1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 // This is an experiment to enable handling of cases where shadow is a non-zero 311 // compile-time constant. For some unexplainable reason they were silently 312 // ignored in the instrumentation. 313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 314 cl::desc("Insert checks for constant shadow values"), 315 cl::Hidden, cl::init(false)); 316 317 // This is off by default because of a bug in gold: 318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 319 static cl::opt<bool> ClWithComdat("msan-with-comdat", 320 cl::desc("Place MSan constructors in comdat sections"), 321 cl::Hidden, cl::init(false)); 322 323 // These options allow to specify custom memory map parameters 324 // See MemoryMapParams for details. 325 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 326 cl::desc("Define custom MSan AndMask"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 330 cl::desc("Define custom MSan XorMask"), 331 cl::Hidden, cl::init(0)); 332 333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 334 cl::desc("Define custom MSan ShadowBase"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 338 cl::desc("Define custom MSan OriginBase"), 339 cl::Hidden, cl::init(0)); 340 341 const char kMsanModuleCtorName[] = "msan.module_ctor"; 342 const char kMsanInitName[] = "__msan_init"; 343 344 namespace { 345 346 // Memory map parameters used in application-to-shadow address calculation. 347 // Offset = (Addr & ~AndMask) ^ XorMask 348 // Shadow = ShadowBase + Offset 349 // Origin = OriginBase + Offset 350 struct MemoryMapParams { 351 uint64_t AndMask; 352 uint64_t XorMask; 353 uint64_t ShadowBase; 354 uint64_t OriginBase; 355 }; 356 357 struct PlatformMemoryMapParams { 358 const MemoryMapParams *bits32; 359 const MemoryMapParams *bits64; 360 }; 361 362 } // end anonymous namespace 363 364 // i386 Linux 365 static const MemoryMapParams Linux_I386_MemoryMapParams = { 366 0x000080000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x000040000000, // OriginBase 370 }; 371 372 // x86_64 Linux 373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 375 0x400000000000, // AndMask 376 0, // XorMask (not used) 377 0, // ShadowBase (not used) 378 0x200000000000, // OriginBase 379 #else 380 0, // AndMask (not used) 381 0x500000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x100000000000, // OriginBase 384 #endif 385 }; 386 387 // mips64 Linux 388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 389 0, // AndMask (not used) 390 0x008000000000, // XorMask 391 0, // ShadowBase (not used) 392 0x002000000000, // OriginBase 393 }; 394 395 // ppc64 Linux 396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 397 0xE00000000000, // AndMask 398 0x100000000000, // XorMask 399 0x080000000000, // ShadowBase 400 0x1C0000000000, // OriginBase 401 }; 402 403 // s390x Linux 404 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 405 0xC00000000000, // AndMask 406 0, // XorMask (not used) 407 0x080000000000, // ShadowBase 408 0x1C0000000000, // OriginBase 409 }; 410 411 // aarch64 Linux 412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 413 0, // AndMask (not used) 414 0x06000000000, // XorMask 415 0, // ShadowBase (not used) 416 0x01000000000, // OriginBase 417 }; 418 419 // i386 FreeBSD 420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 421 0x000180000000, // AndMask 422 0x000040000000, // XorMask 423 0x000020000000, // ShadowBase 424 0x000700000000, // OriginBase 425 }; 426 427 // x86_64 FreeBSD 428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 429 0xc00000000000, // AndMask 430 0x200000000000, // XorMask 431 0x100000000000, // ShadowBase 432 0x380000000000, // OriginBase 433 }; 434 435 // x86_64 NetBSD 436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 437 0, // AndMask 438 0x500000000000, // XorMask 439 0, // ShadowBase 440 0x100000000000, // OriginBase 441 }; 442 443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 444 &Linux_I386_MemoryMapParams, 445 &Linux_X86_64_MemoryMapParams, 446 }; 447 448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 449 nullptr, 450 &Linux_MIPS64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 454 nullptr, 455 &Linux_PowerPC64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 459 nullptr, 460 &Linux_S390X_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 464 nullptr, 465 &Linux_AArch64_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 469 &FreeBSD_I386_MemoryMapParams, 470 &FreeBSD_X86_64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 474 nullptr, 475 &NetBSD_X86_64_MemoryMapParams, 476 }; 477 478 namespace { 479 480 /// Instrument functions of a module to detect uninitialized reads. 481 /// 482 /// Instantiating MemorySanitizer inserts the msan runtime library API function 483 /// declarations into the module if they don't exist already. Instantiating 484 /// ensures the __msan_init function is in the list of global constructors for 485 /// the module. 486 class MemorySanitizer { 487 public: 488 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 489 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 490 Recover(Options.Recover) { 491 initializeModule(M); 492 } 493 494 // MSan cannot be moved or copied because of MapParams. 495 MemorySanitizer(MemorySanitizer &&) = delete; 496 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 497 MemorySanitizer(const MemorySanitizer &) = delete; 498 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 499 500 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 501 502 private: 503 friend struct MemorySanitizerVisitor; 504 friend struct VarArgAMD64Helper; 505 friend struct VarArgMIPS64Helper; 506 friend struct VarArgAArch64Helper; 507 friend struct VarArgPowerPC64Helper; 508 friend struct VarArgSystemZHelper; 509 510 void initializeModule(Module &M); 511 void initializeCallbacks(Module &M); 512 void createKernelApi(Module &M); 513 void createUserspaceApi(Module &M); 514 515 /// True if we're compiling the Linux kernel. 516 bool CompileKernel; 517 /// Track origins (allocation points) of uninitialized values. 518 int TrackOrigins; 519 bool Recover; 520 521 LLVMContext *C; 522 Type *IntptrTy; 523 Type *OriginTy; 524 525 // XxxTLS variables represent the per-thread state in MSan and per-task state 526 // in KMSAN. 527 // For the userspace these point to thread-local globals. In the kernel land 528 // they point to the members of a per-task struct obtained via a call to 529 // __msan_get_context_state(). 530 531 /// Thread-local shadow storage for function parameters. 532 Value *ParamTLS; 533 534 /// Thread-local origin storage for function parameters. 535 Value *ParamOriginTLS; 536 537 /// Thread-local shadow storage for function return value. 538 Value *RetvalTLS; 539 540 /// Thread-local origin storage for function return value. 541 Value *RetvalOriginTLS; 542 543 /// Thread-local shadow storage for in-register va_arg function 544 /// parameters (x86_64-specific). 545 Value *VAArgTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgOriginTLS; 550 551 /// Thread-local shadow storage for va_arg overflow area 552 /// (x86_64-specific). 553 Value *VAArgOverflowSizeTLS; 554 555 /// Are the instrumentation callbacks set up? 556 bool CallbacksInitialized = false; 557 558 /// The run-time callback to print a warning. 559 FunctionCallee WarningFn; 560 561 // These arrays are indexed by log2(AccessSize). 562 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 563 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 564 565 /// Run-time helper that generates a new origin value for a stack 566 /// allocation. 567 FunctionCallee MsanSetAllocaOrigin4Fn; 568 569 /// Run-time helper that poisons stack on function entry. 570 FunctionCallee MsanPoisonStackFn; 571 572 /// Run-time helper that records a store (or any event) of an 573 /// uninitialized value and returns an updated origin id encoding this info. 574 FunctionCallee MsanChainOriginFn; 575 576 /// Run-time helper that paints an origin over a region. 577 FunctionCallee MsanSetOriginFn; 578 579 /// MSan runtime replacements for memmove, memcpy and memset. 580 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 581 582 /// KMSAN callback for task-local function argument shadow. 583 StructType *MsanContextStateTy; 584 FunctionCallee MsanGetContextStateFn; 585 586 /// Functions for poisoning/unpoisoning local variables 587 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 588 589 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 590 /// pointers. 591 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 592 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 593 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 594 FunctionCallee MsanInstrumentAsmStoreFn; 595 596 /// Helper to choose between different MsanMetadataPtrXxx(). 597 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 598 599 /// Memory map parameters used in application-to-shadow calculation. 600 const MemoryMapParams *MapParams; 601 602 /// Custom memory map parameters used when -msan-shadow-base or 603 // -msan-origin-base is provided. 604 MemoryMapParams CustomMapParams; 605 606 MDNode *ColdCallWeights; 607 608 /// Branch weights for origin store. 609 MDNode *OriginStoreWeights; 610 }; 611 612 void insertModuleCtor(Module &M) { 613 getOrCreateSanitizerCtorAndInitFunctions( 614 M, kMsanModuleCtorName, kMsanInitName, 615 /*InitArgTypes=*/{}, 616 /*InitArgs=*/{}, 617 // This callback is invoked when the functions are created the first 618 // time. Hook them into the global ctors list in that case: 619 [&](Function *Ctor, FunctionCallee) { 620 if (!ClWithComdat) { 621 appendToGlobalCtors(M, Ctor, 0); 622 return; 623 } 624 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 625 Ctor->setComdat(MsanCtorComdat); 626 appendToGlobalCtors(M, Ctor, 0, Ctor); 627 }); 628 } 629 630 /// A legacy function pass for msan instrumentation. 631 /// 632 /// Instruments functions to detect uninitialized reads. 633 struct MemorySanitizerLegacyPass : public FunctionPass { 634 // Pass identification, replacement for typeid. 635 static char ID; 636 637 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 638 : FunctionPass(ID), Options(Options) { 639 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 640 } 641 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 642 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.addRequired<TargetLibraryInfoWrapperPass>(); 645 } 646 647 bool runOnFunction(Function &F) override { 648 return MSan->sanitizeFunction( 649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 650 } 651 bool doInitialization(Module &M) override; 652 653 Optional<MemorySanitizer> MSan; 654 MemorySanitizerOptions Options; 655 }; 656 657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 658 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 659 } 660 661 } // end anonymous namespace 662 663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 664 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 665 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 666 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 667 668 PreservedAnalyses MemorySanitizerPass::run(Function &F, 669 FunctionAnalysisManager &FAM) { 670 MemorySanitizer Msan(*F.getParent(), Options); 671 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 672 return PreservedAnalyses::none(); 673 return PreservedAnalyses::all(); 674 } 675 676 PreservedAnalyses MemorySanitizerPass::run(Module &M, 677 ModuleAnalysisManager &AM) { 678 if (Options.Kernel) 679 return PreservedAnalyses::all(); 680 insertModuleCtor(M); 681 return PreservedAnalyses::none(); 682 } 683 684 char MemorySanitizerLegacyPass::ID = 0; 685 686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 687 "MemorySanitizer: detects uninitialized reads.", false, 688 false) 689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 691 "MemorySanitizer: detects uninitialized reads.", false, 692 false) 693 694 FunctionPass * 695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 696 return new MemorySanitizerLegacyPass(Options); 697 } 698 699 /// Create a non-const global initialized with the given string. 700 /// 701 /// Creates a writable global for Str so that we can pass it to the 702 /// run-time lib. Runtime uses first 4 bytes of the string to store the 703 /// frame ID, so the string needs to be mutable. 704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 705 StringRef Str) { 706 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 707 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 708 GlobalValue::PrivateLinkage, StrConst, ""); 709 } 710 711 /// Create KMSAN API callbacks. 712 void MemorySanitizer::createKernelApi(Module &M) { 713 IRBuilder<> IRB(*C); 714 715 // These will be initialized in insertKmsanPrologue(). 716 RetvalTLS = nullptr; 717 RetvalOriginTLS = nullptr; 718 ParamTLS = nullptr; 719 ParamOriginTLS = nullptr; 720 VAArgTLS = nullptr; 721 VAArgOriginTLS = nullptr; 722 VAArgOverflowSizeTLS = nullptr; 723 724 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 725 IRB.getInt32Ty()); 726 // Requests the per-task context state (kmsan_context_state*) from the 727 // runtime library. 728 MsanContextStateTy = StructType::get( 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 731 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 732 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 733 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 734 OriginTy); 735 MsanGetContextStateFn = M.getOrInsertFunction( 736 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 737 738 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 739 PointerType::get(IRB.getInt32Ty(), 0)); 740 741 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 742 std::string name_load = 743 "__msan_metadata_ptr_for_load_" + std::to_string(size); 744 std::string name_store = 745 "__msan_metadata_ptr_for_store_" + std::to_string(size); 746 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 747 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 748 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 749 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 750 } 751 752 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 753 "__msan_metadata_ptr_for_load_n", RetTy, 754 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 755 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 756 "__msan_metadata_ptr_for_store_n", RetTy, 757 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 758 759 // Functions for poisoning and unpoisoning memory. 760 MsanPoisonAllocaFn = 761 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 762 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 763 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 764 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 765 } 766 767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 768 return M.getOrInsertGlobal(Name, Ty, [&] { 769 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 770 nullptr, Name, nullptr, 771 GlobalVariable::InitialExecTLSModel); 772 }); 773 } 774 775 /// Insert declarations for userspace-specific functions and globals. 776 void MemorySanitizer::createUserspaceApi(Module &M) { 777 IRBuilder<> IRB(*C); 778 779 // Create the callback. 780 // FIXME: this function should have "Cold" calling conv, 781 // which is not yet implemented. 782 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 783 : "__msan_warning_with_origin_noreturn"; 784 WarningFn = 785 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 786 787 // Create the global TLS variables. 788 RetvalTLS = 789 getOrInsertGlobal(M, "__msan_retval_tls", 790 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 791 792 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 793 794 ParamTLS = 795 getOrInsertGlobal(M, "__msan_param_tls", 796 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 797 798 ParamOriginTLS = 799 getOrInsertGlobal(M, "__msan_param_origin_tls", 800 ArrayType::get(OriginTy, kParamTLSSize / 4)); 801 802 VAArgTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_tls", 804 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 805 806 VAArgOriginTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 808 ArrayType::get(OriginTy, kParamTLSSize / 4)); 809 810 VAArgOverflowSizeTLS = 811 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 812 813 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 814 AccessSizeIndex++) { 815 unsigned AccessSize = 1 << AccessSizeIndex; 816 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 817 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 818 MaybeWarningFnAttrs.push_back(std::make_pair( 819 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 820 MaybeWarningFnAttrs.push_back(std::make_pair( 821 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 822 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 823 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 824 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 825 826 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 827 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 828 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 829 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 830 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 831 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 832 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 833 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 834 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 835 IRB.getInt32Ty()); 836 } 837 838 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 839 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 840 IRB.getInt8PtrTy(), IntptrTy); 841 MsanPoisonStackFn = 842 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 843 IRB.getInt8PtrTy(), IntptrTy); 844 } 845 846 /// Insert extern declaration of runtime-provided functions and globals. 847 void MemorySanitizer::initializeCallbacks(Module &M) { 848 // Only do this once. 849 if (CallbacksInitialized) 850 return; 851 852 IRBuilder<> IRB(*C); 853 // Initialize callbacks that are common for kernel and userspace 854 // instrumentation. 855 MsanChainOriginFn = M.getOrInsertFunction( 856 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 857 MsanSetOriginFn = 858 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 859 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 860 MemmoveFn = M.getOrInsertFunction( 861 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 862 IRB.getInt8PtrTy(), IntptrTy); 863 MemcpyFn = M.getOrInsertFunction( 864 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 865 IntptrTy); 866 MemsetFn = M.getOrInsertFunction( 867 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 868 IntptrTy); 869 870 MsanInstrumentAsmStoreFn = 871 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 872 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 873 874 if (CompileKernel) { 875 createKernelApi(M); 876 } else { 877 createUserspaceApi(M); 878 } 879 CallbacksInitialized = true; 880 } 881 882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 883 int size) { 884 FunctionCallee *Fns = 885 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 886 switch (size) { 887 case 1: 888 return Fns[0]; 889 case 2: 890 return Fns[1]; 891 case 4: 892 return Fns[2]; 893 case 8: 894 return Fns[3]; 895 default: 896 return nullptr; 897 } 898 } 899 900 /// Module-level initialization. 901 /// 902 /// inserts a call to __msan_init to the module's constructor list. 903 void MemorySanitizer::initializeModule(Module &M) { 904 auto &DL = M.getDataLayout(); 905 906 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 907 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 908 // Check the overrides first 909 if (ShadowPassed || OriginPassed) { 910 CustomMapParams.AndMask = ClAndMask; 911 CustomMapParams.XorMask = ClXorMask; 912 CustomMapParams.ShadowBase = ClShadowBase; 913 CustomMapParams.OriginBase = ClOriginBase; 914 MapParams = &CustomMapParams; 915 } else { 916 Triple TargetTriple(M.getTargetTriple()); 917 switch (TargetTriple.getOS()) { 918 case Triple::FreeBSD: 919 switch (TargetTriple.getArch()) { 920 case Triple::x86_64: 921 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 922 break; 923 case Triple::x86: 924 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 925 break; 926 default: 927 report_fatal_error("unsupported architecture"); 928 } 929 break; 930 case Triple::NetBSD: 931 switch (TargetTriple.getArch()) { 932 case Triple::x86_64: 933 MapParams = NetBSD_X86_MemoryMapParams.bits64; 934 break; 935 default: 936 report_fatal_error("unsupported architecture"); 937 } 938 break; 939 case Triple::Linux: 940 switch (TargetTriple.getArch()) { 941 case Triple::x86_64: 942 MapParams = Linux_X86_MemoryMapParams.bits64; 943 break; 944 case Triple::x86: 945 MapParams = Linux_X86_MemoryMapParams.bits32; 946 break; 947 case Triple::mips64: 948 case Triple::mips64el: 949 MapParams = Linux_MIPS_MemoryMapParams.bits64; 950 break; 951 case Triple::ppc64: 952 case Triple::ppc64le: 953 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 954 break; 955 case Triple::systemz: 956 MapParams = Linux_S390_MemoryMapParams.bits64; 957 break; 958 case Triple::aarch64: 959 case Triple::aarch64_be: 960 MapParams = Linux_ARM_MemoryMapParams.bits64; 961 break; 962 default: 963 report_fatal_error("unsupported architecture"); 964 } 965 break; 966 default: 967 report_fatal_error("unsupported operating system"); 968 } 969 } 970 971 C = &(M.getContext()); 972 IRBuilder<> IRB(*C); 973 IntptrTy = IRB.getIntPtrTy(DL); 974 OriginTy = IRB.getInt32Ty(); 975 976 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 977 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 978 979 if (!CompileKernel) { 980 if (TrackOrigins) 981 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 982 return new GlobalVariable( 983 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 984 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 985 }); 986 987 if (Recover) 988 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 989 return new GlobalVariable(M, IRB.getInt32Ty(), true, 990 GlobalValue::WeakODRLinkage, 991 IRB.getInt32(Recover), "__msan_keep_going"); 992 }); 993 } 994 } 995 996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 997 if (!Options.Kernel) 998 insertModuleCtor(M); 999 MSan.emplace(M, Options); 1000 return true; 1001 } 1002 1003 namespace { 1004 1005 /// A helper class that handles instrumentation of VarArg 1006 /// functions on a particular platform. 1007 /// 1008 /// Implementations are expected to insert the instrumentation 1009 /// necessary to propagate argument shadow through VarArg function 1010 /// calls. Visit* methods are called during an InstVisitor pass over 1011 /// the function, and should avoid creating new basic blocks. A new 1012 /// instance of this class is created for each instrumented function. 