1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/IntrinsicsX86.h" 174 #include "llvm/IR/LLVMContext.h" 175 #include "llvm/IR/MDBuilder.h" 176 #include "llvm/IR/Module.h" 177 #include "llvm/IR/Type.h" 178 #include "llvm/IR/Value.h" 179 #include "llvm/IR/ValueMap.h" 180 #include "llvm/InitializePasses.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/AtomicOrdering.h" 183 #include "llvm/Support/Casting.h" 184 #include "llvm/Support/CommandLine.h" 185 #include "llvm/Support/Compiler.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/ErrorHandling.h" 188 #include "llvm/Support/MathExtras.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Transforms/Instrumentation.h" 191 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 192 #include "llvm/Transforms/Utils/Local.h" 193 #include "llvm/Transforms/Utils/ModuleUtils.h" 194 #include <algorithm> 195 #include <cassert> 196 #include <cstddef> 197 #include <cstdint> 198 #include <memory> 199 #include <string> 200 #include <tuple> 201 202 using namespace llvm; 203 204 #define DEBUG_TYPE "msan" 205 206 static const unsigned kOriginSize = 4; 207 static const Align kMinOriginAlignment = Align(4); 208 static const Align kShadowTLSAlignment = Align(8); 209 210 // These constants must be kept in sync with the ones in msan.h. 211 static const unsigned kParamTLSSize = 800; 212 static const unsigned kRetvalTLSSize = 800; 213 214 // Accesses sizes are powers of two: 1, 2, 4, 8. 215 static const size_t kNumberOfAccessSizes = 4; 216 217 /// Track origins of uninitialized values. 218 /// 219 /// Adds a section to MemorySanitizer report that points to the allocation 220 /// (stack or heap) the uninitialized bits came from originally. 221 static cl::opt<int> ClTrackOrigins("msan-track-origins", 222 cl::desc("Track origins (allocation sites) of poisoned memory"), 223 cl::Hidden, cl::init(0)); 224 225 static cl::opt<bool> ClKeepGoing("msan-keep-going", 226 cl::desc("keep going after reporting a UMR"), 227 cl::Hidden, cl::init(false)); 228 229 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 230 cl::desc("poison uninitialized stack variables"), 231 cl::Hidden, cl::init(true)); 232 233 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 234 cl::desc("poison uninitialized stack variables with a call"), 235 cl::Hidden, cl::init(false)); 236 237 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 238 cl::desc("poison uninitialized stack variables with the given pattern"), 239 cl::Hidden, cl::init(0xff)); 240 241 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 242 cl::desc("poison undef temps"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 246 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 247 cl::Hidden, cl::init(true)); 248 249 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 250 cl::desc("exact handling of relational integer ICmp"), 251 cl::Hidden, cl::init(false)); 252 253 static cl::opt<bool> ClHandleLifetimeIntrinsics( 254 "msan-handle-lifetime-intrinsics", 255 cl::desc( 256 "when possible, poison scoped variables at the beginning of the scope " 257 "(slower, but more precise)"), 258 cl::Hidden, cl::init(true)); 259 260 // When compiling the Linux kernel, we sometimes see false positives related to 261 // MSan being unable to understand that inline assembly calls may initialize 262 // local variables. 263 // This flag makes the compiler conservatively unpoison every memory location 264 // passed into an assembly call. Note that this may cause false positives. 265 // Because it's impossible to figure out the array sizes, we can only unpoison 266 // the first sizeof(type) bytes for each type* pointer. 267 // The instrumentation is only enabled in KMSAN builds, and only if 268 // -msan-handle-asm-conservative is on. This is done because we may want to 269 // quickly disable assembly instrumentation when it breaks. 270 static cl::opt<bool> ClHandleAsmConservative( 271 "msan-handle-asm-conservative", 272 cl::desc("conservative handling of inline assembly"), cl::Hidden, 273 cl::init(true)); 274 275 // This flag controls whether we check the shadow of the address 276 // operand of load or store. Such bugs are very rare, since load from 277 // a garbage address typically results in SEGV, but still happen 278 // (e.g. only lower bits of address are garbage, or the access happens 279 // early at program startup where malloc-ed memory is more likely to 280 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 281 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 282 cl::desc("report accesses through a pointer which has poisoned shadow"), 283 cl::Hidden, cl::init(true)); 284 285 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 286 cl::desc("print out instructions with default strict semantics"), 287 cl::Hidden, cl::init(false)); 288 289 static cl::opt<int> ClInstrumentationWithCallThreshold( 290 "msan-instrumentation-with-call-threshold", 291 cl::desc( 292 "If the function being instrumented requires more than " 293 "this number of checks and origin stores, use callbacks instead of " 294 "inline checks (-1 means never use callbacks)."), 295 cl::Hidden, cl::init(3500)); 296 297 static cl::opt<bool> 298 ClEnableKmsan("msan-kernel", 299 cl::desc("Enable KernelMemorySanitizer instrumentation"), 300 cl::Hidden, cl::init(false)); 301 302 // This is an experiment to enable handling of cases where shadow is a non-zero 303 // compile-time constant. For some unexplainable reason they were silently 304 // ignored in the instrumentation. 305 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 306 cl::desc("Insert checks for constant shadow values"), 307 cl::Hidden, cl::init(false)); 308 309 // This is off by default because of a bug in gold: 310 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 311 static cl::opt<bool> ClWithComdat("msan-with-comdat", 312 cl::desc("Place MSan constructors in comdat sections"), 313 cl::Hidden, cl::init(false)); 314 315 // These options allow to specify custom memory map parameters 316 // See MemoryMapParams for details. 317 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 318 cl::desc("Define custom MSan AndMask"), 319 cl::Hidden, cl::init(0)); 320 321 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 322 cl::desc("Define custom MSan XorMask"), 323 cl::Hidden, cl::init(0)); 324 325 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 326 cl::desc("Define custom MSan ShadowBase"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 330 cl::desc("Define custom MSan OriginBase"), 331 cl::Hidden, cl::init(0)); 332 333 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 334 static const char *const kMsanInitName = "__msan_init"; 335 336 namespace { 337 338 // Memory map parameters used in application-to-shadow address calculation. 339 // Offset = (Addr & ~AndMask) ^ XorMask 340 // Shadow = ShadowBase + Offset 341 // Origin = OriginBase + Offset 342 struct MemoryMapParams { 343 uint64_t AndMask; 344 uint64_t XorMask; 345 uint64_t ShadowBase; 346 uint64_t OriginBase; 347 }; 348 349 struct PlatformMemoryMapParams { 350 const MemoryMapParams *bits32; 351 const MemoryMapParams *bits64; 352 }; 353 354 } // end anonymous namespace 355 356 // i386 Linux 357 static const MemoryMapParams Linux_I386_MemoryMapParams = { 358 0x000080000000, // AndMask 359 0, // XorMask (not used) 360 0, // ShadowBase (not used) 361 0x000040000000, // OriginBase 362 }; 363 364 // x86_64 Linux 365 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 366 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 367 0x400000000000, // AndMask 368 0, // XorMask (not used) 369 0, // ShadowBase (not used) 370 0x200000000000, // OriginBase 371 #else 372 0, // AndMask (not used) 373 0x500000000000, // XorMask 374 0, // ShadowBase (not used) 375 0x100000000000, // OriginBase 376 #endif 377 }; 378 379 // mips64 Linux 380 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 381 0, // AndMask (not used) 382 0x008000000000, // XorMask 383 0, // ShadowBase (not used) 384 0x002000000000, // OriginBase 385 }; 386 387 // ppc64 Linux 388 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 389 0xE00000000000, // AndMask 390 0x100000000000, // XorMask 391 0x080000000000, // ShadowBase 392 0x1C0000000000, // OriginBase 393 }; 394 395 // aarch64 Linux 396 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 397 0, // AndMask (not used) 398 0x06000000000, // XorMask 399 0, // ShadowBase (not used) 400 0x01000000000, // OriginBase 401 }; 402 403 // i386 FreeBSD 404 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 405 0x000180000000, // AndMask 406 0x000040000000, // XorMask 407 0x000020000000, // ShadowBase 408 0x000700000000, // OriginBase 409 }; 410 411 // x86_64 FreeBSD 412 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 413 0xc00000000000, // AndMask 414 0x200000000000, // XorMask 415 0x100000000000, // ShadowBase 416 0x380000000000, // OriginBase 417 }; 418 419 // x86_64 NetBSD 420 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 421 0, // AndMask 422 0x500000000000, // XorMask 423 0, // ShadowBase 424 0x100000000000, // OriginBase 425 }; 426 427 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 428 &Linux_I386_MemoryMapParams, 429 &Linux_X86_64_MemoryMapParams, 430 }; 431 432 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 433 nullptr, 434 &Linux_MIPS64_MemoryMapParams, 435 }; 436 437 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 438 nullptr, 439 &Linux_PowerPC64_MemoryMapParams, 440 }; 441 442 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 443 nullptr, 444 &Linux_AArch64_MemoryMapParams, 445 }; 446 447 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 448 &FreeBSD_I386_MemoryMapParams, 449 &FreeBSD_X86_64_MemoryMapParams, 450 }; 451 452 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 453 nullptr, 454 &NetBSD_X86_64_MemoryMapParams, 455 }; 456 457 namespace { 458 459 /// Instrument functions of a module to detect uninitialized reads. 