1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 // This is an experiment to enable handling of cases where shadow is a non-zero 311 // compile-time constant. For some unexplainable reason they were silently 312 // ignored in the instrumentation. 313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 314 cl::desc("Insert checks for constant shadow values"), 315 cl::Hidden, cl::init(false)); 316 317 // This is off by default because of a bug in gold: 318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 319 static cl::opt<bool> ClWithComdat("msan-with-comdat", 320 cl::desc("Place MSan constructors in comdat sections"), 321 cl::Hidden, cl::init(false)); 322 323 // These options allow to specify custom memory map parameters 324 // See MemoryMapParams for details. 325 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 326 cl::desc("Define custom MSan AndMask"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 330 cl::desc("Define custom MSan XorMask"), 331 cl::Hidden, cl::init(0)); 332 333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 334 cl::desc("Define custom MSan ShadowBase"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 338 cl::desc("Define custom MSan OriginBase"), 339 cl::Hidden, cl::init(0)); 340 341 const char kMsanModuleCtorName[] = "msan.module_ctor"; 342 const char kMsanInitName[] = "__msan_init"; 343 344 namespace { 345 346 // Memory map parameters used in application-to-shadow address calculation. 347 // Offset = (Addr & ~AndMask) ^ XorMask 348 // Shadow = ShadowBase + Offset 349 // Origin = OriginBase + Offset 350 struct MemoryMapParams { 351 uint64_t AndMask; 352 uint64_t XorMask; 353 uint64_t ShadowBase; 354 uint64_t OriginBase; 355 }; 356 357 struct PlatformMemoryMapParams { 358 const MemoryMapParams *bits32; 359 const MemoryMapParams *bits64; 360 }; 361 362 } // end anonymous namespace 363 364 // i386 Linux 365 static const MemoryMapParams Linux_I386_MemoryMapParams = { 366 0x000080000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x000040000000, // OriginBase 370 }; 371 372 // x86_64 Linux 373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 375 0x400000000000, // AndMask 376 0, // XorMask (not used) 377 0, // ShadowBase (not used) 378 0x200000000000, // OriginBase 379 #else 380 0, // AndMask (not used) 381 0x500000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x100000000000, // OriginBase 384 #endif 385 }; 386 387 // mips64 Linux 388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 389 0, // AndMask (not used) 390 0x008000000000, // XorMask 391 0, // ShadowBase (not used) 392 0x002000000000, // OriginBase 393 }; 394 395 // ppc64 Linux 396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 397 0xE00000000000, // AndMask 398 0x100000000000, // XorMask 399 0x080000000000, // ShadowBase 400 0x1C0000000000, // OriginBase 401 }; 402 403 // s390x Linux 404 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 405 0xC00000000000, // AndMask 406 0, // XorMask (not used) 407 0x080000000000, // ShadowBase 408 0x1C0000000000, // OriginBase 409 }; 410 411 // aarch64 Linux 412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 413 0, // AndMask (not used) 414 0x06000000000, // XorMask 415 0, // ShadowBase (not used) 416 0x01000000000, // OriginBase 417 }; 418 419 // i386 FreeBSD 420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 421 0x000180000000, // AndMask 422 0x000040000000, // XorMask 423 0x000020000000, // ShadowBase 424 0x000700000000, // OriginBase 425 }; 426 427 // x86_64 FreeBSD 428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 429 0xc00000000000, // AndMask 430 0x200000000000, // XorMask 431 0x100000000000, // ShadowBase 432 0x380000000000, // OriginBase 433 }; 434 435 // x86_64 NetBSD 436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 437 0, // AndMask 438 0x500000000000, // XorMask 439 0, // ShadowBase 440 0x100000000000, // OriginBase 441 }; 442 443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 444 &Linux_I386_MemoryMapParams, 445 &Linux_X86_64_MemoryMapParams, 446 }; 447 448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 449 nullptr, 450 &Linux_MIPS64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 454 nullptr, 455 &Linux_PowerPC64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 459 nullptr, 460 &Linux_S390X_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 464 nullptr, 465 &Linux_AArch64_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 469 &FreeBSD_I386_MemoryMapParams, 470 &FreeBSD_X86_64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 474 nullptr, 475 &NetBSD_X86_64_MemoryMapParams, 476 }; 477 478 namespace { 479 480 /// Instrument functions of a module to detect uninitialized reads. 481 /// 482 /// Instantiating MemorySanitizer inserts the msan runtime library API function 483 /// declarations into the module if they don't exist already. Instantiating 484 /// ensures the __msan_init function is in the list of global constructors for 485 /// the module. 486 class MemorySanitizer { 487 public: 488 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 489 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 490 Recover(Options.Recover) { 491 initializeModule(M); 492 } 493 494 // MSan cannot be moved or copied because of MapParams. 495 MemorySanitizer(MemorySanitizer &&) = delete; 496 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 497 MemorySanitizer(const MemorySanitizer &) = delete; 498 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 499 500 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 501 502 private: 503 friend struct MemorySanitizerVisitor; 504 friend struct VarArgAMD64Helper; 505 friend struct VarArgMIPS64Helper; 506 friend struct VarArgAArch64Helper; 507 friend struct VarArgPowerPC64Helper; 508 friend struct VarArgSystemZHelper; 509 510 void initializeModule(Module &M); 511 void initializeCallbacks(Module &M); 512 void createKernelApi(Module &M); 513 void createUserspaceApi(Module &M); 514 515 /// True if we're compiling the Linux kernel. 516 bool CompileKernel; 517 /// Track origins (allocation points) of uninitialized values. 518 int TrackOrigins; 519 bool Recover; 520 521 LLVMContext *C; 522 Type *IntptrTy; 523 Type *OriginTy; 524 525 // XxxTLS variables represent the per-thread state in MSan and per-task state 526 // in KMSAN. 527 // For the userspace these point to thread-local globals. In the kernel land 528 // they point to the members of a per-task struct obtained via a call to 529 // __msan_get_context_state(). 530 531 /// Thread-local shadow storage for function parameters. 532 Value *ParamTLS; 533 534 /// Thread-local origin storage for function parameters. 535 Value *ParamOriginTLS; 536 537 /// Thread-local shadow storage for function return value. 538 Value *RetvalTLS; 539 540 /// Thread-local origin storage for function return value. 541 Value *RetvalOriginTLS; 542 543 /// Thread-local shadow storage for in-register va_arg function 544 /// parameters (x86_64-specific). 545 Value *VAArgTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgOriginTLS; 550 551 /// Thread-local shadow storage for va_arg overflow area 552 /// (x86_64-specific). 553 Value *VAArgOverflowSizeTLS; 554 555 /// Are the instrumentation callbacks set up? 556 bool CallbacksInitialized = false; 557 558 /// The run-time callback to print a warning. 559 FunctionCallee WarningFn; 560 561 // These arrays are indexed by log2(AccessSize). 562 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 563 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 564 565 /// Run-time helper that generates a new origin value for a stack 566 /// allocation. 567 FunctionCallee MsanSetAllocaOrigin4Fn; 568 569 /// Run-time helper that poisons stack on function entry. 570 FunctionCallee MsanPoisonStackFn; 571 572 /// Run-time helper that records a store (or any event) of an 573 /// uninitialized value and returns an updated origin id encoding this info. 574 FunctionCallee MsanChainOriginFn; 575 576 /// Run-time helper that paints an origin over a region. 577 FunctionCallee MsanSetOriginFn; 578 579 /// MSan runtime replacements for memmove, memcpy and memset. 580 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 581 582 /// KMSAN callback for task-local function argument shadow. 583 StructType *MsanContextStateTy; 584 FunctionCallee MsanGetContextStateFn; 585 586 /// Functions for poisoning/unpoisoning local variables 587 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 588 589 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 590 /// pointers. 591 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 592 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 593 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 594 FunctionCallee MsanInstrumentAsmStoreFn; 595 596 /// Helper to choose between different MsanMetadataPtrXxx(). 597 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 598 599 /// Memory map parameters used in application-to-shadow calculation. 600 const MemoryMapParams *MapParams; 601 602 /// Custom memory map parameters used when -msan-shadow-base or 603 // -msan-origin-base is provided. 604 MemoryMapParams CustomMapParams; 605 606 MDNode *ColdCallWeights; 607 608 /// Branch weights for origin store. 609 MDNode *OriginStoreWeights; 610 }; 611 612 void insertModuleCtor(Module &M) { 613 getOrCreateSanitizerCtorAndInitFunctions( 614 M, kMsanModuleCtorName, kMsanInitName, 615 /*InitArgTypes=*/{}, 616 /*InitArgs=*/{}, 617 // This callback is invoked when the functions are created the first 618 // time. Hook them into the global ctors list in that case: 619 [&](Function *Ctor, FunctionCallee) { 620 if (!ClWithComdat) { 621 appendToGlobalCtors(M, Ctor, 0); 622 return; 623 } 624 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 625 Ctor->setComdat(MsanCtorComdat); 626 appendToGlobalCtors(M, Ctor, 0, Ctor); 627 }); 628 } 629 630 /// A legacy function pass for msan instrumentation. 631 /// 632 /// Instruments functions to detect uninitialized reads. 633 struct MemorySanitizerLegacyPass : public FunctionPass { 634 // Pass identification, replacement for typeid. 635 static char ID; 636 637 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 638 : FunctionPass(ID), Options(Options) { 639 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 640 } 641 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 642 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.addRequired<TargetLibraryInfoWrapperPass>(); 645 } 646 647 bool runOnFunction(Function &F) override { 648 return MSan->sanitizeFunction( 649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 650 } 651 bool doInitialization(Module &M) override; 652 653 Optional<MemorySanitizer> MSan; 654 MemorySanitizerOptions Options; 655 }; 656 657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 658 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 659 } 660 661 } // end anonymous namespace 662 663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 664 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 665 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 666 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 667 668 PreservedAnalyses MemorySanitizerPass::run(Function &F, 669 FunctionAnalysisManager &FAM) { 670 MemorySanitizer Msan(*F.getParent(), Options); 671 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 672 return PreservedAnalyses::none(); 673 return PreservedAnalyses::all(); 674 } 675 676 PreservedAnalyses 677 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 678 if (Options.Kernel) 679 return PreservedAnalyses::all(); 680 insertModuleCtor(M); 681 return PreservedAnalyses::none(); 682 } 683 684 void MemorySanitizerPass::printPipeline( 685 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 686 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 687 OS, MapClassName2PassName); 688 OS << "<"; 689 if (Options.Recover) 690 OS << "recover;"; 691 if (Options.Kernel) 692 OS << "kernel;"; 693 OS << "track-origins=" << Options.TrackOrigins; 694 OS << ">"; 695 } 696 697 char MemorySanitizerLegacyPass::ID = 0; 698 699 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 700 "MemorySanitizer: detects uninitialized reads.", false, 701 false) 702 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 703 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 704 "MemorySanitizer: detects uninitialized reads.", false, 705 false) 706 707 FunctionPass * 708 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 709 return new MemorySanitizerLegacyPass(Options); 710 } 711 712 /// Create a non-const global initialized with the given string. 713 /// 714 /// Creates a writable global for Str so that we can pass it to the 715 /// run-time lib. Runtime uses first 4 bytes of the string to store the 716 /// frame ID, so the string needs to be mutable. 717 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 718 StringRef Str) { 719 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 720 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 721 GlobalValue::PrivateLinkage, StrConst, ""); 722 } 723 724 /// Create KMSAN API callbacks. 725 void MemorySanitizer::createKernelApi(Module &M) { 726 IRBuilder<> IRB(*C); 727 728 // These will be initialized in insertKmsanPrologue(). 729 RetvalTLS = nullptr; 730 RetvalOriginTLS = nullptr; 731 ParamTLS = nullptr; 732 ParamOriginTLS = nullptr; 733 VAArgTLS = nullptr; 734 VAArgOriginTLS = nullptr; 735 VAArgOverflowSizeTLS = nullptr; 736 737 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 738 IRB.getInt32Ty()); 739 // Requests the per-task context state (kmsan_context_state*) from the 740 // runtime library. 741 MsanContextStateTy = StructType::get( 742 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 743 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 744 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 745 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 746 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 747 OriginTy); 748 MsanGetContextStateFn = M.getOrInsertFunction( 749 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 750 751 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 752 PointerType::get(IRB.getInt32Ty(), 0)); 753 754 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 755 std::string name_load = 756 "__msan_metadata_ptr_for_load_" + std::to_string(size); 757 std::string name_store = 758 "__msan_metadata_ptr_for_store_" + std::to_string(size); 759 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 760 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 761 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 762 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 763 } 764 765 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 766 "__msan_metadata_ptr_for_load_n", RetTy, 767 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 768 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 769 "__msan_metadata_ptr_for_store_n", RetTy, 770 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 771 772 // Functions for poisoning and unpoisoning memory. 773 MsanPoisonAllocaFn = 774 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 775 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 776 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 777 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 778 } 779 780 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 781 return M.getOrInsertGlobal(Name, Ty, [&] { 782 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 783 nullptr, Name, nullptr, 784 GlobalVariable::InitialExecTLSModel); 785 }); 786 } 787 788 /// Insert declarations for userspace-specific functions and globals. 789 void MemorySanitizer::createUserspaceApi(Module &M) { 790 IRBuilder<> IRB(*C); 791 792 // Create the callback. 793 // FIXME: this function should have "Cold" calling conv, 794 // which is not yet implemented. 795 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 796 : "__msan_warning_with_origin_noreturn"; 797 WarningFn = 798 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 799 800 // Create the global TLS variables. 801 RetvalTLS = 802 getOrInsertGlobal(M, "__msan_retval_tls", 803 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 804 805 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 806 807 ParamTLS = 808 getOrInsertGlobal(M, "__msan_param_tls", 809 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 810 811 ParamOriginTLS = 812 getOrInsertGlobal(M, "__msan_param_origin_tls", 813 ArrayType::get(OriginTy, kParamTLSSize / 4)); 814 815 VAArgTLS = 816 getOrInsertGlobal(M, "__msan_va_arg_tls", 817 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 818 819 VAArgOriginTLS = 820 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 821 ArrayType::get(OriginTy, kParamTLSSize / 4)); 822 823 VAArgOverflowSizeTLS = 824 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 825 826 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 827 AccessSizeIndex++) { 828 unsigned AccessSize = 1 << AccessSizeIndex; 829 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 830 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 831 MaybeWarningFnAttrs.push_back(std::make_pair( 832 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 833 MaybeWarningFnAttrs.push_back(std::make_pair( 834 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 835 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 836 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 837 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 838 839 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 840 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 841 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 842 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 843 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 844 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 845 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 846 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 847 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 848 IRB.getInt32Ty()); 849 } 850 851 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 852 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 853 IRB.getInt8PtrTy(), IntptrTy); 854 MsanPoisonStackFn = 855 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 856 IRB.getInt8PtrTy(), IntptrTy); 857 } 858 859 /// Insert extern declaration of runtime-provided functions and globals. 860 void MemorySanitizer::initializeCallbacks(Module &M) { 861 // Only do this once. 862 if (CallbacksInitialized) 863 return; 864 865 IRBuilder<> IRB(*C); 866 // Initialize callbacks that are common for kernel and userspace 867 // instrumentation. 868 MsanChainOriginFn = M.getOrInsertFunction( 869 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 870 MsanSetOriginFn = 871 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 872 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 873 MemmoveFn = M.getOrInsertFunction( 874 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 875 IRB.getInt8PtrTy(), IntptrTy); 876 MemcpyFn = M.getOrInsertFunction( 877 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 878 IntptrTy); 879 MemsetFn = M.getOrInsertFunction( 880 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 881 IntptrTy); 882 883 MsanInstrumentAsmStoreFn = 884 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 885 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 886 887 if (CompileKernel) { 888 createKernelApi(M); 889 } else { 890 createUserspaceApi(M); 891 } 892 CallbacksInitialized = true; 893 } 894 895 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 896 int size) { 897 FunctionCallee *Fns = 898 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 899 switch (size) { 900 case 1: 901 return Fns[0]; 902 case 2: 903 return Fns[1]; 904 case 4: 905 return Fns[2]; 906 case 8: 907 return Fns[3]; 908 default: 909 return nullptr; 910 } 911 } 912 913 /// Module-level initialization. 914 /// 915 /// inserts a call to __msan_init to the module's constructor list. 916 void MemorySanitizer::initializeModule(Module &M) { 917 auto &DL = M.getDataLayout(); 918 919 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 920 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 921 // Check the overrides first 922 if (ShadowPassed || OriginPassed) { 923 CustomMapParams.AndMask = ClAndMask; 924 CustomMapParams.XorMask = ClXorMask; 925 CustomMapParams.ShadowBase = ClShadowBase; 926 CustomMapParams.OriginBase = ClOriginBase; 927 MapParams = &CustomMapParams; 928 } else { 929 Triple TargetTriple(M.getTargetTriple()); 930 switch (TargetTriple.getOS()) { 931 case Triple::FreeBSD: 932 switch (TargetTriple.getArch()) { 933 case Triple::x86_64: 934 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 935 break; 936 case Triple::x86: 937 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 938 break; 939 default: 940 report_fatal_error("unsupported architecture"); 941 } 942 break; 943 case Triple::NetBSD: 944 switch (TargetTriple.getArch()) { 945 case Triple::x86_64: 946 MapParams = NetBSD_X86_MemoryMapParams.bits64; 947 break; 948 default: 949 report_fatal_error("unsupported architecture"); 950 } 951 break; 952 case Triple::Linux: 953 switch (TargetTriple.getArch()) { 954 case Triple::x86_64: 955 MapParams = Linux_X86_MemoryMapParams.bits64; 956 break; 957 case Triple::x86: 958 MapParams = Linux_X86_MemoryMapParams.bits32; 959 break; 960 case Triple::mips64: 961 case Triple::mips64el: 962 MapParams = Linux_MIPS_MemoryMapParams.bits64; 963 break; 964 case Triple::ppc64: 965 case Triple::ppc64le: 966 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 967 break; 968 case Triple::systemz: 969 MapParams = Linux_S390_MemoryMapParams.bits64; 970 break; 971 case Triple::aarch64: 972 case Triple::aarch64_be: 973 MapParams = Linux_ARM_MemoryMapParams.bits64; 974 break; 975 default: 976 report_fatal_error("unsupported architecture"); 977 } 978 break; 979 default: 980 report_fatal_error("unsupported operating system"); 981 } 982 } 983 984 C = &(M.getContext()); 985 IRBuilder<> IRB(*C); 986 IntptrTy = IRB.getIntPtrTy(DL); 987 OriginTy = IRB.getInt32Ty(); 988 989 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 990 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 991 992 if (!CompileKernel) { 993 if (TrackOrigins) 994 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 995 return new GlobalVariable( 996 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 997 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 998 }); 999 1000 if (Recover) 1001 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1002 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1003 GlobalValue::WeakODRLinkage, 1004 IRB.getInt32(Recover), "__msan_keep_going"); 1005 }); 1006 } 1007 } 1008 1009 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 1010 if (!Options.Kernel) 1011 insertModuleCtor(M); 1012 MSan.emplace(M, Options); 1013 return true; 1014 } 1015 1016 namespace { 1017 1018 /// A helper class that handles instrumentation of VarArg 1019 /// functions on a particular platform. 