1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallingConv.h" 157 #include "llvm/IR/Constant.h" 158 #include "llvm/IR/Constants.h" 159 #include "llvm/IR/DataLayout.h" 160 #include "llvm/IR/DerivedTypes.h" 161 #include "llvm/IR/Function.h" 162 #include "llvm/IR/GlobalValue.h" 163 #include "llvm/IR/GlobalVariable.h" 164 #include "llvm/IR/IRBuilder.h" 165 #include "llvm/IR/InlineAsm.h" 166 #include "llvm/IR/InstVisitor.h" 167 #include "llvm/IR/InstrTypes.h" 168 #include "llvm/IR/Instruction.h" 169 #include "llvm/IR/Instructions.h" 170 #include "llvm/IR/IntrinsicInst.h" 171 #include "llvm/IR/Intrinsics.h" 172 #include "llvm/IR/IntrinsicsX86.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/Pass.h" 181 #include "llvm/Support/AtomicOrdering.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/CommandLine.h" 184 #include "llvm/Support/Compiler.h" 185 #include "llvm/Support/Debug.h" 186 #include "llvm/Support/ErrorHandling.h" 187 #include "llvm/Support/MathExtras.h" 188 #include "llvm/Support/raw_ostream.h" 189 #include "llvm/Transforms/Instrumentation.h" 190 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 191 #include "llvm/Transforms/Utils/Local.h" 192 #include "llvm/Transforms/Utils/ModuleUtils.h" 193 #include <algorithm> 194 #include <cassert> 195 #include <cstddef> 196 #include <cstdint> 197 #include <memory> 198 #include <string> 199 #include <tuple> 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "msan" 204 205 static const unsigned kOriginSize = 4; 206 static const Align kMinOriginAlignment = Align(4); 207 static const Align kShadowTLSAlignment = Align(8); 208 209 // These constants must be kept in sync with the ones in msan.h. 210 static const unsigned kParamTLSSize = 800; 211 static const unsigned kRetvalTLSSize = 800; 212 213 // Accesses sizes are powers of two: 1, 2, 4, 8. 214 static const size_t kNumberOfAccessSizes = 4; 215 216 /// Track origins of uninitialized values. 217 /// 218 /// Adds a section to MemorySanitizer report that points to the allocation 219 /// (stack or heap) the uninitialized bits came from originally. 220 static cl::opt<int> ClTrackOrigins("msan-track-origins", 221 cl::desc("Track origins (allocation sites) of poisoned memory"), 222 cl::Hidden, cl::init(0)); 223 224 static cl::opt<bool> ClKeepGoing("msan-keep-going", 225 cl::desc("keep going after reporting a UMR"), 226 cl::Hidden, cl::init(false)); 227 228 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 229 cl::desc("poison uninitialized stack variables"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 233 cl::desc("poison uninitialized stack variables with a call"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 237 cl::desc("poison uninitialized stack variables with the given pattern"), 238 cl::Hidden, cl::init(0xff)); 239 240 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 241 cl::desc("poison undef temps"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 245 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 249 cl::desc("exact handling of relational integer ICmp"), 250 cl::Hidden, cl::init(false)); 251 252 static cl::opt<bool> ClHandleLifetimeIntrinsics( 253 "msan-handle-lifetime-intrinsics", 254 cl::desc( 255 "when possible, poison scoped variables at the beginning of the scope " 256 "(slower, but more precise)"), 257 cl::Hidden, cl::init(true)); 258 259 // When compiling the Linux kernel, we sometimes see false positives related to 260 // MSan being unable to understand that inline assembly calls may initialize 261 // local variables. 262 // This flag makes the compiler conservatively unpoison every memory location 263 // passed into an assembly call. Note that this may cause false positives. 264 // Because it's impossible to figure out the array sizes, we can only unpoison 265 // the first sizeof(type) bytes for each type* pointer. 266 // The instrumentation is only enabled in KMSAN builds, and only if 267 // -msan-handle-asm-conservative is on. This is done because we may want to 268 // quickly disable assembly instrumentation when it breaks. 269 static cl::opt<bool> ClHandleAsmConservative( 270 "msan-handle-asm-conservative", 271 cl::desc("conservative handling of inline assembly"), cl::Hidden, 272 cl::init(true)); 273 274 // This flag controls whether we check the shadow of the address 275 // operand of load or store. Such bugs are very rare, since load from 276 // a garbage address typically results in SEGV, but still happen 277 // (e.g. only lower bits of address are garbage, or the access happens 278 // early at program startup where malloc-ed memory is more likely to 279 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 280 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 281 cl::desc("report accesses through a pointer which has poisoned shadow"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 285 cl::desc("print out instructions with default strict semantics"), 286 cl::Hidden, cl::init(false)); 287 288 static cl::opt<int> ClInstrumentationWithCallThreshold( 289 "msan-instrumentation-with-call-threshold", 290 cl::desc( 291 "If the function being instrumented requires more than " 292 "this number of checks and origin stores, use callbacks instead of " 293 "inline checks (-1 means never use callbacks)."), 294 cl::Hidden, cl::init(3500)); 295 296 static cl::opt<bool> 297 ClEnableKmsan("msan-kernel", 298 cl::desc("Enable KernelMemorySanitizer instrumentation"), 299 cl::Hidden, cl::init(false)); 300 301 // This is an experiment to enable handling of cases where shadow is a non-zero 302 // compile-time constant. For some unexplainable reason they were silently 303 // ignored in the instrumentation. 304 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 305 cl::desc("Insert checks for constant shadow values"), 306 cl::Hidden, cl::init(false)); 307 308 // This is off by default because of a bug in gold: 309 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 310 static cl::opt<bool> ClWithComdat("msan-with-comdat", 311 cl::desc("Place MSan constructors in comdat sections"), 312 cl::Hidden, cl::init(false)); 313 314 // These options allow to specify custom memory map parameters 315 // See MemoryMapParams for details. 316 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 317 cl::desc("Define custom MSan AndMask"), 318 cl::Hidden, cl::init(0)); 319 320 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 321 cl::desc("Define custom MSan XorMask"), 322 cl::Hidden, cl::init(0)); 323 324 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 325 cl::desc("Define custom MSan ShadowBase"), 326 cl::Hidden, cl::init(0)); 327 328 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 329 cl::desc("Define custom MSan OriginBase"), 330 cl::Hidden, cl::init(0)); 331 332 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 333 static const char *const kMsanInitName = "__msan_init"; 334 335 namespace { 336 337 // Memory map parameters used in application-to-shadow address calculation. 338 // Offset = (Addr & ~AndMask) ^ XorMask 339 // Shadow = ShadowBase + Offset 340 // Origin = OriginBase + Offset 341 struct MemoryMapParams { 342 uint64_t AndMask; 343 uint64_t XorMask; 344 uint64_t ShadowBase; 345 uint64_t OriginBase; 346 }; 347 348 struct PlatformMemoryMapParams { 349 const MemoryMapParams *bits32; 350 const MemoryMapParams *bits64; 351 }; 352 353 } // end anonymous namespace 354 355 // i386 Linux 356 static const MemoryMapParams Linux_I386_MemoryMapParams = { 357 0x000080000000, // AndMask 358 0, // XorMask (not used) 359 0, // ShadowBase (not used) 360 0x000040000000, // OriginBase 361 }; 362 363 // x86_64 Linux 364 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 365 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 366 0x400000000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x200000000000, // OriginBase 370 #else 371 0, // AndMask (not used) 372 0x500000000000, // XorMask 373 0, // ShadowBase (not used) 374 0x100000000000, // OriginBase 375 #endif 376 }; 377 378 // mips64 Linux 379 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 380 0, // AndMask (not used) 381 0x008000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x002000000000, // OriginBase 384 }; 385 386 // ppc64 Linux 387 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 388 0xE00000000000, // AndMask 389 0x100000000000, // XorMask 390 0x080000000000, // ShadowBase 391 0x1C0000000000, // OriginBase 392 }; 393 394 // s390x Linux 395 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 396 0xC00000000000, // AndMask 397 0, // XorMask (not used) 398 0x080000000000, // ShadowBase 399 0x1C0000000000, // OriginBase 400 }; 401 402 // aarch64 Linux 403 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 404 0, // AndMask (not used) 405 0x06000000000, // XorMask 406 0, // ShadowBase (not used) 407 0x01000000000, // OriginBase 408 }; 409 410 // i386 FreeBSD 411 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 412 0x000180000000, // AndMask 413 0x000040000000, // XorMask 414 0x000020000000, // ShadowBase 415 0x000700000000, // OriginBase 416 }; 417 418 // x86_64 FreeBSD 419 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 420 0xc00000000000, // AndMask 421 0x200000000000, // XorMask 422 0x100000000000, // ShadowBase 423 0x380000000000, // OriginBase 424 }; 425 426 // x86_64 NetBSD 427 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 428 0, // AndMask 429 0x500000000000, // XorMask 430 0, // ShadowBase 431 0x100000000000, // OriginBase 432 }; 433 434 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 435 &Linux_I386_MemoryMapParams, 436 &Linux_X86_64_MemoryMapParams, 437 }; 438 439 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 440 nullptr, 441 &Linux_MIPS64_MemoryMapParams, 442 }; 443 444 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 445 nullptr, 446 &Linux_PowerPC64_MemoryMapParams, 447 }; 448 449 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 450 nullptr, 451 &Linux_S390X_MemoryMapParams, 452 }; 453 454 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 455 nullptr, 456 &Linux_AArch64_MemoryMapParams, 457 }; 458 459 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 460 &FreeBSD_I386_MemoryMapParams, 461 &FreeBSD_X86_64_MemoryMapParams, 462 }; 463 464 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 465 nullptr, 466 &NetBSD_X86_64_MemoryMapParams, 467 }; 468 469 namespace { 470 471 /// Instrument functions of a module to detect uninitialized reads. 472 /// 473 /// Instantiating MemorySanitizer inserts the msan runtime library API function 474 /// declarations into the module if they don't exist already. Instantiating 475 /// ensures the __msan_init function is in the list of global constructors for 476 /// the module. 477 class MemorySanitizer { 478 public: 479 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 480 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 481 Recover(Options.Recover) { 482 initializeModule(M); 483 } 484 485 // MSan cannot be moved or copied because of MapParams. 486 MemorySanitizer(MemorySanitizer &&) = delete; 487 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 488 MemorySanitizer(const MemorySanitizer &) = delete; 489 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 490 491 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 492 493 private: 494 friend struct MemorySanitizerVisitor; 495 friend struct VarArgAMD64Helper; 496 friend struct VarArgMIPS64Helper; 497 friend struct VarArgAArch64Helper; 498 friend struct VarArgPowerPC64Helper; 499 friend struct VarArgSystemZHelper; 500 501 void initializeModule(Module &M); 502 void initializeCallbacks(Module &M); 503 void createKernelApi(Module &M); 504 void createUserspaceApi(Module &M); 505 506 /// True if we're compiling the Linux kernel. 507 bool CompileKernel; 508 /// Track origins (allocation points) of uninitialized values. 509 int TrackOrigins; 510 bool Recover; 511 512 LLVMContext *C; 513 Type *IntptrTy; 514 Type *OriginTy; 515 516 // XxxTLS variables represent the per-thread state in MSan and per-task state 517 // in KMSAN. 518 // For the userspace these point to thread-local globals. In the kernel land 519 // they point to the members of a per-task struct obtained via a call to 520 // __msan_get_context_state(). 521 522 /// Thread-local shadow storage for function parameters. 523 Value *ParamTLS; 524 525 /// Thread-local origin storage for function parameters. 526 Value *ParamOriginTLS; 527 528 /// Thread-local shadow storage for function return value. 529 Value *RetvalTLS; 530 531 /// Thread-local origin storage for function return value. 532 Value *RetvalOriginTLS; 533 534 /// Thread-local shadow storage for in-register va_arg function 535 /// parameters (x86_64-specific). 536 Value *VAArgTLS; 537 538 /// Thread-local shadow storage for in-register va_arg function 539 /// parameters (x86_64-specific). 540 Value *VAArgOriginTLS; 541 542 /// Thread-local shadow storage for va_arg overflow area 543 /// (x86_64-specific). 544 Value *VAArgOverflowSizeTLS; 545 546 /// Thread-local space used to pass origin value to the UMR reporting 547 /// function. 548 Value *OriginTLS; 549 550 /// Are the instrumentation callbacks set up? 551 bool CallbacksInitialized = false; 552 553 /// The run-time callback to print a warning. 554 FunctionCallee WarningFn; 555 556 // These arrays are indexed by log2(AccessSize). 557 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 558 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 559 560 /// Run-time helper that generates a new origin value for a stack 561 /// allocation. 562 FunctionCallee MsanSetAllocaOrigin4Fn; 563 564 /// Run-time helper that poisons stack on function entry. 565 FunctionCallee MsanPoisonStackFn; 566 567 /// Run-time helper that records a store (or any event) of an 568 /// uninitialized value and returns an updated origin id encoding this info. 569 FunctionCallee MsanChainOriginFn; 570 571 /// MSan runtime replacements for memmove, memcpy and memset. 572 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 573 574 /// KMSAN callback for task-local function argument shadow. 575 StructType *MsanContextStateTy; 576 FunctionCallee MsanGetContextStateFn; 577 578 /// Functions for poisoning/unpoisoning local variables 579 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 580 581 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 582 /// pointers. 583 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 584 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 585 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 586 FunctionCallee MsanInstrumentAsmStoreFn; 587 588 /// Helper to choose between different MsanMetadataPtrXxx(). 589 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 590 591 /// Memory map parameters used in application-to-shadow calculation. 592 const MemoryMapParams *MapParams; 593 594 /// Custom memory map parameters used when -msan-shadow-base or 595 // -msan-origin-base is provided. 596 MemoryMapParams CustomMapParams; 597 598 MDNode *ColdCallWeights; 599 600 /// Branch weights for origin store. 601 MDNode *OriginStoreWeights; 602 603 /// An empty volatile inline asm that prevents callback merge. 604 InlineAsm *EmptyAsm; 605 }; 606 607 void insertModuleCtor(Module &M) { 608 getOrCreateSanitizerCtorAndInitFunctions( 609 M, kMsanModuleCtorName, kMsanInitName, 610 /*InitArgTypes=*/{}, 611 /*InitArgs=*/{}, 612 // This callback is invoked when the functions are created the first 613 // time. Hook them into the global ctors list in that case: 614 [&](Function *Ctor, FunctionCallee) { 615 if (!ClWithComdat) { 616 appendToGlobalCtors(M, Ctor, 0); 617 return; 618 } 619 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 620 Ctor->setComdat(MsanCtorComdat); 621 appendToGlobalCtors(M, Ctor, 0, Ctor); 622 }); 623 } 624 625 /// A legacy function pass for msan instrumentation. 626 /// 627 /// Instruments functions to detect uninitialized reads. 628 struct MemorySanitizerLegacyPass : public FunctionPass { 629 // Pass identification, replacement for typeid. 630 static char ID; 631 632 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 633 : FunctionPass(ID), Options(Options) { 634 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 635 } 636 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 637 638 void getAnalysisUsage(AnalysisUsage &AU) const override { 639 AU.addRequired<TargetLibraryInfoWrapperPass>(); 640 } 641 642 bool runOnFunction(Function &F) override { 643 return MSan->sanitizeFunction( 644 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 645 } 646 bool doInitialization(Module &M) override; 647 648 Optional<MemorySanitizer> MSan; 649 MemorySanitizerOptions Options; 650 }; 651 652 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 653 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 654 } 655 656 } // end anonymous namespace 657 658 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 659 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 660 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 661 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 662 663 PreservedAnalyses MemorySanitizerPass::run(Function &F, 664 FunctionAnalysisManager &FAM) { 665 MemorySanitizer Msan(*F.getParent(), Options); 666 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 667 return PreservedAnalyses::none(); 668 return PreservedAnalyses::all(); 669 } 670 671 PreservedAnalyses MemorySanitizerPass::run(Module &M, 672 ModuleAnalysisManager &AM) { 673 if (Options.Kernel) 674 return PreservedAnalyses::all(); 675 insertModuleCtor(M); 676 return PreservedAnalyses::none(); 677 } 678 679 char MemorySanitizerLegacyPass::ID = 0; 680 681 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 682 "MemorySanitizer: detects uninitialized reads.", false, 683 false) 684 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 685 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 686 "MemorySanitizer: detects uninitialized reads.", false, 687 false) 688 689 FunctionPass * 690 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 691 return new MemorySanitizerLegacyPass(Options); 692 } 693 694 /// Create a non-const global initialized with the given string. 695 /// 696 /// Creates a writable global for Str so that we can pass it to the 697 /// run-time lib. Runtime uses first 4 bytes of the string to store the 698 /// frame ID, so the string needs to be mutable. 699 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 700 StringRef Str) { 701 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 702 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 703 GlobalValue::PrivateLinkage, StrConst, ""); 704 } 705 706 /// Create KMSAN API callbacks. 707 void MemorySanitizer::createKernelApi(Module &M) { 708 IRBuilder<> IRB(*C); 709 710 // These will be initialized in insertKmsanPrologue(). 711 RetvalTLS = nullptr; 712 RetvalOriginTLS = nullptr; 713 ParamTLS = nullptr; 714 ParamOriginTLS = nullptr; 715 VAArgTLS = nullptr; 716 VAArgOriginTLS = nullptr; 717 VAArgOverflowSizeTLS = nullptr; 718 // OriginTLS is unused in the kernel. 719 OriginTLS = nullptr; 720 721 // __msan_warning() in the kernel takes an origin. 722 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 723 IRB.getInt32Ty()); 724 // Requests the per-task context state (kmsan_context_state*) from the 725 // runtime library. 726 MsanContextStateTy = StructType::get( 727 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 728 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 731 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 732 OriginTy); 733 MsanGetContextStateFn = M.getOrInsertFunction( 734 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 735 736 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 737 PointerType::get(IRB.getInt32Ty(), 0)); 738 739 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 740 std::string name_load = 741 "__msan_metadata_ptr_for_load_" + std::to_string(size); 742 std::string name_store = 743 "__msan_metadata_ptr_for_store_" + std::to_string(size); 744 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 745 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 746 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 747 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 748 } 749 750 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 751 "__msan_metadata_ptr_for_load_n", RetTy, 752 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 753 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 754 "__msan_metadata_ptr_for_store_n", RetTy, 755 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 756 757 // Functions for poisoning and unpoisoning memory. 758 MsanPoisonAllocaFn = 759 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 760 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 761 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 762 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 763 } 764 765 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 766 return M.getOrInsertGlobal(Name, Ty, [&] { 767 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 768 nullptr, Name, nullptr, 769 GlobalVariable::InitialExecTLSModel); 770 }); 771 } 772 773 /// Insert declarations for userspace-specific functions and globals. 774 void MemorySanitizer::createUserspaceApi(Module &M) { 775 IRBuilder<> IRB(*C); 776 // Create the callback. 777 // FIXME: this function should have "Cold" calling conv, 778 // which is not yet implemented. 779 StringRef WarningFnName = Recover ? "__msan_warning" 780 : "__msan_warning_noreturn"; 781 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 782 783 // Create the global TLS variables. 