1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/ADT/DepthFirstIterator.h" 95 #include "llvm/ADT/SmallString.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/ADT/StringExtras.h" 98 #include "llvm/ADT/Triple.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/Function.h" 101 #include "llvm/IR/IRBuilder.h" 102 #include "llvm/IR/InlineAsm.h" 103 #include "llvm/IR/InstVisitor.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/MDBuilder.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Instrumentation.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ModuleUtils.h" 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "msan" 121 122 static const unsigned kOriginSize = 4; 123 static const unsigned kMinOriginAlignment = 4; 124 static const unsigned kShadowTLSAlignment = 8; 125 126 // These constants must be kept in sync with the ones in msan.h. 127 static const unsigned kParamTLSSize = 800; 128 static const unsigned kRetvalTLSSize = 800; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8. 131 static const size_t kNumberOfAccessSizes = 4; 132 133 /// \brief Track origins of uninitialized values. 134 /// 135 /// Adds a section to MemorySanitizer report that points to the allocation 136 /// (stack or heap) the uninitialized bits came from originally. 137 static cl::opt<int> ClTrackOrigins("msan-track-origins", 138 cl::desc("Track origins (allocation sites) of poisoned memory"), 139 cl::Hidden, cl::init(0)); 140 static cl::opt<bool> ClKeepGoing("msan-keep-going", 141 cl::desc("keep going after reporting a UMR"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 144 cl::desc("poison uninitialized stack variables"), 145 cl::Hidden, cl::init(true)); 146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 147 cl::desc("poison uninitialized stack variables with a call"), 148 cl::Hidden, cl::init(false)); 149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 150 cl::desc("poison uninitialized stack variables with the given pattern"), 151 cl::Hidden, cl::init(0xff)); 152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 153 cl::desc("poison undef temps"), 154 cl::Hidden, cl::init(true)); 155 156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 158 cl::Hidden, cl::init(true)); 159 160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 161 cl::desc("exact handling of relational integer ICmp"), 162 cl::Hidden, cl::init(false)); 163 164 // This flag controls whether we check the shadow of the address 165 // operand of load or store. Such bugs are very rare, since load from 166 // a garbage address typically results in SEGV, but still happen 167 // (e.g. only lower bits of address are garbage, or the access happens 168 // early at program startup where malloc-ed memory is more likely to 169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 171 cl::desc("report accesses through a pointer which has poisoned shadow"), 172 cl::Hidden, cl::init(true)); 173 174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 175 cl::desc("print out instructions with default strict semantics"), 176 cl::Hidden, cl::init(false)); 177 178 static cl::opt<int> ClInstrumentationWithCallThreshold( 179 "msan-instrumentation-with-call-threshold", 180 cl::desc( 181 "If the function being instrumented requires more than " 182 "this number of checks and origin stores, use callbacks instead of " 183 "inline checks (-1 means never use callbacks)."), 184 cl::Hidden, cl::init(3500)); 185 186 // This is an experiment to enable handling of cases where shadow is a non-zero 187 // compile-time constant. For some unexplainable reason they were silently 188 // ignored in the instrumentation. 189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 190 cl::desc("Insert checks for constant shadow values"), 191 cl::Hidden, cl::init(false)); 192 193 // This is off by default because of a bug in gold: 194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 195 static cl::opt<bool> ClWithComdat("msan-with-comdat", 196 cl::desc("Place MSan constructors in comdat sections"), 197 cl::Hidden, cl::init(false)); 198 199 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 200 static const char *const kMsanInitName = "__msan_init"; 201 202 namespace { 203 204 // Memory map parameters used in application-to-shadow address calculation. 205 // Offset = (Addr & ~AndMask) ^ XorMask 206 // Shadow = ShadowBase + Offset 207 // Origin = OriginBase + Offset 208 struct MemoryMapParams { 209 uint64_t AndMask; 210 uint64_t XorMask; 211 uint64_t ShadowBase; 212 uint64_t OriginBase; 213 }; 214 215 struct PlatformMemoryMapParams { 216 const MemoryMapParams *bits32; 217 const MemoryMapParams *bits64; 218 }; 219 220 // i386 Linux 221 static const MemoryMapParams Linux_I386_MemoryMapParams = { 222 0x000080000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x000040000000, // OriginBase 226 }; 227 228 // x86_64 Linux 229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 231 0x400000000000, // AndMask 232 0, // XorMask (not used) 233 0, // ShadowBase (not used) 234 0x200000000000, // OriginBase 235 #else 236 0, // AndMask (not used) 237 0x500000000000, // XorMask 238 0, // ShadowBase (not used) 239 0x100000000000, // OriginBase 240 #endif 241 }; 242 243 // mips64 Linux 244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 245 0x004000000000, // AndMask 246 0, // XorMask (not used) 247 0, // ShadowBase (not used) 248 0x002000000000, // OriginBase 249 }; 250 251 // ppc64 Linux 252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 253 0x200000000000, // AndMask 254 0x100000000000, // XorMask 255 0x080000000000, // ShadowBase 256 0x1C0000000000, // OriginBase 257 }; 258 259 // aarch64 Linux 260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 261 0, // AndMask (not used) 262 0x06000000000, // XorMask 263 0, // ShadowBase (not used) 264 0x01000000000, // OriginBase 265 }; 266 267 // i386 FreeBSD 268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 269 0x000180000000, // AndMask 270 0x000040000000, // XorMask 271 0x000020000000, // ShadowBase 272 0x000700000000, // OriginBase 273 }; 274 275 // x86_64 FreeBSD 276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 277 0xc00000000000, // AndMask 278 0x200000000000, // XorMask 279 0x100000000000, // ShadowBase 280 0x380000000000, // OriginBase 281 }; 282 283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 284 &Linux_I386_MemoryMapParams, 285 &Linux_X86_64_MemoryMapParams, 286 }; 287 288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 289 nullptr, 290 &Linux_MIPS64_MemoryMapParams, 291 }; 292 293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 294 nullptr, 295 &Linux_PowerPC64_MemoryMapParams, 296 }; 297 298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 299 nullptr, 300 &Linux_AArch64_MemoryMapParams, 301 }; 302 303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 304 &FreeBSD_I386_MemoryMapParams, 305 &FreeBSD_X86_64_MemoryMapParams, 306 }; 307 308 /// \brief An instrumentation pass implementing detection of uninitialized 309 /// reads. 310 /// 311 /// MemorySanitizer: instrument the code in module to find 312 /// uninitialized reads. 313 class MemorySanitizer : public FunctionPass { 314 public: 315 MemorySanitizer(int TrackOrigins = 0) 316 : FunctionPass(ID), 317 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 318 WarningFn(nullptr) {} 319 const char *getPassName() const override { return "MemorySanitizer"; } 320 bool runOnFunction(Function &F) override; 321 bool doInitialization(Module &M) override; 322 static char ID; // Pass identification, replacement for typeid. 323 324 private: 325 void initializeCallbacks(Module &M); 326 327 /// \brief Track origins (allocation points) of uninitialized values. 328 int TrackOrigins; 329 330 LLVMContext *C; 331 Type *IntptrTy; 332 Type *OriginTy; 333 /// \brief Thread-local shadow storage for function parameters. 334 GlobalVariable *ParamTLS; 335 /// \brief Thread-local origin storage for function parameters. 336 GlobalVariable *ParamOriginTLS; 337 /// \brief Thread-local shadow storage for function return value. 338 GlobalVariable *RetvalTLS; 339 /// \brief Thread-local origin storage for function return value. 340 GlobalVariable *RetvalOriginTLS; 341 /// \brief Thread-local shadow storage for in-register va_arg function 342 /// parameters (x86_64-specific). 343 GlobalVariable *VAArgTLS; 344 /// \brief Thread-local shadow storage for va_arg overflow area 345 /// (x86_64-specific). 346 GlobalVariable *VAArgOverflowSizeTLS; 347 /// \brief Thread-local space used to pass origin value to the UMR reporting 348 /// function. 349 GlobalVariable *OriginTLS; 350 351 /// \brief The run-time callback to print a warning. 352 Value *WarningFn; 353 // These arrays are indexed by log2(AccessSize). 354 Value *MaybeWarningFn[kNumberOfAccessSizes]; 355 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 356 357 /// \brief Run-time helper that generates a new origin value for a stack 358 /// allocation. 359 Value *MsanSetAllocaOrigin4Fn; 360 /// \brief Run-time helper that poisons stack on function entry. 361 Value *MsanPoisonStackFn; 362 /// \brief Run-time helper that records a store (or any event) of an 363 /// uninitialized value and returns an updated origin id encoding this info. 364 Value *MsanChainOriginFn; 365 /// \brief MSan runtime replacements for memmove, memcpy and memset. 366 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 367 368 /// \brief Memory map parameters used in application-to-shadow calculation. 369 const MemoryMapParams *MapParams; 370 371 MDNode *ColdCallWeights; 372 /// \brief Branch weights for origin store. 373 MDNode *OriginStoreWeights; 374 /// \brief An empty volatile inline asm that prevents callback merge. 375 InlineAsm *EmptyAsm; 376 Function *MsanCtorFunction; 377 378 friend struct MemorySanitizerVisitor; 379 friend struct VarArgAMD64Helper; 380 friend struct VarArgMIPS64Helper; 381 friend struct VarArgAArch64Helper; 382 }; 383 } // anonymous namespace 384 385 char MemorySanitizer::ID = 0; 386 INITIALIZE_PASS(MemorySanitizer, "msan", 387 "MemorySanitizer: detects uninitialized reads.", 388 false, false) 389 390 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 391 return new MemorySanitizer(TrackOrigins); 392 } 393 394 /// \brief Create a non-const global initialized with the given string. 395 /// 396 /// Creates a writable global for Str so that we can pass it to the 397 /// run-time lib. Runtime uses first 4 bytes of the string to store the 398 /// frame ID, so the string needs to be mutable. 399 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 400 StringRef Str) { 401 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 402 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 403 GlobalValue::PrivateLinkage, StrConst, ""); 404 } 405 406 /// \brief Insert extern declaration of runtime-provided functions and globals. 407 void MemorySanitizer::initializeCallbacks(Module &M) { 408 // Only do this once. 409 if (WarningFn) 410 return; 411 412 IRBuilder<> IRB(*C); 413 // Create the callback. 414 // FIXME: this function should have "Cold" calling conv, 415 // which is not yet implemented. 416 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 417 : "__msan_warning_noreturn"; 418 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 419 420 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 421 AccessSizeIndex++) { 422 unsigned AccessSize = 1 << AccessSizeIndex; 423 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 424 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 425 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 426 IRB.getInt32Ty(), nullptr); 427 428 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 429 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 430 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 431 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 432 } 433 434 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 435 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 436 IRB.getInt8PtrTy(), IntptrTy, nullptr); 437 MsanPoisonStackFn = 438 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 439 IRB.getInt8PtrTy(), IntptrTy, nullptr); 440 MsanChainOriginFn = M.getOrInsertFunction( 441 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 442 MemmoveFn = M.getOrInsertFunction( 443 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 444 IRB.getInt8PtrTy(), IntptrTy, nullptr); 445 MemcpyFn = M.getOrInsertFunction( 446 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 447 IntptrTy, nullptr); 448 MemsetFn = M.getOrInsertFunction( 449 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 450 IntptrTy, nullptr); 451 452 // Create globals. 453 RetvalTLS = new GlobalVariable( 454 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 455 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 456 GlobalVariable::InitialExecTLSModel); 457 RetvalOriginTLS = new GlobalVariable( 458 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 459 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 460 461 ParamTLS = new GlobalVariable( 462 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 463 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 464 GlobalVariable::InitialExecTLSModel); 465 ParamOriginTLS = new GlobalVariable( 466 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 467 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 468 nullptr, GlobalVariable::InitialExecTLSModel); 469 470 VAArgTLS = new GlobalVariable( 471 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 472 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 473 GlobalVariable::InitialExecTLSModel); 474 VAArgOverflowSizeTLS = new GlobalVariable( 475 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 476 "__msan_va_arg_overflow_size_tls", nullptr, 477 GlobalVariable::InitialExecTLSModel); 478 OriginTLS = new GlobalVariable( 479 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 480 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 481 482 // We insert an empty inline asm after __msan_report* to avoid callback merge. 483 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 484 StringRef(""), StringRef(""), 485 /*hasSideEffects=*/true); 486 } 487 488 /// \brief Module-level initialization. 