1020 /// 1021 /// Implementations are expected to insert the instrumentation 1022 /// necessary to propagate argument shadow through VarArg function 1023 /// calls. Visit* methods are called during an InstVisitor pass over 1024 /// the function, and should avoid creating new basic blocks. A new 1025 /// instance of this class is created for each instrumented function. 1026 struct VarArgHelper { 1027 virtual ~VarArgHelper() = default; 1028 1029 /// Visit a CallBase. 1030 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1031 1032 /// Visit a va_start call. 1033 virtual void visitVAStartInst(VAStartInst &I) = 0; 1034 1035 /// Visit a va_copy call. 1036 virtual void visitVACopyInst(VACopyInst &I) = 0; 1037 1038 /// Finalize function instrumentation. 1039 /// 1040 /// This method is called after visiting all interesting (see above) 1041 /// instructions in a function. 1042 virtual void finalizeInstrumentation() = 0; 1043 }; 1044 1045 struct MemorySanitizerVisitor; 1046 1047 } // end anonymous namespace 1048 1049 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1050 MemorySanitizerVisitor &Visitor); 1051 1052 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1053 if (TypeSize <= 8) return 0; 1054 return Log2_32_Ceil((TypeSize + 7) / 8); 1055 } 1056 1057 namespace { 1058 1059 /// This class does all the work for a given function. Store and Load 1060 /// instructions store and load corresponding shadow and origin 1061 /// values. Most instructions propagate shadow from arguments to their 1062 /// return values. Certain instructions (most importantly, BranchInst) 1063 /// test their argument shadow and print reports (with a runtime call) if it's 1064 /// non-zero. 1065 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1066 Function &F; 1067 MemorySanitizer &MS; 1068 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1069 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1070 std::unique_ptr<VarArgHelper> VAHelper; 1071 const TargetLibraryInfo *TLI; 1072 Instruction *FnPrologueEnd; 1073 1074 // The following flags disable parts of MSan instrumentation based on 1075 // exclusion list contents and command-line options. 1076 bool InsertChecks; 1077 bool PropagateShadow; 1078 bool PoisonStack; 1079 bool PoisonUndef; 1080 1081 struct ShadowOriginAndInsertPoint { 1082 Value *Shadow; 1083 Value *Origin; 1084 Instruction *OrigIns; 1085 1086 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1087 : Shadow(S), Origin(O), OrigIns(I) {} 1088 }; 1089 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1090 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1091 SmallSet<AllocaInst *, 16> AllocaSet; 1092 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1093 SmallVector<StoreInst *, 16> StoreList; 1094 1095 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1096 const TargetLibraryInfo &TLI) 1097 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1098 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1099 InsertChecks = SanitizeFunction; 1100 PropagateShadow = SanitizeFunction; 1101 PoisonStack = SanitizeFunction && ClPoisonStack; 1102 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1103 1104 // In the presence of unreachable blocks, we may see Phi nodes with 1105 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1106 // blocks, such nodes will not have any shadow value associated with them. 1107 // It's easier to remove unreachable blocks than deal with missing shadow. 1108 removeUnreachableBlocks(F); 1109 1110 MS.initializeCallbacks(*F.getParent()); 1111 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1112 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1113 1114 if (MS.CompileKernel) { 1115 IRBuilder<> IRB(FnPrologueEnd); 1116 insertKmsanPrologue(IRB); 1117 } 1118 1119 LLVM_DEBUG(if (!InsertChecks) dbgs() 1120 << "MemorySanitizer is not inserting checks into '" 1121 << F.getName() << "'\n"); 1122 } 1123 1124 bool isInPrologue(Instruction &I) { 1125 return I.getParent() == FnPrologueEnd->getParent() && 1126 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1127 } 1128 1129 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1130 if (MS.TrackOrigins <= 1) return V; 1131 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1132 } 1133 1134 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1135 const DataLayout &DL = F.getParent()->getDataLayout(); 1136 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1137 if (IntptrSize == kOriginSize) return Origin; 1138 assert(IntptrSize == kOriginSize * 2); 1139 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1140 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1141 } 1142 1143 /// Fill memory range with the given origin value. 1144 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1145 unsigned Size, Align Alignment) { 1146 const DataLayout &DL = F.getParent()->getDataLayout(); 1147 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1148 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1149 assert(IntptrAlignment >= kMinOriginAlignment); 1150 assert(IntptrSize >= kOriginSize); 1151 1152 unsigned Ofs = 0; 1153 Align CurrentAlignment = Alignment; 1154 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1155 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1156 Value *IntptrOriginPtr = 1157 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1158 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1159 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1160 : IntptrOriginPtr; 1161 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1162 Ofs += IntptrSize / kOriginSize; 1163 CurrentAlignment = IntptrAlignment; 1164 } 1165 } 1166 1167 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1168 Value *GEP = 1169 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1170 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1171 CurrentAlignment = kMinOriginAlignment; 1172 } 1173 } 1174 1175 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1176 Value *OriginPtr, Align Alignment, bool AsCall) { 1177 const DataLayout &DL = F.getParent()->getDataLayout(); 1178 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1179 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1180 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1181 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1182 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1183 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1184 OriginAlignment); 1185 return; 1186 } 1187 1188 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1189 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1190 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1191 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1192 Value *ConvertedShadow2 = 1193 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1194 CallBase *CB = IRB.CreateCall( 1195 Fn, {ConvertedShadow2, 1196 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1197 CB->addParamAttr(0, Attribute::ZExt); 1198 CB->addParamAttr(2, Attribute::ZExt); 1199 } else { 1200 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1201 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1202 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1203 IRBuilder<> IRBNew(CheckTerm); 1204 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1205 OriginAlignment); 1206 } 1207 } 1208 1209 void materializeStores(bool InstrumentWithCalls) { 1210 for (StoreInst *SI : StoreList) { 1211 IRBuilder<> IRB(SI); 1212 Value *Val = SI->getValueOperand(); 1213 Value *Addr = SI->getPointerOperand(); 1214 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1215 Value *ShadowPtr, *OriginPtr; 1216 Type *ShadowTy = Shadow->getType(); 1217 const Align Alignment = assumeAligned(SI->getAlignment()); 1218 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1219 std::tie(ShadowPtr, OriginPtr) = 1220 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1221 1222 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1223 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1224 (void)NewSI; 1225 1226 if (SI->isAtomic()) 1227 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1228 1229 if (MS.TrackOrigins && !SI->isAtomic()) 1230 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1231 OriginAlignment, InstrumentWithCalls); 1232 } 1233 } 1234 1235 /// Helper function to insert a warning at IRB's current insert point. 1236 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1237 if (!Origin) 1238 Origin = (Value *)IRB.getInt32(0); 1239 assert(Origin->getType()->isIntegerTy()); 1240 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1241 // FIXME: Insert UnreachableInst if !MS.Recover? 1242 // This may invalidate some of the following checks and needs to be done 1243 // at the very end. 1244 } 1245 1246 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1247 bool AsCall) { 1248 IRBuilder<> IRB(OrigIns); 1249 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1250 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1251 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1252 1253 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1254 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1255 insertWarningFn(IRB, Origin); 1256 } 1257 return; 1258 } 1259 1260 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1261 1262 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1263 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1264 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1265 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1266 Value *ConvertedShadow2 = 1267 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1268 CallBase *CB = IRB.CreateCall( 1269 Fn, {ConvertedShadow2, 1270 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1271 CB->addParamAttr(0, Attribute::ZExt); 1272 CB->addParamAttr(1, Attribute::ZExt); 1273 } else { 1274 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1275 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1276 Cmp, OrigIns, 1277 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1278 1279 IRB.SetInsertPoint(CheckTerm); 1280 insertWarningFn(IRB, Origin); 1281 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1282 } 1283 } 1284 1285 void materializeChecks(bool InstrumentWithCalls) { 1286 for (const auto &ShadowData : InstrumentationList) { 1287 Instruction *OrigIns = ShadowData.OrigIns; 1288 Value *Shadow = ShadowData.Shadow; 1289 Value *Origin = ShadowData.Origin; 1290 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1291 } 1292 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1293 } 1294 1295 // Returns the last instruction in the new prologue 1296 void insertKmsanPrologue(IRBuilder<> &IRB) { 1297 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1298 Constant *Zero = IRB.getInt32(0); 1299 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1300 {Zero, IRB.getInt32(0)}, "param_shadow"); 1301 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1302 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1303 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1304 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1305 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1306 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1307 MS.VAArgOverflowSizeTLS = 1308 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1309 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1310 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1311 {Zero, IRB.getInt32(5)}, "param_origin"); 1312 MS.RetvalOriginTLS = 1313 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1314 {Zero, IRB.getInt32(6)}, "retval_origin"); 1315 } 1316 1317 /// Add MemorySanitizer instrumentation to a function. 1318 bool runOnFunction() { 1319 // Iterate all BBs in depth-first order and create shadow instructions 1320 // for all instructions (where applicable). 1321 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1322 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1323 visit(*BB); 1324 1325 // Finalize PHI nodes. 1326 for (PHINode *PN : ShadowPHINodes) { 1327 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1328 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1329 size_t NumValues = PN->getNumIncomingValues(); 1330 for (size_t v = 0; v < NumValues; v++) { 1331 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1332 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1333 } 1334 } 1335 1336 VAHelper->finalizeInstrumentation(); 1337 1338 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1339 // instrumenting only allocas. 1340 if (InstrumentLifetimeStart) { 1341 for (auto Item : LifetimeStartList) { 1342 instrumentAlloca(*Item.second, Item.first); 1343 AllocaSet.erase(Item.second); 1344 } 1345 } 1346 // Poison the allocas for which we didn't instrument the corresponding 1347 // lifetime intrinsics. 1348 for (AllocaInst *AI : AllocaSet) 1349 instrumentAlloca(*AI); 1350 1351 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1352 InstrumentationList.size() + StoreList.size() > 1353 (unsigned)ClInstrumentationWithCallThreshold; 1354 1355 // Insert shadow value checks. 1356 materializeChecks(InstrumentWithCalls); 1357 1358 // Delayed instrumentation of StoreInst. 1359 // This may not add new address checks. 1360 materializeStores(InstrumentWithCalls); 1361 1362 return true; 1363 } 1364 1365 /// Compute the shadow type that corresponds to a given Value. 1366 Type *getShadowTy(Value *V) { 1367 return getShadowTy(V->getType()); 1368 } 1369 1370 /// Compute the shadow type that corresponds to a given Type. 1371 Type *getShadowTy(Type *OrigTy) { 1372 if (!OrigTy->isSized()) { 1373 return nullptr; 1374 } 1375 // For integer type, shadow is the same as the original type. 1376 // This may return weird-sized types like i1. 1377 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1378 return IT; 1379 const DataLayout &DL = F.getParent()->getDataLayout(); 1380 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1381 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1382 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1383 cast<FixedVectorType>(VT)->getNumElements()); 1384 } 1385 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1386 return ArrayType::get(getShadowTy(AT->getElementType()), 1387 AT->getNumElements()); 1388 } 1389 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1390 SmallVector<Type*, 4> Elements; 1391 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1392 Elements.push_back(getShadowTy(ST->getElementType(i))); 1393 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1394 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1395 return Res; 1396 } 1397 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1398 return IntegerType::get(*MS.C, TypeSize); 1399 } 1400 1401 /// Flatten a vector type. 1402 Type *getShadowTyNoVec(Type *ty) { 1403 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1404 return IntegerType::get(*MS.C, 1405 vt->getPrimitiveSizeInBits().getFixedSize()); 1406 return ty; 1407 } 1408 1409 /// Extract combined shadow of struct elements as a bool 1410 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1411 IRBuilder<> &IRB) { 1412 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1413 Value *Aggregator = FalseVal; 1414 1415 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1416 // Combine by ORing together each element's bool shadow 1417 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1418 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1419 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1420 1421 if (Aggregator != FalseVal) 1422 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1423 else 1424 Aggregator = ShadowBool; 1425 } 1426 1427 return Aggregator; 1428 } 1429 1430 // Extract combined shadow of array elements 1431 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1432 IRBuilder<> &IRB) { 1433 if (!Array->getNumElements()) 1434 return IRB.getIntN(/* width */ 1, /* value */ 0); 1435 1436 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1437 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1438 1439 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1440 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1441 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1442 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1443 } 1444 return Aggregator; 1445 } 1446 1447 /// Convert a shadow value to it's flattened variant. The resulting 1448 /// shadow may not necessarily have the same bit width as the input 1449 /// value, but it will always be comparable to zero. 1450 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1451 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1452 return collapseStructShadow(Struct, V, IRB); 1453 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1454 return collapseArrayShadow(Array, V, IRB); 1455 Type *Ty = V->getType(); 1456 Type *NoVecTy = getShadowTyNoVec(Ty); 1457 if (Ty == NoVecTy) return V; 1458 return IRB.CreateBitCast(V, NoVecTy); 1459 } 1460 1461 // Convert a scalar value to an i1 by comparing with 0 1462 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1463 Type *VTy = V->getType(); 1464 assert(VTy->isIntegerTy()); 1465 if (VTy->getIntegerBitWidth() == 1) 1466 // Just converting a bool to a bool, so do nothing. 1467 return V; 1468 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1469 } 1470 1471 /// Compute the integer shadow offset that corresponds to a given 1472 /// application address. 1473 /// 1474 /// Offset = (Addr & ~AndMask) ^ XorMask 1475 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1476 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1477 1478 uint64_t AndMask = MS.MapParams->AndMask; 1479 if (AndMask) 1480 OffsetLong = 1481 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1482 1483 uint64_t XorMask = MS.MapParams->XorMask; 1484 if (XorMask) 1485 OffsetLong = 1486 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1487 return OffsetLong; 1488 } 1489 1490 /// Compute the shadow and origin addresses corresponding to a given 1491 /// application address. 1492 /// 1493 /// Shadow = ShadowBase + Offset 1494 /// Origin = (OriginBase + Offset) & ~3ULL 1495 std::pair<Value *, Value *> 1496 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1497 MaybeAlign Alignment) { 1498 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1499 Value *ShadowLong = ShadowOffset; 1500 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1501 if (ShadowBase != 0) { 1502 ShadowLong = 1503 IRB.CreateAdd(ShadowLong, 1504 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1505 } 1506 Value *ShadowPtr = 1507 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1508 Value *OriginPtr = nullptr; 1509 if (MS.TrackOrigins) { 1510 Value *OriginLong = ShadowOffset; 1511 uint64_t OriginBase = MS.MapParams->OriginBase; 1512 if (OriginBase != 0) 1513 OriginLong = IRB.CreateAdd(OriginLong, 1514 ConstantInt::get(MS.IntptrTy, OriginBase)); 1515 if (!Alignment || *Alignment < kMinOriginAlignment) { 1516 uint64_t Mask = kMinOriginAlignment.value() - 1; 1517 OriginLong = 1518 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1519 } 1520 OriginPtr = 1521 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1522 } 1523 return std::make_pair(ShadowPtr, OriginPtr); 1524 } 1525 1526 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1527 IRBuilder<> &IRB, 1528 Type *ShadowTy, 1529 bool isStore) { 1530 Value *ShadowOriginPtrs; 1531 const DataLayout &DL = F.getParent()->getDataLayout(); 1532 int Size = DL.getTypeStoreSize(ShadowTy); 1533 1534 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1535 Value *AddrCast = 1536 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1537 if (Getter) { 1538 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1539 } else { 1540 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1541 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1542 : MS.MsanMetadataPtrForLoadN, 1543 {AddrCast, SizeVal}); 1544 } 1545 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1546 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1547 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1548 1549 return std::make_pair(ShadowPtr, OriginPtr); 1550 } 1551 1552 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1553 Type *ShadowTy, 1554 MaybeAlign Alignment, 1555 bool isStore) { 1556 if (MS.CompileKernel) 1557 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1558 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1559 } 1560 1561 /// Compute the shadow address for a given function argument. 1562 /// 1563 /// Shadow = ParamTLS+ArgOffset. 1564 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1565 int ArgOffset) { 1566 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1567 if (ArgOffset) 1568 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1569 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1570 "_msarg"); 1571 } 1572 1573 /// Compute the origin address for a given function argument. 1574 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1575 int ArgOffset) { 1576 if (!MS.TrackOrigins) 1577 return nullptr; 1578 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1579 if (ArgOffset) 1580 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1581 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1582 "_msarg_o"); 1583 } 1584 1585 /// Compute the shadow address for a retval. 1586 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1587 return IRB.CreatePointerCast(MS.RetvalTLS, 1588 PointerType::get(getShadowTy(A), 0), 1589 "_msret"); 1590 } 1591 1592 /// Compute the origin address for a retval. 1593 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1594 // We keep a single origin for the entire retval. Might be too optimistic. 1595 return MS.RetvalOriginTLS; 1596 } 1597 1598 /// Set SV to be the shadow value for V. 1599 void setShadow(Value *V, Value *SV) { 1600 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1601 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1602 } 1603 1604 /// Set Origin to be the origin value for V. 1605 void setOrigin(Value *V, Value *Origin) { 1606 if (!MS.TrackOrigins) return; 1607 assert(!OriginMap.count(V) && "Values may only have one origin"); 1608 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1609 OriginMap[V] = Origin; 1610 } 1611 1612 Constant *getCleanShadow(Type *OrigTy) { 1613 Type *ShadowTy = getShadowTy(OrigTy); 1614 if (!ShadowTy) 1615 return nullptr; 1616 return Constant::getNullValue(ShadowTy); 1617 } 1618 1619 /// Create a clean shadow value for a given value. 1620 /// 1621 /// Clean shadow (all zeroes) means all bits of the value are defined 1622 /// (initialized). 