OrigInst = VAStartInstrumentationList[i]; 2817 IRBuilder<> IRB(OrigInst->getNextNode()); 2818 Value *VAListTag = OrigInst->getArgOperand(0); 2819 2820 Value *RegSaveAreaPtrPtr = 2821 IRB.CreateIntToPtr( 2822 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2823 ConstantInt::get(MS.IntptrTy, 16)), 2824 Type::getInt64PtrTy(*MS.C)); 2825 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2826 Value *RegSaveAreaShadowPtr = 2827 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2828 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 2829 AMD64FpEndOffset, 16); 2830 2831 Value *OverflowArgAreaPtrPtr = 2832 IRB.CreateIntToPtr( 2833 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2834 ConstantInt::get(MS.IntptrTy, 8)), 2835 Type::getInt64PtrTy(*MS.C)); 2836 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 2837 Value *OverflowArgAreaShadowPtr = 2838 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 2839 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset); 2840 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 2841 } 2842 } 2843 }; 2844 2845 /// \brief MIPS64-specific implementation of VarArgHelper. 2846 struct VarArgMIPS64Helper : public VarArgHelper { 2847 Function &F; 2848 MemorySanitizer &MS; 2849 MemorySanitizerVisitor &MSV; 2850 Value *VAArgTLSCopy; 2851 Value *VAArgSize; 2852 2853 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2854 2855 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 2856 MemorySanitizerVisitor &MSV) 2857 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2858 VAArgSize(nullptr) {} 2859 2860 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2861 unsigned VAArgOffset = 0; 2862 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 2863 ArgIt != End; ++ArgIt) { 2864 Value *A = *ArgIt; 2865 Value *Base; 2866 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType()); 2867 #if defined(__MIPSEB__) || defined(MIPSEB) 2868 // Adjusting the shadow for argument with size < 8 to match the placement 2869 // of bits in big endian system 2870 if (ArgSize < 8) 2871 VAArgOffset += (8 - ArgSize); 2872 #endif 2873 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 2874 VAArgOffset += ArgSize; 2875 VAArgOffset = RoundUpToAlignment(VAArgOffset, 8); 2876 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2877 } 2878 2879 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 2880 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 2881 // a new class member i.e. it is the total size of all VarArgs. 2882 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 2883 } 2884 2885 /// \brief Compute the shadow address for a given va_arg. 2886 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2887 int ArgOffset) { 2888 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2889 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2890 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2891 "_msarg"); 2892 } 2893 2894 void visitVAStartInst(VAStartInst &I) override { 2895 IRBuilder<> IRB(&I); 2896 VAStartInstrumentationList.push_back(&I); 2897 Value *VAListTag = I.getArgOperand(0); 2898 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2899 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2900 /* size */8, /* alignment */8, false); 2901 } 2902 2903 void visitVACopyInst(VACopyInst &I) override { 2904 IRBuilder<> IRB(&I); 2905 Value *VAListTag = I.getArgOperand(0); 2906 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2907 // Unpoison the whole __va_list_tag. 2908 // FIXME: magic ABI constants. 2909 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2910 /* size */8, /* alignment */8, false); 2911 } 2912 2913 void finalizeInstrumentation() override { 2914 assert(!VAArgSize && !VAArgTLSCopy && 2915 "finalizeInstrumentation called twice"); 2916 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2917 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2918 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 2919 VAArgSize); 2920 2921 if (!VAStartInstrumentationList.empty()) { 2922 // If there is a va_start in this function, make a backup copy of 2923 // va_arg_tls somewhere in the function entry block. 2924 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2925 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2926 } 2927 2928 // Instrument va_start. 2929 // Copy va_list shadow from the backup copy of the TLS contents. 2930 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2931 CallInst *OrigInst = VAStartInstrumentationList[i]; 2932 IRBuilder<> IRB(OrigInst->getNextNode()); 2933 Value *VAListTag = OrigInst->getArgOperand(0); 2934 Value *RegSaveAreaPtrPtr = 2935 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2936 Type::getInt64PtrTy(*MS.C)); 2937 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2938 Value *RegSaveAreaShadowPtr = 2939 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2940 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 2941 } 2942 } 2943 }; 2944 2945 /// \brief A no-op implementation of VarArgHelper. 2946 struct VarArgNoOpHelper : public VarArgHelper { 2947 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 2948 MemorySanitizerVisitor &MSV) {} 2949 2950 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 2951 2952 void visitVAStartInst(VAStartInst &I) override {} 2953 2954 void visitVACopyInst(VACopyInst &I) override {} 2955 2956 void finalizeInstrumentation() override {} 2957 }; 2958 2959 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 2960 MemorySanitizerVisitor &Visitor) { 2961 // VarArg handling is only implemented on AMD64. False positives are possible 2962 // on other platforms. 2963 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 2964 if (TargetTriple.getArch() == llvm::Triple::x86_64) 2965 return new VarArgAMD64Helper(Func, Msan, Visitor); 2966 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 2967 TargetTriple.getArch() == llvm::Triple::mips64el) 2968 return new VarArgMIPS64Helper(Func, Msan, Visitor); 2969 else 2970 return new VarArgNoOpHelper(Func, Msan, Visitor); 2971 } 2972 2973 } // namespace 2974 2975 bool MemorySanitizer::runOnFunction(Function &F) { 2976 MemorySanitizerVisitor Visitor(F, *this); 2977 2978 // Clear out readonly/readnone attributes. 2979 AttrBuilder B; 2980 B.addAttribute(Attribute::ReadOnly) 2981 .addAttribute(Attribute::ReadNone); 2982 F.removeAttributes(AttributeSet::FunctionIndex, 2983 AttributeSet::get(F.getContext(), 2984 AttributeSet::FunctionIndex, B)); 2985 2986 return Visitor.runOnFunction(); 2987 } 2988