1013 struct VarArgHelper { 1014 virtual ~VarArgHelper() = default; 1015 1016 /// Visit a CallBase. 1017 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1018 1019 /// Visit a va_start call. 1020 virtual void visitVAStartInst(VAStartInst &I) = 0; 1021 1022 /// Visit a va_copy call. 1023 virtual void visitVACopyInst(VACopyInst &I) = 0; 1024 1025 /// Finalize function instrumentation. 1026 /// 1027 /// This method is called after visiting all interesting (see above) 1028 /// instructions in a function. 1029 virtual void finalizeInstrumentation() = 0; 1030 }; 1031 1032 struct MemorySanitizerVisitor; 1033 1034 } // end anonymous namespace 1035 1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1037 MemorySanitizerVisitor &Visitor); 1038 1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1040 if (TypeSize <= 8) return 0; 1041 return Log2_32_Ceil((TypeSize + 7) / 8); 1042 } 1043 1044 namespace { 1045 1046 /// This class does all the work for a given function. Store and Load 1047 /// instructions store and load corresponding shadow and origin 1048 /// values. Most instructions propagate shadow from arguments to their 1049 /// return values. Certain instructions (most importantly, BranchInst) 1050 /// test their argument shadow and print reports (with a runtime call) if it's 1051 /// non-zero. 1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1053 Function &F; 1054 MemorySanitizer &MS; 1055 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1056 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1057 std::unique_ptr<VarArgHelper> VAHelper; 1058 const TargetLibraryInfo *TLI; 1059 Instruction *FnPrologueEnd; 1060 1061 // The following flags disable parts of MSan instrumentation based on 1062 // exclusion list contents and command-line options. 1063 bool InsertChecks; 1064 bool PropagateShadow; 1065 bool PoisonStack; 1066 bool PoisonUndef; 1067 1068 struct ShadowOriginAndInsertPoint { 1069 Value *Shadow; 1070 Value *Origin; 1071 Instruction *OrigIns; 1072 1073 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1074 : Shadow(S), Origin(O), OrigIns(I) {} 1075 }; 1076 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1077 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1078 SmallSet<AllocaInst *, 16> AllocaSet; 1079 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1080 SmallVector<StoreInst *, 16> StoreList; 1081 1082 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1083 const TargetLibraryInfo &TLI) 1084 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1085 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1086 InsertChecks = SanitizeFunction; 1087 PropagateShadow = SanitizeFunction; 1088 PoisonStack = SanitizeFunction && ClPoisonStack; 1089 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1090 1091 // In the presence of unreachable blocks, we may see Phi nodes with 1092 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1093 // blocks, such nodes will not have any shadow value associated with them. 1094 // It's easier to remove unreachable blocks than deal with missing shadow. 1095 removeUnreachableBlocks(F); 1096 1097 MS.initializeCallbacks(*F.getParent()); 1098 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1099 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1100 1101 if (MS.CompileKernel) { 1102 IRBuilder<> IRB(FnPrologueEnd); 1103 insertKmsanPrologue(IRB); 1104 } 1105 1106 LLVM_DEBUG(if (!InsertChecks) dbgs() 1107 << "MemorySanitizer is not inserting checks into '" 1108 << F.getName() << "'\n"); 1109 } 1110 1111 bool isInPrologue(Instruction &I) { 1112 return I.getParent() == FnPrologueEnd->getParent() && 1113 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1114 } 1115 1116 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1117 if (MS.TrackOrigins <= 1) return V; 1118 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1119 } 1120 1121 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1122 const DataLayout &DL = F.getParent()->getDataLayout(); 1123 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1124 if (IntptrSize == kOriginSize) return Origin; 1125 assert(IntptrSize == kOriginSize * 2); 1126 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1127 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1128 } 1129 1130 /// Fill memory range with the given origin value. 1131 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1132 unsigned Size, Align Alignment) { 1133 const DataLayout &DL = F.getParent()->getDataLayout(); 1134 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1135 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1136 assert(IntptrAlignment >= kMinOriginAlignment); 1137 assert(IntptrSize >= kOriginSize); 1138 1139 unsigned Ofs = 0; 1140 Align CurrentAlignment = Alignment; 1141 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1142 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1143 Value *IntptrOriginPtr = 1144 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1145 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1146 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1147 : IntptrOriginPtr; 1148 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1149 Ofs += IntptrSize / kOriginSize; 1150 CurrentAlignment = IntptrAlignment; 1151 } 1152 } 1153 1154 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1155 Value *GEP = 1156 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1157 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1158 CurrentAlignment = kMinOriginAlignment; 1159 } 1160 } 1161 1162 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1163 Value *OriginPtr, Align Alignment, bool AsCall) { 1164 const DataLayout &DL = F.getParent()->getDataLayout(); 1165 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1166 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1167 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1168 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1169 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1170 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1171 OriginAlignment); 1172 return; 1173 } 1174 1175 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1176 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1177 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1178 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1179 Value *ConvertedShadow2 = 1180 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1181 IRB.CreateCall(Fn, 1182 {ConvertedShadow2, 1183 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1184 } else { 1185 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1186 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1187 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1188 IRBuilder<> IRBNew(CheckTerm); 1189 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1190 OriginAlignment); 1191 } 1192 } 1193 1194 void materializeStores(bool InstrumentWithCalls) { 1195 for (StoreInst *SI : StoreList) { 1196 IRBuilder<> IRB(SI); 1197 Value *Val = SI->getValueOperand(); 1198 Value *Addr = SI->getPointerOperand(); 1199 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1200 Value *ShadowPtr, *OriginPtr; 1201 Type *ShadowTy = Shadow->getType(); 1202 const Align Alignment = assumeAligned(SI->getAlignment()); 1203 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1204 std::tie(ShadowPtr, OriginPtr) = 1205 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1206 1207 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1208 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1209 (void)NewSI; 1210 1211 if (SI->isAtomic()) 1212 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1213 1214 if (MS.TrackOrigins && !SI->isAtomic()) 1215 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1216 OriginAlignment, InstrumentWithCalls); 1217 } 1218 } 1219 1220 /// Helper function to insert a warning at IRB's current insert point. 1221 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1222 if (!Origin) 1223 Origin = (Value *)IRB.getInt32(0); 1224 assert(Origin->getType()->isIntegerTy()); 1225 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1226 // FIXME: Insert UnreachableInst if !MS.Recover? 1227 // This may invalidate some of the following checks and needs to be done 1228 // at the very end. 1229 } 1230 1231 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1232 bool AsCall) { 1233 IRBuilder<> IRB(OrigIns); 1234 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1235 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1236 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1237 1238 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1239 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1240 insertWarningFn(IRB, Origin); 1241 } 1242 return; 1243 } 1244 1245 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1246 1247 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1248 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1249 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1250 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1251 Value *ConvertedShadow2 = 1252 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1253 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1254 ? Origin 1255 : (Value *)IRB.getInt32(0)}); 1256 } else { 1257 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1258 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1259 Cmp, OrigIns, 1260 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1261 1262 IRB.SetInsertPoint(CheckTerm); 1263 insertWarningFn(IRB, Origin); 1264 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1265 } 1266 } 1267 1268 void materializeChecks(bool InstrumentWithCalls) { 1269 for (const auto &ShadowData : InstrumentationList) { 1270 Instruction *OrigIns = ShadowData.OrigIns; 1271 Value *Shadow = ShadowData.Shadow; 1272 Value *Origin = ShadowData.Origin; 1273 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1274 } 1275 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1276 } 1277 1278 // Returns the last instruction in the new prologue 1279 void insertKmsanPrologue(IRBuilder<> &IRB) { 1280 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1281 Constant *Zero = IRB.getInt32(0); 1282 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1283 {Zero, IRB.getInt32(0)}, "param_shadow"); 1284 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1285 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1286 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1287 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1288 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1289 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1290 MS.VAArgOverflowSizeTLS = 1291 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1292 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1293 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1294 {Zero, IRB.getInt32(5)}, "param_origin"); 1295 MS.RetvalOriginTLS = 1296 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1297 {Zero, IRB.getInt32(6)}, "retval_origin"); 1298 } 1299 1300 /// Add MemorySanitizer instrumentation to a function. 1301 bool runOnFunction() { 1302 // Iterate all BBs in depth-first order and create shadow instructions 1303 // for all instructions (where applicable). 1304 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1305 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1306 visit(*BB); 1307 1308 // Finalize PHI nodes. 1309 for (PHINode *PN : ShadowPHINodes) { 1310 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1311 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1312 size_t NumValues = PN->getNumIncomingValues(); 1313 for (size_t v = 0; v < NumValues; v++) { 1314 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1315 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1316 } 1317 } 1318 1319 VAHelper->finalizeInstrumentation(); 1320 1321 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1322 // instrumenting only allocas. 1323 if (InstrumentLifetimeStart) { 1324 for (auto Item : LifetimeStartList) { 1325 instrumentAlloca(*Item.second, Item.first); 1326 AllocaSet.erase(Item.second); 1327 } 1328 } 1329 // Poison the allocas for which we didn't instrument the corresponding 1330 // lifetime intrinsics. 1331 for (AllocaInst *AI : AllocaSet) 1332 instrumentAlloca(*AI); 1333 1334 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1335 InstrumentationList.size() + StoreList.size() > 1336 (unsigned)ClInstrumentationWithCallThreshold; 1337 1338 // Insert shadow value checks. 1339 materializeChecks(InstrumentWithCalls); 1340 1341 // Delayed instrumentation of StoreInst. 1342 // This may not add new address checks. 1343 materializeStores(InstrumentWithCalls); 1344 1345 return true; 1346 } 1347 1348 /// Compute the shadow type that corresponds to a given Value. 1349 Type *getShadowTy(Value *V) { 1350 return getShadowTy(V->getType()); 1351 } 1352 1353 /// Compute the shadow type that corresponds to a given Type. 1354 Type *getShadowTy(Type *OrigTy) { 1355 if (!OrigTy->isSized()) { 1356 return nullptr; 1357 } 1358 // For integer type, shadow is the same as the original type. 1359 // This may return weird-sized types like i1. 1360 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1361 return IT; 1362 const DataLayout &DL = F.getParent()->getDataLayout(); 1363 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1364 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1365 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1366 cast<FixedVectorType>(VT)->getNumElements()); 1367 } 1368 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1369 return ArrayType::get(getShadowTy(AT->getElementType()), 1370 AT->getNumElements()); 1371 } 1372 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1373 SmallVector<Type*, 4> Elements; 1374 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1375 Elements.push_back(getShadowTy(ST->getElementType(i))); 1376 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1377 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1378 return Res; 1379 } 1380 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1381 return IntegerType::get(*MS.C, TypeSize); 1382 } 1383 1384 /// Flatten a vector type. 1385 Type *getShadowTyNoVec(Type *ty) { 1386 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1387 return IntegerType::get(*MS.C, 1388 vt->getPrimitiveSizeInBits().getFixedSize()); 1389 return ty; 1390 } 1391 1392 /// Extract combined shadow of struct elements as a bool 1393 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1394 IRBuilder<> &IRB) { 1395 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1396 Value *Aggregator = FalseVal; 1397 1398 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1399 // Combine by ORing together each element's bool shadow 1400 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1401 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1402 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1403 1404 if (Aggregator != FalseVal) 1405 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1406 else 1407 Aggregator = ShadowBool; 1408 } 1409 1410 return Aggregator; 1411 } 1412 1413 // Extract combined shadow of array elements 1414 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1415 IRBuilder<> &IRB) { 1416 if (!Array->getNumElements()) 1417 return IRB.getIntN(/* width */ 1, /* value */ 0); 1418 1419 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1420 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1421 1422 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1423 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1424 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1425 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1426 } 1427 return Aggregator; 1428 } 1429 1430 /// Convert a shadow value to it's flattened variant. The resulting 1431 /// shadow may not necessarily have the same bit width as the input 1432 /// value, but it will always be comparable to zero. 1433 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1434 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1435 return collapseStructShadow(Struct, V, IRB); 1436 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1437 return collapseArrayShadow(Array, V, IRB); 1438 Type *Ty = V->getType(); 1439 Type *NoVecTy = getShadowTyNoVec(Ty); 1440 if (Ty == NoVecTy) return V; 1441 return IRB.CreateBitCast(V, NoVecTy); 1442 } 1443 1444 // Convert a scalar value to an i1 by comparing with 0 1445 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1446 Type *VTy = V->getType(); 1447 assert(VTy->isIntegerTy()); 1448 if (VTy->getIntegerBitWidth() == 1) 1449 // Just converting a bool to a bool, so do nothing. 1450 return V; 1451 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1452 } 1453 1454 /// Compute the integer shadow offset that corresponds to a given 1455 /// application address. 1456 /// 1457 /// Offset = (Addr & ~AndMask) ^ XorMask 1458 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1459 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1460 1461 uint64_t AndMask = MS.MapParams->AndMask; 1462 if (AndMask) 1463 OffsetLong = 1464 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1465 1466 uint64_t XorMask = MS.MapParams->XorMask; 1467 if (XorMask) 1468 OffsetLong = 1469 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1470 return OffsetLong; 1471 } 1472 1473 /// Compute the shadow and origin addresses corresponding to a given 1474 /// application address. 1475 /// 1476 /// Shadow = ShadowBase + Offset 1477 /// Origin = (OriginBase + Offset) & ~3ULL 1478 std::pair<Value *, Value *> 1479 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1480 MaybeAlign Alignment) { 1481 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1482 Value *ShadowLong = ShadowOffset; 1483 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1484 if (ShadowBase != 0) { 1485 ShadowLong = 1486 IRB.CreateAdd(ShadowLong, 1487 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1488 } 1489 Value *ShadowPtr = 1490 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1491 Value *OriginPtr = nullptr; 1492 if (MS.TrackOrigins) { 1493 Value *OriginLong = ShadowOffset; 1494 uint64_t OriginBase = MS.MapParams->OriginBase; 1495 if (OriginBase != 0) 1496 OriginLong = IRB.CreateAdd(OriginLong, 1497 ConstantInt::get(MS.IntptrTy, OriginBase)); 1498 if (!Alignment || *Alignment < kMinOriginAlignment) { 1499 uint64_t Mask = kMinOriginAlignment.value() - 1; 1500 OriginLong = 1501 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1502 } 1503 OriginPtr = 1504 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1505 } 1506 return std::make_pair(ShadowPtr, OriginPtr); 1507 } 1508 1509 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1510 IRBuilder<> &IRB, 1511 Type *ShadowTy, 1512 bool isStore) { 1513 Value *ShadowOriginPtrs; 1514 const DataLayout &DL = F.getParent()->getDataLayout(); 1515 int Size = DL.getTypeStoreSize(ShadowTy); 1516 1517 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1518 Value *AddrCast = 1519 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1520 if (Getter) { 1521 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1522 } else { 1523 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1524 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1525 : MS.MsanMetadataPtrForLoadN, 1526 {AddrCast, SizeVal}); 1527 } 1528 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1529 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1530 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1531 1532 return std::make_pair(ShadowPtr, OriginPtr); 1533 } 1534 1535 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1536 Type *ShadowTy, 1537 MaybeAlign Alignment, 1538 bool isStore) { 1539 if (MS.CompileKernel) 1540 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1541 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1542 } 1543 1544 /// Compute the shadow address for a given function argument. 1545 /// 1546 /// Shadow = ParamTLS+ArgOffset. 1547 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1548 int ArgOffset) { 1549 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1550 if (ArgOffset) 1551 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1552 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1553 "_msarg"); 1554 } 1555 1556 /// Compute the origin address for a given function argument. 1557 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1558 int ArgOffset) { 1559 if (!MS.TrackOrigins) 1560 return nullptr; 1561 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1562 if (ArgOffset) 1563 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1564 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1565 "_msarg_o"); 1566 } 1567 1568 /// Compute the shadow address for a retval. 1569 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1570 return IRB.CreatePointerCast(MS.RetvalTLS, 1571 PointerType::get(getShadowTy(A), 0), 1572 "_msret"); 1573 } 1574 1575 /// Compute the origin address for a retval. 1576 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1577 // We keep a single origin for the entire retval. Might be too optimistic. 1578 return MS.RetvalOriginTLS; 1579 } 1580 1581 /// Set SV to be the shadow value for V. 1582 void setShadow(Value *V, Value *SV) { 1583 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1584 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1585 } 1586 1587 /// Set Origin to be the origin value for V. 1588 void setOrigin(Value *V, Value *Origin) { 1589 if (!MS.TrackOrigins) return; 1590 assert(!OriginMap.count(V) && "Values may only have one origin"); 1591 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1592 OriginMap[V] = Origin; 1593 } 1594 1595 Constant *getCleanShadow(Type *OrigTy) { 1596 Type *ShadowTy = getShadowTy(OrigTy); 1597 if (!ShadowTy) 1598 return nullptr; 1599 return Constant::getNullValue(ShadowTy); 1600 } 1601 1602 /// Create a clean shadow value for a given value. 1603 /// 1604 /// Clean shadow (all zeroes) means all bits of the value are defined 1605 /// (initialized). 1606 Constant *getCleanShadow(Value *V) { 1607 return getCleanShadow(V->getType()); 1608 } 1609 1610 /// Create a dirty shadow of a given shadow type. 1611 Constant *getPoisonedShadow(Type *ShadowTy) { 1612 assert(ShadowTy); 1613 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1614 return Constant::getAllOnesValue(ShadowTy); 1615 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1616 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1617 getPoisonedShadow(AT->getElementType())); 1618 return ConstantArray::get(AT, Vals); 1619 } 1620 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1621 SmallVector<Constant *, 4> Vals; 1622 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1623 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1624 return ConstantStruct::get(ST, Vals); 1625 } 1626 llvm_unreachable("Unexpected shadow type"); 1627 } 1628 1629 /// Create a dirty shadow for a given value. 