1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/ADT/DepthFirstIterator.h" 95 #include "llvm/ADT/SmallString.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/ADT/StringExtras.h" 98 #include "llvm/ADT/Triple.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/Function.h" 101 #include "llvm/IR/IRBuilder.h" 102 #include "llvm/IR/InlineAsm.h" 103 #include "llvm/IR/InstVisitor.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/MDBuilder.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Instrumentation.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ModuleUtils.h" 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "msan" 121 122 static const unsigned kOriginSize = 4; 123 static const unsigned kMinOriginAlignment = 4; 124 static const unsigned kShadowTLSAlignment = 8; 125 126 // These constants must be kept in sync with the ones in msan.h. 127 static const unsigned kParamTLSSize = 800; 128 static const unsigned kRetvalTLSSize = 800; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8. 131 static const size_t kNumberOfAccessSizes = 4; 132 133 /// \brief Track origins of uninitialized values. 134 /// 135 /// Adds a section to MemorySanitizer report that points to the allocation 136 /// (stack or heap) the uninitialized bits came from originally. 137 static cl::opt<int> ClTrackOrigins("msan-track-origins", 138 cl::desc("Track origins (allocation sites) of poisoned memory"), 139 cl::Hidden, cl::init(0)); 140 static cl::opt<bool> ClKeepGoing("msan-keep-going", 141 cl::desc("keep going after reporting a UMR"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 144 cl::desc("poison uninitialized stack variables"), 145 cl::Hidden, cl::init(true)); 146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 147 cl::desc("poison uninitialized stack variables with a call"), 148 cl::Hidden, cl::init(false)); 149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 150 cl::desc("poison uninitialized stack variables with the given pattern"), 151 cl::Hidden, cl::init(0xff)); 152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 153 cl::desc("poison undef temps"), 154 cl::Hidden, cl::init(true)); 155 156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 158 cl::Hidden, cl::init(true)); 159 160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 161 cl::desc("exact handling of relational integer ICmp"), 162 cl::Hidden, cl::init(false)); 163 164 // This flag controls whether we check the shadow of the address 165 // operand of load or store. Such bugs are very rare, since load from 166 // a garbage address typically results in SEGV, but still happen 167 // (e.g. only lower bits of address are garbage, or the access happens 168 // early at program startup where malloc-ed memory is more likely to 169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 171 cl::desc("report accesses through a pointer which has poisoned shadow"), 172 cl::Hidden, cl::init(true)); 173 174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 175 cl::desc("print out instructions with default strict semantics"), 176 cl::Hidden, cl::init(false)); 177 178 static cl::opt<int> ClInstrumentationWithCallThreshold( 179 "msan-instrumentation-with-call-threshold", 180 cl::desc( 181 "If the function being instrumented requires more than " 182 "this number of checks and origin stores, use callbacks instead of " 183 "inline checks (-1 means never use callbacks)."), 184 cl::Hidden, cl::init(3500)); 185 186 // This is an experiment to enable handling of cases where shadow is a non-zero 187 // compile-time constant. For some unexplainable reason they were silently 188 // ignored in the instrumentation. 189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 190 cl::desc("Insert checks for constant shadow values"), 191 cl::Hidden, cl::init(false)); 192 193 // This is off by default because of a bug in gold: 194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 195 static cl::opt<bool> ClWithComdat("msan-with-comdat", 196 cl::desc("Place MSan constructors in comdat sections"), 197 cl::Hidden, cl::init(false)); 198 199 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 200 static const char *const kMsanInitName = "__msan_init"; 201 202 namespace { 203 204 // Memory map parameters used in application-to-shadow address calculation. 205 // Offset = (Addr & ~AndMask) ^ XorMask 206 // Shadow = ShadowBase + Offset 207 // Origin = OriginBase + Offset 208 struct MemoryMapParams { 209 uint64_t AndMask; 210 uint64_t XorMask; 211 uint64_t ShadowBase; 212 uint64_t OriginBase; 213 }; 214 215 struct PlatformMemoryMapParams { 216 const MemoryMapParams *bits32; 217 const MemoryMapParams *bits64; 218 }; 219 220 // i386 Linux 221 static const MemoryMapParams Linux_I386_MemoryMapParams = { 222 0x000080000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x000040000000, // OriginBase 226 }; 227 228 // x86_64 Linux 229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 231 0x400000000000, // AndMask 232 0, // XorMask (not used) 233 0, // ShadowBase (not used) 234 0x200000000000, // OriginBase 235 #else 236 0, // AndMask (not used) 237 0x500000000000, // XorMask 238 0, // ShadowBase (not used) 239 0x100000000000, // OriginBase 240 #endif 241 }; 242 243 // mips64 Linux 244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 245 0, // AndMask (not used) 246 0x008000000000, // XorMask 247 0, // ShadowBase (not used) 248 0x002000000000, // OriginBase 249 }; 250 251 // ppc64 Linux 252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 253 0x200000000000, // AndMask 254 0x100000000000, // XorMask 255 0x080000000000, // ShadowBase 256 0x1C0000000000, // OriginBase 257 }; 258 259 // aarch64 Linux 260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 261 0, // AndMask (not used) 262 0x06000000000, // XorMask 263 0, // ShadowBase (not used) 264 0x01000000000, // OriginBase 265 }; 266 267 // i386 FreeBSD 268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 269 0x000180000000, // AndMask 270 0x000040000000, // XorMask 271 0x000020000000, // ShadowBase 272 0x000700000000, // OriginBase 273 }; 274 275 // x86_64 FreeBSD 276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 277 0xc00000000000, // AndMask 278 0x200000000000, // XorMask 279 0x100000000000, // ShadowBase 280 0x380000000000, // OriginBase 281 }; 282 283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 284 &Linux_I386_MemoryMapParams, 285 &Linux_X86_64_MemoryMapParams, 286 }; 287 288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 289 nullptr, 290 &Linux_MIPS64_MemoryMapParams, 291 }; 292 293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 294 nullptr, 295 &Linux_PowerPC64_MemoryMapParams, 296 }; 297 298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 299 nullptr, 300 &Linux_AArch64_MemoryMapParams, 301 }; 302 303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 304 &FreeBSD_I386_MemoryMapParams, 305 &FreeBSD_X86_64_MemoryMapParams, 306 }; 307 308 /// \brief An instrumentation pass implementing detection of uninitialized 309 /// reads. 310 /// 311 /// MemorySanitizer: instrument the code in module to find 312 /// uninitialized reads. 313 class MemorySanitizer : public FunctionPass { 314 public: 315 MemorySanitizer(int TrackOrigins = 0, bool Recover = false) 316 : FunctionPass(ID), 317 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 318 Recover(Recover || ClKeepGoing), 319 WarningFn(nullptr) {} 320 StringRef getPassName() const override { return "MemorySanitizer"; } 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 AU.addRequired<TargetLibraryInfoWrapperPass>(); 323 } 324 bool runOnFunction(Function &F) override; 325 bool doInitialization(Module &M) override; 326 static char ID; // Pass identification, replacement for typeid. 327 328 private: 329 void initializeCallbacks(Module &M); 330 331 /// \brief Track origins (allocation points) of uninitialized values. 332 int TrackOrigins; 333 bool Recover; 334 335 LLVMContext *C; 336 Type *IntptrTy; 337 Type *OriginTy; 338 /// \brief Thread-local shadow storage for function parameters. 339 GlobalVariable *ParamTLS; 340 /// \brief Thread-local origin storage for function parameters. 341 GlobalVariable *ParamOriginTLS; 342 /// \brief Thread-local shadow storage for function return value. 343 GlobalVariable *RetvalTLS; 344 /// \brief Thread-local origin storage for function return value. 345 GlobalVariable *RetvalOriginTLS; 346 /// \brief Thread-local shadow storage for in-register va_arg function 347 /// parameters (x86_64-specific). 348 GlobalVariable *VAArgTLS; 349 /// \brief Thread-local shadow storage for va_arg overflow area 350 /// (x86_64-specific). 351 GlobalVariable *VAArgOverflowSizeTLS; 352 /// \brief Thread-local space used to pass origin value to the UMR reporting 353 /// function. 354 GlobalVariable *OriginTLS; 355 356 /// \brief The run-time callback to print a warning. 357 Value *WarningFn; 358 // These arrays are indexed by log2(AccessSize). 359 Value *MaybeWarningFn[kNumberOfAccessSizes]; 360 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 361 362 /// \brief Run-time helper that generates a new origin value for a stack 363 /// allocation. 364 Value *MsanSetAllocaOrigin4Fn; 365 /// \brief Run-time helper that poisons stack on function entry. 366 Value *MsanPoisonStackFn; 367 /// \brief Run-time helper that records a store (or any event) of an 368 /// uninitialized value and returns an updated origin id encoding this info. 369 Value *MsanChainOriginFn; 370 /// \brief MSan runtime replacements for memmove, memcpy and memset. 371 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 372 373 /// \brief Memory map parameters used in application-to-shadow calculation. 374 const MemoryMapParams *MapParams; 375 376 MDNode *ColdCallWeights; 377 /// \brief Branch weights for origin store. 378 MDNode *OriginStoreWeights; 379 /// \brief An empty volatile inline asm that prevents callback merge. 380 InlineAsm *EmptyAsm; 381 Function *MsanCtorFunction; 382 383 friend struct MemorySanitizerVisitor; 384 friend struct VarArgAMD64Helper; 385 friend struct VarArgMIPS64Helper; 386 friend struct VarArgAArch64Helper; 387 friend struct VarArgPowerPC64Helper; 388 }; 389 } // anonymous namespace 390 391 char MemorySanitizer::ID = 0; 392 INITIALIZE_PASS_BEGIN( 393 MemorySanitizer, "msan", 394 "MemorySanitizer: detects uninitialized reads.", false, false) 395 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 396 INITIALIZE_PASS_END( 397 MemorySanitizer, "msan", 398 "MemorySanitizer: detects uninitialized reads.", false, false) 399 400 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins, bool Recover) { 401 return new MemorySanitizer(TrackOrigins, Recover); 402 } 403 404 /// \brief Create a non-const global initialized with the given string. 405 /// 406 /// Creates a writable global for Str so that we can pass it to the 407 /// run-time lib. Runtime uses first 4 bytes of the string to store the 408 /// frame ID, so the string needs to be mutable. 409 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 410 StringRef Str) { 411 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 412 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 413 GlobalValue::PrivateLinkage, StrConst, ""); 414 } 415 416 /// \brief Insert extern declaration of runtime-provided functions and globals. 417 void MemorySanitizer::initializeCallbacks(Module &M) { 418 // Only do this once. 419 if (WarningFn) 420 return; 421 422 IRBuilder<> IRB(*C); 423 // Create the callback. 424 // FIXME: this function should have "Cold" calling conv, 425 // which is not yet implemented. 426 StringRef WarningFnName = Recover ? "__msan_warning" 427 : "__msan_warning_noreturn"; 428 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 429 430 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 431 AccessSizeIndex++) { 432 unsigned AccessSize = 1 << AccessSizeIndex; 433 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 434 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 435 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 436 IRB.getInt32Ty(), nullptr); 437 438 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 439 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 440 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 441 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 442 } 443 444 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 445 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 446 IRB.getInt8PtrTy(), IntptrTy, nullptr); 447 MsanPoisonStackFn = 448 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 449 IRB.getInt8PtrTy(), IntptrTy, nullptr); 450 MsanChainOriginFn = M.getOrInsertFunction( 451 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 452 MemmoveFn = M.getOrInsertFunction( 453 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 454 IRB.getInt8PtrTy(), IntptrTy, nullptr); 455 MemcpyFn = M.getOrInsertFunction( 456 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 457 IntptrTy, nullptr); 458 MemsetFn = M.getOrInsertFunction( 459 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 460 IntptrTy, nullptr); 461 462 // Create globals. 463 RetvalTLS = new GlobalVariable( 464 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 465 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 466 GlobalVariable::InitialExecTLSModel); 467 RetvalOriginTLS = new GlobalVariable( 468 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 469 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 470 471 ParamTLS = new GlobalVariable( 472 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 473 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 474 GlobalVariable::InitialExecTLSModel); 475 ParamOriginTLS = new GlobalVariable( 476 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 477 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 478 nullptr, GlobalVariable::InitialExecTLSModel); 479 480 VAArgTLS = new GlobalVariable( 481 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 482 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 483 GlobalVariable::InitialExecTLSModel); 484 VAArgOverflowSizeTLS = new GlobalVariable( 485 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 486 "__msan_va_arg_overflow_size_tls", nullptr, 487 GlobalVariable::InitialExecTLSModel); 488 OriginTLS = new GlobalVariable( 489 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 490 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 491 492 // We insert an empty inline asm after __msan_report* to avoid callback merge. 493 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 494 StringRef(""), StringRef(""), 495 /*hasSideEffects=*/true); 496 } 497 498 /// \brief Module-level initialization. 499 /// 500 /// inserts a call to __msan_init to the module's constructor list. 501 bool MemorySanitizer::doInitialization(Module &M) { 502 auto &DL = M.getDataLayout(); 503 504 Triple TargetTriple(M.getTargetTriple()); 505 switch (TargetTriple.getOS()) { 506 case Triple::FreeBSD: 507 switch (TargetTriple.getArch()) { 508 case Triple::x86_64: 509 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 510 break; 511 case Triple::x86: 512 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 513 break; 514 default: 515 report_fatal_error("unsupported architecture"); 516 } 517 break; 518 case Triple::Linux: 519 switch (TargetTriple.getArch()) { 520 case Triple::x86_64: 521 MapParams = Linux_X86_MemoryMapParams.bits64; 522 break; 523 case Triple::x86: 524 MapParams = Linux_X86_MemoryMapParams.bits32; 525 break; 526 case Triple::mips64: 527 case Triple::mips64el: 528 MapParams = Linux_MIPS_MemoryMapParams.bits64; 529 break; 530 case Triple::ppc64: 531 case Triple::ppc64le: 532 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 533 break; 534 case Triple::aarch64: 535 case Triple::aarch64_be: 536 MapParams = Linux_ARM_MemoryMapParams.bits64; 537 break; 538 default: 539 report_fatal_error("unsupported architecture"); 540 } 541 break; 542 default: 543 report_fatal_error("unsupported operating system"); 544 } 545 546 C = &(M.getContext()); 547 IRBuilder<> IRB(*C); 548 IntptrTy = IRB.getIntPtrTy(DL); 549 OriginTy = IRB.getInt32Ty(); 550 551 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 552 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 553 554 std::tie(MsanCtorFunction, std::ignore) = 555 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 556 /*InitArgTypes=*/{}, 557 /*InitArgs=*/{}); 558 if (ClWithComdat) { 559 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 560 MsanCtorFunction->setComdat(MsanCtorComdat); 561 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 562 } else { 563 appendToGlobalCtors(M, MsanCtorFunction, 0); 564 } 565 566 567 if (TrackOrigins) 568 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 569 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 570 571 if (Recover) 572 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 573 IRB.getInt32(Recover), "__msan_keep_going"); 574 575 return true; 576 } 577 578 namespace { 579 580 /// \brief A helper class that handles instrumentation of VarArg 581 /// functions on a particular platform. 