489 /// 490 /// inserts a call to __msan_init to the module's constructor list. 491 bool MemorySanitizer::doInitialization(Module &M) { 492 auto &DL = M.getDataLayout(); 493 494 Triple TargetTriple(M.getTargetTriple()); 495 switch (TargetTriple.getOS()) { 496 case Triple::FreeBSD: 497 switch (TargetTriple.getArch()) { 498 case Triple::x86_64: 499 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 500 break; 501 case Triple::x86: 502 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 503 break; 504 default: 505 report_fatal_error("unsupported architecture"); 506 } 507 break; 508 case Triple::Linux: 509 switch (TargetTriple.getArch()) { 510 case Triple::x86_64: 511 MapParams = Linux_X86_MemoryMapParams.bits64; 512 break; 513 case Triple::x86: 514 MapParams = Linux_X86_MemoryMapParams.bits32; 515 break; 516 case Triple::mips64: 517 case Triple::mips64el: 518 MapParams = Linux_MIPS_MemoryMapParams.bits64; 519 break; 520 case Triple::ppc64: 521 case Triple::ppc64le: 522 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 523 break; 524 case Triple::aarch64: 525 case Triple::aarch64_be: 526 MapParams = Linux_ARM_MemoryMapParams.bits64; 527 break; 528 default: 529 report_fatal_error("unsupported architecture"); 530 } 531 break; 532 default: 533 report_fatal_error("unsupported operating system"); 534 } 535 536 C = &(M.getContext()); 537 IRBuilder<> IRB(*C); 538 IntptrTy = IRB.getIntPtrTy(DL); 539 OriginTy = IRB.getInt32Ty(); 540 541 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 542 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 543 544 std::tie(MsanCtorFunction, std::ignore) = 545 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 546 /*InitArgTypes=*/{}, 547 /*InitArgs=*/{}); 548 if (ClWithComdat) { 549 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 550 MsanCtorFunction->setComdat(MsanCtorComdat); 551 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 552 } else { 553 appendToGlobalCtors(M, MsanCtorFunction, 0); 554 } 555 556 557 if (TrackOrigins) 558 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 559 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 560 561 if (ClKeepGoing) 562 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 563 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 564 565 return true; 566 } 567 568 namespace { 569 570 /// \brief A helper class that handles instrumentation of VarArg 571 /// functions on a particular platform. 572 /// 573 /// Implementations are expected to insert the instrumentation 574 /// necessary to propagate argument shadow through VarArg function 575 /// calls. Visit* methods are called during an InstVisitor pass over 576 /// the function, and should avoid creating new basic blocks. A new 577 /// instance of this class is created for each instrumented function. 578 struct VarArgHelper { 579 /// \brief Visit a CallSite. 580 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 581 582 /// \brief Visit a va_start call. 583 virtual void visitVAStartInst(VAStartInst &I) = 0; 584 585 /// \brief Visit a va_copy call. 586 virtual void visitVACopyInst(VACopyInst &I) = 0; 587 588 /// \brief Finalize function instrumentation. 589 /// 590 /// This method is called after visiting all interesting (see above) 591 /// instructions in a function. 592 virtual void finalizeInstrumentation() = 0; 593 594 virtual ~VarArgHelper() {} 595 }; 596 597 struct MemorySanitizerVisitor; 598 599 VarArgHelper* 600 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 601 MemorySanitizerVisitor &Visitor); 602 603 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 604 if (TypeSize <= 8) return 0; 605 return Log2_32_Ceil(TypeSize / 8); 606 } 607 608 /// This class does all the work for a given function. Store and Load 609 /// instructions store and load corresponding shadow and origin 610 /// values. Most instructions propagate shadow from arguments to their 611 /// return values. Certain instructions (most importantly, BranchInst) 612 /// test their argument shadow and print reports (with a runtime call) if it's 613 /// non-zero. 614 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 615 Function &F; 616 MemorySanitizer &MS; 617 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 618 ValueMap<Value*, Value*> ShadowMap, OriginMap; 619 std::unique_ptr<VarArgHelper> VAHelper; 620 621 // The following flags disable parts of MSan instrumentation based on 622 // blacklist contents and command-line options. 623 bool InsertChecks; 624 bool PropagateShadow; 625 bool PoisonStack; 626 bool PoisonUndef; 627 bool CheckReturnValue; 628 629 struct ShadowOriginAndInsertPoint { 630 Value *Shadow; 631 Value *Origin; 632 Instruction *OrigIns; 633 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 634 : Shadow(S), Origin(O), OrigIns(I) { } 635 }; 636 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 637 SmallVector<Instruction*, 16> StoreList; 638 639 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 640 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 641 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 642 InsertChecks = SanitizeFunction; 643 PropagateShadow = SanitizeFunction; 644 PoisonStack = SanitizeFunction && ClPoisonStack; 645 PoisonUndef = SanitizeFunction && ClPoisonUndef; 646 // FIXME: Consider using SpecialCaseList to specify a list of functions that 647 // must always return fully initialized values. For now, we hardcode "main". 648 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 649 650 DEBUG(if (!InsertChecks) 651 dbgs() << "MemorySanitizer is not inserting checks into '" 652 << F.getName() << "'\n"); 653 } 654 655 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 656 if (MS.TrackOrigins <= 1) return V; 657 return IRB.CreateCall(MS.MsanChainOriginFn, V); 658 } 659 660 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 661 const DataLayout &DL = F.getParent()->getDataLayout(); 662 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 663 if (IntptrSize == kOriginSize) return Origin; 664 assert(IntptrSize == kOriginSize * 2); 665 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 666 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 667 } 668 669 /// \brief Fill memory range with the given origin value. 670 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 671 unsigned Size, unsigned Alignment) { 672 const DataLayout &DL = F.getParent()->getDataLayout(); 673 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 674 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 675 assert(IntptrAlignment >= kMinOriginAlignment); 676 assert(IntptrSize >= kOriginSize); 677 678 unsigned Ofs = 0; 679 unsigned CurrentAlignment = Alignment; 680 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 681 Value *IntptrOrigin = originToIntptr(IRB, Origin); 682 Value *IntptrOriginPtr = 683 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 684 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 685 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 686 : IntptrOriginPtr; 687 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 688 Ofs += IntptrSize / kOriginSize; 689 CurrentAlignment = IntptrAlignment; 690 } 691 } 692 693 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 694 Value *GEP = 695 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 696 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 697 CurrentAlignment = kMinOriginAlignment; 698 } 699 } 700 701 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 702 unsigned Alignment, bool AsCall) { 703 const DataLayout &DL = F.getParent()->getDataLayout(); 704 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 705 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 706 if (Shadow->getType()->isAggregateType()) { 707 paintOrigin(IRB, updateOrigin(Origin, IRB), 708 getOriginPtr(Addr, IRB, Alignment), StoreSize, 709 OriginAlignment); 710 } else { 711 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 712 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 713 if (ConstantShadow) { 714 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 715 paintOrigin(IRB, updateOrigin(Origin, IRB), 716 getOriginPtr(Addr, IRB, Alignment), StoreSize, 717 OriginAlignment); 718 return; 719 } 720 721 unsigned TypeSizeInBits = 722 DL.getTypeSizeInBits(ConvertedShadow->getType()); 723 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 724 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 725 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 726 Value *ConvertedShadow2 = IRB.CreateZExt( 727 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 728 IRB.CreateCall(Fn, {ConvertedShadow2, 729 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 730 Origin}); 731 } else { 732 Value *Cmp = IRB.CreateICmpNE( 733 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 734 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 735 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 736 IRBuilder<> IRBNew(CheckTerm); 737 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 738 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 739 OriginAlignment); 740 } 741 } 742 } 743 744 void materializeStores(bool InstrumentWithCalls) { 745 for (auto Inst : StoreList) { 746 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 747 748 IRBuilder<> IRB(&SI); 749 Value *Val = SI.getValueOperand(); 750 Value *Addr = SI.getPointerOperand(); 751 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 752 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 753 754 StoreInst *NewSI = 755 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 756 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 757 (void)NewSI; 758 759 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 760 761 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 762 763 if (MS.TrackOrigins && !SI.isAtomic()) 764 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 765 InstrumentWithCalls); 766 } 767 } 768 769 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 770 bool AsCall) { 771 IRBuilder<> IRB(OrigIns); 772 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 773 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 774 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 775 776 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 777 if (ConstantShadow) { 778 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 779 if (MS.TrackOrigins) { 780 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 781 MS.OriginTLS); 782 } 783 IRB.CreateCall(MS.WarningFn, {}); 784 IRB.CreateCall(MS.EmptyAsm, {}); 785 // FIXME: Insert UnreachableInst if !ClKeepGoing? 786 // This may invalidate some of the following checks and needs to be done 787 // at the very end. 788 } 789 return; 790 } 791 792 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 793 794 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 795 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 796 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 797 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 798 Value *ConvertedShadow2 = 799 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 800 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 801 ? Origin 802 : (Value *)IRB.getInt32(0)}); 803 } else { 804 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 805 getCleanShadow(ConvertedShadow), "_mscmp"); 806 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 807 Cmp, OrigIns, 808 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 809 810 IRB.SetInsertPoint(CheckTerm); 811 if (MS.TrackOrigins) { 812 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 813 MS.OriginTLS); 814 } 815 IRB.CreateCall(MS.WarningFn, {}); 816 IRB.CreateCall(MS.EmptyAsm, {}); 817 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 818 } 819 } 820 821 void materializeChecks(bool InstrumentWithCalls) { 822 for (const auto &ShadowData : InstrumentationList) { 823 Instruction *OrigIns = ShadowData.OrigIns; 824 Value *Shadow = ShadowData.Shadow; 825 Value *Origin = ShadowData.Origin; 826 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 827 } 828 DEBUG(dbgs() << "DONE:\n" << F); 829 } 830 831 /// \brief Add MemorySanitizer instrumentation to a function. 832 bool runOnFunction() { 833 MS.initializeCallbacks(*F.getParent()); 834 835 // In the presence of unreachable blocks, we may see Phi nodes with 836 // incoming nodes from such blocks. Since InstVisitor skips unreachable 837 // blocks, such nodes will not have any shadow value associated with them. 838 // It's easier to remove unreachable blocks than deal with missing shadow. 839 removeUnreachableBlocks(F); 840 841 // Iterate all BBs in depth-first order and create shadow instructions 842 // for all instructions (where applicable). 843 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 844 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 845 visit(*BB); 846 847 848 // Finalize PHI nodes. 849 for (PHINode *PN : ShadowPHINodes) { 850 PHINode *PNS = cast<PHINode>(getShadow(PN)); 851 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 852 size_t NumValues = PN->getNumIncomingValues(); 853 for (size_t v = 0; v < NumValues; v++) { 854 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 855 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 856 } 857 } 858 859 VAHelper->finalizeInstrumentation(); 860 861 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 862 InstrumentationList.size() + StoreList.size() > 863 (unsigned)ClInstrumentationWithCallThreshold; 864 865 // Delayed instrumentation of StoreInst. 866 // This may add new checks to be inserted later. 867 materializeStores(InstrumentWithCalls); 868 869 // Insert shadow value checks. 870 materializeChecks(InstrumentWithCalls); 871 872 return true; 873 } 874 875 /// \brief Compute the shadow type that corresponds to a given Value. 876 Type *getShadowTy(Value *V) { 877 return getShadowTy(V->getType()); 878 } 879 880 /// \brief Compute the shadow type that corresponds to a given Type. 881 Type *getShadowTy(Type *OrigTy) { 882 if (!OrigTy->isSized()) { 883 return nullptr; 884 } 885 // For integer type, shadow is the same as the original type. 886 // This may return weird-sized types like i1. 887 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 888 return IT; 889 const DataLayout &DL = F.getParent()->getDataLayout(); 890 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 891 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 892 return VectorType::get(IntegerType::get(*MS.C, EltSize), 893 VT->getNumElements()); 894 } 895 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 896 return ArrayType::get(getShadowTy(AT->getElementType()), 897 AT->getNumElements()); 898 } 899 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 900 SmallVector<Type*, 4> Elements; 901 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 902 Elements.push_back(getShadowTy(ST->getElementType(i))); 903 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 904 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 905 return Res; 906 } 907 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 908 return IntegerType::get(*MS.C, TypeSize); 909 } 910 911 /// \brief Flatten a vector type. 912 Type *getShadowTyNoVec(Type *ty) { 913 if (VectorType *vt = dyn_cast<VectorType>(ty)) 914 return IntegerType::get(*MS.C, vt->getBitWidth()); 915 return ty; 916 } 917 918 /// \brief Convert a shadow value to it's flattened variant. 919 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 920 Type *Ty = V->getType(); 921 Type *NoVecTy = getShadowTyNoVec(Ty); 922 if (Ty == NoVecTy) return V; 923 return IRB.CreateBitCast(V, NoVecTy); 924 } 925 926 /// \brief Compute the integer shadow offset that corresponds to a given 927 /// application address. 