784 RetvalTLS = 785 getOrInsertGlobal(M, "__msan_retval_tls", 786 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 787 788 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 789 790 ParamTLS = 791 getOrInsertGlobal(M, "__msan_param_tls", 792 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 793 794 ParamOriginTLS = 795 getOrInsertGlobal(M, "__msan_param_origin_tls", 796 ArrayType::get(OriginTy, kParamTLSSize / 4)); 797 798 VAArgTLS = 799 getOrInsertGlobal(M, "__msan_va_arg_tls", 800 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 801 802 VAArgOriginTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 804 ArrayType::get(OriginTy, kParamTLSSize / 4)); 805 806 VAArgOverflowSizeTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 808 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 809 810 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 811 AccessSizeIndex++) { 812 unsigned AccessSize = 1 << AccessSizeIndex; 813 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 814 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 815 MaybeWarningFnAttrs.push_back(std::make_pair( 816 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 817 MaybeWarningFnAttrs.push_back(std::make_pair( 818 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 819 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 820 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 821 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 822 823 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 824 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 825 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 826 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 827 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 828 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 829 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 830 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 831 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 832 IRB.getInt32Ty()); 833 } 834 835 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 836 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 837 IRB.getInt8PtrTy(), IntptrTy); 838 MsanPoisonStackFn = 839 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 840 IRB.getInt8PtrTy(), IntptrTy); 841 } 842 843 /// Insert extern declaration of runtime-provided functions and globals. 844 void MemorySanitizer::initializeCallbacks(Module &M) { 845 // Only do this once. 846 if (CallbacksInitialized) 847 return; 848 849 IRBuilder<> IRB(*C); 850 // Initialize callbacks that are common for kernel and userspace 851 // instrumentation. 852 MsanChainOriginFn = M.getOrInsertFunction( 853 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 854 MemmoveFn = M.getOrInsertFunction( 855 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 856 IRB.getInt8PtrTy(), IntptrTy); 857 MemcpyFn = M.getOrInsertFunction( 858 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 859 IntptrTy); 860 MemsetFn = M.getOrInsertFunction( 861 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 862 IntptrTy); 863 // We insert an empty inline asm after __msan_report* to avoid callback merge. 864 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 865 StringRef(""), StringRef(""), 866 /*hasSideEffects=*/true); 867 868 MsanInstrumentAsmStoreFn = 869 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 870 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 871 872 if (CompileKernel) { 873 createKernelApi(M); 874 } else { 875 createUserspaceApi(M); 876 } 877 CallbacksInitialized = true; 878 } 879 880 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 881 int size) { 882 FunctionCallee *Fns = 883 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 884 switch (size) { 885 case 1: 886 return Fns[0]; 887 case 2: 888 return Fns[1]; 889 case 4: 890 return Fns[2]; 891 case 8: 892 return Fns[3]; 893 default: 894 return nullptr; 895 } 896 } 897 898 /// Module-level initialization. 899 /// 900 /// inserts a call to __msan_init to the module's constructor list. 901 void MemorySanitizer::initializeModule(Module &M) { 902 auto &DL = M.getDataLayout(); 903 904 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 905 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 906 // Check the overrides first 907 if (ShadowPassed || OriginPassed) { 908 CustomMapParams.AndMask = ClAndMask; 909 CustomMapParams.XorMask = ClXorMask; 910 CustomMapParams.ShadowBase = ClShadowBase; 911 CustomMapParams.OriginBase = ClOriginBase; 912 MapParams = &CustomMapParams; 913 } else { 914 Triple TargetTriple(M.getTargetTriple()); 915 switch (TargetTriple.getOS()) { 916 case Triple::FreeBSD: 917 switch (TargetTriple.getArch()) { 918 case Triple::x86_64: 919 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 920 break; 921 case Triple::x86: 922 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 923 break; 924 default: 925 report_fatal_error("unsupported architecture"); 926 } 927 break; 928 case Triple::NetBSD: 929 switch (TargetTriple.getArch()) { 930 case Triple::x86_64: 931 MapParams = NetBSD_X86_MemoryMapParams.bits64; 932 break; 933 default: 934 report_fatal_error("unsupported architecture"); 935 } 936 break; 937 case Triple::Linux: 938 switch (TargetTriple.getArch()) { 939 case Triple::x86_64: 940 MapParams = Linux_X86_MemoryMapParams.bits64; 941 break; 942 case Triple::x86: 943 MapParams = Linux_X86_MemoryMapParams.bits32; 944 break; 945 case Triple::mips64: 946 case Triple::mips64el: 947 MapParams = Linux_MIPS_MemoryMapParams.bits64; 948 break; 949 case Triple::ppc64: 950 case Triple::ppc64le: 951 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 952 break; 953 case Triple::systemz: 954 MapParams = Linux_S390_MemoryMapParams.bits64; 955 break; 956 case Triple::aarch64: 957 case Triple::aarch64_be: 958 MapParams = Linux_ARM_MemoryMapParams.bits64; 959 break; 960 default: 961 report_fatal_error("unsupported architecture"); 962 } 963 break; 964 default: 965 report_fatal_error("unsupported operating system"); 966 } 967 } 968 969 C = &(M.getContext()); 970 IRBuilder<> IRB(*C); 971 IntptrTy = IRB.getIntPtrTy(DL); 972 OriginTy = IRB.getInt32Ty(); 973 974 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 975 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 976 977 if (!CompileKernel) { 978 if (TrackOrigins) 979 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 980 return new GlobalVariable( 981 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 982 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 983 }); 984 985 if (Recover) 986 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 987 return new GlobalVariable(M, IRB.getInt32Ty(), true, 988 GlobalValue::WeakODRLinkage, 989 IRB.getInt32(Recover), "__msan_keep_going"); 990 }); 991 } 992 } 993 994 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 995 if (!Options.Kernel) 996 insertModuleCtor(M); 997 MSan.emplace(M, Options); 998 return true; 999 } 1000 1001 namespace { 1002 1003 /// A helper class that handles instrumentation of VarArg 1004 /// functions on a particular platform. 1005 /// 1006 /// Implementations are expected to insert the instrumentation 1007 /// necessary to propagate argument shadow through VarArg function 1008 /// calls. Visit* methods are called during an InstVisitor pass over 1009 /// the function, and should avoid creating new basic blocks. A new 1010 /// instance of this class is created for each instrumented function. 1011 struct VarArgHelper { 1012 virtual ~VarArgHelper() = default; 1013 1014 /// Visit a CallBase. 1015 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1016 1017 /// Visit a va_start call. 1018 virtual void visitVAStartInst(VAStartInst &I) = 0; 1019 1020 /// Visit a va_copy call. 1021 virtual void visitVACopyInst(VACopyInst &I) = 0; 1022 1023 /// Finalize function instrumentation. 1024 /// 1025 /// This method is called after visiting all interesting (see above) 1026 /// instructions in a function. 1027 virtual void finalizeInstrumentation() = 0; 1028 }; 1029 1030 struct MemorySanitizerVisitor; 1031 1032 } // end anonymous namespace 1033 1034 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1035 MemorySanitizerVisitor &Visitor); 1036 1037 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1038 if (TypeSize <= 8) return 0; 1039 return Log2_32_Ceil((TypeSize + 7) / 8); 1040 } 1041 1042 namespace { 1043 1044 /// This class does all the work for a given function. Store and Load 1045 /// instructions store and load corresponding shadow and origin 1046 /// values. Most instructions propagate shadow from arguments to their 1047 /// return values. Certain instructions (most importantly, BranchInst) 1048 /// test their argument shadow and print reports (with a runtime call) if it's 1049 /// non-zero. 1050 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1051 Function &F; 1052 MemorySanitizer &MS; 1053 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1054 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1055 std::unique_ptr<VarArgHelper> VAHelper; 1056 const TargetLibraryInfo *TLI; 1057 BasicBlock *ActualFnStart; 1058 1059 // The following flags disable parts of MSan instrumentation based on 1060 // blacklist contents and command-line options. 1061 bool InsertChecks; 1062 bool PropagateShadow; 1063 bool PoisonStack; 1064 bool PoisonUndef; 1065 bool CheckReturnValue; 1066 1067 struct ShadowOriginAndInsertPoint { 1068 Value *Shadow; 1069 Value *Origin; 1070 Instruction *OrigIns; 1071 1072 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1073 : Shadow(S), Origin(O), OrigIns(I) {} 1074 }; 1075 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1076 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1077 SmallSet<AllocaInst *, 16> AllocaSet; 1078 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1079 SmallVector<StoreInst *, 16> StoreList; 1080 1081 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1082 const TargetLibraryInfo &TLI) 1083 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1084 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1085 InsertChecks = SanitizeFunction; 1086 PropagateShadow = SanitizeFunction; 1087 PoisonStack = SanitizeFunction && ClPoisonStack; 1088 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1089 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1090 // must always return fully initialized values. For now, we hardcode "main". 1091 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1092 1093 MS.initializeCallbacks(*F.getParent()); 1094 if (MS.CompileKernel) 1095 ActualFnStart = insertKmsanPrologue(F); 1096 else 1097 ActualFnStart = &F.getEntryBlock(); 1098 1099 LLVM_DEBUG(if (!InsertChecks) dbgs() 1100 << "MemorySanitizer is not inserting checks into '" 1101 << F.getName() << "'\n"); 1102 } 1103 1104 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1105 if (MS.TrackOrigins <= 1) return V; 1106 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1107 } 1108 1109 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1110 const DataLayout &DL = F.getParent()->getDataLayout(); 1111 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1112 if (IntptrSize == kOriginSize) return Origin; 1113 assert(IntptrSize == kOriginSize * 2); 1114 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1115 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1116 } 1117 1118 /// Fill memory range with the given origin value. 1119 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1120 unsigned Size, Align Alignment) { 1121 const DataLayout &DL = F.getParent()->getDataLayout(); 1122 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1123 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1124 assert(IntptrAlignment >= kMinOriginAlignment); 1125 assert(IntptrSize >= kOriginSize); 1126 1127 unsigned Ofs = 0; 1128 Align CurrentAlignment = Alignment; 1129 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1130 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1131 Value *IntptrOriginPtr = 1132 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1133 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1134 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1135 : IntptrOriginPtr; 1136 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1137 Ofs += IntptrSize / kOriginSize; 1138 CurrentAlignment = IntptrAlignment; 1139 } 1140 } 1141 1142 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1143 Value *GEP = 1144 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1145 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1146 CurrentAlignment = kMinOriginAlignment; 1147 } 1148 } 1149 1150 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1151 Value *OriginPtr, Align Alignment, bool AsCall) { 1152 const DataLayout &DL = F.getParent()->getDataLayout(); 1153 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1154 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1155 if (Shadow->getType()->isAggregateType()) { 1156 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1157 OriginAlignment); 1158 } else { 1159 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1160 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1161 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1162 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1163 OriginAlignment); 1164 return; 1165 } 1166 1167 unsigned TypeSizeInBits = 1168 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1169 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1170 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1171 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1172 Value *ConvertedShadow2 = IRB.CreateZExt( 1173 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1174 IRB.CreateCall(Fn, {ConvertedShadow2, 1175 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1176 Origin}); 1177 } else { 1178 Value *Cmp = IRB.CreateICmpNE( 1179 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1180 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1181 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1182 IRBuilder<> IRBNew(CheckTerm); 1183 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1184 OriginAlignment); 1185 } 1186 } 1187 } 1188 1189 void materializeStores(bool InstrumentWithCalls) { 1190 for (StoreInst *SI : StoreList) { 1191 IRBuilder<> IRB(SI); 1192 Value *Val = SI->getValueOperand(); 1193 Value *Addr = SI->getPointerOperand(); 1194 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1195 Value *ShadowPtr, *OriginPtr; 1196 Type *ShadowTy = Shadow->getType(); 1197 const Align Alignment = assumeAligned(SI->getAlignment()); 1198 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1199 std::tie(ShadowPtr, OriginPtr) = 1200 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1201 1202 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1203 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1204 (void)NewSI; 1205 1206 if (SI->isAtomic()) 1207 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1208 1209 if (MS.TrackOrigins && !SI->isAtomic()) 1210 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1211 OriginAlignment, InstrumentWithCalls); 1212 } 1213 } 1214 1215 /// Helper function to insert a warning at IRB's current insert point. 1216 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1217 if (!Origin) 1218 Origin = (Value *)IRB.getInt32(0); 1219 if (MS.CompileKernel) { 1220 IRB.CreateCall(MS.WarningFn, Origin); 1221 } else { 1222 if (MS.TrackOrigins) { 1223 IRB.CreateStore(Origin, MS.OriginTLS); 1224 } 1225 IRB.CreateCall(MS.WarningFn, {}); 1226 } 1227 IRB.CreateCall(MS.EmptyAsm, {}); 1228 // FIXME: Insert UnreachableInst if !MS.Recover? 1229 // This may invalidate some of the following checks and needs to be done 1230 // at the very end. 1231 } 1232 1233 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1234 bool AsCall) { 1235 IRBuilder<> IRB(OrigIns); 1236 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1237 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1238 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1239 1240 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1241 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1242 insertWarningFn(IRB, Origin); 1243 } 1244 return; 1245 } 1246 1247 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1248 1249 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1250 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1251 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1252 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1253 Value *ConvertedShadow2 = 1254 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1255 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1256 ? Origin 1257 : (Value *)IRB.getInt32(0)}); 1258 } else { 1259 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1260 getCleanShadow(ConvertedShadow), "_mscmp"); 1261 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1262 Cmp, OrigIns, 1263 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1264 1265 IRB.SetInsertPoint(CheckTerm); 1266 insertWarningFn(IRB, Origin); 1267 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1268 } 1269 } 1270 1271 void materializeChecks(bool InstrumentWithCalls) { 1272 for (const auto &ShadowData : InstrumentationList) { 1273 Instruction *OrigIns = ShadowData.OrigIns; 1274 Value *Shadow = ShadowData.Shadow; 1275 Value *Origin = ShadowData.Origin; 1276 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1277 } 1278 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1279 } 1280 1281 BasicBlock *insertKmsanPrologue(Function &F) { 1282 BasicBlock *ret = 1283 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1284 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1285 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1286 Constant *Zero = IRB.getInt32(0); 1287 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1288 {Zero, IRB.getInt32(0)}, "param_shadow"); 1289 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1290 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1291 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1292 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1293 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1294 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1295 MS.VAArgOverflowSizeTLS = 1296 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1297 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1298 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1299 {Zero, IRB.getInt32(5)}, "param_origin"); 1300 MS.RetvalOriginTLS = 1301 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1302 {Zero, IRB.getInt32(6)}, "retval_origin"); 1303 return ret; 1304 } 1305 1306 /// Add MemorySanitizer instrumentation to a function. 1307 bool runOnFunction() { 1308 // In the presence of unreachable blocks, we may see Phi nodes with 1309 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1310 // blocks, such nodes will not have any shadow value associated with them. 1311 // It's easier to remove unreachable blocks than deal with missing shadow. 1312 removeUnreachableBlocks(F); 1313 1314 // Iterate all BBs in depth-first order and create shadow instructions 1315 // for all instructions (where applicable). 1316 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1317 for (BasicBlock *BB : depth_first(ActualFnStart)) 1318 visit(*BB); 1319 1320 // Finalize PHI nodes. 1321 for (PHINode *PN : ShadowPHINodes) { 1322 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1323 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1324 size_t NumValues = PN->getNumIncomingValues(); 1325 for (size_t v = 0; v < NumValues; v++) { 1326 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1327 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1328 } 1329 } 1330 1331 VAHelper->finalizeInstrumentation(); 1332 1333 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1334 // instrumenting only allocas. 1335 if (InstrumentLifetimeStart) { 1336 for (auto Item : LifetimeStartList) { 1337 instrumentAlloca(*Item.second, Item.first); 1338 AllocaSet.erase(Item.second); 1339 } 1340 } 1341 // Poison the allocas for which we didn't instrument the corresponding 1342 // lifetime intrinsics. 1343 for (AllocaInst *AI : AllocaSet) 1344 instrumentAlloca(*AI); 1345 1346 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1347 InstrumentationList.size() + StoreList.size() > 1348 (unsigned)ClInstrumentationWithCallThreshold; 1349 1350 // Insert shadow value checks. 1351 materializeChecks(InstrumentWithCalls); 1352 1353 // Delayed instrumentation of StoreInst. 1354 // This may not add new address checks. 1355 materializeStores(InstrumentWithCalls); 1356 1357 return true; 1358 } 1359 1360 /// Compute the shadow type that corresponds to a given Value. 1361 Type *getShadowTy(Value *V) { 1362 return getShadowTy(V->getType()); 1363 } 1364 1365 /// Compute the shadow type that corresponds to a given Type. 1366 Type *getShadowTy(Type *OrigTy) { 1367 if (!OrigTy->isSized()) { 1368 return nullptr; 1369 } 1370 // For integer type, shadow is the same as the original type. 1371 // This may return weird-sized types like i1. 1372 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1373 return IT; 1374 const DataLayout &DL = F.getParent()->getDataLayout(); 1375 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1376 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1377 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1378 VT->getNumElements()); 1379 } 1380 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1381 return ArrayType::get(getShadowTy(AT->getElementType()), 1382 AT->getNumElements()); 1383 } 1384 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1385 SmallVector<Type*, 4> Elements; 1386 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1387 Elements.push_back(getShadowTy(ST->getElementType(i))); 1388 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1389 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1390 return Res; 1391 } 1392 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1393 return IntegerType::get(*MS.C, TypeSize); 1394 } 1395 1396 /// Flatten a vector type. 1397 Type *getShadowTyNoVec(Type *ty) { 1398 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1399 return IntegerType::get(*MS.C, 1400 vt->getPrimitiveSizeInBits().getFixedSize()); 1401 return ty; 1402 } 1403 1404 /// Convert a shadow value to it's flattened variant. 1405 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1406 Type *Ty = V->getType(); 1407 Type *NoVecTy = getShadowTyNoVec(Ty); 1408 if (Ty == NoVecTy) return V; 1409 return IRB.CreateBitCast(V, NoVecTy); 1410 } 1411 1412 /// Compute the integer shadow offset that corresponds to a given 1413 /// application address. 