582 /// 583 /// Implementations are expected to insert the instrumentation 584 /// necessary to propagate argument shadow through VarArg function 585 /// calls. Visit* methods are called during an InstVisitor pass over 586 /// the function, and should avoid creating new basic blocks. A new 587 /// instance of this class is created for each instrumented function. 588 struct VarArgHelper { 589 /// \brief Visit a CallSite. 590 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 591 592 /// \brief Visit a va_start call. 593 virtual void visitVAStartInst(VAStartInst &I) = 0; 594 595 /// \brief Visit a va_copy call. 596 virtual void visitVACopyInst(VACopyInst &I) = 0; 597 598 /// \brief Finalize function instrumentation. 599 /// 600 /// This method is called after visiting all interesting (see above) 601 /// instructions in a function. 602 virtual void finalizeInstrumentation() = 0; 603 604 virtual ~VarArgHelper() {} 605 }; 606 607 struct MemorySanitizerVisitor; 608 609 VarArgHelper* 610 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 611 MemorySanitizerVisitor &Visitor); 612 613 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 614 if (TypeSize <= 8) return 0; 615 return Log2_32_Ceil((TypeSize + 7) / 8); 616 } 617 618 /// This class does all the work for a given function. Store and Load 619 /// instructions store and load corresponding shadow and origin 620 /// values. Most instructions propagate shadow from arguments to their 621 /// return values. Certain instructions (most importantly, BranchInst) 622 /// test their argument shadow and print reports (with a runtime call) if it's 623 /// non-zero. 624 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 625 Function &F; 626 MemorySanitizer &MS; 627 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 628 ValueMap<Value*, Value*> ShadowMap, OriginMap; 629 std::unique_ptr<VarArgHelper> VAHelper; 630 const TargetLibraryInfo *TLI; 631 632 // The following flags disable parts of MSan instrumentation based on 633 // blacklist contents and command-line options. 634 bool InsertChecks; 635 bool PropagateShadow; 636 bool PoisonStack; 637 bool PoisonUndef; 638 bool CheckReturnValue; 639 640 struct ShadowOriginAndInsertPoint { 641 Value *Shadow; 642 Value *Origin; 643 Instruction *OrigIns; 644 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 645 : Shadow(S), Origin(O), OrigIns(I) { } 646 }; 647 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 648 SmallVector<StoreInst *, 16> StoreList; 649 650 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 651 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 652 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 653 InsertChecks = SanitizeFunction; 654 PropagateShadow = SanitizeFunction; 655 PoisonStack = SanitizeFunction && ClPoisonStack; 656 PoisonUndef = SanitizeFunction && ClPoisonUndef; 657 // FIXME: Consider using SpecialCaseList to specify a list of functions that 658 // must always return fully initialized values. For now, we hardcode "main". 659 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 660 TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 661 662 DEBUG(if (!InsertChecks) 663 dbgs() << "MemorySanitizer is not inserting checks into '" 664 << F.getName() << "'\n"); 665 } 666 667 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 668 if (MS.TrackOrigins <= 1) return V; 669 return IRB.CreateCall(MS.MsanChainOriginFn, V); 670 } 671 672 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 673 const DataLayout &DL = F.getParent()->getDataLayout(); 674 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 675 if (IntptrSize == kOriginSize) return Origin; 676 assert(IntptrSize == kOriginSize * 2); 677 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 678 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 679 } 680 681 /// \brief Fill memory range with the given origin value. 682 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 683 unsigned Size, unsigned Alignment) { 684 const DataLayout &DL = F.getParent()->getDataLayout(); 685 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 686 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 687 assert(IntptrAlignment >= kMinOriginAlignment); 688 assert(IntptrSize >= kOriginSize); 689 690 unsigned Ofs = 0; 691 unsigned CurrentAlignment = Alignment; 692 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 693 Value *IntptrOrigin = originToIntptr(IRB, Origin); 694 Value *IntptrOriginPtr = 695 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 696 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 697 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 698 : IntptrOriginPtr; 699 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 700 Ofs += IntptrSize / kOriginSize; 701 CurrentAlignment = IntptrAlignment; 702 } 703 } 704 705 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 706 Value *GEP = 707 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 708 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 709 CurrentAlignment = kMinOriginAlignment; 710 } 711 } 712 713 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 714 unsigned Alignment, bool AsCall) { 715 const DataLayout &DL = F.getParent()->getDataLayout(); 716 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 717 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 718 if (Shadow->getType()->isAggregateType()) { 719 paintOrigin(IRB, updateOrigin(Origin, IRB), 720 getOriginPtr(Addr, IRB, Alignment), StoreSize, 721 OriginAlignment); 722 } else { 723 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 724 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 725 if (ConstantShadow) { 726 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 727 paintOrigin(IRB, updateOrigin(Origin, IRB), 728 getOriginPtr(Addr, IRB, Alignment), StoreSize, 729 OriginAlignment); 730 return; 731 } 732 733 unsigned TypeSizeInBits = 734 DL.getTypeSizeInBits(ConvertedShadow->getType()); 735 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 736 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 737 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 738 Value *ConvertedShadow2 = IRB.CreateZExt( 739 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 740 IRB.CreateCall(Fn, {ConvertedShadow2, 741 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 742 Origin}); 743 } else { 744 Value *Cmp = IRB.CreateICmpNE( 745 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 746 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 747 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 748 IRBuilder<> IRBNew(CheckTerm); 749 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 750 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 751 OriginAlignment); 752 } 753 } 754 } 755 756 void materializeStores(bool InstrumentWithCalls) { 757 for (StoreInst *SI : StoreList) { 758 IRBuilder<> IRB(SI); 759 Value *Val = SI->getValueOperand(); 760 Value *Addr = SI->getPointerOperand(); 761 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 762 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 763 764 StoreInst *NewSI = 765 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI->getAlignment()); 766 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 767 (void)NewSI; 768 769 if (ClCheckAccessAddress) 770 insertShadowCheck(Addr, SI); 771 772 if (SI->isAtomic()) 773 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 774 775 if (MS.TrackOrigins && !SI->isAtomic()) 776 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI->getAlignment(), 777 InstrumentWithCalls); 778 } 779 } 780 781 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 782 bool AsCall) { 783 IRBuilder<> IRB(OrigIns); 784 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 785 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 786 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 787 788 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 789 if (ConstantShadow) { 790 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 791 if (MS.TrackOrigins) { 792 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 793 MS.OriginTLS); 794 } 795 IRB.CreateCall(MS.WarningFn, {}); 796 IRB.CreateCall(MS.EmptyAsm, {}); 797 // FIXME: Insert UnreachableInst if !MS.Recover? 798 // This may invalidate some of the following checks and needs to be done 799 // at the very end. 800 } 801 return; 802 } 803 804 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 805 806 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 807 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 808 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 809 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 810 Value *ConvertedShadow2 = 811 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 812 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 813 ? Origin 814 : (Value *)IRB.getInt32(0)}); 815 } else { 816 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 817 getCleanShadow(ConvertedShadow), "_mscmp"); 818 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 819 Cmp, OrigIns, 820 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 821 822 IRB.SetInsertPoint(CheckTerm); 823 if (MS.TrackOrigins) { 824 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 825 MS.OriginTLS); 826 } 827 IRB.CreateCall(MS.WarningFn, {}); 828 IRB.CreateCall(MS.EmptyAsm, {}); 829 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 830 } 831 } 832 833 void materializeChecks(bool InstrumentWithCalls) { 834 for (const auto &ShadowData : InstrumentationList) { 835 Instruction *OrigIns = ShadowData.OrigIns; 836 Value *Shadow = ShadowData.Shadow; 837 Value *Origin = ShadowData.Origin; 838 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 839 } 840 DEBUG(dbgs() << "DONE:\n" << F); 841 } 842 843 /// \brief Add MemorySanitizer instrumentation to a function. 844 bool runOnFunction() { 845 MS.initializeCallbacks(*F.getParent()); 846 847 // In the presence of unreachable blocks, we may see Phi nodes with 848 // incoming nodes from such blocks. Since InstVisitor skips unreachable 849 // blocks, such nodes will not have any shadow value associated with them. 850 // It's easier to remove unreachable blocks than deal with missing shadow. 851 removeUnreachableBlocks(F); 852 853 // Iterate all BBs in depth-first order and create shadow instructions 854 // for all instructions (where applicable). 855 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 856 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 857 visit(*BB); 858 859 860 // Finalize PHI nodes. 861 for (PHINode *PN : ShadowPHINodes) { 862 PHINode *PNS = cast<PHINode>(getShadow(PN)); 863 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 864 size_t NumValues = PN->getNumIncomingValues(); 865 for (size_t v = 0; v < NumValues; v++) { 866 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 867 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 868 } 869 } 870 871 VAHelper->finalizeInstrumentation(); 872 873 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 874 InstrumentationList.size() + StoreList.size() > 875 (unsigned)ClInstrumentationWithCallThreshold; 876 877 // Delayed instrumentation of StoreInst. 878 // This may add new checks to be inserted later. 879 materializeStores(InstrumentWithCalls); 880 881 // Insert shadow value checks. 882 materializeChecks(InstrumentWithCalls); 883 884 return true; 885 } 886 887 /// \brief Compute the shadow type that corresponds to a given Value. 888 Type *getShadowTy(Value *V) { 889 return getShadowTy(V->getType()); 890 } 891 892 /// \brief Compute the shadow type that corresponds to a given Type. 893 Type *getShadowTy(Type *OrigTy) { 894 if (!OrigTy->isSized()) { 895 return nullptr; 896 } 897 // For integer type, shadow is the same as the original type. 898 // This may return weird-sized types like i1. 899 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 900 return IT; 901 const DataLayout &DL = F.getParent()->getDataLayout(); 902 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 903 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 904 return VectorType::get(IntegerType::get(*MS.C, EltSize), 905 VT->getNumElements()); 906 } 907 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 908 return ArrayType::get(getShadowTy(AT->getElementType()), 909 AT->getNumElements()); 910 } 911 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 912 SmallVector<Type*, 4> Elements; 913 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 914 Elements.push_back(getShadowTy(ST->getElementType(i))); 915 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 916 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 917 return Res; 918 } 919 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 920 return IntegerType::get(*MS.C, TypeSize); 921 } 922 923 /// \brief Flatten a vector type. 924 Type *getShadowTyNoVec(Type *ty) { 925 if (VectorType *vt = dyn_cast<VectorType>(ty)) 926 return IntegerType::get(*MS.C, vt->getBitWidth()); 927 return ty; 928 } 929 930 /// \brief Convert a shadow value to it's flattened variant. 931 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 932 Type *Ty = V->getType(); 933 Type *NoVecTy = getShadowTyNoVec(Ty); 934 if (Ty == NoVecTy) return V; 935 return IRB.CreateBitCast(V, NoVecTy); 936 } 937 938 /// \brief Compute the integer shadow offset that corresponds to a given 939 /// application address. 940 /// 941 /// Offset = (Addr & ~AndMask) ^ XorMask 942 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 943 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 944 945 uint64_t AndMask = MS.MapParams->AndMask; 946 if (AndMask) 947 OffsetLong = 948 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 949 950 uint64_t XorMask = MS.MapParams->XorMask; 951 if (XorMask) 952 OffsetLong = 953 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 954 return OffsetLong; 955 } 956 957 /// \brief Compute the shadow address that corresponds to a given application 958 /// address. 959 /// 960 /// Shadow = ShadowBase + Offset 961 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 962 IRBuilder<> &IRB) { 963 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 964 uint64_t ShadowBase = MS.MapParams->ShadowBase; 965 if (ShadowBase != 0) 966 ShadowLong = 967 IRB.CreateAdd(ShadowLong, 968 ConstantInt::get(MS.IntptrTy, ShadowBase)); 969 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 970 } 971 972 /// \brief Compute the origin address that corresponds to a given application 973 /// address. 974 /// 975 /// OriginAddr = (OriginBase + Offset) & ~3ULL 976 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 977 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 978 uint64_t OriginBase = MS.MapParams->OriginBase; 979 if (OriginBase != 0) 980 OriginLong = 981 IRB.CreateAdd(OriginLong, 982 ConstantInt::get(MS.IntptrTy, OriginBase)); 983 if (Alignment < kMinOriginAlignment) { 984 uint64_t Mask = kMinOriginAlignment - 1; 985 OriginLong = IRB.CreateAnd(OriginLong, 986 ConstantInt::get(MS.IntptrTy, ~Mask)); 987 } 988 return IRB.CreateIntToPtr(OriginLong, 989 PointerType::get(IRB.getInt32Ty(), 0)); 990 } 991 992 /// \brief Compute the shadow address for a given function argument. 993 /// 994 /// Shadow = ParamTLS+ArgOffset. 995 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 996 int ArgOffset) { 997 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 998 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 999 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1000 "_msarg"); 1001 } 1002 1003 /// \brief Compute the origin address for a given function argument. 1004 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1005 int ArgOffset) { 1006 if (!MS.TrackOrigins) return nullptr; 1007 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1008 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1009 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1010 "_msarg_o"); 1011 } 1012 1013 /// \brief Compute the shadow address for a retval. 