928 /// 929 /// Offset = (Addr & ~AndMask) ^ XorMask 930 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 931 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 932 933 uint64_t AndMask = MS.MapParams->AndMask; 934 if (AndMask) 935 OffsetLong = 936 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 937 938 uint64_t XorMask = MS.MapParams->XorMask; 939 if (XorMask) 940 OffsetLong = 941 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 942 return OffsetLong; 943 } 944 945 /// \brief Compute the shadow address that corresponds to a given application 946 /// address. 947 /// 948 /// Shadow = ShadowBase + Offset 949 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 950 IRBuilder<> &IRB) { 951 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 952 uint64_t ShadowBase = MS.MapParams->ShadowBase; 953 if (ShadowBase != 0) 954 ShadowLong = 955 IRB.CreateAdd(ShadowLong, 956 ConstantInt::get(MS.IntptrTy, ShadowBase)); 957 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 958 } 959 960 /// \brief Compute the origin address that corresponds to a given application 961 /// address. 962 /// 963 /// OriginAddr = (OriginBase + Offset) & ~3ULL 964 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 965 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 966 uint64_t OriginBase = MS.MapParams->OriginBase; 967 if (OriginBase != 0) 968 OriginLong = 969 IRB.CreateAdd(OriginLong, 970 ConstantInt::get(MS.IntptrTy, OriginBase)); 971 if (Alignment < kMinOriginAlignment) { 972 uint64_t Mask = kMinOriginAlignment - 1; 973 OriginLong = IRB.CreateAnd(OriginLong, 974 ConstantInt::get(MS.IntptrTy, ~Mask)); 975 } 976 return IRB.CreateIntToPtr(OriginLong, 977 PointerType::get(IRB.getInt32Ty(), 0)); 978 } 979 980 /// \brief Compute the shadow address for a given function argument. 981 /// 982 /// Shadow = ParamTLS+ArgOffset. 983 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 984 int ArgOffset) { 985 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 986 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 987 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 988 "_msarg"); 989 } 990 991 /// \brief Compute the origin address for a given function argument. 992 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 993 int ArgOffset) { 994 if (!MS.TrackOrigins) return nullptr; 995 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 996 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 997 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 998 "_msarg_o"); 999 } 1000 1001 /// \brief Compute the shadow address for a retval. 1002 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1003 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1004 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1005 "_msret"); 1006 } 1007 1008 /// \brief Compute the origin address for a retval. 1009 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1010 // We keep a single origin for the entire retval. Might be too optimistic. 1011 return MS.RetvalOriginTLS; 1012 } 1013 1014 /// \brief Set SV to be the shadow value for V. 1015 void setShadow(Value *V, Value *SV) { 1016 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1017 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1018 } 1019 1020 /// \brief Set Origin to be the origin value for V. 1021 void setOrigin(Value *V, Value *Origin) { 1022 if (!MS.TrackOrigins) return; 1023 assert(!OriginMap.count(V) && "Values may only have one origin"); 1024 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1025 OriginMap[V] = Origin; 1026 } 1027 1028 /// \brief Create a clean shadow value for a given value. 1029 /// 1030 /// Clean shadow (all zeroes) means all bits of the value are defined 1031 /// (initialized). 1032 Constant *getCleanShadow(Value *V) { 1033 Type *ShadowTy = getShadowTy(V); 1034 if (!ShadowTy) 1035 return nullptr; 1036 return Constant::getNullValue(ShadowTy); 1037 } 1038 1039 /// \brief Create a dirty shadow of a given shadow type. 1040 Constant *getPoisonedShadow(Type *ShadowTy) { 1041 assert(ShadowTy); 1042 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1043 return Constant::getAllOnesValue(ShadowTy); 1044 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1045 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1046 getPoisonedShadow(AT->getElementType())); 1047 return ConstantArray::get(AT, Vals); 1048 } 1049 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1050 SmallVector<Constant *, 4> Vals; 1051 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1052 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1053 return ConstantStruct::get(ST, Vals); 1054 } 1055 llvm_unreachable("Unexpected shadow type"); 1056 } 1057 1058 /// \brief Create a dirty shadow for a given value. 1059 Constant *getPoisonedShadow(Value *V) { 1060 Type *ShadowTy = getShadowTy(V); 1061 if (!ShadowTy) 1062 return nullptr; 1063 return getPoisonedShadow(ShadowTy); 1064 } 1065 1066 /// \brief Create a clean (zero) origin. 1067 Value *getCleanOrigin() { 1068 return Constant::getNullValue(MS.OriginTy); 1069 } 1070 1071 /// \brief Get the shadow value for a given Value. 1072 /// 1073 /// This function either returns the value set earlier with setShadow, 1074 /// or extracts if from ParamTLS (for function arguments). 1075 Value *getShadow(Value *V) { 1076 if (!PropagateShadow) return getCleanShadow(V); 1077 if (Instruction *I = dyn_cast<Instruction>(V)) { 1078 // For instructions the shadow is already stored in the map. 1079 Value *Shadow = ShadowMap[V]; 1080 if (!Shadow) { 1081 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1082 (void)I; 1083 assert(Shadow && "No shadow for a value"); 1084 } 1085 return Shadow; 1086 } 1087 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1088 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1089 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1090 (void)U; 1091 return AllOnes; 1092 } 1093 if (Argument *A = dyn_cast<Argument>(V)) { 1094 // For arguments we compute the shadow on demand and store it in the map. 1095 Value **ShadowPtr = &ShadowMap[V]; 1096 if (*ShadowPtr) 1097 return *ShadowPtr; 1098 Function *F = A->getParent(); 1099 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1100 unsigned ArgOffset = 0; 1101 const DataLayout &DL = F->getParent()->getDataLayout(); 1102 for (auto &FArg : F->args()) { 1103 if (!FArg.getType()->isSized()) { 1104 DEBUG(dbgs() << "Arg is not sized\n"); 1105 continue; 1106 } 1107 unsigned Size = 1108 FArg.hasByValAttr() 1109 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1110 : DL.getTypeAllocSize(FArg.getType()); 1111 if (A == &FArg) { 1112 bool Overflow = ArgOffset + Size > kParamTLSSize; 1113 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1114 if (FArg.hasByValAttr()) { 1115 // ByVal pointer itself has clean shadow. We copy the actual 1116 // argument shadow to the underlying memory. 1117 // Figure out maximal valid memcpy alignment. 1118 unsigned ArgAlign = FArg.getParamAlignment(); 1119 if (ArgAlign == 0) { 1120 Type *EltType = A->getType()->getPointerElementType(); 1121 ArgAlign = DL.getABITypeAlignment(EltType); 1122 } 1123 if (Overflow) { 1124 // ParamTLS overflow. 1125 EntryIRB.CreateMemSet( 1126 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1127 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1128 } else { 1129 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1130 Value *Cpy = EntryIRB.CreateMemCpy( 1131 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1132 CopyAlign); 1133 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1134 (void)Cpy; 1135 } 1136 *ShadowPtr = getCleanShadow(V); 1137 } else { 1138 if (Overflow) { 1139 // ParamTLS overflow. 1140 *ShadowPtr = getCleanShadow(V); 1141 } else { 1142 *ShadowPtr = 1143 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1144 } 1145 } 1146 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1147 **ShadowPtr << "\n"); 1148 if (MS.TrackOrigins && !Overflow) { 1149 Value *OriginPtr = 1150 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1151 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1152 } else { 1153 setOrigin(A, getCleanOrigin()); 1154 } 1155 } 1156 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1157 } 1158 assert(*ShadowPtr && "Could not find shadow for an argument"); 1159 return *ShadowPtr; 1160 } 1161 // For everything else the shadow is zero. 1162 return getCleanShadow(V); 1163 } 1164 1165 /// \brief Get the shadow for i-th argument of the instruction I. 1166 Value *getShadow(Instruction *I, int i) { 1167 return getShadow(I->getOperand(i)); 1168 } 1169 1170 /// \brief Get the origin for a value. 1171 Value *getOrigin(Value *V) { 1172 if (!MS.TrackOrigins) return nullptr; 1173 if (!PropagateShadow) return getCleanOrigin(); 1174 if (isa<Constant>(V)) return getCleanOrigin(); 1175 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1176 "Unexpected value type in getOrigin()"); 1177 Value *Origin = OriginMap[V]; 1178 assert(Origin && "Missing origin"); 1179 return Origin; 1180 } 1181 1182 /// \brief Get the origin for i-th argument of the instruction I. 1183 Value *getOrigin(Instruction *I, int i) { 1184 return getOrigin(I->getOperand(i)); 1185 } 1186 1187 /// \brief Remember the place where a shadow check should be inserted. 1188 /// 1189 /// This location will be later instrumented with a check that will print a 1190 /// UMR warning in runtime if the shadow value is not 0. 1191 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1192 assert(Shadow); 1193 if (!InsertChecks) return; 1194 #ifndef NDEBUG 1195 Type *ShadowTy = Shadow->getType(); 1196 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1197 "Can only insert checks for integer and vector shadow types"); 1198 #endif 1199 InstrumentationList.push_back( 1200 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1201 } 1202 1203 /// \brief Remember the place where a shadow check should be inserted. 1204 /// 1205 /// This location will be later instrumented with a check that will print a 1206 /// UMR warning in runtime if the value is not fully defined. 1207 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1208 assert(Val); 1209 Value *Shadow, *Origin; 1210 if (ClCheckConstantShadow) { 1211 Shadow = getShadow(Val); 1212 if (!Shadow) return; 1213 Origin = getOrigin(Val); 1214 } else { 1215 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1216 if (!Shadow) return; 1217 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1218 } 1219 insertShadowCheck(Shadow, Origin, OrigIns); 1220 } 1221 1222 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1223 switch (a) { 1224 case AtomicOrdering::NotAtomic: 1225 return AtomicOrdering::NotAtomic; 1226 case AtomicOrdering::Unordered: 1227 case AtomicOrdering::Monotonic: 1228 case AtomicOrdering::Release: 1229 return AtomicOrdering::Release; 1230 case AtomicOrdering::Acquire: 1231 case AtomicOrdering::AcquireRelease: 1232 return AtomicOrdering::AcquireRelease; 1233 case AtomicOrdering::SequentiallyConsistent: 1234 return AtomicOrdering::SequentiallyConsistent; 1235 } 1236 llvm_unreachable("Unknown ordering"); 1237 } 1238 1239 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1240 switch (a) { 1241 case AtomicOrdering::NotAtomic: 1242 return AtomicOrdering::NotAtomic; 1243 case AtomicOrdering::Unordered: 1244 case AtomicOrdering::Monotonic: 1245 case AtomicOrdering::Acquire: 1246 return AtomicOrdering::Acquire; 1247 case AtomicOrdering::Release: 1248 case AtomicOrdering::AcquireRelease: 1249 return AtomicOrdering::AcquireRelease; 1250 case AtomicOrdering::SequentiallyConsistent: 1251 return AtomicOrdering::SequentiallyConsistent; 1252 } 1253 llvm_unreachable("Unknown ordering"); 1254 } 1255 1256 // ------------------- Visitors. 1257 1258 /// \brief Instrument LoadInst 1259 /// 1260 /// Loads the corresponding shadow and (optionally) origin. 1261 /// Optionally, checks that the load address is fully defined. 1262 void visitLoadInst(LoadInst &I) { 1263 assert(I.getType()->isSized() && "Load type must have size"); 1264 IRBuilder<> IRB(I.getNextNode()); 1265 Type *ShadowTy = getShadowTy(&I); 1266 Value *Addr = I.getPointerOperand(); 1267 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1268 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1269 setShadow(&I, 1270 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1271 } else { 1272 setShadow(&I, getCleanShadow(&I)); 1273 } 1274 1275 if (ClCheckAccessAddress) 1276 insertShadowCheck(I.getPointerOperand(), &I); 1277 1278 if (I.isAtomic()) 1279 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1280 1281 if (MS.TrackOrigins) { 1282 if (PropagateShadow) { 1283 unsigned Alignment = I.getAlignment(); 1284 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1285 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1286 OriginAlignment)); 1287 } else { 1288 setOrigin(&I, getCleanOrigin()); 1289 } 1290 } 1291 } 1292 1293 /// \brief Instrument StoreInst 1294 /// 1295 /// Stores the corresponding shadow and (optionally) origin. 1296 /// Optionally, checks that the store address is fully defined. 1297 void visitStoreInst(StoreInst &I) { 1298 StoreList.push_back(&I); 1299 } 1300 1301 void handleCASOrRMW(Instruction &I) { 1302 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1303 1304 IRBuilder<> IRB(&I); 1305 Value *Addr = I.getOperand(0); 1306 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1307 1308 if (ClCheckAccessAddress) 1309 insertShadowCheck(Addr, &I); 1310 1311 // Only test the conditional argument of cmpxchg instruction. 1312 // The other argument can potentially be uninitialized, but we can not 1313 // detect this situation reliably without possible false positives. 1314 if (isa<AtomicCmpXchgInst>(I)) 1315 insertShadowCheck(I.getOperand(1), &I); 1316 1317 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1318 1319 setShadow(&I, getCleanShadow(&I)); 1320 setOrigin(&I, getCleanOrigin()); 1321 } 1322 1323 void visitAtomicRMWInst(AtomicRMWInst &I) { 1324 handleCASOrRMW(I); 1325 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1326 } 1327 1328 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1329 handleCASOrRMW(I); 1330 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1331 } 1332 1333 // Vector manipulation. 1334 void visitExtractElementInst(ExtractElementInst &I) { 1335 insertShadowCheck(I.getOperand(1), &I); 1336 IRBuilder<> IRB(&I); 1337 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1338 "_msprop")); 1339 setOrigin(&I, getOrigin(&I, 0)); 1340 } 1341 1342 void visitInsertElementInst(InsertElementInst &I) { 1343 insertShadowCheck(I.getOperand(2), &I); 1344 IRBuilder<> IRB(&I); 1345 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1346 I.getOperand(2), "_msprop")); 1347 setOriginForNaryOp(I); 1348 } 1349 1350 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1351 insertShadowCheck(I.getOperand(2), &I); 1352 IRBuilder<> IRB(&I); 1353 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1354 I.getOperand(2), "_msprop")); 1355 setOriginForNaryOp(I); 1356 } 1357 1358 // Casts. 