1623 Constant *getCleanShadow(Value *V) { 1624 return getCleanShadow(V->getType()); 1625 } 1626 1627 /// Create a dirty shadow of a given shadow type. 1628 Constant *getPoisonedShadow(Type *ShadowTy) { 1629 assert(ShadowTy); 1630 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1631 return Constant::getAllOnesValue(ShadowTy); 1632 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1633 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1634 getPoisonedShadow(AT->getElementType())); 1635 return ConstantArray::get(AT, Vals); 1636 } 1637 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1638 SmallVector<Constant *, 4> Vals; 1639 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1640 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1641 return ConstantStruct::get(ST, Vals); 1642 } 1643 llvm_unreachable("Unexpected shadow type"); 1644 } 1645 1646 /// Create a dirty shadow for a given value. 1647 Constant *getPoisonedShadow(Value *V) { 1648 Type *ShadowTy = getShadowTy(V); 1649 if (!ShadowTy) 1650 return nullptr; 1651 return getPoisonedShadow(ShadowTy); 1652 } 1653 1654 /// Create a clean (zero) origin. 1655 Value *getCleanOrigin() { 1656 return Constant::getNullValue(MS.OriginTy); 1657 } 1658 1659 /// Get the shadow value for a given Value. 1660 /// 1661 /// This function either returns the value set earlier with setShadow, 1662 /// or extracts if from ParamTLS (for function arguments). 1663 Value *getShadow(Value *V) { 1664 if (!PropagateShadow) return getCleanShadow(V); 1665 if (Instruction *I = dyn_cast<Instruction>(V)) { 1666 if (I->getMetadata("nosanitize")) 1667 return getCleanShadow(V); 1668 // For instructions the shadow is already stored in the map. 1669 Value *Shadow = ShadowMap[V]; 1670 if (!Shadow) { 1671 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1672 (void)I; 1673 assert(Shadow && "No shadow for a value"); 1674 } 1675 return Shadow; 1676 } 1677 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1678 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1679 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1680 (void)U; 1681 return AllOnes; 1682 } 1683 if (Argument *A = dyn_cast<Argument>(V)) { 1684 // For arguments we compute the shadow on demand and store it in the map. 1685 Value **ShadowPtr = &ShadowMap[V]; 1686 if (*ShadowPtr) 1687 return *ShadowPtr; 1688 Function *F = A->getParent(); 1689 IRBuilder<> EntryIRB(FnPrologueEnd); 1690 unsigned ArgOffset = 0; 1691 const DataLayout &DL = F->getParent()->getDataLayout(); 1692 for (auto &FArg : F->args()) { 1693 if (!FArg.getType()->isSized()) { 1694 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1695 continue; 1696 } 1697 1698 bool FArgByVal = FArg.hasByValAttr(); 1699 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1700 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1701 unsigned Size = 1702 FArg.hasByValAttr() 1703 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1704 : DL.getTypeAllocSize(FArg.getType()); 1705 1706 if (A == &FArg) { 1707 bool Overflow = ArgOffset + Size > kParamTLSSize; 1708 if (FArgEagerCheck) { 1709 *ShadowPtr = getCleanShadow(V); 1710 setOrigin(A, getCleanOrigin()); 1711 continue; 1712 } else if (FArgByVal) { 1713 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1714 // ByVal pointer itself has clean shadow. We copy the actual 1715 // argument shadow to the underlying memory. 1716 // Figure out maximal valid memcpy alignment. 1717 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1718 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1719 Value *CpShadowPtr = 1720 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1721 /*isStore*/ true) 1722 .first; 1723 // TODO(glider): need to copy origins. 1724 if (Overflow) { 1725 // ParamTLS overflow. 1726 EntryIRB.CreateMemSet( 1727 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1728 Size, ArgAlign); 1729 } else { 1730 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1731 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1732 CopyAlign, Size); 1733 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1734 (void)Cpy; 1735 } 1736 *ShadowPtr = getCleanShadow(V); 1737 } else { 1738 // Shadow over TLS 1739 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1740 if (Overflow) { 1741 // ParamTLS overflow. 1742 *ShadowPtr = getCleanShadow(V); 1743 } else { 1744 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1745 kShadowTLSAlignment); 1746 } 1747 } 1748 LLVM_DEBUG(dbgs() 1749 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1750 if (MS.TrackOrigins && !Overflow) { 1751 Value *OriginPtr = 1752 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1753 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1754 } else { 1755 setOrigin(A, getCleanOrigin()); 1756 } 1757 1758 break; 1759 } 1760 1761 if (!FArgEagerCheck) 1762 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1763 } 1764 assert(*ShadowPtr && "Could not find shadow for an argument"); 1765 return *ShadowPtr; 1766 } 1767 // For everything else the shadow is zero. 1768 return getCleanShadow(V); 1769 } 1770 1771 /// Get the shadow for i-th argument of the instruction I. 1772 Value *getShadow(Instruction *I, int i) { 1773 return getShadow(I->getOperand(i)); 1774 } 1775 1776 /// Get the origin for a value. 1777 Value *getOrigin(Value *V) { 1778 if (!MS.TrackOrigins) return nullptr; 1779 if (!PropagateShadow) return getCleanOrigin(); 1780 if (isa<Constant>(V)) return getCleanOrigin(); 1781 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1782 "Unexpected value type in getOrigin()"); 1783 if (Instruction *I = dyn_cast<Instruction>(V)) { 1784 if (I->getMetadata("nosanitize")) 1785 return getCleanOrigin(); 1786 } 1787 Value *Origin = OriginMap[V]; 1788 assert(Origin && "Missing origin"); 1789 return Origin; 1790 } 1791 1792 /// Get the origin for i-th argument of the instruction I. 1793 Value *getOrigin(Instruction *I, int i) { 1794 return getOrigin(I->getOperand(i)); 1795 } 1796 1797 /// Remember the place where a shadow check should be inserted. 1798 /// 1799 /// This location will be later instrumented with a check that will print a 1800 /// UMR warning in runtime if the shadow value is not 0. 1801 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1802 assert(Shadow); 1803 if (!InsertChecks) return; 1804 #ifndef NDEBUG 1805 Type *ShadowTy = Shadow->getType(); 1806 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1807 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1808 "Can only insert checks for integer, vector, and aggregate shadow " 1809 "types"); 1810 #endif 1811 InstrumentationList.push_back( 1812 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1813 } 1814 1815 /// Remember the place where a shadow check should be inserted. 1816 /// 1817 /// This location will be later instrumented with a check that will print a 1818 /// UMR warning in runtime if the value is not fully defined. 1819 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1820 assert(Val); 1821 Value *Shadow, *Origin; 1822 if (ClCheckConstantShadow) { 1823 Shadow = getShadow(Val); 1824 if (!Shadow) return; 1825 Origin = getOrigin(Val); 1826 } else { 1827 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1828 if (!Shadow) return; 1829 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1830 } 1831 insertShadowCheck(Shadow, Origin, OrigIns); 1832 } 1833 1834 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1835 switch (a) { 1836 case AtomicOrdering::NotAtomic: 1837 return AtomicOrdering::NotAtomic; 1838 case AtomicOrdering::Unordered: 1839 case AtomicOrdering::Monotonic: 1840 case AtomicOrdering::Release: 1841 return AtomicOrdering::Release; 1842 case AtomicOrdering::Acquire: 1843 case AtomicOrdering::AcquireRelease: 1844 return AtomicOrdering::AcquireRelease; 1845 case AtomicOrdering::SequentiallyConsistent: 1846 return AtomicOrdering::SequentiallyConsistent; 1847 } 1848 llvm_unreachable("Unknown ordering"); 1849 } 1850 1851 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1852 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1853 uint32_t OrderingTable[NumOrderings] = {}; 1854 1855 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1856 OrderingTable[(int)AtomicOrderingCABI::release] = 1857 (int)AtomicOrderingCABI::release; 1858 OrderingTable[(int)AtomicOrderingCABI::consume] = 1859 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1860 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1861 (int)AtomicOrderingCABI::acq_rel; 1862 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1863 (int)AtomicOrderingCABI::seq_cst; 1864 1865 return ConstantDataVector::get(IRB.getContext(), 1866 makeArrayRef(OrderingTable, NumOrderings)); 1867 } 1868 1869 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1870 switch (a) { 1871 case AtomicOrdering::NotAtomic: 1872 return AtomicOrdering::NotAtomic; 1873 case AtomicOrdering::Unordered: 1874 case AtomicOrdering::Monotonic: 1875 case AtomicOrdering::Acquire: 1876 return AtomicOrdering::Acquire; 1877 case AtomicOrdering::Release: 1878 case AtomicOrdering::AcquireRelease: 1879 return AtomicOrdering::AcquireRelease; 1880 case AtomicOrdering::SequentiallyConsistent: 1881 return AtomicOrdering::SequentiallyConsistent; 1882 } 1883 llvm_unreachable("Unknown ordering"); 1884 } 1885 1886 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1887 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1888 uint32_t OrderingTable[NumOrderings] = {}; 1889 1890 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1891 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1892 OrderingTable[(int)AtomicOrderingCABI::consume] = 1893 (int)AtomicOrderingCABI::acquire; 1894 OrderingTable[(int)AtomicOrderingCABI::release] = 1895 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1896 (int)AtomicOrderingCABI::acq_rel; 1897 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1898 (int)AtomicOrderingCABI::seq_cst; 1899 1900 return ConstantDataVector::get(IRB.getContext(), 1901 makeArrayRef(OrderingTable, NumOrderings)); 1902 } 1903 1904 // ------------------- Visitors. 1905 using InstVisitor<MemorySanitizerVisitor>::visit; 1906 void visit(Instruction &I) { 1907 if (I.getMetadata("nosanitize")) 1908 return; 1909 // Don't want to visit if we're in the prologue 1910 if (isInPrologue(I)) 1911 return; 1912 InstVisitor<MemorySanitizerVisitor>::visit(I); 1913 } 1914 1915 /// Instrument LoadInst 1916 /// 1917 /// Loads the corresponding shadow and (optionally) origin. 1918 /// Optionally, checks that the load address is fully defined. 1919 void visitLoadInst(LoadInst &I) { 1920 assert(I.getType()->isSized() && "Load type must have size"); 1921 assert(!I.getMetadata("nosanitize")); 1922 IRBuilder<> IRB(I.getNextNode()); 1923 Type *ShadowTy = getShadowTy(&I); 1924 Value *Addr = I.getPointerOperand(); 1925 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1926 const Align Alignment = assumeAligned(I.getAlignment()); 1927 if (PropagateShadow) { 1928 std::tie(ShadowPtr, OriginPtr) = 1929 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1930 setShadow(&I, 1931 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1932 } else { 1933 setShadow(&I, getCleanShadow(&I)); 1934 } 1935 1936 if (ClCheckAccessAddress) 1937 insertShadowCheck(I.getPointerOperand(), &I); 1938 1939 if (I.isAtomic()) 1940 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1941 1942 if (MS.TrackOrigins) { 1943 if (PropagateShadow) { 1944 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1945 setOrigin( 1946 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1947 } else { 1948 setOrigin(&I, getCleanOrigin()); 1949 } 1950 } 1951 } 1952 1953 /// Instrument StoreInst 1954 /// 1955 /// Stores the corresponding shadow and (optionally) origin. 1956 /// Optionally, checks that the store address is fully defined. 1957 void visitStoreInst(StoreInst &I) { 1958 StoreList.push_back(&I); 1959 if (ClCheckAccessAddress) 1960 insertShadowCheck(I.getPointerOperand(), &I); 1961 } 1962 1963 void handleCASOrRMW(Instruction &I) { 1964 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1965 1966 IRBuilder<> IRB(&I); 1967 Value *Addr = I.getOperand(0); 1968 Value *Val = I.getOperand(1); 1969 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1970 /*isStore*/ true) 1971 .first; 1972 1973 if (ClCheckAccessAddress) 1974 insertShadowCheck(Addr, &I); 1975 1976 // Only test the conditional argument of cmpxchg instruction. 1977 // The other argument can potentially be uninitialized, but we can not 1978 // detect this situation reliably without possible false positives. 1979 if (isa<AtomicCmpXchgInst>(I)) 1980 insertShadowCheck(Val, &I); 1981 1982 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1983 1984 setShadow(&I, getCleanShadow(&I)); 1985 setOrigin(&I, getCleanOrigin()); 1986 } 1987 1988 void visitAtomicRMWInst(AtomicRMWInst &I) { 1989 handleCASOrRMW(I); 1990 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1991 } 1992 1993 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1994 handleCASOrRMW(I); 1995 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1996 } 1997 1998 // Vector manipulation. 1999 void visitExtractElementInst(ExtractElementInst &I) { 2000 insertShadowCheck(I.getOperand(1), &I); 2001 IRBuilder<> IRB(&I); 2002 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2003 "_msprop")); 2004 setOrigin(&I, getOrigin(&I, 0)); 2005 } 2006 2007 void visitInsertElementInst(InsertElementInst &I) { 2008 insertShadowCheck(I.getOperand(2), &I); 2009 IRBuilder<> IRB(&I); 2010 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 2011 I.getOperand(2), "_msprop")); 2012 setOriginForNaryOp(I); 2013 } 2014 2015 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2016 IRBuilder<> IRB(&I); 2017 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2018 I.getShuffleMask(), "_msprop")); 2019 setOriginForNaryOp(I); 2020 } 2021 2022 // Casts. 2023 void visitSExtInst(SExtInst &I) { 2024 IRBuilder<> IRB(&I); 2025 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2026 setOrigin(&I, getOrigin(&I, 0)); 2027 } 2028 2029 void visitZExtInst(ZExtInst &I) { 2030 IRBuilder<> IRB(&I); 2031 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2032 setOrigin(&I, getOrigin(&I, 0)); 2033 } 2034 2035 void visitTruncInst(TruncInst &I) { 2036 IRBuilder<> IRB(&I); 2037 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2038 setOrigin(&I, getOrigin(&I, 0)); 2039 } 2040 2041 void visitBitCastInst(BitCastInst &I) { 2042 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2043 // a musttail call and a ret, don't instrument. New instructions are not 2044 // allowed after a musttail call. 2045 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2046 if (CI->isMustTailCall()) 2047 return; 2048 IRBuilder<> IRB(&I); 2049 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2050 setOrigin(&I, getOrigin(&I, 0)); 2051 } 2052 2053 void visitPtrToIntInst(PtrToIntInst &I) { 2054 IRBuilder<> IRB(&I); 2055 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2056 "_msprop_ptrtoint")); 2057 setOrigin(&I, getOrigin(&I, 0)); 2058 } 2059 2060 void visitIntToPtrInst(IntToPtrInst &I) { 2061 IRBuilder<> IRB(&I); 2062 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2063 "_msprop_inttoptr")); 2064 setOrigin(&I, getOrigin(&I, 0)); 2065 } 2066 2067 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2068 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2069 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2070 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2071 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2072 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2073 2074 /// Propagate shadow for bitwise AND. 2075 /// 2076 /// This code is exact, i.e. if, for example, a bit in the left argument 2077 /// is defined and 0, then neither the value not definedness of the 2078 /// corresponding bit in B don't affect the resulting shadow. 2079 void visitAnd(BinaryOperator &I) { 2080 IRBuilder<> IRB(&I); 2081 // "And" of 0 and a poisoned value results in unpoisoned value. 2082 // 1&1 => 1; 0&1 => 0; p&1 => p; 2083 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2084 // 1&p => p; 0&p => 0; p&p => p; 2085 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2086 Value *S1 = getShadow(&I, 0); 2087 Value *S2 = getShadow(&I, 1); 2088 Value *V1 = I.getOperand(0); 2089 Value *V2 = I.getOperand(1); 2090 if (V1->getType() != S1->getType()) { 2091 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2092 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2093 } 2094 Value *S1S2 = IRB.CreateAnd(S1, S2); 2095 Value *V1S2 = IRB.CreateAnd(V1, S2); 2096 Value *S1V2 = IRB.CreateAnd(S1, V2); 2097 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2098 setOriginForNaryOp(I); 2099 } 2100 2101 void visitOr(BinaryOperator &I) { 2102 IRBuilder<> IRB(&I); 2103 // "Or" of 1 and a poisoned value results in unpoisoned value. 2104 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2105 // 1|0 => 1; 0|0 => 0; p|0 => p; 2106 // 1|p => 1; 0|p => p; p|p => p; 2107 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2108 Value *S1 = getShadow(&I, 0); 2109 Value *S2 = getShadow(&I, 1); 2110 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2111 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2112 if (V1->getType() != S1->getType()) { 2113 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2114 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2115 } 2116 Value *S1S2 = IRB.CreateAnd(S1, S2); 2117 Value *V1S2 = IRB.CreateAnd(V1, S2); 2118 Value *S1V2 = IRB.CreateAnd(S1, V2); 2119 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2120 setOriginForNaryOp(I); 2121 } 2122 2123 /// Default propagation of shadow and/or origin. 2124 /// 2125 /// This class implements the general case of shadow propagation, used in all 2126 /// cases where we don't know and/or don't care about what the operation 2127 /// actually does. It converts all input shadow values to a common type 2128 /// (extending or truncating as necessary), and bitwise OR's them. 2129 /// 2130 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2131 /// fully initialized), and less prone to false positives. 2132 /// 2133 /// This class also implements the general case of origin propagation. For a 2134 /// Nary operation, result origin is set to the origin of an argument that is 2135 /// not entirely initialized. If there is more than one such arguments, the 2136 /// rightmost of them is picked. It does not matter which one is picked if all 2137 /// arguments are initialized. 2138 template <bool CombineShadow> 2139 class Combiner { 2140 Value *Shadow = nullptr; 2141 Value *Origin = nullptr; 2142 IRBuilder<> &IRB; 2143 MemorySanitizerVisitor *MSV; 2144 2145 public: 2146 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2147 : IRB(IRB), MSV(MSV) {} 2148 2149 /// Add a pair of shadow and origin values to the mix. 2150 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2151 if (CombineShadow) { 2152 assert(OpShadow); 2153 if (!Shadow) 2154 Shadow = OpShadow; 2155 else { 2156 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2157 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2158 } 2159 } 2160 2161 if (MSV->MS.TrackOrigins) { 2162 assert(OpOrigin); 2163 if (!Origin) { 2164 Origin = OpOrigin; 2165 } else { 2166 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2167 // No point in adding something that might result in 0 origin value. 2168 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2169 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2170 Value *Cond = 2171 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2172 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2173 } 2174 } 2175 } 2176 return *this; 2177 } 2178 2179 /// Add an application value to the mix. 2180 Combiner &Add(Value *V) { 2181 Value *OpShadow = MSV->getShadow(V); 2182 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2183 return Add(OpShadow, OpOrigin); 2184 } 2185 2186 /// Set the current combined values as the given instruction's shadow 2187 /// and origin. 2188 void Done(Instruction *I) { 2189 if (CombineShadow) { 2190 assert(Shadow); 2191 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2192 MSV->setShadow(I, Shadow); 2193 } 2194 if (MSV->MS.TrackOrigins) { 2195 assert(Origin); 2196 MSV->setOrigin(I, Origin); 2197 } 2198 } 2199 }; 2200 2201 using ShadowAndOriginCombiner = Combiner<true>; 2202 using OriginCombiner = Combiner<false>; 2203 2204 /// Propagate origin for arbitrary operation. 2205 void setOriginForNaryOp(Instruction &I) { 2206 if (!MS.TrackOrigins) return; 2207 IRBuilder<> IRB(&I); 2208 OriginCombiner OC(this, IRB); 2209 for (Use &Op : I.operands()) 2210 OC.Add(Op.get()); 2211 OC.Done(&I); 2212 } 2213 2214 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2215 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2216 "Vector of pointers is not a valid shadow type"); 2217 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2218 Ty->getScalarSizeInBits() 2219 : Ty->getPrimitiveSizeInBits(); 2220 } 2221 2222 /// Cast between two shadow types, extending or truncating as 2223 /// necessary. 2224 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2225 bool Signed = false) { 2226 Type *srcTy = V->getType(); 2227 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2228 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2229 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2230 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2231 2232 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2233 return IRB.CreateIntCast(V, dstTy, Signed); 2234 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2235 cast<FixedVectorType>(dstTy)->getNumElements() == 2236 cast<FixedVectorType>(srcTy)->getNumElements()) 2237 return IRB.CreateIntCast(V, dstTy, Signed); 2238 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2239 Value *V2 = 2240 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2241 return IRB.CreateBitCast(V2, dstTy); 2242 // TODO: handle struct types. 2243 } 2244 2245 /// Cast an application value to the type of its own shadow. 2246 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2247 Type *ShadowTy = getShadowTy(V); 2248 if (V->getType() == ShadowTy) 2249 return V; 2250 if (V->getType()->isPtrOrPtrVectorTy()) 2251 return IRB.CreatePtrToInt(V, ShadowTy); 2252 else 2253 return IRB.CreateBitCast(V, ShadowTy); 2254 } 2255 2256 /// Propagate shadow for arbitrary operation. 2257 void handleShadowOr(Instruction &I) { 2258 IRBuilder<> IRB(&I); 2259 ShadowAndOriginCombiner SC(this, IRB); 2260 for (Use &Op : I.operands()) 2261 SC.Add(Op.get()); 2262 SC.Done(&I); 2263 } 2264 2265 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2266 2267 // Handle multiplication by constant. 2268 // 2269 // Handle a special case of multiplication by constant that may have one or 2270 // more zeros in the lower bits. This makes corresponding number of lower bits 2271 // of the result zero as well. We model it by shifting the other operand 2272 // shadow left by the required number of bits. Effectively, we transform 2273 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2274 // We use multiplication by 2**N instead of shift to cover the case of 2275 // multiplication by 0, which may occur in some elements of a vector operand. 