1014 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1015 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1016 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1017 "_msret"); 1018 } 1019 1020 /// \brief Compute the origin address for a retval. 1021 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1022 // We keep a single origin for the entire retval. Might be too optimistic. 1023 return MS.RetvalOriginTLS; 1024 } 1025 1026 /// \brief Set SV to be the shadow value for V. 1027 void setShadow(Value *V, Value *SV) { 1028 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1029 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1030 } 1031 1032 /// \brief Set Origin to be the origin value for V. 1033 void setOrigin(Value *V, Value *Origin) { 1034 if (!MS.TrackOrigins) return; 1035 assert(!OriginMap.count(V) && "Values may only have one origin"); 1036 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1037 OriginMap[V] = Origin; 1038 } 1039 1040 /// \brief Create a clean shadow value for a given value. 1041 /// 1042 /// Clean shadow (all zeroes) means all bits of the value are defined 1043 /// (initialized). 1044 Constant *getCleanShadow(Value *V) { 1045 Type *ShadowTy = getShadowTy(V); 1046 if (!ShadowTy) 1047 return nullptr; 1048 return Constant::getNullValue(ShadowTy); 1049 } 1050 1051 /// \brief Create a dirty shadow of a given shadow type. 1052 Constant *getPoisonedShadow(Type *ShadowTy) { 1053 assert(ShadowTy); 1054 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1055 return Constant::getAllOnesValue(ShadowTy); 1056 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1057 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1058 getPoisonedShadow(AT->getElementType())); 1059 return ConstantArray::get(AT, Vals); 1060 } 1061 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1062 SmallVector<Constant *, 4> Vals; 1063 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1064 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1065 return ConstantStruct::get(ST, Vals); 1066 } 1067 llvm_unreachable("Unexpected shadow type"); 1068 } 1069 1070 /// \brief Create a dirty shadow for a given value. 1071 Constant *getPoisonedShadow(Value *V) { 1072 Type *ShadowTy = getShadowTy(V); 1073 if (!ShadowTy) 1074 return nullptr; 1075 return getPoisonedShadow(ShadowTy); 1076 } 1077 1078 /// \brief Create a clean (zero) origin. 1079 Value *getCleanOrigin() { 1080 return Constant::getNullValue(MS.OriginTy); 1081 } 1082 1083 /// \brief Get the shadow value for a given Value. 1084 /// 1085 /// This function either returns the value set earlier with setShadow, 1086 /// or extracts if from ParamTLS (for function arguments). 1087 Value *getShadow(Value *V) { 1088 if (!PropagateShadow) return getCleanShadow(V); 1089 if (Instruction *I = dyn_cast<Instruction>(V)) { 1090 // For instructions the shadow is already stored in the map. 1091 Value *Shadow = ShadowMap[V]; 1092 if (!Shadow) { 1093 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1094 (void)I; 1095 assert(Shadow && "No shadow for a value"); 1096 } 1097 return Shadow; 1098 } 1099 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1100 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1101 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1102 (void)U; 1103 return AllOnes; 1104 } 1105 if (Argument *A = dyn_cast<Argument>(V)) { 1106 // For arguments we compute the shadow on demand and store it in the map. 1107 Value **ShadowPtr = &ShadowMap[V]; 1108 if (*ShadowPtr) 1109 return *ShadowPtr; 1110 Function *F = A->getParent(); 1111 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1112 unsigned ArgOffset = 0; 1113 const DataLayout &DL = F->getParent()->getDataLayout(); 1114 for (auto &FArg : F->args()) { 1115 if (!FArg.getType()->isSized()) { 1116 DEBUG(dbgs() << "Arg is not sized\n"); 1117 continue; 1118 } 1119 unsigned Size = 1120 FArg.hasByValAttr() 1121 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1122 : DL.getTypeAllocSize(FArg.getType()); 1123 if (A == &FArg) { 1124 bool Overflow = ArgOffset + Size > kParamTLSSize; 1125 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1126 if (FArg.hasByValAttr()) { 1127 // ByVal pointer itself has clean shadow. We copy the actual 1128 // argument shadow to the underlying memory. 1129 // Figure out maximal valid memcpy alignment. 1130 unsigned ArgAlign = FArg.getParamAlignment(); 1131 if (ArgAlign == 0) { 1132 Type *EltType = A->getType()->getPointerElementType(); 1133 ArgAlign = DL.getABITypeAlignment(EltType); 1134 } 1135 if (Overflow) { 1136 // ParamTLS overflow. 1137 EntryIRB.CreateMemSet( 1138 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1139 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1140 } else { 1141 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1142 Value *Cpy = EntryIRB.CreateMemCpy( 1143 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1144 CopyAlign); 1145 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1146 (void)Cpy; 1147 } 1148 *ShadowPtr = getCleanShadow(V); 1149 } else { 1150 if (Overflow) { 1151 // ParamTLS overflow. 1152 *ShadowPtr = getCleanShadow(V); 1153 } else { 1154 *ShadowPtr = 1155 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1156 } 1157 } 1158 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1159 **ShadowPtr << "\n"); 1160 if (MS.TrackOrigins && !Overflow) { 1161 Value *OriginPtr = 1162 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1163 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1164 } else { 1165 setOrigin(A, getCleanOrigin()); 1166 } 1167 } 1168 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1169 } 1170 assert(*ShadowPtr && "Could not find shadow for an argument"); 1171 return *ShadowPtr; 1172 } 1173 // For everything else the shadow is zero. 1174 return getCleanShadow(V); 1175 } 1176 1177 /// \brief Get the shadow for i-th argument of the instruction I. 1178 Value *getShadow(Instruction *I, int i) { 1179 return getShadow(I->getOperand(i)); 1180 } 1181 1182 /// \brief Get the origin for a value. 1183 Value *getOrigin(Value *V) { 1184 if (!MS.TrackOrigins) return nullptr; 1185 if (!PropagateShadow) return getCleanOrigin(); 1186 if (isa<Constant>(V)) return getCleanOrigin(); 1187 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1188 "Unexpected value type in getOrigin()"); 1189 Value *Origin = OriginMap[V]; 1190 assert(Origin && "Missing origin"); 1191 return Origin; 1192 } 1193 1194 /// \brief Get the origin for i-th argument of the instruction I. 1195 Value *getOrigin(Instruction *I, int i) { 1196 return getOrigin(I->getOperand(i)); 1197 } 1198 1199 /// \brief Remember the place where a shadow check should be inserted. 1200 /// 1201 /// This location will be later instrumented with a check that will print a 1202 /// UMR warning in runtime if the shadow value is not 0. 1203 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1204 assert(Shadow); 1205 if (!InsertChecks) return; 1206 #ifndef NDEBUG 1207 Type *ShadowTy = Shadow->getType(); 1208 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1209 "Can only insert checks for integer and vector shadow types"); 1210 #endif 1211 InstrumentationList.push_back( 1212 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1213 } 1214 1215 /// \brief Remember the place where a shadow check should be inserted. 1216 /// 1217 /// This location will be later instrumented with a check that will print a 1218 /// UMR warning in runtime if the value is not fully defined. 1219 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1220 assert(Val); 1221 Value *Shadow, *Origin; 1222 if (ClCheckConstantShadow) { 1223 Shadow = getShadow(Val); 1224 if (!Shadow) return; 1225 Origin = getOrigin(Val); 1226 } else { 1227 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1228 if (!Shadow) return; 1229 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1230 } 1231 insertShadowCheck(Shadow, Origin, OrigIns); 1232 } 1233 1234 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1235 switch (a) { 1236 case AtomicOrdering::NotAtomic: 1237 return AtomicOrdering::NotAtomic; 1238 case AtomicOrdering::Unordered: 1239 case AtomicOrdering::Monotonic: 1240 case AtomicOrdering::Release: 1241 return AtomicOrdering::Release; 1242 case AtomicOrdering::Acquire: 1243 case AtomicOrdering::AcquireRelease: 1244 return AtomicOrdering::AcquireRelease; 1245 case AtomicOrdering::SequentiallyConsistent: 1246 return AtomicOrdering::SequentiallyConsistent; 1247 } 1248 llvm_unreachable("Unknown ordering"); 1249 } 1250 1251 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1252 switch (a) { 1253 case AtomicOrdering::NotAtomic: 1254 return AtomicOrdering::NotAtomic; 1255 case AtomicOrdering::Unordered: 1256 case AtomicOrdering::Monotonic: 1257 case AtomicOrdering::Acquire: 1258 return AtomicOrdering::Acquire; 1259 case AtomicOrdering::Release: 1260 case AtomicOrdering::AcquireRelease: 1261 return AtomicOrdering::AcquireRelease; 1262 case AtomicOrdering::SequentiallyConsistent: 1263 return AtomicOrdering::SequentiallyConsistent; 1264 } 1265 llvm_unreachable("Unknown ordering"); 1266 } 1267 1268 // ------------------- Visitors. 1269 1270 /// \brief Instrument LoadInst 1271 /// 1272 /// Loads the corresponding shadow and (optionally) origin. 1273 /// Optionally, checks that the load address is fully defined. 1274 void visitLoadInst(LoadInst &I) { 1275 assert(I.getType()->isSized() && "Load type must have size"); 1276 IRBuilder<> IRB(I.getNextNode()); 1277 Type *ShadowTy = getShadowTy(&I); 1278 Value *Addr = I.getPointerOperand(); 1279 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1280 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1281 setShadow(&I, 1282 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1283 } else { 1284 setShadow(&I, getCleanShadow(&I)); 1285 } 1286 1287 if (ClCheckAccessAddress) 1288 insertShadowCheck(I.getPointerOperand(), &I); 1289 1290 if (I.isAtomic()) 1291 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1292 1293 if (MS.TrackOrigins) { 1294 if (PropagateShadow) { 1295 unsigned Alignment = I.getAlignment(); 1296 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1297 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1298 OriginAlignment)); 1299 } else { 1300 setOrigin(&I, getCleanOrigin()); 1301 } 1302 } 1303 } 1304 1305 /// \brief Instrument StoreInst 1306 /// 1307 /// Stores the corresponding shadow and (optionally) origin. 1308 /// Optionally, checks that the store address is fully defined. 1309 void visitStoreInst(StoreInst &I) { 1310 StoreList.push_back(&I); 1311 } 1312 1313 void handleCASOrRMW(Instruction &I) { 1314 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1315 1316 IRBuilder<> IRB(&I); 1317 Value *Addr = I.getOperand(0); 1318 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1319 1320 if (ClCheckAccessAddress) 1321 insertShadowCheck(Addr, &I); 1322 1323 // Only test the conditional argument of cmpxchg instruction. 1324 // The other argument can potentially be uninitialized, but we can not 1325 // detect this situation reliably without possible false positives. 1326 if (isa<AtomicCmpXchgInst>(I)) 1327 insertShadowCheck(I.getOperand(1), &I); 1328 1329 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1330 1331 setShadow(&I, getCleanShadow(&I)); 1332 setOrigin(&I, getCleanOrigin()); 1333 } 1334 1335 void visitAtomicRMWInst(AtomicRMWInst &I) { 1336 handleCASOrRMW(I); 1337 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1338 } 1339 1340 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1341 handleCASOrRMW(I); 1342 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1343 } 1344 1345 // Vector manipulation. 1346 void visitExtractElementInst(ExtractElementInst &I) { 1347 insertShadowCheck(I.getOperand(1), &I); 1348 IRBuilder<> IRB(&I); 1349 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1350 "_msprop")); 1351 setOrigin(&I, getOrigin(&I, 0)); 1352 } 1353 1354 void visitInsertElementInst(InsertElementInst &I) { 1355 insertShadowCheck(I.getOperand(2), &I); 1356 IRBuilder<> IRB(&I); 1357 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1358 I.getOperand(2), "_msprop")); 1359 setOriginForNaryOp(I); 1360 } 1361 1362 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1363 insertShadowCheck(I.getOperand(2), &I); 1364 IRBuilder<> IRB(&I); 1365 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1366 I.getOperand(2), "_msprop")); 1367 setOriginForNaryOp(I); 1368 } 1369 1370 // Casts. 1371 void visitSExtInst(SExtInst &I) { 1372 IRBuilder<> IRB(&I); 1373 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1374 setOrigin(&I, getOrigin(&I, 0)); 1375 } 1376 1377 void visitZExtInst(ZExtInst &I) { 1378 IRBuilder<> IRB(&I); 1379 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1380 setOrigin(&I, getOrigin(&I, 0)); 1381 } 1382 1383 void visitTruncInst(TruncInst &I) { 1384 IRBuilder<> IRB(&I); 1385 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1386 setOrigin(&I, getOrigin(&I, 0)); 1387 } 1388 1389 void visitBitCastInst(BitCastInst &I) { 1390 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1391 // a musttail call and a ret, don't instrument. New instructions are not 1392 // allowed after a musttail call. 1393 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1394 if (CI->isMustTailCall()) 1395 return; 1396 IRBuilder<> IRB(&I); 1397 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1398 setOrigin(&I, getOrigin(&I, 0)); 1399 } 1400 1401 void visitPtrToIntInst(PtrToIntInst &I) { 1402 IRBuilder<> IRB(&I); 1403 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1404 "_msprop_ptrtoint")); 1405 setOrigin(&I, getOrigin(&I, 0)); 1406 } 1407 1408 void visitIntToPtrInst(IntToPtrInst &I) { 1409 IRBuilder<> IRB(&I); 1410 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1411 "_msprop_inttoptr")); 1412 setOrigin(&I, getOrigin(&I, 0)); 1413 } 1414 1415 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1416 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1417 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1418 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1419 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1420 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1421 1422 /// \brief Propagate shadow for bitwise AND. 1423 /// 1424 /// This code is exact, i.e. if, for example, a bit in the left argument 1425 /// is defined and 0, then neither the value not definedness of the 1426 /// corresponding bit in B don't affect the resulting shadow. 1427 void visitAnd(BinaryOperator &I) { 1428 IRBuilder<> IRB(&I); 1429 // "And" of 0 and a poisoned value results in unpoisoned value. 1430 // 1&1 => 1; 0&1 => 0; p&1 => p; 1431 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1432 // 1&p => p; 0&p => 0; p&p => p; 1433 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1434 Value *S1 = getShadow(&I, 0); 1435 Value *S2 = getShadow(&I, 1); 1436 Value *V1 = I.getOperand(0); 1437 Value *V2 = I.getOperand(1); 1438 if (V1->getType() != S1->getType()) { 1439 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1440 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1441 } 1442 Value *S1S2 = IRB.CreateAnd(S1, S2); 1443 Value *V1S2 = IRB.CreateAnd(V1, S2); 1444 Value *S1V2 = IRB.CreateAnd(S1, V2); 1445 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1446 setOriginForNaryOp(I); 1447 } 1448 1449 void visitOr(BinaryOperator &I) { 1450 IRBuilder<> IRB(&I); 1451 // "Or" of 1 and a poisoned value results in unpoisoned value. 1452 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1453 // 1|0 => 1; 0|0 => 0; p|0 => p; 1454 // 1|p => 1; 0|p => p; p|p => p; 1455 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1456 Value *S1 = getShadow(&I, 0); 1457 Value *S2 = getShadow(&I, 1); 1458 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1459 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1460 if (V1->getType() != S1->getType()) { 1461 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1462 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1463 } 1464 Value *S1S2 = IRB.CreateAnd(S1, S2); 1465 Value *V1S2 = IRB.CreateAnd(V1, S2); 1466 Value *S1V2 = IRB.CreateAnd(S1, V2); 1467 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1468 setOriginForNaryOp(I); 1469 } 1470 1471 /// \brief Default propagation of shadow and/or origin. 