460 /// 461 /// Instantiating MemorySanitizer inserts the msan runtime library API function 462 /// declarations into the module if they don't exist already. Instantiating 463 /// ensures the __msan_init function is in the list of global constructors for 464 /// the module. 465 class MemorySanitizer { 466 public: 467 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 468 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 469 Recover(Options.Recover) { 470 initializeModule(M); 471 } 472 473 // MSan cannot be moved or copied because of MapParams. 474 MemorySanitizer(MemorySanitizer &&) = delete; 475 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 476 MemorySanitizer(const MemorySanitizer &) = delete; 477 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 478 479 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 480 481 private: 482 friend struct MemorySanitizerVisitor; 483 friend struct VarArgAMD64Helper; 484 friend struct VarArgMIPS64Helper; 485 friend struct VarArgAArch64Helper; 486 friend struct VarArgPowerPC64Helper; 487 488 void initializeModule(Module &M); 489 void initializeCallbacks(Module &M); 490 void createKernelApi(Module &M); 491 void createUserspaceApi(Module &M); 492 493 /// True if we're compiling the Linux kernel. 494 bool CompileKernel; 495 /// Track origins (allocation points) of uninitialized values. 496 int TrackOrigins; 497 bool Recover; 498 499 LLVMContext *C; 500 Type *IntptrTy; 501 Type *OriginTy; 502 503 // XxxTLS variables represent the per-thread state in MSan and per-task state 504 // in KMSAN. 505 // For the userspace these point to thread-local globals. In the kernel land 506 // they point to the members of a per-task struct obtained via a call to 507 // __msan_get_context_state(). 508 509 /// Thread-local shadow storage for function parameters. 510 Value *ParamTLS; 511 512 /// Thread-local origin storage for function parameters. 513 Value *ParamOriginTLS; 514 515 /// Thread-local shadow storage for function return value. 516 Value *RetvalTLS; 517 518 /// Thread-local origin storage for function return value. 519 Value *RetvalOriginTLS; 520 521 /// Thread-local shadow storage for in-register va_arg function 522 /// parameters (x86_64-specific). 523 Value *VAArgTLS; 524 525 /// Thread-local shadow storage for in-register va_arg function 526 /// parameters (x86_64-specific). 527 Value *VAArgOriginTLS; 528 529 /// Thread-local shadow storage for va_arg overflow area 530 /// (x86_64-specific). 531 Value *VAArgOverflowSizeTLS; 532 533 /// Thread-local space used to pass origin value to the UMR reporting 534 /// function. 535 Value *OriginTLS; 536 537 /// Are the instrumentation callbacks set up? 538 bool CallbacksInitialized = false; 539 540 /// The run-time callback to print a warning. 541 FunctionCallee WarningFn; 542 543 // These arrays are indexed by log2(AccessSize). 544 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 545 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 546 547 /// Run-time helper that generates a new origin value for a stack 548 /// allocation. 549 FunctionCallee MsanSetAllocaOrigin4Fn; 550 551 /// Run-time helper that poisons stack on function entry. 552 FunctionCallee MsanPoisonStackFn; 553 554 /// Run-time helper that records a store (or any event) of an 555 /// uninitialized value and returns an updated origin id encoding this info. 556 FunctionCallee MsanChainOriginFn; 557 558 /// MSan runtime replacements for memmove, memcpy and memset. 559 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 560 561 /// KMSAN callback for task-local function argument shadow. 562 StructType *MsanContextStateTy; 563 FunctionCallee MsanGetContextStateFn; 564 565 /// Functions for poisoning/unpoisoning local variables 566 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 567 568 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 569 /// pointers. 570 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 571 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 572 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 573 FunctionCallee MsanInstrumentAsmStoreFn; 574 575 /// Helper to choose between different MsanMetadataPtrXxx(). 576 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 577 578 /// Memory map parameters used in application-to-shadow calculation. 579 const MemoryMapParams *MapParams; 580 581 /// Custom memory map parameters used when -msan-shadow-base or 582 // -msan-origin-base is provided. 583 MemoryMapParams CustomMapParams; 584 585 MDNode *ColdCallWeights; 586 587 /// Branch weights for origin store. 588 MDNode *OriginStoreWeights; 589 590 /// An empty volatile inline asm that prevents callback merge. 591 InlineAsm *EmptyAsm; 592 }; 593 594 void insertModuleCtor(Module &M) { 595 getOrCreateSanitizerCtorAndInitFunctions( 596 M, kMsanModuleCtorName, kMsanInitName, 597 /*InitArgTypes=*/{}, 598 /*InitArgs=*/{}, 599 // This callback is invoked when the functions are created the first 600 // time. Hook them into the global ctors list in that case: 601 [&](Function *Ctor, FunctionCallee) { 602 if (!ClWithComdat) { 603 appendToGlobalCtors(M, Ctor, 0); 604 return; 605 } 606 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 607 Ctor->setComdat(MsanCtorComdat); 608 appendToGlobalCtors(M, Ctor, 0, Ctor); 609 }); 610 } 611 612 /// A legacy function pass for msan instrumentation. 613 /// 614 /// Instruments functions to detect unitialized reads. 615 struct MemorySanitizerLegacyPass : public FunctionPass { 616 // Pass identification, replacement for typeid. 617 static char ID; 618 619 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 620 : FunctionPass(ID), Options(Options) {} 621 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 622 623 void getAnalysisUsage(AnalysisUsage &AU) const override { 624 AU.addRequired<TargetLibraryInfoWrapperPass>(); 625 } 626 627 bool runOnFunction(Function &F) override { 628 return MSan->sanitizeFunction( 629 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 630 } 631 bool doInitialization(Module &M) override; 632 633 Optional<MemorySanitizer> MSan; 634 MemorySanitizerOptions Options; 635 }; 636 637 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 638 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 639 } 640 641 } // end anonymous namespace 642 643 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 644 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 645 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 646 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 647 648 PreservedAnalyses MemorySanitizerPass::run(Function &F, 649 FunctionAnalysisManager &FAM) { 650 MemorySanitizer Msan(*F.getParent(), Options); 651 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 652 return PreservedAnalyses::none(); 653 return PreservedAnalyses::all(); 654 } 655 656 PreservedAnalyses MemorySanitizerPass::run(Module &M, 657 ModuleAnalysisManager &AM) { 658 if (Options.Kernel) 659 return PreservedAnalyses::all(); 660 insertModuleCtor(M); 661 return PreservedAnalyses::none(); 662 } 663 664 char MemorySanitizerLegacyPass::ID = 0; 665 666 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 667 "MemorySanitizer: detects uninitialized reads.", false, 668 false) 669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 670 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 671 "MemorySanitizer: detects uninitialized reads.", false, 672 false) 673 674 FunctionPass * 675 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 676 return new MemorySanitizerLegacyPass(Options); 677 } 678 679 /// Create a non-const global initialized with the given string. 680 /// 681 /// Creates a writable global for Str so that we can pass it to the 682 /// run-time lib. Runtime uses first 4 bytes of the string to store the 683 /// frame ID, so the string needs to be mutable. 684 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 685 StringRef Str) { 686 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 687 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 688 GlobalValue::PrivateLinkage, StrConst, ""); 689 } 690 691 /// Create KMSAN API callbacks. 692 void MemorySanitizer::createKernelApi(Module &M) { 693 IRBuilder<> IRB(*C); 694 695 // These will be initialized in insertKmsanPrologue(). 696 RetvalTLS = nullptr; 697 RetvalOriginTLS = nullptr; 698 ParamTLS = nullptr; 699 ParamOriginTLS = nullptr; 700 VAArgTLS = nullptr; 701 VAArgOriginTLS = nullptr; 702 VAArgOverflowSizeTLS = nullptr; 703 // OriginTLS is unused in the kernel. 704 OriginTLS = nullptr; 705 706 // __msan_warning() in the kernel takes an origin. 707 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 708 IRB.getInt32Ty()); 709 // Requests the per-task context state (kmsan_context_state*) from the 710 // runtime library. 