2276 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2277 Value *OtherArg) { 2278 Constant *ShadowMul; 2279 Type *Ty = ConstArg->getType(); 2280 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2281 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2282 Type *EltTy = VTy->getElementType(); 2283 SmallVector<Constant *, 16> Elements; 2284 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2285 if (ConstantInt *Elt = 2286 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2287 const APInt &V = Elt->getValue(); 2288 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2289 Elements.push_back(ConstantInt::get(EltTy, V2)); 2290 } else { 2291 Elements.push_back(ConstantInt::get(EltTy, 1)); 2292 } 2293 } 2294 ShadowMul = ConstantVector::get(Elements); 2295 } else { 2296 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2297 const APInt &V = Elt->getValue(); 2298 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2299 ShadowMul = ConstantInt::get(Ty, V2); 2300 } else { 2301 ShadowMul = ConstantInt::get(Ty, 1); 2302 } 2303 } 2304 2305 IRBuilder<> IRB(&I); 2306 setShadow(&I, 2307 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2308 setOrigin(&I, getOrigin(OtherArg)); 2309 } 2310 2311 void visitMul(BinaryOperator &I) { 2312 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2313 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2314 if (constOp0 && !constOp1) 2315 handleMulByConstant(I, constOp0, I.getOperand(1)); 2316 else if (constOp1 && !constOp0) 2317 handleMulByConstant(I, constOp1, I.getOperand(0)); 2318 else 2319 handleShadowOr(I); 2320 } 2321 2322 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2323 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2324 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2325 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2326 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2327 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2328 2329 void handleIntegerDiv(Instruction &I) { 2330 IRBuilder<> IRB(&I); 2331 // Strict on the second argument. 2332 insertShadowCheck(I.getOperand(1), &I); 2333 setShadow(&I, getShadow(&I, 0)); 2334 setOrigin(&I, getOrigin(&I, 0)); 2335 } 2336 2337 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2338 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2339 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2340 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2341 2342 // Floating point division is side-effect free. We can not require that the 2343 // divisor is fully initialized and must propagate shadow. See PR37523. 2344 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2345 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2346 2347 /// Instrument == and != comparisons. 2348 /// 2349 /// Sometimes the comparison result is known even if some of the bits of the 2350 /// arguments are not. 2351 void handleEqualityComparison(ICmpInst &I) { 2352 IRBuilder<> IRB(&I); 2353 Value *A = I.getOperand(0); 2354 Value *B = I.getOperand(1); 2355 Value *Sa = getShadow(A); 2356 Value *Sb = getShadow(B); 2357 2358 // Get rid of pointers and vectors of pointers. 2359 // For ints (and vectors of ints), types of A and Sa match, 2360 // and this is a no-op. 2361 A = IRB.CreatePointerCast(A, Sa->getType()); 2362 B = IRB.CreatePointerCast(B, Sb->getType()); 2363 2364 // A == B <==> (C = A^B) == 0 2365 // A != B <==> (C = A^B) != 0 2366 // Sc = Sa | Sb 2367 Value *C = IRB.CreateXor(A, B); 2368 Value *Sc = IRB.CreateOr(Sa, Sb); 2369 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2370 // Result is defined if one of the following is true 2371 // * there is a defined 1 bit in C 2372 // * C is fully defined 2373 // Si = !(C & ~Sc) && Sc 2374 Value *Zero = Constant::getNullValue(Sc->getType()); 2375 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2376 Value *Si = 2377 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2378 IRB.CreateICmpEQ( 2379 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2380 Si->setName("_msprop_icmp"); 2381 setShadow(&I, Si); 2382 setOriginForNaryOp(I); 2383 } 2384 2385 /// Build the lowest possible value of V, taking into account V's 2386 /// uninitialized bits. 2387 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2388 bool isSigned) { 2389 if (isSigned) { 2390 // Split shadow into sign bit and other bits. 2391 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2392 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2393 // Maximise the undefined shadow bit, minimize other undefined bits. 2394 return 2395 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2396 } else { 2397 // Minimize undefined bits. 2398 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2399 } 2400 } 2401 2402 /// Build the highest possible value of V, taking into account V's 2403 /// uninitialized bits. 2404 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2405 bool isSigned) { 2406 if (isSigned) { 2407 // Split shadow into sign bit and other bits. 2408 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2409 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2410 // Minimise the undefined shadow bit, maximise other undefined bits. 2411 return 2412 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2413 } else { 2414 // Maximize undefined bits. 2415 return IRB.CreateOr(A, Sa); 2416 } 2417 } 2418 2419 /// Instrument relational comparisons. 2420 /// 2421 /// This function does exact shadow propagation for all relational 2422 /// comparisons of integers, pointers and vectors of those. 2423 /// FIXME: output seems suboptimal when one of the operands is a constant 2424 void handleRelationalComparisonExact(ICmpInst &I) { 2425 IRBuilder<> IRB(&I); 2426 Value *A = I.getOperand(0); 2427 Value *B = I.getOperand(1); 2428 Value *Sa = getShadow(A); 2429 Value *Sb = getShadow(B); 2430 2431 // Get rid of pointers and vectors of pointers. 2432 // For ints (and vectors of ints), types of A and Sa match, 2433 // and this is a no-op. 2434 A = IRB.CreatePointerCast(A, Sa->getType()); 2435 B = IRB.CreatePointerCast(B, Sb->getType()); 2436 2437 // Let [a0, a1] be the interval of possible values of A, taking into account 2438 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2439 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2440 bool IsSigned = I.isSigned(); 2441 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2442 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2443 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2444 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2445 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2446 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2447 Value *Si = IRB.CreateXor(S1, S2); 2448 setShadow(&I, Si); 2449 setOriginForNaryOp(I); 2450 } 2451 2452 /// Instrument signed relational comparisons. 2453 /// 2454 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2455 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2456 void handleSignedRelationalComparison(ICmpInst &I) { 2457 Constant *constOp; 2458 Value *op = nullptr; 2459 CmpInst::Predicate pre; 2460 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2461 op = I.getOperand(0); 2462 pre = I.getPredicate(); 2463 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2464 op = I.getOperand(1); 2465 pre = I.getSwappedPredicate(); 2466 } else { 2467 handleShadowOr(I); 2468 return; 2469 } 2470 2471 if ((constOp->isNullValue() && 2472 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2473 (constOp->isAllOnesValue() && 2474 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2475 IRBuilder<> IRB(&I); 2476 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2477 "_msprop_icmp_s"); 2478 setShadow(&I, Shadow); 2479 setOrigin(&I, getOrigin(op)); 2480 } else { 2481 handleShadowOr(I); 2482 } 2483 } 2484 2485 void visitICmpInst(ICmpInst &I) { 2486 if (!ClHandleICmp) { 2487 handleShadowOr(I); 2488 return; 2489 } 2490 if (I.isEquality()) { 2491 handleEqualityComparison(I); 2492 return; 2493 } 2494 2495 assert(I.isRelational()); 2496 if (ClHandleICmpExact) { 2497 handleRelationalComparisonExact(I); 2498 return; 2499 } 2500 if (I.isSigned()) { 2501 handleSignedRelationalComparison(I); 2502 return; 2503 } 2504 2505 assert(I.isUnsigned()); 2506 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2507 handleRelationalComparisonExact(I); 2508 return; 2509 } 2510 2511 handleShadowOr(I); 2512 } 2513 2514 void visitFCmpInst(FCmpInst &I) { 2515 handleShadowOr(I); 2516 } 2517 2518 void handleShift(BinaryOperator &I) { 2519 IRBuilder<> IRB(&I); 2520 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2521 // Otherwise perform the same shift on S1. 2522 Value *S1 = getShadow(&I, 0); 2523 Value *S2 = getShadow(&I, 1); 2524 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2525 S2->getType()); 2526 Value *V2 = I.getOperand(1); 2527 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2528 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2529 setOriginForNaryOp(I); 2530 } 2531 2532 void visitShl(BinaryOperator &I) { handleShift(I); } 2533 void visitAShr(BinaryOperator &I) { handleShift(I); } 2534 void visitLShr(BinaryOperator &I) { handleShift(I); } 2535 2536 void handleFunnelShift(IntrinsicInst &I) { 2537 IRBuilder<> IRB(&I); 2538 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2539 // Otherwise perform the same shift on S0 and S1. 2540 Value *S0 = getShadow(&I, 0); 2541 Value *S1 = getShadow(&I, 1); 2542 Value *S2 = getShadow(&I, 2); 2543 Value *S2Conv = 2544 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2545 Value *V2 = I.getOperand(2); 2546 Function *Intrin = Intrinsic::getDeclaration( 2547 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2548 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2549 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2550 setOriginForNaryOp(I); 2551 } 2552 2553 /// Instrument llvm.memmove 2554 /// 2555 /// At this point we don't know if llvm.memmove will be inlined or not. 2556 /// If we don't instrument it and it gets inlined, 2557 /// our interceptor will not kick in and we will lose the memmove. 2558 /// If we instrument the call here, but it does not get inlined, 2559 /// we will memove the shadow twice: which is bad in case 2560 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2561 /// 2562 /// Similar situation exists for memcpy and memset. 2563 void visitMemMoveInst(MemMoveInst &I) { 2564 IRBuilder<> IRB(&I); 2565 IRB.CreateCall( 2566 MS.MemmoveFn, 2567 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2568 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2569 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2570 I.eraseFromParent(); 2571 } 2572 2573 // Similar to memmove: avoid copying shadow twice. 2574 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2575 // FIXME: consider doing manual inline for small constant sizes and proper 2576 // alignment. 2577 void visitMemCpyInst(MemCpyInst &I) { 2578 IRBuilder<> IRB(&I); 2579 IRB.CreateCall( 2580 MS.MemcpyFn, 2581 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2582 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2583 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2584 I.eraseFromParent(); 2585 } 2586 2587 // Same as memcpy. 2588 void visitMemSetInst(MemSetInst &I) { 2589 IRBuilder<> IRB(&I); 2590 IRB.CreateCall( 2591 MS.MemsetFn, 2592 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2593 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2594 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2595 I.eraseFromParent(); 2596 } 2597 2598 void visitVAStartInst(VAStartInst &I) { 2599 VAHelper->visitVAStartInst(I); 2600 } 2601 2602 void visitVACopyInst(VACopyInst &I) { 2603 VAHelper->visitVACopyInst(I); 2604 } 2605 2606 /// Handle vector store-like intrinsics. 2607 /// 2608 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2609 /// has 1 pointer argument and 1 vector argument, returns void. 2610 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2611 IRBuilder<> IRB(&I); 2612 Value* Addr = I.getArgOperand(0); 2613 Value *Shadow = getShadow(&I, 1); 2614 Value *ShadowPtr, *OriginPtr; 2615 2616 // We don't know the pointer alignment (could be unaligned SSE store!). 2617 // Have to assume to worst case. 2618 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2619 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2620 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2621 2622 if (ClCheckAccessAddress) 2623 insertShadowCheck(Addr, &I); 2624 2625 // FIXME: factor out common code from materializeStores 2626 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2627 return true; 2628 } 2629 2630 /// Handle vector load-like intrinsics. 2631 /// 2632 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2633 /// has 1 pointer argument, returns a vector. 2634 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2635 IRBuilder<> IRB(&I); 2636 Value *Addr = I.getArgOperand(0); 2637 2638 Type *ShadowTy = getShadowTy(&I); 2639 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2640 if (PropagateShadow) { 2641 // We don't know the pointer alignment (could be unaligned SSE load!). 2642 // Have to assume to worst case. 2643 const Align Alignment = Align(1); 2644 std::tie(ShadowPtr, OriginPtr) = 2645 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2646 setShadow(&I, 2647 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2648 } else { 2649 setShadow(&I, getCleanShadow(&I)); 2650 } 2651 2652 if (ClCheckAccessAddress) 2653 insertShadowCheck(Addr, &I); 2654 2655 if (MS.TrackOrigins) { 2656 if (PropagateShadow) 2657 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2658 else 2659 setOrigin(&I, getCleanOrigin()); 2660 } 2661 return true; 2662 } 2663 2664 /// Handle (SIMD arithmetic)-like intrinsics. 2665 /// 2666 /// Instrument intrinsics with any number of arguments of the same type, 2667 /// equal to the return type. The type should be simple (no aggregates or 2668 /// pointers; vectors are fine). 2669 /// Caller guarantees that this intrinsic does not access memory. 2670 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2671 Type *RetTy = I.getType(); 2672 if (!(RetTy->isIntOrIntVectorTy() || 2673 RetTy->isFPOrFPVectorTy() || 2674 RetTy->isX86_MMXTy())) 2675 return false; 2676 2677 unsigned NumArgOperands = I.arg_size(); 2678 for (unsigned i = 0; i < NumArgOperands; ++i) { 2679 Type *Ty = I.getArgOperand(i)->getType(); 2680 if (Ty != RetTy) 2681 return false; 2682 } 2683 2684 IRBuilder<> IRB(&I); 2685 ShadowAndOriginCombiner SC(this, IRB); 2686 for (unsigned i = 0; i < NumArgOperands; ++i) 2687 SC.Add(I.getArgOperand(i)); 2688 SC.Done(&I); 2689 2690 return true; 2691 } 2692 2693 /// Heuristically instrument unknown intrinsics. 2694 /// 2695 /// The main purpose of this code is to do something reasonable with all 2696 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2697 /// We recognize several classes of intrinsics by their argument types and 2698 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2699 /// sure that we know what the intrinsic does. 2700 /// 2701 /// We special-case intrinsics where this approach fails. See llvm.bswap 2702 /// handling as an example of that. 2703 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2704 unsigned NumArgOperands = I.arg_size(); 2705 if (NumArgOperands == 0) 2706 return false; 2707 2708 if (NumArgOperands == 2 && 2709 I.getArgOperand(0)->getType()->isPointerTy() && 2710 I.getArgOperand(1)->getType()->isVectorTy() && 2711 I.getType()->isVoidTy() && 2712 !I.onlyReadsMemory()) { 2713 // This looks like a vector store. 2714 return handleVectorStoreIntrinsic(I); 2715 } 2716 2717 if (NumArgOperands == 1 && 2718 I.getArgOperand(0)->getType()->isPointerTy() && 2719 I.getType()->isVectorTy() && 2720 I.onlyReadsMemory()) { 2721 // This looks like a vector load. 2722 return handleVectorLoadIntrinsic(I); 2723 } 2724 2725 if (I.doesNotAccessMemory()) 2726 if (maybeHandleSimpleNomemIntrinsic(I)) 2727 return true; 2728 2729 // FIXME: detect and handle SSE maskstore/maskload 2730 return false; 2731 } 2732 2733 void handleInvariantGroup(IntrinsicInst &I) { 2734 setShadow(&I, getShadow(&I, 0)); 2735 setOrigin(&I, getOrigin(&I, 0)); 2736 } 2737 2738 void handleLifetimeStart(IntrinsicInst &I) { 2739 if (!PoisonStack) 2740 return; 2741 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2742 if (!AI) 2743 InstrumentLifetimeStart = false; 2744 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2745 } 2746 2747 void handleBswap(IntrinsicInst &I) { 2748 IRBuilder<> IRB(&I); 2749 Value *Op = I.getArgOperand(0); 2750 Type *OpType = Op->getType(); 2751 Function *BswapFunc = Intrinsic::getDeclaration( 2752 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2753 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2754 setOrigin(&I, getOrigin(Op)); 2755 } 2756 2757 // Instrument vector convert intrinsic. 2758 // 2759 // This function instruments intrinsics like cvtsi2ss: 2760 // %Out = int_xxx_cvtyyy(%ConvertOp) 2761 // or 2762 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2763 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2764 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2765 // elements from \p CopyOp. 2766 // In most cases conversion involves floating-point value which may trigger a 2767 // hardware exception when not fully initialized. For this reason we require 2768 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2769 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2770 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2771 // return a fully initialized value. 2772 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2773 bool HasRoundingMode = false) { 2774 IRBuilder<> IRB(&I); 2775 Value *CopyOp, *ConvertOp; 2776 2777 assert((!HasRoundingMode || 2778 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2779 "Invalid rounding mode"); 2780 2781 switch (I.arg_size() - HasRoundingMode) { 2782 case 2: 2783 CopyOp = I.getArgOperand(0); 2784 ConvertOp = I.getArgOperand(1); 2785 break; 2786 case 1: 2787 ConvertOp = I.getArgOperand(0); 2788 CopyOp = nullptr; 2789 break; 2790 default: 2791 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2792 } 2793 2794 // The first *NumUsedElements* elements of ConvertOp are converted to the 2795 // same number of output elements. The rest of the output is copied from 2796 // CopyOp, or (if not available) filled with zeroes. 2797 // Combine shadow for elements of ConvertOp that are used in this operation, 2798 // and insert a check. 2799 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2800 // int->any conversion. 2801 Value *ConvertShadow = getShadow(ConvertOp); 2802 Value *AggShadow = nullptr; 2803 if (ConvertOp->getType()->isVectorTy()) { 2804 AggShadow = IRB.CreateExtractElement( 2805 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2806 for (int i = 1; i < NumUsedElements; ++i) { 2807 Value *MoreShadow = IRB.CreateExtractElement( 2808 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2809 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2810 } 2811 } else { 2812 AggShadow = ConvertShadow; 2813 } 2814 assert(AggShadow->getType()->isIntegerTy()); 2815 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2816 2817 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2818 // ConvertOp. 2819 if (CopyOp) { 2820 assert(CopyOp->getType() == I.getType()); 2821 assert(CopyOp->getType()->isVectorTy()); 2822 Value *ResultShadow = getShadow(CopyOp); 2823 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2824 for (int i = 0; i < NumUsedElements; ++i) { 2825 ResultShadow = IRB.CreateInsertElement( 2826 ResultShadow, ConstantInt::getNullValue(EltTy), 2827 ConstantInt::get(IRB.getInt32Ty(), i)); 2828 } 2829 setShadow(&I, ResultShadow); 2830 setOrigin(&I, getOrigin(CopyOp)); 2831 } else { 2832 setShadow(&I, getCleanShadow(&I)); 2833 setOrigin(&I, getCleanOrigin()); 2834 } 2835 } 2836 2837 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2838 // zeroes if it is zero, and all ones otherwise. 2839 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2840 if (S->getType()->isVectorTy()) 2841 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2842 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2843 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2844 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2845 } 2846 2847 // Given a vector, extract its first element, and return all 2848 // zeroes if it is zero, and all ones otherwise. 2849 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2850 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2851 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2852 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2853 } 2854 2855 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2856 Type *T = S->getType(); 2857 assert(T->isVectorTy()); 2858 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2859 return IRB.CreateSExt(S2, T); 2860 } 2861 2862 // Instrument vector shift intrinsic. 2863 // 2864 // This function instruments intrinsics like int_x86_avx2_psll_w. 2865 // Intrinsic shifts %In by %ShiftSize bits. 2866 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2867 // size, and the rest is ignored. Behavior is defined even if shift size is 2868 // greater than register (or field) width. 2869 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2870 assert(I.arg_size() == 2); 2871 IRBuilder<> IRB(&I); 2872 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2873 // Otherwise perform the same shift on S1. 2874 Value *S1 = getShadow(&I, 0); 2875 Value *S2 = getShadow(&I, 1); 2876 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2877 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2878 Value *V1 = I.getOperand(0); 2879 Value *V2 = I.getOperand(1); 2880 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2881 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2882 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2883 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2884 setOriginForNaryOp(I); 2885 } 2886 2887 // Get an X86_MMX-sized vector type. 2888 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2889 const unsigned X86_MMXSizeInBits = 64; 2890 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2891 "Illegal MMX vector element size"); 2892 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2893 X86_MMXSizeInBits / EltSizeInBits); 2894 } 2895 2896 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2897 // intrinsic. 