1472 /// 1473 /// This class implements the general case of shadow propagation, used in all 1474 /// cases where we don't know and/or don't care about what the operation 1475 /// actually does. It converts all input shadow values to a common type 1476 /// (extending or truncating as necessary), and bitwise OR's them. 1477 /// 1478 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1479 /// fully initialized), and less prone to false positives. 1480 /// 1481 /// This class also implements the general case of origin propagation. For a 1482 /// Nary operation, result origin is set to the origin of an argument that is 1483 /// not entirely initialized. If there is more than one such arguments, the 1484 /// rightmost of them is picked. It does not matter which one is picked if all 1485 /// arguments are initialized. 1486 template <bool CombineShadow> 1487 class Combiner { 1488 Value *Shadow; 1489 Value *Origin; 1490 IRBuilder<> &IRB; 1491 MemorySanitizerVisitor *MSV; 1492 1493 public: 1494 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1495 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1496 1497 /// \brief Add a pair of shadow and origin values to the mix. 1498 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1499 if (CombineShadow) { 1500 assert(OpShadow); 1501 if (!Shadow) 1502 Shadow = OpShadow; 1503 else { 1504 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1505 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1506 } 1507 } 1508 1509 if (MSV->MS.TrackOrigins) { 1510 assert(OpOrigin); 1511 if (!Origin) { 1512 Origin = OpOrigin; 1513 } else { 1514 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1515 // No point in adding something that might result in 0 origin value. 1516 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1517 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1518 Value *Cond = 1519 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1520 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1521 } 1522 } 1523 } 1524 return *this; 1525 } 1526 1527 /// \brief Add an application value to the mix. 1528 Combiner &Add(Value *V) { 1529 Value *OpShadow = MSV->getShadow(V); 1530 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1531 return Add(OpShadow, OpOrigin); 1532 } 1533 1534 /// \brief Set the current combined values as the given instruction's shadow 1535 /// and origin. 1536 void Done(Instruction *I) { 1537 if (CombineShadow) { 1538 assert(Shadow); 1539 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1540 MSV->setShadow(I, Shadow); 1541 } 1542 if (MSV->MS.TrackOrigins) { 1543 assert(Origin); 1544 MSV->setOrigin(I, Origin); 1545 } 1546 } 1547 }; 1548 1549 typedef Combiner<true> ShadowAndOriginCombiner; 1550 typedef Combiner<false> OriginCombiner; 1551 1552 /// \brief Propagate origin for arbitrary operation. 1553 void setOriginForNaryOp(Instruction &I) { 1554 if (!MS.TrackOrigins) return; 1555 IRBuilder<> IRB(&I); 1556 OriginCombiner OC(this, IRB); 1557 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1558 OC.Add(OI->get()); 1559 OC.Done(&I); 1560 } 1561 1562 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1563 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1564 "Vector of pointers is not a valid shadow type"); 1565 return Ty->isVectorTy() ? 1566 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1567 Ty->getPrimitiveSizeInBits(); 1568 } 1569 1570 /// \brief Cast between two shadow types, extending or truncating as 1571 /// necessary. 1572 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1573 bool Signed = false) { 1574 Type *srcTy = V->getType(); 1575 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1576 return IRB.CreateIntCast(V, dstTy, Signed); 1577 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1578 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1579 return IRB.CreateIntCast(V, dstTy, Signed); 1580 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1581 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1582 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1583 Value *V2 = 1584 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1585 return IRB.CreateBitCast(V2, dstTy); 1586 // TODO: handle struct types. 1587 } 1588 1589 /// \brief Cast an application value to the type of its own shadow. 1590 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1591 Type *ShadowTy = getShadowTy(V); 1592 if (V->getType() == ShadowTy) 1593 return V; 1594 if (V->getType()->isPtrOrPtrVectorTy()) 1595 return IRB.CreatePtrToInt(V, ShadowTy); 1596 else 1597 return IRB.CreateBitCast(V, ShadowTy); 1598 } 1599 1600 /// \brief Propagate shadow for arbitrary operation. 1601 void handleShadowOr(Instruction &I) { 1602 IRBuilder<> IRB(&I); 1603 ShadowAndOriginCombiner SC(this, IRB); 1604 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1605 SC.Add(OI->get()); 1606 SC.Done(&I); 1607 } 1608 1609 // \brief Handle multiplication by constant. 1610 // 1611 // Handle a special case of multiplication by constant that may have one or 1612 // more zeros in the lower bits. This makes corresponding number of lower bits 1613 // of the result zero as well. We model it by shifting the other operand 1614 // shadow left by the required number of bits. Effectively, we transform 1615 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1616 // We use multiplication by 2**N instead of shift to cover the case of 1617 // multiplication by 0, which may occur in some elements of a vector operand. 1618 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1619 Value *OtherArg) { 1620 Constant *ShadowMul; 1621 Type *Ty = ConstArg->getType(); 1622 if (Ty->isVectorTy()) { 1623 unsigned NumElements = Ty->getVectorNumElements(); 1624 Type *EltTy = Ty->getSequentialElementType(); 1625 SmallVector<Constant *, 16> Elements; 1626 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1627 if (ConstantInt *Elt = 1628 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1629 const APInt &V = Elt->getValue(); 1630 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1631 Elements.push_back(ConstantInt::get(EltTy, V2)); 1632 } else { 1633 Elements.push_back(ConstantInt::get(EltTy, 1)); 1634 } 1635 } 1636 ShadowMul = ConstantVector::get(Elements); 1637 } else { 1638 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1639 const APInt &V = Elt->getValue(); 1640 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1641 ShadowMul = ConstantInt::get(Ty, V2); 1642 } else { 1643 ShadowMul = ConstantInt::get(Ty, 1); 1644 } 1645 } 1646 1647 IRBuilder<> IRB(&I); 1648 setShadow(&I, 1649 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1650 setOrigin(&I, getOrigin(OtherArg)); 1651 } 1652 1653 void visitMul(BinaryOperator &I) { 1654 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1655 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1656 if (constOp0 && !constOp1) 1657 handleMulByConstant(I, constOp0, I.getOperand(1)); 1658 else if (constOp1 && !constOp0) 1659 handleMulByConstant(I, constOp1, I.getOperand(0)); 1660 else 1661 handleShadowOr(I); 1662 } 1663 1664 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1665 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1666 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1667 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1668 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1669 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1670 1671 void handleDiv(Instruction &I) { 1672 IRBuilder<> IRB(&I); 1673 // Strict on the second argument. 1674 insertShadowCheck(I.getOperand(1), &I); 1675 setShadow(&I, getShadow(&I, 0)); 1676 setOrigin(&I, getOrigin(&I, 0)); 1677 } 1678 1679 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1680 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1681 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1682 void visitURem(BinaryOperator &I) { handleDiv(I); } 1683 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1684 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1685 1686 /// \brief Instrument == and != comparisons. 1687 /// 1688 /// Sometimes the comparison result is known even if some of the bits of the 1689 /// arguments are not. 1690 void handleEqualityComparison(ICmpInst &I) { 1691 IRBuilder<> IRB(&I); 1692 Value *A = I.getOperand(0); 1693 Value *B = I.getOperand(1); 1694 Value *Sa = getShadow(A); 1695 Value *Sb = getShadow(B); 1696 1697 // Get rid of pointers and vectors of pointers. 1698 // For ints (and vectors of ints), types of A and Sa match, 1699 // and this is a no-op. 1700 A = IRB.CreatePointerCast(A, Sa->getType()); 1701 B = IRB.CreatePointerCast(B, Sb->getType()); 1702 1703 // A == B <==> (C = A^B) == 0 1704 // A != B <==> (C = A^B) != 0 1705 // Sc = Sa | Sb 1706 Value *C = IRB.CreateXor(A, B); 1707 Value *Sc = IRB.CreateOr(Sa, Sb); 1708 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1709 // Result is defined if one of the following is true 1710 // * there is a defined 1 bit in C 1711 // * C is fully defined 1712 // Si = !(C & ~Sc) && Sc 1713 Value *Zero = Constant::getNullValue(Sc->getType()); 1714 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1715 Value *Si = 1716 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1717 IRB.CreateICmpEQ( 1718 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1719 Si->setName("_msprop_icmp"); 1720 setShadow(&I, Si); 1721 setOriginForNaryOp(I); 1722 } 1723 1724 /// \brief Build the lowest possible value of V, taking into account V's 1725 /// uninitialized bits. 1726 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1727 bool isSigned) { 1728 if (isSigned) { 1729 // Split shadow into sign bit and other bits. 1730 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1731 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1732 // Maximise the undefined shadow bit, minimize other undefined bits. 1733 return 1734 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1735 } else { 1736 // Minimize undefined bits. 1737 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1738 } 1739 } 1740 1741 /// \brief Build the highest possible value of V, taking into account V's 1742 /// uninitialized bits. 1743 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1744 bool isSigned) { 1745 if (isSigned) { 1746 // Split shadow into sign bit and other bits. 1747 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1748 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1749 // Minimise the undefined shadow bit, maximise other undefined bits. 1750 return 1751 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1752 } else { 1753 // Maximize undefined bits. 1754 return IRB.CreateOr(A, Sa); 1755 } 1756 } 1757 1758 /// \brief Instrument relational comparisons. 1759 /// 1760 /// This function does exact shadow propagation for all relational 1761 /// comparisons of integers, pointers and vectors of those. 1762 /// FIXME: output seems suboptimal when one of the operands is a constant 1763 void handleRelationalComparisonExact(ICmpInst &I) { 1764 IRBuilder<> IRB(&I); 1765 Value *A = I.getOperand(0); 1766 Value *B = I.getOperand(1); 1767 Value *Sa = getShadow(A); 1768 Value *Sb = getShadow(B); 1769 1770 // Get rid of pointers and vectors of pointers. 1771 // For ints (and vectors of ints), types of A and Sa match, 1772 // and this is a no-op. 1773 A = IRB.CreatePointerCast(A, Sa->getType()); 1774 B = IRB.CreatePointerCast(B, Sb->getType()); 1775 1776 // Let [a0, a1] be the interval of possible values of A, taking into account 1777 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1778 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1779 bool IsSigned = I.isSigned(); 1780 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1781 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1782 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1783 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1784 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1785 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1786 Value *Si = IRB.CreateXor(S1, S2); 1787 setShadow(&I, Si); 1788 setOriginForNaryOp(I); 1789 } 1790 1791 /// \brief Instrument signed relational comparisons. 1792 /// 1793 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1794 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1795 void handleSignedRelationalComparison(ICmpInst &I) { 1796 Constant *constOp; 1797 Value *op = nullptr; 1798 CmpInst::Predicate pre; 1799 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1800 op = I.getOperand(0); 1801 pre = I.getPredicate(); 1802 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1803 op = I.getOperand(1); 1804 pre = I.getSwappedPredicate(); 1805 } else { 1806 handleShadowOr(I); 1807 return; 1808 } 1809 1810 if ((constOp->isNullValue() && 1811 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1812 (constOp->isAllOnesValue() && 1813 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1814 IRBuilder<> IRB(&I); 1815 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1816 "_msprop_icmp_s"); 1817 setShadow(&I, Shadow); 1818 setOrigin(&I, getOrigin(op)); 1819 } else { 1820 handleShadowOr(I); 1821 } 1822 } 1823 1824 void visitICmpInst(ICmpInst &I) { 1825 if (!ClHandleICmp) { 1826 handleShadowOr(I); 1827 return; 1828 } 1829 if (I.isEquality()) { 1830 handleEqualityComparison(I); 1831 return; 1832 } 1833 1834 assert(I.isRelational()); 1835 if (ClHandleICmpExact) { 1836 handleRelationalComparisonExact(I); 1837 return; 1838 } 1839 if (I.isSigned()) { 1840 handleSignedRelationalComparison(I); 1841 return; 1842 } 1843 1844 assert(I.isUnsigned()); 1845 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1846 handleRelationalComparisonExact(I); 1847 return; 1848 } 1849 1850 handleShadowOr(I); 1851 } 1852 1853 void visitFCmpInst(FCmpInst &I) { 1854 handleShadowOr(I); 1855 } 1856 1857 void handleShift(BinaryOperator &I) { 1858 IRBuilder<> IRB(&I); 1859 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1860 // Otherwise perform the same shift on S1. 1861 Value *S1 = getShadow(&I, 0); 1862 Value *S2 = getShadow(&I, 1); 1863 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1864 S2->getType()); 1865 Value *V2 = I.getOperand(1); 1866 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1867 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1868 setOriginForNaryOp(I); 1869 } 1870 1871 void visitShl(BinaryOperator &I) { handleShift(I); } 1872 void visitAShr(BinaryOperator &I) { handleShift(I); } 1873 void visitLShr(BinaryOperator &I) { handleShift(I); } 1874 1875 /// \brief Instrument llvm.memmove 1876 /// 1877 /// At this point we don't know if llvm.memmove will be inlined or not. 1878 /// If we don't instrument it and it gets inlined, 1879 /// our interceptor will not kick in and we will lose the memmove. 1880 /// If we instrument the call here, but it does not get inlined, 1881 /// we will memove the shadow twice: which is bad in case 1882 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1883 /// 1884 /// Similar situation exists for memcpy and memset. 1885 void visitMemMoveInst(MemMoveInst &I) { 1886 IRBuilder<> IRB(&I); 1887 IRB.CreateCall( 1888 MS.MemmoveFn, 1889 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1890 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1891 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1892 I.eraseFromParent(); 1893 } 1894 1895 // Similar to memmove: avoid copying shadow twice. 1896 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1897 // FIXME: consider doing manual inline for small constant sizes and proper 1898 // alignment. 1899 void visitMemCpyInst(MemCpyInst &I) { 1900 IRBuilder<> IRB(&I); 1901 IRB.CreateCall( 1902 MS.MemcpyFn, 1903 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1904 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1905 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1906 I.eraseFromParent(); 1907 } 1908 1909 // Same as memcpy. 1910 void visitMemSetInst(MemSetInst &I) { 1911 IRBuilder<> IRB(&I); 1912 IRB.CreateCall( 1913 MS.MemsetFn, 1914 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1915 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1916 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1917 I.eraseFromParent(); 1918 } 1919 1920 void visitVAStartInst(VAStartInst &I) { 1921 VAHelper->visitVAStartInst(I); 1922 } 1923 1924 void visitVACopyInst(VACopyInst &I) { 1925 VAHelper->visitVACopyInst(I); 1926 } 1927 1928 /// \brief Handle vector store-like intrinsics. 