711 MsanContextStateTy = StructType::get( 712 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 713 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 714 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 715 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 716 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 717 OriginTy); 718 MsanGetContextStateFn = M.getOrInsertFunction( 719 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 720 721 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 722 PointerType::get(IRB.getInt32Ty(), 0)); 723 724 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 725 std::string name_load = 726 "__msan_metadata_ptr_for_load_" + std::to_string(size); 727 std::string name_store = 728 "__msan_metadata_ptr_for_store_" + std::to_string(size); 729 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 730 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 731 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 732 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 733 } 734 735 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 736 "__msan_metadata_ptr_for_load_n", RetTy, 737 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 738 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 739 "__msan_metadata_ptr_for_store_n", RetTy, 740 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 741 742 // Functions for poisoning and unpoisoning memory. 743 MsanPoisonAllocaFn = 744 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 745 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 746 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 747 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 748 } 749 750 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 751 return M.getOrInsertGlobal(Name, Ty, [&] { 752 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 753 nullptr, Name, nullptr, 754 GlobalVariable::InitialExecTLSModel); 755 }); 756 } 757 758 /// Insert declarations for userspace-specific functions and globals. 759 void MemorySanitizer::createUserspaceApi(Module &M) { 760 IRBuilder<> IRB(*C); 761 // Create the callback. 762 // FIXME: this function should have "Cold" calling conv, 763 // which is not yet implemented. 764 StringRef WarningFnName = Recover ? "__msan_warning" 765 : "__msan_warning_noreturn"; 766 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 767 768 // Create the global TLS variables. 769 RetvalTLS = 770 getOrInsertGlobal(M, "__msan_retval_tls", 771 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 772 773 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 774 775 ParamTLS = 776 getOrInsertGlobal(M, "__msan_param_tls", 777 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 778 779 ParamOriginTLS = 780 getOrInsertGlobal(M, "__msan_param_origin_tls", 781 ArrayType::get(OriginTy, kParamTLSSize / 4)); 782 783 VAArgTLS = 784 getOrInsertGlobal(M, "__msan_va_arg_tls", 785 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 786 787 VAArgOriginTLS = 788 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 789 ArrayType::get(OriginTy, kParamTLSSize / 4)); 790 791 VAArgOverflowSizeTLS = 792 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 793 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 794 795 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 796 AccessSizeIndex++) { 797 unsigned AccessSize = 1 << AccessSizeIndex; 798 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 799 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 800 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 801 IRB.getInt32Ty()); 802 803 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 804 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 805 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 806 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 807 } 808 809 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 810 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 811 IRB.getInt8PtrTy(), IntptrTy); 812 MsanPoisonStackFn = 813 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 814 IRB.getInt8PtrTy(), IntptrTy); 815 } 816 817 /// Insert extern declaration of runtime-provided functions and globals. 818 void MemorySanitizer::initializeCallbacks(Module &M) { 819 // Only do this once. 820 if (CallbacksInitialized) 821 return; 822 823 IRBuilder<> IRB(*C); 824 // Initialize callbacks that are common for kernel and userspace 825 // instrumentation. 826 MsanChainOriginFn = M.getOrInsertFunction( 827 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 828 MemmoveFn = M.getOrInsertFunction( 829 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 830 IRB.getInt8PtrTy(), IntptrTy); 831 MemcpyFn = M.getOrInsertFunction( 832 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 833 IntptrTy); 834 MemsetFn = M.getOrInsertFunction( 835 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 836 IntptrTy); 837 // We insert an empty inline asm after __msan_report* to avoid callback merge. 838 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 839 StringRef(""), StringRef(""), 840 /*hasSideEffects=*/true); 841 842 MsanInstrumentAsmStoreFn = 843 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 844 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 845 846 if (CompileKernel) { 847 createKernelApi(M); 848 } else { 849 createUserspaceApi(M); 850 } 851 CallbacksInitialized = true; 852 } 853 854 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 855 int size) { 856 FunctionCallee *Fns = 857 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 858 switch (size) { 859 case 1: 860 return Fns[0]; 861 case 2: 862 return Fns[1]; 863 case 4: 864 return Fns[2]; 865 case 8: 866 return Fns[3]; 867 default: 868 return nullptr; 869 } 870 } 871 872 /// Module-level initialization. 873 /// 874 /// inserts a call to __msan_init to the module's constructor list. 875 void MemorySanitizer::initializeModule(Module &M) { 876 auto &DL = M.getDataLayout(); 877 878 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 879 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 880 // Check the overrides first 881 if (ShadowPassed || OriginPassed) { 882 CustomMapParams.AndMask = ClAndMask; 883 CustomMapParams.XorMask = ClXorMask; 884 CustomMapParams.ShadowBase = ClShadowBase; 885 CustomMapParams.OriginBase = ClOriginBase; 886 MapParams = &CustomMapParams; 887 } else { 888 Triple TargetTriple(M.getTargetTriple()); 889 switch (TargetTriple.getOS()) { 890 case Triple::FreeBSD: 891 switch (TargetTriple.getArch()) { 892 case Triple::x86_64: 893 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 894 break; 895 case Triple::x86: 896 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 897 break; 898 default: 899 report_fatal_error("unsupported architecture"); 900 } 901 break; 902 case Triple::NetBSD: 903 switch (TargetTriple.getArch()) { 904 case Triple::x86_64: 905 MapParams = NetBSD_X86_MemoryMapParams.bits64; 906 break; 907 default: 908 report_fatal_error("unsupported architecture"); 909 } 910 break; 911 case Triple::Linux: 912 switch (TargetTriple.getArch()) { 913 case Triple::x86_64: 914 MapParams = Linux_X86_MemoryMapParams.bits64; 915 break; 916 case Triple::x86: 917 MapParams = Linux_X86_MemoryMapParams.bits32; 918 break; 919 case Triple::mips64: 920 case Triple::mips64el: 921 MapParams = Linux_MIPS_MemoryMapParams.bits64; 922 break; 923 case Triple::ppc64: 924 case Triple::ppc64le: 925 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 926 break; 927 case Triple::aarch64: 928 case Triple::aarch64_be: 929 MapParams = Linux_ARM_MemoryMapParams.bits64; 930 break; 931 default: 932 report_fatal_error("unsupported architecture"); 933 } 934 break; 935 default: 936 report_fatal_error("unsupported operating system"); 937 } 938 } 939 940 C = &(M.getContext()); 941 IRBuilder<> IRB(*C); 942 IntptrTy = IRB.getIntPtrTy(DL); 943 OriginTy = IRB.getInt32Ty(); 944 945 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 946 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 947 948 if (!CompileKernel) { 949 if (TrackOrigins) 950 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 951 return new GlobalVariable( 952 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 953 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 954 }); 955 956 if (Recover) 957 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 958 return new GlobalVariable(M, IRB.getInt32Ty(), true, 959 GlobalValue::WeakODRLinkage, 960 IRB.getInt32(Recover), "__msan_keep_going"); 961 }); 962 } 963 } 964 965 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 966 if (!Options.Kernel) 967 insertModuleCtor(M); 968 MSan.emplace(M, Options); 969 return true; 970 } 971 972 namespace { 973 974 /// A helper class that handles instrumentation of VarArg 975 /// functions on a particular platform. 976 /// 977 /// Implementations are expected to insert the instrumentation 978 /// necessary to propagate argument shadow through VarArg function 979 /// calls. Visit* methods are called during an InstVisitor pass over 980 /// the function, and should avoid creating new basic blocks. A new 981 /// instance of this class is created for each instrumented function. 982 struct VarArgHelper { 983 virtual ~VarArgHelper() = default; 984 985 /// Visit a CallSite. 986 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 987 988 /// Visit a va_start call. 989 virtual void visitVAStartInst(VAStartInst &I) = 0; 990 991 /// Visit a va_copy call. 992 virtual void visitVACopyInst(VACopyInst &I) = 0; 993 994 /// Finalize function instrumentation. 995 /// 996 /// This method is called after visiting all interesting (see above) 997 /// instructions in a function. 