2898 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2899 switch (id) { 2900 case Intrinsic::x86_sse2_packsswb_128: 2901 case Intrinsic::x86_sse2_packuswb_128: 2902 return Intrinsic::x86_sse2_packsswb_128; 2903 2904 case Intrinsic::x86_sse2_packssdw_128: 2905 case Intrinsic::x86_sse41_packusdw: 2906 return Intrinsic::x86_sse2_packssdw_128; 2907 2908 case Intrinsic::x86_avx2_packsswb: 2909 case Intrinsic::x86_avx2_packuswb: 2910 return Intrinsic::x86_avx2_packsswb; 2911 2912 case Intrinsic::x86_avx2_packssdw: 2913 case Intrinsic::x86_avx2_packusdw: 2914 return Intrinsic::x86_avx2_packssdw; 2915 2916 case Intrinsic::x86_mmx_packsswb: 2917 case Intrinsic::x86_mmx_packuswb: 2918 return Intrinsic::x86_mmx_packsswb; 2919 2920 case Intrinsic::x86_mmx_packssdw: 2921 return Intrinsic::x86_mmx_packssdw; 2922 default: 2923 llvm_unreachable("unexpected intrinsic id"); 2924 } 2925 } 2926 2927 // Instrument vector pack intrinsic. 2928 // 2929 // This function instruments intrinsics like x86_mmx_packsswb, that 2930 // packs elements of 2 input vectors into half as many bits with saturation. 2931 // Shadow is propagated with the signed variant of the same intrinsic applied 2932 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2933 // EltSizeInBits is used only for x86mmx arguments. 2934 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2935 assert(I.arg_size() == 2); 2936 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2937 IRBuilder<> IRB(&I); 2938 Value *S1 = getShadow(&I, 0); 2939 Value *S2 = getShadow(&I, 1); 2940 assert(isX86_MMX || S1->getType()->isVectorTy()); 2941 2942 // SExt and ICmpNE below must apply to individual elements of input vectors. 2943 // In case of x86mmx arguments, cast them to appropriate vector types and 2944 // back. 2945 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2946 if (isX86_MMX) { 2947 S1 = IRB.CreateBitCast(S1, T); 2948 S2 = IRB.CreateBitCast(S2, T); 2949 } 2950 Value *S1_ext = IRB.CreateSExt( 2951 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2952 Value *S2_ext = IRB.CreateSExt( 2953 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2954 if (isX86_MMX) { 2955 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2956 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2957 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2958 } 2959 2960 Function *ShadowFn = Intrinsic::getDeclaration( 2961 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2962 2963 Value *S = 2964 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2965 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2966 setShadow(&I, S); 2967 setOriginForNaryOp(I); 2968 } 2969 2970 // Instrument sum-of-absolute-differences intrinsic. 2971 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2972 const unsigned SignificantBitsPerResultElement = 16; 2973 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2974 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2975 unsigned ZeroBitsPerResultElement = 2976 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2977 2978 IRBuilder<> IRB(&I); 2979 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2980 S = IRB.CreateBitCast(S, ResTy); 2981 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2982 ResTy); 2983 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2984 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2985 setShadow(&I, S); 2986 setOriginForNaryOp(I); 2987 } 2988 2989 // Instrument multiply-add intrinsic. 2990 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2991 unsigned EltSizeInBits = 0) { 2992 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2993 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2994 IRBuilder<> IRB(&I); 2995 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2996 S = IRB.CreateBitCast(S, ResTy); 2997 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2998 ResTy); 2999 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3000 setShadow(&I, S); 3001 setOriginForNaryOp(I); 3002 } 3003 3004 // Instrument compare-packed intrinsic. 3005 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3006 // all-ones shadow. 3007 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3008 IRBuilder<> IRB(&I); 3009 Type *ResTy = getShadowTy(&I); 3010 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3011 Value *S = IRB.CreateSExt( 3012 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3013 setShadow(&I, S); 3014 setOriginForNaryOp(I); 3015 } 3016 3017 // Instrument compare-scalar intrinsic. 3018 // This handles both cmp* intrinsics which return the result in the first 3019 // element of a vector, and comi* which return the result as i32. 3020 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3021 IRBuilder<> IRB(&I); 3022 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3023 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3024 setShadow(&I, S); 3025 setOriginForNaryOp(I); 3026 } 3027 3028 // Instrument generic vector reduction intrinsics 3029 // by ORing together all their fields. 3030 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3031 IRBuilder<> IRB(&I); 3032 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3033 setShadow(&I, S); 3034 setOrigin(&I, getOrigin(&I, 0)); 3035 } 3036 3037 // Instrument vector.reduce.or intrinsic. 3038 // Valid (non-poisoned) set bits in the operand pull low the 3039 // corresponding shadow bits. 3040 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3041 IRBuilder<> IRB(&I); 3042 Value *OperandShadow = getShadow(&I, 0); 3043 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3044 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3045 // Bit N is clean if any field's bit N is 1 and unpoison 3046 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3047 // Otherwise, it is clean if every field's bit N is unpoison 3048 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3049 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3050 3051 setShadow(&I, S); 3052 setOrigin(&I, getOrigin(&I, 0)); 3053 } 3054 3055 // Instrument vector.reduce.and intrinsic. 3056 // Valid (non-poisoned) unset bits in the operand pull down the 3057 // corresponding shadow bits. 3058 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3059 IRBuilder<> IRB(&I); 3060 Value *OperandShadow = getShadow(&I, 0); 3061 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3062 // Bit N is clean if any field's bit N is 0 and unpoison 3063 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3064 // Otherwise, it is clean if every field's bit N is unpoison 3065 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3066 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3067 3068 setShadow(&I, S); 3069 setOrigin(&I, getOrigin(&I, 0)); 3070 } 3071 3072 void handleStmxcsr(IntrinsicInst &I) { 3073 IRBuilder<> IRB(&I); 3074 Value* Addr = I.getArgOperand(0); 3075 Type *Ty = IRB.getInt32Ty(); 3076 Value *ShadowPtr = 3077 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3078 3079 IRB.CreateStore(getCleanShadow(Ty), 3080 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3081 3082 if (ClCheckAccessAddress) 3083 insertShadowCheck(Addr, &I); 3084 } 3085 3086 void handleLdmxcsr(IntrinsicInst &I) { 3087 if (!InsertChecks) return; 3088 3089 IRBuilder<> IRB(&I); 3090 Value *Addr = I.getArgOperand(0); 3091 Type *Ty = IRB.getInt32Ty(); 3092 const Align Alignment = Align(1); 3093 Value *ShadowPtr, *OriginPtr; 3094 std::tie(ShadowPtr, OriginPtr) = 3095 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3096 3097 if (ClCheckAccessAddress) 3098 insertShadowCheck(Addr, &I); 3099 3100 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3101 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3102 : getCleanOrigin(); 3103 insertShadowCheck(Shadow, Origin, &I); 3104 } 3105 3106 void handleMaskedStore(IntrinsicInst &I) { 3107 IRBuilder<> IRB(&I); 3108 Value *V = I.getArgOperand(0); 3109 Value *Addr = I.getArgOperand(1); 3110 const Align Alignment( 3111 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3112 Value *Mask = I.getArgOperand(3); 3113 Value *Shadow = getShadow(V); 3114 3115 Value *ShadowPtr; 3116 Value *OriginPtr; 3117 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3118 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3119 3120 if (ClCheckAccessAddress) { 3121 insertShadowCheck(Addr, &I); 3122 // Uninitialized mask is kind of like uninitialized address, but not as 3123 // scary. 3124 insertShadowCheck(Mask, &I); 3125 } 3126 3127 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3128 3129 if (MS.TrackOrigins) { 3130 auto &DL = F.getParent()->getDataLayout(); 3131 paintOrigin(IRB, getOrigin(V), OriginPtr, 3132 DL.getTypeStoreSize(Shadow->getType()), 3133 std::max(Alignment, kMinOriginAlignment)); 3134 } 3135 } 3136 3137 bool handleMaskedLoad(IntrinsicInst &I) { 3138 IRBuilder<> IRB(&I); 3139 Value *Addr = I.getArgOperand(0); 3140 const Align Alignment( 3141 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3142 Value *Mask = I.getArgOperand(2); 3143 Value *PassThru = I.getArgOperand(3); 3144 3145 Type *ShadowTy = getShadowTy(&I); 3146 Value *ShadowPtr, *OriginPtr; 3147 if (PropagateShadow) { 3148 std::tie(ShadowPtr, OriginPtr) = 3149 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3150 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3151 getShadow(PassThru), "_msmaskedld")); 3152 } else { 3153 setShadow(&I, getCleanShadow(&I)); 3154 } 3155 3156 if (ClCheckAccessAddress) { 3157 insertShadowCheck(Addr, &I); 3158 insertShadowCheck(Mask, &I); 3159 } 3160 3161 if (MS.TrackOrigins) { 3162 if (PropagateShadow) { 3163 // Choose between PassThru's and the loaded value's origins. 3164 Value *MaskedPassThruShadow = IRB.CreateAnd( 3165 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3166 3167 Value *Acc = IRB.CreateExtractElement( 3168 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3169 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3170 ->getNumElements(); 3171 i < N; ++i) { 3172 Value *More = IRB.CreateExtractElement( 3173 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3174 Acc = IRB.CreateOr(Acc, More); 3175 } 3176 3177 Value *Origin = IRB.CreateSelect( 3178 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3179 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3180 3181 setOrigin(&I, Origin); 3182 } else { 3183 setOrigin(&I, getCleanOrigin()); 3184 } 3185 } 3186 return true; 3187 } 3188 3189 // Instrument BMI / BMI2 intrinsics. 3190 // All of these intrinsics are Z = I(X, Y) 3191 // where the types of all operands and the result match, and are either i32 or i64. 3192 // The following instrumentation happens to work for all of them: 3193 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3194 void handleBmiIntrinsic(IntrinsicInst &I) { 3195 IRBuilder<> IRB(&I); 3196 Type *ShadowTy = getShadowTy(&I); 3197 3198 // If any bit of the mask operand is poisoned, then the whole thing is. 3199 Value *SMask = getShadow(&I, 1); 3200 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3201 ShadowTy); 3202 // Apply the same intrinsic to the shadow of the first operand. 3203 Value *S = IRB.CreateCall(I.getCalledFunction(), 3204 {getShadow(&I, 0), I.getOperand(1)}); 3205 S = IRB.CreateOr(SMask, S); 3206 setShadow(&I, S); 3207 setOriginForNaryOp(I); 3208 } 3209 3210 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3211 SmallVector<int, 8> Mask; 3212 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3213 Mask.append(2, X); 3214 } 3215 return Mask; 3216 } 3217 3218 // Instrument pclmul intrinsics. 3219 // These intrinsics operate either on odd or on even elements of the input 3220 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3221 // Replace the unused elements with copies of the used ones, ex: 3222 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3223 // or 3224 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3225 // and then apply the usual shadow combining logic. 3226 void handlePclmulIntrinsic(IntrinsicInst &I) { 3227 IRBuilder<> IRB(&I); 3228 unsigned Width = 3229 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3230 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3231 "pclmul 3rd operand must be a constant"); 3232 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3233 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3234 getPclmulMask(Width, Imm & 0x01)); 3235 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3236 getPclmulMask(Width, Imm & 0x10)); 3237 ShadowAndOriginCombiner SOC(this, IRB); 3238 SOC.Add(Shuf0, getOrigin(&I, 0)); 3239 SOC.Add(Shuf1, getOrigin(&I, 1)); 3240 SOC.Done(&I); 3241 } 3242 3243 // Instrument _mm_*_sd intrinsics 3244 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3245 IRBuilder<> IRB(&I); 3246 Value *First = getShadow(&I, 0); 3247 Value *Second = getShadow(&I, 1); 3248 // High word of first operand, low word of second 3249 Value *Shadow = 3250 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3251 3252 setShadow(&I, Shadow); 3253 setOriginForNaryOp(I); 3254 } 3255 3256 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3257 IRBuilder<> IRB(&I); 3258 Value *First = getShadow(&I, 0); 3259 Value *Second = getShadow(&I, 1); 3260 Value *OrShadow = IRB.CreateOr(First, Second); 3261 // High word of first operand, low word of both OR'd together 3262 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3263 llvm::makeArrayRef<int>({2, 1})); 3264 3265 setShadow(&I, Shadow); 3266 setOriginForNaryOp(I); 3267 } 3268 3269 // Instrument abs intrinsic. 3270 // handleUnknownIntrinsic can't handle it because of the last 3271 // is_int_min_poison argument which does not match the result type. 3272 void handleAbsIntrinsic(IntrinsicInst &I) { 3273 assert(I.getType()->isIntOrIntVectorTy()); 3274 assert(I.getArgOperand(0)->getType() == I.getType()); 3275 3276 // FIXME: Handle is_int_min_poison. 3277 IRBuilder<> IRB(&I); 3278 setShadow(&I, getShadow(&I, 0)); 3279 setOrigin(&I, getOrigin(&I, 0)); 3280 } 3281 3282 void visitIntrinsicInst(IntrinsicInst &I) { 3283 switch (I.getIntrinsicID()) { 3284 case Intrinsic::abs: 3285 handleAbsIntrinsic(I); 3286 break; 3287 case Intrinsic::lifetime_start: 3288 handleLifetimeStart(I); 3289 break; 3290 case Intrinsic::launder_invariant_group: 3291 case Intrinsic::strip_invariant_group: 3292 handleInvariantGroup(I); 3293 break; 3294 case Intrinsic::bswap: 3295 handleBswap(I); 3296 break; 3297 case Intrinsic::masked_store: 3298 handleMaskedStore(I); 3299 break; 3300 case Intrinsic::masked_load: 3301 handleMaskedLoad(I); 3302 break; 3303 case Intrinsic::vector_reduce_and: 3304 handleVectorReduceAndIntrinsic(I); 3305 break; 3306 case Intrinsic::vector_reduce_or: 3307 handleVectorReduceOrIntrinsic(I); 3308 break; 3309 case Intrinsic::vector_reduce_add: 3310 case Intrinsic::vector_reduce_xor: 3311 case Intrinsic::vector_reduce_mul: 3312 handleVectorReduceIntrinsic(I); 3313 break; 3314 case Intrinsic::x86_sse_stmxcsr: 3315 handleStmxcsr(I); 3316 break; 3317 case Intrinsic::x86_sse_ldmxcsr: 3318 handleLdmxcsr(I); 3319 break; 3320 case Intrinsic::x86_avx512_vcvtsd2usi64: 3321 case Intrinsic::x86_avx512_vcvtsd2usi32: 3322 case Intrinsic::x86_avx512_vcvtss2usi64: 3323 case Intrinsic::x86_avx512_vcvtss2usi32: 3324 case Intrinsic::x86_avx512_cvttss2usi64: 3325 case Intrinsic::x86_avx512_cvttss2usi: 3326 case Intrinsic::x86_avx512_cvttsd2usi64: 3327 case Intrinsic::x86_avx512_cvttsd2usi: 3328 case Intrinsic::x86_avx512_cvtusi2ss: 3329 case Intrinsic::x86_avx512_cvtusi642sd: 3330 case Intrinsic::x86_avx512_cvtusi642ss: 3331 handleVectorConvertIntrinsic(I, 1, true); 3332 break; 3333 case Intrinsic::x86_sse2_cvtsd2si64: 3334 case Intrinsic::x86_sse2_cvtsd2si: 3335 case Intrinsic::x86_sse2_cvtsd2ss: 3336 case Intrinsic::x86_sse2_cvttsd2si64: 3337 case Intrinsic::x86_sse2_cvttsd2si: 3338 case Intrinsic::x86_sse_cvtss2si64: 3339 case Intrinsic::x86_sse_cvtss2si: 3340 case Intrinsic::x86_sse_cvttss2si64: 3341 case Intrinsic::x86_sse_cvttss2si: 3342 handleVectorConvertIntrinsic(I, 1); 3343 break; 3344 case Intrinsic::x86_sse_cvtps2pi: 3345 case Intrinsic::x86_sse_cvttps2pi: 3346 handleVectorConvertIntrinsic(I, 2); 3347 break; 3348 3349 case Intrinsic::x86_avx512_psll_w_512: 3350 case Intrinsic::x86_avx512_psll_d_512: 3351 case Intrinsic::x86_avx512_psll_q_512: 3352 case Intrinsic::x86_avx512_pslli_w_512: 3353 case Intrinsic::x86_avx512_pslli_d_512: 3354 case Intrinsic::x86_avx512_pslli_q_512: 3355 case Intrinsic::x86_avx512_psrl_w_512: 3356 case Intrinsic::x86_avx512_psrl_d_512: 3357 case Intrinsic::x86_avx512_psrl_q_512: 3358 case Intrinsic::x86_avx512_psra_w_512: 3359 case Intrinsic::x86_avx512_psra_d_512: 3360 case Intrinsic::x86_avx512_psra_q_512: 3361 case Intrinsic::x86_avx512_psrli_w_512: 3362 case Intrinsic::x86_avx512_psrli_d_512: 3363 case Intrinsic::x86_avx512_psrli_q_512: 3364 case Intrinsic::x86_avx512_psrai_w_512: 3365 case Intrinsic::x86_avx512_psrai_d_512: 3366 case Intrinsic::x86_avx512_psrai_q_512: 3367 case Intrinsic::x86_avx512_psra_q_256: 3368 case Intrinsic::x86_avx512_psra_q_128: 3369 case Intrinsic::x86_avx512_psrai_q_256: 3370 case Intrinsic::x86_avx512_psrai_q_128: 3371 case Intrinsic::x86_avx2_psll_w: 3372 case Intrinsic::x86_avx2_psll_d: 3373 case Intrinsic::x86_avx2_psll_q: 3374 case Intrinsic::x86_avx2_pslli_w: 3375 case Intrinsic::x86_avx2_pslli_d: 3376 case Intrinsic::x86_avx2_pslli_q: 3377 case Intrinsic::x86_avx2_psrl_w: 3378 case Intrinsic::x86_avx2_psrl_d: 3379 case Intrinsic::x86_avx2_psrl_q: 3380 case Intrinsic::x86_avx2_psra_w: 3381 case Intrinsic::x86_avx2_psra_d: 3382 case Intrinsic::x86_avx2_psrli_w: 3383 case Intrinsic::x86_avx2_psrli_d: 3384 case Intrinsic::x86_avx2_psrli_q: 3385 case Intrinsic::x86_avx2_psrai_w: 3386 case Intrinsic::x86_avx2_psrai_d: 3387 case Intrinsic::x86_sse2_psll_w: 3388 case Intrinsic::x86_sse2_psll_d: 3389 case Intrinsic::x86_sse2_psll_q: 3390 case Intrinsic::x86_sse2_pslli_w: 3391 case Intrinsic::x86_sse2_pslli_d: 3392 case Intrinsic::x86_sse2_pslli_q: 3393 case Intrinsic::x86_sse2_psrl_w: 3394 case Intrinsic::x86_sse2_psrl_d: 3395 case Intrinsic::x86_sse2_psrl_q: 3396 case Intrinsic::x86_sse2_psra_w: 3397 case Intrinsic::x86_sse2_psra_d: 3398 case Intrinsic::x86_sse2_psrli_w: 3399 case Intrinsic::x86_sse2_psrli_d: 3400 case Intrinsic::x86_sse2_psrli_q: 3401 case Intrinsic::x86_sse2_psrai_w: 3402 case Intrinsic::x86_sse2_psrai_d: 3403 case Intrinsic::x86_mmx_psll_w: 3404 case Intrinsic::x86_mmx_psll_d: 3405 case Intrinsic::x86_mmx_psll_q: 3406 case Intrinsic::x86_mmx_pslli_w: 3407 case Intrinsic::x86_mmx_pslli_d: 3408 case Intrinsic::x86_mmx_pslli_q: 3409 case Intrinsic::x86_mmx_psrl_w: 3410 case Intrinsic::x86_mmx_psrl_d: 3411 case Intrinsic::x86_mmx_psrl_q: 3412 case Intrinsic::x86_mmx_psra_w: 3413 case Intrinsic::x86_mmx_psra_d: 3414 case Intrinsic::x86_mmx_psrli_w: 3415 case Intrinsic::x86_mmx_psrli_d: 3416 case Intrinsic::x86_mmx_psrli_q: 3417 case Intrinsic::x86_mmx_psrai_w: 3418 case Intrinsic::x86_mmx_psrai_d: 3419 handleVectorShiftIntrinsic(I, /* Variable */ false); 3420 break; 3421 case Intrinsic::x86_avx2_psllv_d: 3422 case Intrinsic::x86_avx2_psllv_d_256: 3423 case Intrinsic::x86_avx512_psllv_d_512: 3424 case Intrinsic::x86_avx2_psllv_q: 3425 case Intrinsic::x86_avx2_psllv_q_256: 3426 case Intrinsic::x86_avx512_psllv_q_512: 3427 case Intrinsic::x86_avx2_psrlv_d: 3428 case Intrinsic::x86_avx2_psrlv_d_256: 3429 case Intrinsic::x86_avx512_psrlv_d_512: 3430 case Intrinsic::x86_avx2_psrlv_q: 3431 case Intrinsic::x86_avx2_psrlv_q_256: 3432 case Intrinsic::x86_avx512_psrlv_q_512: 3433 case Intrinsic::x86_avx2_psrav_d: 3434 case Intrinsic::x86_avx2_psrav_d_256: 3435 case Intrinsic::x86_avx512_psrav_d_512: 3436 case Intrinsic::x86_avx512_psrav_q_128: 3437 case Intrinsic::x86_avx512_psrav_q_256: 3438 case Intrinsic::x86_avx512_psrav_q_512: 3439 handleVectorShiftIntrinsic(I, /* Variable */ true); 3440 break; 3441 3442 case Intrinsic::x86_sse2_packsswb_128: 3443 case Intrinsic::x86_sse2_packssdw_128: 3444 case Intrinsic::x86_sse2_packuswb_128: 3445 case Intrinsic::x86_sse41_packusdw: 3446 case Intrinsic::x86_avx2_packsswb: 3447 case Intrinsic::x86_avx2_packssdw: 3448 case Intrinsic::x86_avx2_packuswb: 3449 case Intrinsic::x86_avx2_packusdw: 3450 handleVectorPackIntrinsic(I); 3451 break; 3452 3453 case Intrinsic::x86_mmx_packsswb: 3454 case Intrinsic::x86_mmx_packuswb: 3455 handleVectorPackIntrinsic(I, 16); 3456 break; 3457 3458 case Intrinsic::x86_mmx_packssdw: 3459 handleVectorPackIntrinsic(I, 32); 3460 break; 3461 3462 case Intrinsic::x86_mmx_psad_bw: 3463 case Intrinsic::x86_sse2_psad_bw: 3464 case Intrinsic::x86_avx2_psad_bw: 3465 handleVectorSadIntrinsic(I); 3466 break; 3467 3468 case Intrinsic::x86_sse2_pmadd_wd: 3469 case Intrinsic::x86_avx2_pmadd_wd: 3470 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3471 case Intrinsic::x86_avx2_pmadd_ub_sw: 3472 handleVectorPmaddIntrinsic(I); 3473 break; 3474 3475 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3476 handleVectorPmaddIntrinsic(I, 8); 3477 break; 3478 3479 case Intrinsic::x86_mmx_pmadd_wd: 3480 handleVectorPmaddIntrinsic(I, 16); 3481 break; 3482 3483 case Intrinsic::x86_sse_cmp_ss: 3484 case Intrinsic::x86_sse2_cmp_sd: 3485 case Intrinsic::x86_sse_comieq_ss: 3486 case Intrinsic::x86_sse_comilt_ss: 3487 case Intrinsic::x86_sse_comile_ss: 3488 case Intrinsic::x86_sse_comigt_ss: 3489 case Intrinsic::x86_sse_comige_ss: 3490 case Intrinsic::x86_sse_comineq_ss: 3491 case Intrinsic::x86_sse_ucomieq_ss: 3492 case Intrinsic::x86_sse_ucomilt_ss: 3493 case Intrinsic::x86_sse_ucomile_ss: 3494 case Intrinsic::x86_sse_ucomigt_ss: 3495 case Intrinsic::x86_sse_ucomige_ss: 3496 case Intrinsic::x86_sse_ucomineq_ss: 3497 case Intrinsic::x86_sse2_comieq_sd: 3498 case Intrinsic::x86_sse2_comilt_sd: 3499 case Intrinsic::x86_sse2_comile_sd: 3500 case Intrinsic::x86_sse2_comigt_sd: 3501 case Intrinsic::x86_sse2_comige_sd: 3502 case Intrinsic::x86_sse2_comineq_sd: 3503 case Intrinsic::x86_sse2_ucomieq_sd: 3504 case Intrinsic::x86_sse2_ucomilt_sd: 3505 case Intrinsic::x86_sse2_ucomile_sd: 3506 case Intrinsic::x86_sse2_ucomigt_sd: 3507 case Intrinsic::x86_sse2_ucomige_sd: 3508 case Intrinsic::x86_sse2_ucomineq_sd: 3509 handleVectorCompareScalarIntrinsic(I); 3510 break; 3511 3512 case Intrinsic::x86_sse_cmp_ps: 3513 case Intrinsic::x86_sse2_cmp_pd: 3514 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3515 // generates reasonably looking IR that fails in the backend with "Do not 3516 // know how to split the result of this operator!". 3517 handleVectorComparePackedIntrinsic(I); 3518 break; 3519 3520 case Intrinsic::x86_bmi_bextr_32: 3521 case Intrinsic::x86_bmi_bextr_64: 3522 case Intrinsic::x86_bmi_bzhi_32: 3523 case Intrinsic::x86_bmi_bzhi_64: 3524 case Intrinsic::x86_bmi_pdep_32: 3525 case Intrinsic::x86_bmi_pdep_64: 3526 case Intrinsic::x86_bmi_pext_32: 3527 case Intrinsic::x86_bmi_pext_64: 3528 handleBmiIntrinsic(I); 3529 break; 3530 3531 case Intrinsic::x86_pclmulqdq: 3532 case Intrinsic::x86_pclmulqdq_256: 3533 case Intrinsic::x86_pclmulqdq_512: 3534 handlePclmulIntrinsic(I); 3535 break; 3536 3537 case Intrinsic::x86_sse41_round_sd: 3538 handleUnarySdIntrinsic(I); 3539 break; 3540 case Intrinsic::x86_sse2_max_sd: 3541 case Intrinsic::x86_sse2_min_sd: 3542 handleBinarySdIntrinsic(I); 3543 break; 3544 3545 case Intrinsic::fshl: 3546 case Intrinsic::fshr: 3547 handleFunnelShift(I); 3548 break; 3549 3550 case Intrinsic::is_constant: 3551 // The result of llvm.is.constant() is always defined. 