1359 void visitSExtInst(SExtInst &I) { 1360 IRBuilder<> IRB(&I); 1361 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1362 setOrigin(&I, getOrigin(&I, 0)); 1363 } 1364 1365 void visitZExtInst(ZExtInst &I) { 1366 IRBuilder<> IRB(&I); 1367 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1368 setOrigin(&I, getOrigin(&I, 0)); 1369 } 1370 1371 void visitTruncInst(TruncInst &I) { 1372 IRBuilder<> IRB(&I); 1373 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1374 setOrigin(&I, getOrigin(&I, 0)); 1375 } 1376 1377 void visitBitCastInst(BitCastInst &I) { 1378 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1379 // a musttail call and a ret, don't instrument. New instructions are not 1380 // allowed after a musttail call. 1381 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1382 if (CI->isMustTailCall()) 1383 return; 1384 IRBuilder<> IRB(&I); 1385 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1386 setOrigin(&I, getOrigin(&I, 0)); 1387 } 1388 1389 void visitPtrToIntInst(PtrToIntInst &I) { 1390 IRBuilder<> IRB(&I); 1391 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1392 "_msprop_ptrtoint")); 1393 setOrigin(&I, getOrigin(&I, 0)); 1394 } 1395 1396 void visitIntToPtrInst(IntToPtrInst &I) { 1397 IRBuilder<> IRB(&I); 1398 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1399 "_msprop_inttoptr")); 1400 setOrigin(&I, getOrigin(&I, 0)); 1401 } 1402 1403 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1404 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1405 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1406 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1407 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1408 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1409 1410 /// \brief Propagate shadow for bitwise AND. 1411 /// 1412 /// This code is exact, i.e. if, for example, a bit in the left argument 1413 /// is defined and 0, then neither the value not definedness of the 1414 /// corresponding bit in B don't affect the resulting shadow. 1415 void visitAnd(BinaryOperator &I) { 1416 IRBuilder<> IRB(&I); 1417 // "And" of 0 and a poisoned value results in unpoisoned value. 1418 // 1&1 => 1; 0&1 => 0; p&1 => p; 1419 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1420 // 1&p => p; 0&p => 0; p&p => p; 1421 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1422 Value *S1 = getShadow(&I, 0); 1423 Value *S2 = getShadow(&I, 1); 1424 Value *V1 = I.getOperand(0); 1425 Value *V2 = I.getOperand(1); 1426 if (V1->getType() != S1->getType()) { 1427 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1428 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1429 } 1430 Value *S1S2 = IRB.CreateAnd(S1, S2); 1431 Value *V1S2 = IRB.CreateAnd(V1, S2); 1432 Value *S1V2 = IRB.CreateAnd(S1, V2); 1433 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1434 setOriginForNaryOp(I); 1435 } 1436 1437 void visitOr(BinaryOperator &I) { 1438 IRBuilder<> IRB(&I); 1439 // "Or" of 1 and a poisoned value results in unpoisoned value. 1440 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1441 // 1|0 => 1; 0|0 => 0; p|0 => p; 1442 // 1|p => 1; 0|p => p; p|p => p; 1443 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1444 Value *S1 = getShadow(&I, 0); 1445 Value *S2 = getShadow(&I, 1); 1446 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1447 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1448 if (V1->getType() != S1->getType()) { 1449 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1450 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1451 } 1452 Value *S1S2 = IRB.CreateAnd(S1, S2); 1453 Value *V1S2 = IRB.CreateAnd(V1, S2); 1454 Value *S1V2 = IRB.CreateAnd(S1, V2); 1455 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1456 setOriginForNaryOp(I); 1457 } 1458 1459 /// \brief Default propagation of shadow and/or origin. 1460 /// 1461 /// This class implements the general case of shadow propagation, used in all 1462 /// cases where we don't know and/or don't care about what the operation 1463 /// actually does. It converts all input shadow values to a common type 1464 /// (extending or truncating as necessary), and bitwise OR's them. 1465 /// 1466 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1467 /// fully initialized), and less prone to false positives. 1468 /// 1469 /// This class also implements the general case of origin propagation. For a 1470 /// Nary operation, result origin is set to the origin of an argument that is 1471 /// not entirely initialized. If there is more than one such arguments, the 1472 /// rightmost of them is picked. It does not matter which one is picked if all 1473 /// arguments are initialized. 1474 template <bool CombineShadow> 1475 class Combiner { 1476 Value *Shadow; 1477 Value *Origin; 1478 IRBuilder<> &IRB; 1479 MemorySanitizerVisitor *MSV; 1480 1481 public: 1482 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1483 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1484 1485 /// \brief Add a pair of shadow and origin values to the mix. 1486 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1487 if (CombineShadow) { 1488 assert(OpShadow); 1489 if (!Shadow) 1490 Shadow = OpShadow; 1491 else { 1492 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1493 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1494 } 1495 } 1496 1497 if (MSV->MS.TrackOrigins) { 1498 assert(OpOrigin); 1499 if (!Origin) { 1500 Origin = OpOrigin; 1501 } else { 1502 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1503 // No point in adding something that might result in 0 origin value. 1504 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1505 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1506 Value *Cond = 1507 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1508 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1509 } 1510 } 1511 } 1512 return *this; 1513 } 1514 1515 /// \brief Add an application value to the mix. 1516 Combiner &Add(Value *V) { 1517 Value *OpShadow = MSV->getShadow(V); 1518 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1519 return Add(OpShadow, OpOrigin); 1520 } 1521 1522 /// \brief Set the current combined values as the given instruction's shadow 1523 /// and origin. 1524 void Done(Instruction *I) { 1525 if (CombineShadow) { 1526 assert(Shadow); 1527 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1528 MSV->setShadow(I, Shadow); 1529 } 1530 if (MSV->MS.TrackOrigins) { 1531 assert(Origin); 1532 MSV->setOrigin(I, Origin); 1533 } 1534 } 1535 }; 1536 1537 typedef Combiner<true> ShadowAndOriginCombiner; 1538 typedef Combiner<false> OriginCombiner; 1539 1540 /// \brief Propagate origin for arbitrary operation. 1541 void setOriginForNaryOp(Instruction &I) { 1542 if (!MS.TrackOrigins) return; 1543 IRBuilder<> IRB(&I); 1544 OriginCombiner OC(this, IRB); 1545 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1546 OC.Add(OI->get()); 1547 OC.Done(&I); 1548 } 1549 1550 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1551 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1552 "Vector of pointers is not a valid shadow type"); 1553 return Ty->isVectorTy() ? 1554 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1555 Ty->getPrimitiveSizeInBits(); 1556 } 1557 1558 /// \brief Cast between two shadow types, extending or truncating as 1559 /// necessary. 1560 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1561 bool Signed = false) { 1562 Type *srcTy = V->getType(); 1563 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1564 return IRB.CreateIntCast(V, dstTy, Signed); 1565 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1566 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1567 return IRB.CreateIntCast(V, dstTy, Signed); 1568 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1569 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1570 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1571 Value *V2 = 1572 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1573 return IRB.CreateBitCast(V2, dstTy); 1574 // TODO: handle struct types. 1575 } 1576 1577 /// \brief Cast an application value to the type of its own shadow. 1578 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1579 Type *ShadowTy = getShadowTy(V); 1580 if (V->getType() == ShadowTy) 1581 return V; 1582 if (V->getType()->isPtrOrPtrVectorTy()) 1583 return IRB.CreatePtrToInt(V, ShadowTy); 1584 else 1585 return IRB.CreateBitCast(V, ShadowTy); 1586 } 1587 1588 /// \brief Propagate shadow for arbitrary operation. 1589 void handleShadowOr(Instruction &I) { 1590 IRBuilder<> IRB(&I); 1591 ShadowAndOriginCombiner SC(this, IRB); 1592 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1593 SC.Add(OI->get()); 1594 SC.Done(&I); 1595 } 1596 1597 // \brief Handle multiplication by constant. 1598 // 1599 // Handle a special case of multiplication by constant that may have one or 1600 // more zeros in the lower bits. This makes corresponding number of lower bits 1601 // of the result zero as well. We model it by shifting the other operand 1602 // shadow left by the required number of bits. Effectively, we transform 1603 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1604 // We use multiplication by 2**N instead of shift to cover the case of 1605 // multiplication by 0, which may occur in some elements of a vector operand. 1606 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1607 Value *OtherArg) { 1608 Constant *ShadowMul; 1609 Type *Ty = ConstArg->getType(); 1610 if (Ty->isVectorTy()) { 1611 unsigned NumElements = Ty->getVectorNumElements(); 1612 Type *EltTy = Ty->getSequentialElementType(); 1613 SmallVector<Constant *, 16> Elements; 1614 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1615 if (ConstantInt *Elt = 1616 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1617 APInt V = Elt->getValue(); 1618 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1619 Elements.push_back(ConstantInt::get(EltTy, V2)); 1620 } else { 1621 Elements.push_back(ConstantInt::get(EltTy, 1)); 1622 } 1623 } 1624 ShadowMul = ConstantVector::get(Elements); 1625 } else { 1626 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1627 APInt V = Elt->getValue(); 1628 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1629 ShadowMul = ConstantInt::get(Ty, V2); 1630 } else { 1631 ShadowMul = ConstantInt::get(Ty, 1); 1632 } 1633 } 1634 1635 IRBuilder<> IRB(&I); 1636 setShadow(&I, 1637 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1638 setOrigin(&I, getOrigin(OtherArg)); 1639 } 1640 1641 void visitMul(BinaryOperator &I) { 1642 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1643 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1644 if (constOp0 && !constOp1) 1645 handleMulByConstant(I, constOp0, I.getOperand(1)); 1646 else if (constOp1 && !constOp0) 1647 handleMulByConstant(I, constOp1, I.getOperand(0)); 1648 else 1649 handleShadowOr(I); 1650 } 1651 1652 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1653 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1654 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1655 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1656 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1657 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1658 1659 void handleDiv(Instruction &I) { 1660 IRBuilder<> IRB(&I); 1661 // Strict on the second argument. 1662 insertShadowCheck(I.getOperand(1), &I); 1663 setShadow(&I, getShadow(&I, 0)); 1664 setOrigin(&I, getOrigin(&I, 0)); 1665 } 1666 1667 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1668 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1669 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1670 void visitURem(BinaryOperator &I) { handleDiv(I); } 1671 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1672 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1673 1674 /// \brief Instrument == and != comparisons. 1675 /// 1676 /// Sometimes the comparison result is known even if some of the bits of the 1677 /// arguments are not. 1678 void handleEqualityComparison(ICmpInst &I) { 1679 IRBuilder<> IRB(&I); 1680 Value *A = I.getOperand(0); 1681 Value *B = I.getOperand(1); 1682 Value *Sa = getShadow(A); 1683 Value *Sb = getShadow(B); 1684 1685 // Get rid of pointers and vectors of pointers. 1686 // For ints (and vectors of ints), types of A and Sa match, 1687 // and this is a no-op. 1688 A = IRB.CreatePointerCast(A, Sa->getType()); 1689 B = IRB.CreatePointerCast(B, Sb->getType()); 1690 1691 // A == B <==> (C = A^B) == 0 1692 // A != B <==> (C = A^B) != 0 1693 // Sc = Sa | Sb 1694 Value *C = IRB.CreateXor(A, B); 1695 Value *Sc = IRB.CreateOr(Sa, Sb); 1696 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1697 // Result is defined if one of the following is true 1698 // * there is a defined 1 bit in C 1699 // * C is fully defined 1700 // Si = !(C & ~Sc) && Sc 1701 Value *Zero = Constant::getNullValue(Sc->getType()); 1702 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1703 Value *Si = 1704 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1705 IRB.CreateICmpEQ( 1706 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1707 Si->setName("_msprop_icmp"); 1708 setShadow(&I, Si); 1709 setOriginForNaryOp(I); 1710 } 1711 1712 /// \brief Build the lowest possible value of V, taking into account V's 1713 /// uninitialized bits. 1714 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1715 bool isSigned) { 1716 if (isSigned) { 1717 // Split shadow into sign bit and other bits. 1718 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1719 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1720 // Maximise the undefined shadow bit, minimize other undefined bits. 1721 return 1722 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1723 } else { 1724 // Minimize undefined bits. 1725 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1726 } 1727 } 1728 1729 /// \brief Build the highest possible value of V, taking into account V's 1730 /// uninitialized bits. 1731 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1732 bool isSigned) { 1733 if (isSigned) { 1734 // Split shadow into sign bit and other bits. 1735 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1736 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1737 // Minimise the undefined shadow bit, maximise other undefined bits. 1738 return 1739 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1740 } else { 1741 // Maximize undefined bits. 1742 return IRB.CreateOr(A, Sa); 1743 } 1744 } 1745 1746 /// \brief Instrument relational comparisons. 1747 /// 1748 /// This function does exact shadow propagation for all relational 1749 /// comparisons of integers, pointers and vectors of those. 