998 virtual void finalizeInstrumentation() = 0; 999 }; 1000 1001 struct MemorySanitizerVisitor; 1002 1003 } // end anonymous namespace 1004 1005 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1006 MemorySanitizerVisitor &Visitor); 1007 1008 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1009 if (TypeSize <= 8) return 0; 1010 return Log2_32_Ceil((TypeSize + 7) / 8); 1011 } 1012 1013 namespace { 1014 1015 /// This class does all the work for a given function. Store and Load 1016 /// instructions store and load corresponding shadow and origin 1017 /// values. Most instructions propagate shadow from arguments to their 1018 /// return values. Certain instructions (most importantly, BranchInst) 1019 /// test their argument shadow and print reports (with a runtime call) if it's 1020 /// non-zero. 1021 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1022 Function &F; 1023 MemorySanitizer &MS; 1024 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1025 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1026 std::unique_ptr<VarArgHelper> VAHelper; 1027 const TargetLibraryInfo *TLI; 1028 BasicBlock *ActualFnStart; 1029 1030 // The following flags disable parts of MSan instrumentation based on 1031 // blacklist contents and command-line options. 1032 bool InsertChecks; 1033 bool PropagateShadow; 1034 bool PoisonStack; 1035 bool PoisonUndef; 1036 bool CheckReturnValue; 1037 1038 struct ShadowOriginAndInsertPoint { 1039 Value *Shadow; 1040 Value *Origin; 1041 Instruction *OrigIns; 1042 1043 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1044 : Shadow(S), Origin(O), OrigIns(I) {} 1045 }; 1046 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1047 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1048 SmallSet<AllocaInst *, 16> AllocaSet; 1049 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1050 SmallVector<StoreInst *, 16> StoreList; 1051 1052 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1053 const TargetLibraryInfo &TLI) 1054 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1055 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1056 InsertChecks = SanitizeFunction; 1057 PropagateShadow = SanitizeFunction; 1058 PoisonStack = SanitizeFunction && ClPoisonStack; 1059 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1060 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1061 // must always return fully initialized values. For now, we hardcode "main". 1062 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1063 1064 MS.initializeCallbacks(*F.getParent()); 1065 if (MS.CompileKernel) 1066 ActualFnStart = insertKmsanPrologue(F); 1067 else 1068 ActualFnStart = &F.getEntryBlock(); 1069 1070 LLVM_DEBUG(if (!InsertChecks) dbgs() 1071 << "MemorySanitizer is not inserting checks into '" 1072 << F.getName() << "'\n"); 1073 } 1074 1075 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1076 if (MS.TrackOrigins <= 1) return V; 1077 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1078 } 1079 1080 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1081 const DataLayout &DL = F.getParent()->getDataLayout(); 1082 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1083 if (IntptrSize == kOriginSize) return Origin; 1084 assert(IntptrSize == kOriginSize * 2); 1085 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1086 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1087 } 1088 1089 /// Fill memory range with the given origin value. 1090 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1091 unsigned Size, Align Alignment) { 1092 const DataLayout &DL = F.getParent()->getDataLayout(); 1093 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1094 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1095 assert(IntptrAlignment >= kMinOriginAlignment); 1096 assert(IntptrSize >= kOriginSize); 1097 1098 unsigned Ofs = 0; 1099 Align CurrentAlignment = Alignment; 1100 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1101 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1102 Value *IntptrOriginPtr = 1103 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1104 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1105 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1106 : IntptrOriginPtr; 1107 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment.value()); 1108 Ofs += IntptrSize / kOriginSize; 1109 CurrentAlignment = IntptrAlignment; 1110 } 1111 } 1112 1113 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1114 Value *GEP = 1115 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1116 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment.value()); 1117 CurrentAlignment = kMinOriginAlignment; 1118 } 1119 } 1120 1121 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1122 Value *OriginPtr, Align Alignment, bool AsCall) { 1123 const DataLayout &DL = F.getParent()->getDataLayout(); 1124 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1125 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1126 if (Shadow->getType()->isAggregateType()) { 1127 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1128 OriginAlignment); 1129 } else { 1130 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1131 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1132 if (ConstantShadow) { 1133 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1134 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1135 OriginAlignment); 1136 return; 1137 } 1138 1139 unsigned TypeSizeInBits = 1140 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1141 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1142 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1143 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1144 Value *ConvertedShadow2 = IRB.CreateZExt( 1145 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1146 IRB.CreateCall(Fn, {ConvertedShadow2, 1147 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1148 Origin}); 1149 } else { 1150 Value *Cmp = IRB.CreateICmpNE( 1151 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1152 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1153 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1154 IRBuilder<> IRBNew(CheckTerm); 1155 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1156 OriginAlignment); 1157 } 1158 } 1159 } 1160 1161 void materializeStores(bool InstrumentWithCalls) { 1162 for (StoreInst *SI : StoreList) { 1163 IRBuilder<> IRB(SI); 1164 Value *Val = SI->getValueOperand(); 1165 Value *Addr = SI->getPointerOperand(); 1166 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1167 Value *ShadowPtr, *OriginPtr; 1168 Type *ShadowTy = Shadow->getType(); 1169 const Align Alignment = assumeAligned(SI->getAlignment()); 1170 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1171 std::tie(ShadowPtr, OriginPtr) = 1172 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1173 1174 StoreInst *NewSI = 1175 IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment.value()); 1176 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1177 (void)NewSI; 1178 1179 if (SI->isAtomic()) 1180 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1181 1182 if (MS.TrackOrigins && !SI->isAtomic()) 1183 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1184 OriginAlignment, InstrumentWithCalls); 1185 } 1186 } 1187 1188 /// Helper function to insert a warning at IRB's current insert point. 1189 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1190 if (!Origin) 1191 Origin = (Value *)IRB.getInt32(0); 1192 if (MS.CompileKernel) { 1193 IRB.CreateCall(MS.WarningFn, Origin); 1194 } else { 1195 if (MS.TrackOrigins) { 1196 IRB.CreateStore(Origin, MS.OriginTLS); 1197 } 1198 IRB.CreateCall(MS.WarningFn, {}); 1199 } 1200 IRB.CreateCall(MS.EmptyAsm, {}); 1201 // FIXME: Insert UnreachableInst if !MS.Recover? 1202 // This may invalidate some of the following checks and needs to be done 1203 // at the very end. 1204 } 1205 1206 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1207 bool AsCall) { 1208 IRBuilder<> IRB(OrigIns); 1209 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1210 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1211 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1212 1213 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1214 if (ConstantShadow) { 1215 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1216 insertWarningFn(IRB, Origin); 1217 } 1218 return; 1219 } 1220 1221 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1222 1223 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1224 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1225 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1226 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1227 Value *ConvertedShadow2 = 1228 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1229 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1230 ? Origin 1231 : (Value *)IRB.getInt32(0)}); 1232 } else { 1233 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1234 getCleanShadow(ConvertedShadow), "_mscmp"); 1235 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1236 Cmp, OrigIns, 1237 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1238 1239 IRB.SetInsertPoint(CheckTerm); 1240 insertWarningFn(IRB, Origin); 1241 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1242 } 1243 } 1244 1245 void materializeChecks(bool InstrumentWithCalls) { 1246 for (const auto &ShadowData : InstrumentationList) { 1247 Instruction *OrigIns = ShadowData.OrigIns; 1248 Value *Shadow = ShadowData.Shadow; 1249 Value *Origin = ShadowData.Origin; 1250 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1251 } 1252 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1253 } 1254 1255 BasicBlock *insertKmsanPrologue(Function &F) { 1256 BasicBlock *ret = 1257 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1258 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1259 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1260 Constant *Zero = IRB.getInt32(0); 1261 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1262 {Zero, IRB.getInt32(0)}, "param_shadow"); 1263 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1264 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1265 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1266 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1267 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1268 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1269 MS.VAArgOverflowSizeTLS = 1270 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1271 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1272 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1273 {Zero, IRB.getInt32(5)}, "param_origin"); 1274 MS.RetvalOriginTLS = 1275 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(6)}, "retval_origin"); 1277 return ret; 1278 } 1279 1280 /// Add MemorySanitizer instrumentation to a function. 