3552 setShadow(&I, getCleanShadow(&I)); 3553 setOrigin(&I, getCleanOrigin()); 3554 break; 3555 3556 default: 3557 if (!handleUnknownIntrinsic(I)) 3558 visitInstruction(I); 3559 break; 3560 } 3561 } 3562 3563 void visitLibAtomicLoad(CallBase &CB) { 3564 // Since we use getNextNode here, we can't have CB terminate the BB. 3565 assert(isa<CallInst>(CB)); 3566 3567 IRBuilder<> IRB(&CB); 3568 Value *Size = CB.getArgOperand(0); 3569 Value *SrcPtr = CB.getArgOperand(1); 3570 Value *DstPtr = CB.getArgOperand(2); 3571 Value *Ordering = CB.getArgOperand(3); 3572 // Convert the call to have at least Acquire ordering to make sure 3573 // the shadow operations aren't reordered before it. 3574 Value *NewOrdering = 3575 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3576 CB.setArgOperand(3, NewOrdering); 3577 3578 IRBuilder<> NextIRB(CB.getNextNode()); 3579 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3580 3581 Value *SrcShadowPtr, *SrcOriginPtr; 3582 std::tie(SrcShadowPtr, SrcOriginPtr) = 3583 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3584 /*isStore*/ false); 3585 Value *DstShadowPtr = 3586 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3587 /*isStore*/ true) 3588 .first; 3589 3590 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3591 if (MS.TrackOrigins) { 3592 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3593 kMinOriginAlignment); 3594 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3595 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3596 } 3597 } 3598 3599 void visitLibAtomicStore(CallBase &CB) { 3600 IRBuilder<> IRB(&CB); 3601 Value *Size = CB.getArgOperand(0); 3602 Value *DstPtr = CB.getArgOperand(2); 3603 Value *Ordering = CB.getArgOperand(3); 3604 // Convert the call to have at least Release ordering to make sure 3605 // the shadow operations aren't reordered after it. 3606 Value *NewOrdering = 3607 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3608 CB.setArgOperand(3, NewOrdering); 3609 3610 Value *DstShadowPtr = 3611 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3612 /*isStore*/ true) 3613 .first; 3614 3615 // Atomic store always paints clean shadow/origin. See file header. 3616 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3617 Align(1)); 3618 } 3619 3620 void visitCallBase(CallBase &CB) { 3621 assert(!CB.getMetadata("nosanitize")); 3622 if (CB.isInlineAsm()) { 3623 // For inline asm (either a call to asm function, or callbr instruction), 3624 // do the usual thing: check argument shadow and mark all outputs as 3625 // clean. Note that any side effects of the inline asm that are not 3626 // immediately visible in its constraints are not handled. 3627 if (ClHandleAsmConservative && MS.CompileKernel) 3628 visitAsmInstruction(CB); 3629 else 3630 visitInstruction(CB); 3631 return; 3632 } 3633 LibFunc LF; 3634 if (TLI->getLibFunc(CB, LF)) { 3635 // libatomic.a functions need to have special handling because there isn't 3636 // a good way to intercept them or compile the library with 3637 // instrumentation. 3638 switch (LF) { 3639 case LibFunc_atomic_load: 3640 if (!isa<CallInst>(CB)) { 3641 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3642 "Ignoring!\n"; 3643 break; 3644 } 3645 visitLibAtomicLoad(CB); 3646 return; 3647 case LibFunc_atomic_store: 3648 visitLibAtomicStore(CB); 3649 return; 3650 default: 3651 break; 3652 } 3653 } 3654 3655 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3656 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3657 3658 // We are going to insert code that relies on the fact that the callee 3659 // will become a non-readonly function after it is instrumented by us. To 3660 // prevent this code from being optimized out, mark that function 3661 // non-readonly in advance. 3662 AttrBuilder B; 3663 B.addAttribute(Attribute::ReadOnly) 3664 .addAttribute(Attribute::ReadNone) 3665 .addAttribute(Attribute::WriteOnly) 3666 .addAttribute(Attribute::ArgMemOnly) 3667 .addAttribute(Attribute::Speculatable); 3668 3669 Call->removeFnAttrs(B); 3670 if (Function *Func = Call->getCalledFunction()) { 3671 Func->removeFnAttrs(B); 3672 } 3673 3674 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3675 } 3676 IRBuilder<> IRB(&CB); 3677 bool MayCheckCall = ClEagerChecks; 3678 if (Function *Func = CB.getCalledFunction()) { 3679 // __sanitizer_unaligned_{load,store} functions may be called by users 3680 // and always expects shadows in the TLS. So don't check them. 3681 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3682 } 3683 3684 unsigned ArgOffset = 0; 3685 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3686 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3687 ++ArgIt) { 3688 Value *A = *ArgIt; 3689 unsigned i = ArgIt - CB.arg_begin(); 3690 if (!A->getType()->isSized()) { 3691 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3692 continue; 3693 } 3694 unsigned Size = 0; 3695 Value *Store = nullptr; 3696 // Compute the Shadow for arg even if it is ByVal, because 3697 // in that case getShadow() will copy the actual arg shadow to 3698 // __msan_param_tls. 3699 Value *ArgShadow = getShadow(A); 3700 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3701 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3702 << " Shadow: " << *ArgShadow << "\n"); 3703 bool ArgIsInitialized = false; 3704 const DataLayout &DL = F.getParent()->getDataLayout(); 3705 3706 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3707 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3708 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3709 3710 if (EagerCheck) { 3711 insertShadowCheck(A, &CB); 3712 continue; 3713 } 3714 if (ByVal) { 3715 // ByVal requires some special handling as it's too big for a single 3716 // load 3717 assert(A->getType()->isPointerTy() && 3718 "ByVal argument is not a pointer!"); 3719 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3720 if (ArgOffset + Size > kParamTLSSize) break; 3721 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3722 MaybeAlign Alignment = llvm::None; 3723 if (ParamAlignment) 3724 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3725 Value *AShadowPtr = 3726 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3727 /*isStore*/ false) 3728 .first; 3729 3730 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3731 Alignment, Size); 3732 // TODO(glider): need to copy origins. 3733 } else { 3734 // Any other parameters mean we need bit-grained tracking of uninit data 3735 Size = DL.getTypeAllocSize(A->getType()); 3736 if (ArgOffset + Size > kParamTLSSize) break; 3737 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3738 kShadowTLSAlignment); 3739 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3740 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3741 } 3742 if (MS.TrackOrigins && !ArgIsInitialized) 3743 IRB.CreateStore(getOrigin(A), 3744 getOriginPtrForArgument(A, IRB, ArgOffset)); 3745 (void)Store; 3746 assert(Size != 0 && Store != nullptr); 3747 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3748 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3749 } 3750 LLVM_DEBUG(dbgs() << " done with call args\n"); 3751 3752 FunctionType *FT = CB.getFunctionType(); 3753 if (FT->isVarArg()) { 3754 VAHelper->visitCallBase(CB, IRB); 3755 } 3756 3757 // Now, get the shadow for the RetVal. 3758 if (!CB.getType()->isSized()) 3759 return; 3760 // Don't emit the epilogue for musttail call returns. 3761 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3762 return; 3763 3764 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3765 setShadow(&CB, getCleanShadow(&CB)); 3766 setOrigin(&CB, getCleanOrigin()); 3767 return; 3768 } 3769 3770 IRBuilder<> IRBBefore(&CB); 3771 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3772 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3773 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3774 kShadowTLSAlignment); 3775 BasicBlock::iterator NextInsn; 3776 if (isa<CallInst>(CB)) { 3777 NextInsn = ++CB.getIterator(); 3778 assert(NextInsn != CB.getParent()->end()); 3779 } else { 3780 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3781 if (!NormalDest->getSinglePredecessor()) { 3782 // FIXME: this case is tricky, so we are just conservative here. 3783 // Perhaps we need to split the edge between this BB and NormalDest, 3784 // but a naive attempt to use SplitEdge leads to a crash. 3785 setShadow(&CB, getCleanShadow(&CB)); 3786 setOrigin(&CB, getCleanOrigin()); 3787 return; 3788 } 3789 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3790 // Anything inserted there will be instrumented by MSan later! 3791 NextInsn = NormalDest->getFirstInsertionPt(); 3792 assert(NextInsn != NormalDest->end() && 3793 "Could not find insertion point for retval shadow load"); 3794 } 3795 IRBuilder<> IRBAfter(&*NextInsn); 3796 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3797 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3798 kShadowTLSAlignment, "_msret"); 3799 setShadow(&CB, RetvalShadow); 3800 if (MS.TrackOrigins) 3801 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3802 getOriginPtrForRetval(IRBAfter))); 3803 } 3804 3805 bool isAMustTailRetVal(Value *RetVal) { 3806 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3807 RetVal = I->getOperand(0); 3808 } 3809 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3810 return I->isMustTailCall(); 3811 } 3812 return false; 3813 } 3814 3815 void visitReturnInst(ReturnInst &I) { 3816 IRBuilder<> IRB(&I); 3817 Value *RetVal = I.getReturnValue(); 3818 if (!RetVal) return; 3819 // Don't emit the epilogue for musttail call returns. 3820 if (isAMustTailRetVal(RetVal)) return; 3821 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3822 bool HasNoUndef = 3823 F.hasRetAttribute(Attribute::NoUndef); 3824 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3825 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3826 // must always return fully initialized values. For now, we hardcode "main". 3827 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3828 3829 Value *Shadow = getShadow(RetVal); 3830 bool StoreOrigin = true; 3831 if (EagerCheck) { 3832 insertShadowCheck(RetVal, &I); 3833 Shadow = getCleanShadow(RetVal); 3834 StoreOrigin = false; 3835 } 3836 3837 // The caller may still expect information passed over TLS if we pass our 3838 // check 3839 if (StoreShadow) { 3840 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3841 if (MS.TrackOrigins && StoreOrigin) 3842 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3843 } 3844 } 3845 3846 void visitPHINode(PHINode &I) { 3847 IRBuilder<> IRB(&I); 3848 if (!PropagateShadow) { 3849 setShadow(&I, getCleanShadow(&I)); 3850 setOrigin(&I, getCleanOrigin()); 3851 return; 3852 } 3853 3854 ShadowPHINodes.push_back(&I); 3855 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3856 "_msphi_s")); 3857 if (MS.TrackOrigins) 3858 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3859 "_msphi_o")); 3860 } 3861 3862 Value *getLocalVarDescription(AllocaInst &I) { 3863 SmallString<2048> StackDescriptionStorage; 3864 raw_svector_ostream StackDescription(StackDescriptionStorage); 3865 // We create a string with a description of the stack allocation and 3866 // pass it into __msan_set_alloca_origin. 3867 // It will be printed by the run-time if stack-originated UMR is found. 3868 // The first 4 bytes of the string are set to '----' and will be replaced 3869 // by __msan_va_arg_overflow_size_tls at the first call. 3870 StackDescription << "----" << I.getName() << "@" << F.getName(); 3871 return createPrivateNonConstGlobalForString(*F.getParent(), 3872 StackDescription.str()); 3873 } 3874 3875 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3876 if (PoisonStack && ClPoisonStackWithCall) { 3877 IRB.CreateCall(MS.MsanPoisonStackFn, 3878 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3879 } else { 3880 Value *ShadowBase, *OriginBase; 3881 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3882 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3883 3884 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3885 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3886 MaybeAlign(I.getAlignment())); 3887 } 3888 3889 if (PoisonStack && MS.TrackOrigins) { 3890 Value *Descr = getLocalVarDescription(I); 3891 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3892 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3893 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3894 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3895 } 3896 } 3897 3898 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3899 Value *Descr = getLocalVarDescription(I); 3900 if (PoisonStack) { 3901 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3902 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3903 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3904 } else { 3905 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3906 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3907 } 3908 } 3909 3910 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3911 if (!InsPoint) 3912 InsPoint = &I; 3913 IRBuilder<> IRB(InsPoint->getNextNode()); 3914 const DataLayout &DL = F.getParent()->getDataLayout(); 3915 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3916 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3917 if (I.isArrayAllocation()) 3918 Len = IRB.CreateMul(Len, I.getArraySize()); 3919 3920 if (MS.CompileKernel) 3921 poisonAllocaKmsan(I, IRB, Len); 3922 else 3923 poisonAllocaUserspace(I, IRB, Len); 3924 } 3925 3926 void visitAllocaInst(AllocaInst &I) { 3927 setShadow(&I, getCleanShadow(&I)); 3928 setOrigin(&I, getCleanOrigin()); 3929 // We'll get to this alloca later unless it's poisoned at the corresponding 3930 // llvm.lifetime.start. 3931 AllocaSet.insert(&I); 3932 } 3933 3934 void visitSelectInst(SelectInst& I) { 3935 IRBuilder<> IRB(&I); 3936 // a = select b, c, d 3937 Value *B = I.getCondition(); 3938 Value *C = I.getTrueValue(); 3939 Value *D = I.getFalseValue(); 3940 Value *Sb = getShadow(B); 3941 Value *Sc = getShadow(C); 3942 Value *Sd = getShadow(D); 3943 3944 // Result shadow if condition shadow is 0. 3945 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3946 Value *Sa1; 3947 if (I.getType()->isAggregateType()) { 3948 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3949 // an extra "select". This results in much more compact IR. 3950 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3951 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3952 } else { 3953 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3954 // If Sb (condition is poisoned), look for bits in c and d that are equal 3955 // and both unpoisoned. 3956 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3957 3958 // Cast arguments to shadow-compatible type. 3959 C = CreateAppToShadowCast(IRB, C); 3960 D = CreateAppToShadowCast(IRB, D); 3961 3962 // Result shadow if condition shadow is 1. 3963 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3964 } 3965 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3966 setShadow(&I, Sa); 3967 if (MS.TrackOrigins) { 3968 // Origins are always i32, so any vector conditions must be flattened. 3969 // FIXME: consider tracking vector origins for app vectors? 3970 if (B->getType()->isVectorTy()) { 3971 Type *FlatTy = getShadowTyNoVec(B->getType()); 3972 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3973 ConstantInt::getNullValue(FlatTy)); 3974 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3975 ConstantInt::getNullValue(FlatTy)); 3976 } 3977 // a = select b, c, d 3978 // Oa = Sb ? Ob : (b ? Oc : Od) 3979 setOrigin( 3980 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3981 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3982 getOrigin(I.getFalseValue())))); 3983 } 3984 } 3985 3986 void visitLandingPadInst(LandingPadInst &I) { 3987 // Do nothing. 3988 // See https://github.com/google/sanitizers/issues/504 3989 setShadow(&I, getCleanShadow(&I)); 3990 setOrigin(&I, getCleanOrigin()); 3991 } 3992 3993 void visitCatchSwitchInst(CatchSwitchInst &I) { 3994 setShadow(&I, getCleanShadow(&I)); 3995 setOrigin(&I, getCleanOrigin()); 3996 } 3997 3998 void visitFuncletPadInst(FuncletPadInst &I) { 3999 setShadow(&I, getCleanShadow(&I)); 4000 setOrigin(&I, getCleanOrigin()); 4001 } 4002 4003 void visitGetElementPtrInst(GetElementPtrInst &I) { 4004 handleShadowOr(I); 4005 } 4006 4007 void visitExtractValueInst(ExtractValueInst &I) { 4008 IRBuilder<> IRB(&I); 4009 Value *Agg = I.getAggregateOperand(); 4010 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4011 Value *AggShadow = getShadow(Agg); 4012 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4013 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4014 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4015 setShadow(&I, ResShadow); 4016 setOriginForNaryOp(I); 4017 } 4018 4019 void visitInsertValueInst(InsertValueInst &I) { 4020 IRBuilder<> IRB(&I); 4021 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4022 Value *AggShadow = getShadow(I.getAggregateOperand()); 4023 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4024 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4025 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4026 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4027 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4028 setShadow(&I, Res); 4029 setOriginForNaryOp(I); 4030 } 4031 4032 void dumpInst(Instruction &I) { 4033 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4034 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4035 } else { 4036 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4037 } 4038 errs() << "QQQ " << I << "\n"; 4039 } 4040 4041 void visitResumeInst(ResumeInst &I) { 4042 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4043 // Nothing to do here. 4044 } 4045 4046 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4047 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4048 // Nothing to do here. 4049 } 4050 4051 void visitCatchReturnInst(CatchReturnInst &CRI) { 4052 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4053 // Nothing to do here. 4054 } 4055 4056 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4057 const DataLayout &DL, bool isOutput) { 4058 // For each assembly argument, we check its value for being initialized. 4059 // If the argument is a pointer, we assume it points to a single element 4060 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4061 // Each such pointer is instrumented with a call to the runtime library. 4062 Type *OpType = Operand->getType(); 4063 // Check the operand value itself. 4064 insertShadowCheck(Operand, &I); 4065 if (!OpType->isPointerTy() || !isOutput) { 4066 assert(!isOutput); 4067 return; 4068 } 4069 Type *ElType = OpType->getPointerElementType(); 4070 if (!ElType->isSized()) 4071 return; 4072 int Size = DL.getTypeStoreSize(ElType); 4073 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4074 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4075 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4076 } 4077 4078 /// Get the number of output arguments returned by pointers. 4079 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4080 int NumRetOutputs = 0; 4081 int NumOutputs = 0; 4082 Type *RetTy = cast<Value>(CB)->getType(); 4083 if (!RetTy->isVoidTy()) { 4084 // Register outputs are returned via the CallInst return value. 4085 auto *ST = dyn_cast<StructType>(RetTy); 4086 if (ST) 4087 NumRetOutputs = ST->getNumElements(); 4088 else 4089 NumRetOutputs = 1; 4090 } 4091 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4092 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4093 switch (Info.Type) { 4094 case InlineAsm::isOutput: 4095 NumOutputs++; 4096 break; 4097 default: 4098 break; 4099 } 4100 } 4101 return NumOutputs - NumRetOutputs; 4102 } 4103 4104 void visitAsmInstruction(Instruction &I) { 4105 // Conservative inline assembly handling: check for poisoned shadow of 4106 // asm() arguments, then unpoison the result and all the memory locations 4107 // pointed to by those arguments. 4108 // An inline asm() statement in C++ contains lists of input and output 4109 // arguments used by the assembly code. These are mapped to operands of the 4110 // CallInst as follows: 4111 // - nR register outputs ("=r) are returned by value in a single structure 4112 // (SSA value of the CallInst); 4113 // - nO other outputs ("=m" and others) are returned by pointer as first 4114 // nO operands of the CallInst; 4115 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4116 // remaining nI operands. 4117 // The total number of asm() arguments in the source is nR+nO+nI, and the 4118 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4119 // function to be called). 4120 const DataLayout &DL = F.getParent()->getDataLayout(); 4121 CallBase *CB = cast<CallBase>(&I); 4122 IRBuilder<> IRB(&I); 4123 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4124 int OutputArgs = getNumOutputArgs(IA, CB); 4125 // The last operand of a CallInst is the function itself. 4126 int NumOperands = CB->getNumOperands() - 1; 4127 4128 // Check input arguments. Doing so before unpoisoning output arguments, so 4129 // that we won't overwrite uninit values before checking them. 4130 for (int i = OutputArgs; i < NumOperands; i++) { 4131 Value *Operand = CB->getOperand(i); 4132 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4133 } 4134 // Unpoison output arguments. This must happen before the actual InlineAsm 4135 // call, so that the shadow for memory published in the asm() statement 4136 // remains valid. 4137 for (int i = 0; i < OutputArgs; i++) { 4138 Value *Operand = CB->getOperand(i); 4139 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4140 } 4141 4142 setShadow(&I, getCleanShadow(&I)); 4143 setOrigin(&I, getCleanOrigin()); 4144 } 4145 4146 void visitFreezeInst(FreezeInst &I) { 4147 // Freeze always returns a fully defined value. 4148 setShadow(&I, getCleanShadow(&I)); 4149 setOrigin(&I, getCleanOrigin()); 4150 } 4151 4152 void visitInstruction(Instruction &I) { 4153 // Everything else: stop propagating and check for poisoned shadow. 4154 if (ClDumpStrictInstructions) 4155 dumpInst(I); 4156 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4157 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4158 Value *Operand = I.getOperand(i); 4159 if (Operand->getType()->isSized()) 4160 insertShadowCheck(Operand, &I); 4161 } 4162 setShadow(&I, getCleanShadow(&I)); 4163 setOrigin(&I, getCleanOrigin()); 4164 } 4165 }; 4166 4167 /// AMD64-specific implementation of VarArgHelper. 4168 struct VarArgAMD64Helper : public VarArgHelper { 4169 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4170 // See a comment in visitCallBase for more details. 