1929 /// 1930 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1931 /// has 1 pointer argument and 1 vector argument, returns void. 1932 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1933 IRBuilder<> IRB(&I); 1934 Value* Addr = I.getArgOperand(0); 1935 Value *Shadow = getShadow(&I, 1); 1936 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1937 1938 // We don't know the pointer alignment (could be unaligned SSE store!). 1939 // Have to assume to worst case. 1940 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1941 1942 if (ClCheckAccessAddress) 1943 insertShadowCheck(Addr, &I); 1944 1945 // FIXME: use ClStoreCleanOrigin 1946 // FIXME: factor out common code from materializeStores 1947 if (MS.TrackOrigins) 1948 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1949 return true; 1950 } 1951 1952 /// \brief Handle vector load-like intrinsics. 1953 /// 1954 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1955 /// has 1 pointer argument, returns a vector. 1956 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1957 IRBuilder<> IRB(&I); 1958 Value *Addr = I.getArgOperand(0); 1959 1960 Type *ShadowTy = getShadowTy(&I); 1961 if (PropagateShadow) { 1962 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1963 // We don't know the pointer alignment (could be unaligned SSE load!). 1964 // Have to assume to worst case. 1965 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1966 } else { 1967 setShadow(&I, getCleanShadow(&I)); 1968 } 1969 1970 if (ClCheckAccessAddress) 1971 insertShadowCheck(Addr, &I); 1972 1973 if (MS.TrackOrigins) { 1974 if (PropagateShadow) 1975 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1976 else 1977 setOrigin(&I, getCleanOrigin()); 1978 } 1979 return true; 1980 } 1981 1982 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1983 /// 1984 /// Instrument intrinsics with any number of arguments of the same type, 1985 /// equal to the return type. The type should be simple (no aggregates or 1986 /// pointers; vectors are fine). 1987 /// Caller guarantees that this intrinsic does not access memory. 1988 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1989 Type *RetTy = I.getType(); 1990 if (!(RetTy->isIntOrIntVectorTy() || 1991 RetTy->isFPOrFPVectorTy() || 1992 RetTy->isX86_MMXTy())) 1993 return false; 1994 1995 unsigned NumArgOperands = I.getNumArgOperands(); 1996 1997 for (unsigned i = 0; i < NumArgOperands; ++i) { 1998 Type *Ty = I.getArgOperand(i)->getType(); 1999 if (Ty != RetTy) 2000 return false; 2001 } 2002 2003 IRBuilder<> IRB(&I); 2004 ShadowAndOriginCombiner SC(this, IRB); 2005 for (unsigned i = 0; i < NumArgOperands; ++i) 2006 SC.Add(I.getArgOperand(i)); 2007 SC.Done(&I); 2008 2009 return true; 2010 } 2011 2012 /// \brief Heuristically instrument unknown intrinsics. 2013 /// 2014 /// The main purpose of this code is to do something reasonable with all 2015 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2016 /// We recognize several classes of intrinsics by their argument types and 2017 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2018 /// sure that we know what the intrinsic does. 2019 /// 2020 /// We special-case intrinsics where this approach fails. See llvm.bswap 2021 /// handling as an example of that. 2022 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2023 unsigned NumArgOperands = I.getNumArgOperands(); 2024 if (NumArgOperands == 0) 2025 return false; 2026 2027 if (NumArgOperands == 2 && 2028 I.getArgOperand(0)->getType()->isPointerTy() && 2029 I.getArgOperand(1)->getType()->isVectorTy() && 2030 I.getType()->isVoidTy() && 2031 !I.onlyReadsMemory()) { 2032 // This looks like a vector store. 2033 return handleVectorStoreIntrinsic(I); 2034 } 2035 2036 if (NumArgOperands == 1 && 2037 I.getArgOperand(0)->getType()->isPointerTy() && 2038 I.getType()->isVectorTy() && 2039 I.onlyReadsMemory()) { 2040 // This looks like a vector load. 2041 return handleVectorLoadIntrinsic(I); 2042 } 2043 2044 if (I.doesNotAccessMemory()) 2045 if (maybeHandleSimpleNomemIntrinsic(I)) 2046 return true; 2047 2048 // FIXME: detect and handle SSE maskstore/maskload 2049 return false; 2050 } 2051 2052 void handleBswap(IntrinsicInst &I) { 2053 IRBuilder<> IRB(&I); 2054 Value *Op = I.getArgOperand(0); 2055 Type *OpType = Op->getType(); 2056 Function *BswapFunc = Intrinsic::getDeclaration( 2057 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2058 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2059 setOrigin(&I, getOrigin(Op)); 2060 } 2061 2062 // \brief Instrument vector convert instrinsic. 2063 // 2064 // This function instruments intrinsics like cvtsi2ss: 2065 // %Out = int_xxx_cvtyyy(%ConvertOp) 2066 // or 2067 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2068 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2069 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2070 // elements from \p CopyOp. 2071 // In most cases conversion involves floating-point value which may trigger a 2072 // hardware exception when not fully initialized. For this reason we require 2073 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2074 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2075 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2076 // return a fully initialized value. 2077 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2078 IRBuilder<> IRB(&I); 2079 Value *CopyOp, *ConvertOp; 2080 2081 switch (I.getNumArgOperands()) { 2082 case 3: 2083 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2084 case 2: 2085 CopyOp = I.getArgOperand(0); 2086 ConvertOp = I.getArgOperand(1); 2087 break; 2088 case 1: 2089 ConvertOp = I.getArgOperand(0); 2090 CopyOp = nullptr; 2091 break; 2092 default: 2093 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2094 } 2095 2096 // The first *NumUsedElements* elements of ConvertOp are converted to the 2097 // same number of output elements. The rest of the output is copied from 2098 // CopyOp, or (if not available) filled with zeroes. 2099 // Combine shadow for elements of ConvertOp that are used in this operation, 2100 // and insert a check. 2101 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2102 // int->any conversion. 2103 Value *ConvertShadow = getShadow(ConvertOp); 2104 Value *AggShadow = nullptr; 2105 if (ConvertOp->getType()->isVectorTy()) { 2106 AggShadow = IRB.CreateExtractElement( 2107 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2108 for (int i = 1; i < NumUsedElements; ++i) { 2109 Value *MoreShadow = IRB.CreateExtractElement( 2110 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2111 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2112 } 2113 } else { 2114 AggShadow = ConvertShadow; 2115 } 2116 assert(AggShadow->getType()->isIntegerTy()); 2117 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2118 2119 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2120 // ConvertOp. 2121 if (CopyOp) { 2122 assert(CopyOp->getType() == I.getType()); 2123 assert(CopyOp->getType()->isVectorTy()); 2124 Value *ResultShadow = getShadow(CopyOp); 2125 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2126 for (int i = 0; i < NumUsedElements; ++i) { 2127 ResultShadow = IRB.CreateInsertElement( 2128 ResultShadow, ConstantInt::getNullValue(EltTy), 2129 ConstantInt::get(IRB.getInt32Ty(), i)); 2130 } 2131 setShadow(&I, ResultShadow); 2132 setOrigin(&I, getOrigin(CopyOp)); 2133 } else { 2134 setShadow(&I, getCleanShadow(&I)); 2135 setOrigin(&I, getCleanOrigin()); 2136 } 2137 } 2138 2139 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2140 // zeroes if it is zero, and all ones otherwise. 2141 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2142 if (S->getType()->isVectorTy()) 2143 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2144 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2145 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2146 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2147 } 2148 2149 // Given a vector, extract its first element, and return all 2150 // zeroes if it is zero, and all ones otherwise. 2151 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2152 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2153 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2154 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2155 } 2156 2157 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2158 Type *T = S->getType(); 2159 assert(T->isVectorTy()); 2160 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2161 return IRB.CreateSExt(S2, T); 2162 } 2163 2164 // \brief Instrument vector shift instrinsic. 2165 // 2166 // This function instruments intrinsics like int_x86_avx2_psll_w. 2167 // Intrinsic shifts %In by %ShiftSize bits. 2168 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2169 // size, and the rest is ignored. Behavior is defined even if shift size is 2170 // greater than register (or field) width. 2171 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2172 assert(I.getNumArgOperands() == 2); 2173 IRBuilder<> IRB(&I); 2174 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2175 // Otherwise perform the same shift on S1. 2176 Value *S1 = getShadow(&I, 0); 2177 Value *S2 = getShadow(&I, 1); 2178 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2179 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2180 Value *V1 = I.getOperand(0); 2181 Value *V2 = I.getOperand(1); 2182 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2183 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2184 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2185 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2186 setOriginForNaryOp(I); 2187 } 2188 2189 // \brief Get an X86_MMX-sized vector type. 2190 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2191 const unsigned X86_MMXSizeInBits = 64; 2192 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2193 X86_MMXSizeInBits / EltSizeInBits); 2194 } 2195 2196 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2197 // intrinsic. 2198 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2199 switch (id) { 2200 case llvm::Intrinsic::x86_sse2_packsswb_128: 2201 case llvm::Intrinsic::x86_sse2_packuswb_128: 2202 return llvm::Intrinsic::x86_sse2_packsswb_128; 2203 2204 case llvm::Intrinsic::x86_sse2_packssdw_128: 2205 case llvm::Intrinsic::x86_sse41_packusdw: 2206 return llvm::Intrinsic::x86_sse2_packssdw_128; 2207 2208 case llvm::Intrinsic::x86_avx2_packsswb: 2209 case llvm::Intrinsic::x86_avx2_packuswb: 2210 return llvm::Intrinsic::x86_avx2_packsswb; 2211 2212 case llvm::Intrinsic::x86_avx2_packssdw: 2213 case llvm::Intrinsic::x86_avx2_packusdw: 2214 return llvm::Intrinsic::x86_avx2_packssdw; 2215 2216 case llvm::Intrinsic::x86_mmx_packsswb: 2217 case llvm::Intrinsic::x86_mmx_packuswb: 2218 return llvm::Intrinsic::x86_mmx_packsswb; 2219 2220 case llvm::Intrinsic::x86_mmx_packssdw: 2221 return llvm::Intrinsic::x86_mmx_packssdw; 2222 default: 2223 llvm_unreachable("unexpected intrinsic id"); 2224 } 2225 } 2226 2227 // \brief Instrument vector pack instrinsic. 2228 // 2229 // This function instruments intrinsics like x86_mmx_packsswb, that 2230 // packs elements of 2 input vectors into half as many bits with saturation. 2231 // Shadow is propagated with the signed variant of the same intrinsic applied 2232 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2233 // EltSizeInBits is used only for x86mmx arguments. 2234 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2235 assert(I.getNumArgOperands() == 2); 2236 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2237 IRBuilder<> IRB(&I); 2238 Value *S1 = getShadow(&I, 0); 2239 Value *S2 = getShadow(&I, 1); 2240 assert(isX86_MMX || S1->getType()->isVectorTy()); 2241 2242 // SExt and ICmpNE below must apply to individual elements of input vectors. 2243 // In case of x86mmx arguments, cast them to appropriate vector types and 2244 // back. 2245 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2246 if (isX86_MMX) { 2247 S1 = IRB.CreateBitCast(S1, T); 2248 S2 = IRB.CreateBitCast(S2, T); 2249 } 2250 Value *S1_ext = IRB.CreateSExt( 2251 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2252 Value *S2_ext = IRB.CreateSExt( 2253 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2254 if (isX86_MMX) { 2255 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2256 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2257 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2258 } 2259 2260 Function *ShadowFn = Intrinsic::getDeclaration( 2261 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2262 2263 Value *S = 2264 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2265 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2266 setShadow(&I, S); 2267 setOriginForNaryOp(I); 2268 } 2269 2270 // \brief Instrument sum-of-absolute-differencies intrinsic. 2271 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2272 const unsigned SignificantBitsPerResultElement = 16; 2273 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2274 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2275 unsigned ZeroBitsPerResultElement = 2276 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2277 2278 IRBuilder<> IRB(&I); 2279 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2280 S = IRB.CreateBitCast(S, ResTy); 2281 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2282 ResTy); 2283 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2284 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2285 setShadow(&I, S); 2286 setOriginForNaryOp(I); 2287 } 2288 2289 // \brief Instrument multiply-add intrinsic. 2290 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2291 unsigned EltSizeInBits = 0) { 2292 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2293 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2294 IRBuilder<> IRB(&I); 2295 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2296 S = IRB.CreateBitCast(S, ResTy); 2297 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2298 ResTy); 2299 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2300 setShadow(&I, S); 2301 setOriginForNaryOp(I); 2302 } 2303 2304 // \brief Instrument compare-packed intrinsic. 2305 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2306 // all-ones shadow. 2307 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2308 IRBuilder<> IRB(&I); 2309 Type *ResTy = getShadowTy(&I); 2310 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2311 Value *S = IRB.CreateSExt( 2312 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2313 setShadow(&I, S); 2314 setOriginForNaryOp(I); 2315 } 2316 2317 // \brief Instrument compare-scalar intrinsic. 2318 // This handles both cmp* intrinsics which return the result in the first 2319 // element of a vector, and comi* which return the result as i32. 