1750 /// FIXME: output seems suboptimal when one of the operands is a constant 1751 void handleRelationalComparisonExact(ICmpInst &I) { 1752 IRBuilder<> IRB(&I); 1753 Value *A = I.getOperand(0); 1754 Value *B = I.getOperand(1); 1755 Value *Sa = getShadow(A); 1756 Value *Sb = getShadow(B); 1757 1758 // Get rid of pointers and vectors of pointers. 1759 // For ints (and vectors of ints), types of A and Sa match, 1760 // and this is a no-op. 1761 A = IRB.CreatePointerCast(A, Sa->getType()); 1762 B = IRB.CreatePointerCast(B, Sb->getType()); 1763 1764 // Let [a0, a1] be the interval of possible values of A, taking into account 1765 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1766 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1767 bool IsSigned = I.isSigned(); 1768 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1769 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1770 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1771 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1772 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1773 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1774 Value *Si = IRB.CreateXor(S1, S2); 1775 setShadow(&I, Si); 1776 setOriginForNaryOp(I); 1777 } 1778 1779 /// \brief Instrument signed relational comparisons. 1780 /// 1781 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1782 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1783 void handleSignedRelationalComparison(ICmpInst &I) { 1784 Constant *constOp; 1785 Value *op = nullptr; 1786 CmpInst::Predicate pre; 1787 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1788 op = I.getOperand(0); 1789 pre = I.getPredicate(); 1790 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1791 op = I.getOperand(1); 1792 pre = I.getSwappedPredicate(); 1793 } else { 1794 handleShadowOr(I); 1795 return; 1796 } 1797 1798 if ((constOp->isNullValue() && 1799 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1800 (constOp->isAllOnesValue() && 1801 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1802 IRBuilder<> IRB(&I); 1803 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1804 "_msprop_icmp_s"); 1805 setShadow(&I, Shadow); 1806 setOrigin(&I, getOrigin(op)); 1807 } else { 1808 handleShadowOr(I); 1809 } 1810 } 1811 1812 void visitICmpInst(ICmpInst &I) { 1813 if (!ClHandleICmp) { 1814 handleShadowOr(I); 1815 return; 1816 } 1817 if (I.isEquality()) { 1818 handleEqualityComparison(I); 1819 return; 1820 } 1821 1822 assert(I.isRelational()); 1823 if (ClHandleICmpExact) { 1824 handleRelationalComparisonExact(I); 1825 return; 1826 } 1827 if (I.isSigned()) { 1828 handleSignedRelationalComparison(I); 1829 return; 1830 } 1831 1832 assert(I.isUnsigned()); 1833 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1834 handleRelationalComparisonExact(I); 1835 return; 1836 } 1837 1838 handleShadowOr(I); 1839 } 1840 1841 void visitFCmpInst(FCmpInst &I) { 1842 handleShadowOr(I); 1843 } 1844 1845 void handleShift(BinaryOperator &I) { 1846 IRBuilder<> IRB(&I); 1847 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1848 // Otherwise perform the same shift on S1. 1849 Value *S1 = getShadow(&I, 0); 1850 Value *S2 = getShadow(&I, 1); 1851 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1852 S2->getType()); 1853 Value *V2 = I.getOperand(1); 1854 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1855 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1856 setOriginForNaryOp(I); 1857 } 1858 1859 void visitShl(BinaryOperator &I) { handleShift(I); } 1860 void visitAShr(BinaryOperator &I) { handleShift(I); } 1861 void visitLShr(BinaryOperator &I) { handleShift(I); } 1862 1863 /// \brief Instrument llvm.memmove 1864 /// 1865 /// At this point we don't know if llvm.memmove will be inlined or not. 1866 /// If we don't instrument it and it gets inlined, 1867 /// our interceptor will not kick in and we will lose the memmove. 1868 /// If we instrument the call here, but it does not get inlined, 1869 /// we will memove the shadow twice: which is bad in case 1870 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1871 /// 1872 /// Similar situation exists for memcpy and memset. 1873 void visitMemMoveInst(MemMoveInst &I) { 1874 IRBuilder<> IRB(&I); 1875 IRB.CreateCall( 1876 MS.MemmoveFn, 1877 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1878 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1879 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1880 I.eraseFromParent(); 1881 } 1882 1883 // Similar to memmove: avoid copying shadow twice. 1884 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1885 // FIXME: consider doing manual inline for small constant sizes and proper 1886 // alignment. 1887 void visitMemCpyInst(MemCpyInst &I) { 1888 IRBuilder<> IRB(&I); 1889 IRB.CreateCall( 1890 MS.MemcpyFn, 1891 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1892 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1893 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1894 I.eraseFromParent(); 1895 } 1896 1897 // Same as memcpy. 1898 void visitMemSetInst(MemSetInst &I) { 1899 IRBuilder<> IRB(&I); 1900 IRB.CreateCall( 1901 MS.MemsetFn, 1902 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1903 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1904 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1905 I.eraseFromParent(); 1906 } 1907 1908 void visitVAStartInst(VAStartInst &I) { 1909 VAHelper->visitVAStartInst(I); 1910 } 1911 1912 void visitVACopyInst(VACopyInst &I) { 1913 VAHelper->visitVACopyInst(I); 1914 } 1915 1916 /// \brief Handle vector store-like intrinsics. 1917 /// 1918 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1919 /// has 1 pointer argument and 1 vector argument, returns void. 1920 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1921 IRBuilder<> IRB(&I); 1922 Value* Addr = I.getArgOperand(0); 1923 Value *Shadow = getShadow(&I, 1); 1924 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1925 1926 // We don't know the pointer alignment (could be unaligned SSE store!). 1927 // Have to assume to worst case. 1928 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1929 1930 if (ClCheckAccessAddress) 1931 insertShadowCheck(Addr, &I); 1932 1933 // FIXME: use ClStoreCleanOrigin 1934 // FIXME: factor out common code from materializeStores 1935 if (MS.TrackOrigins) 1936 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1937 return true; 1938 } 1939 1940 /// \brief Handle vector load-like intrinsics. 1941 /// 1942 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1943 /// has 1 pointer argument, returns a vector. 1944 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1945 IRBuilder<> IRB(&I); 1946 Value *Addr = I.getArgOperand(0); 1947 1948 Type *ShadowTy = getShadowTy(&I); 1949 if (PropagateShadow) { 1950 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1951 // We don't know the pointer alignment (could be unaligned SSE load!). 1952 // Have to assume to worst case. 1953 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1954 } else { 1955 setShadow(&I, getCleanShadow(&I)); 1956 } 1957 1958 if (ClCheckAccessAddress) 1959 insertShadowCheck(Addr, &I); 1960 1961 if (MS.TrackOrigins) { 1962 if (PropagateShadow) 1963 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1964 else 1965 setOrigin(&I, getCleanOrigin()); 1966 } 1967 return true; 1968 } 1969 1970 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1971 /// 1972 /// Instrument intrinsics with any number of arguments of the same type, 1973 /// equal to the return type. The type should be simple (no aggregates or 1974 /// pointers; vectors are fine). 1975 /// Caller guarantees that this intrinsic does not access memory. 1976 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1977 Type *RetTy = I.getType(); 1978 if (!(RetTy->isIntOrIntVectorTy() || 1979 RetTy->isFPOrFPVectorTy() || 1980 RetTy->isX86_MMXTy())) 1981 return false; 1982 1983 unsigned NumArgOperands = I.getNumArgOperands(); 1984 1985 for (unsigned i = 0; i < NumArgOperands; ++i) { 1986 Type *Ty = I.getArgOperand(i)->getType(); 1987 if (Ty != RetTy) 1988 return false; 1989 } 1990 1991 IRBuilder<> IRB(&I); 1992 ShadowAndOriginCombiner SC(this, IRB); 1993 for (unsigned i = 0; i < NumArgOperands; ++i) 1994 SC.Add(I.getArgOperand(i)); 1995 SC.Done(&I); 1996 1997 return true; 1998 } 1999 2000 /// \brief Heuristically instrument unknown intrinsics. 2001 /// 2002 /// The main purpose of this code is to do something reasonable with all 2003 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2004 /// We recognize several classes of intrinsics by their argument types and 2005 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2006 /// sure that we know what the intrinsic does. 2007 /// 2008 /// We special-case intrinsics where this approach fails. See llvm.bswap 2009 /// handling as an example of that. 2010 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2011 unsigned NumArgOperands = I.getNumArgOperands(); 2012 if (NumArgOperands == 0) 2013 return false; 2014 2015 if (NumArgOperands == 2 && 2016 I.getArgOperand(0)->getType()->isPointerTy() && 2017 I.getArgOperand(1)->getType()->isVectorTy() && 2018 I.getType()->isVoidTy() && 2019 !I.onlyReadsMemory()) { 2020 // This looks like a vector store. 2021 return handleVectorStoreIntrinsic(I); 2022 } 2023 2024 if (NumArgOperands == 1 && 2025 I.getArgOperand(0)->getType()->isPointerTy() && 2026 I.getType()->isVectorTy() && 2027 I.onlyReadsMemory()) { 2028 // This looks like a vector load. 2029 return handleVectorLoadIntrinsic(I); 2030 } 2031 2032 if (I.doesNotAccessMemory()) 2033 if (maybeHandleSimpleNomemIntrinsic(I)) 2034 return true; 2035 2036 // FIXME: detect and handle SSE maskstore/maskload 2037 return false; 2038 } 2039 2040 void handleBswap(IntrinsicInst &I) { 2041 IRBuilder<> IRB(&I); 2042 Value *Op = I.getArgOperand(0); 2043 Type *OpType = Op->getType(); 2044 Function *BswapFunc = Intrinsic::getDeclaration( 2045 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2046 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2047 setOrigin(&I, getOrigin(Op)); 2048 } 2049 2050 // \brief Instrument vector convert instrinsic. 2051 // 2052 // This function instruments intrinsics like cvtsi2ss: 2053 // %Out = int_xxx_cvtyyy(%ConvertOp) 2054 // or 2055 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2056 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2057 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2058 // elements from \p CopyOp. 2059 // In most cases conversion involves floating-point value which may trigger a 2060 // hardware exception when not fully initialized. For this reason we require 2061 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2062 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2063 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2064 // return a fully initialized value. 2065 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2066 IRBuilder<> IRB(&I); 2067 Value *CopyOp, *ConvertOp; 2068 2069 switch (I.getNumArgOperands()) { 2070 case 3: 2071 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2072 case 2: 2073 CopyOp = I.getArgOperand(0); 2074 ConvertOp = I.getArgOperand(1); 2075 break; 2076 case 1: 2077 ConvertOp = I.getArgOperand(0); 2078 CopyOp = nullptr; 2079 break; 2080 default: 2081 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2082 } 2083 2084 // The first *NumUsedElements* elements of ConvertOp are converted to the 2085 // same number of output elements. The rest of the output is copied from 2086 // CopyOp, or (if not available) filled with zeroes. 2087 // Combine shadow for elements of ConvertOp that are used in this operation, 2088 // and insert a check. 2089 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2090 // int->any conversion. 2091 Value *ConvertShadow = getShadow(ConvertOp); 2092 Value *AggShadow = nullptr; 2093 if (ConvertOp->getType()->isVectorTy()) { 2094 AggShadow = IRB.CreateExtractElement( 2095 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2096 for (int i = 1; i < NumUsedElements; ++i) { 2097 Value *MoreShadow = IRB.CreateExtractElement( 2098 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2099 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2100 } 2101 } else { 2102 AggShadow = ConvertShadow; 2103 } 2104 assert(AggShadow->getType()->isIntegerTy()); 2105 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2106 2107 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2108 // ConvertOp. 2109 if (CopyOp) { 2110 assert(CopyOp->getType() == I.getType()); 2111 assert(CopyOp->getType()->isVectorTy()); 2112 Value *ResultShadow = getShadow(CopyOp); 2113 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2114 for (int i = 0; i < NumUsedElements; ++i) { 2115 ResultShadow = IRB.CreateInsertElement( 2116 ResultShadow, ConstantInt::getNullValue(EltTy), 2117 ConstantInt::get(IRB.getInt32Ty(), i)); 2118 } 2119 setShadow(&I, ResultShadow); 2120 setOrigin(&I, getOrigin(CopyOp)); 2121 } else { 2122 setShadow(&I, getCleanShadow(&I)); 2123 setOrigin(&I, getCleanOrigin()); 2124 } 2125 } 2126 2127 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2128 // zeroes if it is zero, and all ones otherwise. 2129 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2130 if (S->getType()->isVectorTy()) 2131 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2132 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2133 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2134 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2135 } 2136 2137 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2138 Type *T = S->getType(); 2139 assert(T->isVectorTy()); 2140 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2141 return IRB.CreateSExt(S2, T); 2142 } 2143 2144 // \brief Instrument vector shift instrinsic. 2145 // 2146 // This function instruments intrinsics like int_x86_avx2_psll_w. 2147 // Intrinsic shifts %In by %ShiftSize bits. 2148 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2149 // size, and the rest is ignored. Behavior is defined even if shift size is 2150 // greater than register (or field) width. 2151 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2152 assert(I.getNumArgOperands() == 2); 2153 IRBuilder<> IRB(&I); 2154 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2155 // Otherwise perform the same shift on S1. 2156 Value *S1 = getShadow(&I, 0); 2157 Value *S2 = getShadow(&I, 1); 2158 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2159 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2160 Value *V1 = I.getOperand(0); 2161 Value *V2 = I.getOperand(1); 2162 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2163 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2164 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2165 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2166 setOriginForNaryOp(I); 2167 } 2168 2169 // \brief Get an X86_MMX-sized vector type. 2170 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2171 const unsigned X86_MMXSizeInBits = 64; 2172 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2173 X86_MMXSizeInBits / EltSizeInBits); 2174 } 2175 2176 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2177 // intrinsic. 