1414 /// 1415 /// Offset = (Addr & ~AndMask) ^ XorMask 1416 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1417 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1418 1419 uint64_t AndMask = MS.MapParams->AndMask; 1420 if (AndMask) 1421 OffsetLong = 1422 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1423 1424 uint64_t XorMask = MS.MapParams->XorMask; 1425 if (XorMask) 1426 OffsetLong = 1427 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1428 return OffsetLong; 1429 } 1430 1431 /// Compute the shadow and origin addresses corresponding to a given 1432 /// application address. 1433 /// 1434 /// Shadow = ShadowBase + Offset 1435 /// Origin = (OriginBase + Offset) & ~3ULL 1436 std::pair<Value *, Value *> 1437 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1438 MaybeAlign Alignment) { 1439 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1440 Value *ShadowLong = ShadowOffset; 1441 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1442 if (ShadowBase != 0) { 1443 ShadowLong = 1444 IRB.CreateAdd(ShadowLong, 1445 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1446 } 1447 Value *ShadowPtr = 1448 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1449 Value *OriginPtr = nullptr; 1450 if (MS.TrackOrigins) { 1451 Value *OriginLong = ShadowOffset; 1452 uint64_t OriginBase = MS.MapParams->OriginBase; 1453 if (OriginBase != 0) 1454 OriginLong = IRB.CreateAdd(OriginLong, 1455 ConstantInt::get(MS.IntptrTy, OriginBase)); 1456 if (!Alignment || *Alignment < kMinOriginAlignment) { 1457 uint64_t Mask = kMinOriginAlignment.value() - 1; 1458 OriginLong = 1459 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1460 } 1461 OriginPtr = 1462 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1463 } 1464 return std::make_pair(ShadowPtr, OriginPtr); 1465 } 1466 1467 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1468 IRBuilder<> &IRB, 1469 Type *ShadowTy, 1470 bool isStore) { 1471 Value *ShadowOriginPtrs; 1472 const DataLayout &DL = F.getParent()->getDataLayout(); 1473 int Size = DL.getTypeStoreSize(ShadowTy); 1474 1475 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1476 Value *AddrCast = 1477 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1478 if (Getter) { 1479 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1480 } else { 1481 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1482 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1483 : MS.MsanMetadataPtrForLoadN, 1484 {AddrCast, SizeVal}); 1485 } 1486 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1487 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1488 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1489 1490 return std::make_pair(ShadowPtr, OriginPtr); 1491 } 1492 1493 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1494 Type *ShadowTy, 1495 MaybeAlign Alignment, 1496 bool isStore) { 1497 if (MS.CompileKernel) 1498 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1499 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1500 } 1501 1502 /// Compute the shadow address for a given function argument. 1503 /// 1504 /// Shadow = ParamTLS+ArgOffset. 1505 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1506 int ArgOffset) { 1507 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1508 if (ArgOffset) 1509 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1510 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1511 "_msarg"); 1512 } 1513 1514 /// Compute the origin address for a given function argument. 1515 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1516 int ArgOffset) { 1517 if (!MS.TrackOrigins) 1518 return nullptr; 1519 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1520 if (ArgOffset) 1521 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1522 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1523 "_msarg_o"); 1524 } 1525 1526 /// Compute the shadow address for a retval. 1527 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1528 return IRB.CreatePointerCast(MS.RetvalTLS, 1529 PointerType::get(getShadowTy(A), 0), 1530 "_msret"); 1531 } 1532 1533 /// Compute the origin address for a retval. 1534 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1535 // We keep a single origin for the entire retval. Might be too optimistic. 1536 return MS.RetvalOriginTLS; 1537 } 1538 1539 /// Set SV to be the shadow value for V. 1540 void setShadow(Value *V, Value *SV) { 1541 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1542 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1543 } 1544 1545 /// Set Origin to be the origin value for V. 1546 void setOrigin(Value *V, Value *Origin) { 1547 if (!MS.TrackOrigins) return; 1548 assert(!OriginMap.count(V) && "Values may only have one origin"); 1549 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1550 OriginMap[V] = Origin; 1551 } 1552 1553 Constant *getCleanShadow(Type *OrigTy) { 1554 Type *ShadowTy = getShadowTy(OrigTy); 1555 if (!ShadowTy) 1556 return nullptr; 1557 return Constant::getNullValue(ShadowTy); 1558 } 1559 1560 /// Create a clean shadow value for a given value. 1561 /// 1562 /// Clean shadow (all zeroes) means all bits of the value are defined 1563 /// (initialized). 1564 Constant *getCleanShadow(Value *V) { 1565 return getCleanShadow(V->getType()); 1566 } 1567 1568 /// Create a dirty shadow of a given shadow type. 1569 Constant *getPoisonedShadow(Type *ShadowTy) { 1570 assert(ShadowTy); 1571 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1572 return Constant::getAllOnesValue(ShadowTy); 1573 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1574 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1575 getPoisonedShadow(AT->getElementType())); 1576 return ConstantArray::get(AT, Vals); 1577 } 1578 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1579 SmallVector<Constant *, 4> Vals; 1580 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1581 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1582 return ConstantStruct::get(ST, Vals); 1583 } 1584 llvm_unreachable("Unexpected shadow type"); 1585 } 1586 1587 /// Create a dirty shadow for a given value. 1588 Constant *getPoisonedShadow(Value *V) { 1589 Type *ShadowTy = getShadowTy(V); 1590 if (!ShadowTy) 1591 return nullptr; 1592 return getPoisonedShadow(ShadowTy); 1593 } 1594 1595 /// Create a clean (zero) origin. 1596 Value *getCleanOrigin() { 1597 return Constant::getNullValue(MS.OriginTy); 1598 } 1599 1600 /// Get the shadow value for a given Value. 1601 /// 1602 /// This function either returns the value set earlier with setShadow, 1603 /// or extracts if from ParamTLS (for function arguments). 1604 Value *getShadow(Value *V) { 1605 if (!PropagateShadow) return getCleanShadow(V); 1606 if (Instruction *I = dyn_cast<Instruction>(V)) { 1607 if (I->getMetadata("nosanitize")) 1608 return getCleanShadow(V); 1609 // For instructions the shadow is already stored in the map. 1610 Value *Shadow = ShadowMap[V]; 1611 if (!Shadow) { 1612 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1613 (void)I; 1614 assert(Shadow && "No shadow for a value"); 1615 } 1616 return Shadow; 1617 } 1618 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1619 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1620 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1621 (void)U; 1622 return AllOnes; 1623 } 1624 if (Argument *A = dyn_cast<Argument>(V)) { 1625 // For arguments we compute the shadow on demand and store it in the map. 1626 Value **ShadowPtr = &ShadowMap[V]; 1627 if (*ShadowPtr) 1628 return *ShadowPtr; 1629 Function *F = A->getParent(); 1630 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1631 unsigned ArgOffset = 0; 1632 const DataLayout &DL = F->getParent()->getDataLayout(); 1633 for (auto &FArg : F->args()) { 1634 if (!FArg.getType()->isSized()) { 1635 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1636 continue; 1637 } 1638 unsigned Size = 1639 FArg.hasByValAttr() 1640 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1641 : DL.getTypeAllocSize(FArg.getType()); 1642 if (A == &FArg) { 1643 bool Overflow = ArgOffset + Size > kParamTLSSize; 1644 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1645 if (FArg.hasByValAttr()) { 1646 // ByVal pointer itself has clean shadow. We copy the actual 1647 // argument shadow to the underlying memory. 1648 // Figure out maximal valid memcpy alignment. 1649 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1650 MaybeAlign(FArg.getParamAlignment()), 1651 A->getType()->getPointerElementType()); 1652 Value *CpShadowPtr = 1653 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1654 /*isStore*/ true) 1655 .first; 1656 // TODO(glider): need to copy origins. 1657 if (Overflow) { 1658 // ParamTLS overflow. 1659 EntryIRB.CreateMemSet( 1660 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1661 Size, ArgAlign); 1662 } else { 1663 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1664 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1665 CopyAlign, Size); 1666 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1667 (void)Cpy; 1668 } 1669 *ShadowPtr = getCleanShadow(V); 1670 } else { 1671 if (Overflow) { 1672 // ParamTLS overflow. 1673 *ShadowPtr = getCleanShadow(V); 1674 } else { 1675 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1676 kShadowTLSAlignment); 1677 } 1678 } 1679 LLVM_DEBUG(dbgs() 1680 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1681 if (MS.TrackOrigins && !Overflow) { 1682 Value *OriginPtr = 1683 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1684 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1685 } else { 1686 setOrigin(A, getCleanOrigin()); 1687 } 1688 } 1689 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1690 } 1691 assert(*ShadowPtr && "Could not find shadow for an argument"); 1692 return *ShadowPtr; 1693 } 1694 // For everything else the shadow is zero. 1695 return getCleanShadow(V); 1696 } 1697 1698 /// Get the shadow for i-th argument of the instruction I. 1699 Value *getShadow(Instruction *I, int i) { 1700 return getShadow(I->getOperand(i)); 1701 } 1702 1703 /// Get the origin for a value. 1704 Value *getOrigin(Value *V) { 1705 if (!MS.TrackOrigins) return nullptr; 1706 if (!PropagateShadow) return getCleanOrigin(); 1707 if (isa<Constant>(V)) return getCleanOrigin(); 1708 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1709 "Unexpected value type in getOrigin()"); 1710 if (Instruction *I = dyn_cast<Instruction>(V)) { 1711 if (I->getMetadata("nosanitize")) 1712 return getCleanOrigin(); 1713 } 1714 Value *Origin = OriginMap[V]; 1715 assert(Origin && "Missing origin"); 1716 return Origin; 1717 } 1718 1719 /// Get the origin for i-th argument of the instruction I. 1720 Value *getOrigin(Instruction *I, int i) { 1721 return getOrigin(I->getOperand(i)); 1722 } 1723 1724 /// Remember the place where a shadow check should be inserted. 1725 /// 1726 /// This location will be later instrumented with a check that will print a 1727 /// UMR warning in runtime if the shadow value is not 0. 1728 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1729 assert(Shadow); 1730 if (!InsertChecks) return; 1731 #ifndef NDEBUG 1732 Type *ShadowTy = Shadow->getType(); 1733 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1734 "Can only insert checks for integer and vector shadow types"); 1735 #endif 1736 InstrumentationList.push_back( 1737 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1738 } 1739 1740 /// Remember the place where a shadow check should be inserted. 1741 /// 1742 /// This location will be later instrumented with a check that will print a 1743 /// UMR warning in runtime if the value is not fully defined. 1744 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1745 assert(Val); 1746 Value *Shadow, *Origin; 1747 if (ClCheckConstantShadow) { 1748 Shadow = getShadow(Val); 1749 if (!Shadow) return; 1750 Origin = getOrigin(Val); 1751 } else { 1752 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1753 if (!Shadow) return; 1754 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1755 } 1756 insertShadowCheck(Shadow, Origin, OrigIns); 1757 } 1758 1759 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1760 switch (a) { 1761 case AtomicOrdering::NotAtomic: 1762 return AtomicOrdering::NotAtomic; 1763 case AtomicOrdering::Unordered: 1764 case AtomicOrdering::Monotonic: 1765 case AtomicOrdering::Release: 1766 return AtomicOrdering::Release; 1767 case AtomicOrdering::Acquire: 1768 case AtomicOrdering::AcquireRelease: 1769 return AtomicOrdering::AcquireRelease; 1770 case AtomicOrdering::SequentiallyConsistent: 1771 return AtomicOrdering::SequentiallyConsistent; 1772 } 1773 llvm_unreachable("Unknown ordering"); 1774 } 1775 1776 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1777 switch (a) { 1778 case AtomicOrdering::NotAtomic: 1779 return AtomicOrdering::NotAtomic; 1780 case AtomicOrdering::Unordered: 1781 case AtomicOrdering::Monotonic: 1782 case AtomicOrdering::Acquire: 1783 return AtomicOrdering::Acquire; 1784 case AtomicOrdering::Release: 1785 case AtomicOrdering::AcquireRelease: 1786 return AtomicOrdering::AcquireRelease; 1787 case AtomicOrdering::SequentiallyConsistent: 1788 return AtomicOrdering::SequentiallyConsistent; 1789 } 1790 llvm_unreachable("Unknown ordering"); 1791 } 1792 1793 // ------------------- Visitors. 1794 using InstVisitor<MemorySanitizerVisitor>::visit; 1795 void visit(Instruction &I) { 1796 if (!I.getMetadata("nosanitize")) 1797 InstVisitor<MemorySanitizerVisitor>::visit(I); 1798 } 1799 1800 /// Instrument LoadInst 1801 /// 1802 /// Loads the corresponding shadow and (optionally) origin. 1803 /// Optionally, checks that the load address is fully defined. 1804 void visitLoadInst(LoadInst &I) { 1805 assert(I.getType()->isSized() && "Load type must have size"); 1806 assert(!I.getMetadata("nosanitize")); 1807 IRBuilder<> IRB(I.getNextNode()); 1808 Type *ShadowTy = getShadowTy(&I); 1809 Value *Addr = I.getPointerOperand(); 1810 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1811 const Align Alignment = assumeAligned(I.getAlignment()); 1812 if (PropagateShadow) { 1813 std::tie(ShadowPtr, OriginPtr) = 1814 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1815 setShadow(&I, 1816 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1817 } else { 1818 setShadow(&I, getCleanShadow(&I)); 1819 } 1820 1821 if (ClCheckAccessAddress) 1822 insertShadowCheck(I.getPointerOperand(), &I); 1823 1824 if (I.isAtomic()) 1825 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1826 1827 if (MS.TrackOrigins) { 1828 if (PropagateShadow) { 1829 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1830 setOrigin( 1831 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1832 } else { 1833 setOrigin(&I, getCleanOrigin()); 1834 } 1835 } 1836 } 1837 1838 /// Instrument StoreInst 1839 /// 1840 /// Stores the corresponding shadow and (optionally) origin. 1841 /// Optionally, checks that the store address is fully defined. 1842 void visitStoreInst(StoreInst &I) { 1843 StoreList.push_back(&I); 1844 if (ClCheckAccessAddress) 1845 insertShadowCheck(I.getPointerOperand(), &I); 1846 } 1847 1848 void handleCASOrRMW(Instruction &I) { 1849 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1850 1851 IRBuilder<> IRB(&I); 1852 Value *Addr = I.getOperand(0); 1853 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1854 /*isStore*/ true) 1855 .first; 1856 1857 if (ClCheckAccessAddress) 1858 insertShadowCheck(Addr, &I); 1859 1860 // Only test the conditional argument of cmpxchg instruction. 1861 // The other argument can potentially be uninitialized, but we can not 1862 // detect this situation reliably without possible false positives. 1863 if (isa<AtomicCmpXchgInst>(I)) 1864 insertShadowCheck(I.getOperand(1), &I); 1865 1866 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1867 1868 setShadow(&I, getCleanShadow(&I)); 1869 setOrigin(&I, getCleanOrigin()); 1870 } 1871 1872 void visitAtomicRMWInst(AtomicRMWInst &I) { 1873 handleCASOrRMW(I); 1874 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1875 } 1876 1877 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1878 handleCASOrRMW(I); 1879 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1880 } 1881 1882 // Vector manipulation. 1883 void visitExtractElementInst(ExtractElementInst &I) { 1884 insertShadowCheck(I.getOperand(1), &I); 1885 IRBuilder<> IRB(&I); 1886 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1887 "_msprop")); 1888 setOrigin(&I, getOrigin(&I, 0)); 1889 } 1890 1891 void visitInsertElementInst(InsertElementInst &I) { 1892 insertShadowCheck(I.getOperand(2), &I); 1893 IRBuilder<> IRB(&I); 1894 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1895 I.getOperand(2), "_msprop")); 1896 setOriginForNaryOp(I); 1897 } 1898 1899 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1900 IRBuilder<> IRB(&I); 1901 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1902 I.getShuffleMask(), "_msprop")); 1903 setOriginForNaryOp(I); 1904 } 1905 1906 // Casts. 1907 void visitSExtInst(SExtInst &I) { 1908 IRBuilder<> IRB(&I); 1909 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1910 setOrigin(&I, getOrigin(&I, 0)); 1911 } 1912 1913 void visitZExtInst(ZExtInst &I) { 1914 IRBuilder<> IRB(&I); 1915 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1916 setOrigin(&I, getOrigin(&I, 0)); 1917 } 1918 1919 void visitTruncInst(TruncInst &I) { 1920 IRBuilder<> IRB(&I); 1921 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1922 setOrigin(&I, getOrigin(&I, 0)); 1923 } 1924 1925 void visitBitCastInst(BitCastInst &I) { 1926 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1927 // a musttail call and a ret, don't instrument. New instructions are not 1928 // allowed after a musttail call. 1929 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1930 if (CI->isMustTailCall()) 1931 return; 1932 IRBuilder<> IRB(&I); 1933 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1934 setOrigin(&I, getOrigin(&I, 0)); 1935 } 1936 1937 void visitPtrToIntInst(PtrToIntInst &I) { 1938 IRBuilder<> IRB(&I); 1939 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1940 "_msprop_ptrtoint")); 1941 setOrigin(&I, getOrigin(&I, 0)); 1942 } 1943 1944 void visitIntToPtrInst(IntToPtrInst &I) { 1945 IRBuilder<> IRB(&I); 1946 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1947 "_msprop_inttoptr")); 1948 setOrigin(&I, getOrigin(&I, 0)); 1949 } 1950 1951 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1952 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1953 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1954 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1955 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1956 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1957 1958 /// Propagate shadow for bitwise AND. 1959 /// 1960 /// This code is exact, i.e. if, for example, a bit in the left argument 1961 /// is defined and 0, then neither the value not definedness of the 1962 /// corresponding bit in B don't affect the resulting shadow. 1963 void visitAnd(BinaryOperator &I) { 1964 IRBuilder<> IRB(&I); 1965 // "And" of 0 and a poisoned value results in unpoisoned value. 1966 // 1&1 => 1; 0&1 => 0; p&1 => p; 1967 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1968 // 1&p => p; 0&p => 0; p&p => p; 1969 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1970 Value *S1 = getShadow(&I, 0); 1971 Value *S2 = getShadow(&I, 1); 1972 Value *V1 = I.getOperand(0); 1973 Value *V2 = I.getOperand(1); 1974 if (V1->getType() != S1->getType()) { 1975 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1976 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1977 } 1978 Value *S1S2 = IRB.CreateAnd(S1, S2); 1979 Value *V1S2 = IRB.CreateAnd(V1, S2); 1980 Value *S1V2 = IRB.CreateAnd(S1, V2); 1981 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1982 setOriginForNaryOp(I); 1983 } 1984 1985 void visitOr(BinaryOperator &I) { 1986 IRBuilder<> IRB(&I); 1987 // "Or" of 1 and a poisoned value results in unpoisoned value. 1988 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1989 // 1|0 => 1; 0|0 => 0; p|0 => p; 1990 // 1|p => 1; 0|p => p; p|p => p; 1991 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1992 Value *S1 = getShadow(&I, 0); 1993 Value *S2 = getShadow(&I, 1); 1994 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1995 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1996 if (V1->getType() != S1->getType()) { 1997 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1998 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1999 } 2000 Value *S1S2 = IRB.CreateAnd(S1, S2); 2001 Value *V1S2 = IRB.CreateAnd(V1, S2); 2002 Value *S1V2 = IRB.CreateAnd(S1, V2); 2003 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2004 setOriginForNaryOp(I); 2005 } 2006 2007 /// Default propagation of shadow and/or origin. 2008 /// 2009 /// This class implements the general case of shadow propagation, used in all 2010 /// cases where we don't know and/or don't care about what the operation 2011 /// actually does. It converts all input shadow values to a common type 2012 /// (extending or truncating as necessary), and bitwise OR's them. 2013 /// 2014 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2015 /// fully initialized), and less prone to false positives. 2016 /// 2017 /// This class also implements the general case of origin propagation. For a 2018 /// Nary operation, result origin is set to the origin of an argument that is 2019 /// not entirely initialized. If there is more than one such arguments, the 2020 /// rightmost of them is picked. It does not matter which one is picked if all 2021 /// arguments are initialized. 