2320 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2321 IRBuilder<> IRB(&I); 2322 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2323 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2324 setShadow(&I, S); 2325 setOriginForNaryOp(I); 2326 } 2327 2328 void visitIntrinsicInst(IntrinsicInst &I) { 2329 switch (I.getIntrinsicID()) { 2330 case llvm::Intrinsic::bswap: 2331 handleBswap(I); 2332 break; 2333 case llvm::Intrinsic::x86_avx512_vcvtsd2usi64: 2334 case llvm::Intrinsic::x86_avx512_vcvtsd2usi32: 2335 case llvm::Intrinsic::x86_avx512_vcvtss2usi64: 2336 case llvm::Intrinsic::x86_avx512_vcvtss2usi32: 2337 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2338 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2339 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2340 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2341 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2342 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2343 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2344 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2345 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2346 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2347 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2348 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2349 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2350 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2351 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2352 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2353 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2354 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2355 case llvm::Intrinsic::x86_sse_cvtss2si64: 2356 case llvm::Intrinsic::x86_sse_cvtss2si: 2357 case llvm::Intrinsic::x86_sse_cvttss2si64: 2358 case llvm::Intrinsic::x86_sse_cvttss2si: 2359 handleVectorConvertIntrinsic(I, 1); 2360 break; 2361 case llvm::Intrinsic::x86_sse_cvtps2pi: 2362 case llvm::Intrinsic::x86_sse_cvttps2pi: 2363 handleVectorConvertIntrinsic(I, 2); 2364 break; 2365 2366 case llvm::Intrinsic::x86_avx512_psll_w_512: 2367 case llvm::Intrinsic::x86_avx512_psll_d_512: 2368 case llvm::Intrinsic::x86_avx512_psll_q_512: 2369 case llvm::Intrinsic::x86_avx512_pslli_w_512: 2370 case llvm::Intrinsic::x86_avx512_pslli_d_512: 2371 case llvm::Intrinsic::x86_avx512_pslli_q_512: 2372 case llvm::Intrinsic::x86_avx512_psrl_w_512: 2373 case llvm::Intrinsic::x86_avx512_psrl_d_512: 2374 case llvm::Intrinsic::x86_avx512_psrl_q_512: 2375 case llvm::Intrinsic::x86_avx512_psra_w_512: 2376 case llvm::Intrinsic::x86_avx512_psra_d_512: 2377 case llvm::Intrinsic::x86_avx512_psra_q_512: 2378 case llvm::Intrinsic::x86_avx512_psrli_w_512: 2379 case llvm::Intrinsic::x86_avx512_psrli_d_512: 2380 case llvm::Intrinsic::x86_avx512_psrli_q_512: 2381 case llvm::Intrinsic::x86_avx512_psrai_w_512: 2382 case llvm::Intrinsic::x86_avx512_psrai_d_512: 2383 case llvm::Intrinsic::x86_avx512_psrai_q_512: 2384 case llvm::Intrinsic::x86_avx512_psra_q_256: 2385 case llvm::Intrinsic::x86_avx512_psra_q_128: 2386 case llvm::Intrinsic::x86_avx512_psrai_q_256: 2387 case llvm::Intrinsic::x86_avx512_psrai_q_128: 2388 case llvm::Intrinsic::x86_avx2_psll_w: 2389 case llvm::Intrinsic::x86_avx2_psll_d: 2390 case llvm::Intrinsic::x86_avx2_psll_q: 2391 case llvm::Intrinsic::x86_avx2_pslli_w: 2392 case llvm::Intrinsic::x86_avx2_pslli_d: 2393 case llvm::Intrinsic::x86_avx2_pslli_q: 2394 case llvm::Intrinsic::x86_avx2_psrl_w: 2395 case llvm::Intrinsic::x86_avx2_psrl_d: 2396 case llvm::Intrinsic::x86_avx2_psrl_q: 2397 case llvm::Intrinsic::x86_avx2_psra_w: 2398 case llvm::Intrinsic::x86_avx2_psra_d: 2399 case llvm::Intrinsic::x86_avx2_psrli_w: 2400 case llvm::Intrinsic::x86_avx2_psrli_d: 2401 case llvm::Intrinsic::x86_avx2_psrli_q: 2402 case llvm::Intrinsic::x86_avx2_psrai_w: 2403 case llvm::Intrinsic::x86_avx2_psrai_d: 2404 case llvm::Intrinsic::x86_sse2_psll_w: 2405 case llvm::Intrinsic::x86_sse2_psll_d: 2406 case llvm::Intrinsic::x86_sse2_psll_q: 2407 case llvm::Intrinsic::x86_sse2_pslli_w: 2408 case llvm::Intrinsic::x86_sse2_pslli_d: 2409 case llvm::Intrinsic::x86_sse2_pslli_q: 2410 case llvm::Intrinsic::x86_sse2_psrl_w: 2411 case llvm::Intrinsic::x86_sse2_psrl_d: 2412 case llvm::Intrinsic::x86_sse2_psrl_q: 2413 case llvm::Intrinsic::x86_sse2_psra_w: 2414 case llvm::Intrinsic::x86_sse2_psra_d: 2415 case llvm::Intrinsic::x86_sse2_psrli_w: 2416 case llvm::Intrinsic::x86_sse2_psrli_d: 2417 case llvm::Intrinsic::x86_sse2_psrli_q: 2418 case llvm::Intrinsic::x86_sse2_psrai_w: 2419 case llvm::Intrinsic::x86_sse2_psrai_d: 2420 case llvm::Intrinsic::x86_mmx_psll_w: 2421 case llvm::Intrinsic::x86_mmx_psll_d: 2422 case llvm::Intrinsic::x86_mmx_psll_q: 2423 case llvm::Intrinsic::x86_mmx_pslli_w: 2424 case llvm::Intrinsic::x86_mmx_pslli_d: 2425 case llvm::Intrinsic::x86_mmx_pslli_q: 2426 case llvm::Intrinsic::x86_mmx_psrl_w: 2427 case llvm::Intrinsic::x86_mmx_psrl_d: 2428 case llvm::Intrinsic::x86_mmx_psrl_q: 2429 case llvm::Intrinsic::x86_mmx_psra_w: 2430 case llvm::Intrinsic::x86_mmx_psra_d: 2431 case llvm::Intrinsic::x86_mmx_psrli_w: 2432 case llvm::Intrinsic::x86_mmx_psrli_d: 2433 case llvm::Intrinsic::x86_mmx_psrli_q: 2434 case llvm::Intrinsic::x86_mmx_psrai_w: 2435 case llvm::Intrinsic::x86_mmx_psrai_d: 2436 handleVectorShiftIntrinsic(I, /* Variable */ false); 2437 break; 2438 case llvm::Intrinsic::x86_avx2_psllv_d: 2439 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2440 case llvm::Intrinsic::x86_avx512_psllv_d_512: 2441 case llvm::Intrinsic::x86_avx2_psllv_q: 2442 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2443 case llvm::Intrinsic::x86_avx512_psllv_q_512: 2444 case llvm::Intrinsic::x86_avx2_psrlv_d: 2445 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2446 case llvm::Intrinsic::x86_avx512_psrlv_d_512: 2447 case llvm::Intrinsic::x86_avx2_psrlv_q: 2448 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2449 case llvm::Intrinsic::x86_avx512_psrlv_q_512: 2450 case llvm::Intrinsic::x86_avx2_psrav_d: 2451 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2452 case llvm::Intrinsic::x86_avx512_psrav_d_512: 2453 case llvm::Intrinsic::x86_avx512_psrav_q_128: 2454 case llvm::Intrinsic::x86_avx512_psrav_q_256: 2455 case llvm::Intrinsic::x86_avx512_psrav_q_512: 2456 handleVectorShiftIntrinsic(I, /* Variable */ true); 2457 break; 2458 2459 case llvm::Intrinsic::x86_sse2_packsswb_128: 2460 case llvm::Intrinsic::x86_sse2_packssdw_128: 2461 case llvm::Intrinsic::x86_sse2_packuswb_128: 2462 case llvm::Intrinsic::x86_sse41_packusdw: 2463 case llvm::Intrinsic::x86_avx2_packsswb: 2464 case llvm::Intrinsic::x86_avx2_packssdw: 2465 case llvm::Intrinsic::x86_avx2_packuswb: 2466 case llvm::Intrinsic::x86_avx2_packusdw: 2467 handleVectorPackIntrinsic(I); 2468 break; 2469 2470 case llvm::Intrinsic::x86_mmx_packsswb: 2471 case llvm::Intrinsic::x86_mmx_packuswb: 2472 handleVectorPackIntrinsic(I, 16); 2473 break; 2474 2475 case llvm::Intrinsic::x86_mmx_packssdw: 2476 handleVectorPackIntrinsic(I, 32); 2477 break; 2478 2479 case llvm::Intrinsic::x86_mmx_psad_bw: 2480 case llvm::Intrinsic::x86_sse2_psad_bw: 2481 case llvm::Intrinsic::x86_avx2_psad_bw: 2482 handleVectorSadIntrinsic(I); 2483 break; 2484 2485 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2486 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2487 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2488 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2489 handleVectorPmaddIntrinsic(I); 2490 break; 2491 2492 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2493 handleVectorPmaddIntrinsic(I, 8); 2494 break; 2495 2496 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2497 handleVectorPmaddIntrinsic(I, 16); 2498 break; 2499 2500 case llvm::Intrinsic::x86_sse_cmp_ss: 2501 case llvm::Intrinsic::x86_sse2_cmp_sd: 2502 case llvm::Intrinsic::x86_sse_comieq_ss: 2503 case llvm::Intrinsic::x86_sse_comilt_ss: 2504 case llvm::Intrinsic::x86_sse_comile_ss: 2505 case llvm::Intrinsic::x86_sse_comigt_ss: 2506 case llvm::Intrinsic::x86_sse_comige_ss: 2507 case llvm::Intrinsic::x86_sse_comineq_ss: 2508 case llvm::Intrinsic::x86_sse_ucomieq_ss: 2509 case llvm::Intrinsic::x86_sse_ucomilt_ss: 2510 case llvm::Intrinsic::x86_sse_ucomile_ss: 2511 case llvm::Intrinsic::x86_sse_ucomigt_ss: 2512 case llvm::Intrinsic::x86_sse_ucomige_ss: 2513 case llvm::Intrinsic::x86_sse_ucomineq_ss: 2514 case llvm::Intrinsic::x86_sse2_comieq_sd: 2515 case llvm::Intrinsic::x86_sse2_comilt_sd: 2516 case llvm::Intrinsic::x86_sse2_comile_sd: 2517 case llvm::Intrinsic::x86_sse2_comigt_sd: 2518 case llvm::Intrinsic::x86_sse2_comige_sd: 2519 case llvm::Intrinsic::x86_sse2_comineq_sd: 2520 case llvm::Intrinsic::x86_sse2_ucomieq_sd: 2521 case llvm::Intrinsic::x86_sse2_ucomilt_sd: 2522 case llvm::Intrinsic::x86_sse2_ucomile_sd: 2523 case llvm::Intrinsic::x86_sse2_ucomigt_sd: 2524 case llvm::Intrinsic::x86_sse2_ucomige_sd: 2525 case llvm::Intrinsic::x86_sse2_ucomineq_sd: 2526 handleVectorCompareScalarIntrinsic(I); 2527 break; 2528 2529 case llvm::Intrinsic::x86_sse_cmp_ps: 2530 case llvm::Intrinsic::x86_sse2_cmp_pd: 2531 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 2532 // generates reasonably looking IR that fails in the backend with "Do not 2533 // know how to split the result of this operator!". 2534 handleVectorComparePackedIntrinsic(I); 2535 break; 2536 2537 default: 2538 if (!handleUnknownIntrinsic(I)) 2539 visitInstruction(I); 2540 break; 2541 } 2542 } 2543 2544 void visitCallSite(CallSite CS) { 2545 Instruction &I = *CS.getInstruction(); 2546 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2547 if (CS.isCall()) { 2548 CallInst *Call = cast<CallInst>(&I); 2549 2550 // For inline asm, do the usual thing: check argument shadow and mark all 2551 // outputs as clean. Note that any side effects of the inline asm that are 2552 // not immediately visible in its constraints are not handled. 2553 if (Call->isInlineAsm()) { 2554 visitInstruction(I); 2555 return; 2556 } 2557 2558 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2559 2560 // We are going to insert code that relies on the fact that the callee 2561 // will become a non-readonly function after it is instrumented by us. To 2562 // prevent this code from being optimized out, mark that function 2563 // non-readonly in advance. 2564 if (Function *Func = Call->getCalledFunction()) { 2565 // Clear out readonly/readnone attributes. 2566 AttrBuilder B; 2567 B.addAttribute(Attribute::ReadOnly) 2568 .addAttribute(Attribute::ReadNone); 2569 Func->removeAttributes(AttributeSet::FunctionIndex, 2570 AttributeSet::get(Func->getContext(), 2571 AttributeSet::FunctionIndex, 2572 B)); 2573 } 2574 2575 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 2576 } 2577 IRBuilder<> IRB(&I); 2578 2579 unsigned ArgOffset = 0; 2580 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2581 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2582 ArgIt != End; ++ArgIt) { 2583 Value *A = *ArgIt; 2584 unsigned i = ArgIt - CS.arg_begin(); 2585 if (!A->getType()->isSized()) { 2586 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2587 continue; 2588 } 2589 unsigned Size = 0; 2590 Value *Store = nullptr; 2591 // Compute the Shadow for arg even if it is ByVal, because 2592 // in that case getShadow() will copy the actual arg shadow to 2593 // __msan_param_tls. 2594 Value *ArgShadow = getShadow(A); 2595 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2596 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2597 " Shadow: " << *ArgShadow << "\n"); 2598 bool ArgIsInitialized = false; 2599 const DataLayout &DL = F.getParent()->getDataLayout(); 2600 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2601 assert(A->getType()->isPointerTy() && 2602 "ByVal argument is not a pointer!"); 2603 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2604 if (ArgOffset + Size > kParamTLSSize) break; 2605 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2606 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2607 Store = IRB.CreateMemCpy(ArgShadowBase, 2608 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2609 Size, Alignment); 2610 } else { 2611 Size = DL.getTypeAllocSize(A->getType()); 2612 if (ArgOffset + Size > kParamTLSSize) break; 2613 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2614 kShadowTLSAlignment); 2615 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2616 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2617 } 2618 if (MS.TrackOrigins && !ArgIsInitialized) 2619 IRB.CreateStore(getOrigin(A), 2620 getOriginPtrForArgument(A, IRB, ArgOffset)); 2621 (void)Store; 2622 assert(Size != 0 && Store != nullptr); 2623 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2624 ArgOffset += alignTo(Size, 8); 2625 } 2626 DEBUG(dbgs() << " done with call args\n"); 2627 2628 FunctionType *FT = 2629 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2630 if (FT->isVarArg()) { 2631 VAHelper->visitCallSite(CS, IRB); 2632 } 2633 2634 // Now, get the shadow for the RetVal. 2635 if (!I.getType()->isSized()) return; 2636 // Don't emit the epilogue for musttail call returns. 2637 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2638 IRBuilder<> IRBBefore(&I); 2639 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2640 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2641 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2642 BasicBlock::iterator NextInsn; 2643 if (CS.isCall()) { 2644 NextInsn = ++I.getIterator(); 2645 assert(NextInsn != I.getParent()->end()); 2646 } else { 2647 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2648 if (!NormalDest->getSinglePredecessor()) { 2649 // FIXME: this case is tricky, so we are just conservative here. 2650 // Perhaps we need to split the edge between this BB and NormalDest, 2651 // but a naive attempt to use SplitEdge leads to a crash. 2652 setShadow(&I, getCleanShadow(&I)); 2653 setOrigin(&I, getCleanOrigin()); 2654 return; 2655 } 2656 NextInsn = NormalDest->getFirstInsertionPt(); 2657 assert(NextInsn != NormalDest->end() && 2658 "Could not find insertion point for retval shadow load"); 2659 } 2660 IRBuilder<> IRBAfter(&*NextInsn); 2661 Value *RetvalShadow = 2662 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2663 kShadowTLSAlignment, "_msret"); 2664 setShadow(&I, RetvalShadow); 2665 if (MS.TrackOrigins) 2666 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2667 } 2668 2669 bool isAMustTailRetVal(Value *RetVal) { 2670 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2671 RetVal = I->getOperand(0); 2672 } 2673 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2674 return I->isMustTailCall(); 2675 } 2676 return false; 2677 } 2678 2679 void visitReturnInst(ReturnInst &I) { 2680 IRBuilder<> IRB(&I); 2681 Value *RetVal = I.getReturnValue(); 2682 if (!RetVal) return; 2683 // Don't emit the epilogue for musttail call returns. 2684 if (isAMustTailRetVal(RetVal)) return; 2685 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2686 if (CheckReturnValue) { 2687 insertShadowCheck(RetVal, &I); 2688 Value *Shadow = getCleanShadow(RetVal); 2689 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2690 } else { 2691 Value *Shadow = getShadow(RetVal); 2692 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2693 // FIXME: make it conditional if ClStoreCleanOrigin==0 2694 if (MS.TrackOrigins) 2695 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2696 } 2697 } 2698 2699 void visitPHINode(PHINode &I) { 2700 IRBuilder<> IRB(&I); 2701 if (!PropagateShadow) { 2702 setShadow(&I, getCleanShadow(&I)); 2703 setOrigin(&I, getCleanOrigin()); 2704 return; 2705 } 2706 2707 ShadowPHINodes.push_back(&I); 2708 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2709 "_msphi_s")); 2710 if (MS.TrackOrigins) 2711 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2712 "_msphi_o")); 2713 } 2714 2715 void visitAllocaInst(AllocaInst &I) { 2716 setShadow(&I, getCleanShadow(&I)); 2717 setOrigin(&I, getCleanOrigin()); 2718 IRBuilder<> IRB(I.getNextNode()); 2719 const DataLayout &DL = F.getParent()->getDataLayout(); 2720 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2721 if (PoisonStack && ClPoisonStackWithCall) { 2722 IRB.CreateCall(MS.MsanPoisonStackFn, 2723 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2724 ConstantInt::get(MS.IntptrTy, Size)}); 2725 } else { 2726 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2727 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2728 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2729 } 2730 2731 if (PoisonStack && MS.TrackOrigins) { 2732 SmallString<2048> StackDescriptionStorage; 2733 raw_svector_ostream StackDescription(StackDescriptionStorage); 2734 // We create a string with a description of the stack allocation and 2735 // pass it into __msan_set_alloca_origin. 2736 // It will be printed by the run-time if stack-originated UMR is found. 2737 // The first 4 bytes of the string are set to '----' and will be replaced 2738 // by __msan_va_arg_overflow_size_tls at the first call. 2739 StackDescription << "----" << I.getName() << "@" << F.getName(); 2740 Value *Descr = 2741 createPrivateNonConstGlobalForString(*F.getParent(), 2742 StackDescription.str()); 2743 2744 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2745 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2746 ConstantInt::get(MS.IntptrTy, Size), 2747 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2748 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2749 } 2750 } 2751 2752 void visitSelectInst(SelectInst& I) { 2753 IRBuilder<> IRB(&I); 2754 // a = select b, c, d 2755 Value *B = I.getCondition(); 2756 Value *C = I.getTrueValue(); 2757 Value *D = I.getFalseValue(); 2758 Value *Sb = getShadow(B); 2759 Value *Sc = getShadow(C); 2760 Value *Sd = getShadow(D); 2761 2762 // Result shadow if condition shadow is 0. 2763 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2764 Value *Sa1; 2765 if (I.getType()->isAggregateType()) { 2766 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2767 // an extra "select". This results in much more compact IR. 2768 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2769 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2770 } else { 2771 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2772 // If Sb (condition is poisoned), look for bits in c and d that are equal 2773 // and both unpoisoned. 