4171 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4172 static const unsigned AMD64FpEndOffsetSSE = 176; 4173 // If SSE is disabled, fp_offset in va_list is zero. 4174 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4175 4176 unsigned AMD64FpEndOffset; 4177 Function &F; 4178 MemorySanitizer &MS; 4179 MemorySanitizerVisitor &MSV; 4180 Value *VAArgTLSCopy = nullptr; 4181 Value *VAArgTLSOriginCopy = nullptr; 4182 Value *VAArgOverflowSize = nullptr; 4183 4184 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4185 4186 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4187 4188 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4189 MemorySanitizerVisitor &MSV) 4190 : F(F), MS(MS), MSV(MSV) { 4191 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4192 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4193 if (Attr.isStringAttribute() && 4194 (Attr.getKindAsString() == "target-features")) { 4195 if (Attr.getValueAsString().contains("-sse")) 4196 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4197 break; 4198 } 4199 } 4200 } 4201 4202 ArgKind classifyArgument(Value* arg) { 4203 // A very rough approximation of X86_64 argument classification rules. 4204 Type *T = arg->getType(); 4205 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4206 return AK_FloatingPoint; 4207 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4208 return AK_GeneralPurpose; 4209 if (T->isPointerTy()) 4210 return AK_GeneralPurpose; 4211 return AK_Memory; 4212 } 4213 4214 // For VarArg functions, store the argument shadow in an ABI-specific format 4215 // that corresponds to va_list layout. 4216 // We do this because Clang lowers va_arg in the frontend, and this pass 4217 // only sees the low level code that deals with va_list internals. 4218 // A much easier alternative (provided that Clang emits va_arg instructions) 4219 // would have been to associate each live instance of va_list with a copy of 4220 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4221 // order. 4222 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4223 unsigned GpOffset = 0; 4224 unsigned FpOffset = AMD64GpEndOffset; 4225 unsigned OverflowOffset = AMD64FpEndOffset; 4226 const DataLayout &DL = F.getParent()->getDataLayout(); 4227 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4228 ++ArgIt) { 4229 Value *A = *ArgIt; 4230 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4231 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4232 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4233 if (IsByVal) { 4234 // ByVal arguments always go to the overflow area. 4235 // Fixed arguments passed through the overflow area will be stepped 4236 // over by va_start, so don't count them towards the offset. 4237 if (IsFixed) 4238 continue; 4239 assert(A->getType()->isPointerTy()); 4240 Type *RealTy = CB.getParamByValType(ArgNo); 4241 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4242 Value *ShadowBase = getShadowPtrForVAArgument( 4243 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4244 Value *OriginBase = nullptr; 4245 if (MS.TrackOrigins) 4246 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4247 OverflowOffset += alignTo(ArgSize, 8); 4248 if (!ShadowBase) 4249 continue; 4250 Value *ShadowPtr, *OriginPtr; 4251 std::tie(ShadowPtr, OriginPtr) = 4252 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4253 /*isStore*/ false); 4254 4255 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4256 kShadowTLSAlignment, ArgSize); 4257 if (MS.TrackOrigins) 4258 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4259 kShadowTLSAlignment, ArgSize); 4260 } else { 4261 ArgKind AK = classifyArgument(A); 4262 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4263 AK = AK_Memory; 4264 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4265 AK = AK_Memory; 4266 Value *ShadowBase, *OriginBase = nullptr; 4267 switch (AK) { 4268 case AK_GeneralPurpose: 4269 ShadowBase = 4270 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4271 if (MS.TrackOrigins) 4272 OriginBase = 4273 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4274 GpOffset += 8; 4275 break; 4276 case AK_FloatingPoint: 4277 ShadowBase = 4278 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4279 if (MS.TrackOrigins) 4280 OriginBase = 4281 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4282 FpOffset += 16; 4283 break; 4284 case AK_Memory: 4285 if (IsFixed) 4286 continue; 4287 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4288 ShadowBase = 4289 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4290 if (MS.TrackOrigins) 4291 OriginBase = 4292 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4293 OverflowOffset += alignTo(ArgSize, 8); 4294 } 4295 // Take fixed arguments into account for GpOffset and FpOffset, 4296 // but don't actually store shadows for them. 4297 // TODO(glider): don't call get*PtrForVAArgument() for them. 4298 if (IsFixed) 4299 continue; 4300 if (!ShadowBase) 4301 continue; 4302 Value *Shadow = MSV.getShadow(A); 4303 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4304 if (MS.TrackOrigins) { 4305 Value *Origin = MSV.getOrigin(A); 4306 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4307 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4308 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4309 } 4310 } 4311 } 4312 Constant *OverflowSize = 4313 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4314 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4315 } 4316 4317 /// Compute the shadow address for a given va_arg. 4318 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4319 unsigned ArgOffset, unsigned ArgSize) { 4320 // Make sure we don't overflow __msan_va_arg_tls. 4321 if (ArgOffset + ArgSize > kParamTLSSize) 4322 return nullptr; 4323 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4324 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4325 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4326 "_msarg_va_s"); 4327 } 4328 4329 /// Compute the origin address for a given va_arg. 4330 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4331 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4332 // getOriginPtrForVAArgument() is always called after 4333 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4334 // overflow. 4335 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4336 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4337 "_msarg_va_o"); 4338 } 4339 4340 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4341 IRBuilder<> IRB(&I); 4342 Value *VAListTag = I.getArgOperand(0); 4343 Value *ShadowPtr, *OriginPtr; 4344 const Align Alignment = Align(8); 4345 std::tie(ShadowPtr, OriginPtr) = 4346 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4347 /*isStore*/ true); 4348 4349 // Unpoison the whole __va_list_tag. 4350 // FIXME: magic ABI constants. 4351 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4352 /* size */ 24, Alignment, false); 4353 // We shouldn't need to zero out the origins, as they're only checked for 4354 // nonzero shadow. 4355 } 4356 4357 void visitVAStartInst(VAStartInst &I) override { 4358 if (F.getCallingConv() == CallingConv::Win64) 4359 return; 4360 VAStartInstrumentationList.push_back(&I); 4361 unpoisonVAListTagForInst(I); 4362 } 4363 4364 void visitVACopyInst(VACopyInst &I) override { 4365 if (F.getCallingConv() == CallingConv::Win64) return; 4366 unpoisonVAListTagForInst(I); 4367 } 4368 4369 void finalizeInstrumentation() override { 4370 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4371 "finalizeInstrumentation called twice"); 4372 if (!VAStartInstrumentationList.empty()) { 4373 // If there is a va_start in this function, make a backup copy of 4374 // va_arg_tls somewhere in the function entry block. 4375 IRBuilder<> IRB(MSV.FnPrologueEnd); 4376 VAArgOverflowSize = 4377 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4378 Value *CopySize = 4379 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4380 VAArgOverflowSize); 4381 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4382 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4383 if (MS.TrackOrigins) { 4384 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4385 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4386 Align(8), CopySize); 4387 } 4388 } 4389 4390 // Instrument va_start. 4391 // Copy va_list shadow from the backup copy of the TLS contents. 4392 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4393 CallInst *OrigInst = VAStartInstrumentationList[i]; 4394 IRBuilder<> IRB(OrigInst->getNextNode()); 4395 Value *VAListTag = OrigInst->getArgOperand(0); 4396 4397 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4398 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4399 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4400 ConstantInt::get(MS.IntptrTy, 16)), 4401 PointerType::get(RegSaveAreaPtrTy, 0)); 4402 Value *RegSaveAreaPtr = 4403 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4404 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4405 const Align Alignment = Align(16); 4406 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4407 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4408 Alignment, /*isStore*/ true); 4409 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4410 AMD64FpEndOffset); 4411 if (MS.TrackOrigins) 4412 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4413 Alignment, AMD64FpEndOffset); 4414 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4415 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4416 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4417 ConstantInt::get(MS.IntptrTy, 8)), 4418 PointerType::get(OverflowArgAreaPtrTy, 0)); 4419 Value *OverflowArgAreaPtr = 4420 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4421 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4422 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4423 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4424 Alignment, /*isStore*/ true); 4425 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4426 AMD64FpEndOffset); 4427 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4428 VAArgOverflowSize); 4429 if (MS.TrackOrigins) { 4430 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4431 AMD64FpEndOffset); 4432 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4433 VAArgOverflowSize); 4434 } 4435 } 4436 } 4437 }; 4438 4439 /// MIPS64-specific implementation of VarArgHelper. 4440 struct VarArgMIPS64Helper : public VarArgHelper { 4441 Function &F; 4442 MemorySanitizer &MS; 4443 MemorySanitizerVisitor &MSV; 4444 Value *VAArgTLSCopy = nullptr; 4445 Value *VAArgSize = nullptr; 4446 4447 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4448 4449 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4450 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4451 4452 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4453 unsigned VAArgOffset = 0; 4454 const DataLayout &DL = F.getParent()->getDataLayout(); 4455 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4456 End = CB.arg_end(); 4457 ArgIt != End; ++ArgIt) { 4458 Triple TargetTriple(F.getParent()->getTargetTriple()); 4459 Value *A = *ArgIt; 4460 Value *Base; 4461 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4462 if (TargetTriple.getArch() == Triple::mips64) { 4463 // Adjusting the shadow for argument with size < 8 to match the placement 4464 // of bits in big endian system 4465 if (ArgSize < 8) 4466 VAArgOffset += (8 - ArgSize); 4467 } 4468 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4469 VAArgOffset += ArgSize; 4470 VAArgOffset = alignTo(VAArgOffset, 8); 4471 if (!Base) 4472 continue; 4473 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4474 } 4475 4476 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4477 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4478 // a new class member i.e. it is the total size of all VarArgs. 4479 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4480 } 4481 4482 /// Compute the shadow address for a given va_arg. 4483 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4484 unsigned ArgOffset, unsigned ArgSize) { 4485 // Make sure we don't overflow __msan_va_arg_tls. 4486 if (ArgOffset + ArgSize > kParamTLSSize) 4487 return nullptr; 4488 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4489 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4490 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4491 "_msarg"); 4492 } 4493 4494 void visitVAStartInst(VAStartInst &I) override { 4495 IRBuilder<> IRB(&I); 4496 VAStartInstrumentationList.push_back(&I); 4497 Value *VAListTag = I.getArgOperand(0); 4498 Value *ShadowPtr, *OriginPtr; 4499 const Align Alignment = Align(8); 4500 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4501 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4502 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4503 /* size */ 8, Alignment, false); 4504 } 4505 4506 void visitVACopyInst(VACopyInst &I) override { 4507 IRBuilder<> IRB(&I); 4508 VAStartInstrumentationList.push_back(&I); 4509 Value *VAListTag = I.getArgOperand(0); 4510 Value *ShadowPtr, *OriginPtr; 4511 const Align Alignment = Align(8); 4512 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4513 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4514 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4515 /* size */ 8, Alignment, false); 4516 } 4517 4518 void finalizeInstrumentation() override { 4519 assert(!VAArgSize && !VAArgTLSCopy && 4520 "finalizeInstrumentation called twice"); 4521 IRBuilder<> IRB(MSV.FnPrologueEnd); 4522 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4523 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4524 VAArgSize); 4525 4526 if (!VAStartInstrumentationList.empty()) { 4527 // If there is a va_start in this function, make a backup copy of 4528 // va_arg_tls somewhere in the function entry block. 4529 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4530 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4531 } 4532 4533 // Instrument va_start. 4534 // Copy va_list shadow from the backup copy of the TLS contents. 4535 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4536 CallInst *OrigInst = VAStartInstrumentationList[i]; 4537 IRBuilder<> IRB(OrigInst->getNextNode()); 4538 Value *VAListTag = OrigInst->getArgOperand(0); 4539 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4540 Value *RegSaveAreaPtrPtr = 4541 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4542 PointerType::get(RegSaveAreaPtrTy, 0)); 4543 Value *RegSaveAreaPtr = 4544 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4545 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4546 const Align Alignment = Align(8); 4547 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4548 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4549 Alignment, /*isStore*/ true); 4550 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4551 CopySize); 4552 } 4553 } 4554 }; 4555 4556 /// AArch64-specific implementation of VarArgHelper. 4557 struct VarArgAArch64Helper : public VarArgHelper { 4558 static const unsigned kAArch64GrArgSize = 64; 4559 static const unsigned kAArch64VrArgSize = 128; 4560 4561 static const unsigned AArch64GrBegOffset = 0; 4562 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4563 // Make VR space aligned to 16 bytes. 4564 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4565 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4566 + kAArch64VrArgSize; 4567 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4568 4569 Function &F; 4570 MemorySanitizer &MS; 4571 MemorySanitizerVisitor &MSV; 4572 Value *VAArgTLSCopy = nullptr; 4573 Value *VAArgOverflowSize = nullptr; 4574 4575 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4576 4577 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4578 4579 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4580 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4581 4582 ArgKind classifyArgument(Value* arg) { 4583 Type *T = arg->getType(); 4584 if (T->isFPOrFPVectorTy()) 4585 return AK_FloatingPoint; 4586 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4587 || (T->isPointerTy())) 4588 return AK_GeneralPurpose; 4589 return AK_Memory; 4590 } 4591 4592 // The instrumentation stores the argument shadow in a non ABI-specific 4593 // format because it does not know which argument is named (since Clang, 4594 // like x86_64 case, lowers the va_args in the frontend and this pass only 4595 // sees the low level code that deals with va_list internals). 4596 // The first seven GR registers are saved in the first 56 bytes of the 4597 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4598 // the remaining arguments. 4599 // Using constant offset within the va_arg TLS array allows fast copy 4600 // in the finalize instrumentation. 4601 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4602 unsigned GrOffset = AArch64GrBegOffset; 4603 unsigned VrOffset = AArch64VrBegOffset; 4604 unsigned OverflowOffset = AArch64VAEndOffset; 4605 4606 const DataLayout &DL = F.getParent()->getDataLayout(); 4607 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4608 ++ArgIt) { 4609 Value *A = *ArgIt; 4610 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4611 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4612 ArgKind AK = classifyArgument(A); 4613 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4614 AK = AK_Memory; 4615 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4616 AK = AK_Memory; 4617 Value *Base; 4618 switch (AK) { 4619 case AK_GeneralPurpose: 4620 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4621 GrOffset += 8; 4622 break; 4623 case AK_FloatingPoint: 4624 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4625 VrOffset += 16; 4626 break; 4627 case AK_Memory: 4628 // Don't count fixed arguments in the overflow area - va_start will 4629 // skip right over them. 4630 if (IsFixed) 4631 continue; 4632 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4633 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4634 alignTo(ArgSize, 8)); 4635 OverflowOffset += alignTo(ArgSize, 8); 4636 break; 4637 } 4638 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4639 // bother to actually store a shadow. 4640 if (IsFixed) 4641 continue; 4642 if (!Base) 4643 continue; 4644 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4645 } 4646 Constant *OverflowSize = 4647 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4648 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4649 } 4650 4651 /// Compute the shadow address for a given va_arg. 4652 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4653 unsigned ArgOffset, unsigned ArgSize) { 4654 // Make sure we don't overflow __msan_va_arg_tls. 4655 if (ArgOffset + ArgSize > kParamTLSSize) 4656 return nullptr; 4657 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4658 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4659 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4660 "_msarg"); 4661 } 4662 4663 void visitVAStartInst(VAStartInst &I) override { 4664 IRBuilder<> IRB(&I); 4665 VAStartInstrumentationList.push_back(&I); 4666 Value *VAListTag = I.getArgOperand(0); 4667 Value *ShadowPtr, *OriginPtr; 4668 const Align Alignment = Align(8); 4669 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4670 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4671 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4672 /* size */ 32, Alignment, false); 4673 } 4674 4675 void visitVACopyInst(VACopyInst &I) override { 4676 IRBuilder<> IRB(&I); 4677 VAStartInstrumentationList.push_back(&I); 4678 Value *VAListTag = I.getArgOperand(0); 4679 Value *ShadowPtr, *OriginPtr; 4680 const Align Alignment = Align(8); 4681 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4682 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4683 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4684 /* size */ 32, Alignment, false); 4685 } 4686 4687 // Retrieve a va_list field of 'void*' size. 4688 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4689 Value *SaveAreaPtrPtr = 4690 IRB.CreateIntToPtr( 4691 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4692 ConstantInt::get(MS.IntptrTy, offset)), 4693 Type::getInt64PtrTy(*MS.C)); 4694 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4695 } 4696 4697 // Retrieve a va_list field of 'int' size. 4698 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4699 Value *SaveAreaPtr = 4700 IRB.CreateIntToPtr( 4701 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4702 ConstantInt::get(MS.IntptrTy, offset)), 4703 Type::getInt32PtrTy(*MS.C)); 4704 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4705 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4706 } 4707 4708 void finalizeInstrumentation() override { 4709 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4710 "finalizeInstrumentation called twice"); 4711 if (!VAStartInstrumentationList.empty()) { 4712 // If there is a va_start in this function, make a backup copy of 4713 // va_arg_tls somewhere in the function entry block. 4714 IRBuilder<> IRB(MSV.FnPrologueEnd); 4715 VAArgOverflowSize = 4716 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4717 Value *CopySize = 4718 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4719 VAArgOverflowSize); 4720 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4721 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4722 } 4723 4724 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4725 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4726 4727 // Instrument va_start, copy va_list shadow from the backup copy of 4728 // the TLS contents. 4729 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4730 CallInst *OrigInst = VAStartInstrumentationList[i]; 4731 IRBuilder<> IRB(OrigInst->getNextNode()); 4732 4733 Value *VAListTag = OrigInst->getArgOperand(0); 4734 4735 // The variadic ABI for AArch64 creates two areas to save the incoming 4736 // argument registers (one for 64-bit general register xn-x7 and another 4737 // for 128-bit FP/SIMD vn-v7). 4738 // We need then to propagate the shadow arguments on both regions 4739 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4740 // The remaining arguments are saved on shadow for 'va::stack'. 4741 // One caveat is it requires only to propagate the non-named arguments, 4742 // however on the call site instrumentation 'all' the arguments are 4743 // saved. So to copy the shadow values from the va_arg TLS array 4744 // we need to adjust the offset for both GR and VR fields based on 4745 // the __{gr,vr}_offs value (since they are stores based on incoming 4746 // named arguments). 