1630 Constant *getPoisonedShadow(Value *V) { 1631 Type *ShadowTy = getShadowTy(V); 1632 if (!ShadowTy) 1633 return nullptr; 1634 return getPoisonedShadow(ShadowTy); 1635 } 1636 1637 /// Create a clean (zero) origin. 1638 Value *getCleanOrigin() { 1639 return Constant::getNullValue(MS.OriginTy); 1640 } 1641 1642 /// Get the shadow value for a given Value. 1643 /// 1644 /// This function either returns the value set earlier with setShadow, 1645 /// or extracts if from ParamTLS (for function arguments). 1646 Value *getShadow(Value *V) { 1647 if (!PropagateShadow) return getCleanShadow(V); 1648 if (Instruction *I = dyn_cast<Instruction>(V)) { 1649 if (I->getMetadata("nosanitize")) 1650 return getCleanShadow(V); 1651 // For instructions the shadow is already stored in the map. 1652 Value *Shadow = ShadowMap[V]; 1653 if (!Shadow) { 1654 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1655 (void)I; 1656 assert(Shadow && "No shadow for a value"); 1657 } 1658 return Shadow; 1659 } 1660 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1661 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1662 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1663 (void)U; 1664 return AllOnes; 1665 } 1666 if (Argument *A = dyn_cast<Argument>(V)) { 1667 // For arguments we compute the shadow on demand and store it in the map. 1668 Value **ShadowPtr = &ShadowMap[V]; 1669 if (*ShadowPtr) 1670 return *ShadowPtr; 1671 Function *F = A->getParent(); 1672 IRBuilder<> EntryIRB(FnPrologueEnd); 1673 unsigned ArgOffset = 0; 1674 const DataLayout &DL = F->getParent()->getDataLayout(); 1675 for (auto &FArg : F->args()) { 1676 if (!FArg.getType()->isSized()) { 1677 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1678 continue; 1679 } 1680 1681 bool FArgByVal = FArg.hasByValAttr(); 1682 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1683 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1684 unsigned Size = 1685 FArg.hasByValAttr() 1686 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1687 : DL.getTypeAllocSize(FArg.getType()); 1688 1689 if (A == &FArg) { 1690 bool Overflow = ArgOffset + Size > kParamTLSSize; 1691 if (FArgEagerCheck) { 1692 *ShadowPtr = getCleanShadow(V); 1693 setOrigin(A, getCleanOrigin()); 1694 continue; 1695 } else if (FArgByVal) { 1696 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1697 // ByVal pointer itself has clean shadow. We copy the actual 1698 // argument shadow to the underlying memory. 1699 // Figure out maximal valid memcpy alignment. 1700 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1701 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1702 Value *CpShadowPtr = 1703 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1704 /*isStore*/ true) 1705 .first; 1706 // TODO(glider): need to copy origins. 1707 if (Overflow) { 1708 // ParamTLS overflow. 1709 EntryIRB.CreateMemSet( 1710 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1711 Size, ArgAlign); 1712 } else { 1713 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1714 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1715 CopyAlign, Size); 1716 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1717 (void)Cpy; 1718 } 1719 *ShadowPtr = getCleanShadow(V); 1720 } else { 1721 // Shadow over TLS 1722 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1723 if (Overflow) { 1724 // ParamTLS overflow. 1725 *ShadowPtr = getCleanShadow(V); 1726 } else { 1727 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1728 kShadowTLSAlignment); 1729 } 1730 } 1731 LLVM_DEBUG(dbgs() 1732 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1733 if (MS.TrackOrigins && !Overflow) { 1734 Value *OriginPtr = 1735 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1736 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1737 } else { 1738 setOrigin(A, getCleanOrigin()); 1739 } 1740 1741 break; 1742 } 1743 1744 if (!FArgEagerCheck) 1745 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1746 } 1747 assert(*ShadowPtr && "Could not find shadow for an argument"); 1748 return *ShadowPtr; 1749 } 1750 // For everything else the shadow is zero. 1751 return getCleanShadow(V); 1752 } 1753 1754 /// Get the shadow for i-th argument of the instruction I. 1755 Value *getShadow(Instruction *I, int i) { 1756 return getShadow(I->getOperand(i)); 1757 } 1758 1759 /// Get the origin for a value. 1760 Value *getOrigin(Value *V) { 1761 if (!MS.TrackOrigins) return nullptr; 1762 if (!PropagateShadow) return getCleanOrigin(); 1763 if (isa<Constant>(V)) return getCleanOrigin(); 1764 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1765 "Unexpected value type in getOrigin()"); 1766 if (Instruction *I = dyn_cast<Instruction>(V)) { 1767 if (I->getMetadata("nosanitize")) 1768 return getCleanOrigin(); 1769 } 1770 Value *Origin = OriginMap[V]; 1771 assert(Origin && "Missing origin"); 1772 return Origin; 1773 } 1774 1775 /// Get the origin for i-th argument of the instruction I. 1776 Value *getOrigin(Instruction *I, int i) { 1777 return getOrigin(I->getOperand(i)); 1778 } 1779 1780 /// Remember the place where a shadow check should be inserted. 1781 /// 1782 /// This location will be later instrumented with a check that will print a 1783 /// UMR warning in runtime if the shadow value is not 0. 1784 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1785 assert(Shadow); 1786 if (!InsertChecks) return; 1787 #ifndef NDEBUG 1788 Type *ShadowTy = Shadow->getType(); 1789 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1790 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1791 "Can only insert checks for integer, vector, and aggregate shadow " 1792 "types"); 1793 #endif 1794 InstrumentationList.push_back( 1795 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1796 } 1797 1798 /// Remember the place where a shadow check should be inserted. 1799 /// 1800 /// This location will be later instrumented with a check that will print a 1801 /// UMR warning in runtime if the value is not fully defined. 1802 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1803 assert(Val); 1804 Value *Shadow, *Origin; 1805 if (ClCheckConstantShadow) { 1806 Shadow = getShadow(Val); 1807 if (!Shadow) return; 1808 Origin = getOrigin(Val); 1809 } else { 1810 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1811 if (!Shadow) return; 1812 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1813 } 1814 insertShadowCheck(Shadow, Origin, OrigIns); 1815 } 1816 1817 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1818 switch (a) { 1819 case AtomicOrdering::NotAtomic: 1820 return AtomicOrdering::NotAtomic; 1821 case AtomicOrdering::Unordered: 1822 case AtomicOrdering::Monotonic: 1823 case AtomicOrdering::Release: 1824 return AtomicOrdering::Release; 1825 case AtomicOrdering::Acquire: 1826 case AtomicOrdering::AcquireRelease: 1827 return AtomicOrdering::AcquireRelease; 1828 case AtomicOrdering::SequentiallyConsistent: 1829 return AtomicOrdering::SequentiallyConsistent; 1830 } 1831 llvm_unreachable("Unknown ordering"); 1832 } 1833 1834 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1835 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1836 uint32_t OrderingTable[NumOrderings] = {}; 1837 1838 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1839 OrderingTable[(int)AtomicOrderingCABI::release] = 1840 (int)AtomicOrderingCABI::release; 1841 OrderingTable[(int)AtomicOrderingCABI::consume] = 1842 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1843 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1844 (int)AtomicOrderingCABI::acq_rel; 1845 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1846 (int)AtomicOrderingCABI::seq_cst; 1847 1848 return ConstantDataVector::get(IRB.getContext(), 1849 makeArrayRef(OrderingTable, NumOrderings)); 1850 } 1851 1852 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1853 switch (a) { 1854 case AtomicOrdering::NotAtomic: 1855 return AtomicOrdering::NotAtomic; 1856 case AtomicOrdering::Unordered: 1857 case AtomicOrdering::Monotonic: 1858 case AtomicOrdering::Acquire: 1859 return AtomicOrdering::Acquire; 1860 case AtomicOrdering::Release: 1861 case AtomicOrdering::AcquireRelease: 1862 return AtomicOrdering::AcquireRelease; 1863 case AtomicOrdering::SequentiallyConsistent: 1864 return AtomicOrdering::SequentiallyConsistent; 1865 } 1866 llvm_unreachable("Unknown ordering"); 1867 } 1868 1869 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1870 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1871 uint32_t OrderingTable[NumOrderings] = {}; 1872 1873 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1874 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1875 OrderingTable[(int)AtomicOrderingCABI::consume] = 1876 (int)AtomicOrderingCABI::acquire; 1877 OrderingTable[(int)AtomicOrderingCABI::release] = 1878 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1879 (int)AtomicOrderingCABI::acq_rel; 1880 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1881 (int)AtomicOrderingCABI::seq_cst; 1882 1883 return ConstantDataVector::get(IRB.getContext(), 1884 makeArrayRef(OrderingTable, NumOrderings)); 1885 } 1886 1887 // ------------------- Visitors. 1888 using InstVisitor<MemorySanitizerVisitor>::visit; 1889 void visit(Instruction &I) { 1890 if (I.getMetadata("nosanitize")) 1891 return; 1892 // Don't want to visit if we're in the prologue 1893 if (isInPrologue(I)) 1894 return; 1895 InstVisitor<MemorySanitizerVisitor>::visit(I); 1896 } 1897 1898 /// Instrument LoadInst 1899 /// 1900 /// Loads the corresponding shadow and (optionally) origin. 1901 /// Optionally, checks that the load address is fully defined. 1902 void visitLoadInst(LoadInst &I) { 1903 assert(I.getType()->isSized() && "Load type must have size"); 1904 assert(!I.getMetadata("nosanitize")); 1905 IRBuilder<> IRB(I.getNextNode()); 1906 Type *ShadowTy = getShadowTy(&I); 1907 Value *Addr = I.getPointerOperand(); 1908 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1909 const Align Alignment = assumeAligned(I.getAlignment()); 1910 if (PropagateShadow) { 1911 std::tie(ShadowPtr, OriginPtr) = 1912 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1913 setShadow(&I, 1914 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1915 } else { 1916 setShadow(&I, getCleanShadow(&I)); 1917 } 1918 1919 if (ClCheckAccessAddress) 1920 insertShadowCheck(I.getPointerOperand(), &I); 1921 1922 if (I.isAtomic()) 1923 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1924 1925 if (MS.TrackOrigins) { 1926 if (PropagateShadow) { 1927 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1928 setOrigin( 1929 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1930 } else { 1931 setOrigin(&I, getCleanOrigin()); 1932 } 1933 } 1934 } 1935 1936 /// Instrument StoreInst 1937 /// 1938 /// Stores the corresponding shadow and (optionally) origin. 1939 /// Optionally, checks that the store address is fully defined. 1940 void visitStoreInst(StoreInst &I) { 1941 StoreList.push_back(&I); 1942 if (ClCheckAccessAddress) 1943 insertShadowCheck(I.getPointerOperand(), &I); 1944 } 1945 1946 void handleCASOrRMW(Instruction &I) { 1947 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1948 1949 IRBuilder<> IRB(&I); 1950 Value *Addr = I.getOperand(0); 1951 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1952 /*isStore*/ true) 1953 .first; 1954 1955 if (ClCheckAccessAddress) 1956 insertShadowCheck(Addr, &I); 1957 1958 // Only test the conditional argument of cmpxchg instruction. 1959 // The other argument can potentially be uninitialized, but we can not 1960 // detect this situation reliably without possible false positives. 1961 if (isa<AtomicCmpXchgInst>(I)) 1962 insertShadowCheck(I.getOperand(1), &I); 1963 1964 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1965 1966 setShadow(&I, getCleanShadow(&I)); 1967 setOrigin(&I, getCleanOrigin()); 1968 } 1969 1970 void visitAtomicRMWInst(AtomicRMWInst &I) { 1971 handleCASOrRMW(I); 1972 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1973 } 1974 1975 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1976 handleCASOrRMW(I); 1977 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1978 } 1979 1980 // Vector manipulation. 1981 void visitExtractElementInst(ExtractElementInst &I) { 1982 insertShadowCheck(I.getOperand(1), &I); 1983 IRBuilder<> IRB(&I); 1984 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1985 "_msprop")); 1986 setOrigin(&I, getOrigin(&I, 0)); 1987 } 1988 1989 void visitInsertElementInst(InsertElementInst &I) { 1990 insertShadowCheck(I.getOperand(2), &I); 1991 IRBuilder<> IRB(&I); 1992 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1993 I.getOperand(2), "_msprop")); 1994 setOriginForNaryOp(I); 1995 } 1996 1997 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1998 IRBuilder<> IRB(&I); 1999 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2000 I.getShuffleMask(), "_msprop")); 2001 setOriginForNaryOp(I); 2002 } 2003 2004 // Casts. 2005 void visitSExtInst(SExtInst &I) { 2006 IRBuilder<> IRB(&I); 2007 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2008 setOrigin(&I, getOrigin(&I, 0)); 2009 } 2010 2011 void visitZExtInst(ZExtInst &I) { 2012 IRBuilder<> IRB(&I); 2013 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2014 setOrigin(&I, getOrigin(&I, 0)); 2015 } 2016 2017 void visitTruncInst(TruncInst &I) { 2018 IRBuilder<> IRB(&I); 2019 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2020 setOrigin(&I, getOrigin(&I, 0)); 2021 } 2022 2023 void visitBitCastInst(BitCastInst &I) { 2024 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2025 // a musttail call and a ret, don't instrument. New instructions are not 2026 // allowed after a musttail call. 2027 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2028 if (CI->isMustTailCall()) 2029 return; 2030 IRBuilder<> IRB(&I); 2031 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2032 setOrigin(&I, getOrigin(&I, 0)); 2033 } 2034 2035 void visitPtrToIntInst(PtrToIntInst &I) { 2036 IRBuilder<> IRB(&I); 2037 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2038 "_msprop_ptrtoint")); 2039 setOrigin(&I, getOrigin(&I, 0)); 2040 } 2041 2042 void visitIntToPtrInst(IntToPtrInst &I) { 2043 IRBuilder<> IRB(&I); 2044 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2045 "_msprop_inttoptr")); 2046 setOrigin(&I, getOrigin(&I, 0)); 2047 } 2048 2049 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2050 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2051 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2052 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2053 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2054 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2055 2056 /// Propagate shadow for bitwise AND. 2057 /// 2058 /// This code is exact, i.e. if, for example, a bit in the left argument 2059 /// is defined and 0, then neither the value not definedness of the 2060 /// corresponding bit in B don't affect the resulting shadow. 2061 void visitAnd(BinaryOperator &I) { 2062 IRBuilder<> IRB(&I); 2063 // "And" of 0 and a poisoned value results in unpoisoned value. 2064 // 1&1 => 1; 0&1 => 0; p&1 => p; 2065 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2066 // 1&p => p; 0&p => 0; p&p => p; 2067 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2068 Value *S1 = getShadow(&I, 0); 2069 Value *S2 = getShadow(&I, 1); 2070 Value *V1 = I.getOperand(0); 2071 Value *V2 = I.getOperand(1); 2072 if (V1->getType() != S1->getType()) { 2073 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2074 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2075 } 2076 Value *S1S2 = IRB.CreateAnd(S1, S2); 2077 Value *V1S2 = IRB.CreateAnd(V1, S2); 2078 Value *S1V2 = IRB.CreateAnd(S1, V2); 2079 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2080 setOriginForNaryOp(I); 2081 } 2082 2083 void visitOr(BinaryOperator &I) { 2084 IRBuilder<> IRB(&I); 2085 // "Or" of 1 and a poisoned value results in unpoisoned value. 2086 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2087 // 1|0 => 1; 0|0 => 0; p|0 => p; 2088 // 1|p => 1; 0|p => p; p|p => p; 2089 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2090 Value *S1 = getShadow(&I, 0); 2091 Value *S2 = getShadow(&I, 1); 2092 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2093 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2094 if (V1->getType() != S1->getType()) { 2095 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2096 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2097 } 2098 Value *S1S2 = IRB.CreateAnd(S1, S2); 2099 Value *V1S2 = IRB.CreateAnd(V1, S2); 2100 Value *S1V2 = IRB.CreateAnd(S1, V2); 2101 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2102 setOriginForNaryOp(I); 2103 } 2104 2105 /// Default propagation of shadow and/or origin. 2106 /// 2107 /// This class implements the general case of shadow propagation, used in all 2108 /// cases where we don't know and/or don't care about what the operation 2109 /// actually does. It converts all input shadow values to a common type 2110 /// (extending or truncating as necessary), and bitwise OR's them. 2111 /// 2112 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2113 /// fully initialized), and less prone to false positives. 2114 /// 2115 /// This class also implements the general case of origin propagation. For a 2116 /// Nary operation, result origin is set to the origin of an argument that is 2117 /// not entirely initialized. If there is more than one such arguments, the 2118 /// rightmost of them is picked. It does not matter which one is picked if all 2119 /// arguments are initialized. 2120 template <bool CombineShadow> 2121 class Combiner { 2122 Value *Shadow = nullptr; 2123 Value *Origin = nullptr; 2124 IRBuilder<> &IRB; 2125 MemorySanitizerVisitor *MSV; 2126 2127 public: 2128 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2129 : IRB(IRB), MSV(MSV) {} 2130 2131 /// Add a pair of shadow and origin values to the mix. 2132 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2133 if (CombineShadow) { 2134 assert(OpShadow); 2135 if (!Shadow) 2136 Shadow = OpShadow; 2137 else { 2138 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2139 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2140 } 2141 } 2142 2143 if (MSV->MS.TrackOrigins) { 2144 assert(OpOrigin); 2145 if (!Origin) { 2146 Origin = OpOrigin; 2147 } else { 2148 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2149 // No point in adding something that might result in 0 origin value. 2150 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2151 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2152 Value *Cond = 2153 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2154 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2155 } 2156 } 2157 } 2158 return *this; 2159 } 2160 2161 /// Add an application value to the mix. 2162 Combiner &Add(Value *V) { 2163 Value *OpShadow = MSV->getShadow(V); 2164 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2165 return Add(OpShadow, OpOrigin); 2166 } 2167 2168 /// Set the current combined values as the given instruction's shadow 2169 /// and origin. 2170 void Done(Instruction *I) { 2171 if (CombineShadow) { 2172 assert(Shadow); 2173 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2174 MSV->setShadow(I, Shadow); 2175 } 2176 if (MSV->MS.TrackOrigins) { 2177 assert(Origin); 2178 MSV->setOrigin(I, Origin); 2179 } 2180 } 2181 }; 2182 2183 using ShadowAndOriginCombiner = Combiner<true>; 2184 using OriginCombiner = Combiner<false>; 2185 2186 /// Propagate origin for arbitrary operation. 2187 void setOriginForNaryOp(Instruction &I) { 2188 if (!MS.TrackOrigins) return; 2189 IRBuilder<> IRB(&I); 2190 OriginCombiner OC(this, IRB); 2191 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2192 OC.Add(OI->get()); 2193 OC.Done(&I); 2194 } 2195 2196 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2197 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2198 "Vector of pointers is not a valid shadow type"); 2199 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2200 Ty->getScalarSizeInBits() 2201 : Ty->getPrimitiveSizeInBits(); 2202 } 2203 2204 /// Cast between two shadow types, extending or truncating as 2205 /// necessary. 2206 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2207 bool Signed = false) { 2208 Type *srcTy = V->getType(); 2209 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2210 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2211 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2212 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2213 2214 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2215 return IRB.CreateIntCast(V, dstTy, Signed); 2216 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2217 cast<FixedVectorType>(dstTy)->getNumElements() == 2218 cast<FixedVectorType>(srcTy)->getNumElements()) 2219 return IRB.CreateIntCast(V, dstTy, Signed); 2220 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2221 Value *V2 = 2222 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2223 return IRB.CreateBitCast(V2, dstTy); 2224 // TODO: handle struct types. 2225 } 2226 2227 /// Cast an application value to the type of its own shadow. 2228 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2229 Type *ShadowTy = getShadowTy(V); 2230 if (V->getType() == ShadowTy) 2231 return V; 2232 if (V->getType()->isPtrOrPtrVectorTy()) 2233 return IRB.CreatePtrToInt(V, ShadowTy); 2234 else 2235 return IRB.CreateBitCast(V, ShadowTy); 2236 } 2237 2238 /// Propagate shadow for arbitrary operation. 2239 void handleShadowOr(Instruction &I) { 2240 IRBuilder<> IRB(&I); 2241 ShadowAndOriginCombiner SC(this, IRB); 2242 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2243 SC.Add(OI->get()); 2244 SC.Done(&I); 2245 } 2246 2247 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2248 2249 // Handle multiplication by constant. 2250 // 2251 // Handle a special case of multiplication by constant that may have one or 2252 // more zeros in the lower bits. This makes corresponding number of lower bits 2253 // of the result zero as well. We model it by shifting the other operand 2254 // shadow left by the required number of bits. Effectively, we transform 2255 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2256 // We use multiplication by 2**N instead of shift to cover the case of 2257 // multiplication by 0, which may occur in some elements of a vector operand. 