2178 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2179 switch (id) { 2180 case llvm::Intrinsic::x86_sse2_packsswb_128: 2181 case llvm::Intrinsic::x86_sse2_packuswb_128: 2182 return llvm::Intrinsic::x86_sse2_packsswb_128; 2183 2184 case llvm::Intrinsic::x86_sse2_packssdw_128: 2185 case llvm::Intrinsic::x86_sse41_packusdw: 2186 return llvm::Intrinsic::x86_sse2_packssdw_128; 2187 2188 case llvm::Intrinsic::x86_avx2_packsswb: 2189 case llvm::Intrinsic::x86_avx2_packuswb: 2190 return llvm::Intrinsic::x86_avx2_packsswb; 2191 2192 case llvm::Intrinsic::x86_avx2_packssdw: 2193 case llvm::Intrinsic::x86_avx2_packusdw: 2194 return llvm::Intrinsic::x86_avx2_packssdw; 2195 2196 case llvm::Intrinsic::x86_mmx_packsswb: 2197 case llvm::Intrinsic::x86_mmx_packuswb: 2198 return llvm::Intrinsic::x86_mmx_packsswb; 2199 2200 case llvm::Intrinsic::x86_mmx_packssdw: 2201 return llvm::Intrinsic::x86_mmx_packssdw; 2202 default: 2203 llvm_unreachable("unexpected intrinsic id"); 2204 } 2205 } 2206 2207 // \brief Instrument vector pack instrinsic. 2208 // 2209 // This function instruments intrinsics like x86_mmx_packsswb, that 2210 // packs elements of 2 input vectors into half as many bits with saturation. 2211 // Shadow is propagated with the signed variant of the same intrinsic applied 2212 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2213 // EltSizeInBits is used only for x86mmx arguments. 2214 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2215 assert(I.getNumArgOperands() == 2); 2216 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2217 IRBuilder<> IRB(&I); 2218 Value *S1 = getShadow(&I, 0); 2219 Value *S2 = getShadow(&I, 1); 2220 assert(isX86_MMX || S1->getType()->isVectorTy()); 2221 2222 // SExt and ICmpNE below must apply to individual elements of input vectors. 2223 // In case of x86mmx arguments, cast them to appropriate vector types and 2224 // back. 2225 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2226 if (isX86_MMX) { 2227 S1 = IRB.CreateBitCast(S1, T); 2228 S2 = IRB.CreateBitCast(S2, T); 2229 } 2230 Value *S1_ext = IRB.CreateSExt( 2231 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2232 Value *S2_ext = IRB.CreateSExt( 2233 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2234 if (isX86_MMX) { 2235 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2236 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2237 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2238 } 2239 2240 Function *ShadowFn = Intrinsic::getDeclaration( 2241 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2242 2243 Value *S = 2244 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2245 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2246 setShadow(&I, S); 2247 setOriginForNaryOp(I); 2248 } 2249 2250 // \brief Instrument sum-of-absolute-differencies intrinsic. 2251 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2252 const unsigned SignificantBitsPerResultElement = 16; 2253 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2254 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2255 unsigned ZeroBitsPerResultElement = 2256 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2257 2258 IRBuilder<> IRB(&I); 2259 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2260 S = IRB.CreateBitCast(S, ResTy); 2261 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2262 ResTy); 2263 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2264 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2265 setShadow(&I, S); 2266 setOriginForNaryOp(I); 2267 } 2268 2269 // \brief Instrument multiply-add intrinsic. 2270 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2271 unsigned EltSizeInBits = 0) { 2272 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2273 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2274 IRBuilder<> IRB(&I); 2275 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2276 S = IRB.CreateBitCast(S, ResTy); 2277 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2278 ResTy); 2279 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2280 setShadow(&I, S); 2281 setOriginForNaryOp(I); 2282 } 2283 2284 void visitIntrinsicInst(IntrinsicInst &I) { 2285 switch (I.getIntrinsicID()) { 2286 case llvm::Intrinsic::bswap: 2287 handleBswap(I); 2288 break; 2289 case llvm::Intrinsic::x86_avx512_vcvtsd2usi64: 2290 case llvm::Intrinsic::x86_avx512_vcvtsd2usi32: 2291 case llvm::Intrinsic::x86_avx512_vcvtss2usi64: 2292 case llvm::Intrinsic::x86_avx512_vcvtss2usi32: 2293 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2294 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2295 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2296 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2297 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2298 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2299 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2300 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2301 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2302 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2303 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2304 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2305 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2306 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2307 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2308 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2309 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2310 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2311 case llvm::Intrinsic::x86_sse_cvtss2si64: 2312 case llvm::Intrinsic::x86_sse_cvtss2si: 2313 case llvm::Intrinsic::x86_sse_cvttss2si64: 2314 case llvm::Intrinsic::x86_sse_cvttss2si: 2315 handleVectorConvertIntrinsic(I, 1); 2316 break; 2317 case llvm::Intrinsic::x86_sse2_cvtdq2pd: 2318 case llvm::Intrinsic::x86_sse2_cvtps2pd: 2319 case llvm::Intrinsic::x86_sse_cvtps2pi: 2320 case llvm::Intrinsic::x86_sse_cvttps2pi: 2321 handleVectorConvertIntrinsic(I, 2); 2322 break; 2323 case llvm::Intrinsic::x86_avx2_psll_w: 2324 case llvm::Intrinsic::x86_avx2_psll_d: 2325 case llvm::Intrinsic::x86_avx2_psll_q: 2326 case llvm::Intrinsic::x86_avx2_pslli_w: 2327 case llvm::Intrinsic::x86_avx2_pslli_d: 2328 case llvm::Intrinsic::x86_avx2_pslli_q: 2329 case llvm::Intrinsic::x86_avx2_psrl_w: 2330 case llvm::Intrinsic::x86_avx2_psrl_d: 2331 case llvm::Intrinsic::x86_avx2_psrl_q: 2332 case llvm::Intrinsic::x86_avx2_psra_w: 2333 case llvm::Intrinsic::x86_avx2_psra_d: 2334 case llvm::Intrinsic::x86_avx2_psrli_w: 2335 case llvm::Intrinsic::x86_avx2_psrli_d: 2336 case llvm::Intrinsic::x86_avx2_psrli_q: 2337 case llvm::Intrinsic::x86_avx2_psrai_w: 2338 case llvm::Intrinsic::x86_avx2_psrai_d: 2339 case llvm::Intrinsic::x86_sse2_psll_w: 2340 case llvm::Intrinsic::x86_sse2_psll_d: 2341 case llvm::Intrinsic::x86_sse2_psll_q: 2342 case llvm::Intrinsic::x86_sse2_pslli_w: 2343 case llvm::Intrinsic::x86_sse2_pslli_d: 2344 case llvm::Intrinsic::x86_sse2_pslli_q: 2345 case llvm::Intrinsic::x86_sse2_psrl_w: 2346 case llvm::Intrinsic::x86_sse2_psrl_d: 2347 case llvm::Intrinsic::x86_sse2_psrl_q: 2348 case llvm::Intrinsic::x86_sse2_psra_w: 2349 case llvm::Intrinsic::x86_sse2_psra_d: 2350 case llvm::Intrinsic::x86_sse2_psrli_w: 2351 case llvm::Intrinsic::x86_sse2_psrli_d: 2352 case llvm::Intrinsic::x86_sse2_psrli_q: 2353 case llvm::Intrinsic::x86_sse2_psrai_w: 2354 case llvm::Intrinsic::x86_sse2_psrai_d: 2355 case llvm::Intrinsic::x86_mmx_psll_w: 2356 case llvm::Intrinsic::x86_mmx_psll_d: 2357 case llvm::Intrinsic::x86_mmx_psll_q: 2358 case llvm::Intrinsic::x86_mmx_pslli_w: 2359 case llvm::Intrinsic::x86_mmx_pslli_d: 2360 case llvm::Intrinsic::x86_mmx_pslli_q: 2361 case llvm::Intrinsic::x86_mmx_psrl_w: 2362 case llvm::Intrinsic::x86_mmx_psrl_d: 2363 case llvm::Intrinsic::x86_mmx_psrl_q: 2364 case llvm::Intrinsic::x86_mmx_psra_w: 2365 case llvm::Intrinsic::x86_mmx_psra_d: 2366 case llvm::Intrinsic::x86_mmx_psrli_w: 2367 case llvm::Intrinsic::x86_mmx_psrli_d: 2368 case llvm::Intrinsic::x86_mmx_psrli_q: 2369 case llvm::Intrinsic::x86_mmx_psrai_w: 2370 case llvm::Intrinsic::x86_mmx_psrai_d: 2371 handleVectorShiftIntrinsic(I, /* Variable */ false); 2372 break; 2373 case llvm::Intrinsic::x86_avx2_psllv_d: 2374 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2375 case llvm::Intrinsic::x86_avx2_psllv_q: 2376 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2377 case llvm::Intrinsic::x86_avx2_psrlv_d: 2378 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2379 case llvm::Intrinsic::x86_avx2_psrlv_q: 2380 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2381 case llvm::Intrinsic::x86_avx2_psrav_d: 2382 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2383 handleVectorShiftIntrinsic(I, /* Variable */ true); 2384 break; 2385 2386 case llvm::Intrinsic::x86_sse2_packsswb_128: 2387 case llvm::Intrinsic::x86_sse2_packssdw_128: 2388 case llvm::Intrinsic::x86_sse2_packuswb_128: 2389 case llvm::Intrinsic::x86_sse41_packusdw: 2390 case llvm::Intrinsic::x86_avx2_packsswb: 2391 case llvm::Intrinsic::x86_avx2_packssdw: 2392 case llvm::Intrinsic::x86_avx2_packuswb: 2393 case llvm::Intrinsic::x86_avx2_packusdw: 2394 handleVectorPackIntrinsic(I); 2395 break; 2396 2397 case llvm::Intrinsic::x86_mmx_packsswb: 2398 case llvm::Intrinsic::x86_mmx_packuswb: 2399 handleVectorPackIntrinsic(I, 16); 2400 break; 2401 2402 case llvm::Intrinsic::x86_mmx_packssdw: 2403 handleVectorPackIntrinsic(I, 32); 2404 break; 2405 2406 case llvm::Intrinsic::x86_mmx_psad_bw: 2407 case llvm::Intrinsic::x86_sse2_psad_bw: 2408 case llvm::Intrinsic::x86_avx2_psad_bw: 2409 handleVectorSadIntrinsic(I); 2410 break; 2411 2412 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2413 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2414 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2415 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2416 handleVectorPmaddIntrinsic(I); 2417 break; 2418 2419 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2420 handleVectorPmaddIntrinsic(I, 8); 2421 break; 2422 2423 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2424 handleVectorPmaddIntrinsic(I, 16); 2425 break; 2426 2427 default: 2428 if (!handleUnknownIntrinsic(I)) 2429 visitInstruction(I); 2430 break; 2431 } 2432 } 2433 2434 void visitCallSite(CallSite CS) { 2435 Instruction &I = *CS.getInstruction(); 2436 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2437 if (CS.isCall()) { 2438 CallInst *Call = cast<CallInst>(&I); 2439 2440 // For inline asm, do the usual thing: check argument shadow and mark all 2441 // outputs as clean. Note that any side effects of the inline asm that are 2442 // not immediately visible in its constraints are not handled. 2443 if (Call->isInlineAsm()) { 2444 visitInstruction(I); 2445 return; 2446 } 2447 2448 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2449 2450 // We are going to insert code that relies on the fact that the callee 2451 // will become a non-readonly function after it is instrumented by us. To 2452 // prevent this code from being optimized out, mark that function 2453 // non-readonly in advance. 2454 if (Function *Func = Call->getCalledFunction()) { 2455 // Clear out readonly/readnone attributes. 2456 AttrBuilder B; 2457 B.addAttribute(Attribute::ReadOnly) 2458 .addAttribute(Attribute::ReadNone); 2459 Func->removeAttributes(AttributeSet::FunctionIndex, 2460 AttributeSet::get(Func->getContext(), 2461 AttributeSet::FunctionIndex, 2462 B)); 2463 } 2464 } 2465 IRBuilder<> IRB(&I); 2466 2467 unsigned ArgOffset = 0; 2468 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2469 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2470 ArgIt != End; ++ArgIt) { 2471 Value *A = *ArgIt; 2472 unsigned i = ArgIt - CS.arg_begin(); 2473 if (!A->getType()->isSized()) { 2474 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2475 continue; 2476 } 2477 unsigned Size = 0; 2478 Value *Store = nullptr; 2479 // Compute the Shadow for arg even if it is ByVal, because 2480 // in that case getShadow() will copy the actual arg shadow to 2481 // __msan_param_tls. 2482 Value *ArgShadow = getShadow(A); 2483 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2484 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2485 " Shadow: " << *ArgShadow << "\n"); 2486 bool ArgIsInitialized = false; 2487 const DataLayout &DL = F.getParent()->getDataLayout(); 2488 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2489 assert(A->getType()->isPointerTy() && 2490 "ByVal argument is not a pointer!"); 2491 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2492 if (ArgOffset + Size > kParamTLSSize) break; 2493 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2494 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2495 Store = IRB.CreateMemCpy(ArgShadowBase, 2496 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2497 Size, Alignment); 2498 } else { 2499 Size = DL.getTypeAllocSize(A->getType()); 2500 if (ArgOffset + Size > kParamTLSSize) break; 2501 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2502 kShadowTLSAlignment); 2503 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2504 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2505 } 2506 if (MS.TrackOrigins && !ArgIsInitialized) 2507 IRB.CreateStore(getOrigin(A), 2508 getOriginPtrForArgument(A, IRB, ArgOffset)); 2509 (void)Store; 2510 assert(Size != 0 && Store != nullptr); 2511 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2512 ArgOffset += alignTo(Size, 8); 2513 } 2514 DEBUG(dbgs() << " done with call args\n"); 2515 2516 FunctionType *FT = 2517 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2518 if (FT->isVarArg()) { 2519 VAHelper->visitCallSite(CS, IRB); 2520 } 2521 2522 // Now, get the shadow for the RetVal. 2523 if (!I.getType()->isSized()) return; 2524 // Don't emit the epilogue for musttail call returns. 2525 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2526 IRBuilder<> IRBBefore(&I); 2527 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2528 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2529 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2530 BasicBlock::iterator NextInsn; 2531 if (CS.isCall()) { 2532 NextInsn = ++I.getIterator(); 2533 assert(NextInsn != I.getParent()->end()); 2534 } else { 2535 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2536 if (!NormalDest->getSinglePredecessor()) { 2537 // FIXME: this case is tricky, so we are just conservative here. 2538 // Perhaps we need to split the edge between this BB and NormalDest, 2539 // but a naive attempt to use SplitEdge leads to a crash. 