2774 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2775 2776 // Cast arguments to shadow-compatible type. 2777 C = CreateAppToShadowCast(IRB, C); 2778 D = CreateAppToShadowCast(IRB, D); 2779 2780 // Result shadow if condition shadow is 1. 2781 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2782 } 2783 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2784 setShadow(&I, Sa); 2785 if (MS.TrackOrigins) { 2786 // Origins are always i32, so any vector conditions must be flattened. 2787 // FIXME: consider tracking vector origins for app vectors? 2788 if (B->getType()->isVectorTy()) { 2789 Type *FlatTy = getShadowTyNoVec(B->getType()); 2790 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2791 ConstantInt::getNullValue(FlatTy)); 2792 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2793 ConstantInt::getNullValue(FlatTy)); 2794 } 2795 // a = select b, c, d 2796 // Oa = Sb ? Ob : (b ? Oc : Od) 2797 setOrigin( 2798 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2799 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2800 getOrigin(I.getFalseValue())))); 2801 } 2802 } 2803 2804 void visitLandingPadInst(LandingPadInst &I) { 2805 // Do nothing. 2806 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2807 setShadow(&I, getCleanShadow(&I)); 2808 setOrigin(&I, getCleanOrigin()); 2809 } 2810 2811 void visitCatchSwitchInst(CatchSwitchInst &I) { 2812 setShadow(&I, getCleanShadow(&I)); 2813 setOrigin(&I, getCleanOrigin()); 2814 } 2815 2816 void visitFuncletPadInst(FuncletPadInst &I) { 2817 setShadow(&I, getCleanShadow(&I)); 2818 setOrigin(&I, getCleanOrigin()); 2819 } 2820 2821 void visitGetElementPtrInst(GetElementPtrInst &I) { 2822 handleShadowOr(I); 2823 } 2824 2825 void visitExtractValueInst(ExtractValueInst &I) { 2826 IRBuilder<> IRB(&I); 2827 Value *Agg = I.getAggregateOperand(); 2828 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2829 Value *AggShadow = getShadow(Agg); 2830 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2831 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2832 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2833 setShadow(&I, ResShadow); 2834 setOriginForNaryOp(I); 2835 } 2836 2837 void visitInsertValueInst(InsertValueInst &I) { 2838 IRBuilder<> IRB(&I); 2839 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2840 Value *AggShadow = getShadow(I.getAggregateOperand()); 2841 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2842 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2843 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2844 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2845 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2846 setShadow(&I, Res); 2847 setOriginForNaryOp(I); 2848 } 2849 2850 void dumpInst(Instruction &I) { 2851 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2852 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2853 } else { 2854 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2855 } 2856 errs() << "QQQ " << I << "\n"; 2857 } 2858 2859 void visitResumeInst(ResumeInst &I) { 2860 DEBUG(dbgs() << "Resume: " << I << "\n"); 2861 // Nothing to do here. 2862 } 2863 2864 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2865 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2866 // Nothing to do here. 2867 } 2868 2869 void visitCatchReturnInst(CatchReturnInst &CRI) { 2870 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2871 // Nothing to do here. 2872 } 2873 2874 void visitInstruction(Instruction &I) { 2875 // Everything else: stop propagating and check for poisoned shadow. 2876 if (ClDumpStrictInstructions) 2877 dumpInst(I); 2878 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2879 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2880 insertShadowCheck(I.getOperand(i), &I); 2881 setShadow(&I, getCleanShadow(&I)); 2882 setOrigin(&I, getCleanOrigin()); 2883 } 2884 }; 2885 2886 /// \brief AMD64-specific implementation of VarArgHelper. 2887 struct VarArgAMD64Helper : public VarArgHelper { 2888 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2889 // See a comment in visitCallSite for more details. 2890 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2891 static const unsigned AMD64FpEndOffset = 176; 2892 2893 Function &F; 2894 MemorySanitizer &MS; 2895 MemorySanitizerVisitor &MSV; 2896 Value *VAArgTLSCopy; 2897 Value *VAArgOverflowSize; 2898 2899 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2900 2901 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2902 MemorySanitizerVisitor &MSV) 2903 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2904 VAArgOverflowSize(nullptr) {} 2905 2906 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2907 2908 ArgKind classifyArgument(Value* arg) { 2909 // A very rough approximation of X86_64 argument classification rules. 2910 Type *T = arg->getType(); 2911 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2912 return AK_FloatingPoint; 2913 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2914 return AK_GeneralPurpose; 2915 if (T->isPointerTy()) 2916 return AK_GeneralPurpose; 2917 return AK_Memory; 2918 } 2919 2920 // For VarArg functions, store the argument shadow in an ABI-specific format 2921 // that corresponds to va_list layout. 2922 // We do this because Clang lowers va_arg in the frontend, and this pass 2923 // only sees the low level code that deals with va_list internals. 2924 // A much easier alternative (provided that Clang emits va_arg instructions) 2925 // would have been to associate each live instance of va_list with a copy of 2926 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2927 // order. 2928 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2929 unsigned GpOffset = 0; 2930 unsigned FpOffset = AMD64GpEndOffset; 2931 unsigned OverflowOffset = AMD64FpEndOffset; 2932 const DataLayout &DL = F.getParent()->getDataLayout(); 2933 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2934 ArgIt != End; ++ArgIt) { 2935 Value *A = *ArgIt; 2936 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2937 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 2938 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2939 if (IsByVal) { 2940 // ByVal arguments always go to the overflow area. 2941 // Fixed arguments passed through the overflow area will be stepped 2942 // over by va_start, so don't count them towards the offset. 2943 if (IsFixed) 2944 continue; 2945 assert(A->getType()->isPointerTy()); 2946 Type *RealTy = A->getType()->getPointerElementType(); 2947 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2948 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2949 OverflowOffset += alignTo(ArgSize, 8); 2950 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2951 ArgSize, kShadowTLSAlignment); 2952 } else { 2953 ArgKind AK = classifyArgument(A); 2954 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2955 AK = AK_Memory; 2956 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2957 AK = AK_Memory; 2958 Value *Base; 2959 switch (AK) { 2960 case AK_GeneralPurpose: 2961 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2962 GpOffset += 8; 2963 break; 2964 case AK_FloatingPoint: 2965 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2966 FpOffset += 16; 2967 break; 2968 case AK_Memory: 2969 if (IsFixed) 2970 continue; 2971 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2972 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2973 OverflowOffset += alignTo(ArgSize, 8); 2974 } 2975 // Take fixed arguments into account for GpOffset and FpOffset, 2976 // but don't actually store shadows for them. 2977 if (IsFixed) 2978 continue; 2979 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2980 } 2981 } 2982 Constant *OverflowSize = 2983 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2984 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2985 } 2986 2987 /// \brief Compute the shadow address for a given va_arg. 2988 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2989 int ArgOffset) { 2990 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2991 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2992 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2993 "_msarg"); 2994 } 2995 2996 void visitVAStartInst(VAStartInst &I) override { 2997 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2998 return; 2999 IRBuilder<> IRB(&I); 3000 VAStartInstrumentationList.push_back(&I); 3001 Value *VAListTag = I.getArgOperand(0); 3002 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3003 3004 // Unpoison the whole __va_list_tag. 3005 // FIXME: magic ABI constants. 3006 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3007 /* size */24, /* alignment */8, false); 3008 } 3009 3010 void visitVACopyInst(VACopyInst &I) override { 3011 if (F.getCallingConv() == CallingConv::X86_64_Win64) 3012 return; 3013 IRBuilder<> IRB(&I); 3014 Value *VAListTag = I.getArgOperand(0); 3015 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3016 3017 // Unpoison the whole __va_list_tag. 3018 // FIXME: magic ABI constants. 3019 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3020 /* size */24, /* alignment */8, false); 3021 } 3022 3023 void finalizeInstrumentation() override { 3024 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3025 "finalizeInstrumentation called twice"); 3026 if (!VAStartInstrumentationList.empty()) { 3027 // If there is a va_start in this function, make a backup copy of 3028 // va_arg_tls somewhere in the function entry block. 3029 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3030 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3031 Value *CopySize = 3032 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3033 VAArgOverflowSize); 3034 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3035 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3036 } 3037 3038 // Instrument va_start. 3039 // Copy va_list shadow from the backup copy of the TLS contents. 3040 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3041 CallInst *OrigInst = VAStartInstrumentationList[i]; 3042 IRBuilder<> IRB(OrigInst->getNextNode()); 3043 Value *VAListTag = OrigInst->getArgOperand(0); 3044 3045 Value *RegSaveAreaPtrPtr = 3046 IRB.CreateIntToPtr( 3047 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3048 ConstantInt::get(MS.IntptrTy, 16)), 3049 Type::getInt64PtrTy(*MS.C)); 3050 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3051 Value *RegSaveAreaShadowPtr = 3052 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3053 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 3054 AMD64FpEndOffset, 16); 3055 3056 Value *OverflowArgAreaPtrPtr = 3057 IRB.CreateIntToPtr( 3058 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3059 ConstantInt::get(MS.IntptrTy, 8)), 3060 Type::getInt64PtrTy(*MS.C)); 3061 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3062 Value *OverflowArgAreaShadowPtr = 3063 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 3064 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3065 AMD64FpEndOffset); 3066 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 3067 } 3068 } 3069 }; 3070 3071 /// \brief MIPS64-specific implementation of VarArgHelper. 3072 struct VarArgMIPS64Helper : public VarArgHelper { 3073 Function &F; 3074 MemorySanitizer &MS; 3075 MemorySanitizerVisitor &MSV; 3076 Value *VAArgTLSCopy; 3077 Value *VAArgSize; 3078 3079 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3080 3081 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3082 MemorySanitizerVisitor &MSV) 3083 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3084 VAArgSize(nullptr) {} 3085 3086 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3087 unsigned VAArgOffset = 0; 3088 const DataLayout &DL = F.getParent()->getDataLayout(); 3089 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3090 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3091 ArgIt != End; ++ArgIt) { 3092 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3093 Value *A = *ArgIt; 3094 Value *Base; 3095 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3096 if (TargetTriple.getArch() == llvm::Triple::mips64) { 3097 // Adjusting the shadow for argument with size < 8 to match the placement 3098 // of bits in big endian system 3099 if (ArgSize < 8) 3100 VAArgOffset += (8 - ArgSize); 3101 } 3102 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 3103 VAArgOffset += ArgSize; 3104 VAArgOffset = alignTo(VAArgOffset, 8); 3105 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3106 } 3107 3108 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3109 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3110 // a new class member i.e. it is the total size of all VarArgs. 3111 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3112 } 3113 3114 /// \brief Compute the shadow address for a given va_arg. 3115 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3116 int ArgOffset) { 3117 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3118 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3119 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3120 "_msarg"); 3121 } 3122 3123 void visitVAStartInst(VAStartInst &I) override { 3124 IRBuilder<> IRB(&I); 3125 VAStartInstrumentationList.push_back(&I); 3126 Value *VAListTag = I.getArgOperand(0); 3127 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3128 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3129 /* size */8, /* alignment */8, false); 3130 } 3131 3132 void visitVACopyInst(VACopyInst &I) override { 3133 IRBuilder<> IRB(&I); 3134 Value *VAListTag = I.getArgOperand(0); 3135 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3136 // Unpoison the whole __va_list_tag. 3137 // FIXME: magic ABI constants. 3138 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3139 /* size */8, /* alignment */8, false); 3140 } 3141 3142 void finalizeInstrumentation() override { 3143 assert(!VAArgSize && !VAArgTLSCopy && 3144 "finalizeInstrumentation called twice"); 3145 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3146 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3147 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3148 VAArgSize); 3149 3150 if (!VAStartInstrumentationList.empty()) { 3151 // If there is a va_start in this function, make a backup copy of 3152 // va_arg_tls somewhere in the function entry block. 3153 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3154 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3155 } 3156 3157 // Instrument va_start. 3158 // Copy va_list shadow from the backup copy of the TLS contents. 3159 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3160 CallInst *OrigInst = VAStartInstrumentationList[i]; 3161 IRBuilder<> IRB(OrigInst->getNextNode()); 3162 Value *VAListTag = OrigInst->getArgOperand(0); 3163 Value *RegSaveAreaPtrPtr = 3164 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3165 Type::getInt64PtrTy(*MS.C)); 3166 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3167 Value *RegSaveAreaShadowPtr = 3168 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3169 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3170 } 3171 } 3172 }; 3173 3174 3175 /// \brief AArch64-specific implementation of VarArgHelper. 3176 struct VarArgAArch64Helper : public VarArgHelper { 3177 static const unsigned kAArch64GrArgSize = 64; 3178 static const unsigned kAArch64VrArgSize = 128; 3179 3180 static const unsigned AArch64GrBegOffset = 0; 3181 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3182 // Make VR space aligned to 16 bytes. 3183 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 3184 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3185 + kAArch64VrArgSize; 3186 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3187 3188 Function &F; 3189 MemorySanitizer &MS; 3190 MemorySanitizerVisitor &MSV; 3191 Value *VAArgTLSCopy; 3192 Value *VAArgOverflowSize; 3193 3194 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3195 3196 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3197 MemorySanitizerVisitor &MSV) 3198 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3199 VAArgOverflowSize(nullptr) {} 3200 3201 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3202 3203 ArgKind classifyArgument(Value* arg) { 3204 Type *T = arg->getType(); 3205 if (T->isFPOrFPVectorTy()) 3206 return AK_FloatingPoint; 3207 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3208 || (T->isPointerTy())) 3209 return AK_GeneralPurpose; 3210 return AK_Memory; 3211 } 3212 3213 // The instrumentation stores the argument shadow in a non ABI-specific 3214 // format because it does not know which argument is named (since Clang, 3215 // like x86_64 case, lowers the va_args in the frontend and this pass only 3216 // sees the low level code that deals with va_list internals). 