2022 template <bool CombineShadow> 2023 class Combiner { 2024 Value *Shadow = nullptr; 2025 Value *Origin = nullptr; 2026 IRBuilder<> &IRB; 2027 MemorySanitizerVisitor *MSV; 2028 2029 public: 2030 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2031 : IRB(IRB), MSV(MSV) {} 2032 2033 /// Add a pair of shadow and origin values to the mix. 2034 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2035 if (CombineShadow) { 2036 assert(OpShadow); 2037 if (!Shadow) 2038 Shadow = OpShadow; 2039 else { 2040 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2041 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2042 } 2043 } 2044 2045 if (MSV->MS.TrackOrigins) { 2046 assert(OpOrigin); 2047 if (!Origin) { 2048 Origin = OpOrigin; 2049 } else { 2050 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2051 // No point in adding something that might result in 0 origin value. 2052 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2053 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2054 Value *Cond = 2055 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2056 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2057 } 2058 } 2059 } 2060 return *this; 2061 } 2062 2063 /// Add an application value to the mix. 2064 Combiner &Add(Value *V) { 2065 Value *OpShadow = MSV->getShadow(V); 2066 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2067 return Add(OpShadow, OpOrigin); 2068 } 2069 2070 /// Set the current combined values as the given instruction's shadow 2071 /// and origin. 2072 void Done(Instruction *I) { 2073 if (CombineShadow) { 2074 assert(Shadow); 2075 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2076 MSV->setShadow(I, Shadow); 2077 } 2078 if (MSV->MS.TrackOrigins) { 2079 assert(Origin); 2080 MSV->setOrigin(I, Origin); 2081 } 2082 } 2083 }; 2084 2085 using ShadowAndOriginCombiner = Combiner<true>; 2086 using OriginCombiner = Combiner<false>; 2087 2088 /// Propagate origin for arbitrary operation. 2089 void setOriginForNaryOp(Instruction &I) { 2090 if (!MS.TrackOrigins) return; 2091 IRBuilder<> IRB(&I); 2092 OriginCombiner OC(this, IRB); 2093 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2094 OC.Add(OI->get()); 2095 OC.Done(&I); 2096 } 2097 2098 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2099 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2100 "Vector of pointers is not a valid shadow type"); 2101 return Ty->isVectorTy() ? cast<VectorType>(Ty)->getNumElements() * 2102 Ty->getScalarSizeInBits() 2103 : Ty->getPrimitiveSizeInBits(); 2104 } 2105 2106 /// Cast between two shadow types, extending or truncating as 2107 /// necessary. 2108 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2109 bool Signed = false) { 2110 Type *srcTy = V->getType(); 2111 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2112 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2113 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2114 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2115 2116 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2117 return IRB.CreateIntCast(V, dstTy, Signed); 2118 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2119 cast<VectorType>(dstTy)->getNumElements() == 2120 cast<VectorType>(srcTy)->getNumElements()) 2121 return IRB.CreateIntCast(V, dstTy, Signed); 2122 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2123 Value *V2 = 2124 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2125 return IRB.CreateBitCast(V2, dstTy); 2126 // TODO: handle struct types. 2127 } 2128 2129 /// Cast an application value to the type of its own shadow. 2130 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2131 Type *ShadowTy = getShadowTy(V); 2132 if (V->getType() == ShadowTy) 2133 return V; 2134 if (V->getType()->isPtrOrPtrVectorTy()) 2135 return IRB.CreatePtrToInt(V, ShadowTy); 2136 else 2137 return IRB.CreateBitCast(V, ShadowTy); 2138 } 2139 2140 /// Propagate shadow for arbitrary operation. 2141 void handleShadowOr(Instruction &I) { 2142 IRBuilder<> IRB(&I); 2143 ShadowAndOriginCombiner SC(this, IRB); 2144 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2145 SC.Add(OI->get()); 2146 SC.Done(&I); 2147 } 2148 2149 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2150 2151 // Handle multiplication by constant. 2152 // 2153 // Handle a special case of multiplication by constant that may have one or 2154 // more zeros in the lower bits. This makes corresponding number of lower bits 2155 // of the result zero as well. We model it by shifting the other operand 2156 // shadow left by the required number of bits. Effectively, we transform 2157 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2158 // We use multiplication by 2**N instead of shift to cover the case of 2159 // multiplication by 0, which may occur in some elements of a vector operand. 2160 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2161 Value *OtherArg) { 2162 Constant *ShadowMul; 2163 Type *Ty = ConstArg->getType(); 2164 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2165 unsigned NumElements = VTy->getNumElements(); 2166 Type *EltTy = VTy->getElementType(); 2167 SmallVector<Constant *, 16> Elements; 2168 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2169 if (ConstantInt *Elt = 2170 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2171 const APInt &V = Elt->getValue(); 2172 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2173 Elements.push_back(ConstantInt::get(EltTy, V2)); 2174 } else { 2175 Elements.push_back(ConstantInt::get(EltTy, 1)); 2176 } 2177 } 2178 ShadowMul = ConstantVector::get(Elements); 2179 } else { 2180 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2181 const APInt &V = Elt->getValue(); 2182 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2183 ShadowMul = ConstantInt::get(Ty, V2); 2184 } else { 2185 ShadowMul = ConstantInt::get(Ty, 1); 2186 } 2187 } 2188 2189 IRBuilder<> IRB(&I); 2190 setShadow(&I, 2191 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2192 setOrigin(&I, getOrigin(OtherArg)); 2193 } 2194 2195 void visitMul(BinaryOperator &I) { 2196 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2197 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2198 if (constOp0 && !constOp1) 2199 handleMulByConstant(I, constOp0, I.getOperand(1)); 2200 else if (constOp1 && !constOp0) 2201 handleMulByConstant(I, constOp1, I.getOperand(0)); 2202 else 2203 handleShadowOr(I); 2204 } 2205 2206 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2207 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2208 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2209 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2210 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2211 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2212 2213 void handleIntegerDiv(Instruction &I) { 2214 IRBuilder<> IRB(&I); 2215 // Strict on the second argument. 2216 insertShadowCheck(I.getOperand(1), &I); 2217 setShadow(&I, getShadow(&I, 0)); 2218 setOrigin(&I, getOrigin(&I, 0)); 2219 } 2220 2221 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2222 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2223 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2224 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2225 2226 // Floating point division is side-effect free. We can not require that the 2227 // divisor is fully initialized and must propagate shadow. See PR37523. 2228 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2229 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2230 2231 /// Instrument == and != comparisons. 2232 /// 2233 /// Sometimes the comparison result is known even if some of the bits of the 2234 /// arguments are not. 2235 void handleEqualityComparison(ICmpInst &I) { 2236 IRBuilder<> IRB(&I); 2237 Value *A = I.getOperand(0); 2238 Value *B = I.getOperand(1); 2239 Value *Sa = getShadow(A); 2240 Value *Sb = getShadow(B); 2241 2242 // Get rid of pointers and vectors of pointers. 2243 // For ints (and vectors of ints), types of A and Sa match, 2244 // and this is a no-op. 2245 A = IRB.CreatePointerCast(A, Sa->getType()); 2246 B = IRB.CreatePointerCast(B, Sb->getType()); 2247 2248 // A == B <==> (C = A^B) == 0 2249 // A != B <==> (C = A^B) != 0 2250 // Sc = Sa | Sb 2251 Value *C = IRB.CreateXor(A, B); 2252 Value *Sc = IRB.CreateOr(Sa, Sb); 2253 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2254 // Result is defined if one of the following is true 2255 // * there is a defined 1 bit in C 2256 // * C is fully defined 2257 // Si = !(C & ~Sc) && Sc 2258 Value *Zero = Constant::getNullValue(Sc->getType()); 2259 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2260 Value *Si = 2261 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2262 IRB.CreateICmpEQ( 2263 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2264 Si->setName("_msprop_icmp"); 2265 setShadow(&I, Si); 2266 setOriginForNaryOp(I); 2267 } 2268 2269 /// Build the lowest possible value of V, taking into account V's 2270 /// uninitialized bits. 2271 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2272 bool isSigned) { 2273 if (isSigned) { 2274 // Split shadow into sign bit and other bits. 2275 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2276 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2277 // Maximise the undefined shadow bit, minimize other undefined bits. 2278 return 2279 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2280 } else { 2281 // Minimize undefined bits. 2282 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2283 } 2284 } 2285 2286 /// Build the highest possible value of V, taking into account V's 2287 /// uninitialized bits. 2288 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2289 bool isSigned) { 2290 if (isSigned) { 2291 // Split shadow into sign bit and other bits. 2292 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2293 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2294 // Minimise the undefined shadow bit, maximise other undefined bits. 2295 return 2296 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2297 } else { 2298 // Maximize undefined bits. 2299 return IRB.CreateOr(A, Sa); 2300 } 2301 } 2302 2303 /// Instrument relational comparisons. 2304 /// 2305 /// This function does exact shadow propagation for all relational 2306 /// comparisons of integers, pointers and vectors of those. 2307 /// FIXME: output seems suboptimal when one of the operands is a constant 2308 void handleRelationalComparisonExact(ICmpInst &I) { 2309 IRBuilder<> IRB(&I); 2310 Value *A = I.getOperand(0); 2311 Value *B = I.getOperand(1); 2312 Value *Sa = getShadow(A); 2313 Value *Sb = getShadow(B); 2314 2315 // Get rid of pointers and vectors of pointers. 2316 // For ints (and vectors of ints), types of A and Sa match, 2317 // and this is a no-op. 2318 A = IRB.CreatePointerCast(A, Sa->getType()); 2319 B = IRB.CreatePointerCast(B, Sb->getType()); 2320 2321 // Let [a0, a1] be the interval of possible values of A, taking into account 2322 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2323 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2324 bool IsSigned = I.isSigned(); 2325 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2326 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2327 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2328 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2329 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2330 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2331 Value *Si = IRB.CreateXor(S1, S2); 2332 setShadow(&I, Si); 2333 setOriginForNaryOp(I); 2334 } 2335 2336 /// Instrument signed relational comparisons. 2337 /// 2338 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2339 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2340 void handleSignedRelationalComparison(ICmpInst &I) { 2341 Constant *constOp; 2342 Value *op = nullptr; 2343 CmpInst::Predicate pre; 2344 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2345 op = I.getOperand(0); 2346 pre = I.getPredicate(); 2347 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2348 op = I.getOperand(1); 2349 pre = I.getSwappedPredicate(); 2350 } else { 2351 handleShadowOr(I); 2352 return; 2353 } 2354 2355 if ((constOp->isNullValue() && 2356 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2357 (constOp->isAllOnesValue() && 2358 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2359 IRBuilder<> IRB(&I); 2360 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2361 "_msprop_icmp_s"); 2362 setShadow(&I, Shadow); 2363 setOrigin(&I, getOrigin(op)); 2364 } else { 2365 handleShadowOr(I); 2366 } 2367 } 2368 2369 void visitICmpInst(ICmpInst &I) { 2370 if (!ClHandleICmp) { 2371 handleShadowOr(I); 2372 return; 2373 } 2374 if (I.isEquality()) { 2375 handleEqualityComparison(I); 2376 return; 2377 } 2378 2379 assert(I.isRelational()); 2380 if (ClHandleICmpExact) { 2381 handleRelationalComparisonExact(I); 2382 return; 2383 } 2384 if (I.isSigned()) { 2385 handleSignedRelationalComparison(I); 2386 return; 2387 } 2388 2389 assert(I.isUnsigned()); 2390 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2391 handleRelationalComparisonExact(I); 2392 return; 2393 } 2394 2395 handleShadowOr(I); 2396 } 2397 2398 void visitFCmpInst(FCmpInst &I) { 2399 handleShadowOr(I); 2400 } 2401 2402 void handleShift(BinaryOperator &I) { 2403 IRBuilder<> IRB(&I); 2404 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2405 // Otherwise perform the same shift on S1. 2406 Value *S1 = getShadow(&I, 0); 2407 Value *S2 = getShadow(&I, 1); 2408 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2409 S2->getType()); 2410 Value *V2 = I.getOperand(1); 2411 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2412 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2413 setOriginForNaryOp(I); 2414 } 2415 2416 void visitShl(BinaryOperator &I) { handleShift(I); } 2417 void visitAShr(BinaryOperator &I) { handleShift(I); } 2418 void visitLShr(BinaryOperator &I) { handleShift(I); } 2419 2420 /// Instrument llvm.memmove 2421 /// 2422 /// At this point we don't know if llvm.memmove will be inlined or not. 2423 /// If we don't instrument it and it gets inlined, 2424 /// our interceptor will not kick in and we will lose the memmove. 2425 /// If we instrument the call here, but it does not get inlined, 2426 /// we will memove the shadow twice: which is bad in case 2427 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2428 /// 2429 /// Similar situation exists for memcpy and memset. 2430 void visitMemMoveInst(MemMoveInst &I) { 2431 IRBuilder<> IRB(&I); 2432 IRB.CreateCall( 2433 MS.MemmoveFn, 2434 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2435 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2436 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2437 I.eraseFromParent(); 2438 } 2439 2440 // Similar to memmove: avoid copying shadow twice. 2441 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2442 // FIXME: consider doing manual inline for small constant sizes and proper 2443 // alignment. 2444 void visitMemCpyInst(MemCpyInst &I) { 2445 IRBuilder<> IRB(&I); 2446 IRB.CreateCall( 2447 MS.MemcpyFn, 2448 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2449 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2450 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2451 I.eraseFromParent(); 2452 } 2453 2454 // Same as memcpy. 2455 void visitMemSetInst(MemSetInst &I) { 2456 IRBuilder<> IRB(&I); 2457 IRB.CreateCall( 2458 MS.MemsetFn, 2459 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2460 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2461 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2462 I.eraseFromParent(); 2463 } 2464 2465 void visitVAStartInst(VAStartInst &I) { 2466 VAHelper->visitVAStartInst(I); 2467 } 2468 2469 void visitVACopyInst(VACopyInst &I) { 2470 VAHelper->visitVACopyInst(I); 2471 } 2472 2473 /// Handle vector store-like intrinsics. 2474 /// 2475 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2476 /// has 1 pointer argument and 1 vector argument, returns void. 2477 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2478 IRBuilder<> IRB(&I); 2479 Value* Addr = I.getArgOperand(0); 2480 Value *Shadow = getShadow(&I, 1); 2481 Value *ShadowPtr, *OriginPtr; 2482 2483 // We don't know the pointer alignment (could be unaligned SSE store!). 2484 // Have to assume to worst case. 2485 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2486 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2487 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2488 2489 if (ClCheckAccessAddress) 2490 insertShadowCheck(Addr, &I); 2491 2492 // FIXME: factor out common code from materializeStores 2493 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2494 return true; 2495 } 2496 2497 /// Handle vector load-like intrinsics. 2498 /// 2499 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2500 /// has 1 pointer argument, returns a vector. 2501 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2502 IRBuilder<> IRB(&I); 2503 Value *Addr = I.getArgOperand(0); 2504 2505 Type *ShadowTy = getShadowTy(&I); 2506 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2507 if (PropagateShadow) { 2508 // We don't know the pointer alignment (could be unaligned SSE load!). 2509 // Have to assume to worst case. 2510 const Align Alignment = Align(1); 2511 std::tie(ShadowPtr, OriginPtr) = 2512 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2513 setShadow(&I, 2514 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2515 } else { 2516 setShadow(&I, getCleanShadow(&I)); 2517 } 2518 2519 if (ClCheckAccessAddress) 2520 insertShadowCheck(Addr, &I); 2521 2522 if (MS.TrackOrigins) { 2523 if (PropagateShadow) 2524 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2525 else 2526 setOrigin(&I, getCleanOrigin()); 2527 } 2528 return true; 2529 } 2530 2531 /// Handle (SIMD arithmetic)-like intrinsics. 2532 /// 2533 /// Instrument intrinsics with any number of arguments of the same type, 2534 /// equal to the return type. The type should be simple (no aggregates or 2535 /// pointers; vectors are fine). 2536 /// Caller guarantees that this intrinsic does not access memory. 2537 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2538 Type *RetTy = I.getType(); 2539 if (!(RetTy->isIntOrIntVectorTy() || 2540 RetTy->isFPOrFPVectorTy() || 2541 RetTy->isX86_MMXTy())) 2542 return false; 2543 2544 unsigned NumArgOperands = I.getNumArgOperands(); 2545 2546 for (unsigned i = 0; i < NumArgOperands; ++i) { 2547 Type *Ty = I.getArgOperand(i)->getType(); 2548 if (Ty != RetTy) 2549 return false; 2550 } 2551 2552 IRBuilder<> IRB(&I); 2553 ShadowAndOriginCombiner SC(this, IRB); 2554 for (unsigned i = 0; i < NumArgOperands; ++i) 2555 SC.Add(I.getArgOperand(i)); 2556 SC.Done(&I); 2557 2558 return true; 2559 } 2560 2561 /// Heuristically instrument unknown intrinsics. 2562 /// 2563 /// The main purpose of this code is to do something reasonable with all 2564 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2565 /// We recognize several classes of intrinsics by their argument types and 2566 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2567 /// sure that we know what the intrinsic does. 2568 /// 2569 /// We special-case intrinsics where this approach fails. See llvm.bswap 2570 /// handling as an example of that. 2571 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2572 unsigned NumArgOperands = I.getNumArgOperands(); 2573 if (NumArgOperands == 0) 2574 return false; 2575 2576 if (NumArgOperands == 2 && 2577 I.getArgOperand(0)->getType()->isPointerTy() && 2578 I.getArgOperand(1)->getType()->isVectorTy() && 2579 I.getType()->isVoidTy() && 2580 !I.onlyReadsMemory()) { 2581 // This looks like a vector store. 2582 return handleVectorStoreIntrinsic(I); 2583 } 2584 2585 if (NumArgOperands == 1 && 2586 I.getArgOperand(0)->getType()->isPointerTy() && 2587 I.getType()->isVectorTy() && 2588 I.onlyReadsMemory()) { 2589 // This looks like a vector load. 2590 return handleVectorLoadIntrinsic(I); 2591 } 2592 2593 if (I.doesNotAccessMemory()) 2594 if (maybeHandleSimpleNomemIntrinsic(I)) 2595 return true; 2596 2597 // FIXME: detect and handle SSE maskstore/maskload 2598 return false; 2599 } 2600 2601 void handleInvariantGroup(IntrinsicInst &I) { 2602 setShadow(&I, getShadow(&I, 0)); 2603 setOrigin(&I, getOrigin(&I, 0)); 2604 } 2605 2606 void handleLifetimeStart(IntrinsicInst &I) { 2607 if (!PoisonStack) 2608 return; 2609 DenseMap<Value *, AllocaInst *> AllocaForValue; 2610 AllocaInst *AI = 2611 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2612 if (!AI) 2613 InstrumentLifetimeStart = false; 2614 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2615 } 2616 2617 void handleBswap(IntrinsicInst &I) { 2618 IRBuilder<> IRB(&I); 2619 Value *Op = I.getArgOperand(0); 2620 Type *OpType = Op->getType(); 2621 Function *BswapFunc = Intrinsic::getDeclaration( 2622 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2623 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2624 setOrigin(&I, getOrigin(Op)); 2625 } 2626 2627 // Instrument vector convert intrinsic. 2628 // 2629 // This function instruments intrinsics like cvtsi2ss: 2630 // %Out = int_xxx_cvtyyy(%ConvertOp) 2631 // or 2632 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2633 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2634 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2635 // elements from \p CopyOp. 2636 // In most cases conversion involves floating-point value which may trigger a 2637 // hardware exception when not fully initialized. For this reason we require 2638 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2639 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2640 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2641 // return a fully initialized value. 2642 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2643 IRBuilder<> IRB(&I); 2644 Value *CopyOp, *ConvertOp; 2645 2646 switch (I.getNumArgOperands()) { 2647 case 3: 2648 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2649 LLVM_FALLTHROUGH; 2650 case 2: 2651 CopyOp = I.getArgOperand(0); 2652 ConvertOp = I.getArgOperand(1); 2653 break; 2654 case 1: 2655 ConvertOp = I.getArgOperand(0); 2656 CopyOp = nullptr; 2657 break; 2658 default: 2659 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2660 } 2661 2662 // The first *NumUsedElements* elements of ConvertOp are converted to the 2663 // same number of output elements. The rest of the output is copied from 2664 // CopyOp, or (if not available) filled with zeroes. 