2540 setShadow(&I, getCleanShadow(&I)); 2541 setOrigin(&I, getCleanOrigin()); 2542 return; 2543 } 2544 NextInsn = NormalDest->getFirstInsertionPt(); 2545 assert(NextInsn != NormalDest->end() && 2546 "Could not find insertion point for retval shadow load"); 2547 } 2548 IRBuilder<> IRBAfter(&*NextInsn); 2549 Value *RetvalShadow = 2550 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2551 kShadowTLSAlignment, "_msret"); 2552 setShadow(&I, RetvalShadow); 2553 if (MS.TrackOrigins) 2554 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2555 } 2556 2557 bool isAMustTailRetVal(Value *RetVal) { 2558 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2559 RetVal = I->getOperand(0); 2560 } 2561 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2562 return I->isMustTailCall(); 2563 } 2564 return false; 2565 } 2566 2567 void visitReturnInst(ReturnInst &I) { 2568 IRBuilder<> IRB(&I); 2569 Value *RetVal = I.getReturnValue(); 2570 if (!RetVal) return; 2571 // Don't emit the epilogue for musttail call returns. 2572 if (isAMustTailRetVal(RetVal)) return; 2573 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2574 if (CheckReturnValue) { 2575 insertShadowCheck(RetVal, &I); 2576 Value *Shadow = getCleanShadow(RetVal); 2577 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2578 } else { 2579 Value *Shadow = getShadow(RetVal); 2580 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2581 // FIXME: make it conditional if ClStoreCleanOrigin==0 2582 if (MS.TrackOrigins) 2583 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2584 } 2585 } 2586 2587 void visitPHINode(PHINode &I) { 2588 IRBuilder<> IRB(&I); 2589 if (!PropagateShadow) { 2590 setShadow(&I, getCleanShadow(&I)); 2591 setOrigin(&I, getCleanOrigin()); 2592 return; 2593 } 2594 2595 ShadowPHINodes.push_back(&I); 2596 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2597 "_msphi_s")); 2598 if (MS.TrackOrigins) 2599 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2600 "_msphi_o")); 2601 } 2602 2603 void visitAllocaInst(AllocaInst &I) { 2604 setShadow(&I, getCleanShadow(&I)); 2605 setOrigin(&I, getCleanOrigin()); 2606 IRBuilder<> IRB(I.getNextNode()); 2607 const DataLayout &DL = F.getParent()->getDataLayout(); 2608 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2609 if (PoisonStack && ClPoisonStackWithCall) { 2610 IRB.CreateCall(MS.MsanPoisonStackFn, 2611 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2612 ConstantInt::get(MS.IntptrTy, Size)}); 2613 } else { 2614 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2615 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2616 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2617 } 2618 2619 if (PoisonStack && MS.TrackOrigins) { 2620 SmallString<2048> StackDescriptionStorage; 2621 raw_svector_ostream StackDescription(StackDescriptionStorage); 2622 // We create a string with a description of the stack allocation and 2623 // pass it into __msan_set_alloca_origin. 2624 // It will be printed by the run-time if stack-originated UMR is found. 2625 // The first 4 bytes of the string are set to '----' and will be replaced 2626 // by __msan_va_arg_overflow_size_tls at the first call. 2627 StackDescription << "----" << I.getName() << "@" << F.getName(); 2628 Value *Descr = 2629 createPrivateNonConstGlobalForString(*F.getParent(), 2630 StackDescription.str()); 2631 2632 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2633 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2634 ConstantInt::get(MS.IntptrTy, Size), 2635 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2636 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2637 } 2638 } 2639 2640 void visitSelectInst(SelectInst& I) { 2641 IRBuilder<> IRB(&I); 2642 // a = select b, c, d 2643 Value *B = I.getCondition(); 2644 Value *C = I.getTrueValue(); 2645 Value *D = I.getFalseValue(); 2646 Value *Sb = getShadow(B); 2647 Value *Sc = getShadow(C); 2648 Value *Sd = getShadow(D); 2649 2650 // Result shadow if condition shadow is 0. 2651 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2652 Value *Sa1; 2653 if (I.getType()->isAggregateType()) { 2654 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2655 // an extra "select". This results in much more compact IR. 2656 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2657 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2658 } else { 2659 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2660 // If Sb (condition is poisoned), look for bits in c and d that are equal 2661 // and both unpoisoned. 2662 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2663 2664 // Cast arguments to shadow-compatible type. 2665 C = CreateAppToShadowCast(IRB, C); 2666 D = CreateAppToShadowCast(IRB, D); 2667 2668 // Result shadow if condition shadow is 1. 2669 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2670 } 2671 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2672 setShadow(&I, Sa); 2673 if (MS.TrackOrigins) { 2674 // Origins are always i32, so any vector conditions must be flattened. 2675 // FIXME: consider tracking vector origins for app vectors? 2676 if (B->getType()->isVectorTy()) { 2677 Type *FlatTy = getShadowTyNoVec(B->getType()); 2678 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2679 ConstantInt::getNullValue(FlatTy)); 2680 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2681 ConstantInt::getNullValue(FlatTy)); 2682 } 2683 // a = select b, c, d 2684 // Oa = Sb ? Ob : (b ? Oc : Od) 2685 setOrigin( 2686 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2687 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2688 getOrigin(I.getFalseValue())))); 2689 } 2690 } 2691 2692 void visitLandingPadInst(LandingPadInst &I) { 2693 // Do nothing. 2694 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2695 setShadow(&I, getCleanShadow(&I)); 2696 setOrigin(&I, getCleanOrigin()); 2697 } 2698 2699 void visitCatchSwitchInst(CatchSwitchInst &I) { 2700 setShadow(&I, getCleanShadow(&I)); 2701 setOrigin(&I, getCleanOrigin()); 2702 } 2703 2704 void visitFuncletPadInst(FuncletPadInst &I) { 2705 setShadow(&I, getCleanShadow(&I)); 2706 setOrigin(&I, getCleanOrigin()); 2707 } 2708 2709 void visitGetElementPtrInst(GetElementPtrInst &I) { 2710 handleShadowOr(I); 2711 } 2712 2713 void visitExtractValueInst(ExtractValueInst &I) { 2714 IRBuilder<> IRB(&I); 2715 Value *Agg = I.getAggregateOperand(); 2716 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2717 Value *AggShadow = getShadow(Agg); 2718 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2719 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2720 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2721 setShadow(&I, ResShadow); 2722 setOriginForNaryOp(I); 2723 } 2724 2725 void visitInsertValueInst(InsertValueInst &I) { 2726 IRBuilder<> IRB(&I); 2727 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2728 Value *AggShadow = getShadow(I.getAggregateOperand()); 2729 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2730 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2731 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2732 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2733 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2734 setShadow(&I, Res); 2735 setOriginForNaryOp(I); 2736 } 2737 2738 void dumpInst(Instruction &I) { 2739 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2740 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2741 } else { 2742 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2743 } 2744 errs() << "QQQ " << I << "\n"; 2745 } 2746 2747 void visitResumeInst(ResumeInst &I) { 2748 DEBUG(dbgs() << "Resume: " << I << "\n"); 2749 // Nothing to do here. 2750 } 2751 2752 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2753 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2754 // Nothing to do here. 2755 } 2756 2757 void visitCatchReturnInst(CatchReturnInst &CRI) { 2758 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2759 // Nothing to do here. 2760 } 2761 2762 void visitInstruction(Instruction &I) { 2763 // Everything else: stop propagating and check for poisoned shadow. 2764 if (ClDumpStrictInstructions) 2765 dumpInst(I); 2766 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2767 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2768 insertShadowCheck(I.getOperand(i), &I); 2769 setShadow(&I, getCleanShadow(&I)); 2770 setOrigin(&I, getCleanOrigin()); 2771 } 2772 }; 2773 2774 /// \brief AMD64-specific implementation of VarArgHelper. 2775 struct VarArgAMD64Helper : public VarArgHelper { 2776 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2777 // See a comment in visitCallSite for more details. 2778 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2779 static const unsigned AMD64FpEndOffset = 176; 2780 2781 Function &F; 2782 MemorySanitizer &MS; 2783 MemorySanitizerVisitor &MSV; 2784 Value *VAArgTLSCopy; 2785 Value *VAArgOverflowSize; 2786 2787 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2788 2789 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2790 MemorySanitizerVisitor &MSV) 2791 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2792 VAArgOverflowSize(nullptr) {} 2793 2794 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2795 2796 ArgKind classifyArgument(Value* arg) { 2797 // A very rough approximation of X86_64 argument classification rules. 2798 Type *T = arg->getType(); 2799 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2800 return AK_FloatingPoint; 2801 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2802 return AK_GeneralPurpose; 2803 if (T->isPointerTy()) 2804 return AK_GeneralPurpose; 2805 return AK_Memory; 2806 } 2807 2808 // For VarArg functions, store the argument shadow in an ABI-specific format 2809 // that corresponds to va_list layout. 2810 // We do this because Clang lowers va_arg in the frontend, and this pass 2811 // only sees the low level code that deals with va_list internals. 2812 // A much easier alternative (provided that Clang emits va_arg instructions) 2813 // would have been to associate each live instance of va_list with a copy of 2814 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2815 // order. 2816 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2817 unsigned GpOffset = 0; 2818 unsigned FpOffset = AMD64GpEndOffset; 2819 unsigned OverflowOffset = AMD64FpEndOffset; 2820 const DataLayout &DL = F.getParent()->getDataLayout(); 2821 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2822 ArgIt != End; ++ArgIt) { 2823 Value *A = *ArgIt; 2824 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2825 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2826 if (IsByVal) { 2827 // ByVal arguments always go to the overflow area. 2828 assert(A->getType()->isPointerTy()); 2829 Type *RealTy = A->getType()->getPointerElementType(); 2830 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2831 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2832 OverflowOffset += alignTo(ArgSize, 8); 2833 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2834 ArgSize, kShadowTLSAlignment); 2835 } else { 2836 ArgKind AK = classifyArgument(A); 2837 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2838 AK = AK_Memory; 2839 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2840 AK = AK_Memory; 2841 Value *Base; 2842 switch (AK) { 2843 case AK_GeneralPurpose: 2844 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2845 GpOffset += 8; 2846 break; 2847 case AK_FloatingPoint: 2848 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2849 FpOffset += 16; 2850 break; 2851 case AK_Memory: 2852 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2853 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2854 OverflowOffset += alignTo(ArgSize, 8); 2855 } 2856 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2857 } 2858 } 2859 Constant *OverflowSize = 2860 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2861 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2862 } 2863 2864 /// \brief Compute the shadow address for a given va_arg. 2865 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2866 int ArgOffset) { 2867 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2868 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2869 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2870 "_msarg"); 2871 } 2872 2873 void visitVAStartInst(VAStartInst &I) override { 2874 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2875 return; 2876 IRBuilder<> IRB(&I); 2877 VAStartInstrumentationList.push_back(&I); 2878 Value *VAListTag = I.getArgOperand(0); 2879 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2880 2881 // Unpoison the whole __va_list_tag. 2882 // FIXME: magic ABI constants. 2883 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2884 /* size */24, /* alignment */8, false); 2885 } 2886 2887 void visitVACopyInst(VACopyInst &I) override { 2888 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2889 return; 2890 IRBuilder<> IRB(&I); 2891 Value *VAListTag = I.getArgOperand(0); 2892 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2893 2894 // Unpoison the whole __va_list_tag. 2895 // FIXME: magic ABI constants. 2896 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2897 /* size */24, /* alignment */8, false); 2898 } 2899 2900 void finalizeInstrumentation() override { 2901 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2902 "finalizeInstrumentation called twice"); 2903 if (!VAStartInstrumentationList.empty()) { 2904 // If there is a va_start in this function, make a backup copy of 2905 // va_arg_tls somewhere in the function entry block. 2906 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2907 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2908 Value *CopySize = 2909 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2910 VAArgOverflowSize); 2911 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2912 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2913 } 2914 2915 // Instrument va_start. 2916 // Copy va_list shadow from the backup copy of the TLS contents. 2917 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2918 CallInst *OrigInst = VAStartInstrumentationList[i]; 2919 IRBuilder<> IRB(OrigInst->getNextNode()); 2920 Value *VAListTag = OrigInst->getArgOperand(0); 2921 2922 Value *RegSaveAreaPtrPtr = 2923 IRB.CreateIntToPtr( 2924 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2925 ConstantInt::get(MS.IntptrTy, 16)), 2926 Type::getInt64PtrTy(*MS.C)); 2927 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2928 Value *RegSaveAreaShadowPtr = 2929 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2930 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 2931 AMD64FpEndOffset, 16); 2932 2933 Value *OverflowArgAreaPtrPtr = 2934 IRB.CreateIntToPtr( 2935 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2936 ConstantInt::get(MS.IntptrTy, 8)), 2937 Type::getInt64PtrTy(*MS.C)); 2938 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 2939 Value *OverflowArgAreaShadowPtr = 2940 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 2941 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 2942 AMD64FpEndOffset); 2943 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 2944 } 2945 } 2946 }; 2947 2948 /// \brief MIPS64-specific implementation of VarArgHelper. 