2258 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2259 Value *OtherArg) { 2260 Constant *ShadowMul; 2261 Type *Ty = ConstArg->getType(); 2262 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2263 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2264 Type *EltTy = VTy->getElementType(); 2265 SmallVector<Constant *, 16> Elements; 2266 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2267 if (ConstantInt *Elt = 2268 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2269 const APInt &V = Elt->getValue(); 2270 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2271 Elements.push_back(ConstantInt::get(EltTy, V2)); 2272 } else { 2273 Elements.push_back(ConstantInt::get(EltTy, 1)); 2274 } 2275 } 2276 ShadowMul = ConstantVector::get(Elements); 2277 } else { 2278 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2279 const APInt &V = Elt->getValue(); 2280 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2281 ShadowMul = ConstantInt::get(Ty, V2); 2282 } else { 2283 ShadowMul = ConstantInt::get(Ty, 1); 2284 } 2285 } 2286 2287 IRBuilder<> IRB(&I); 2288 setShadow(&I, 2289 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2290 setOrigin(&I, getOrigin(OtherArg)); 2291 } 2292 2293 void visitMul(BinaryOperator &I) { 2294 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2295 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2296 if (constOp0 && !constOp1) 2297 handleMulByConstant(I, constOp0, I.getOperand(1)); 2298 else if (constOp1 && !constOp0) 2299 handleMulByConstant(I, constOp1, I.getOperand(0)); 2300 else 2301 handleShadowOr(I); 2302 } 2303 2304 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2305 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2306 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2307 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2308 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2309 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2310 2311 void handleIntegerDiv(Instruction &I) { 2312 IRBuilder<> IRB(&I); 2313 // Strict on the second argument. 2314 insertShadowCheck(I.getOperand(1), &I); 2315 setShadow(&I, getShadow(&I, 0)); 2316 setOrigin(&I, getOrigin(&I, 0)); 2317 } 2318 2319 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2320 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2321 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2322 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2323 2324 // Floating point division is side-effect free. We can not require that the 2325 // divisor is fully initialized and must propagate shadow. See PR37523. 2326 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2327 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2328 2329 /// Instrument == and != comparisons. 2330 /// 2331 /// Sometimes the comparison result is known even if some of the bits of the 2332 /// arguments are not. 2333 void handleEqualityComparison(ICmpInst &I) { 2334 IRBuilder<> IRB(&I); 2335 Value *A = I.getOperand(0); 2336 Value *B = I.getOperand(1); 2337 Value *Sa = getShadow(A); 2338 Value *Sb = getShadow(B); 2339 2340 // Get rid of pointers and vectors of pointers. 2341 // For ints (and vectors of ints), types of A and Sa match, 2342 // and this is a no-op. 2343 A = IRB.CreatePointerCast(A, Sa->getType()); 2344 B = IRB.CreatePointerCast(B, Sb->getType()); 2345 2346 // A == B <==> (C = A^B) == 0 2347 // A != B <==> (C = A^B) != 0 2348 // Sc = Sa | Sb 2349 Value *C = IRB.CreateXor(A, B); 2350 Value *Sc = IRB.CreateOr(Sa, Sb); 2351 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2352 // Result is defined if one of the following is true 2353 // * there is a defined 1 bit in C 2354 // * C is fully defined 2355 // Si = !(C & ~Sc) && Sc 2356 Value *Zero = Constant::getNullValue(Sc->getType()); 2357 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2358 Value *Si = 2359 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2360 IRB.CreateICmpEQ( 2361 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2362 Si->setName("_msprop_icmp"); 2363 setShadow(&I, Si); 2364 setOriginForNaryOp(I); 2365 } 2366 2367 /// Build the lowest possible value of V, taking into account V's 2368 /// uninitialized bits. 2369 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2370 bool isSigned) { 2371 if (isSigned) { 2372 // Split shadow into sign bit and other bits. 2373 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2374 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2375 // Maximise the undefined shadow bit, minimize other undefined bits. 2376 return 2377 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2378 } else { 2379 // Minimize undefined bits. 2380 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2381 } 2382 } 2383 2384 /// Build the highest possible value of V, taking into account V's 2385 /// uninitialized bits. 2386 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2387 bool isSigned) { 2388 if (isSigned) { 2389 // Split shadow into sign bit and other bits. 2390 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2391 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2392 // Minimise the undefined shadow bit, maximise other undefined bits. 2393 return 2394 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2395 } else { 2396 // Maximize undefined bits. 2397 return IRB.CreateOr(A, Sa); 2398 } 2399 } 2400 2401 /// Instrument relational comparisons. 2402 /// 2403 /// This function does exact shadow propagation for all relational 2404 /// comparisons of integers, pointers and vectors of those. 2405 /// FIXME: output seems suboptimal when one of the operands is a constant 2406 void handleRelationalComparisonExact(ICmpInst &I) { 2407 IRBuilder<> IRB(&I); 2408 Value *A = I.getOperand(0); 2409 Value *B = I.getOperand(1); 2410 Value *Sa = getShadow(A); 2411 Value *Sb = getShadow(B); 2412 2413 // Get rid of pointers and vectors of pointers. 2414 // For ints (and vectors of ints), types of A and Sa match, 2415 // and this is a no-op. 2416 A = IRB.CreatePointerCast(A, Sa->getType()); 2417 B = IRB.CreatePointerCast(B, Sb->getType()); 2418 2419 // Let [a0, a1] be the interval of possible values of A, taking into account 2420 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2421 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2422 bool IsSigned = I.isSigned(); 2423 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2424 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2425 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2426 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2427 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2428 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2429 Value *Si = IRB.CreateXor(S1, S2); 2430 setShadow(&I, Si); 2431 setOriginForNaryOp(I); 2432 } 2433 2434 /// Instrument signed relational comparisons. 2435 /// 2436 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2437 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2438 void handleSignedRelationalComparison(ICmpInst &I) { 2439 Constant *constOp; 2440 Value *op = nullptr; 2441 CmpInst::Predicate pre; 2442 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2443 op = I.getOperand(0); 2444 pre = I.getPredicate(); 2445 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2446 op = I.getOperand(1); 2447 pre = I.getSwappedPredicate(); 2448 } else { 2449 handleShadowOr(I); 2450 return; 2451 } 2452 2453 if ((constOp->isNullValue() && 2454 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2455 (constOp->isAllOnesValue() && 2456 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2457 IRBuilder<> IRB(&I); 2458 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2459 "_msprop_icmp_s"); 2460 setShadow(&I, Shadow); 2461 setOrigin(&I, getOrigin(op)); 2462 } else { 2463 handleShadowOr(I); 2464 } 2465 } 2466 2467 void visitICmpInst(ICmpInst &I) { 2468 if (!ClHandleICmp) { 2469 handleShadowOr(I); 2470 return; 2471 } 2472 if (I.isEquality()) { 2473 handleEqualityComparison(I); 2474 return; 2475 } 2476 2477 assert(I.isRelational()); 2478 if (ClHandleICmpExact) { 2479 handleRelationalComparisonExact(I); 2480 return; 2481 } 2482 if (I.isSigned()) { 2483 handleSignedRelationalComparison(I); 2484 return; 2485 } 2486 2487 assert(I.isUnsigned()); 2488 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2489 handleRelationalComparisonExact(I); 2490 return; 2491 } 2492 2493 handleShadowOr(I); 2494 } 2495 2496 void visitFCmpInst(FCmpInst &I) { 2497 handleShadowOr(I); 2498 } 2499 2500 void handleShift(BinaryOperator &I) { 2501 IRBuilder<> IRB(&I); 2502 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2503 // Otherwise perform the same shift on S1. 2504 Value *S1 = getShadow(&I, 0); 2505 Value *S2 = getShadow(&I, 1); 2506 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2507 S2->getType()); 2508 Value *V2 = I.getOperand(1); 2509 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2510 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2511 setOriginForNaryOp(I); 2512 } 2513 2514 void visitShl(BinaryOperator &I) { handleShift(I); } 2515 void visitAShr(BinaryOperator &I) { handleShift(I); } 2516 void visitLShr(BinaryOperator &I) { handleShift(I); } 2517 2518 /// Instrument llvm.memmove 2519 /// 2520 /// At this point we don't know if llvm.memmove will be inlined or not. 2521 /// If we don't instrument it and it gets inlined, 2522 /// our interceptor will not kick in and we will lose the memmove. 2523 /// If we instrument the call here, but it does not get inlined, 2524 /// we will memove the shadow twice: which is bad in case 2525 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2526 /// 2527 /// Similar situation exists for memcpy and memset. 2528 void visitMemMoveInst(MemMoveInst &I) { 2529 IRBuilder<> IRB(&I); 2530 IRB.CreateCall( 2531 MS.MemmoveFn, 2532 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2533 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2534 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2535 I.eraseFromParent(); 2536 } 2537 2538 // Similar to memmove: avoid copying shadow twice. 2539 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2540 // FIXME: consider doing manual inline for small constant sizes and proper 2541 // alignment. 2542 void visitMemCpyInst(MemCpyInst &I) { 2543 IRBuilder<> IRB(&I); 2544 IRB.CreateCall( 2545 MS.MemcpyFn, 2546 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2547 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2548 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2549 I.eraseFromParent(); 2550 } 2551 2552 // Same as memcpy. 2553 void visitMemSetInst(MemSetInst &I) { 2554 IRBuilder<> IRB(&I); 2555 IRB.CreateCall( 2556 MS.MemsetFn, 2557 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2558 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2559 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2560 I.eraseFromParent(); 2561 } 2562 2563 void visitVAStartInst(VAStartInst &I) { 2564 VAHelper->visitVAStartInst(I); 2565 } 2566 2567 void visitVACopyInst(VACopyInst &I) { 2568 VAHelper->visitVACopyInst(I); 2569 } 2570 2571 /// Handle vector store-like intrinsics. 2572 /// 2573 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2574 /// has 1 pointer argument and 1 vector argument, returns void. 2575 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2576 IRBuilder<> IRB(&I); 2577 Value* Addr = I.getArgOperand(0); 2578 Value *Shadow = getShadow(&I, 1); 2579 Value *ShadowPtr, *OriginPtr; 2580 2581 // We don't know the pointer alignment (could be unaligned SSE store!). 2582 // Have to assume to worst case. 2583 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2584 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2585 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2586 2587 if (ClCheckAccessAddress) 2588 insertShadowCheck(Addr, &I); 2589 2590 // FIXME: factor out common code from materializeStores 2591 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2592 return true; 2593 } 2594 2595 /// Handle vector load-like intrinsics. 2596 /// 2597 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2598 /// has 1 pointer argument, returns a vector. 2599 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2600 IRBuilder<> IRB(&I); 2601 Value *Addr = I.getArgOperand(0); 2602 2603 Type *ShadowTy = getShadowTy(&I); 2604 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2605 if (PropagateShadow) { 2606 // We don't know the pointer alignment (could be unaligned SSE load!). 2607 // Have to assume to worst case. 2608 const Align Alignment = Align(1); 2609 std::tie(ShadowPtr, OriginPtr) = 2610 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2611 setShadow(&I, 2612 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2613 } else { 2614 setShadow(&I, getCleanShadow(&I)); 2615 } 2616 2617 if (ClCheckAccessAddress) 2618 insertShadowCheck(Addr, &I); 2619 2620 if (MS.TrackOrigins) { 2621 if (PropagateShadow) 2622 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2623 else 2624 setOrigin(&I, getCleanOrigin()); 2625 } 2626 return true; 2627 } 2628 2629 /// Handle (SIMD arithmetic)-like intrinsics. 2630 /// 2631 /// Instrument intrinsics with any number of arguments of the same type, 2632 /// equal to the return type. The type should be simple (no aggregates or 2633 /// pointers; vectors are fine). 2634 /// Caller guarantees that this intrinsic does not access memory. 2635 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2636 Type *RetTy = I.getType(); 2637 if (!(RetTy->isIntOrIntVectorTy() || 2638 RetTy->isFPOrFPVectorTy() || 2639 RetTy->isX86_MMXTy())) 2640 return false; 2641 2642 unsigned NumArgOperands = I.getNumArgOperands(); 2643 for (unsigned i = 0; i < NumArgOperands; ++i) { 2644 Type *Ty = I.getArgOperand(i)->getType(); 2645 if (Ty != RetTy) 2646 return false; 2647 } 2648 2649 IRBuilder<> IRB(&I); 2650 ShadowAndOriginCombiner SC(this, IRB); 2651 for (unsigned i = 0; i < NumArgOperands; ++i) 2652 SC.Add(I.getArgOperand(i)); 2653 SC.Done(&I); 2654 2655 return true; 2656 } 2657 2658 /// Heuristically instrument unknown intrinsics. 2659 /// 2660 /// The main purpose of this code is to do something reasonable with all 2661 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2662 /// We recognize several classes of intrinsics by their argument types and 2663 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2664 /// sure that we know what the intrinsic does. 2665 /// 2666 /// We special-case intrinsics where this approach fails. See llvm.bswap 2667 /// handling as an example of that. 2668 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2669 unsigned NumArgOperands = I.getNumArgOperands(); 2670 if (NumArgOperands == 0) 2671 return false; 2672 2673 if (NumArgOperands == 2 && 2674 I.getArgOperand(0)->getType()->isPointerTy() && 2675 I.getArgOperand(1)->getType()->isVectorTy() && 2676 I.getType()->isVoidTy() && 2677 !I.onlyReadsMemory()) { 2678 // This looks like a vector store. 2679 return handleVectorStoreIntrinsic(I); 2680 } 2681 2682 if (NumArgOperands == 1 && 2683 I.getArgOperand(0)->getType()->isPointerTy() && 2684 I.getType()->isVectorTy() && 2685 I.onlyReadsMemory()) { 2686 // This looks like a vector load. 2687 return handleVectorLoadIntrinsic(I); 2688 } 2689 2690 if (I.doesNotAccessMemory()) 2691 if (maybeHandleSimpleNomemIntrinsic(I)) 2692 return true; 2693 2694 // FIXME: detect and handle SSE maskstore/maskload 2695 return false; 2696 } 2697 2698 void handleInvariantGroup(IntrinsicInst &I) { 2699 setShadow(&I, getShadow(&I, 0)); 2700 setOrigin(&I, getOrigin(&I, 0)); 2701 } 2702 2703 void handleLifetimeStart(IntrinsicInst &I) { 2704 if (!PoisonStack) 2705 return; 2706 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2707 if (!AI) 2708 InstrumentLifetimeStart = false; 2709 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2710 } 2711 2712 void handleBswap(IntrinsicInst &I) { 2713 IRBuilder<> IRB(&I); 2714 Value *Op = I.getArgOperand(0); 2715 Type *OpType = Op->getType(); 2716 Function *BswapFunc = Intrinsic::getDeclaration( 2717 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2718 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2719 setOrigin(&I, getOrigin(Op)); 2720 } 2721 2722 // Instrument vector convert intrinsic. 2723 // 2724 // This function instruments intrinsics like cvtsi2ss: 2725 // %Out = int_xxx_cvtyyy(%ConvertOp) 2726 // or 2727 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2728 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2729 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2730 // elements from \p CopyOp. 2731 // In most cases conversion involves floating-point value which may trigger a 2732 // hardware exception when not fully initialized. For this reason we require 2733 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2734 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2735 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2736 // return a fully initialized value. 2737 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2738 bool HasRoundingMode = false) { 2739 IRBuilder<> IRB(&I); 2740 Value *CopyOp, *ConvertOp; 2741 2742 assert((!HasRoundingMode || 2743 isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) && 2744 "Invalid rounding mode"); 2745 2746 switch (I.getNumArgOperands() - HasRoundingMode) { 2747 case 2: 2748 CopyOp = I.getArgOperand(0); 2749 ConvertOp = I.getArgOperand(1); 2750 break; 2751 case 1: 2752 ConvertOp = I.getArgOperand(0); 2753 CopyOp = nullptr; 2754 break; 2755 default: 2756 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2757 } 2758 2759 // The first *NumUsedElements* elements of ConvertOp are converted to the 2760 // same number of output elements. The rest of the output is copied from 2761 // CopyOp, or (if not available) filled with zeroes. 2762 // Combine shadow for elements of ConvertOp that are used in this operation, 2763 // and insert a check. 2764 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2765 // int->any conversion. 2766 Value *ConvertShadow = getShadow(ConvertOp); 2767 Value *AggShadow = nullptr; 2768 if (ConvertOp->getType()->isVectorTy()) { 2769 AggShadow = IRB.CreateExtractElement( 2770 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2771 for (int i = 1; i < NumUsedElements; ++i) { 2772 Value *MoreShadow = IRB.CreateExtractElement( 2773 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2774 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2775 } 2776 } else { 2777 AggShadow = ConvertShadow; 2778 } 2779 assert(AggShadow->getType()->isIntegerTy()); 2780 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2781 2782 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2783 // ConvertOp. 2784 if (CopyOp) { 2785 assert(CopyOp->getType() == I.getType()); 2786 assert(CopyOp->getType()->isVectorTy()); 2787 Value *ResultShadow = getShadow(CopyOp); 2788 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2789 for (int i = 0; i < NumUsedElements; ++i) { 2790 ResultShadow = IRB.CreateInsertElement( 2791 ResultShadow, ConstantInt::getNullValue(EltTy), 2792 ConstantInt::get(IRB.getInt32Ty(), i)); 2793 } 2794 setShadow(&I, ResultShadow); 2795 setOrigin(&I, getOrigin(CopyOp)); 2796 } else { 2797 setShadow(&I, getCleanShadow(&I)); 2798 setOrigin(&I, getCleanOrigin()); 2799 } 2800 } 2801 2802 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2803 // zeroes if it is zero, and all ones otherwise. 2804 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2805 if (S->getType()->isVectorTy()) 2806 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2807 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2808 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2809 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2810 } 2811 2812 // Given a vector, extract its first element, and return all 2813 // zeroes if it is zero, and all ones otherwise. 2814 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2815 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2816 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2817 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2818 } 2819 2820 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2821 Type *T = S->getType(); 2822 assert(T->isVectorTy()); 2823 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2824 return IRB.CreateSExt(S2, T); 2825 } 2826 2827 // Instrument vector shift intrinsic. 2828 // 2829 // This function instruments intrinsics like int_x86_avx2_psll_w. 2830 // Intrinsic shifts %In by %ShiftSize bits. 2831 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2832 // size, and the rest is ignored. Behavior is defined even if shift size is 2833 // greater than register (or field) width. 2834 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2835 assert(I.getNumArgOperands() == 2); 2836 IRBuilder<> IRB(&I); 2837 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2838 // Otherwise perform the same shift on S1. 2839 Value *S1 = getShadow(&I, 0); 2840 Value *S2 = getShadow(&I, 1); 2841 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2842 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2843 Value *V1 = I.getOperand(0); 2844 Value *V2 = I.getOperand(1); 2845 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2846 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2847 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2848 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2849 setOriginForNaryOp(I); 2850 } 2851 2852 // Get an X86_MMX-sized vector type. 2853 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2854 const unsigned X86_MMXSizeInBits = 64; 2855 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2856 "Illegal MMX vector element size"); 2857 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2858 X86_MMXSizeInBits / EltSizeInBits); 2859 } 2860 2861 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2862 // intrinsic. 2863 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2864 switch (id) { 2865 case Intrinsic::x86_sse2_packsswb_128: 2866 case Intrinsic::x86_sse2_packuswb_128: 2867 return Intrinsic::x86_sse2_packsswb_128; 2868 2869 case Intrinsic::x86_sse2_packssdw_128: 2870 case Intrinsic::x86_sse41_packusdw: 2871 return Intrinsic::x86_sse2_packssdw_128; 2872 2873 case Intrinsic::x86_avx2_packsswb: 2874 case Intrinsic::x86_avx2_packuswb: 2875 return Intrinsic::x86_avx2_packsswb; 2876 2877 case Intrinsic::x86_avx2_packssdw: 2878 case Intrinsic::x86_avx2_packusdw: 2879 return Intrinsic::x86_avx2_packssdw; 2880 2881 case Intrinsic::x86_mmx_packsswb: 2882 case Intrinsic::x86_mmx_packuswb: 2883 return Intrinsic::x86_mmx_packsswb; 2884 2885 case Intrinsic::x86_mmx_packssdw: 2886 return Intrinsic::x86_mmx_packssdw; 2887 default: 2888 llvm_unreachable("unexpected intrinsic id"); 2889 } 2890 } 2891 2892 // Instrument vector pack intrinsic. 2893 // 2894 // This function instruments intrinsics like x86_mmx_packsswb, that 2895 // packs elements of 2 input vectors into half as many bits with saturation. 