2665 // Combine shadow for elements of ConvertOp that are used in this operation, 2666 // and insert a check. 2667 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2668 // int->any conversion. 2669 Value *ConvertShadow = getShadow(ConvertOp); 2670 Value *AggShadow = nullptr; 2671 if (ConvertOp->getType()->isVectorTy()) { 2672 AggShadow = IRB.CreateExtractElement( 2673 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2674 for (int i = 1; i < NumUsedElements; ++i) { 2675 Value *MoreShadow = IRB.CreateExtractElement( 2676 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2677 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2678 } 2679 } else { 2680 AggShadow = ConvertShadow; 2681 } 2682 assert(AggShadow->getType()->isIntegerTy()); 2683 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2684 2685 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2686 // ConvertOp. 2687 if (CopyOp) { 2688 assert(CopyOp->getType() == I.getType()); 2689 assert(CopyOp->getType()->isVectorTy()); 2690 Value *ResultShadow = getShadow(CopyOp); 2691 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2692 for (int i = 0; i < NumUsedElements; ++i) { 2693 ResultShadow = IRB.CreateInsertElement( 2694 ResultShadow, ConstantInt::getNullValue(EltTy), 2695 ConstantInt::get(IRB.getInt32Ty(), i)); 2696 } 2697 setShadow(&I, ResultShadow); 2698 setOrigin(&I, getOrigin(CopyOp)); 2699 } else { 2700 setShadow(&I, getCleanShadow(&I)); 2701 setOrigin(&I, getCleanOrigin()); 2702 } 2703 } 2704 2705 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2706 // zeroes if it is zero, and all ones otherwise. 2707 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2708 if (S->getType()->isVectorTy()) 2709 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2710 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2711 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2712 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2713 } 2714 2715 // Given a vector, extract its first element, and return all 2716 // zeroes if it is zero, and all ones otherwise. 2717 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2718 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2719 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2720 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2721 } 2722 2723 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2724 Type *T = S->getType(); 2725 assert(T->isVectorTy()); 2726 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2727 return IRB.CreateSExt(S2, T); 2728 } 2729 2730 // Instrument vector shift intrinsic. 2731 // 2732 // This function instruments intrinsics like int_x86_avx2_psll_w. 2733 // Intrinsic shifts %In by %ShiftSize bits. 2734 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2735 // size, and the rest is ignored. Behavior is defined even if shift size is 2736 // greater than register (or field) width. 2737 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2738 assert(I.getNumArgOperands() == 2); 2739 IRBuilder<> IRB(&I); 2740 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2741 // Otherwise perform the same shift on S1. 2742 Value *S1 = getShadow(&I, 0); 2743 Value *S2 = getShadow(&I, 1); 2744 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2745 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2746 Value *V1 = I.getOperand(0); 2747 Value *V2 = I.getOperand(1); 2748 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2749 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2750 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2751 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2752 setOriginForNaryOp(I); 2753 } 2754 2755 // Get an X86_MMX-sized vector type. 2756 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2757 const unsigned X86_MMXSizeInBits = 64; 2758 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2759 "Illegal MMX vector element size"); 2760 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2761 X86_MMXSizeInBits / EltSizeInBits); 2762 } 2763 2764 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2765 // intrinsic. 2766 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2767 switch (id) { 2768 case Intrinsic::x86_sse2_packsswb_128: 2769 case Intrinsic::x86_sse2_packuswb_128: 2770 return Intrinsic::x86_sse2_packsswb_128; 2771 2772 case Intrinsic::x86_sse2_packssdw_128: 2773 case Intrinsic::x86_sse41_packusdw: 2774 return Intrinsic::x86_sse2_packssdw_128; 2775 2776 case Intrinsic::x86_avx2_packsswb: 2777 case Intrinsic::x86_avx2_packuswb: 2778 return Intrinsic::x86_avx2_packsswb; 2779 2780 case Intrinsic::x86_avx2_packssdw: 2781 case Intrinsic::x86_avx2_packusdw: 2782 return Intrinsic::x86_avx2_packssdw; 2783 2784 case Intrinsic::x86_mmx_packsswb: 2785 case Intrinsic::x86_mmx_packuswb: 2786 return Intrinsic::x86_mmx_packsswb; 2787 2788 case Intrinsic::x86_mmx_packssdw: 2789 return Intrinsic::x86_mmx_packssdw; 2790 default: 2791 llvm_unreachable("unexpected intrinsic id"); 2792 } 2793 } 2794 2795 // Instrument vector pack intrinsic. 2796 // 2797 // This function instruments intrinsics like x86_mmx_packsswb, that 2798 // packs elements of 2 input vectors into half as many bits with saturation. 2799 // Shadow is propagated with the signed variant of the same intrinsic applied 2800 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2801 // EltSizeInBits is used only for x86mmx arguments. 2802 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2803 assert(I.getNumArgOperands() == 2); 2804 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2805 IRBuilder<> IRB(&I); 2806 Value *S1 = getShadow(&I, 0); 2807 Value *S2 = getShadow(&I, 1); 2808 assert(isX86_MMX || S1->getType()->isVectorTy()); 2809 2810 // SExt and ICmpNE below must apply to individual elements of input vectors. 2811 // In case of x86mmx arguments, cast them to appropriate vector types and 2812 // back. 2813 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2814 if (isX86_MMX) { 2815 S1 = IRB.CreateBitCast(S1, T); 2816 S2 = IRB.CreateBitCast(S2, T); 2817 } 2818 Value *S1_ext = IRB.CreateSExt( 2819 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2820 Value *S2_ext = IRB.CreateSExt( 2821 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2822 if (isX86_MMX) { 2823 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2824 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2825 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2826 } 2827 2828 Function *ShadowFn = Intrinsic::getDeclaration( 2829 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2830 2831 Value *S = 2832 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2833 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2834 setShadow(&I, S); 2835 setOriginForNaryOp(I); 2836 } 2837 2838 // Instrument sum-of-absolute-differences intrinsic. 2839 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2840 const unsigned SignificantBitsPerResultElement = 16; 2841 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2842 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2843 unsigned ZeroBitsPerResultElement = 2844 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2845 2846 IRBuilder<> IRB(&I); 2847 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2848 S = IRB.CreateBitCast(S, ResTy); 2849 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2850 ResTy); 2851 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2852 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2853 setShadow(&I, S); 2854 setOriginForNaryOp(I); 2855 } 2856 2857 // Instrument multiply-add intrinsic. 2858 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2859 unsigned EltSizeInBits = 0) { 2860 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2861 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2862 IRBuilder<> IRB(&I); 2863 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2864 S = IRB.CreateBitCast(S, ResTy); 2865 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2866 ResTy); 2867 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2868 setShadow(&I, S); 2869 setOriginForNaryOp(I); 2870 } 2871 2872 // Instrument compare-packed intrinsic. 2873 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2874 // all-ones shadow. 2875 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2876 IRBuilder<> IRB(&I); 2877 Type *ResTy = getShadowTy(&I); 2878 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2879 Value *S = IRB.CreateSExt( 2880 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2881 setShadow(&I, S); 2882 setOriginForNaryOp(I); 2883 } 2884 2885 // Instrument compare-scalar intrinsic. 2886 // This handles both cmp* intrinsics which return the result in the first 2887 // element of a vector, and comi* which return the result as i32. 2888 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2889 IRBuilder<> IRB(&I); 2890 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2891 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2892 setShadow(&I, S); 2893 setOriginForNaryOp(I); 2894 } 2895 2896 void handleStmxcsr(IntrinsicInst &I) { 2897 IRBuilder<> IRB(&I); 2898 Value* Addr = I.getArgOperand(0); 2899 Type *Ty = IRB.getInt32Ty(); 2900 Value *ShadowPtr = 2901 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2902 2903 IRB.CreateStore(getCleanShadow(Ty), 2904 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2905 2906 if (ClCheckAccessAddress) 2907 insertShadowCheck(Addr, &I); 2908 } 2909 2910 void handleLdmxcsr(IntrinsicInst &I) { 2911 if (!InsertChecks) return; 2912 2913 IRBuilder<> IRB(&I); 2914 Value *Addr = I.getArgOperand(0); 2915 Type *Ty = IRB.getInt32Ty(); 2916 const Align Alignment = Align(1); 2917 Value *ShadowPtr, *OriginPtr; 2918 std::tie(ShadowPtr, OriginPtr) = 2919 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2920 2921 if (ClCheckAccessAddress) 2922 insertShadowCheck(Addr, &I); 2923 2924 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2925 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2926 : getCleanOrigin(); 2927 insertShadowCheck(Shadow, Origin, &I); 2928 } 2929 2930 void handleMaskedStore(IntrinsicInst &I) { 2931 IRBuilder<> IRB(&I); 2932 Value *V = I.getArgOperand(0); 2933 Value *Addr = I.getArgOperand(1); 2934 const Align Alignment( 2935 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2936 Value *Mask = I.getArgOperand(3); 2937 Value *Shadow = getShadow(V); 2938 2939 Value *ShadowPtr; 2940 Value *OriginPtr; 2941 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2942 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2943 2944 if (ClCheckAccessAddress) { 2945 insertShadowCheck(Addr, &I); 2946 // Uninitialized mask is kind of like uninitialized address, but not as 2947 // scary. 2948 insertShadowCheck(Mask, &I); 2949 } 2950 2951 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 2952 2953 if (MS.TrackOrigins) { 2954 auto &DL = F.getParent()->getDataLayout(); 2955 paintOrigin(IRB, getOrigin(V), OriginPtr, 2956 DL.getTypeStoreSize(Shadow->getType()), 2957 std::max(Alignment, kMinOriginAlignment)); 2958 } 2959 } 2960 2961 bool handleMaskedLoad(IntrinsicInst &I) { 2962 IRBuilder<> IRB(&I); 2963 Value *Addr = I.getArgOperand(0); 2964 const Align Alignment( 2965 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2966 Value *Mask = I.getArgOperand(2); 2967 Value *PassThru = I.getArgOperand(3); 2968 2969 Type *ShadowTy = getShadowTy(&I); 2970 Value *ShadowPtr, *OriginPtr; 2971 if (PropagateShadow) { 2972 std::tie(ShadowPtr, OriginPtr) = 2973 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2974 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 2975 getShadow(PassThru), "_msmaskedld")); 2976 } else { 2977 setShadow(&I, getCleanShadow(&I)); 2978 } 2979 2980 if (ClCheckAccessAddress) { 2981 insertShadowCheck(Addr, &I); 2982 insertShadowCheck(Mask, &I); 2983 } 2984 2985 if (MS.TrackOrigins) { 2986 if (PropagateShadow) { 2987 // Choose between PassThru's and the loaded value's origins. 2988 Value *MaskedPassThruShadow = IRB.CreateAnd( 2989 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2990 2991 Value *Acc = IRB.CreateExtractElement( 2992 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2993 for (int i = 1, 2994 N = cast<VectorType>(PassThru->getType())->getNumElements(); 2995 i < N; ++i) { 2996 Value *More = IRB.CreateExtractElement( 2997 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2998 Acc = IRB.CreateOr(Acc, More); 2999 } 3000 3001 Value *Origin = IRB.CreateSelect( 3002 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3003 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3004 3005 setOrigin(&I, Origin); 3006 } else { 3007 setOrigin(&I, getCleanOrigin()); 3008 } 3009 } 3010 return true; 3011 } 3012 3013 // Instrument BMI / BMI2 intrinsics. 3014 // All of these intrinsics are Z = I(X, Y) 3015 // where the types of all operands and the result match, and are either i32 or i64. 3016 // The following instrumentation happens to work for all of them: 3017 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3018 void handleBmiIntrinsic(IntrinsicInst &I) { 3019 IRBuilder<> IRB(&I); 3020 Type *ShadowTy = getShadowTy(&I); 3021 3022 // If any bit of the mask operand is poisoned, then the whole thing is. 3023 Value *SMask = getShadow(&I, 1); 3024 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3025 ShadowTy); 3026 // Apply the same intrinsic to the shadow of the first operand. 3027 Value *S = IRB.CreateCall(I.getCalledFunction(), 3028 {getShadow(&I, 0), I.getOperand(1)}); 3029 S = IRB.CreateOr(SMask, S); 3030 setShadow(&I, S); 3031 setOriginForNaryOp(I); 3032 } 3033 3034 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3035 SmallVector<int, 8> Mask; 3036 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3037 Mask.append(2, X); 3038 } 3039 return Mask; 3040 } 3041 3042 // Instrument pclmul intrinsics. 3043 // These intrinsics operate either on odd or on even elements of the input 3044 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3045 // Replace the unused elements with copies of the used ones, ex: 3046 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3047 // or 3048 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3049 // and then apply the usual shadow combining logic. 3050 void handlePclmulIntrinsic(IntrinsicInst &I) { 3051 IRBuilder<> IRB(&I); 3052 Type *ShadowTy = getShadowTy(&I); 3053 unsigned Width = 3054 cast<VectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3055 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3056 "pclmul 3rd operand must be a constant"); 3057 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3058 Value *Shuf0 = 3059 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3060 getPclmulMask(Width, Imm & 0x01)); 3061 Value *Shuf1 = 3062 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3063 getPclmulMask(Width, Imm & 0x10)); 3064 ShadowAndOriginCombiner SOC(this, IRB); 3065 SOC.Add(Shuf0, getOrigin(&I, 0)); 3066 SOC.Add(Shuf1, getOrigin(&I, 1)); 3067 SOC.Done(&I); 3068 } 3069 3070 void visitIntrinsicInst(IntrinsicInst &I) { 3071 switch (I.getIntrinsicID()) { 3072 case Intrinsic::lifetime_start: 3073 handleLifetimeStart(I); 3074 break; 3075 case Intrinsic::launder_invariant_group: 3076 case Intrinsic::strip_invariant_group: 3077 handleInvariantGroup(I); 3078 break; 3079 case Intrinsic::bswap: 3080 handleBswap(I); 3081 break; 3082 case Intrinsic::masked_store: 3083 handleMaskedStore(I); 3084 break; 3085 case Intrinsic::masked_load: 3086 handleMaskedLoad(I); 3087 break; 3088 case Intrinsic::x86_sse_stmxcsr: 3089 handleStmxcsr(I); 3090 break; 3091 case Intrinsic::x86_sse_ldmxcsr: 3092 handleLdmxcsr(I); 3093 break; 3094 case Intrinsic::x86_avx512_vcvtsd2usi64: 3095 case Intrinsic::x86_avx512_vcvtsd2usi32: 3096 case Intrinsic::x86_avx512_vcvtss2usi64: 3097 case Intrinsic::x86_avx512_vcvtss2usi32: 3098 case Intrinsic::x86_avx512_cvttss2usi64: 3099 case Intrinsic::x86_avx512_cvttss2usi: 3100 case Intrinsic::x86_avx512_cvttsd2usi64: 3101 case Intrinsic::x86_avx512_cvttsd2usi: 3102 case Intrinsic::x86_avx512_cvtusi2ss: 3103 case Intrinsic::x86_avx512_cvtusi642sd: 3104 case Intrinsic::x86_avx512_cvtusi642ss: 3105 case Intrinsic::x86_sse2_cvtsd2si64: 3106 case Intrinsic::x86_sse2_cvtsd2si: 3107 case Intrinsic::x86_sse2_cvtsd2ss: 3108 case Intrinsic::x86_sse2_cvttsd2si64: 3109 case Intrinsic::x86_sse2_cvttsd2si: 3110 case Intrinsic::x86_sse_cvtss2si64: 3111 case Intrinsic::x86_sse_cvtss2si: 3112 case Intrinsic::x86_sse_cvttss2si64: 3113 case Intrinsic::x86_sse_cvttss2si: 3114 handleVectorConvertIntrinsic(I, 1); 3115 break; 3116 case Intrinsic::x86_sse_cvtps2pi: 3117 case Intrinsic::x86_sse_cvttps2pi: 3118 handleVectorConvertIntrinsic(I, 2); 3119 break; 3120 3121 case Intrinsic::x86_avx512_psll_w_512: 3122 case Intrinsic::x86_avx512_psll_d_512: 3123 case Intrinsic::x86_avx512_psll_q_512: 3124 case Intrinsic::x86_avx512_pslli_w_512: 3125 case Intrinsic::x86_avx512_pslli_d_512: 3126 case Intrinsic::x86_avx512_pslli_q_512: 3127 case Intrinsic::x86_avx512_psrl_w_512: 3128 case Intrinsic::x86_avx512_psrl_d_512: 3129 case Intrinsic::x86_avx512_psrl_q_512: 3130 case Intrinsic::x86_avx512_psra_w_512: 3131 case Intrinsic::x86_avx512_psra_d_512: 3132 case Intrinsic::x86_avx512_psra_q_512: 3133 case Intrinsic::x86_avx512_psrli_w_512: 3134 case Intrinsic::x86_avx512_psrli_d_512: 3135 case Intrinsic::x86_avx512_psrli_q_512: 3136 case Intrinsic::x86_avx512_psrai_w_512: 3137 case Intrinsic::x86_avx512_psrai_d_512: 3138 case Intrinsic::x86_avx512_psrai_q_512: 3139 case Intrinsic::x86_avx512_psra_q_256: 3140 case Intrinsic::x86_avx512_psra_q_128: 3141 case Intrinsic::x86_avx512_psrai_q_256: 3142 case Intrinsic::x86_avx512_psrai_q_128: 3143 case Intrinsic::x86_avx2_psll_w: 3144 case Intrinsic::x86_avx2_psll_d: 3145 case Intrinsic::x86_avx2_psll_q: 3146 case Intrinsic::x86_avx2_pslli_w: 3147 case Intrinsic::x86_avx2_pslli_d: 3148 case Intrinsic::x86_avx2_pslli_q: 3149 case Intrinsic::x86_avx2_psrl_w: 3150 case Intrinsic::x86_avx2_psrl_d: 3151 case Intrinsic::x86_avx2_psrl_q: 3152 case Intrinsic::x86_avx2_psra_w: 3153 case Intrinsic::x86_avx2_psra_d: 3154 case Intrinsic::x86_avx2_psrli_w: 3155 case Intrinsic::x86_avx2_psrli_d: 3156 case Intrinsic::x86_avx2_psrli_q: 3157 case Intrinsic::x86_avx2_psrai_w: 3158 case Intrinsic::x86_avx2_psrai_d: 3159 case Intrinsic::x86_sse2_psll_w: 3160 case Intrinsic::x86_sse2_psll_d: 3161 case Intrinsic::x86_sse2_psll_q: 3162 case Intrinsic::x86_sse2_pslli_w: 3163 case Intrinsic::x86_sse2_pslli_d: 3164 case Intrinsic::x86_sse2_pslli_q: 3165 case Intrinsic::x86_sse2_psrl_w: 3166 case Intrinsic::x86_sse2_psrl_d: 3167 case Intrinsic::x86_sse2_psrl_q: 3168 case Intrinsic::x86_sse2_psra_w: 3169 case Intrinsic::x86_sse2_psra_d: 3170 case Intrinsic::x86_sse2_psrli_w: 3171 case Intrinsic::x86_sse2_psrli_d: 3172 case Intrinsic::x86_sse2_psrli_q: 3173 case Intrinsic::x86_sse2_psrai_w: 3174 case Intrinsic::x86_sse2_psrai_d: 3175 case Intrinsic::x86_mmx_psll_w: 3176 case Intrinsic::x86_mmx_psll_d: 3177 case Intrinsic::x86_mmx_psll_q: 3178 case Intrinsic::x86_mmx_pslli_w: 3179 case Intrinsic::x86_mmx_pslli_d: 3180 case Intrinsic::x86_mmx_pslli_q: 3181 case Intrinsic::x86_mmx_psrl_w: 3182 case Intrinsic::x86_mmx_psrl_d: 3183 case Intrinsic::x86_mmx_psrl_q: 3184 case Intrinsic::x86_mmx_psra_w: 3185 case Intrinsic::x86_mmx_psra_d: 3186 case Intrinsic::x86_mmx_psrli_w: 3187 case Intrinsic::x86_mmx_psrli_d: 3188 case Intrinsic::x86_mmx_psrli_q: 3189 case Intrinsic::x86_mmx_psrai_w: 3190 case Intrinsic::x86_mmx_psrai_d: 3191 handleVectorShiftIntrinsic(I, /* Variable */ false); 3192 break; 3193 case Intrinsic::x86_avx2_psllv_d: 3194 case Intrinsic::x86_avx2_psllv_d_256: 3195 case Intrinsic::x86_avx512_psllv_d_512: 3196 case Intrinsic::x86_avx2_psllv_q: 3197 case Intrinsic::x86_avx2_psllv_q_256: 3198 case Intrinsic::x86_avx512_psllv_q_512: 3199 case Intrinsic::x86_avx2_psrlv_d: 3200 case Intrinsic::x86_avx2_psrlv_d_256: 3201 case Intrinsic::x86_avx512_psrlv_d_512: 3202 case Intrinsic::x86_avx2_psrlv_q: 3203 case Intrinsic::x86_avx2_psrlv_q_256: 3204 case Intrinsic::x86_avx512_psrlv_q_512: 3205 case Intrinsic::x86_avx2_psrav_d: 3206 case Intrinsic::x86_avx2_psrav_d_256: 3207 case Intrinsic::x86_avx512_psrav_d_512: 3208 case Intrinsic::x86_avx512_psrav_q_128: 3209 case Intrinsic::x86_avx512_psrav_q_256: 3210 case Intrinsic::x86_avx512_psrav_q_512: 3211 handleVectorShiftIntrinsic(I, /* Variable */ true); 3212 break; 3213 3214 case Intrinsic::x86_sse2_packsswb_128: 3215 case Intrinsic::x86_sse2_packssdw_128: 3216 case Intrinsic::x86_sse2_packuswb_128: 3217 case Intrinsic::x86_sse41_packusdw: 3218 case Intrinsic::x86_avx2_packsswb: 3219 case Intrinsic::x86_avx2_packssdw: 3220 case Intrinsic::x86_avx2_packuswb: 3221 case Intrinsic::x86_avx2_packusdw: 3222 handleVectorPackIntrinsic(I); 3223 break; 3224 3225 case Intrinsic::x86_mmx_packsswb: 3226 case Intrinsic::x86_mmx_packuswb: 3227 handleVectorPackIntrinsic(I, 16); 3228 break; 3229 3230 case Intrinsic::x86_mmx_packssdw: 3231 handleVectorPackIntrinsic(I, 32); 3232 break; 3233 3234 case Intrinsic::x86_mmx_psad_bw: 3235 case Intrinsic::x86_sse2_psad_bw: 3236 case Intrinsic::x86_avx2_psad_bw: 3237 handleVectorSadIntrinsic(I); 3238 break; 3239 3240 case Intrinsic::x86_sse2_pmadd_wd: 3241 case Intrinsic::x86_avx2_pmadd_wd: 3242 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3243 case Intrinsic::x86_avx2_pmadd_ub_sw: 3244 handleVectorPmaddIntrinsic(I); 3245 break; 3246 3247 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3248 handleVectorPmaddIntrinsic(I, 8); 3249 break; 3250 3251 case Intrinsic::x86_mmx_pmadd_wd: 3252 handleVectorPmaddIntrinsic(I, 16); 3253 break; 3254 3255 case Intrinsic::x86_sse_cmp_ss: 3256 case Intrinsic::x86_sse2_cmp_sd: 3257 case Intrinsic::x86_sse_comieq_ss: 3258 case Intrinsic::x86_sse_comilt_ss: 3259 case Intrinsic::x86_sse_comile_ss: 3260 case Intrinsic::x86_sse_comigt_ss: 3261 case Intrinsic::x86_sse_comige_ss: 3262 case Intrinsic::x86_sse_comineq_ss: 3263 case Intrinsic::x86_sse_ucomieq_ss: 3264 case Intrinsic::x86_sse_ucomilt_ss: 3265 case Intrinsic::x86_sse_ucomile_ss: 3266 case Intrinsic::x86_sse_ucomigt_ss: 3267 case Intrinsic::x86_sse_ucomige_ss: 3268 case Intrinsic::x86_sse_ucomineq_ss: 3269 case Intrinsic::x86_sse2_comieq_sd: 3270 case Intrinsic::x86_sse2_comilt_sd: 3271 case Intrinsic::x86_sse2_comile_sd: 3272 case Intrinsic::x86_sse2_comigt_sd: 3273 case Intrinsic::x86_sse2_comige_sd: 3274 case Intrinsic::x86_sse2_comineq_sd: 3275 case Intrinsic::x86_sse2_ucomieq_sd: 3276 case Intrinsic::x86_sse2_ucomilt_sd: 3277 case Intrinsic::x86_sse2_ucomile_sd: 3278 case Intrinsic::x86_sse2_ucomigt_sd: 3279 case Intrinsic::x86_sse2_ucomige_sd: 3280 case Intrinsic::x86_sse2_ucomineq_sd: 3281 handleVectorCompareScalarIntrinsic(I); 3282 break; 3283 3284 case Intrinsic::x86_sse_cmp_ps: 3285 case Intrinsic::x86_sse2_cmp_pd: 3286 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3287 // generates reasonably looking IR that fails in the backend with "Do not 3288 // know how to split the result of this operator!". 