1281 bool runOnFunction() { 1282 // In the presence of unreachable blocks, we may see Phi nodes with 1283 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1284 // blocks, such nodes will not have any shadow value associated with them. 1285 // It's easier to remove unreachable blocks than deal with missing shadow. 1286 removeUnreachableBlocks(F); 1287 1288 // Iterate all BBs in depth-first order and create shadow instructions 1289 // for all instructions (where applicable). 1290 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1291 for (BasicBlock *BB : depth_first(ActualFnStart)) 1292 visit(*BB); 1293 1294 // Finalize PHI nodes. 1295 for (PHINode *PN : ShadowPHINodes) { 1296 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1297 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1298 size_t NumValues = PN->getNumIncomingValues(); 1299 for (size_t v = 0; v < NumValues; v++) { 1300 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1301 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1302 } 1303 } 1304 1305 VAHelper->finalizeInstrumentation(); 1306 1307 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1308 // instrumenting only allocas. 1309 if (InstrumentLifetimeStart) { 1310 for (auto Item : LifetimeStartList) { 1311 instrumentAlloca(*Item.second, Item.first); 1312 AllocaSet.erase(Item.second); 1313 } 1314 } 1315 // Poison the allocas for which we didn't instrument the corresponding 1316 // lifetime intrinsics. 1317 for (AllocaInst *AI : AllocaSet) 1318 instrumentAlloca(*AI); 1319 1320 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1321 InstrumentationList.size() + StoreList.size() > 1322 (unsigned)ClInstrumentationWithCallThreshold; 1323 1324 // Insert shadow value checks. 1325 materializeChecks(InstrumentWithCalls); 1326 1327 // Delayed instrumentation of StoreInst. 1328 // This may not add new address checks. 1329 materializeStores(InstrumentWithCalls); 1330 1331 return true; 1332 } 1333 1334 /// Compute the shadow type that corresponds to a given Value. 1335 Type *getShadowTy(Value *V) { 1336 return getShadowTy(V->getType()); 1337 } 1338 1339 /// Compute the shadow type that corresponds to a given Type. 1340 Type *getShadowTy(Type *OrigTy) { 1341 if (!OrigTy->isSized()) { 1342 return nullptr; 1343 } 1344 // For integer type, shadow is the same as the original type. 1345 // This may return weird-sized types like i1. 1346 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1347 return IT; 1348 const DataLayout &DL = F.getParent()->getDataLayout(); 1349 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1350 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1351 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1352 VT->getNumElements()); 1353 } 1354 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1355 return ArrayType::get(getShadowTy(AT->getElementType()), 1356 AT->getNumElements()); 1357 } 1358 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1359 SmallVector<Type*, 4> Elements; 1360 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1361 Elements.push_back(getShadowTy(ST->getElementType(i))); 1362 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1363 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1364 return Res; 1365 } 1366 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1367 return IntegerType::get(*MS.C, TypeSize); 1368 } 1369 1370 /// Flatten a vector type. 1371 Type *getShadowTyNoVec(Type *ty) { 1372 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1373 return IntegerType::get(*MS.C, vt->getBitWidth()); 1374 return ty; 1375 } 1376 1377 /// Convert a shadow value to it's flattened variant. 1378 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1379 Type *Ty = V->getType(); 1380 Type *NoVecTy = getShadowTyNoVec(Ty); 1381 if (Ty == NoVecTy) return V; 1382 return IRB.CreateBitCast(V, NoVecTy); 1383 } 1384 1385 /// Compute the integer shadow offset that corresponds to a given 1386 /// application address. 1387 /// 1388 /// Offset = (Addr & ~AndMask) ^ XorMask 1389 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1390 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1391 1392 uint64_t AndMask = MS.MapParams->AndMask; 1393 if (AndMask) 1394 OffsetLong = 1395 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1396 1397 uint64_t XorMask = MS.MapParams->XorMask; 1398 if (XorMask) 1399 OffsetLong = 1400 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1401 return OffsetLong; 1402 } 1403 1404 /// Compute the shadow and origin addresses corresponding to a given 1405 /// application address. 1406 /// 1407 /// Shadow = ShadowBase + Offset 1408 /// Origin = (OriginBase + Offset) & ~3ULL 1409 std::pair<Value *, Value *> 1410 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1411 MaybeAlign Alignment) { 1412 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1413 Value *ShadowLong = ShadowOffset; 1414 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1415 if (ShadowBase != 0) { 1416 ShadowLong = 1417 IRB.CreateAdd(ShadowLong, 1418 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1419 } 1420 Value *ShadowPtr = 1421 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1422 Value *OriginPtr = nullptr; 1423 if (MS.TrackOrigins) { 1424 Value *OriginLong = ShadowOffset; 1425 uint64_t OriginBase = MS.MapParams->OriginBase; 1426 if (OriginBase != 0) 1427 OriginLong = IRB.CreateAdd(OriginLong, 1428 ConstantInt::get(MS.IntptrTy, OriginBase)); 1429 if (!Alignment || *Alignment < kMinOriginAlignment) { 1430 uint64_t Mask = kMinOriginAlignment.value() - 1; 1431 OriginLong = 1432 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1433 } 1434 OriginPtr = 1435 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1436 } 1437 return std::make_pair(ShadowPtr, OriginPtr); 1438 } 1439 1440 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1441 IRBuilder<> &IRB, 1442 Type *ShadowTy, 1443 bool isStore) { 1444 Value *ShadowOriginPtrs; 1445 const DataLayout &DL = F.getParent()->getDataLayout(); 1446 int Size = DL.getTypeStoreSize(ShadowTy); 1447 1448 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1449 Value *AddrCast = 1450 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1451 if (Getter) { 1452 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1453 } else { 1454 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1455 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1456 : MS.MsanMetadataPtrForLoadN, 1457 {AddrCast, SizeVal}); 1458 } 1459 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1460 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1461 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1462 1463 return std::make_pair(ShadowPtr, OriginPtr); 1464 } 1465 1466 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1467 Type *ShadowTy, 1468 MaybeAlign Alignment, 1469 bool isStore) { 1470 if (MS.CompileKernel) 1471 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1472 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1473 } 1474 1475 /// Compute the shadow address for a given function argument. 1476 /// 1477 /// Shadow = ParamTLS+ArgOffset. 1478 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1479 int ArgOffset) { 1480 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1481 if (ArgOffset) 1482 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1483 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1484 "_msarg"); 1485 } 1486 1487 /// Compute the origin address for a given function argument. 1488 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1489 int ArgOffset) { 1490 if (!MS.TrackOrigins) 1491 return nullptr; 1492 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1493 if (ArgOffset) 1494 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1495 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1496 "_msarg_o"); 1497 } 1498 1499 /// Compute the shadow address for a retval. 1500 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1501 return IRB.CreatePointerCast(MS.RetvalTLS, 1502 PointerType::get(getShadowTy(A), 0), 1503 "_msret"); 1504 } 1505 1506 /// Compute the origin address for a retval. 1507 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1508 // We keep a single origin for the entire retval. Might be too optimistic. 1509 return MS.RetvalOriginTLS; 1510 } 1511 1512 /// Set SV to be the shadow value for V. 1513 void setShadow(Value *V, Value *SV) { 1514 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1515 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1516 } 1517 1518 /// Set Origin to be the origin value for V. 1519 void setOrigin(Value *V, Value *Origin) { 1520 if (!MS.TrackOrigins) return; 1521 assert(!OriginMap.count(V) && "Values may only have one origin"); 1522 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1523 OriginMap[V] = Origin; 1524 } 1525 1526 Constant *getCleanShadow(Type *OrigTy) { 1527 Type *ShadowTy = getShadowTy(OrigTy); 1528 if (!ShadowTy) 1529 return nullptr; 1530 return Constant::getNullValue(ShadowTy); 1531 } 1532 1533 /// Create a clean shadow value for a given value. 