2896 // Shadow is propagated with the signed variant of the same intrinsic applied 2897 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2898 // EltSizeInBits is used only for x86mmx arguments. 2899 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2900 assert(I.getNumArgOperands() == 2); 2901 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2902 IRBuilder<> IRB(&I); 2903 Value *S1 = getShadow(&I, 0); 2904 Value *S2 = getShadow(&I, 1); 2905 assert(isX86_MMX || S1->getType()->isVectorTy()); 2906 2907 // SExt and ICmpNE below must apply to individual elements of input vectors. 2908 // In case of x86mmx arguments, cast them to appropriate vector types and 2909 // back. 2910 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2911 if (isX86_MMX) { 2912 S1 = IRB.CreateBitCast(S1, T); 2913 S2 = IRB.CreateBitCast(S2, T); 2914 } 2915 Value *S1_ext = IRB.CreateSExt( 2916 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2917 Value *S2_ext = IRB.CreateSExt( 2918 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2919 if (isX86_MMX) { 2920 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2921 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2922 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2923 } 2924 2925 Function *ShadowFn = Intrinsic::getDeclaration( 2926 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2927 2928 Value *S = 2929 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2930 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2931 setShadow(&I, S); 2932 setOriginForNaryOp(I); 2933 } 2934 2935 // Instrument sum-of-absolute-differences intrinsic. 2936 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2937 const unsigned SignificantBitsPerResultElement = 16; 2938 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2939 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2940 unsigned ZeroBitsPerResultElement = 2941 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2942 2943 IRBuilder<> IRB(&I); 2944 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2945 S = IRB.CreateBitCast(S, ResTy); 2946 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2947 ResTy); 2948 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2949 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2950 setShadow(&I, S); 2951 setOriginForNaryOp(I); 2952 } 2953 2954 // Instrument multiply-add intrinsic. 2955 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2956 unsigned EltSizeInBits = 0) { 2957 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2958 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2959 IRBuilder<> IRB(&I); 2960 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2961 S = IRB.CreateBitCast(S, ResTy); 2962 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2963 ResTy); 2964 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2965 setShadow(&I, S); 2966 setOriginForNaryOp(I); 2967 } 2968 2969 // Instrument compare-packed intrinsic. 2970 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2971 // all-ones shadow. 2972 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2973 IRBuilder<> IRB(&I); 2974 Type *ResTy = getShadowTy(&I); 2975 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2976 Value *S = IRB.CreateSExt( 2977 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2978 setShadow(&I, S); 2979 setOriginForNaryOp(I); 2980 } 2981 2982 // Instrument compare-scalar intrinsic. 2983 // This handles both cmp* intrinsics which return the result in the first 2984 // element of a vector, and comi* which return the result as i32. 2985 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2986 IRBuilder<> IRB(&I); 2987 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2988 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2989 setShadow(&I, S); 2990 setOriginForNaryOp(I); 2991 } 2992 2993 // Instrument generic vector reduction intrinsics 2994 // by ORing together all their fields. 2995 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2996 IRBuilder<> IRB(&I); 2997 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2998 setShadow(&I, S); 2999 setOrigin(&I, getOrigin(&I, 0)); 3000 } 3001 3002 // Instrument vector.reduce.or intrinsic. 3003 // Valid (non-poisoned) set bits in the operand pull low the 3004 // corresponding shadow bits. 3005 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3006 IRBuilder<> IRB(&I); 3007 Value *OperandShadow = getShadow(&I, 0); 3008 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3009 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3010 // Bit N is clean if any field's bit N is 1 and unpoison 3011 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3012 // Otherwise, it is clean if every field's bit N is unpoison 3013 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3014 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3015 3016 setShadow(&I, S); 3017 setOrigin(&I, getOrigin(&I, 0)); 3018 } 3019 3020 // Instrument vector.reduce.and intrinsic. 3021 // Valid (non-poisoned) unset bits in the operand pull down the 3022 // corresponding shadow bits. 3023 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3024 IRBuilder<> IRB(&I); 3025 Value *OperandShadow = getShadow(&I, 0); 3026 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3027 // Bit N is clean if any field's bit N is 0 and unpoison 3028 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3029 // Otherwise, it is clean if every field's bit N is unpoison 3030 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3031 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3032 3033 setShadow(&I, S); 3034 setOrigin(&I, getOrigin(&I, 0)); 3035 } 3036 3037 void handleStmxcsr(IntrinsicInst &I) { 3038 IRBuilder<> IRB(&I); 3039 Value* Addr = I.getArgOperand(0); 3040 Type *Ty = IRB.getInt32Ty(); 3041 Value *ShadowPtr = 3042 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3043 3044 IRB.CreateStore(getCleanShadow(Ty), 3045 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3046 3047 if (ClCheckAccessAddress) 3048 insertShadowCheck(Addr, &I); 3049 } 3050 3051 void handleLdmxcsr(IntrinsicInst &I) { 3052 if (!InsertChecks) return; 3053 3054 IRBuilder<> IRB(&I); 3055 Value *Addr = I.getArgOperand(0); 3056 Type *Ty = IRB.getInt32Ty(); 3057 const Align Alignment = Align(1); 3058 Value *ShadowPtr, *OriginPtr; 3059 std::tie(ShadowPtr, OriginPtr) = 3060 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3061 3062 if (ClCheckAccessAddress) 3063 insertShadowCheck(Addr, &I); 3064 3065 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3066 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3067 : getCleanOrigin(); 3068 insertShadowCheck(Shadow, Origin, &I); 3069 } 3070 3071 void handleMaskedStore(IntrinsicInst &I) { 3072 IRBuilder<> IRB(&I); 3073 Value *V = I.getArgOperand(0); 3074 Value *Addr = I.getArgOperand(1); 3075 const Align Alignment( 3076 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3077 Value *Mask = I.getArgOperand(3); 3078 Value *Shadow = getShadow(V); 3079 3080 Value *ShadowPtr; 3081 Value *OriginPtr; 3082 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3083 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3084 3085 if (ClCheckAccessAddress) { 3086 insertShadowCheck(Addr, &I); 3087 // Uninitialized mask is kind of like uninitialized address, but not as 3088 // scary. 3089 insertShadowCheck(Mask, &I); 3090 } 3091 3092 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3093 3094 if (MS.TrackOrigins) { 3095 auto &DL = F.getParent()->getDataLayout(); 3096 paintOrigin(IRB, getOrigin(V), OriginPtr, 3097 DL.getTypeStoreSize(Shadow->getType()), 3098 std::max(Alignment, kMinOriginAlignment)); 3099 } 3100 } 3101 3102 bool handleMaskedLoad(IntrinsicInst &I) { 3103 IRBuilder<> IRB(&I); 3104 Value *Addr = I.getArgOperand(0); 3105 const Align Alignment( 3106 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3107 Value *Mask = I.getArgOperand(2); 3108 Value *PassThru = I.getArgOperand(3); 3109 3110 Type *ShadowTy = getShadowTy(&I); 3111 Value *ShadowPtr, *OriginPtr; 3112 if (PropagateShadow) { 3113 std::tie(ShadowPtr, OriginPtr) = 3114 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3115 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 3116 getShadow(PassThru), "_msmaskedld")); 3117 } else { 3118 setShadow(&I, getCleanShadow(&I)); 3119 } 3120 3121 if (ClCheckAccessAddress) { 3122 insertShadowCheck(Addr, &I); 3123 insertShadowCheck(Mask, &I); 3124 } 3125 3126 if (MS.TrackOrigins) { 3127 if (PropagateShadow) { 3128 // Choose between PassThru's and the loaded value's origins. 3129 Value *MaskedPassThruShadow = IRB.CreateAnd( 3130 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3131 3132 Value *Acc = IRB.CreateExtractElement( 3133 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3134 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3135 ->getNumElements(); 3136 i < N; ++i) { 3137 Value *More = IRB.CreateExtractElement( 3138 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3139 Acc = IRB.CreateOr(Acc, More); 3140 } 3141 3142 Value *Origin = IRB.CreateSelect( 3143 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3144 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3145 3146 setOrigin(&I, Origin); 3147 } else { 3148 setOrigin(&I, getCleanOrigin()); 3149 } 3150 } 3151 return true; 3152 } 3153 3154 // Instrument BMI / BMI2 intrinsics. 3155 // All of these intrinsics are Z = I(X, Y) 3156 // where the types of all operands and the result match, and are either i32 or i64. 3157 // The following instrumentation happens to work for all of them: 3158 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3159 void handleBmiIntrinsic(IntrinsicInst &I) { 3160 IRBuilder<> IRB(&I); 3161 Type *ShadowTy = getShadowTy(&I); 3162 3163 // If any bit of the mask operand is poisoned, then the whole thing is. 3164 Value *SMask = getShadow(&I, 1); 3165 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3166 ShadowTy); 3167 // Apply the same intrinsic to the shadow of the first operand. 3168 Value *S = IRB.CreateCall(I.getCalledFunction(), 3169 {getShadow(&I, 0), I.getOperand(1)}); 3170 S = IRB.CreateOr(SMask, S); 3171 setShadow(&I, S); 3172 setOriginForNaryOp(I); 3173 } 3174 3175 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3176 SmallVector<int, 8> Mask; 3177 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3178 Mask.append(2, X); 3179 } 3180 return Mask; 3181 } 3182 3183 // Instrument pclmul intrinsics. 3184 // These intrinsics operate either on odd or on even elements of the input 3185 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3186 // Replace the unused elements with copies of the used ones, ex: 3187 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3188 // or 3189 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3190 // and then apply the usual shadow combining logic. 3191 void handlePclmulIntrinsic(IntrinsicInst &I) { 3192 IRBuilder<> IRB(&I); 3193 Type *ShadowTy = getShadowTy(&I); 3194 unsigned Width = 3195 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3196 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3197 "pclmul 3rd operand must be a constant"); 3198 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3199 Value *Shuf0 = 3200 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3201 getPclmulMask(Width, Imm & 0x01)); 3202 Value *Shuf1 = 3203 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3204 getPclmulMask(Width, Imm & 0x10)); 3205 ShadowAndOriginCombiner SOC(this, IRB); 3206 SOC.Add(Shuf0, getOrigin(&I, 0)); 3207 SOC.Add(Shuf1, getOrigin(&I, 1)); 3208 SOC.Done(&I); 3209 } 3210 3211 // Instrument _mm_*_sd intrinsics 3212 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3213 IRBuilder<> IRB(&I); 3214 Value *First = getShadow(&I, 0); 3215 Value *Second = getShadow(&I, 1); 3216 // High word of first operand, low word of second 3217 Value *Shadow = 3218 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3219 3220 setShadow(&I, Shadow); 3221 setOriginForNaryOp(I); 3222 } 3223 3224 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3225 IRBuilder<> IRB(&I); 3226 Value *First = getShadow(&I, 0); 3227 Value *Second = getShadow(&I, 1); 3228 Value *OrShadow = IRB.CreateOr(First, Second); 3229 // High word of first operand, low word of both OR'd together 3230 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3231 llvm::makeArrayRef<int>({2, 1})); 3232 3233 setShadow(&I, Shadow); 3234 setOriginForNaryOp(I); 3235 } 3236 3237 // Instrument abs intrinsic. 3238 // handleUnknownIntrinsic can't handle it because of the last 3239 // is_int_min_poison argument which does not match the result type. 3240 void handleAbsIntrinsic(IntrinsicInst &I) { 3241 assert(I.getType()->isIntOrIntVectorTy()); 3242 assert(I.getArgOperand(0)->getType() == I.getType()); 3243 3244 // FIXME: Handle is_int_min_poison. 3245 IRBuilder<> IRB(&I); 3246 setShadow(&I, getShadow(&I, 0)); 3247 setOrigin(&I, getOrigin(&I, 0)); 3248 } 3249 3250 void visitIntrinsicInst(IntrinsicInst &I) { 3251 switch (I.getIntrinsicID()) { 3252 case Intrinsic::abs: 3253 handleAbsIntrinsic(I); 3254 break; 3255 case Intrinsic::lifetime_start: 3256 handleLifetimeStart(I); 3257 break; 3258 case Intrinsic::launder_invariant_group: 3259 case Intrinsic::strip_invariant_group: 3260 handleInvariantGroup(I); 3261 break; 3262 case Intrinsic::bswap: 3263 handleBswap(I); 3264 break; 3265 case Intrinsic::masked_store: 3266 handleMaskedStore(I); 3267 break; 3268 case Intrinsic::masked_load: 3269 handleMaskedLoad(I); 3270 break; 3271 case Intrinsic::vector_reduce_and: 3272 handleVectorReduceAndIntrinsic(I); 3273 break; 3274 case Intrinsic::vector_reduce_or: 3275 handleVectorReduceOrIntrinsic(I); 3276 break; 3277 case Intrinsic::vector_reduce_add: 3278 case Intrinsic::vector_reduce_xor: 3279 case Intrinsic::vector_reduce_mul: 3280 handleVectorReduceIntrinsic(I); 3281 break; 3282 case Intrinsic::x86_sse_stmxcsr: 3283 handleStmxcsr(I); 3284 break; 3285 case Intrinsic::x86_sse_ldmxcsr: 3286 handleLdmxcsr(I); 3287 break; 3288 case Intrinsic::x86_avx512_vcvtsd2usi64: 3289 case Intrinsic::x86_avx512_vcvtsd2usi32: 3290 case Intrinsic::x86_avx512_vcvtss2usi64: 3291 case Intrinsic::x86_avx512_vcvtss2usi32: 3292 case Intrinsic::x86_avx512_cvttss2usi64: 3293 case Intrinsic::x86_avx512_cvttss2usi: 3294 case Intrinsic::x86_avx512_cvttsd2usi64: 3295 case Intrinsic::x86_avx512_cvttsd2usi: 3296 case Intrinsic::x86_avx512_cvtusi2ss: 3297 case Intrinsic::x86_avx512_cvtusi642sd: 3298 case Intrinsic::x86_avx512_cvtusi642ss: 3299 handleVectorConvertIntrinsic(I, 1, true); 3300 break; 3301 case Intrinsic::x86_sse2_cvtsd2si64: 3302 case Intrinsic::x86_sse2_cvtsd2si: 3303 case Intrinsic::x86_sse2_cvtsd2ss: 3304 case Intrinsic::x86_sse2_cvttsd2si64: 3305 case Intrinsic::x86_sse2_cvttsd2si: 3306 case Intrinsic::x86_sse_cvtss2si64: 3307 case Intrinsic::x86_sse_cvtss2si: 3308 case Intrinsic::x86_sse_cvttss2si64: 3309 case Intrinsic::x86_sse_cvttss2si: 3310 handleVectorConvertIntrinsic(I, 1); 3311 break; 3312 case Intrinsic::x86_sse_cvtps2pi: 3313 case Intrinsic::x86_sse_cvttps2pi: 3314 handleVectorConvertIntrinsic(I, 2); 3315 break; 3316 3317 case Intrinsic::x86_avx512_psll_w_512: 3318 case Intrinsic::x86_avx512_psll_d_512: 3319 case Intrinsic::x86_avx512_psll_q_512: 3320 case Intrinsic::x86_avx512_pslli_w_512: 3321 case Intrinsic::x86_avx512_pslli_d_512: 3322 case Intrinsic::x86_avx512_pslli_q_512: 3323 case Intrinsic::x86_avx512_psrl_w_512: 3324 case Intrinsic::x86_avx512_psrl_d_512: 3325 case Intrinsic::x86_avx512_psrl_q_512: 3326 case Intrinsic::x86_avx512_psra_w_512: 3327 case Intrinsic::x86_avx512_psra_d_512: 3328 case Intrinsic::x86_avx512_psra_q_512: 3329 case Intrinsic::x86_avx512_psrli_w_512: 3330 case Intrinsic::x86_avx512_psrli_d_512: 3331 case Intrinsic::x86_avx512_psrli_q_512: 3332 case Intrinsic::x86_avx512_psrai_w_512: 3333 case Intrinsic::x86_avx512_psrai_d_512: 3334 case Intrinsic::x86_avx512_psrai_q_512: 3335 case Intrinsic::x86_avx512_psra_q_256: 3336 case Intrinsic::x86_avx512_psra_q_128: 3337 case Intrinsic::x86_avx512_psrai_q_256: 3338 case Intrinsic::x86_avx512_psrai_q_128: 3339 case Intrinsic::x86_avx2_psll_w: 3340 case Intrinsic::x86_avx2_psll_d: 3341 case Intrinsic::x86_avx2_psll_q: 3342 case Intrinsic::x86_avx2_pslli_w: 3343 case Intrinsic::x86_avx2_pslli_d: 3344 case Intrinsic::x86_avx2_pslli_q: 3345 case Intrinsic::x86_avx2_psrl_w: 3346 case Intrinsic::x86_avx2_psrl_d: 3347 case Intrinsic::x86_avx2_psrl_q: 3348 case Intrinsic::x86_avx2_psra_w: 3349 case Intrinsic::x86_avx2_psra_d: 3350 case Intrinsic::x86_avx2_psrli_w: 3351 case Intrinsic::x86_avx2_psrli_d: 3352 case Intrinsic::x86_avx2_psrli_q: 3353 case Intrinsic::x86_avx2_psrai_w: 3354 case Intrinsic::x86_avx2_psrai_d: 3355 case Intrinsic::x86_sse2_psll_w: 3356 case Intrinsic::x86_sse2_psll_d: 3357 case Intrinsic::x86_sse2_psll_q: 3358 case Intrinsic::x86_sse2_pslli_w: 3359 case Intrinsic::x86_sse2_pslli_d: 3360 case Intrinsic::x86_sse2_pslli_q: 3361 case Intrinsic::x86_sse2_psrl_w: 3362 case Intrinsic::x86_sse2_psrl_d: 3363 case Intrinsic::x86_sse2_psrl_q: 3364 case Intrinsic::x86_sse2_psra_w: 3365 case Intrinsic::x86_sse2_psra_d: 3366 case Intrinsic::x86_sse2_psrli_w: 3367 case Intrinsic::x86_sse2_psrli_d: 3368 case Intrinsic::x86_sse2_psrli_q: 3369 case Intrinsic::x86_sse2_psrai_w: 3370 case Intrinsic::x86_sse2_psrai_d: 3371 case Intrinsic::x86_mmx_psll_w: 3372 case Intrinsic::x86_mmx_psll_d: 3373 case Intrinsic::x86_mmx_psll_q: 3374 case Intrinsic::x86_mmx_pslli_w: 3375 case Intrinsic::x86_mmx_pslli_d: 3376 case Intrinsic::x86_mmx_pslli_q: 3377 case Intrinsic::x86_mmx_psrl_w: 3378 case Intrinsic::x86_mmx_psrl_d: 3379 case Intrinsic::x86_mmx_psrl_q: 3380 case Intrinsic::x86_mmx_psra_w: 3381 case Intrinsic::x86_mmx_psra_d: 3382 case Intrinsic::x86_mmx_psrli_w: 3383 case Intrinsic::x86_mmx_psrli_d: 3384 case Intrinsic::x86_mmx_psrli_q: 3385 case Intrinsic::x86_mmx_psrai_w: 3386 case Intrinsic::x86_mmx_psrai_d: 3387 handleVectorShiftIntrinsic(I, /* Variable */ false); 3388 break; 3389 case Intrinsic::x86_avx2_psllv_d: 3390 case Intrinsic::x86_avx2_psllv_d_256: 3391 case Intrinsic::x86_avx512_psllv_d_512: 3392 case Intrinsic::x86_avx2_psllv_q: 3393 case Intrinsic::x86_avx2_psllv_q_256: 3394 case Intrinsic::x86_avx512_psllv_q_512: 3395 case Intrinsic::x86_avx2_psrlv_d: 3396 case Intrinsic::x86_avx2_psrlv_d_256: 3397 case Intrinsic::x86_avx512_psrlv_d_512: 3398 case Intrinsic::x86_avx2_psrlv_q: 3399 case Intrinsic::x86_avx2_psrlv_q_256: 3400 case Intrinsic::x86_avx512_psrlv_q_512: 3401 case Intrinsic::x86_avx2_psrav_d: 3402 case Intrinsic::x86_avx2_psrav_d_256: 3403 case Intrinsic::x86_avx512_psrav_d_512: 3404 case Intrinsic::x86_avx512_psrav_q_128: 3405 case Intrinsic::x86_avx512_psrav_q_256: 3406 case Intrinsic::x86_avx512_psrav_q_512: 3407 handleVectorShiftIntrinsic(I, /* Variable */ true); 3408 break; 3409 3410 case Intrinsic::x86_sse2_packsswb_128: 3411 case Intrinsic::x86_sse2_packssdw_128: 3412 case Intrinsic::x86_sse2_packuswb_128: 3413 case Intrinsic::x86_sse41_packusdw: 3414 case Intrinsic::x86_avx2_packsswb: 3415 case Intrinsic::x86_avx2_packssdw: 3416 case Intrinsic::x86_avx2_packuswb: 3417 case Intrinsic::x86_avx2_packusdw: 3418 handleVectorPackIntrinsic(I); 3419 break; 3420 3421 case Intrinsic::x86_mmx_packsswb: 3422 case Intrinsic::x86_mmx_packuswb: 3423 handleVectorPackIntrinsic(I, 16); 3424 break; 3425 3426 case Intrinsic::x86_mmx_packssdw: 3427 handleVectorPackIntrinsic(I, 32); 3428 break; 3429 3430 case Intrinsic::x86_mmx_psad_bw: 3431 case Intrinsic::x86_sse2_psad_bw: 3432 case Intrinsic::x86_avx2_psad_bw: 3433 handleVectorSadIntrinsic(I); 3434 break; 3435 3436 case Intrinsic::x86_sse2_pmadd_wd: 3437 case Intrinsic::x86_avx2_pmadd_wd: 3438 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3439 case Intrinsic::x86_avx2_pmadd_ub_sw: 3440 handleVectorPmaddIntrinsic(I); 3441 break; 3442 3443 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3444 handleVectorPmaddIntrinsic(I, 8); 3445 break; 3446 3447 case Intrinsic::x86_mmx_pmadd_wd: 3448 handleVectorPmaddIntrinsic(I, 16); 3449 break; 3450 3451 case Intrinsic::x86_sse_cmp_ss: 3452 case Intrinsic::x86_sse2_cmp_sd: 3453 case Intrinsic::x86_sse_comieq_ss: 3454 case Intrinsic::x86_sse_comilt_ss: 3455 case Intrinsic::x86_sse_comile_ss: 3456 case Intrinsic::x86_sse_comigt_ss: 3457 case Intrinsic::x86_sse_comige_ss: 3458 case Intrinsic::x86_sse_comineq_ss: 3459 case Intrinsic::x86_sse_ucomieq_ss: 3460 case Intrinsic::x86_sse_ucomilt_ss: 3461 case Intrinsic::x86_sse_ucomile_ss: 3462 case Intrinsic::x86_sse_ucomigt_ss: 3463 case Intrinsic::x86_sse_ucomige_ss: 3464 case Intrinsic::x86_sse_ucomineq_ss: 3465 case Intrinsic::x86_sse2_comieq_sd: 3466 case Intrinsic::x86_sse2_comilt_sd: 3467 case Intrinsic::x86_sse2_comile_sd: 3468 case Intrinsic::x86_sse2_comigt_sd: 3469 case Intrinsic::x86_sse2_comige_sd: 3470 case Intrinsic::x86_sse2_comineq_sd: 3471 case Intrinsic::x86_sse2_ucomieq_sd: 3472 case Intrinsic::x86_sse2_ucomilt_sd: 3473 case Intrinsic::x86_sse2_ucomile_sd: 3474 case Intrinsic::x86_sse2_ucomigt_sd: 3475 case Intrinsic::x86_sse2_ucomige_sd: 3476 case Intrinsic::x86_sse2_ucomineq_sd: 3477 handleVectorCompareScalarIntrinsic(I); 3478 break; 3479 3480 case Intrinsic::x86_sse_cmp_ps: 3481 case Intrinsic::x86_sse2_cmp_pd: 3482 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3483 // generates reasonably looking IR that fails in the backend with "Do not 3484 // know how to split the result of this operator!". 3485 handleVectorComparePackedIntrinsic(I); 3486 break; 3487 3488 case Intrinsic::x86_bmi_bextr_32: 3489 case Intrinsic::x86_bmi_bextr_64: 3490 case Intrinsic::x86_bmi_bzhi_32: 3491 case Intrinsic::x86_bmi_bzhi_64: 3492 case Intrinsic::x86_bmi_pdep_32: 3493 case Intrinsic::x86_bmi_pdep_64: 3494 case Intrinsic::x86_bmi_pext_32: 3495 case Intrinsic::x86_bmi_pext_64: 3496 handleBmiIntrinsic(I); 3497 break; 3498 3499 case Intrinsic::x86_pclmulqdq: 3500 case Intrinsic::x86_pclmulqdq_256: 3501 case Intrinsic::x86_pclmulqdq_512: 3502 handlePclmulIntrinsic(I); 3503 break; 3504 3505 case Intrinsic::x86_sse41_round_sd: 3506 handleUnarySdIntrinsic(I); 3507 break; 3508 case Intrinsic::x86_sse2_max_sd: 3509 case Intrinsic::x86_sse2_min_sd: 3510 handleBinarySdIntrinsic(I); 3511 break; 3512 3513 case Intrinsic::is_constant: 3514 // The result of llvm.is.constant() is always defined. 