3289 handleVectorComparePackedIntrinsic(I); 3290 break; 3291 3292 case Intrinsic::x86_bmi_bextr_32: 3293 case Intrinsic::x86_bmi_bextr_64: 3294 case Intrinsic::x86_bmi_bzhi_32: 3295 case Intrinsic::x86_bmi_bzhi_64: 3296 case Intrinsic::x86_bmi_pdep_32: 3297 case Intrinsic::x86_bmi_pdep_64: 3298 case Intrinsic::x86_bmi_pext_32: 3299 case Intrinsic::x86_bmi_pext_64: 3300 handleBmiIntrinsic(I); 3301 break; 3302 3303 case Intrinsic::x86_pclmulqdq: 3304 case Intrinsic::x86_pclmulqdq_256: 3305 case Intrinsic::x86_pclmulqdq_512: 3306 handlePclmulIntrinsic(I); 3307 break; 3308 3309 case Intrinsic::is_constant: 3310 // The result of llvm.is.constant() is always defined. 3311 setShadow(&I, getCleanShadow(&I)); 3312 setOrigin(&I, getCleanOrigin()); 3313 break; 3314 3315 default: 3316 if (!handleUnknownIntrinsic(I)) 3317 visitInstruction(I); 3318 break; 3319 } 3320 } 3321 3322 void visitCallBase(CallBase &CB) { 3323 assert(!CB.getMetadata("nosanitize")); 3324 if (CB.isInlineAsm()) { 3325 // For inline asm (either a call to asm function, or callbr instruction), 3326 // do the usual thing: check argument shadow and mark all outputs as 3327 // clean. Note that any side effects of the inline asm that are not 3328 // immediately visible in its constraints are not handled. 3329 if (ClHandleAsmConservative && MS.CompileKernel) 3330 visitAsmInstruction(CB); 3331 else 3332 visitInstruction(CB); 3333 return; 3334 } 3335 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3336 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3337 3338 // We are going to insert code that relies on the fact that the callee 3339 // will become a non-readonly function after it is instrumented by us. To 3340 // prevent this code from being optimized out, mark that function 3341 // non-readonly in advance. 3342 if (Function *Func = Call->getCalledFunction()) { 3343 // Clear out readonly/readnone attributes. 3344 AttrBuilder B; 3345 B.addAttribute(Attribute::ReadOnly) 3346 .addAttribute(Attribute::ReadNone) 3347 .addAttribute(Attribute::WriteOnly) 3348 .addAttribute(Attribute::ArgMemOnly) 3349 .addAttribute(Attribute::Speculatable); 3350 Func->removeAttributes(AttributeList::FunctionIndex, B); 3351 } 3352 3353 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3354 } 3355 IRBuilder<> IRB(&CB); 3356 3357 unsigned ArgOffset = 0; 3358 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3359 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3360 ++ArgIt) { 3361 Value *A = *ArgIt; 3362 unsigned i = ArgIt - CB.arg_begin(); 3363 if (!A->getType()->isSized()) { 3364 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3365 continue; 3366 } 3367 unsigned Size = 0; 3368 Value *Store = nullptr; 3369 // Compute the Shadow for arg even if it is ByVal, because 3370 // in that case getShadow() will copy the actual arg shadow to 3371 // __msan_param_tls. 3372 Value *ArgShadow = getShadow(A); 3373 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3374 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3375 << " Shadow: " << *ArgShadow << "\n"); 3376 bool ArgIsInitialized = false; 3377 const DataLayout &DL = F.getParent()->getDataLayout(); 3378 if (CB.paramHasAttr(i, Attribute::ByVal)) { 3379 assert(A->getType()->isPointerTy() && 3380 "ByVal argument is not a pointer!"); 3381 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3382 if (ArgOffset + Size > kParamTLSSize) break; 3383 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3384 MaybeAlign Alignment = llvm::None; 3385 if (ParamAlignment) 3386 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3387 Value *AShadowPtr = 3388 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3389 /*isStore*/ false) 3390 .first; 3391 3392 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3393 Alignment, Size); 3394 // TODO(glider): need to copy origins. 3395 } else { 3396 Size = DL.getTypeAllocSize(A->getType()); 3397 if (ArgOffset + Size > kParamTLSSize) break; 3398 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3399 kShadowTLSAlignment); 3400 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3401 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3402 } 3403 if (MS.TrackOrigins && !ArgIsInitialized) 3404 IRB.CreateStore(getOrigin(A), 3405 getOriginPtrForArgument(A, IRB, ArgOffset)); 3406 (void)Store; 3407 assert(Size != 0 && Store != nullptr); 3408 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3409 ArgOffset += alignTo(Size, 8); 3410 } 3411 LLVM_DEBUG(dbgs() << " done with call args\n"); 3412 3413 FunctionType *FT = CB.getFunctionType(); 3414 if (FT->isVarArg()) { 3415 VAHelper->visitCallBase(CB, IRB); 3416 } 3417 3418 // Now, get the shadow for the RetVal. 3419 if (!CB.getType()->isSized()) 3420 return; 3421 // Don't emit the epilogue for musttail call returns. 3422 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3423 return; 3424 IRBuilder<> IRBBefore(&CB); 3425 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3426 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3427 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3428 kShadowTLSAlignment); 3429 BasicBlock::iterator NextInsn; 3430 if (isa<CallInst>(CB)) { 3431 NextInsn = ++CB.getIterator(); 3432 assert(NextInsn != CB.getParent()->end()); 3433 } else { 3434 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3435 if (!NormalDest->getSinglePredecessor()) { 3436 // FIXME: this case is tricky, so we are just conservative here. 3437 // Perhaps we need to split the edge between this BB and NormalDest, 3438 // but a naive attempt to use SplitEdge leads to a crash. 3439 setShadow(&CB, getCleanShadow(&CB)); 3440 setOrigin(&CB, getCleanOrigin()); 3441 return; 3442 } 3443 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3444 // Anything inserted there will be instrumented by MSan later! 3445 NextInsn = NormalDest->getFirstInsertionPt(); 3446 assert(NextInsn != NormalDest->end() && 3447 "Could not find insertion point for retval shadow load"); 3448 } 3449 IRBuilder<> IRBAfter(&*NextInsn); 3450 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3451 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3452 kShadowTLSAlignment, "_msret"); 3453 setShadow(&CB, RetvalShadow); 3454 if (MS.TrackOrigins) 3455 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3456 getOriginPtrForRetval(IRBAfter))); 3457 } 3458 3459 bool isAMustTailRetVal(Value *RetVal) { 3460 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3461 RetVal = I->getOperand(0); 3462 } 3463 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3464 return I->isMustTailCall(); 3465 } 3466 return false; 3467 } 3468 3469 void visitReturnInst(ReturnInst &I) { 3470 IRBuilder<> IRB(&I); 3471 Value *RetVal = I.getReturnValue(); 3472 if (!RetVal) return; 3473 // Don't emit the epilogue for musttail call returns. 3474 if (isAMustTailRetVal(RetVal)) return; 3475 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3476 if (CheckReturnValue) { 3477 insertShadowCheck(RetVal, &I); 3478 Value *Shadow = getCleanShadow(RetVal); 3479 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3480 } else { 3481 Value *Shadow = getShadow(RetVal); 3482 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3483 if (MS.TrackOrigins) 3484 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3485 } 3486 } 3487 3488 void visitPHINode(PHINode &I) { 3489 IRBuilder<> IRB(&I); 3490 if (!PropagateShadow) { 3491 setShadow(&I, getCleanShadow(&I)); 3492 setOrigin(&I, getCleanOrigin()); 3493 return; 3494 } 3495 3496 ShadowPHINodes.push_back(&I); 3497 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3498 "_msphi_s")); 3499 if (MS.TrackOrigins) 3500 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3501 "_msphi_o")); 3502 } 3503 3504 Value *getLocalVarDescription(AllocaInst &I) { 3505 SmallString<2048> StackDescriptionStorage; 3506 raw_svector_ostream StackDescription(StackDescriptionStorage); 3507 // We create a string with a description of the stack allocation and 3508 // pass it into __msan_set_alloca_origin. 3509 // It will be printed by the run-time if stack-originated UMR is found. 3510 // The first 4 bytes of the string are set to '----' and will be replaced 3511 // by __msan_va_arg_overflow_size_tls at the first call. 3512 StackDescription << "----" << I.getName() << "@" << F.getName(); 3513 return createPrivateNonConstGlobalForString(*F.getParent(), 3514 StackDescription.str()); 3515 } 3516 3517 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3518 if (PoisonStack && ClPoisonStackWithCall) { 3519 IRB.CreateCall(MS.MsanPoisonStackFn, 3520 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3521 } else { 3522 Value *ShadowBase, *OriginBase; 3523 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3524 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3525 3526 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3527 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3528 MaybeAlign(I.getAlignment())); 3529 } 3530 3531 if (PoisonStack && MS.TrackOrigins) { 3532 Value *Descr = getLocalVarDescription(I); 3533 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3534 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3535 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3536 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3537 } 3538 } 3539 3540 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3541 Value *Descr = getLocalVarDescription(I); 3542 if (PoisonStack) { 3543 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3544 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3545 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3546 } else { 3547 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3548 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3549 } 3550 } 3551 3552 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3553 if (!InsPoint) 3554 InsPoint = &I; 3555 IRBuilder<> IRB(InsPoint->getNextNode()); 3556 const DataLayout &DL = F.getParent()->getDataLayout(); 3557 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3558 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3559 if (I.isArrayAllocation()) 3560 Len = IRB.CreateMul(Len, I.getArraySize()); 3561 3562 if (MS.CompileKernel) 3563 poisonAllocaKmsan(I, IRB, Len); 3564 else 3565 poisonAllocaUserspace(I, IRB, Len); 3566 } 3567 3568 void visitAllocaInst(AllocaInst &I) { 3569 setShadow(&I, getCleanShadow(&I)); 3570 setOrigin(&I, getCleanOrigin()); 3571 // We'll get to this alloca later unless it's poisoned at the corresponding 3572 // llvm.lifetime.start. 3573 AllocaSet.insert(&I); 3574 } 3575 3576 void visitSelectInst(SelectInst& I) { 3577 IRBuilder<> IRB(&I); 3578 // a = select b, c, d 3579 Value *B = I.getCondition(); 3580 Value *C = I.getTrueValue(); 3581 Value *D = I.getFalseValue(); 3582 Value *Sb = getShadow(B); 3583 Value *Sc = getShadow(C); 3584 Value *Sd = getShadow(D); 3585 3586 // Result shadow if condition shadow is 0. 3587 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3588 Value *Sa1; 3589 if (I.getType()->isAggregateType()) { 3590 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3591 // an extra "select". This results in much more compact IR. 3592 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3593 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3594 } else { 3595 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3596 // If Sb (condition is poisoned), look for bits in c and d that are equal 3597 // and both unpoisoned. 3598 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3599 3600 // Cast arguments to shadow-compatible type. 3601 C = CreateAppToShadowCast(IRB, C); 3602 D = CreateAppToShadowCast(IRB, D); 3603 3604 // Result shadow if condition shadow is 1. 3605 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3606 } 3607 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3608 setShadow(&I, Sa); 3609 if (MS.TrackOrigins) { 3610 // Origins are always i32, so any vector conditions must be flattened. 3611 // FIXME: consider tracking vector origins for app vectors? 3612 if (B->getType()->isVectorTy()) { 3613 Type *FlatTy = getShadowTyNoVec(B->getType()); 3614 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3615 ConstantInt::getNullValue(FlatTy)); 3616 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3617 ConstantInt::getNullValue(FlatTy)); 3618 } 3619 // a = select b, c, d 3620 // Oa = Sb ? Ob : (b ? Oc : Od) 3621 setOrigin( 3622 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3623 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3624 getOrigin(I.getFalseValue())))); 3625 } 3626 } 3627 3628 void visitLandingPadInst(LandingPadInst &I) { 3629 // Do nothing. 3630 // See https://github.com/google/sanitizers/issues/504 3631 setShadow(&I, getCleanShadow(&I)); 3632 setOrigin(&I, getCleanOrigin()); 3633 } 3634 3635 void visitCatchSwitchInst(CatchSwitchInst &I) { 3636 setShadow(&I, getCleanShadow(&I)); 3637 setOrigin(&I, getCleanOrigin()); 3638 } 3639 3640 void visitFuncletPadInst(FuncletPadInst &I) { 3641 setShadow(&I, getCleanShadow(&I)); 3642 setOrigin(&I, getCleanOrigin()); 3643 } 3644 3645 void visitGetElementPtrInst(GetElementPtrInst &I) { 3646 handleShadowOr(I); 3647 } 3648 3649 void visitExtractValueInst(ExtractValueInst &I) { 3650 IRBuilder<> IRB(&I); 3651 Value *Agg = I.getAggregateOperand(); 3652 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3653 Value *AggShadow = getShadow(Agg); 3654 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3655 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3656 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3657 setShadow(&I, ResShadow); 3658 setOriginForNaryOp(I); 3659 } 3660 3661 void visitInsertValueInst(InsertValueInst &I) { 3662 IRBuilder<> IRB(&I); 3663 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3664 Value *AggShadow = getShadow(I.getAggregateOperand()); 3665 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3666 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3667 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3668 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3669 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3670 setShadow(&I, Res); 3671 setOriginForNaryOp(I); 3672 } 3673 3674 void dumpInst(Instruction &I) { 3675 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3676 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3677 } else { 3678 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3679 } 3680 errs() << "QQQ " << I << "\n"; 3681 } 3682 3683 void visitResumeInst(ResumeInst &I) { 3684 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3685 // Nothing to do here. 3686 } 3687 3688 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3689 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3690 // Nothing to do here. 3691 } 3692 3693 void visitCatchReturnInst(CatchReturnInst &CRI) { 3694 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3695 // Nothing to do here. 3696 } 3697 3698 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3699 const DataLayout &DL, bool isOutput) { 3700 // For each assembly argument, we check its value for being initialized. 3701 // If the argument is a pointer, we assume it points to a single element 3702 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3703 // Each such pointer is instrumented with a call to the runtime library. 3704 Type *OpType = Operand->getType(); 3705 // Check the operand value itself. 3706 insertShadowCheck(Operand, &I); 3707 if (!OpType->isPointerTy() || !isOutput) { 3708 assert(!isOutput); 3709 return; 3710 } 3711 Type *ElType = OpType->getPointerElementType(); 3712 if (!ElType->isSized()) 3713 return; 3714 int Size = DL.getTypeStoreSize(ElType); 3715 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3716 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3717 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3718 } 3719 3720 /// Get the number of output arguments returned by pointers. 3721 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3722 int NumRetOutputs = 0; 3723 int NumOutputs = 0; 3724 Type *RetTy = cast<Value>(CB)->getType(); 3725 if (!RetTy->isVoidTy()) { 3726 // Register outputs are returned via the CallInst return value. 3727 auto *ST = dyn_cast<StructType>(RetTy); 3728 if (ST) 3729 NumRetOutputs = ST->getNumElements(); 3730 else 3731 NumRetOutputs = 1; 3732 } 3733 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3734 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3735 InlineAsm::ConstraintInfo Info = Constraints[i]; 3736 switch (Info.Type) { 3737 case InlineAsm::isOutput: 3738 NumOutputs++; 3739 break; 3740 default: 3741 break; 3742 } 3743 } 3744 return NumOutputs - NumRetOutputs; 3745 } 3746 3747 void visitAsmInstruction(Instruction &I) { 3748 // Conservative inline assembly handling: check for poisoned shadow of 3749 // asm() arguments, then unpoison the result and all the memory locations 3750 // pointed to by those arguments. 3751 // An inline asm() statement in C++ contains lists of input and output 3752 // arguments used by the assembly code. These are mapped to operands of the 3753 // CallInst as follows: 3754 // - nR register outputs ("=r) are returned by value in a single structure 3755 // (SSA value of the CallInst); 3756 // - nO other outputs ("=m" and others) are returned by pointer as first 3757 // nO operands of the CallInst; 3758 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3759 // remaining nI operands. 3760 // The total number of asm() arguments in the source is nR+nO+nI, and the 3761 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3762 // function to be called). 3763 const DataLayout &DL = F.getParent()->getDataLayout(); 3764 CallBase *CB = cast<CallBase>(&I); 3765 IRBuilder<> IRB(&I); 3766 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3767 int OutputArgs = getNumOutputArgs(IA, CB); 3768 // The last operand of a CallInst is the function itself. 3769 int NumOperands = CB->getNumOperands() - 1; 3770 3771 // Check input arguments. Doing so before unpoisoning output arguments, so 3772 // that we won't overwrite uninit values before checking them. 3773 for (int i = OutputArgs; i < NumOperands; i++) { 3774 Value *Operand = CB->getOperand(i); 3775 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3776 } 3777 // Unpoison output arguments. This must happen before the actual InlineAsm 3778 // call, so that the shadow for memory published in the asm() statement 3779 // remains valid. 3780 for (int i = 0; i < OutputArgs; i++) { 3781 Value *Operand = CB->getOperand(i); 3782 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3783 } 3784 3785 setShadow(&I, getCleanShadow(&I)); 3786 setOrigin(&I, getCleanOrigin()); 3787 } 3788 3789 void visitInstruction(Instruction &I) { 3790 // Everything else: stop propagating and check for poisoned shadow. 3791 if (ClDumpStrictInstructions) 3792 dumpInst(I); 3793 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3794 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3795 Value *Operand = I.getOperand(i); 3796 if (Operand->getType()->isSized()) 3797 insertShadowCheck(Operand, &I); 3798 } 3799 setShadow(&I, getCleanShadow(&I)); 3800 setOrigin(&I, getCleanOrigin()); 3801 } 3802 }; 3803 3804 /// AMD64-specific implementation of VarArgHelper. 3805 struct VarArgAMD64Helper : public VarArgHelper { 3806 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3807 // See a comment in visitCallBase for more details. 3808 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3809 static const unsigned AMD64FpEndOffsetSSE = 176; 3810 // If SSE is disabled, fp_offset in va_list is zero. 3811 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3812 3813 unsigned AMD64FpEndOffset; 3814 Function &F; 3815 MemorySanitizer &MS; 3816 MemorySanitizerVisitor &MSV; 3817 Value *VAArgTLSCopy = nullptr; 3818 Value *VAArgTLSOriginCopy = nullptr; 3819 Value *VAArgOverflowSize = nullptr; 3820 3821 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3822 3823 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3824 3825 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3826 MemorySanitizerVisitor &MSV) 3827 : F(F), MS(MS), MSV(MSV) { 3828 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3829 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3830 if (Attr.isStringAttribute() && 3831 (Attr.getKindAsString() == "target-features")) { 3832 if (Attr.getValueAsString().contains("-sse")) 3833 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3834 break; 3835 } 3836 } 3837 } 3838 3839 ArgKind classifyArgument(Value* arg) { 3840 // A very rough approximation of X86_64 argument classification rules. 3841 Type *T = arg->getType(); 3842 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3843 return AK_FloatingPoint; 3844 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3845 return AK_GeneralPurpose; 3846 if (T->isPointerTy()) 3847 return AK_GeneralPurpose; 3848 return AK_Memory; 3849 } 3850 3851 // For VarArg functions, store the argument shadow in an ABI-specific format 3852 // that corresponds to va_list layout. 3853 // We do this because Clang lowers va_arg in the frontend, and this pass 3854 // only sees the low level code that deals with va_list internals. 