1534 /// 1535 /// Clean shadow (all zeroes) means all bits of the value are defined 1536 /// (initialized). 1537 Constant *getCleanShadow(Value *V) { 1538 return getCleanShadow(V->getType()); 1539 } 1540 1541 /// Create a dirty shadow of a given shadow type. 1542 Constant *getPoisonedShadow(Type *ShadowTy) { 1543 assert(ShadowTy); 1544 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1545 return Constant::getAllOnesValue(ShadowTy); 1546 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1547 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1548 getPoisonedShadow(AT->getElementType())); 1549 return ConstantArray::get(AT, Vals); 1550 } 1551 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1552 SmallVector<Constant *, 4> Vals; 1553 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1554 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1555 return ConstantStruct::get(ST, Vals); 1556 } 1557 llvm_unreachable("Unexpected shadow type"); 1558 } 1559 1560 /// Create a dirty shadow for a given value. 1561 Constant *getPoisonedShadow(Value *V) { 1562 Type *ShadowTy = getShadowTy(V); 1563 if (!ShadowTy) 1564 return nullptr; 1565 return getPoisonedShadow(ShadowTy); 1566 } 1567 1568 /// Create a clean (zero) origin. 1569 Value *getCleanOrigin() { 1570 return Constant::getNullValue(MS.OriginTy); 1571 } 1572 1573 /// Get the shadow value for a given Value. 1574 /// 1575 /// This function either returns the value set earlier with setShadow, 1576 /// or extracts if from ParamTLS (for function arguments). 1577 Value *getShadow(Value *V) { 1578 if (!PropagateShadow) return getCleanShadow(V); 1579 if (Instruction *I = dyn_cast<Instruction>(V)) { 1580 if (I->getMetadata("nosanitize")) 1581 return getCleanShadow(V); 1582 // For instructions the shadow is already stored in the map. 1583 Value *Shadow = ShadowMap[V]; 1584 if (!Shadow) { 1585 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1586 (void)I; 1587 assert(Shadow && "No shadow for a value"); 1588 } 1589 return Shadow; 1590 } 1591 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1592 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1593 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1594 (void)U; 1595 return AllOnes; 1596 } 1597 if (Argument *A = dyn_cast<Argument>(V)) { 1598 // For arguments we compute the shadow on demand and store it in the map. 1599 Value **ShadowPtr = &ShadowMap[V]; 1600 if (*ShadowPtr) 1601 return *ShadowPtr; 1602 Function *F = A->getParent(); 1603 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1604 unsigned ArgOffset = 0; 1605 const DataLayout &DL = F->getParent()->getDataLayout(); 1606 for (auto &FArg : F->args()) { 1607 if (!FArg.getType()->isSized()) { 1608 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1609 continue; 1610 } 1611 unsigned Size = 1612 FArg.hasByValAttr() 1613 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1614 : DL.getTypeAllocSize(FArg.getType()); 1615 if (A == &FArg) { 1616 bool Overflow = ArgOffset + Size > kParamTLSSize; 1617 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1618 if (FArg.hasByValAttr()) { 1619 // ByVal pointer itself has clean shadow. We copy the actual 1620 // argument shadow to the underlying memory. 1621 // Figure out maximal valid memcpy alignment. 1622 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1623 MaybeAlign(FArg.getParamAlignment()), 1624 A->getType()->getPointerElementType()); 1625 Value *CpShadowPtr = 1626 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1627 /*isStore*/ true) 1628 .first; 1629 // TODO(glider): need to copy origins. 1630 if (Overflow) { 1631 // ParamTLS overflow. 1632 EntryIRB.CreateMemSet( 1633 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1634 Size, ArgAlign); 1635 } else { 1636 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1637 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1638 CopyAlign, Size); 1639 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1640 (void)Cpy; 1641 } 1642 *ShadowPtr = getCleanShadow(V); 1643 } else { 1644 if (Overflow) { 1645 // ParamTLS overflow. 1646 *ShadowPtr = getCleanShadow(V); 1647 } else { 1648 *ShadowPtr = EntryIRB.CreateAlignedLoad( 1649 getShadowTy(&FArg), Base, kShadowTLSAlignment.value()); 1650 } 1651 } 1652 LLVM_DEBUG(dbgs() 1653 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1654 if (MS.TrackOrigins && !Overflow) { 1655 Value *OriginPtr = 1656 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1657 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1658 } else { 1659 setOrigin(A, getCleanOrigin()); 1660 } 1661 } 1662 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1663 } 1664 assert(*ShadowPtr && "Could not find shadow for an argument"); 1665 return *ShadowPtr; 1666 } 1667 // For everything else the shadow is zero. 1668 return getCleanShadow(V); 1669 } 1670 1671 /// Get the shadow for i-th argument of the instruction I. 1672 Value *getShadow(Instruction *I, int i) { 1673 return getShadow(I->getOperand(i)); 1674 } 1675 1676 /// Get the origin for a value. 1677 Value *getOrigin(Value *V) { 1678 if (!MS.TrackOrigins) return nullptr; 1679 if (!PropagateShadow) return getCleanOrigin(); 1680 if (isa<Constant>(V)) return getCleanOrigin(); 1681 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1682 "Unexpected value type in getOrigin()"); 1683 if (Instruction *I = dyn_cast<Instruction>(V)) { 1684 if (I->getMetadata("nosanitize")) 1685 return getCleanOrigin(); 1686 } 1687 Value *Origin = OriginMap[V]; 1688 assert(Origin && "Missing origin"); 1689 return Origin; 1690 } 1691 1692 /// Get the origin for i-th argument of the instruction I. 1693 Value *getOrigin(Instruction *I, int i) { 1694 return getOrigin(I->getOperand(i)); 1695 } 1696 1697 /// Remember the place where a shadow check should be inserted. 1698 /// 1699 /// This location will be later instrumented with a check that will print a 1700 /// UMR warning in runtime if the shadow value is not 0. 1701 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1702 assert(Shadow); 1703 if (!InsertChecks) return; 1704 #ifndef NDEBUG 1705 Type *ShadowTy = Shadow->getType(); 1706 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1707 "Can only insert checks for integer and vector shadow types"); 1708 #endif 1709 InstrumentationList.push_back( 1710 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1711 } 1712 1713 /// Remember the place where a shadow check should be inserted. 1714 /// 1715 /// This location will be later instrumented with a check that will print a 1716 /// UMR warning in runtime if the value is not fully defined. 1717 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1718 assert(Val); 1719 Value *Shadow, *Origin; 1720 if (ClCheckConstantShadow) { 1721 Shadow = getShadow(Val); 1722 if (!Shadow) return; 1723 Origin = getOrigin(Val); 1724 } else { 1725 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1726 if (!Shadow) return; 1727 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1728 } 1729 insertShadowCheck(Shadow, Origin, OrigIns); 1730 } 1731 1732 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1733 switch (a) { 1734 case AtomicOrdering::NotAtomic: 1735 return AtomicOrdering::NotAtomic; 1736 case AtomicOrdering::Unordered: 1737 case AtomicOrdering::Monotonic: 1738 case AtomicOrdering::Release: 1739 return AtomicOrdering::Release; 1740 case AtomicOrdering::Acquire: 1741 case AtomicOrdering::AcquireRelease: 1742 return AtomicOrdering::AcquireRelease; 1743 case AtomicOrdering::SequentiallyConsistent: 1744 return AtomicOrdering::SequentiallyConsistent; 1745 } 1746 llvm_unreachable("Unknown ordering"); 1747 } 1748 1749 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1750 switch (a) { 1751 case AtomicOrdering::NotAtomic: 1752 return AtomicOrdering::NotAtomic; 1753 case AtomicOrdering::Unordered: 1754 case AtomicOrdering::Monotonic: 1755 case AtomicOrdering::Acquire: 1756 return AtomicOrdering::Acquire; 1757 case AtomicOrdering::Release: 1758 case AtomicOrdering::AcquireRelease: 1759 return AtomicOrdering::AcquireRelease; 1760 case AtomicOrdering::SequentiallyConsistent: 1761 return AtomicOrdering::SequentiallyConsistent; 1762 } 1763 llvm_unreachable("Unknown ordering"); 1764 } 1765 1766 // ------------------- Visitors. 1767 using InstVisitor<MemorySanitizerVisitor>::visit; 1768 void visit(Instruction &I) { 1769 if (!I.getMetadata("nosanitize")) 1770 InstVisitor<MemorySanitizerVisitor>::visit(I); 1771 } 1772 1773 /// Instrument LoadInst 1774 /// 1775 /// Loads the corresponding shadow and (optionally) origin. 1776 /// Optionally, checks that the load address is fully defined. 1777 void visitLoadInst(LoadInst &I) { 1778 assert(I.getType()->isSized() && "Load type must have size"); 1779 assert(!I.getMetadata("nosanitize")); 1780 IRBuilder<> IRB(I.getNextNode()); 1781 Type *ShadowTy = getShadowTy(&I); 1782 Value *Addr = I.getPointerOperand(); 1783 Value *ShadowPtr, *OriginPtr; 1784 const Align Alignment = assumeAligned(I.getAlignment()); 1785 if (PropagateShadow) { 1786 std::tie(ShadowPtr, OriginPtr) = 1787 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1788 setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, 1789 Alignment.value(), "_msld")); 1790 } else { 1791 setShadow(&I, getCleanShadow(&I)); 1792 } 1793 1794 if (ClCheckAccessAddress) 1795 insertShadowCheck(I.getPointerOperand(), &I); 1796 1797 if (I.isAtomic()) 1798 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1799 1800 if (MS.TrackOrigins) { 1801 if (PropagateShadow) { 1802 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1803 setOrigin(&I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, 1804 OriginAlignment.value())); 1805 } else { 1806 setOrigin(&I, getCleanOrigin()); 1807 } 1808 } 1809 } 1810 1811 /// Instrument StoreInst 1812 /// 1813 /// Stores the corresponding shadow and (optionally) origin. 