4747 4748 // Read the stack pointer from the va_list. 4749 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4750 4751 // Read both the __gr_top and __gr_off and add them up. 4752 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4753 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4754 4755 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4756 4757 // Read both the __vr_top and __vr_off and add them up. 4758 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4759 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4760 4761 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4762 4763 // It does not know how many named arguments is being used and, on the 4764 // callsite all the arguments were saved. Since __gr_off is defined as 4765 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4766 // argument by ignoring the bytes of shadow from named arguments. 4767 Value *GrRegSaveAreaShadowPtrOff = 4768 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4769 4770 Value *GrRegSaveAreaShadowPtr = 4771 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4772 Align(8), /*isStore*/ true) 4773 .first; 4774 4775 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4776 GrRegSaveAreaShadowPtrOff); 4777 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4778 4779 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4780 GrCopySize); 4781 4782 // Again, but for FP/SIMD values. 4783 Value *VrRegSaveAreaShadowPtrOff = 4784 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4785 4786 Value *VrRegSaveAreaShadowPtr = 4787 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4788 Align(8), /*isStore*/ true) 4789 .first; 4790 4791 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4792 IRB.getInt8Ty(), 4793 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4794 IRB.getInt32(AArch64VrBegOffset)), 4795 VrRegSaveAreaShadowPtrOff); 4796 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4797 4798 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4799 VrCopySize); 4800 4801 // And finally for remaining arguments. 4802 Value *StackSaveAreaShadowPtr = 4803 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4804 Align(16), /*isStore*/ true) 4805 .first; 4806 4807 Value *StackSrcPtr = 4808 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4809 IRB.getInt32(AArch64VAEndOffset)); 4810 4811 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4812 Align(16), VAArgOverflowSize); 4813 } 4814 } 4815 }; 4816 4817 /// PowerPC64-specific implementation of VarArgHelper. 4818 struct VarArgPowerPC64Helper : public VarArgHelper { 4819 Function &F; 4820 MemorySanitizer &MS; 4821 MemorySanitizerVisitor &MSV; 4822 Value *VAArgTLSCopy = nullptr; 4823 Value *VAArgSize = nullptr; 4824 4825 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4826 4827 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4828 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4829 4830 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4831 // For PowerPC, we need to deal with alignment of stack arguments - 4832 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4833 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4834 // For that reason, we compute current offset from stack pointer (which is 4835 // always properly aligned), and offset for the first vararg, then subtract 4836 // them. 4837 unsigned VAArgBase; 4838 Triple TargetTriple(F.getParent()->getTargetTriple()); 4839 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4840 // and 32 bytes for ABIv2. This is usually determined by target 4841 // endianness, but in theory could be overridden by function attribute. 4842 if (TargetTriple.getArch() == Triple::ppc64) 4843 VAArgBase = 48; 4844 else 4845 VAArgBase = 32; 4846 unsigned VAArgOffset = VAArgBase; 4847 const DataLayout &DL = F.getParent()->getDataLayout(); 4848 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4849 ++ArgIt) { 4850 Value *A = *ArgIt; 4851 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4852 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4853 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4854 if (IsByVal) { 4855 assert(A->getType()->isPointerTy()); 4856 Type *RealTy = CB.getParamByValType(ArgNo); 4857 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4858 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4859 if (!ArgAlign || *ArgAlign < Align(8)) 4860 ArgAlign = Align(8); 4861 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4862 if (!IsFixed) { 4863 Value *Base = getShadowPtrForVAArgument( 4864 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4865 if (Base) { 4866 Value *AShadowPtr, *AOriginPtr; 4867 std::tie(AShadowPtr, AOriginPtr) = 4868 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4869 kShadowTLSAlignment, /*isStore*/ false); 4870 4871 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4872 kShadowTLSAlignment, ArgSize); 4873 } 4874 } 4875 VAArgOffset += alignTo(ArgSize, 8); 4876 } else { 4877 Value *Base; 4878 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4879 uint64_t ArgAlign = 8; 4880 if (A->getType()->isArrayTy()) { 4881 // Arrays are aligned to element size, except for long double 4882 // arrays, which are aligned to 8 bytes. 4883 Type *ElementTy = A->getType()->getArrayElementType(); 4884 if (!ElementTy->isPPC_FP128Ty()) 4885 ArgAlign = DL.getTypeAllocSize(ElementTy); 4886 } else if (A->getType()->isVectorTy()) { 4887 // Vectors are naturally aligned. 4888 ArgAlign = DL.getTypeAllocSize(A->getType()); 4889 } 4890 if (ArgAlign < 8) 4891 ArgAlign = 8; 4892 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4893 if (DL.isBigEndian()) { 4894 // Adjusting the shadow for argument with size < 8 to match the placement 4895 // of bits in big endian system 4896 if (ArgSize < 8) 4897 VAArgOffset += (8 - ArgSize); 4898 } 4899 if (!IsFixed) { 4900 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4901 VAArgOffset - VAArgBase, ArgSize); 4902 if (Base) 4903 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4904 } 4905 VAArgOffset += ArgSize; 4906 VAArgOffset = alignTo(VAArgOffset, 8); 4907 } 4908 if (IsFixed) 4909 VAArgBase = VAArgOffset; 4910 } 4911 4912 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4913 VAArgOffset - VAArgBase); 4914 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4915 // a new class member i.e. it is the total size of all VarArgs. 4916 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4917 } 4918 4919 /// Compute the shadow address for a given va_arg. 4920 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4921 unsigned ArgOffset, unsigned ArgSize) { 4922 // Make sure we don't overflow __msan_va_arg_tls. 4923 if (ArgOffset + ArgSize > kParamTLSSize) 4924 return nullptr; 4925 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4926 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4927 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4928 "_msarg"); 4929 } 4930 4931 void visitVAStartInst(VAStartInst &I) override { 4932 IRBuilder<> IRB(&I); 4933 VAStartInstrumentationList.push_back(&I); 4934 Value *VAListTag = I.getArgOperand(0); 4935 Value *ShadowPtr, *OriginPtr; 4936 const Align Alignment = Align(8); 4937 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4938 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4939 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4940 /* size */ 8, Alignment, false); 4941 } 4942 4943 void visitVACopyInst(VACopyInst &I) override { 4944 IRBuilder<> IRB(&I); 4945 Value *VAListTag = I.getArgOperand(0); 4946 Value *ShadowPtr, *OriginPtr; 4947 const Align Alignment = Align(8); 4948 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4949 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4950 // Unpoison the whole __va_list_tag. 4951 // FIXME: magic ABI constants. 4952 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4953 /* size */ 8, Alignment, false); 4954 } 4955 4956 void finalizeInstrumentation() override { 4957 assert(!VAArgSize && !VAArgTLSCopy && 4958 "finalizeInstrumentation called twice"); 4959 IRBuilder<> IRB(MSV.FnPrologueEnd); 4960 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4961 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4962 VAArgSize); 4963 4964 if (!VAStartInstrumentationList.empty()) { 4965 // If there is a va_start in this function, make a backup copy of 4966 // va_arg_tls somewhere in the function entry block. 4967 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4968 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4969 } 4970 4971 // Instrument va_start. 4972 // Copy va_list shadow from the backup copy of the TLS contents. 4973 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4974 CallInst *OrigInst = VAStartInstrumentationList[i]; 4975 IRBuilder<> IRB(OrigInst->getNextNode()); 4976 Value *VAListTag = OrigInst->getArgOperand(0); 4977 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4978 Value *RegSaveAreaPtrPtr = 4979 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4980 PointerType::get(RegSaveAreaPtrTy, 0)); 4981 Value *RegSaveAreaPtr = 4982 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4983 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4984 const Align Alignment = Align(8); 4985 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4986 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4987 Alignment, /*isStore*/ true); 4988 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4989 CopySize); 4990 } 4991 } 4992 }; 4993 4994 /// SystemZ-specific implementation of VarArgHelper. 4995 struct VarArgSystemZHelper : public VarArgHelper { 4996 static const unsigned SystemZGpOffset = 16; 4997 static const unsigned SystemZGpEndOffset = 56; 4998 static const unsigned SystemZFpOffset = 128; 4999 static const unsigned SystemZFpEndOffset = 160; 5000 static const unsigned SystemZMaxVrArgs = 8; 5001 static const unsigned SystemZRegSaveAreaSize = 160; 5002 static const unsigned SystemZOverflowOffset = 160; 5003 static const unsigned SystemZVAListTagSize = 32; 5004 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5005 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5006 5007 Function &F; 5008 MemorySanitizer &MS; 5009 MemorySanitizerVisitor &MSV; 5010 Value *VAArgTLSCopy = nullptr; 5011 Value *VAArgTLSOriginCopy = nullptr; 5012 Value *VAArgOverflowSize = nullptr; 5013 5014 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5015 5016 enum class ArgKind { 5017 GeneralPurpose, 5018 FloatingPoint, 5019 Vector, 5020 Memory, 5021 Indirect, 5022 }; 5023 5024 enum class ShadowExtension { None, Zero, Sign }; 5025 5026 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5027 MemorySanitizerVisitor &MSV) 5028 : F(F), MS(MS), MSV(MSV) {} 5029 5030 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5031 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5032 // only a few possibilities of what it can be. In particular, enums, single 5033 // element structs and large types have already been taken care of. 5034 5035 // Some i128 and fp128 arguments are converted to pointers only in the 5036 // back end. 5037 if (T->isIntegerTy(128) || T->isFP128Ty()) 5038 return ArgKind::Indirect; 5039 if (T->isFloatingPointTy()) 5040 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5041 if (T->isIntegerTy() || T->isPointerTy()) 5042 return ArgKind::GeneralPurpose; 5043 if (T->isVectorTy()) 5044 return ArgKind::Vector; 5045 return ArgKind::Memory; 5046 } 5047 5048 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5049 // ABI says: "One of the simple integer types no more than 64 bits wide. 5050 // ... If such an argument is shorter than 64 bits, replace it by a full 5051 // 64-bit integer representing the same number, using sign or zero 5052 // extension". Shadow for an integer argument has the same type as the 5053 // argument itself, so it can be sign or zero extended as well. 5054 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5055 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5056 if (ZExt) { 5057 assert(!SExt); 5058 return ShadowExtension::Zero; 5059 } 5060 if (SExt) { 5061 assert(!ZExt); 5062 return ShadowExtension::Sign; 5063 } 5064 return ShadowExtension::None; 5065 } 5066 5067 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5068 bool IsSoftFloatABI = CB.getCalledFunction() 5069 ->getFnAttribute("use-soft-float") 5070 .getValueAsBool(); 5071 unsigned GpOffset = SystemZGpOffset; 5072 unsigned FpOffset = SystemZFpOffset; 5073 unsigned VrIndex = 0; 5074 unsigned OverflowOffset = SystemZOverflowOffset; 5075 const DataLayout &DL = F.getParent()->getDataLayout(); 5076 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5077 ++ArgIt) { 5078 Value *A = *ArgIt; 5079 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5080 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5081 // SystemZABIInfo does not produce ByVal parameters. 5082 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5083 Type *T = A->getType(); 5084 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5085 if (AK == ArgKind::Indirect) { 5086 T = PointerType::get(T, 0); 5087 AK = ArgKind::GeneralPurpose; 5088 } 5089 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5090 AK = ArgKind::Memory; 5091 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5092 AK = ArgKind::Memory; 5093 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5094 AK = ArgKind::Memory; 5095 Value *ShadowBase = nullptr; 5096 Value *OriginBase = nullptr; 5097 ShadowExtension SE = ShadowExtension::None; 5098 switch (AK) { 5099 case ArgKind::GeneralPurpose: { 5100 // Always keep track of GpOffset, but store shadow only for varargs. 5101 uint64_t ArgSize = 8; 5102 if (GpOffset + ArgSize <= kParamTLSSize) { 5103 if (!IsFixed) { 5104 SE = getShadowExtension(CB, ArgNo); 5105 uint64_t GapSize = 0; 5106 if (SE == ShadowExtension::None) { 5107 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5108 assert(ArgAllocSize <= ArgSize); 5109 GapSize = ArgSize - ArgAllocSize; 5110 } 5111 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5112 if (MS.TrackOrigins) 5113 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5114 } 5115 GpOffset += ArgSize; 5116 } else { 5117 GpOffset = kParamTLSSize; 5118 } 5119 break; 5120 } 5121 case ArgKind::FloatingPoint: { 5122 // Always keep track of FpOffset, but store shadow only for varargs. 5123 uint64_t ArgSize = 8; 5124 if (FpOffset + ArgSize <= kParamTLSSize) { 5125 if (!IsFixed) { 5126 // PoP says: "A short floating-point datum requires only the 5127 // left-most 32 bit positions of a floating-point register". 5128 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5129 // don't extend shadow and don't mind the gap. 5130 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5131 if (MS.TrackOrigins) 5132 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5133 } 5134 FpOffset += ArgSize; 5135 } else { 5136 FpOffset = kParamTLSSize; 5137 } 5138 break; 5139 } 5140 case ArgKind::Vector: { 5141 // Keep track of VrIndex. No need to store shadow, since vector varargs 5142 // go through AK_Memory. 5143 assert(IsFixed); 5144 VrIndex++; 5145 break; 5146 } 5147 case ArgKind::Memory: { 5148 // Keep track of OverflowOffset and store shadow only for varargs. 5149 // Ignore fixed args, since we need to copy only the vararg portion of 5150 // the overflow area shadow. 5151 if (!IsFixed) { 5152 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5153 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5154 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5155 SE = getShadowExtension(CB, ArgNo); 5156 uint64_t GapSize = 5157 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5158 ShadowBase = 5159 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5160 if (MS.TrackOrigins) 5161 OriginBase = 5162 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5163 OverflowOffset += ArgSize; 5164 } else { 5165 OverflowOffset = kParamTLSSize; 5166 } 5167 } 5168 break; 5169 } 5170 case ArgKind::Indirect: 5171 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5172 } 5173 if (ShadowBase == nullptr) 5174 continue; 5175 Value *Shadow = MSV.getShadow(A); 5176 if (SE != ShadowExtension::None) 5177 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5178 /*Signed*/ SE == ShadowExtension::Sign); 5179 ShadowBase = IRB.CreateIntToPtr( 5180 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5181 IRB.CreateStore(Shadow, ShadowBase); 5182 if (MS.TrackOrigins) { 5183 Value *Origin = MSV.getOrigin(A); 5184 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5185 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5186 kMinOriginAlignment); 5187 } 5188 } 5189 Constant *OverflowSize = ConstantInt::get( 5190 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5191 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5192 } 5193 5194 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5195 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5196 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5197 } 5198 5199 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5200 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5201 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5202 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5203 "_msarg_va_o"); 5204 } 5205 5206 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5207 IRBuilder<> IRB(&I); 5208 Value *VAListTag = I.getArgOperand(0); 5209 Value *ShadowPtr, *OriginPtr; 5210 const Align Alignment = Align(8); 5211 std::tie(ShadowPtr, OriginPtr) = 5212 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5213 /*isStore*/ true); 5214 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5215 SystemZVAListTagSize, Alignment, false); 5216 } 5217 5218 void visitVAStartInst(VAStartInst &I) override { 5219 VAStartInstrumentationList.push_back(&I); 5220 unpoisonVAListTagForInst(I); 5221 } 5222 5223 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5224 5225 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5226 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5227 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5228 IRB.CreateAdd( 5229 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5230 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5231 PointerType::get(RegSaveAreaPtrTy, 0)); 5232 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5233 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5234 const Align Alignment = Align(8); 5235 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5236 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5237 /*isStore*/ true); 5238 // TODO(iii): copy only fragments filled by visitCallBase() 5239 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5240 SystemZRegSaveAreaSize); 5241 if (MS.TrackOrigins) 5242 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5243 Alignment, SystemZRegSaveAreaSize); 5244 } 5245 5246 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5247 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5248 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5249 IRB.CreateAdd( 5250 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5251 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5252 PointerType::get(OverflowArgAreaPtrTy, 0)); 5253 Value *OverflowArgAreaPtr = 5254 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5255 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5256 const Align Alignment = Align(8); 5257 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5258 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5259 Alignment, /*isStore*/ true); 5260 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5261 SystemZOverflowOffset); 5262 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5263 VAArgOverflowSize); 5264 if (MS.TrackOrigins) { 5265 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5266 SystemZOverflowOffset); 5267 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5268 VAArgOverflowSize); 5269 } 5270 } 5271 5272 void finalizeInstrumentation() override { 5273 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5274 "finalizeInstrumentation called twice"); 5275 if (!VAStartInstrumentationList.empty()) { 5276 // If there is a va_start in this function, make a backup copy of 5277 // va_arg_tls somewhere in the function entry block. 5278 IRBuilder<> IRB(MSV.FnPrologueEnd); 5279 VAArgOverflowSize = 5280 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5281 Value *CopySize = 5282 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5283 VAArgOverflowSize); 5284 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5285 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5286 if (MS.TrackOrigins) { 5287 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5288 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5289 Align(8), CopySize); 5290 } 5291 } 5292 5293 // Instrument va_start. 5294 // Copy va_list shadow from the backup copy of the TLS contents. 5295 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5296 VaStartNo < VaStartNum; VaStartNo++) { 5297 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5298 IRBuilder<> IRB(OrigInst->getNextNode()); 5299 Value *VAListTag = OrigInst->getArgOperand(0); 5300 copyRegSaveArea(IRB, VAListTag); 5301 copyOverflowArea(IRB, VAListTag); 5302 } 5303 } 5304 }; 5305 5306 /// A no-op implementation of VarArgHelper. 5307 struct VarArgNoOpHelper : public VarArgHelper { 5308 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5309 MemorySanitizerVisitor &MSV) {} 5310 5311 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5312 5313 void visitVAStartInst(VAStartInst &I) override {} 5314 5315 void visitVACopyInst(VACopyInst &I) override {} 5316 5317 void finalizeInstrumentation() override {} 5318 }; 5319 5320 } // end anonymous namespace 5321 5322 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5323 MemorySanitizerVisitor &Visitor) { 5324 // VarArg handling is only implemented on AMD64. False positives are possible 5325 // on other platforms. 5326 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5327 if (TargetTriple.getArch() == Triple::x86_64) 5328 return new VarArgAMD64Helper(Func, Msan, Visitor); 5329 else if (TargetTriple.isMIPS64()) 5330 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5331 else if (TargetTriple.getArch() == Triple::aarch64) 5332 return new VarArgAArch64Helper(Func, Msan, Visitor); 5333 else if (TargetTriple.getArch() == Triple::ppc64 || 5334 TargetTriple.getArch() == Triple::ppc64le) 5335 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5336 else if (TargetTriple.getArch() == Triple::systemz) 5337 return new VarArgSystemZHelper(Func, Msan, Visitor); 5338 else 5339 return new VarArgNoOpHelper(Func, Msan, Visitor); 5340 } 5341 5342 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5343 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5344 return false; 5345 5346 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5347 return false; 5348 5349 MemorySanitizerVisitor Visitor(F, *this, TLI); 5350 5351 // Clear out readonly/readnone attributes. 5352 AttrBuilder B; 5353 B.addAttribute(Attribute::ReadOnly) 5354 .addAttribute(Attribute::ReadNone) 5355 .addAttribute(Attribute::WriteOnly) 5356 .addAttribute(Attribute::ArgMemOnly) 5357 .addAttribute(Attribute::Speculatable); 5358 F.removeFnAttrs(B); 5359 5360 return Visitor.runOnFunction(); 5361 } 5362