3855 // A much easier alternative (provided that Clang emits va_arg instructions) 3856 // would have been to associate each live instance of va_list with a copy of 3857 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3858 // order. 3859 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 3860 unsigned GpOffset = 0; 3861 unsigned FpOffset = AMD64GpEndOffset; 3862 unsigned OverflowOffset = AMD64FpEndOffset; 3863 const DataLayout &DL = F.getParent()->getDataLayout(); 3864 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3865 ++ArgIt) { 3866 Value *A = *ArgIt; 3867 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 3868 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 3869 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 3870 if (IsByVal) { 3871 // ByVal arguments always go to the overflow area. 3872 // Fixed arguments passed through the overflow area will be stepped 3873 // over by va_start, so don't count them towards the offset. 3874 if (IsFixed) 3875 continue; 3876 assert(A->getType()->isPointerTy()); 3877 Type *RealTy = A->getType()->getPointerElementType(); 3878 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3879 Value *ShadowBase = getShadowPtrForVAArgument( 3880 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3881 Value *OriginBase = nullptr; 3882 if (MS.TrackOrigins) 3883 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3884 OverflowOffset += alignTo(ArgSize, 8); 3885 if (!ShadowBase) 3886 continue; 3887 Value *ShadowPtr, *OriginPtr; 3888 std::tie(ShadowPtr, OriginPtr) = 3889 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3890 /*isStore*/ false); 3891 3892 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3893 kShadowTLSAlignment, ArgSize); 3894 if (MS.TrackOrigins) 3895 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3896 kShadowTLSAlignment, ArgSize); 3897 } else { 3898 ArgKind AK = classifyArgument(A); 3899 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3900 AK = AK_Memory; 3901 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3902 AK = AK_Memory; 3903 Value *ShadowBase, *OriginBase = nullptr; 3904 switch (AK) { 3905 case AK_GeneralPurpose: 3906 ShadowBase = 3907 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3908 if (MS.TrackOrigins) 3909 OriginBase = 3910 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3911 GpOffset += 8; 3912 break; 3913 case AK_FloatingPoint: 3914 ShadowBase = 3915 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3916 if (MS.TrackOrigins) 3917 OriginBase = 3918 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3919 FpOffset += 16; 3920 break; 3921 case AK_Memory: 3922 if (IsFixed) 3923 continue; 3924 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3925 ShadowBase = 3926 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3927 if (MS.TrackOrigins) 3928 OriginBase = 3929 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3930 OverflowOffset += alignTo(ArgSize, 8); 3931 } 3932 // Take fixed arguments into account for GpOffset and FpOffset, 3933 // but don't actually store shadows for them. 3934 // TODO(glider): don't call get*PtrForVAArgument() for them. 3935 if (IsFixed) 3936 continue; 3937 if (!ShadowBase) 3938 continue; 3939 Value *Shadow = MSV.getShadow(A); 3940 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3941 if (MS.TrackOrigins) { 3942 Value *Origin = MSV.getOrigin(A); 3943 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3944 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3945 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3946 } 3947 } 3948 } 3949 Constant *OverflowSize = 3950 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3951 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3952 } 3953 3954 /// Compute the shadow address for a given va_arg. 3955 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3956 unsigned ArgOffset, unsigned ArgSize) { 3957 // Make sure we don't overflow __msan_va_arg_tls. 3958 if (ArgOffset + ArgSize > kParamTLSSize) 3959 return nullptr; 3960 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3961 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3962 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3963 "_msarg_va_s"); 3964 } 3965 3966 /// Compute the origin address for a given va_arg. 3967 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3968 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3969 // getOriginPtrForVAArgument() is always called after 3970 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3971 // overflow. 3972 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3973 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3974 "_msarg_va_o"); 3975 } 3976 3977 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3978 IRBuilder<> IRB(&I); 3979 Value *VAListTag = I.getArgOperand(0); 3980 Value *ShadowPtr, *OriginPtr; 3981 const Align Alignment = Align(8); 3982 std::tie(ShadowPtr, OriginPtr) = 3983 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3984 /*isStore*/ true); 3985 3986 // Unpoison the whole __va_list_tag. 3987 // FIXME: magic ABI constants. 3988 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3989 /* size */ 24, Alignment, false); 3990 // We shouldn't need to zero out the origins, as they're only checked for 3991 // nonzero shadow. 3992 } 3993 3994 void visitVAStartInst(VAStartInst &I) override { 3995 if (F.getCallingConv() == CallingConv::Win64) 3996 return; 3997 VAStartInstrumentationList.push_back(&I); 3998 unpoisonVAListTagForInst(I); 3999 } 4000 4001 void visitVACopyInst(VACopyInst &I) override { 4002 if (F.getCallingConv() == CallingConv::Win64) return; 4003 unpoisonVAListTagForInst(I); 4004 } 4005 4006 void finalizeInstrumentation() override { 4007 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4008 "finalizeInstrumentation called twice"); 4009 if (!VAStartInstrumentationList.empty()) { 4010 // If there is a va_start in this function, make a backup copy of 4011 // va_arg_tls somewhere in the function entry block. 4012 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4013 VAArgOverflowSize = 4014 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4015 Value *CopySize = 4016 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4017 VAArgOverflowSize); 4018 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4019 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4020 if (MS.TrackOrigins) { 4021 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4022 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4023 Align(8), CopySize); 4024 } 4025 } 4026 4027 // Instrument va_start. 4028 // Copy va_list shadow from the backup copy of the TLS contents. 4029 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4030 CallInst *OrigInst = VAStartInstrumentationList[i]; 4031 IRBuilder<> IRB(OrigInst->getNextNode()); 4032 Value *VAListTag = OrigInst->getArgOperand(0); 4033 4034 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4035 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4036 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4037 ConstantInt::get(MS.IntptrTy, 16)), 4038 PointerType::get(RegSaveAreaPtrTy, 0)); 4039 Value *RegSaveAreaPtr = 4040 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4041 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4042 const Align Alignment = Align(16); 4043 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4044 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4045 Alignment, /*isStore*/ true); 4046 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4047 AMD64FpEndOffset); 4048 if (MS.TrackOrigins) 4049 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4050 Alignment, AMD64FpEndOffset); 4051 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4052 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4053 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4054 ConstantInt::get(MS.IntptrTy, 8)), 4055 PointerType::get(OverflowArgAreaPtrTy, 0)); 4056 Value *OverflowArgAreaPtr = 4057 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4058 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4059 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4060 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4061 Alignment, /*isStore*/ true); 4062 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4063 AMD64FpEndOffset); 4064 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4065 VAArgOverflowSize); 4066 if (MS.TrackOrigins) { 4067 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4068 AMD64FpEndOffset); 4069 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4070 VAArgOverflowSize); 4071 } 4072 } 4073 } 4074 }; 4075 4076 /// MIPS64-specific implementation of VarArgHelper. 4077 struct VarArgMIPS64Helper : public VarArgHelper { 4078 Function &F; 4079 MemorySanitizer &MS; 4080 MemorySanitizerVisitor &MSV; 4081 Value *VAArgTLSCopy = nullptr; 4082 Value *VAArgSize = nullptr; 4083 4084 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4085 4086 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4087 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4088 4089 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4090 unsigned VAArgOffset = 0; 4091 const DataLayout &DL = F.getParent()->getDataLayout(); 4092 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4093 End = CB.arg_end(); 4094 ArgIt != End; ++ArgIt) { 4095 Triple TargetTriple(F.getParent()->getTargetTriple()); 4096 Value *A = *ArgIt; 4097 Value *Base; 4098 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4099 if (TargetTriple.getArch() == Triple::mips64) { 4100 // Adjusting the shadow for argument with size < 8 to match the placement 4101 // of bits in big endian system 4102 if (ArgSize < 8) 4103 VAArgOffset += (8 - ArgSize); 4104 } 4105 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4106 VAArgOffset += ArgSize; 4107 VAArgOffset = alignTo(VAArgOffset, 8); 4108 if (!Base) 4109 continue; 4110 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4111 } 4112 4113 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4114 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4115 // a new class member i.e. it is the total size of all VarArgs. 4116 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4117 } 4118 4119 /// Compute the shadow address for a given va_arg. 4120 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4121 unsigned ArgOffset, unsigned ArgSize) { 4122 // Make sure we don't overflow __msan_va_arg_tls. 4123 if (ArgOffset + ArgSize > kParamTLSSize) 4124 return nullptr; 4125 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4126 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4127 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4128 "_msarg"); 4129 } 4130 4131 void visitVAStartInst(VAStartInst &I) override { 4132 IRBuilder<> IRB(&I); 4133 VAStartInstrumentationList.push_back(&I); 4134 Value *VAListTag = I.getArgOperand(0); 4135 Value *ShadowPtr, *OriginPtr; 4136 const Align Alignment = Align(8); 4137 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4138 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4139 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4140 /* size */ 8, Alignment, false); 4141 } 4142 4143 void visitVACopyInst(VACopyInst &I) override { 4144 IRBuilder<> IRB(&I); 4145 VAStartInstrumentationList.push_back(&I); 4146 Value *VAListTag = I.getArgOperand(0); 4147 Value *ShadowPtr, *OriginPtr; 4148 const Align Alignment = Align(8); 4149 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4150 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4151 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4152 /* size */ 8, Alignment, false); 4153 } 4154 4155 void finalizeInstrumentation() override { 4156 assert(!VAArgSize && !VAArgTLSCopy && 4157 "finalizeInstrumentation called twice"); 4158 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4159 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4160 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4161 VAArgSize); 4162 4163 if (!VAStartInstrumentationList.empty()) { 4164 // If there is a va_start in this function, make a backup copy of 4165 // va_arg_tls somewhere in the function entry block. 4166 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4167 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4168 } 4169 4170 // Instrument va_start. 4171 // Copy va_list shadow from the backup copy of the TLS contents. 4172 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4173 CallInst *OrigInst = VAStartInstrumentationList[i]; 4174 IRBuilder<> IRB(OrigInst->getNextNode()); 4175 Value *VAListTag = OrigInst->getArgOperand(0); 4176 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4177 Value *RegSaveAreaPtrPtr = 4178 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4179 PointerType::get(RegSaveAreaPtrTy, 0)); 4180 Value *RegSaveAreaPtr = 4181 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4182 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4183 const Align Alignment = Align(8); 4184 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4185 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4186 Alignment, /*isStore*/ true); 4187 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4188 CopySize); 4189 } 4190 } 4191 }; 4192 4193 /// AArch64-specific implementation of VarArgHelper. 4194 struct VarArgAArch64Helper : public VarArgHelper { 4195 static const unsigned kAArch64GrArgSize = 64; 4196 static const unsigned kAArch64VrArgSize = 128; 4197 4198 static const unsigned AArch64GrBegOffset = 0; 4199 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4200 // Make VR space aligned to 16 bytes. 4201 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4202 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4203 + kAArch64VrArgSize; 4204 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4205 4206 Function &F; 4207 MemorySanitizer &MS; 4208 MemorySanitizerVisitor &MSV; 4209 Value *VAArgTLSCopy = nullptr; 4210 Value *VAArgOverflowSize = nullptr; 4211 4212 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4213 4214 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4215 4216 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4217 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4218 4219 ArgKind classifyArgument(Value* arg) { 4220 Type *T = arg->getType(); 4221 if (T->isFPOrFPVectorTy()) 4222 return AK_FloatingPoint; 4223 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4224 || (T->isPointerTy())) 4225 return AK_GeneralPurpose; 4226 return AK_Memory; 4227 } 4228 4229 // The instrumentation stores the argument shadow in a non ABI-specific 4230 // format because it does not know which argument is named (since Clang, 4231 // like x86_64 case, lowers the va_args in the frontend and this pass only 4232 // sees the low level code that deals with va_list internals). 4233 // The first seven GR registers are saved in the first 56 bytes of the 4234 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4235 // the remaining arguments. 4236 // Using constant offset within the va_arg TLS array allows fast copy 4237 // in the finalize instrumentation. 4238 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4239 unsigned GrOffset = AArch64GrBegOffset; 4240 unsigned VrOffset = AArch64VrBegOffset; 4241 unsigned OverflowOffset = AArch64VAEndOffset; 4242 4243 const DataLayout &DL = F.getParent()->getDataLayout(); 4244 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4245 ++ArgIt) { 4246 Value *A = *ArgIt; 4247 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4248 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4249 ArgKind AK = classifyArgument(A); 4250 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4251 AK = AK_Memory; 4252 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4253 AK = AK_Memory; 4254 Value *Base; 4255 switch (AK) { 4256 case AK_GeneralPurpose: 4257 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4258 GrOffset += 8; 4259 break; 4260 case AK_FloatingPoint: 4261 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4262 VrOffset += 16; 4263 break; 4264 case AK_Memory: 4265 // Don't count fixed arguments in the overflow area - va_start will 4266 // skip right over them. 4267 if (IsFixed) 4268 continue; 4269 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4270 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4271 alignTo(ArgSize, 8)); 4272 OverflowOffset += alignTo(ArgSize, 8); 4273 break; 4274 } 4275 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4276 // bother to actually store a shadow. 4277 if (IsFixed) 4278 continue; 4279 if (!Base) 4280 continue; 4281 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4282 } 4283 Constant *OverflowSize = 4284 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4285 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4286 } 4287 4288 /// Compute the shadow address for a given va_arg. 4289 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4290 unsigned ArgOffset, unsigned ArgSize) { 4291 // Make sure we don't overflow __msan_va_arg_tls. 4292 if (ArgOffset + ArgSize > kParamTLSSize) 4293 return nullptr; 4294 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4295 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4296 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4297 "_msarg"); 4298 } 4299 4300 void visitVAStartInst(VAStartInst &I) override { 4301 IRBuilder<> IRB(&I); 4302 VAStartInstrumentationList.push_back(&I); 4303 Value *VAListTag = I.getArgOperand(0); 4304 Value *ShadowPtr, *OriginPtr; 4305 const Align Alignment = Align(8); 4306 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4307 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4308 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4309 /* size */ 32, Alignment, false); 4310 } 4311 4312 void visitVACopyInst(VACopyInst &I) override { 4313 IRBuilder<> IRB(&I); 4314 VAStartInstrumentationList.push_back(&I); 4315 Value *VAListTag = I.getArgOperand(0); 4316 Value *ShadowPtr, *OriginPtr; 4317 const Align Alignment = Align(8); 4318 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4319 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4320 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4321 /* size */ 32, Alignment, false); 4322 } 4323 4324 // Retrieve a va_list field of 'void*' size. 4325 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4326 Value *SaveAreaPtrPtr = 4327 IRB.CreateIntToPtr( 4328 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4329 ConstantInt::get(MS.IntptrTy, offset)), 4330 Type::getInt64PtrTy(*MS.C)); 4331 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4332 } 4333 4334 // Retrieve a va_list field of 'int' size. 4335 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4336 Value *SaveAreaPtr = 4337 IRB.CreateIntToPtr( 4338 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4339 ConstantInt::get(MS.IntptrTy, offset)), 4340 Type::getInt32PtrTy(*MS.C)); 4341 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4342 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4343 } 4344 4345 void finalizeInstrumentation() override { 4346 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4347 "finalizeInstrumentation called twice"); 4348 if (!VAStartInstrumentationList.empty()) { 4349 // If there is a va_start in this function, make a backup copy of 4350 // va_arg_tls somewhere in the function entry block. 4351 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4352 VAArgOverflowSize = 4353 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4354 Value *CopySize = 4355 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4356 VAArgOverflowSize); 4357 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4358 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4359 } 4360 4361 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4362 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4363 4364 // Instrument va_start, copy va_list shadow from the backup copy of 4365 // the TLS contents. 4366 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4367 CallInst *OrigInst = VAStartInstrumentationList[i]; 4368 IRBuilder<> IRB(OrigInst->getNextNode()); 4369 4370 Value *VAListTag = OrigInst->getArgOperand(0); 4371 4372 // The variadic ABI for AArch64 creates two areas to save the incoming 4373 // argument registers (one for 64-bit general register xn-x7 and another 4374 // for 128-bit FP/SIMD vn-v7). 4375 // We need then to propagate the shadow arguments on both regions 4376 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4377 // The remaining arguments are saved on shadow for 'va::stack'. 4378 // One caveat is it requires only to propagate the non-named arguments, 4379 // however on the call site instrumentation 'all' the arguments are 4380 // saved. So to copy the shadow values from the va_arg TLS array 4381 // we need to adjust the offset for both GR and VR fields based on 4382 // the __{gr,vr}_offs value (since they are stores based on incoming 4383 // named arguments). 4384 4385 // Read the stack pointer from the va_list. 4386 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4387 4388 // Read both the __gr_top and __gr_off and add them up. 4389 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4390 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4391 4392 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4393 4394 // Read both the __vr_top and __vr_off and add them up. 4395 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4396 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4397 4398 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4399 4400 // It does not know how many named arguments is being used and, on the 4401 // callsite all the arguments were saved. Since __gr_off is defined as 4402 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4403 // argument by ignoring the bytes of shadow from named arguments. 4404 Value *GrRegSaveAreaShadowPtrOff = 4405 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4406 4407 Value *GrRegSaveAreaShadowPtr = 4408 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4409 Align(8), /*isStore*/ true) 4410 .first; 4411 4412 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4413 GrRegSaveAreaShadowPtrOff); 4414 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4415 4416 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4417 GrCopySize); 4418 4419 // Again, but for FP/SIMD values. 