1814 /// Optionally, checks that the store address is fully defined. 1815 void visitStoreInst(StoreInst &I) { 1816 StoreList.push_back(&I); 1817 if (ClCheckAccessAddress) 1818 insertShadowCheck(I.getPointerOperand(), &I); 1819 } 1820 1821 void handleCASOrRMW(Instruction &I) { 1822 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1823 1824 IRBuilder<> IRB(&I); 1825 Value *Addr = I.getOperand(0); 1826 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align::None(), 1827 /*isStore*/ true) 1828 .first; 1829 1830 if (ClCheckAccessAddress) 1831 insertShadowCheck(Addr, &I); 1832 1833 // Only test the conditional argument of cmpxchg instruction. 1834 // The other argument can potentially be uninitialized, but we can not 1835 // detect this situation reliably without possible false positives. 1836 if (isa<AtomicCmpXchgInst>(I)) 1837 insertShadowCheck(I.getOperand(1), &I); 1838 1839 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1840 1841 setShadow(&I, getCleanShadow(&I)); 1842 setOrigin(&I, getCleanOrigin()); 1843 } 1844 1845 void visitAtomicRMWInst(AtomicRMWInst &I) { 1846 handleCASOrRMW(I); 1847 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1848 } 1849 1850 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1851 handleCASOrRMW(I); 1852 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1853 } 1854 1855 // Vector manipulation. 1856 void visitExtractElementInst(ExtractElementInst &I) { 1857 insertShadowCheck(I.getOperand(1), &I); 1858 IRBuilder<> IRB(&I); 1859 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1860 "_msprop")); 1861 setOrigin(&I, getOrigin(&I, 0)); 1862 } 1863 1864 void visitInsertElementInst(InsertElementInst &I) { 1865 insertShadowCheck(I.getOperand(2), &I); 1866 IRBuilder<> IRB(&I); 1867 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1868 I.getOperand(2), "_msprop")); 1869 setOriginForNaryOp(I); 1870 } 1871 1872 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1873 insertShadowCheck(I.getOperand(2), &I); 1874 IRBuilder<> IRB(&I); 1875 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1876 I.getOperand(2), "_msprop")); 1877 setOriginForNaryOp(I); 1878 } 1879 1880 // Casts. 1881 void visitSExtInst(SExtInst &I) { 1882 IRBuilder<> IRB(&I); 1883 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1884 setOrigin(&I, getOrigin(&I, 0)); 1885 } 1886 1887 void visitZExtInst(ZExtInst &I) { 1888 IRBuilder<> IRB(&I); 1889 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1890 setOrigin(&I, getOrigin(&I, 0)); 1891 } 1892 1893 void visitTruncInst(TruncInst &I) { 1894 IRBuilder<> IRB(&I); 1895 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1896 setOrigin(&I, getOrigin(&I, 0)); 1897 } 1898 1899 void visitBitCastInst(BitCastInst &I) { 1900 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1901 // a musttail call and a ret, don't instrument. New instructions are not 1902 // allowed after a musttail call. 1903 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1904 if (CI->isMustTailCall()) 1905 return; 1906 IRBuilder<> IRB(&I); 1907 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1908 setOrigin(&I, getOrigin(&I, 0)); 1909 } 1910 1911 void visitPtrToIntInst(PtrToIntInst &I) { 1912 IRBuilder<> IRB(&I); 1913 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1914 "_msprop_ptrtoint")); 1915 setOrigin(&I, getOrigin(&I, 0)); 1916 } 1917 1918 void visitIntToPtrInst(IntToPtrInst &I) { 1919 IRBuilder<> IRB(&I); 1920 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1921 "_msprop_inttoptr")); 1922 setOrigin(&I, getOrigin(&I, 0)); 1923 } 1924 1925 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1926 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1927 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1928 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1929 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1930 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1931 1932 /// Propagate shadow for bitwise AND. 1933 /// 1934 /// This code is exact, i.e. if, for example, a bit in the left argument 1935 /// is defined and 0, then neither the value not definedness of the 1936 /// corresponding bit in B don't affect the resulting shadow. 1937 void visitAnd(BinaryOperator &I) { 1938 IRBuilder<> IRB(&I); 1939 // "And" of 0 and a poisoned value results in unpoisoned value. 1940 // 1&1 => 1; 0&1 => 0; p&1 => p; 1941 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1942 // 1&p => p; 0&p => 0; p&p => p; 1943 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1944 Value *S1 = getShadow(&I, 0); 1945 Value *S2 = getShadow(&I, 1); 1946 Value *V1 = I.getOperand(0); 1947 Value *V2 = I.getOperand(1); 1948 if (V1->getType() != S1->getType()) { 1949 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1950 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1951 } 1952 Value *S1S2 = IRB.CreateAnd(S1, S2); 1953 Value *V1S2 = IRB.CreateAnd(V1, S2); 1954 Value *S1V2 = IRB.CreateAnd(S1, V2); 1955 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1956 setOriginForNaryOp(I); 1957 } 1958 1959 void visitOr(BinaryOperator &I) { 1960 IRBuilder<> IRB(&I); 1961 // "Or" of 1 and a poisoned value results in unpoisoned value. 1962 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1963 // 1|0 => 1; 0|0 => 0; p|0 => p; 1964 // 1|p => 1; 0|p => p; p|p => p; 1965 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1966 Value *S1 = getShadow(&I, 0); 1967 Value *S2 = getShadow(&I, 1); 1968 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1969 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1970 if (V1->getType() != S1->getType()) { 1971 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1972 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1973 } 1974 Value *S1S2 = IRB.CreateAnd(S1, S2); 1975 Value *V1S2 = IRB.CreateAnd(V1, S2); 1976 Value *S1V2 = IRB.CreateAnd(S1, V2); 1977 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1978 setOriginForNaryOp(I); 1979 } 1980 1981 /// Default propagation of shadow and/or origin. 1982 /// 1983 /// This class implements the general case of shadow propagation, used in all 1984 /// cases where we don't know and/or don't care about what the operation 1985 /// actually does. It converts all input shadow values to a common type 1986 /// (extending or truncating as necessary), and bitwise OR's them. 1987 /// 1988 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1989 /// fully initialized), and less prone to false positives. 1990 /// 1991 /// This class also implements the general case of origin propagation. For a 1992 /// Nary operation, result origin is set to the origin of an argument that is 1993 /// not entirely initialized. If there is more than one such arguments, the 1994 /// rightmost of them is picked. It does not matter which one is picked if all 1995 /// arguments are initialized. 1996 template <bool CombineShadow> 1997 class Combiner { 1998 Value *Shadow = nullptr; 1999 Value *Origin = nullptr; 2000 IRBuilder<> &IRB; 2001 MemorySanitizerVisitor *MSV; 2002 2003 public: 2004 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2005 : IRB(IRB), MSV(MSV) {} 2006 2007 /// Add a pair of shadow and origin values to the mix. 2008 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2009 if (CombineShadow) { 2010 assert(OpShadow); 2011 if (!Shadow) 2012 Shadow = OpShadow; 2013 else { 2014 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2015 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2016 } 2017 } 2018 2019 if (MSV->MS.TrackOrigins) { 2020 assert(OpOrigin); 2021 if (!Origin) { 2022 Origin = OpOrigin; 2023 } else { 2024 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2025 // No point in adding something that might result in 0 origin value. 2026 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2027 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2028 Value *Cond = 2029 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2030 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2031 } 2032 } 2033 } 2034 return *this; 2035 } 2036 2037 /// Add an application value to the mix. 2038 Combiner &Add(Value *V) { 2039 Value *OpShadow = MSV->getShadow(V); 2040 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2041 return Add(OpShadow, OpOrigin); 2042 } 2043 2044 /// Set the current combined values as the given instruction's shadow 2045 /// and origin. 2046 void Done(Instruction *I) { 2047 if (CombineShadow) { 2048 assert(Shadow); 2049 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2050 MSV->setShadow(I, Shadow); 2051 } 2052 if (MSV->MS.TrackOrigins) { 2053 assert(Origin); 2054 MSV->setOrigin(I, Origin); 2055 } 2056 } 2057 }; 2058 2059 using ShadowAndOriginCombiner = Combiner<true>; 2060 using OriginCombiner = Combiner<false>; 2061 2062 /// Propagate origin for arbitrary operation. 2063 void setOriginForNaryOp(Instruction &I) { 2064 if (!MS.TrackOrigins) return; 2065 IRBuilder<> IRB(&I); 2066 OriginCombiner OC(this, IRB); 2067 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2068 OC.Add(OI->get()); 2069 OC.Done(&I); 2070 } 2071 2072 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2073 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2074 "Vector of pointers is not a valid shadow type"); 2075 return Ty->isVectorTy() ? 2076 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2077 Ty->getPrimitiveSizeInBits(); 2078 } 2079 2080 /// Cast between two shadow types, extending or truncating as 2081 /// necessary. 