3515 setShadow(&I, getCleanShadow(&I)); 3516 setOrigin(&I, getCleanOrigin()); 3517 break; 3518 3519 default: 3520 if (!handleUnknownIntrinsic(I)) 3521 visitInstruction(I); 3522 break; 3523 } 3524 } 3525 3526 void visitLibAtomicLoad(CallBase &CB) { 3527 // Since we use getNextNode here, we can't have CB terminate the BB. 3528 assert(isa<CallInst>(CB)); 3529 3530 IRBuilder<> IRB(&CB); 3531 Value *Size = CB.getArgOperand(0); 3532 Value *SrcPtr = CB.getArgOperand(1); 3533 Value *DstPtr = CB.getArgOperand(2); 3534 Value *Ordering = CB.getArgOperand(3); 3535 // Convert the call to have at least Acquire ordering to make sure 3536 // the shadow operations aren't reordered before it. 3537 Value *NewOrdering = 3538 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3539 CB.setArgOperand(3, NewOrdering); 3540 3541 IRBuilder<> NextIRB(CB.getNextNode()); 3542 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3543 3544 Value *SrcShadowPtr, *SrcOriginPtr; 3545 std::tie(SrcShadowPtr, SrcOriginPtr) = 3546 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3547 /*isStore*/ false); 3548 Value *DstShadowPtr = 3549 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3550 /*isStore*/ true) 3551 .first; 3552 3553 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3554 if (MS.TrackOrigins) { 3555 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3556 kMinOriginAlignment); 3557 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3558 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3559 } 3560 } 3561 3562 void visitLibAtomicStore(CallBase &CB) { 3563 IRBuilder<> IRB(&CB); 3564 Value *Size = CB.getArgOperand(0); 3565 Value *DstPtr = CB.getArgOperand(2); 3566 Value *Ordering = CB.getArgOperand(3); 3567 // Convert the call to have at least Release ordering to make sure 3568 // the shadow operations aren't reordered after it. 3569 Value *NewOrdering = 3570 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3571 CB.setArgOperand(3, NewOrdering); 3572 3573 Value *DstShadowPtr = 3574 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3575 /*isStore*/ true) 3576 .first; 3577 3578 // Atomic store always paints clean shadow/origin. See file header. 3579 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3580 Align(1)); 3581 } 3582 3583 void visitCallBase(CallBase &CB) { 3584 assert(!CB.getMetadata("nosanitize")); 3585 if (CB.isInlineAsm()) { 3586 // For inline asm (either a call to asm function, or callbr instruction), 3587 // do the usual thing: check argument shadow and mark all outputs as 3588 // clean. Note that any side effects of the inline asm that are not 3589 // immediately visible in its constraints are not handled. 3590 if (ClHandleAsmConservative && MS.CompileKernel) 3591 visitAsmInstruction(CB); 3592 else 3593 visitInstruction(CB); 3594 return; 3595 } 3596 LibFunc LF; 3597 if (TLI->getLibFunc(CB, LF)) { 3598 // libatomic.a functions need to have special handling because there isn't 3599 // a good way to intercept them or compile the library with 3600 // instrumentation. 3601 switch (LF) { 3602 case LibFunc_atomic_load: 3603 if (!isa<CallInst>(CB)) { 3604 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3605 "Ignoring!\n"; 3606 break; 3607 } 3608 visitLibAtomicLoad(CB); 3609 return; 3610 case LibFunc_atomic_store: 3611 visitLibAtomicStore(CB); 3612 return; 3613 default: 3614 break; 3615 } 3616 } 3617 3618 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3619 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3620 3621 // We are going to insert code that relies on the fact that the callee 3622 // will become a non-readonly function after it is instrumented by us. To 3623 // prevent this code from being optimized out, mark that function 3624 // non-readonly in advance. 3625 AttrBuilder B; 3626 B.addAttribute(Attribute::ReadOnly) 3627 .addAttribute(Attribute::ReadNone) 3628 .addAttribute(Attribute::WriteOnly) 3629 .addAttribute(Attribute::ArgMemOnly) 3630 .addAttribute(Attribute::Speculatable); 3631 3632 Call->removeAttributes(AttributeList::FunctionIndex, B); 3633 if (Function *Func = Call->getCalledFunction()) { 3634 Func->removeAttributes(AttributeList::FunctionIndex, B); 3635 } 3636 3637 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3638 } 3639 IRBuilder<> IRB(&CB); 3640 bool MayCheckCall = ClEagerChecks; 3641 if (Function *Func = CB.getCalledFunction()) { 3642 // __sanitizer_unaligned_{load,store} functions may be called by users 3643 // and always expects shadows in the TLS. So don't check them. 3644 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3645 } 3646 3647 unsigned ArgOffset = 0; 3648 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3649 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3650 ++ArgIt) { 3651 Value *A = *ArgIt; 3652 unsigned i = ArgIt - CB.arg_begin(); 3653 if (!A->getType()->isSized()) { 3654 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3655 continue; 3656 } 3657 unsigned Size = 0; 3658 Value *Store = nullptr; 3659 // Compute the Shadow for arg even if it is ByVal, because 3660 // in that case getShadow() will copy the actual arg shadow to 3661 // __msan_param_tls. 3662 Value *ArgShadow = getShadow(A); 3663 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3664 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3665 << " Shadow: " << *ArgShadow << "\n"); 3666 bool ArgIsInitialized = false; 3667 const DataLayout &DL = F.getParent()->getDataLayout(); 3668 3669 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3670 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3671 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3672 3673 if (EagerCheck) { 3674 insertShadowCheck(A, &CB); 3675 continue; 3676 } 3677 if (ByVal) { 3678 // ByVal requires some special handling as it's too big for a single 3679 // load 3680 assert(A->getType()->isPointerTy() && 3681 "ByVal argument is not a pointer!"); 3682 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3683 if (ArgOffset + Size > kParamTLSSize) break; 3684 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3685 MaybeAlign Alignment = llvm::None; 3686 if (ParamAlignment) 3687 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3688 Value *AShadowPtr = 3689 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3690 /*isStore*/ false) 3691 .first; 3692 3693 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3694 Alignment, Size); 3695 // TODO(glider): need to copy origins. 3696 } else { 3697 // Any other parameters mean we need bit-grained tracking of uninit data 3698 Size = DL.getTypeAllocSize(A->getType()); 3699 if (ArgOffset + Size > kParamTLSSize) break; 3700 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3701 kShadowTLSAlignment); 3702 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3703 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3704 } 3705 if (MS.TrackOrigins && !ArgIsInitialized) 3706 IRB.CreateStore(getOrigin(A), 3707 getOriginPtrForArgument(A, IRB, ArgOffset)); 3708 (void)Store; 3709 assert(Size != 0 && Store != nullptr); 3710 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3711 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3712 } 3713 LLVM_DEBUG(dbgs() << " done with call args\n"); 3714 3715 FunctionType *FT = CB.getFunctionType(); 3716 if (FT->isVarArg()) { 3717 VAHelper->visitCallBase(CB, IRB); 3718 } 3719 3720 // Now, get the shadow for the RetVal. 3721 if (!CB.getType()->isSized()) 3722 return; 3723 // Don't emit the epilogue for musttail call returns. 3724 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3725 return; 3726 3727 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3728 setShadow(&CB, getCleanShadow(&CB)); 3729 setOrigin(&CB, getCleanOrigin()); 3730 return; 3731 } 3732 3733 IRBuilder<> IRBBefore(&CB); 3734 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3735 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3736 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3737 kShadowTLSAlignment); 3738 BasicBlock::iterator NextInsn; 3739 if (isa<CallInst>(CB)) { 3740 NextInsn = ++CB.getIterator(); 3741 assert(NextInsn != CB.getParent()->end()); 3742 } else { 3743 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3744 if (!NormalDest->getSinglePredecessor()) { 3745 // FIXME: this case is tricky, so we are just conservative here. 3746 // Perhaps we need to split the edge between this BB and NormalDest, 3747 // but a naive attempt to use SplitEdge leads to a crash. 3748 setShadow(&CB, getCleanShadow(&CB)); 3749 setOrigin(&CB, getCleanOrigin()); 3750 return; 3751 } 3752 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3753 // Anything inserted there will be instrumented by MSan later! 3754 NextInsn = NormalDest->getFirstInsertionPt(); 3755 assert(NextInsn != NormalDest->end() && 3756 "Could not find insertion point for retval shadow load"); 3757 } 3758 IRBuilder<> IRBAfter(&*NextInsn); 3759 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3760 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3761 kShadowTLSAlignment, "_msret"); 3762 setShadow(&CB, RetvalShadow); 3763 if (MS.TrackOrigins) 3764 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3765 getOriginPtrForRetval(IRBAfter))); 3766 } 3767 3768 bool isAMustTailRetVal(Value *RetVal) { 3769 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3770 RetVal = I->getOperand(0); 3771 } 3772 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3773 return I->isMustTailCall(); 3774 } 3775 return false; 3776 } 3777 3778 void visitReturnInst(ReturnInst &I) { 3779 IRBuilder<> IRB(&I); 3780 Value *RetVal = I.getReturnValue(); 3781 if (!RetVal) return; 3782 // Don't emit the epilogue for musttail call returns. 3783 if (isAMustTailRetVal(RetVal)) return; 3784 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3785 bool HasNoUndef = 3786 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3787 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3788 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3789 // must always return fully initialized values. For now, we hardcode "main". 3790 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3791 3792 Value *Shadow = getShadow(RetVal); 3793 bool StoreOrigin = true; 3794 if (EagerCheck) { 3795 insertShadowCheck(RetVal, &I); 3796 Shadow = getCleanShadow(RetVal); 3797 StoreOrigin = false; 3798 } 3799 3800 // The caller may still expect information passed over TLS if we pass our 3801 // check 3802 if (StoreShadow) { 3803 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3804 if (MS.TrackOrigins && StoreOrigin) 3805 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3806 } 3807 } 3808 3809 void visitPHINode(PHINode &I) { 3810 IRBuilder<> IRB(&I); 3811 if (!PropagateShadow) { 3812 setShadow(&I, getCleanShadow(&I)); 3813 setOrigin(&I, getCleanOrigin()); 3814 return; 3815 } 3816 3817 ShadowPHINodes.push_back(&I); 3818 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3819 "_msphi_s")); 3820 if (MS.TrackOrigins) 3821 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3822 "_msphi_o")); 3823 } 3824 3825 Value *getLocalVarDescription(AllocaInst &I) { 3826 SmallString<2048> StackDescriptionStorage; 3827 raw_svector_ostream StackDescription(StackDescriptionStorage); 3828 // We create a string with a description of the stack allocation and 3829 // pass it into __msan_set_alloca_origin. 3830 // It will be printed by the run-time if stack-originated UMR is found. 3831 // The first 4 bytes of the string are set to '----' and will be replaced 3832 // by __msan_va_arg_overflow_size_tls at the first call. 3833 StackDescription << "----" << I.getName() << "@" << F.getName(); 3834 return createPrivateNonConstGlobalForString(*F.getParent(), 3835 StackDescription.str()); 3836 } 3837 3838 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3839 if (PoisonStack && ClPoisonStackWithCall) { 3840 IRB.CreateCall(MS.MsanPoisonStackFn, 3841 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3842 } else { 3843 Value *ShadowBase, *OriginBase; 3844 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3845 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3846 3847 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3848 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3849 MaybeAlign(I.getAlignment())); 3850 } 3851 3852 if (PoisonStack && MS.TrackOrigins) { 3853 Value *Descr = getLocalVarDescription(I); 3854 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3855 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3856 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3857 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3858 } 3859 } 3860 3861 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3862 Value *Descr = getLocalVarDescription(I); 3863 if (PoisonStack) { 3864 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3865 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3866 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3867 } else { 3868 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3869 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3870 } 3871 } 3872 3873 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3874 if (!InsPoint) 3875 InsPoint = &I; 3876 IRBuilder<> IRB(InsPoint->getNextNode()); 3877 const DataLayout &DL = F.getParent()->getDataLayout(); 3878 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3879 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3880 if (I.isArrayAllocation()) 3881 Len = IRB.CreateMul(Len, I.getArraySize()); 3882 3883 if (MS.CompileKernel) 3884 poisonAllocaKmsan(I, IRB, Len); 3885 else 3886 poisonAllocaUserspace(I, IRB, Len); 3887 } 3888 3889 void visitAllocaInst(AllocaInst &I) { 3890 setShadow(&I, getCleanShadow(&I)); 3891 setOrigin(&I, getCleanOrigin()); 3892 // We'll get to this alloca later unless it's poisoned at the corresponding 3893 // llvm.lifetime.start. 3894 AllocaSet.insert(&I); 3895 } 3896 3897 void visitSelectInst(SelectInst& I) { 3898 IRBuilder<> IRB(&I); 3899 // a = select b, c, d 3900 Value *B = I.getCondition(); 3901 Value *C = I.getTrueValue(); 3902 Value *D = I.getFalseValue(); 3903 Value *Sb = getShadow(B); 3904 Value *Sc = getShadow(C); 3905 Value *Sd = getShadow(D); 3906 3907 // Result shadow if condition shadow is 0. 3908 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3909 Value *Sa1; 3910 if (I.getType()->isAggregateType()) { 3911 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3912 // an extra "select". This results in much more compact IR. 3913 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3914 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3915 } else { 3916 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3917 // If Sb (condition is poisoned), look for bits in c and d that are equal 3918 // and both unpoisoned. 3919 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3920 3921 // Cast arguments to shadow-compatible type. 3922 C = CreateAppToShadowCast(IRB, C); 3923 D = CreateAppToShadowCast(IRB, D); 3924 3925 // Result shadow if condition shadow is 1. 3926 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3927 } 3928 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3929 setShadow(&I, Sa); 3930 if (MS.TrackOrigins) { 3931 // Origins are always i32, so any vector conditions must be flattened. 3932 // FIXME: consider tracking vector origins for app vectors? 3933 if (B->getType()->isVectorTy()) { 3934 Type *FlatTy = getShadowTyNoVec(B->getType()); 3935 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3936 ConstantInt::getNullValue(FlatTy)); 3937 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3938 ConstantInt::getNullValue(FlatTy)); 3939 } 3940 // a = select b, c, d 3941 // Oa = Sb ? Ob : (b ? Oc : Od) 3942 setOrigin( 3943 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3944 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3945 getOrigin(I.getFalseValue())))); 3946 } 3947 } 3948 3949 void visitLandingPadInst(LandingPadInst &I) { 3950 // Do nothing. 3951 // See https://github.com/google/sanitizers/issues/504 3952 setShadow(&I, getCleanShadow(&I)); 3953 setOrigin(&I, getCleanOrigin()); 3954 } 3955 3956 void visitCatchSwitchInst(CatchSwitchInst &I) { 3957 setShadow(&I, getCleanShadow(&I)); 3958 setOrigin(&I, getCleanOrigin()); 3959 } 3960 3961 void visitFuncletPadInst(FuncletPadInst &I) { 3962 setShadow(&I, getCleanShadow(&I)); 3963 setOrigin(&I, getCleanOrigin()); 3964 } 3965 3966 void visitGetElementPtrInst(GetElementPtrInst &I) { 3967 handleShadowOr(I); 3968 } 3969 3970 void visitExtractValueInst(ExtractValueInst &I) { 3971 IRBuilder<> IRB(&I); 3972 Value *Agg = I.getAggregateOperand(); 3973 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3974 Value *AggShadow = getShadow(Agg); 3975 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3976 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3977 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3978 setShadow(&I, ResShadow); 3979 setOriginForNaryOp(I); 3980 } 3981 3982 void visitInsertValueInst(InsertValueInst &I) { 3983 IRBuilder<> IRB(&I); 3984 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3985 Value *AggShadow = getShadow(I.getAggregateOperand()); 3986 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3987 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3988 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3989 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3990 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3991 setShadow(&I, Res); 3992 setOriginForNaryOp(I); 3993 } 3994 3995 void dumpInst(Instruction &I) { 3996 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3997 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3998 } else { 3999 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4000 } 4001 errs() << "QQQ " << I << "\n"; 4002 } 4003 4004 void visitResumeInst(ResumeInst &I) { 4005 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4006 // Nothing to do here. 4007 } 4008 4009 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4010 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4011 // Nothing to do here. 4012 } 4013 4014 void visitCatchReturnInst(CatchReturnInst &CRI) { 4015 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4016 // Nothing to do here. 4017 } 4018 4019 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4020 const DataLayout &DL, bool isOutput) { 4021 // For each assembly argument, we check its value for being initialized. 4022 // If the argument is a pointer, we assume it points to a single element 4023 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4024 // Each such pointer is instrumented with a call to the runtime library. 4025 Type *OpType = Operand->getType(); 4026 // Check the operand value itself. 4027 insertShadowCheck(Operand, &I); 4028 if (!OpType->isPointerTy() || !isOutput) { 4029 assert(!isOutput); 4030 return; 4031 } 4032 Type *ElType = OpType->getPointerElementType(); 4033 if (!ElType->isSized()) 4034 return; 4035 int Size = DL.getTypeStoreSize(ElType); 4036 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4037 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4038 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4039 } 4040 4041 /// Get the number of output arguments returned by pointers. 4042 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4043 int NumRetOutputs = 0; 4044 int NumOutputs = 0; 4045 Type *RetTy = cast<Value>(CB)->getType(); 4046 if (!RetTy->isVoidTy()) { 4047 // Register outputs are returned via the CallInst return value. 4048 auto *ST = dyn_cast<StructType>(RetTy); 4049 if (ST) 4050 NumRetOutputs = ST->getNumElements(); 4051 else 4052 NumRetOutputs = 1; 4053 } 4054 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4055 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 4056 InlineAsm::ConstraintInfo Info = Constraints[i]; 4057 switch (Info.Type) { 4058 case InlineAsm::isOutput: 4059 NumOutputs++; 4060 break; 4061 default: 4062 break; 4063 } 4064 } 4065 return NumOutputs - NumRetOutputs; 4066 } 4067 4068 void visitAsmInstruction(Instruction &I) { 4069 // Conservative inline assembly handling: check for poisoned shadow of 4070 // asm() arguments, then unpoison the result and all the memory locations 4071 // pointed to by those arguments. 4072 // An inline asm() statement in C++ contains lists of input and output 4073 // arguments used by the assembly code. These are mapped to operands of the 4074 // CallInst as follows: 4075 // - nR register outputs ("=r) are returned by value in a single structure 4076 // (SSA value of the CallInst); 4077 // - nO other outputs ("=m" and others) are returned by pointer as first 4078 // nO operands of the CallInst; 4079 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4080 // remaining nI operands. 4081 // The total number of asm() arguments in the source is nR+nO+nI, and the 4082 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4083 // function to be called). 4084 const DataLayout &DL = F.getParent()->getDataLayout(); 4085 CallBase *CB = cast<CallBase>(&I); 4086 IRBuilder<> IRB(&I); 4087 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4088 int OutputArgs = getNumOutputArgs(IA, CB); 4089 // The last operand of a CallInst is the function itself. 4090 int NumOperands = CB->getNumOperands() - 1; 4091 4092 // Check input arguments. Doing so before unpoisoning output arguments, so 4093 // that we won't overwrite uninit values before checking them. 4094 for (int i = OutputArgs; i < NumOperands; i++) { 4095 Value *Operand = CB->getOperand(i); 4096 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4097 } 4098 // Unpoison output arguments. This must happen before the actual InlineAsm 4099 // call, so that the shadow for memory published in the asm() statement 4100 // remains valid. 4101 for (int i = 0; i < OutputArgs; i++) { 4102 Value *Operand = CB->getOperand(i); 4103 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4104 } 4105 4106 setShadow(&I, getCleanShadow(&I)); 4107 setOrigin(&I, getCleanOrigin()); 4108 } 4109 4110 void visitFreezeInst(FreezeInst &I) { 4111 // Freeze always returns a fully defined value. 4112 setShadow(&I, getCleanShadow(&I)); 4113 setOrigin(&I, getCleanOrigin()); 4114 } 4115 4116 void visitInstruction(Instruction &I) { 4117 // Everything else: stop propagating and check for poisoned shadow. 4118 if (ClDumpStrictInstructions) 4119 dumpInst(I); 4120 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4121 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4122 Value *Operand = I.getOperand(i); 4123 if (Operand->getType()->isSized()) 4124 insertShadowCheck(Operand, &I); 4125 } 4126 setShadow(&I, getCleanShadow(&I)); 4127 setOrigin(&I, getCleanOrigin()); 4128 } 4129 }; 4130 4131 /// AMD64-specific implementation of VarArgHelper. 4132 struct VarArgAMD64Helper : public VarArgHelper { 4133 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4134 // See a comment in visitCallBase for more details. 