4420 Value *VrRegSaveAreaShadowPtrOff = 4421 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4422 4423 Value *VrRegSaveAreaShadowPtr = 4424 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4425 Align(8), /*isStore*/ true) 4426 .first; 4427 4428 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4429 IRB.getInt8Ty(), 4430 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4431 IRB.getInt32(AArch64VrBegOffset)), 4432 VrRegSaveAreaShadowPtrOff); 4433 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4434 4435 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4436 VrCopySize); 4437 4438 // And finally for remaining arguments. 4439 Value *StackSaveAreaShadowPtr = 4440 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4441 Align(16), /*isStore*/ true) 4442 .first; 4443 4444 Value *StackSrcPtr = 4445 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4446 IRB.getInt32(AArch64VAEndOffset)); 4447 4448 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4449 Align(16), VAArgOverflowSize); 4450 } 4451 } 4452 }; 4453 4454 /// PowerPC64-specific implementation of VarArgHelper. 4455 struct VarArgPowerPC64Helper : public VarArgHelper { 4456 Function &F; 4457 MemorySanitizer &MS; 4458 MemorySanitizerVisitor &MSV; 4459 Value *VAArgTLSCopy = nullptr; 4460 Value *VAArgSize = nullptr; 4461 4462 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4463 4464 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4465 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4466 4467 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4468 // For PowerPC, we need to deal with alignment of stack arguments - 4469 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4470 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4471 // and QPX vectors are aligned to 32 bytes. For that reason, we 4472 // compute current offset from stack pointer (which is always properly 4473 // aligned), and offset for the first vararg, then subtract them. 4474 unsigned VAArgBase; 4475 Triple TargetTriple(F.getParent()->getTargetTriple()); 4476 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4477 // and 32 bytes for ABIv2. This is usually determined by target 4478 // endianness, but in theory could be overridden by function attribute. 4479 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4480 if (TargetTriple.getArch() == Triple::ppc64) 4481 VAArgBase = 48; 4482 else 4483 VAArgBase = 32; 4484 unsigned VAArgOffset = VAArgBase; 4485 const DataLayout &DL = F.getParent()->getDataLayout(); 4486 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4487 ++ArgIt) { 4488 Value *A = *ArgIt; 4489 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4490 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4491 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4492 if (IsByVal) { 4493 assert(A->getType()->isPointerTy()); 4494 Type *RealTy = A->getType()->getPointerElementType(); 4495 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4496 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4497 if (!ArgAlign || *ArgAlign < Align(8)) 4498 ArgAlign = Align(8); 4499 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4500 if (!IsFixed) { 4501 Value *Base = getShadowPtrForVAArgument( 4502 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4503 if (Base) { 4504 Value *AShadowPtr, *AOriginPtr; 4505 std::tie(AShadowPtr, AOriginPtr) = 4506 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4507 kShadowTLSAlignment, /*isStore*/ false); 4508 4509 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4510 kShadowTLSAlignment, ArgSize); 4511 } 4512 } 4513 VAArgOffset += alignTo(ArgSize, 8); 4514 } else { 4515 Value *Base; 4516 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4517 uint64_t ArgAlign = 8; 4518 if (A->getType()->isArrayTy()) { 4519 // Arrays are aligned to element size, except for long double 4520 // arrays, which are aligned to 8 bytes. 4521 Type *ElementTy = A->getType()->getArrayElementType(); 4522 if (!ElementTy->isPPC_FP128Ty()) 4523 ArgAlign = DL.getTypeAllocSize(ElementTy); 4524 } else if (A->getType()->isVectorTy()) { 4525 // Vectors are naturally aligned. 4526 ArgAlign = DL.getTypeAllocSize(A->getType()); 4527 } 4528 if (ArgAlign < 8) 4529 ArgAlign = 8; 4530 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4531 if (DL.isBigEndian()) { 4532 // Adjusting the shadow for argument with size < 8 to match the placement 4533 // of bits in big endian system 4534 if (ArgSize < 8) 4535 VAArgOffset += (8 - ArgSize); 4536 } 4537 if (!IsFixed) { 4538 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4539 VAArgOffset - VAArgBase, ArgSize); 4540 if (Base) 4541 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4542 } 4543 VAArgOffset += ArgSize; 4544 VAArgOffset = alignTo(VAArgOffset, 8); 4545 } 4546 if (IsFixed) 4547 VAArgBase = VAArgOffset; 4548 } 4549 4550 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4551 VAArgOffset - VAArgBase); 4552 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4553 // a new class member i.e. it is the total size of all VarArgs. 4554 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4555 } 4556 4557 /// Compute the shadow address for a given va_arg. 4558 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4559 unsigned ArgOffset, unsigned ArgSize) { 4560 // Make sure we don't overflow __msan_va_arg_tls. 4561 if (ArgOffset + ArgSize > kParamTLSSize) 4562 return nullptr; 4563 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4564 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4565 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4566 "_msarg"); 4567 } 4568 4569 void visitVAStartInst(VAStartInst &I) override { 4570 IRBuilder<> IRB(&I); 4571 VAStartInstrumentationList.push_back(&I); 4572 Value *VAListTag = I.getArgOperand(0); 4573 Value *ShadowPtr, *OriginPtr; 4574 const Align Alignment = Align(8); 4575 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4576 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4577 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4578 /* size */ 8, Alignment, false); 4579 } 4580 4581 void visitVACopyInst(VACopyInst &I) override { 4582 IRBuilder<> IRB(&I); 4583 Value *VAListTag = I.getArgOperand(0); 4584 Value *ShadowPtr, *OriginPtr; 4585 const Align Alignment = Align(8); 4586 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4587 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4588 // Unpoison the whole __va_list_tag. 4589 // FIXME: magic ABI constants. 4590 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4591 /* size */ 8, Alignment, false); 4592 } 4593 4594 void finalizeInstrumentation() override { 4595 assert(!VAArgSize && !VAArgTLSCopy && 4596 "finalizeInstrumentation called twice"); 4597 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4598 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4599 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4600 VAArgSize); 4601 4602 if (!VAStartInstrumentationList.empty()) { 4603 // If there is a va_start in this function, make a backup copy of 4604 // va_arg_tls somewhere in the function entry block. 4605 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4606 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4607 } 4608 4609 // Instrument va_start. 4610 // Copy va_list shadow from the backup copy of the TLS contents. 4611 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4612 CallInst *OrigInst = VAStartInstrumentationList[i]; 4613 IRBuilder<> IRB(OrigInst->getNextNode()); 4614 Value *VAListTag = OrigInst->getArgOperand(0); 4615 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4616 Value *RegSaveAreaPtrPtr = 4617 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4618 PointerType::get(RegSaveAreaPtrTy, 0)); 4619 Value *RegSaveAreaPtr = 4620 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4621 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4622 const Align Alignment = Align(8); 4623 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4624 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4625 Alignment, /*isStore*/ true); 4626 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4627 CopySize); 4628 } 4629 } 4630 }; 4631 4632 /// SystemZ-specific implementation of VarArgHelper. 4633 struct VarArgSystemZHelper : public VarArgHelper { 4634 static const unsigned SystemZGpOffset = 16; 4635 static const unsigned SystemZGpEndOffset = 56; 4636 static const unsigned SystemZFpOffset = 128; 4637 static const unsigned SystemZFpEndOffset = 160; 4638 static const unsigned SystemZMaxVrArgs = 8; 4639 static const unsigned SystemZRegSaveAreaSize = 160; 4640 static const unsigned SystemZOverflowOffset = 160; 4641 static const unsigned SystemZVAListTagSize = 32; 4642 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4643 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4644 4645 Function &F; 4646 MemorySanitizer &MS; 4647 MemorySanitizerVisitor &MSV; 4648 Value *VAArgTLSCopy = nullptr; 4649 Value *VAArgTLSOriginCopy = nullptr; 4650 Value *VAArgOverflowSize = nullptr; 4651 4652 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4653 4654 enum class ArgKind { 4655 GeneralPurpose, 4656 FloatingPoint, 4657 Vector, 4658 Memory, 4659 Indirect, 4660 }; 4661 4662 enum class ShadowExtension { None, Zero, Sign }; 4663 4664 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4665 MemorySanitizerVisitor &MSV) 4666 : F(F), MS(MS), MSV(MSV) {} 4667 4668 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4669 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4670 // only a few possibilities of what it can be. In particular, enums, single 4671 // element structs and large types have already been taken care of. 4672 4673 // Some i128 and fp128 arguments are converted to pointers only in the 4674 // back end. 4675 if (T->isIntegerTy(128) || T->isFP128Ty()) 4676 return ArgKind::Indirect; 4677 if (T->isFloatingPointTy()) 4678 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4679 if (T->isIntegerTy() || T->isPointerTy()) 4680 return ArgKind::GeneralPurpose; 4681 if (T->isVectorTy()) 4682 return ArgKind::Vector; 4683 return ArgKind::Memory; 4684 } 4685 4686 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4687 // ABI says: "One of the simple integer types no more than 64 bits wide. 4688 // ... If such an argument is shorter than 64 bits, replace it by a full 4689 // 64-bit integer representing the same number, using sign or zero 4690 // extension". Shadow for an integer argument has the same type as the 4691 // argument itself, so it can be sign or zero extended as well. 4692 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4693 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4694 if (ZExt) { 4695 assert(!SExt); 4696 return ShadowExtension::Zero; 4697 } 4698 if (SExt) { 4699 assert(!ZExt); 4700 return ShadowExtension::Sign; 4701 } 4702 return ShadowExtension::None; 4703 } 4704 4705 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4706 bool IsSoftFloatABI = CB.getCalledFunction() 4707 ->getFnAttribute("use-soft-float") 4708 .getValueAsString() == "true"; 4709 unsigned GpOffset = SystemZGpOffset; 4710 unsigned FpOffset = SystemZFpOffset; 4711 unsigned VrIndex = 0; 4712 unsigned OverflowOffset = SystemZOverflowOffset; 4713 const DataLayout &DL = F.getParent()->getDataLayout(); 4714 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4715 ++ArgIt) { 4716 Value *A = *ArgIt; 4717 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4718 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4719 // SystemZABIInfo does not produce ByVal parameters. 4720 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 4721 Type *T = A->getType(); 4722 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 4723 if (AK == ArgKind::Indirect) { 4724 T = PointerType::get(T, 0); 4725 AK = ArgKind::GeneralPurpose; 4726 } 4727 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 4728 AK = ArgKind::Memory; 4729 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 4730 AK = ArgKind::Memory; 4731 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 4732 AK = ArgKind::Memory; 4733 Value *ShadowBase = nullptr; 4734 Value *OriginBase = nullptr; 4735 ShadowExtension SE = ShadowExtension::None; 4736 switch (AK) { 4737 case ArgKind::GeneralPurpose: { 4738 // Always keep track of GpOffset, but store shadow only for varargs. 4739 uint64_t ArgSize = 8; 4740 if (GpOffset + ArgSize <= kParamTLSSize) { 4741 if (!IsFixed) { 4742 SE = getShadowExtension(CB, ArgNo); 4743 uint64_t GapSize = 0; 4744 if (SE == ShadowExtension::None) { 4745 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4746 assert(ArgAllocSize <= ArgSize); 4747 GapSize = ArgSize - ArgAllocSize; 4748 } 4749 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 4750 if (MS.TrackOrigins) 4751 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 4752 } 4753 GpOffset += ArgSize; 4754 } else { 4755 GpOffset = kParamTLSSize; 4756 } 4757 break; 4758 } 4759 case ArgKind::FloatingPoint: { 4760 // Always keep track of FpOffset, but store shadow only for varargs. 4761 uint64_t ArgSize = 8; 4762 if (FpOffset + ArgSize <= kParamTLSSize) { 4763 if (!IsFixed) { 4764 // PoP says: "A short floating-point datum requires only the 4765 // left-most 32 bit positions of a floating-point register". 4766 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 4767 // don't extend shadow and don't mind the gap. 4768 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 4769 if (MS.TrackOrigins) 4770 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4771 } 4772 FpOffset += ArgSize; 4773 } else { 4774 FpOffset = kParamTLSSize; 4775 } 4776 break; 4777 } 4778 case ArgKind::Vector: { 4779 // Keep track of VrIndex. No need to store shadow, since vector varargs 4780 // go through AK_Memory. 4781 assert(IsFixed); 4782 VrIndex++; 4783 break; 4784 } 4785 case ArgKind::Memory: { 4786 // Keep track of OverflowOffset and store shadow only for varargs. 4787 // Ignore fixed args, since we need to copy only the vararg portion of 4788 // the overflow area shadow. 4789 if (!IsFixed) { 4790 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4791 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 4792 if (OverflowOffset + ArgSize <= kParamTLSSize) { 4793 SE = getShadowExtension(CB, ArgNo); 4794 uint64_t GapSize = 4795 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 4796 ShadowBase = 4797 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 4798 if (MS.TrackOrigins) 4799 OriginBase = 4800 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 4801 OverflowOffset += ArgSize; 4802 } else { 4803 OverflowOffset = kParamTLSSize; 4804 } 4805 } 4806 break; 4807 } 4808 case ArgKind::Indirect: 4809 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 4810 } 4811 if (ShadowBase == nullptr) 4812 continue; 4813 Value *Shadow = MSV.getShadow(A); 4814 if (SE != ShadowExtension::None) 4815 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 4816 /*Signed*/ SE == ShadowExtension::Sign); 4817 ShadowBase = IRB.CreateIntToPtr( 4818 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 4819 IRB.CreateStore(Shadow, ShadowBase); 4820 if (MS.TrackOrigins) { 4821 Value *Origin = MSV.getOrigin(A); 4822 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4823 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4824 kMinOriginAlignment); 4825 } 4826 } 4827 Constant *OverflowSize = ConstantInt::get( 4828 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 4829 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4830 } 4831 4832 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 4833 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4834 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4835 } 4836 4837 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 4838 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4839 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4840 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4841 "_msarg_va_o"); 4842 } 4843 4844 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4845 IRBuilder<> IRB(&I); 4846 Value *VAListTag = I.getArgOperand(0); 4847 Value *ShadowPtr, *OriginPtr; 4848 const Align Alignment = Align(8); 4849 std::tie(ShadowPtr, OriginPtr) = 4850 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4851 /*isStore*/ true); 4852 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4853 SystemZVAListTagSize, Alignment, false); 4854 } 4855 4856 void visitVAStartInst(VAStartInst &I) override { 4857 VAStartInstrumentationList.push_back(&I); 4858 unpoisonVAListTagForInst(I); 4859 } 4860 4861 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 4862 4863 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 4864 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4865 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4866 IRB.CreateAdd( 4867 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4868 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 4869 PointerType::get(RegSaveAreaPtrTy, 0)); 4870 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4871 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4872 const Align Alignment = Align(8); 4873 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4874 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 4875 /*isStore*/ true); 4876 // TODO(iii): copy only fragments filled by visitCallBase() 4877 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4878 SystemZRegSaveAreaSize); 4879 if (MS.TrackOrigins) 4880 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4881 Alignment, SystemZRegSaveAreaSize); 4882 } 4883 4884 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 4885 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4886 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4887 IRB.CreateAdd( 4888 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4889 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 4890 PointerType::get(OverflowArgAreaPtrTy, 0)); 4891 Value *OverflowArgAreaPtr = 4892 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4893 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4894 const Align Alignment = Align(8); 4895 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4896 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4897 Alignment, /*isStore*/ true); 4898 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4899 SystemZOverflowOffset); 4900 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4901 VAArgOverflowSize); 4902 if (MS.TrackOrigins) { 4903 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4904 SystemZOverflowOffset); 4905 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4906 VAArgOverflowSize); 4907 } 4908 } 4909 4910 void finalizeInstrumentation() override { 4911 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4912 "finalizeInstrumentation called twice"); 4913 if (!VAStartInstrumentationList.empty()) { 4914 // If there is a va_start in this function, make a backup copy of 4915 // va_arg_tls somewhere in the function entry block. 4916 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4917 VAArgOverflowSize = 4918 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4919 Value *CopySize = 4920 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 4921 VAArgOverflowSize); 4922 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4923 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4924 if (MS.TrackOrigins) { 4925 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4926 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4927 Align(8), CopySize); 4928 } 4929 } 4930 4931 // Instrument va_start. 4932 // Copy va_list shadow from the backup copy of the TLS contents. 4933 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 4934 VaStartNo < VaStartNum; VaStartNo++) { 4935 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 4936 IRBuilder<> IRB(OrigInst->getNextNode()); 4937 Value *VAListTag = OrigInst->getArgOperand(0); 4938 copyRegSaveArea(IRB, VAListTag); 4939 copyOverflowArea(IRB, VAListTag); 4940 } 4941 } 4942 }; 4943 4944 /// A no-op implementation of VarArgHelper. 4945 struct VarArgNoOpHelper : public VarArgHelper { 4946 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4947 MemorySanitizerVisitor &MSV) {} 4948 4949 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 4950 4951 void visitVAStartInst(VAStartInst &I) override {} 4952 4953 void visitVACopyInst(VACopyInst &I) override {} 4954 4955 void finalizeInstrumentation() override {} 4956 }; 4957 4958 } // end anonymous namespace 4959 4960 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4961 MemorySanitizerVisitor &Visitor) { 4962 // VarArg handling is only implemented on AMD64. False positives are possible 4963 // on other platforms. 4964 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4965 if (TargetTriple.getArch() == Triple::x86_64) 4966 return new VarArgAMD64Helper(Func, Msan, Visitor); 4967 else if (TargetTriple.isMIPS64()) 4968 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4969 else if (TargetTriple.getArch() == Triple::aarch64) 4970 return new VarArgAArch64Helper(Func, Msan, Visitor); 4971 else if (TargetTriple.getArch() == Triple::ppc64 || 4972 TargetTriple.getArch() == Triple::ppc64le) 4973 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4974 else if (TargetTriple.getArch() == Triple::systemz) 4975 return new VarArgSystemZHelper(Func, Msan, Visitor); 4976 else 4977 return new VarArgNoOpHelper(Func, Msan, Visitor); 4978 } 4979 4980 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4981 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4982 return false; 4983 4984 MemorySanitizerVisitor Visitor(F, *this, TLI); 4985 4986 // Clear out readonly/readnone attributes. 4987 AttrBuilder B; 4988 B.addAttribute(Attribute::ReadOnly) 4989 .addAttribute(Attribute::ReadNone) 4990 .addAttribute(Attribute::WriteOnly) 4991 .addAttribute(Attribute::ArgMemOnly) 4992 .addAttribute(Attribute::Speculatable); 4993 F.removeAttributes(AttributeList::FunctionIndex, B); 4994 4995 return Visitor.runOnFunction(); 4996 } 4997