2949 struct VarArgMIPS64Helper : public VarArgHelper { 2950 Function &F; 2951 MemorySanitizer &MS; 2952 MemorySanitizerVisitor &MSV; 2953 Value *VAArgTLSCopy; 2954 Value *VAArgSize; 2955 2956 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2957 2958 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 2959 MemorySanitizerVisitor &MSV) 2960 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2961 VAArgSize(nullptr) {} 2962 2963 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2964 unsigned VAArgOffset = 0; 2965 const DataLayout &DL = F.getParent()->getDataLayout(); 2966 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 2967 ArgIt != End; ++ArgIt) { 2968 Value *A = *ArgIt; 2969 Value *Base; 2970 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2971 #if defined(__MIPSEB__) || defined(MIPSEB) 2972 // Adjusting the shadow for argument with size < 8 to match the placement 2973 // of bits in big endian system 2974 if (ArgSize < 8) 2975 VAArgOffset += (8 - ArgSize); 2976 #endif 2977 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 2978 VAArgOffset += ArgSize; 2979 VAArgOffset = alignTo(VAArgOffset, 8); 2980 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2981 } 2982 2983 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 2984 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 2985 // a new class member i.e. it is the total size of all VarArgs. 2986 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 2987 } 2988 2989 /// \brief Compute the shadow address for a given va_arg. 2990 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2991 int ArgOffset) { 2992 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2993 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2994 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2995 "_msarg"); 2996 } 2997 2998 void visitVAStartInst(VAStartInst &I) override { 2999 IRBuilder<> IRB(&I); 3000 VAStartInstrumentationList.push_back(&I); 3001 Value *VAListTag = I.getArgOperand(0); 3002 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3003 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3004 /* size */8, /* alignment */8, false); 3005 } 3006 3007 void visitVACopyInst(VACopyInst &I) override { 3008 IRBuilder<> IRB(&I); 3009 Value *VAListTag = I.getArgOperand(0); 3010 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3011 // Unpoison the whole __va_list_tag. 3012 // FIXME: magic ABI constants. 3013 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3014 /* size */8, /* alignment */8, false); 3015 } 3016 3017 void finalizeInstrumentation() override { 3018 assert(!VAArgSize && !VAArgTLSCopy && 3019 "finalizeInstrumentation called twice"); 3020 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3021 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3022 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3023 VAArgSize); 3024 3025 if (!VAStartInstrumentationList.empty()) { 3026 // If there is a va_start in this function, make a backup copy of 3027 // va_arg_tls somewhere in the function entry block. 3028 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3029 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3030 } 3031 3032 // Instrument va_start. 3033 // Copy va_list shadow from the backup copy of the TLS contents. 3034 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3035 CallInst *OrigInst = VAStartInstrumentationList[i]; 3036 IRBuilder<> IRB(OrigInst->getNextNode()); 3037 Value *VAListTag = OrigInst->getArgOperand(0); 3038 Value *RegSaveAreaPtrPtr = 3039 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3040 Type::getInt64PtrTy(*MS.C)); 3041 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3042 Value *RegSaveAreaShadowPtr = 3043 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3044 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3045 } 3046 } 3047 }; 3048 3049 3050 /// \brief AArch64-specific implementation of VarArgHelper. 3051 struct VarArgAArch64Helper : public VarArgHelper { 3052 static const unsigned kAArch64GrArgSize = 56; 3053 static const unsigned kAArch64VrArgSize = 128; 3054 3055 static const unsigned AArch64GrBegOffset = 0; 3056 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3057 // Make VR space aligned to 16 bytes. 3058 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset + 8; 3059 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3060 + kAArch64VrArgSize; 3061 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3062 3063 Function &F; 3064 MemorySanitizer &MS; 3065 MemorySanitizerVisitor &MSV; 3066 Value *VAArgTLSCopy; 3067 Value *VAArgOverflowSize; 3068 3069 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3070 3071 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3072 MemorySanitizerVisitor &MSV) 3073 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3074 VAArgOverflowSize(nullptr) {} 3075 3076 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3077 3078 ArgKind classifyArgument(Value* arg) { 3079 Type *T = arg->getType(); 3080 if (T->isFPOrFPVectorTy()) 3081 return AK_FloatingPoint; 3082 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3083 || (T->isPointerTy())) 3084 return AK_GeneralPurpose; 3085 return AK_Memory; 3086 } 3087 3088 // The instrumentation stores the argument shadow in a non ABI-specific 3089 // format because it does not know which argument is named (since Clang, 3090 // like x86_64 case, lowers the va_args in the frontend and this pass only 3091 // sees the low level code that deals with va_list internals). 3092 // The first seven GR registers are saved in the first 56 bytes of the 3093 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3094 // the remaining arguments. 3095 // Using constant offset within the va_arg TLS array allows fast copy 3096 // in the finalize instrumentation. 3097 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3098 unsigned GrOffset = AArch64GrBegOffset; 3099 unsigned VrOffset = AArch64VrBegOffset; 3100 unsigned OverflowOffset = AArch64VAEndOffset; 3101 3102 const DataLayout &DL = F.getParent()->getDataLayout(); 3103 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 3104 ArgIt != End; ++ArgIt) { 3105 Value *A = *ArgIt; 3106 ArgKind AK = classifyArgument(A); 3107 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3108 AK = AK_Memory; 3109 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3110 AK = AK_Memory; 3111 Value *Base; 3112 switch (AK) { 3113 case AK_GeneralPurpose: 3114 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3115 GrOffset += 8; 3116 break; 3117 case AK_FloatingPoint: 3118 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3119 VrOffset += 16; 3120 break; 3121 case AK_Memory: 3122 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3123 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3124 OverflowOffset += alignTo(ArgSize, 8); 3125 break; 3126 } 3127 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3128 } 3129 Constant *OverflowSize = 3130 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3131 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3132 } 3133 3134 /// Compute the shadow address for a given va_arg. 3135 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3136 int ArgOffset) { 3137 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3138 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3139 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3140 "_msarg"); 3141 } 3142 3143 void visitVAStartInst(VAStartInst &I) override { 3144 IRBuilder<> IRB(&I); 3145 VAStartInstrumentationList.push_back(&I); 3146 Value *VAListTag = I.getArgOperand(0); 3147 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3148 // Unpoison the whole __va_list_tag. 3149 // FIXME: magic ABI constants (size of va_list). 3150 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3151 /* size */32, /* alignment */8, false); 3152 } 3153 3154 void visitVACopyInst(VACopyInst &I) override { 3155 IRBuilder<> IRB(&I); 3156 Value *VAListTag = I.getArgOperand(0); 3157 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3158 // Unpoison the whole __va_list_tag. 3159 // FIXME: magic ABI constants (size of va_list). 3160 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3161 /* size */32, /* alignment */8, false); 3162 } 3163 3164 // Retrieve a va_list field of 'void*' size. 3165 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3166 Value *SaveAreaPtrPtr = 3167 IRB.CreateIntToPtr( 3168 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3169 ConstantInt::get(MS.IntptrTy, offset)), 3170 Type::getInt64PtrTy(*MS.C)); 3171 return IRB.CreateLoad(SaveAreaPtrPtr); 3172 } 3173 3174 // Retrieve a va_list field of 'int' size. 3175 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3176 Value *SaveAreaPtr = 3177 IRB.CreateIntToPtr( 3178 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3179 ConstantInt::get(MS.IntptrTy, offset)), 3180 Type::getInt32PtrTy(*MS.C)); 3181 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3182 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3183 } 3184 3185 void finalizeInstrumentation() override { 3186 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3187 "finalizeInstrumentation called twice"); 3188 if (!VAStartInstrumentationList.empty()) { 3189 // If there is a va_start in this function, make a backup copy of 3190 // va_arg_tls somewhere in the function entry block. 3191 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3192 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3193 Value *CopySize = 3194 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3195 VAArgOverflowSize); 3196 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3197 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3198 } 3199 3200 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3201 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3202 3203 // Instrument va_start, copy va_list shadow from the backup copy of 3204 // the TLS contents. 3205 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3206 CallInst *OrigInst = VAStartInstrumentationList[i]; 3207 IRBuilder<> IRB(OrigInst->getNextNode()); 3208 3209 Value *VAListTag = OrigInst->getArgOperand(0); 3210 3211 // The variadic ABI for AArch64 creates two areas to save the incoming 3212 // argument registers (one for 64-bit general register xn-x7 and another 3213 // for 128-bit FP/SIMD vn-v7). 3214 // We need then to propagate the shadow arguments on both regions 3215 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3216 // The remaning arguments are saved on shadow for 'va::stack'. 3217 // One caveat is it requires only to propagate the non-named arguments, 3218 // however on the call site instrumentation 'all' the arguments are 3219 // saved. So to copy the shadow values from the va_arg TLS array 3220 // we need to adjust the offset for both GR and VR fields based on 3221 // the __{gr,vr}_offs value (since they are stores based on incoming 3222 // named arguments). 3223 3224 // Read the stack pointer from the va_list. 3225 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3226 3227 // Read both the __gr_top and __gr_off and add them up. 3228 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3229 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3230 3231 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3232 3233 // Read both the __vr_top and __vr_off and add them up. 3234 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3235 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3236 3237 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3238 3239 // It does not know how many named arguments is being used and, on the 3240 // callsite all the arguments were saved. Since __gr_off is defined as 3241 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3242 // argument by ignoring the bytes of shadow from named arguments. 3243 Value *GrRegSaveAreaShadowPtrOff = 3244 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3245 3246 Value *GrRegSaveAreaShadowPtr = 3247 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3248 3249 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3250 GrRegSaveAreaShadowPtrOff); 3251 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3252 3253 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3254 3255 // Again, but for FP/SIMD values. 3256 Value *VrRegSaveAreaShadowPtrOff = 3257 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3258 3259 Value *VrRegSaveAreaShadowPtr = 3260 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3261 3262 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3263 IRB.getInt8Ty(), 3264 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3265 IRB.getInt32(AArch64VrBegOffset)), 3266 VrRegSaveAreaShadowPtrOff); 3267 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3268 3269 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3270 3271 // And finally for remaining arguments. 3272 Value *StackSaveAreaShadowPtr = 3273 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3274 3275 Value *StackSrcPtr = 3276 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3277 IRB.getInt32(AArch64VAEndOffset)); 3278 3279 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3280 VAArgOverflowSize, 16); 3281 } 3282 } 3283 }; 3284 3285 /// \brief A no-op implementation of VarArgHelper. 3286 struct VarArgNoOpHelper : public VarArgHelper { 3287 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3288 MemorySanitizerVisitor &MSV) {} 3289 3290 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3291 3292 void visitVAStartInst(VAStartInst &I) override {} 3293 3294 void visitVACopyInst(VACopyInst &I) override {} 3295 3296 void finalizeInstrumentation() override {} 3297 }; 3298 3299 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3300 MemorySanitizerVisitor &Visitor) { 3301 // VarArg handling is only implemented on AMD64. False positives are possible 3302 // on other platforms. 3303 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3304 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3305 return new VarArgAMD64Helper(Func, Msan, Visitor); 3306 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3307 TargetTriple.getArch() == llvm::Triple::mips64el) 3308 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3309 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3310 return new VarArgAArch64Helper(Func, Msan, Visitor); 3311 else 3312 return new VarArgNoOpHelper(Func, Msan, Visitor); 3313 } 3314 3315 } // anonymous namespace 3316 3317 bool MemorySanitizer::runOnFunction(Function &F) { 3318 if (&F == MsanCtorFunction) 3319 return false; 3320 MemorySanitizerVisitor Visitor(F, *this); 3321 3322 // Clear out readonly/readnone attributes. 3323 AttrBuilder B; 3324 B.addAttribute(Attribute::ReadOnly) 3325 .addAttribute(Attribute::ReadNone); 3326 F.removeAttributes(AttributeSet::FunctionIndex, 3327 AttributeSet::get(F.getContext(), 3328 AttributeSet::FunctionIndex, B)); 3329 3330 return Visitor.runOnFunction(); 3331 } 3332