4135 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4136 static const unsigned AMD64FpEndOffsetSSE = 176; 4137 // If SSE is disabled, fp_offset in va_list is zero. 4138 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4139 4140 unsigned AMD64FpEndOffset; 4141 Function &F; 4142 MemorySanitizer &MS; 4143 MemorySanitizerVisitor &MSV; 4144 Value *VAArgTLSCopy = nullptr; 4145 Value *VAArgTLSOriginCopy = nullptr; 4146 Value *VAArgOverflowSize = nullptr; 4147 4148 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4149 4150 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4151 4152 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4153 MemorySanitizerVisitor &MSV) 4154 : F(F), MS(MS), MSV(MSV) { 4155 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4156 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 4157 if (Attr.isStringAttribute() && 4158 (Attr.getKindAsString() == "target-features")) { 4159 if (Attr.getValueAsString().contains("-sse")) 4160 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4161 break; 4162 } 4163 } 4164 } 4165 4166 ArgKind classifyArgument(Value* arg) { 4167 // A very rough approximation of X86_64 argument classification rules. 4168 Type *T = arg->getType(); 4169 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4170 return AK_FloatingPoint; 4171 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4172 return AK_GeneralPurpose; 4173 if (T->isPointerTy()) 4174 return AK_GeneralPurpose; 4175 return AK_Memory; 4176 } 4177 4178 // For VarArg functions, store the argument shadow in an ABI-specific format 4179 // that corresponds to va_list layout. 4180 // We do this because Clang lowers va_arg in the frontend, and this pass 4181 // only sees the low level code that deals with va_list internals. 4182 // A much easier alternative (provided that Clang emits va_arg instructions) 4183 // would have been to associate each live instance of va_list with a copy of 4184 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4185 // order. 4186 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4187 unsigned GpOffset = 0; 4188 unsigned FpOffset = AMD64GpEndOffset; 4189 unsigned OverflowOffset = AMD64FpEndOffset; 4190 const DataLayout &DL = F.getParent()->getDataLayout(); 4191 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4192 ++ArgIt) { 4193 Value *A = *ArgIt; 4194 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4195 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4196 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4197 if (IsByVal) { 4198 // ByVal arguments always go to the overflow area. 4199 // Fixed arguments passed through the overflow area will be stepped 4200 // over by va_start, so don't count them towards the offset. 4201 if (IsFixed) 4202 continue; 4203 assert(A->getType()->isPointerTy()); 4204 Type *RealTy = CB.getParamByValType(ArgNo); 4205 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4206 Value *ShadowBase = getShadowPtrForVAArgument( 4207 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4208 Value *OriginBase = nullptr; 4209 if (MS.TrackOrigins) 4210 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4211 OverflowOffset += alignTo(ArgSize, 8); 4212 if (!ShadowBase) 4213 continue; 4214 Value *ShadowPtr, *OriginPtr; 4215 std::tie(ShadowPtr, OriginPtr) = 4216 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4217 /*isStore*/ false); 4218 4219 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4220 kShadowTLSAlignment, ArgSize); 4221 if (MS.TrackOrigins) 4222 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4223 kShadowTLSAlignment, ArgSize); 4224 } else { 4225 ArgKind AK = classifyArgument(A); 4226 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4227 AK = AK_Memory; 4228 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4229 AK = AK_Memory; 4230 Value *ShadowBase, *OriginBase = nullptr; 4231 switch (AK) { 4232 case AK_GeneralPurpose: 4233 ShadowBase = 4234 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4235 if (MS.TrackOrigins) 4236 OriginBase = 4237 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4238 GpOffset += 8; 4239 break; 4240 case AK_FloatingPoint: 4241 ShadowBase = 4242 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4243 if (MS.TrackOrigins) 4244 OriginBase = 4245 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4246 FpOffset += 16; 4247 break; 4248 case AK_Memory: 4249 if (IsFixed) 4250 continue; 4251 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4252 ShadowBase = 4253 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4254 if (MS.TrackOrigins) 4255 OriginBase = 4256 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4257 OverflowOffset += alignTo(ArgSize, 8); 4258 } 4259 // Take fixed arguments into account for GpOffset and FpOffset, 4260 // but don't actually store shadows for them. 4261 // TODO(glider): don't call get*PtrForVAArgument() for them. 4262 if (IsFixed) 4263 continue; 4264 if (!ShadowBase) 4265 continue; 4266 Value *Shadow = MSV.getShadow(A); 4267 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4268 if (MS.TrackOrigins) { 4269 Value *Origin = MSV.getOrigin(A); 4270 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4271 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4272 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4273 } 4274 } 4275 } 4276 Constant *OverflowSize = 4277 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4278 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4279 } 4280 4281 /// Compute the shadow address for a given va_arg. 4282 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4283 unsigned ArgOffset, unsigned ArgSize) { 4284 // Make sure we don't overflow __msan_va_arg_tls. 4285 if (ArgOffset + ArgSize > kParamTLSSize) 4286 return nullptr; 4287 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4288 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4289 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4290 "_msarg_va_s"); 4291 } 4292 4293 /// Compute the origin address for a given va_arg. 4294 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4295 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4296 // getOriginPtrForVAArgument() is always called after 4297 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4298 // overflow. 4299 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4300 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4301 "_msarg_va_o"); 4302 } 4303 4304 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4305 IRBuilder<> IRB(&I); 4306 Value *VAListTag = I.getArgOperand(0); 4307 Value *ShadowPtr, *OriginPtr; 4308 const Align Alignment = Align(8); 4309 std::tie(ShadowPtr, OriginPtr) = 4310 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4311 /*isStore*/ true); 4312 4313 // Unpoison the whole __va_list_tag. 4314 // FIXME: magic ABI constants. 4315 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4316 /* size */ 24, Alignment, false); 4317 // We shouldn't need to zero out the origins, as they're only checked for 4318 // nonzero shadow. 4319 } 4320 4321 void visitVAStartInst(VAStartInst &I) override { 4322 if (F.getCallingConv() == CallingConv::Win64) 4323 return; 4324 VAStartInstrumentationList.push_back(&I); 4325 unpoisonVAListTagForInst(I); 4326 } 4327 4328 void visitVACopyInst(VACopyInst &I) override { 4329 if (F.getCallingConv() == CallingConv::Win64) return; 4330 unpoisonVAListTagForInst(I); 4331 } 4332 4333 void finalizeInstrumentation() override { 4334 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4335 "finalizeInstrumentation called twice"); 4336 if (!VAStartInstrumentationList.empty()) { 4337 // If there is a va_start in this function, make a backup copy of 4338 // va_arg_tls somewhere in the function entry block. 4339 IRBuilder<> IRB(MSV.FnPrologueEnd); 4340 VAArgOverflowSize = 4341 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4342 Value *CopySize = 4343 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4344 VAArgOverflowSize); 4345 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4346 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4347 if (MS.TrackOrigins) { 4348 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4349 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4350 Align(8), CopySize); 4351 } 4352 } 4353 4354 // Instrument va_start. 4355 // Copy va_list shadow from the backup copy of the TLS contents. 4356 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4357 CallInst *OrigInst = VAStartInstrumentationList[i]; 4358 IRBuilder<> IRB(OrigInst->getNextNode()); 4359 Value *VAListTag = OrigInst->getArgOperand(0); 4360 4361 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4362 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4363 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4364 ConstantInt::get(MS.IntptrTy, 16)), 4365 PointerType::get(RegSaveAreaPtrTy, 0)); 4366 Value *RegSaveAreaPtr = 4367 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4368 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4369 const Align Alignment = Align(16); 4370 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4371 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4372 Alignment, /*isStore*/ true); 4373 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4374 AMD64FpEndOffset); 4375 if (MS.TrackOrigins) 4376 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4377 Alignment, AMD64FpEndOffset); 4378 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4379 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4380 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4381 ConstantInt::get(MS.IntptrTy, 8)), 4382 PointerType::get(OverflowArgAreaPtrTy, 0)); 4383 Value *OverflowArgAreaPtr = 4384 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4385 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4386 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4387 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4388 Alignment, /*isStore*/ true); 4389 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4390 AMD64FpEndOffset); 4391 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4392 VAArgOverflowSize); 4393 if (MS.TrackOrigins) { 4394 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4395 AMD64FpEndOffset); 4396 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4397 VAArgOverflowSize); 4398 } 4399 } 4400 } 4401 }; 4402 4403 /// MIPS64-specific implementation of VarArgHelper. 4404 struct VarArgMIPS64Helper : public VarArgHelper { 4405 Function &F; 4406 MemorySanitizer &MS; 4407 MemorySanitizerVisitor &MSV; 4408 Value *VAArgTLSCopy = nullptr; 4409 Value *VAArgSize = nullptr; 4410 4411 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4412 4413 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4414 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4415 4416 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4417 unsigned VAArgOffset = 0; 4418 const DataLayout &DL = F.getParent()->getDataLayout(); 4419 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4420 End = CB.arg_end(); 4421 ArgIt != End; ++ArgIt) { 4422 Triple TargetTriple(F.getParent()->getTargetTriple()); 4423 Value *A = *ArgIt; 4424 Value *Base; 4425 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4426 if (TargetTriple.getArch() == Triple::mips64) { 4427 // Adjusting the shadow for argument with size < 8 to match the placement 4428 // of bits in big endian system 4429 if (ArgSize < 8) 4430 VAArgOffset += (8 - ArgSize); 4431 } 4432 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4433 VAArgOffset += ArgSize; 4434 VAArgOffset = alignTo(VAArgOffset, 8); 4435 if (!Base) 4436 continue; 4437 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4438 } 4439 4440 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4441 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4442 // a new class member i.e. it is the total size of all VarArgs. 4443 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4444 } 4445 4446 /// Compute the shadow address for a given va_arg. 4447 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4448 unsigned ArgOffset, unsigned ArgSize) { 4449 // Make sure we don't overflow __msan_va_arg_tls. 4450 if (ArgOffset + ArgSize > kParamTLSSize) 4451 return nullptr; 4452 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4453 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4454 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4455 "_msarg"); 4456 } 4457 4458 void visitVAStartInst(VAStartInst &I) override { 4459 IRBuilder<> IRB(&I); 4460 VAStartInstrumentationList.push_back(&I); 4461 Value *VAListTag = I.getArgOperand(0); 4462 Value *ShadowPtr, *OriginPtr; 4463 const Align Alignment = Align(8); 4464 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4465 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4466 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4467 /* size */ 8, Alignment, false); 4468 } 4469 4470 void visitVACopyInst(VACopyInst &I) override { 4471 IRBuilder<> IRB(&I); 4472 VAStartInstrumentationList.push_back(&I); 4473 Value *VAListTag = I.getArgOperand(0); 4474 Value *ShadowPtr, *OriginPtr; 4475 const Align Alignment = Align(8); 4476 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4477 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4478 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4479 /* size */ 8, Alignment, false); 4480 } 4481 4482 void finalizeInstrumentation() override { 4483 assert(!VAArgSize && !VAArgTLSCopy && 4484 "finalizeInstrumentation called twice"); 4485 IRBuilder<> IRB(MSV.FnPrologueEnd); 4486 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4487 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4488 VAArgSize); 4489 4490 if (!VAStartInstrumentationList.empty()) { 4491 // If there is a va_start in this function, make a backup copy of 4492 // va_arg_tls somewhere in the function entry block. 4493 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4494 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4495 } 4496 4497 // Instrument va_start. 4498 // Copy va_list shadow from the backup copy of the TLS contents. 4499 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4500 CallInst *OrigInst = VAStartInstrumentationList[i]; 4501 IRBuilder<> IRB(OrigInst->getNextNode()); 4502 Value *VAListTag = OrigInst->getArgOperand(0); 4503 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4504 Value *RegSaveAreaPtrPtr = 4505 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4506 PointerType::get(RegSaveAreaPtrTy, 0)); 4507 Value *RegSaveAreaPtr = 4508 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4509 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4510 const Align Alignment = Align(8); 4511 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4512 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4513 Alignment, /*isStore*/ true); 4514 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4515 CopySize); 4516 } 4517 } 4518 }; 4519 4520 /// AArch64-specific implementation of VarArgHelper. 4521 struct VarArgAArch64Helper : public VarArgHelper { 4522 static const unsigned kAArch64GrArgSize = 64; 4523 static const unsigned kAArch64VrArgSize = 128; 4524 4525 static const unsigned AArch64GrBegOffset = 0; 4526 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4527 // Make VR space aligned to 16 bytes. 4528 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4529 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4530 + kAArch64VrArgSize; 4531 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4532 4533 Function &F; 4534 MemorySanitizer &MS; 4535 MemorySanitizerVisitor &MSV; 4536 Value *VAArgTLSCopy = nullptr; 4537 Value *VAArgOverflowSize = nullptr; 4538 4539 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4540 4541 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4542 4543 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4544 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4545 4546 ArgKind classifyArgument(Value* arg) { 4547 Type *T = arg->getType(); 4548 if (T->isFPOrFPVectorTy()) 4549 return AK_FloatingPoint; 4550 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4551 || (T->isPointerTy())) 4552 return AK_GeneralPurpose; 4553 return AK_Memory; 4554 } 4555 4556 // The instrumentation stores the argument shadow in a non ABI-specific 4557 // format because it does not know which argument is named (since Clang, 4558 // like x86_64 case, lowers the va_args in the frontend and this pass only 4559 // sees the low level code that deals with va_list internals). 4560 // The first seven GR registers are saved in the first 56 bytes of the 4561 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4562 // the remaining arguments. 4563 // Using constant offset within the va_arg TLS array allows fast copy 4564 // in the finalize instrumentation. 4565 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4566 unsigned GrOffset = AArch64GrBegOffset; 4567 unsigned VrOffset = AArch64VrBegOffset; 4568 unsigned OverflowOffset = AArch64VAEndOffset; 4569 4570 const DataLayout &DL = F.getParent()->getDataLayout(); 4571 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4572 ++ArgIt) { 4573 Value *A = *ArgIt; 4574 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4575 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4576 ArgKind AK = classifyArgument(A); 4577 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4578 AK = AK_Memory; 4579 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4580 AK = AK_Memory; 4581 Value *Base; 4582 switch (AK) { 4583 case AK_GeneralPurpose: 4584 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4585 GrOffset += 8; 4586 break; 4587 case AK_FloatingPoint: 4588 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4589 VrOffset += 16; 4590 break; 4591 case AK_Memory: 4592 // Don't count fixed arguments in the overflow area - va_start will 4593 // skip right over them. 4594 if (IsFixed) 4595 continue; 4596 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4597 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4598 alignTo(ArgSize, 8)); 4599 OverflowOffset += alignTo(ArgSize, 8); 4600 break; 4601 } 4602 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4603 // bother to actually store a shadow. 4604 if (IsFixed) 4605 continue; 4606 if (!Base) 4607 continue; 4608 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4609 } 4610 Constant *OverflowSize = 4611 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4612 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4613 } 4614 4615 /// Compute the shadow address for a given va_arg. 4616 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4617 unsigned ArgOffset, unsigned ArgSize) { 4618 // Make sure we don't overflow __msan_va_arg_tls. 4619 if (ArgOffset + ArgSize > kParamTLSSize) 4620 return nullptr; 4621 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4622 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4623 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4624 "_msarg"); 4625 } 4626 4627 void visitVAStartInst(VAStartInst &I) override { 4628 IRBuilder<> IRB(&I); 4629 VAStartInstrumentationList.push_back(&I); 4630 Value *VAListTag = I.getArgOperand(0); 4631 Value *ShadowPtr, *OriginPtr; 4632 const Align Alignment = Align(8); 4633 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4634 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4635 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4636 /* size */ 32, Alignment, false); 4637 } 4638 4639 void visitVACopyInst(VACopyInst &I) override { 4640 IRBuilder<> IRB(&I); 4641 VAStartInstrumentationList.push_back(&I); 4642 Value *VAListTag = I.getArgOperand(0); 4643 Value *ShadowPtr, *OriginPtr; 4644 const Align Alignment = Align(8); 4645 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4646 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4647 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4648 /* size */ 32, Alignment, false); 4649 } 4650 4651 // Retrieve a va_list field of 'void*' size. 4652 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4653 Value *SaveAreaPtrPtr = 4654 IRB.CreateIntToPtr( 4655 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4656 ConstantInt::get(MS.IntptrTy, offset)), 4657 Type::getInt64PtrTy(*MS.C)); 4658 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4659 } 4660 4661 // Retrieve a va_list field of 'int' size. 4662 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4663 Value *SaveAreaPtr = 4664 IRB.CreateIntToPtr( 4665 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4666 ConstantInt::get(MS.IntptrTy, offset)), 4667 Type::getInt32PtrTy(*MS.C)); 4668 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4669 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4670 } 4671 4672 void finalizeInstrumentation() override { 4673 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4674 "finalizeInstrumentation called twice"); 4675 if (!VAStartInstrumentationList.empty()) { 4676 // If there is a va_start in this function, make a backup copy of 4677 // va_arg_tls somewhere in the function entry block. 4678 IRBuilder<> IRB(MSV.FnPrologueEnd); 4679 VAArgOverflowSize = 4680 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4681 Value *CopySize = 4682 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4683 VAArgOverflowSize); 4684 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4685 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4686 } 4687 4688 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4689 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4690 4691 // Instrument va_start, copy va_list shadow from the backup copy of 4692 // the TLS contents. 4693 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4694 CallInst *OrigInst = VAStartInstrumentationList[i]; 4695 IRBuilder<> IRB(OrigInst->getNextNode()); 4696 4697 Value *VAListTag = OrigInst->getArgOperand(0); 4698 4699 // The variadic ABI for AArch64 creates two areas to save the incoming 4700 // argument registers (one for 64-bit general register xn-x7 and another 4701 // for 128-bit FP/SIMD vn-v7). 4702 // We need then to propagate the shadow arguments on both regions 4703 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4704 // The remaining arguments are saved on shadow for 'va::stack'. 4705 // One caveat is it requires only to propagate the non-named arguments, 4706 // however on the call site instrumentation 'all' the arguments are 4707 // saved. So to copy the shadow values from the va_arg TLS array 4708 // we need to adjust the offset for both GR and VR fields based on 4709 // the __{gr,vr}_offs value (since they are stores based on incoming 4710 // named arguments). 4711 4712 // Read the stack pointer from the va_list. 4713 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4714 4715 // Read both the __gr_top and __gr_off and add them up. 4716 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4717 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4718 4719 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4720 4721 // Read both the __vr_top and __vr_off and add them up. 4722 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4723 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4724 4725 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4726 4727 // It does not know how many named arguments is being used and, on the 4728 // callsite all the arguments were saved. Since __gr_off is defined as 4729 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4730 // argument by ignoring the bytes of shadow from named arguments. 