3217 // The first seven GR registers are saved in the first 56 bytes of the 3218 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3219 // the remaining arguments. 3220 // Using constant offset within the va_arg TLS array allows fast copy 3221 // in the finalize instrumentation. 3222 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3223 unsigned GrOffset = AArch64GrBegOffset; 3224 unsigned VrOffset = AArch64VrBegOffset; 3225 unsigned OverflowOffset = AArch64VAEndOffset; 3226 3227 const DataLayout &DL = F.getParent()->getDataLayout(); 3228 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3229 ArgIt != End; ++ArgIt) { 3230 Value *A = *ArgIt; 3231 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3232 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3233 ArgKind AK = classifyArgument(A); 3234 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3235 AK = AK_Memory; 3236 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3237 AK = AK_Memory; 3238 Value *Base; 3239 switch (AK) { 3240 case AK_GeneralPurpose: 3241 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3242 GrOffset += 8; 3243 break; 3244 case AK_FloatingPoint: 3245 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3246 VrOffset += 16; 3247 break; 3248 case AK_Memory: 3249 // Don't count fixed arguments in the overflow area - va_start will 3250 // skip right over them. 3251 if (IsFixed) 3252 continue; 3253 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3254 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3255 OverflowOffset += alignTo(ArgSize, 8); 3256 break; 3257 } 3258 // Count Gp/Vr fixed arguments to their respective offsets, but don't 3259 // bother to actually store a shadow. 3260 if (IsFixed) 3261 continue; 3262 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3263 } 3264 Constant *OverflowSize = 3265 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3266 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3267 } 3268 3269 /// Compute the shadow address for a given va_arg. 3270 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3271 int ArgOffset) { 3272 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3273 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3274 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3275 "_msarg"); 3276 } 3277 3278 void visitVAStartInst(VAStartInst &I) override { 3279 IRBuilder<> IRB(&I); 3280 VAStartInstrumentationList.push_back(&I); 3281 Value *VAListTag = I.getArgOperand(0); 3282 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3283 // Unpoison the whole __va_list_tag. 3284 // FIXME: magic ABI constants (size of va_list). 3285 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3286 /* size */32, /* alignment */8, false); 3287 } 3288 3289 void visitVACopyInst(VACopyInst &I) override { 3290 IRBuilder<> IRB(&I); 3291 Value *VAListTag = I.getArgOperand(0); 3292 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3293 // Unpoison the whole __va_list_tag. 3294 // FIXME: magic ABI constants (size of va_list). 3295 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3296 /* size */32, /* alignment */8, false); 3297 } 3298 3299 // Retrieve a va_list field of 'void*' size. 3300 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3301 Value *SaveAreaPtrPtr = 3302 IRB.CreateIntToPtr( 3303 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3304 ConstantInt::get(MS.IntptrTy, offset)), 3305 Type::getInt64PtrTy(*MS.C)); 3306 return IRB.CreateLoad(SaveAreaPtrPtr); 3307 } 3308 3309 // Retrieve a va_list field of 'int' size. 3310 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3311 Value *SaveAreaPtr = 3312 IRB.CreateIntToPtr( 3313 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3314 ConstantInt::get(MS.IntptrTy, offset)), 3315 Type::getInt32PtrTy(*MS.C)); 3316 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3317 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3318 } 3319 3320 void finalizeInstrumentation() override { 3321 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3322 "finalizeInstrumentation called twice"); 3323 if (!VAStartInstrumentationList.empty()) { 3324 // If there is a va_start in this function, make a backup copy of 3325 // va_arg_tls somewhere in the function entry block. 3326 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3327 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3328 Value *CopySize = 3329 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3330 VAArgOverflowSize); 3331 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3332 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3333 } 3334 3335 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3336 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3337 3338 // Instrument va_start, copy va_list shadow from the backup copy of 3339 // the TLS contents. 3340 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3341 CallInst *OrigInst = VAStartInstrumentationList[i]; 3342 IRBuilder<> IRB(OrigInst->getNextNode()); 3343 3344 Value *VAListTag = OrigInst->getArgOperand(0); 3345 3346 // The variadic ABI for AArch64 creates two areas to save the incoming 3347 // argument registers (one for 64-bit general register xn-x7 and another 3348 // for 128-bit FP/SIMD vn-v7). 3349 // We need then to propagate the shadow arguments on both regions 3350 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3351 // The remaning arguments are saved on shadow for 'va::stack'. 3352 // One caveat is it requires only to propagate the non-named arguments, 3353 // however on the call site instrumentation 'all' the arguments are 3354 // saved. So to copy the shadow values from the va_arg TLS array 3355 // we need to adjust the offset for both GR and VR fields based on 3356 // the __{gr,vr}_offs value (since they are stores based on incoming 3357 // named arguments). 3358 3359 // Read the stack pointer from the va_list. 3360 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3361 3362 // Read both the __gr_top and __gr_off and add them up. 3363 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3364 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3365 3366 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3367 3368 // Read both the __vr_top and __vr_off and add them up. 3369 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3370 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3371 3372 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3373 3374 // It does not know how many named arguments is being used and, on the 3375 // callsite all the arguments were saved. Since __gr_off is defined as 3376 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3377 // argument by ignoring the bytes of shadow from named arguments. 3378 Value *GrRegSaveAreaShadowPtrOff = 3379 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3380 3381 Value *GrRegSaveAreaShadowPtr = 3382 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3383 3384 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3385 GrRegSaveAreaShadowPtrOff); 3386 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3387 3388 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3389 3390 // Again, but for FP/SIMD values. 3391 Value *VrRegSaveAreaShadowPtrOff = 3392 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3393 3394 Value *VrRegSaveAreaShadowPtr = 3395 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3396 3397 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3398 IRB.getInt8Ty(), 3399 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3400 IRB.getInt32(AArch64VrBegOffset)), 3401 VrRegSaveAreaShadowPtrOff); 3402 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3403 3404 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3405 3406 // And finally for remaining arguments. 3407 Value *StackSaveAreaShadowPtr = 3408 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3409 3410 Value *StackSrcPtr = 3411 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3412 IRB.getInt32(AArch64VAEndOffset)); 3413 3414 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3415 VAArgOverflowSize, 16); 3416 } 3417 } 3418 }; 3419 3420 /// \brief PowerPC64-specific implementation of VarArgHelper. 3421 struct VarArgPowerPC64Helper : public VarArgHelper { 3422 Function &F; 3423 MemorySanitizer &MS; 3424 MemorySanitizerVisitor &MSV; 3425 Value *VAArgTLSCopy; 3426 Value *VAArgSize; 3427 3428 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3429 3430 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 3431 MemorySanitizerVisitor &MSV) 3432 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3433 VAArgSize(nullptr) {} 3434 3435 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3436 // For PowerPC, we need to deal with alignment of stack arguments - 3437 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 3438 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 3439 // and QPX vectors are aligned to 32 bytes. For that reason, we 3440 // compute current offset from stack pointer (which is always properly 3441 // aligned), and offset for the first vararg, then subtract them. 3442 unsigned VAArgBase; 3443 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3444 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 3445 // and 32 bytes for ABIv2. This is usually determined by target 3446 // endianness, but in theory could be overriden by function attribute. 3447 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 3448 if (TargetTriple.getArch() == llvm::Triple::ppc64) 3449 VAArgBase = 48; 3450 else 3451 VAArgBase = 32; 3452 unsigned VAArgOffset = VAArgBase; 3453 const DataLayout &DL = F.getParent()->getDataLayout(); 3454 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3455 ArgIt != End; ++ArgIt) { 3456 Value *A = *ArgIt; 3457 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3458 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3459 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 3460 if (IsByVal) { 3461 assert(A->getType()->isPointerTy()); 3462 Type *RealTy = A->getType()->getPointerElementType(); 3463 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3464 uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1); 3465 if (ArgAlign < 8) 3466 ArgAlign = 8; 3467 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3468 if (!IsFixed) { 3469 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, 3470 VAArgOffset - VAArgBase); 3471 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 3472 ArgSize, kShadowTLSAlignment); 3473 } 3474 VAArgOffset += alignTo(ArgSize, 8); 3475 } else { 3476 Value *Base; 3477 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3478 uint64_t ArgAlign = 8; 3479 if (A->getType()->isArrayTy()) { 3480 // Arrays are aligned to element size, except for long double 3481 // arrays, which are aligned to 8 bytes. 3482 Type *ElementTy = A->getType()->getArrayElementType(); 3483 if (!ElementTy->isPPC_FP128Ty()) 3484 ArgAlign = DL.getTypeAllocSize(ElementTy); 3485 } else if (A->getType()->isVectorTy()) { 3486 // Vectors are naturally aligned. 3487 ArgAlign = DL.getTypeAllocSize(A->getType()); 3488 } 3489 if (ArgAlign < 8) 3490 ArgAlign = 8; 3491 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3492 if (DL.isBigEndian()) { 3493 // Adjusting the shadow for argument with size < 8 to match the placement 3494 // of bits in big endian system 3495 if (ArgSize < 8) 3496 VAArgOffset += (8 - ArgSize); 3497 } 3498 if (!IsFixed) { 3499 Base = getShadowPtrForVAArgument(A->getType(), IRB, 3500 VAArgOffset - VAArgBase); 3501 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3502 } 3503 VAArgOffset += ArgSize; 3504 VAArgOffset = alignTo(VAArgOffset, 8); 3505 } 3506 if (IsFixed) 3507 VAArgBase = VAArgOffset; 3508 } 3509 3510 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 3511 VAArgOffset - VAArgBase); 3512 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3513 // a new class member i.e. it is the total size of all VarArgs. 3514 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3515 } 3516 3517 /// \brief Compute the shadow address for a given va_arg. 3518 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3519 int ArgOffset) { 3520 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3521 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3522 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3523 "_msarg"); 3524 } 3525 3526 void visitVAStartInst(VAStartInst &I) override { 3527 IRBuilder<> IRB(&I); 3528 VAStartInstrumentationList.push_back(&I); 3529 Value *VAListTag = I.getArgOperand(0); 3530 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3531 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3532 /* size */8, /* alignment */8, false); 3533 } 3534 3535 void visitVACopyInst(VACopyInst &I) override { 3536 IRBuilder<> IRB(&I); 3537 Value *VAListTag = I.getArgOperand(0); 3538 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3539 // Unpoison the whole __va_list_tag. 3540 // FIXME: magic ABI constants. 3541 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3542 /* size */8, /* alignment */8, false); 3543 } 3544 3545 void finalizeInstrumentation() override { 3546 assert(!VAArgSize && !VAArgTLSCopy && 3547 "finalizeInstrumentation called twice"); 3548 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3549 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3550 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3551 VAArgSize); 3552 3553 if (!VAStartInstrumentationList.empty()) { 3554 // If there is a va_start in this function, make a backup copy of 3555 // va_arg_tls somewhere in the function entry block. 3556 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3557 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3558 } 3559 3560 // Instrument va_start. 3561 // Copy va_list shadow from the backup copy of the TLS contents. 3562 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3563 CallInst *OrigInst = VAStartInstrumentationList[i]; 3564 IRBuilder<> IRB(OrigInst->getNextNode()); 3565 Value *VAListTag = OrigInst->getArgOperand(0); 3566 Value *RegSaveAreaPtrPtr = 3567 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3568 Type::getInt64PtrTy(*MS.C)); 3569 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3570 Value *RegSaveAreaShadowPtr = 3571 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3572 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3573 } 3574 } 3575 }; 3576 3577 /// \brief A no-op implementation of VarArgHelper. 3578 struct VarArgNoOpHelper : public VarArgHelper { 3579 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3580 MemorySanitizerVisitor &MSV) {} 3581 3582 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3583 3584 void visitVAStartInst(VAStartInst &I) override {} 3585 3586 void visitVACopyInst(VACopyInst &I) override {} 3587 3588 void finalizeInstrumentation() override {} 3589 }; 3590 3591 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3592 MemorySanitizerVisitor &Visitor) { 3593 // VarArg handling is only implemented on AMD64. False positives are possible 3594 // on other platforms. 3595 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3596 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3597 return new VarArgAMD64Helper(Func, Msan, Visitor); 3598 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3599 TargetTriple.getArch() == llvm::Triple::mips64el) 3600 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3601 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3602 return new VarArgAArch64Helper(Func, Msan, Visitor); 3603 else if (TargetTriple.getArch() == llvm::Triple::ppc64 || 3604 TargetTriple.getArch() == llvm::Triple::ppc64le) 3605 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 3606 else 3607 return new VarArgNoOpHelper(Func, Msan, Visitor); 3608 } 3609 3610 } // anonymous namespace 3611 3612 bool MemorySanitizer::runOnFunction(Function &F) { 3613 if (&F == MsanCtorFunction) 3614 return false; 3615 MemorySanitizerVisitor Visitor(F, *this); 3616 3617 // Clear out readonly/readnone attributes. 3618 AttrBuilder B; 3619 B.addAttribute(Attribute::ReadOnly) 3620 .addAttribute(Attribute::ReadNone); 3621 F.removeAttributes(AttributeSet::FunctionIndex, 3622 AttributeSet::get(F.getContext(), 3623 AttributeSet::FunctionIndex, B)); 3624 3625 return Visitor.runOnFunction(); 3626 } 3627