4731 Value *GrRegSaveAreaShadowPtrOff = 4732 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4733 4734 Value *GrRegSaveAreaShadowPtr = 4735 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4736 Align(8), /*isStore*/ true) 4737 .first; 4738 4739 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4740 GrRegSaveAreaShadowPtrOff); 4741 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4742 4743 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4744 GrCopySize); 4745 4746 // Again, but for FP/SIMD values. 4747 Value *VrRegSaveAreaShadowPtrOff = 4748 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4749 4750 Value *VrRegSaveAreaShadowPtr = 4751 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4752 Align(8), /*isStore*/ true) 4753 .first; 4754 4755 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4756 IRB.getInt8Ty(), 4757 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4758 IRB.getInt32(AArch64VrBegOffset)), 4759 VrRegSaveAreaShadowPtrOff); 4760 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4761 4762 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4763 VrCopySize); 4764 4765 // And finally for remaining arguments. 4766 Value *StackSaveAreaShadowPtr = 4767 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4768 Align(16), /*isStore*/ true) 4769 .first; 4770 4771 Value *StackSrcPtr = 4772 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4773 IRB.getInt32(AArch64VAEndOffset)); 4774 4775 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4776 Align(16), VAArgOverflowSize); 4777 } 4778 } 4779 }; 4780 4781 /// PowerPC64-specific implementation of VarArgHelper. 4782 struct VarArgPowerPC64Helper : public VarArgHelper { 4783 Function &F; 4784 MemorySanitizer &MS; 4785 MemorySanitizerVisitor &MSV; 4786 Value *VAArgTLSCopy = nullptr; 4787 Value *VAArgSize = nullptr; 4788 4789 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4790 4791 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4792 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4793 4794 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4795 // For PowerPC, we need to deal with alignment of stack arguments - 4796 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4797 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4798 // For that reason, we compute current offset from stack pointer (which is 4799 // always properly aligned), and offset for the first vararg, then subtract 4800 // them. 4801 unsigned VAArgBase; 4802 Triple TargetTriple(F.getParent()->getTargetTriple()); 4803 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4804 // and 32 bytes for ABIv2. This is usually determined by target 4805 // endianness, but in theory could be overridden by function attribute. 4806 if (TargetTriple.getArch() == Triple::ppc64) 4807 VAArgBase = 48; 4808 else 4809 VAArgBase = 32; 4810 unsigned VAArgOffset = VAArgBase; 4811 const DataLayout &DL = F.getParent()->getDataLayout(); 4812 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4813 ++ArgIt) { 4814 Value *A = *ArgIt; 4815 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4816 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4817 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4818 if (IsByVal) { 4819 assert(A->getType()->isPointerTy()); 4820 Type *RealTy = CB.getParamByValType(ArgNo); 4821 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4822 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4823 if (!ArgAlign || *ArgAlign < Align(8)) 4824 ArgAlign = Align(8); 4825 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4826 if (!IsFixed) { 4827 Value *Base = getShadowPtrForVAArgument( 4828 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4829 if (Base) { 4830 Value *AShadowPtr, *AOriginPtr; 4831 std::tie(AShadowPtr, AOriginPtr) = 4832 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4833 kShadowTLSAlignment, /*isStore*/ false); 4834 4835 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4836 kShadowTLSAlignment, ArgSize); 4837 } 4838 } 4839 VAArgOffset += alignTo(ArgSize, 8); 4840 } else { 4841 Value *Base; 4842 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4843 uint64_t ArgAlign = 8; 4844 if (A->getType()->isArrayTy()) { 4845 // Arrays are aligned to element size, except for long double 4846 // arrays, which are aligned to 8 bytes. 4847 Type *ElementTy = A->getType()->getArrayElementType(); 4848 if (!ElementTy->isPPC_FP128Ty()) 4849 ArgAlign = DL.getTypeAllocSize(ElementTy); 4850 } else if (A->getType()->isVectorTy()) { 4851 // Vectors are naturally aligned. 4852 ArgAlign = DL.getTypeAllocSize(A->getType()); 4853 } 4854 if (ArgAlign < 8) 4855 ArgAlign = 8; 4856 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4857 if (DL.isBigEndian()) { 4858 // Adjusting the shadow for argument with size < 8 to match the placement 4859 // of bits in big endian system 4860 if (ArgSize < 8) 4861 VAArgOffset += (8 - ArgSize); 4862 } 4863 if (!IsFixed) { 4864 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4865 VAArgOffset - VAArgBase, ArgSize); 4866 if (Base) 4867 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4868 } 4869 VAArgOffset += ArgSize; 4870 VAArgOffset = alignTo(VAArgOffset, 8); 4871 } 4872 if (IsFixed) 4873 VAArgBase = VAArgOffset; 4874 } 4875 4876 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4877 VAArgOffset - VAArgBase); 4878 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4879 // a new class member i.e. it is the total size of all VarArgs. 4880 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4881 } 4882 4883 /// Compute the shadow address for a given va_arg. 4884 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4885 unsigned ArgOffset, unsigned ArgSize) { 4886 // Make sure we don't overflow __msan_va_arg_tls. 4887 if (ArgOffset + ArgSize > kParamTLSSize) 4888 return nullptr; 4889 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4890 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4891 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4892 "_msarg"); 4893 } 4894 4895 void visitVAStartInst(VAStartInst &I) override { 4896 IRBuilder<> IRB(&I); 4897 VAStartInstrumentationList.push_back(&I); 4898 Value *VAListTag = I.getArgOperand(0); 4899 Value *ShadowPtr, *OriginPtr; 4900 const Align Alignment = Align(8); 4901 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4902 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4903 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4904 /* size */ 8, Alignment, false); 4905 } 4906 4907 void visitVACopyInst(VACopyInst &I) override { 4908 IRBuilder<> IRB(&I); 4909 Value *VAListTag = I.getArgOperand(0); 4910 Value *ShadowPtr, *OriginPtr; 4911 const Align Alignment = Align(8); 4912 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4913 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4914 // Unpoison the whole __va_list_tag. 4915 // FIXME: magic ABI constants. 4916 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4917 /* size */ 8, Alignment, false); 4918 } 4919 4920 void finalizeInstrumentation() override { 4921 assert(!VAArgSize && !VAArgTLSCopy && 4922 "finalizeInstrumentation called twice"); 4923 IRBuilder<> IRB(MSV.FnPrologueEnd); 4924 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4925 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4926 VAArgSize); 4927 4928 if (!VAStartInstrumentationList.empty()) { 4929 // If there is a va_start in this function, make a backup copy of 4930 // va_arg_tls somewhere in the function entry block. 4931 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4932 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4933 } 4934 4935 // Instrument va_start. 4936 // Copy va_list shadow from the backup copy of the TLS contents. 4937 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4938 CallInst *OrigInst = VAStartInstrumentationList[i]; 4939 IRBuilder<> IRB(OrigInst->getNextNode()); 4940 Value *VAListTag = OrigInst->getArgOperand(0); 4941 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4942 Value *RegSaveAreaPtrPtr = 4943 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4944 PointerType::get(RegSaveAreaPtrTy, 0)); 4945 Value *RegSaveAreaPtr = 4946 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4947 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4948 const Align Alignment = Align(8); 4949 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4950 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4951 Alignment, /*isStore*/ true); 4952 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4953 CopySize); 4954 } 4955 } 4956 }; 4957 4958 /// SystemZ-specific implementation of VarArgHelper. 4959 struct VarArgSystemZHelper : public VarArgHelper { 4960 static const unsigned SystemZGpOffset = 16; 4961 static const unsigned SystemZGpEndOffset = 56; 4962 static const unsigned SystemZFpOffset = 128; 4963 static const unsigned SystemZFpEndOffset = 160; 4964 static const unsigned SystemZMaxVrArgs = 8; 4965 static const unsigned SystemZRegSaveAreaSize = 160; 4966 static const unsigned SystemZOverflowOffset = 160; 4967 static const unsigned SystemZVAListTagSize = 32; 4968 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4969 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4970 4971 Function &F; 4972 MemorySanitizer &MS; 4973 MemorySanitizerVisitor &MSV; 4974 Value *VAArgTLSCopy = nullptr; 4975 Value *VAArgTLSOriginCopy = nullptr; 4976 Value *VAArgOverflowSize = nullptr; 4977 4978 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4979 4980 enum class ArgKind { 4981 GeneralPurpose, 4982 FloatingPoint, 4983 Vector, 4984 Memory, 4985 Indirect, 4986 }; 4987 4988 enum class ShadowExtension { None, Zero, Sign }; 4989 4990 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4991 MemorySanitizerVisitor &MSV) 4992 : F(F), MS(MS), MSV(MSV) {} 4993 4994 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4995 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4996 // only a few possibilities of what it can be. In particular, enums, single 4997 // element structs and large types have already been taken care of. 4998 4999 // Some i128 and fp128 arguments are converted to pointers only in the 5000 // back end. 5001 if (T->isIntegerTy(128) || T->isFP128Ty()) 5002 return ArgKind::Indirect; 5003 if (T->isFloatingPointTy()) 5004 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5005 if (T->isIntegerTy() || T->isPointerTy()) 5006 return ArgKind::GeneralPurpose; 5007 if (T->isVectorTy()) 5008 return ArgKind::Vector; 5009 return ArgKind::Memory; 5010 } 5011 5012 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5013 // ABI says: "One of the simple integer types no more than 64 bits wide. 5014 // ... If such an argument is shorter than 64 bits, replace it by a full 5015 // 64-bit integer representing the same number, using sign or zero 5016 // extension". Shadow for an integer argument has the same type as the 5017 // argument itself, so it can be sign or zero extended as well. 5018 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5019 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5020 if (ZExt) { 5021 assert(!SExt); 5022 return ShadowExtension::Zero; 5023 } 5024 if (SExt) { 5025 assert(!ZExt); 5026 return ShadowExtension::Sign; 5027 } 5028 return ShadowExtension::None; 5029 } 5030 5031 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5032 bool IsSoftFloatABI = CB.getCalledFunction() 5033 ->getFnAttribute("use-soft-float") 5034 .getValueAsString() == "true"; 5035 unsigned GpOffset = SystemZGpOffset; 5036 unsigned FpOffset = SystemZFpOffset; 5037 unsigned VrIndex = 0; 5038 unsigned OverflowOffset = SystemZOverflowOffset; 5039 const DataLayout &DL = F.getParent()->getDataLayout(); 5040 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5041 ++ArgIt) { 5042 Value *A = *ArgIt; 5043 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5044 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5045 // SystemZABIInfo does not produce ByVal parameters. 5046 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5047 Type *T = A->getType(); 5048 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5049 if (AK == ArgKind::Indirect) { 5050 T = PointerType::get(T, 0); 5051 AK = ArgKind::GeneralPurpose; 5052 } 5053 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5054 AK = ArgKind::Memory; 5055 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5056 AK = ArgKind::Memory; 5057 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5058 AK = ArgKind::Memory; 5059 Value *ShadowBase = nullptr; 5060 Value *OriginBase = nullptr; 5061 ShadowExtension SE = ShadowExtension::None; 5062 switch (AK) { 5063 case ArgKind::GeneralPurpose: { 5064 // Always keep track of GpOffset, but store shadow only for varargs. 5065 uint64_t ArgSize = 8; 5066 if (GpOffset + ArgSize <= kParamTLSSize) { 5067 if (!IsFixed) { 5068 SE = getShadowExtension(CB, ArgNo); 5069 uint64_t GapSize = 0; 5070 if (SE == ShadowExtension::None) { 5071 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5072 assert(ArgAllocSize <= ArgSize); 5073 GapSize = ArgSize - ArgAllocSize; 5074 } 5075 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5076 if (MS.TrackOrigins) 5077 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5078 } 5079 GpOffset += ArgSize; 5080 } else { 5081 GpOffset = kParamTLSSize; 5082 } 5083 break; 5084 } 5085 case ArgKind::FloatingPoint: { 5086 // Always keep track of FpOffset, but store shadow only for varargs. 5087 uint64_t ArgSize = 8; 5088 if (FpOffset + ArgSize <= kParamTLSSize) { 5089 if (!IsFixed) { 5090 // PoP says: "A short floating-point datum requires only the 5091 // left-most 32 bit positions of a floating-point register". 5092 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5093 // don't extend shadow and don't mind the gap. 5094 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5095 if (MS.TrackOrigins) 5096 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5097 } 5098 FpOffset += ArgSize; 5099 } else { 5100 FpOffset = kParamTLSSize; 5101 } 5102 break; 5103 } 5104 case ArgKind::Vector: { 5105 // Keep track of VrIndex. No need to store shadow, since vector varargs 5106 // go through AK_Memory. 5107 assert(IsFixed); 5108 VrIndex++; 5109 break; 5110 } 5111 case ArgKind::Memory: { 5112 // Keep track of OverflowOffset and store shadow only for varargs. 5113 // Ignore fixed args, since we need to copy only the vararg portion of 5114 // the overflow area shadow. 5115 if (!IsFixed) { 5116 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5117 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5118 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5119 SE = getShadowExtension(CB, ArgNo); 5120 uint64_t GapSize = 5121 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5122 ShadowBase = 5123 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5124 if (MS.TrackOrigins) 5125 OriginBase = 5126 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5127 OverflowOffset += ArgSize; 5128 } else { 5129 OverflowOffset = kParamTLSSize; 5130 } 5131 } 5132 break; 5133 } 5134 case ArgKind::Indirect: 5135 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5136 } 5137 if (ShadowBase == nullptr) 5138 continue; 5139 Value *Shadow = MSV.getShadow(A); 5140 if (SE != ShadowExtension::None) 5141 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5142 /*Signed*/ SE == ShadowExtension::Sign); 5143 ShadowBase = IRB.CreateIntToPtr( 5144 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5145 IRB.CreateStore(Shadow, ShadowBase); 5146 if (MS.TrackOrigins) { 5147 Value *Origin = MSV.getOrigin(A); 5148 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5149 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5150 kMinOriginAlignment); 5151 } 5152 } 5153 Constant *OverflowSize = ConstantInt::get( 5154 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5155 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5156 } 5157 5158 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5159 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5160 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5161 } 5162 5163 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5164 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5165 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5166 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5167 "_msarg_va_o"); 5168 } 5169 5170 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5171 IRBuilder<> IRB(&I); 5172 Value *VAListTag = I.getArgOperand(0); 5173 Value *ShadowPtr, *OriginPtr; 5174 const Align Alignment = Align(8); 5175 std::tie(ShadowPtr, OriginPtr) = 5176 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5177 /*isStore*/ true); 5178 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5179 SystemZVAListTagSize, Alignment, false); 5180 } 5181 5182 void visitVAStartInst(VAStartInst &I) override { 5183 VAStartInstrumentationList.push_back(&I); 5184 unpoisonVAListTagForInst(I); 5185 } 5186 5187 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5188 5189 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5190 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5191 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5192 IRB.CreateAdd( 5193 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5194 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5195 PointerType::get(RegSaveAreaPtrTy, 0)); 5196 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5197 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5198 const Align Alignment = Align(8); 5199 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5200 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5201 /*isStore*/ true); 5202 // TODO(iii): copy only fragments filled by visitCallBase() 5203 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5204 SystemZRegSaveAreaSize); 5205 if (MS.TrackOrigins) 5206 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5207 Alignment, SystemZRegSaveAreaSize); 5208 } 5209 5210 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5211 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5212 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5213 IRB.CreateAdd( 5214 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5215 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5216 PointerType::get(OverflowArgAreaPtrTy, 0)); 5217 Value *OverflowArgAreaPtr = 5218 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5219 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5220 const Align Alignment = Align(8); 5221 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5222 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5223 Alignment, /*isStore*/ true); 5224 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5225 SystemZOverflowOffset); 5226 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5227 VAArgOverflowSize); 5228 if (MS.TrackOrigins) { 5229 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5230 SystemZOverflowOffset); 5231 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5232 VAArgOverflowSize); 5233 } 5234 } 5235 5236 void finalizeInstrumentation() override { 5237 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5238 "finalizeInstrumentation called twice"); 5239 if (!VAStartInstrumentationList.empty()) { 5240 // If there is a va_start in this function, make a backup copy of 5241 // va_arg_tls somewhere in the function entry block. 5242 IRBuilder<> IRB(MSV.FnPrologueEnd); 5243 VAArgOverflowSize = 5244 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5245 Value *CopySize = 5246 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5247 VAArgOverflowSize); 5248 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5249 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5250 if (MS.TrackOrigins) { 5251 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5252 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5253 Align(8), CopySize); 5254 } 5255 } 5256 5257 // Instrument va_start. 5258 // Copy va_list shadow from the backup copy of the TLS contents. 5259 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5260 VaStartNo < VaStartNum; VaStartNo++) { 5261 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5262 IRBuilder<> IRB(OrigInst->getNextNode()); 5263 Value *VAListTag = OrigInst->getArgOperand(0); 5264 copyRegSaveArea(IRB, VAListTag); 5265 copyOverflowArea(IRB, VAListTag); 5266 } 5267 } 5268 }; 5269 5270 /// A no-op implementation of VarArgHelper. 5271 struct VarArgNoOpHelper : public VarArgHelper { 5272 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5273 MemorySanitizerVisitor &MSV) {} 5274 5275 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5276 5277 void visitVAStartInst(VAStartInst &I) override {} 5278 5279 void visitVACopyInst(VACopyInst &I) override {} 5280 5281 void finalizeInstrumentation() override {} 5282 }; 5283 5284 } // end anonymous namespace 5285 5286 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5287 MemorySanitizerVisitor &Visitor) { 5288 // VarArg handling is only implemented on AMD64. False positives are possible 5289 // on other platforms. 5290 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5291 if (TargetTriple.getArch() == Triple::x86_64) 5292 return new VarArgAMD64Helper(Func, Msan, Visitor); 5293 else if (TargetTriple.isMIPS64()) 5294 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5295 else if (TargetTriple.getArch() == Triple::aarch64) 5296 return new VarArgAArch64Helper(Func, Msan, Visitor); 5297 else if (TargetTriple.getArch() == Triple::ppc64 || 5298 TargetTriple.getArch() == Triple::ppc64le) 5299 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5300 else if (TargetTriple.getArch() == Triple::systemz) 5301 return new VarArgSystemZHelper(Func, Msan, Visitor); 5302 else 5303 return new VarArgNoOpHelper(Func, Msan, Visitor); 5304 } 5305 5306 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5307 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5308 return false; 5309 5310 MemorySanitizerVisitor Visitor(F, *this, TLI); 5311 5312 // Clear out readonly/readnone attributes. 5313 AttrBuilder B; 5314 B.addAttribute(Attribute::ReadOnly) 5315 .addAttribute(Attribute::ReadNone) 5316 .addAttribute(Attribute::WriteOnly) 5317 .addAttribute(Attribute::ArgMemOnly) 5318 .addAttribute(Attribute::Speculatable); 5319 F.removeAttributes(AttributeList::FunctionIndex, B); 5320 5321 return Visitor.runOnFunction(); 5322 } 5323