2082 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2083 bool Signed = false) { 2084 Type *srcTy = V->getType(); 2085 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2086 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2087 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2088 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2089 2090 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2091 return IRB.CreateIntCast(V, dstTy, Signed); 2092 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2093 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2094 return IRB.CreateIntCast(V, dstTy, Signed); 2095 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2096 Value *V2 = 2097 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2098 return IRB.CreateBitCast(V2, dstTy); 2099 // TODO: handle struct types. 2100 } 2101 2102 /// Cast an application value to the type of its own shadow. 2103 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2104 Type *ShadowTy = getShadowTy(V); 2105 if (V->getType() == ShadowTy) 2106 return V; 2107 if (V->getType()->isPtrOrPtrVectorTy()) 2108 return IRB.CreatePtrToInt(V, ShadowTy); 2109 else 2110 return IRB.CreateBitCast(V, ShadowTy); 2111 } 2112 2113 /// Propagate shadow for arbitrary operation. 2114 void handleShadowOr(Instruction &I) { 2115 IRBuilder<> IRB(&I); 2116 ShadowAndOriginCombiner SC(this, IRB); 2117 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2118 SC.Add(OI->get()); 2119 SC.Done(&I); 2120 } 2121 2122 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2123 2124 // Handle multiplication by constant. 2125 // 2126 // Handle a special case of multiplication by constant that may have one or 2127 // more zeros in the lower bits. This makes corresponding number of lower bits 2128 // of the result zero as well. We model it by shifting the other operand 2129 // shadow left by the required number of bits. Effectively, we transform 2130 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2131 // We use multiplication by 2**N instead of shift to cover the case of 2132 // multiplication by 0, which may occur in some elements of a vector operand. 2133 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2134 Value *OtherArg) { 2135 Constant *ShadowMul; 2136 Type *Ty = ConstArg->getType(); 2137 if (Ty->isVectorTy()) { 2138 unsigned NumElements = Ty->getVectorNumElements(); 2139 Type *EltTy = Ty->getSequentialElementType(); 2140 SmallVector<Constant *, 16> Elements; 2141 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2142 if (ConstantInt *Elt = 2143 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2144 const APInt &V = Elt->getValue(); 2145 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2146 Elements.push_back(ConstantInt::get(EltTy, V2)); 2147 } else { 2148 Elements.push_back(ConstantInt::get(EltTy, 1)); 2149 } 2150 } 2151 ShadowMul = ConstantVector::get(Elements); 2152 } else { 2153 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2154 const APInt &V = Elt->getValue(); 2155 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2156 ShadowMul = ConstantInt::get(Ty, V2); 2157 } else { 2158 ShadowMul = ConstantInt::get(Ty, 1); 2159 } 2160 } 2161 2162 IRBuilder<> IRB(&I); 2163 setShadow(&I, 2164 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2165 setOrigin(&I, getOrigin(OtherArg)); 2166 } 2167 2168 void visitMul(BinaryOperator &I) { 2169 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2170 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2171 if (constOp0 && !constOp1) 2172 handleMulByConstant(I, constOp0, I.getOperand(1)); 2173 else if (constOp1 && !constOp0) 2174 handleMulByConstant(I, constOp1, I.getOperand(0)); 2175 else 2176 handleShadowOr(I); 2177 } 2178 2179 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2180 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2181 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2182 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2183 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2184 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2185 2186 void handleIntegerDiv(Instruction &I) { 2187 IRBuilder<> IRB(&I); 2188 // Strict on the second argument. 2189 insertShadowCheck(I.getOperand(1), &I); 2190 setShadow(&I, getShadow(&I, 0)); 2191 setOrigin(&I, getOrigin(&I, 0)); 2192 } 2193 2194 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2195 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2196 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2197 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2198 2199 // Floating point division is side-effect free. We can not require that the 2200 // divisor is fully initialized and must propagate shadow. See PR37523. 2201 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2202 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2203 2204 /// Instrument == and != comparisons. 2205 /// 2206 /// Sometimes the comparison result is known even if some of the bits of the 2207 /// arguments are not. 2208 void handleEqualityComparison(ICmpInst &I) { 2209 IRBuilder<> IRB(&I); 2210 Value *A = I.getOperand(0); 2211 Value *B = I.getOperand(1); 2212 Value *Sa = getShadow(A); 2213 Value *Sb = getShadow(B); 2214 2215 // Get rid of pointers and vectors of pointers. 2216 // For ints (and vectors of ints), types of A and Sa match, 2217 // and this is a no-op. 2218 A = IRB.CreatePointerCast(A, Sa->getType()); 2219 B = IRB.CreatePointerCast(B, Sb->getType()); 2220 2221 // A == B <==> (C = A^B) == 0 2222 // A != B <==> (C = A^B) != 0 2223 // Sc = Sa | Sb 2224 Value *C = IRB.CreateXor(A, B); 2225 Value *Sc = IRB.CreateOr(Sa, Sb); 2226 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2227 // Result is defined if one of the following is true 2228 // * there is a defined 1 bit in C 2229 // * C is fully defined 2230 // Si = !(C & ~Sc) && Sc 2231 Value *Zero = Constant::getNullValue(Sc->getType()); 2232 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2233 Value *Si = 2234 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2235 IRB.CreateICmpEQ( 2236 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2237 Si->setName("_msprop_icmp"); 2238 setShadow(&I, Si); 2239 setOriginForNaryOp(I); 2240 } 2241 2242 /// Build the lowest possible value of V, taking into account V's 2243 /// uninitialized bits. 2244 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2245 bool isSigned) { 2246 if (isSigned) { 2247 // Split shadow into sign bit and other bits. 2248 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2249 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2250 // Maximise the undefined shadow bit, minimize other undefined bits. 2251 return 2252 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2253 } else { 2254 // Minimize undefined bits. 2255 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2256 } 2257 } 2258 2259 /// Build the highest possible value of V, taking into account V's 2260 /// uninitialized bits. 2261 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2262 bool isSigned) { 2263 if (isSigned) { 2264 // Split shadow into sign bit and other bits. 2265 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2266 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2267 // Minimise the undefined shadow bit, maximise other undefined bits. 2268 return 2269 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2270 } else { 2271 // Maximize undefined bits. 2272 return IRB.CreateOr(A, Sa); 2273 } 2274 } 2275 2276 /// Instrument relational comparisons. 2277 /// 2278 /// This function does exact shadow propagation for all relational 2279 /// comparisons of integers, pointers and vectors of those. 2280 /// FIXME: output seems suboptimal when one of the operands is a constant 2281 void handleRelationalComparisonExact(ICmpInst &I) { 2282 IRBuilder<> IRB(&I); 2283 Value *A = I.getOperand(0); 2284 Value *B = I.getOperand(1); 2285 Value *Sa = getShadow(A); 2286 Value *Sb = getShadow(B); 2287 2288 // Get rid of pointers and vectors of pointers. 2289 // For ints (and vectors of ints), types of A and Sa match, 2290 // and this is a no-op. 2291 A = IRB.CreatePointerCast(A, Sa->getType()); 2292 B = IRB.CreatePointerCast(B, Sb->getType()); 2293 2294 // Let [a0, a1] be the interval of possible values of A, taking into account 2295 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2296 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2297 bool IsSigned = I.isSigned(); 2298 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2299 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2300 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2301 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2302 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2303 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2304 Value *Si = IRB.CreateXor(S1, S2); 2305 setShadow(&I, Si); 2306 setOriginForNaryOp(I); 2307 } 2308 2309 /// Instrument signed relational comparisons. 2310 /// 2311 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2312 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2313 void handleSignedRelationalComparison(ICmpInst &I) { 2314 Constant *constOp; 2315 Value *op = nullptr; 2316 CmpInst::Predicate pre; 2317 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2318 op = I.getOperand(0); 2319 pre = I.getPredicate(); 2320 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2321 op = I.getOperand(1); 2322 pre = I.getSwappedPredicate(); 2323 } else { 2324 handleShadowOr(I); 2325 return; 2326 } 2327 2328 if ((constOp->isNullValue() && 2329 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2330 (constOp->isAllOnesValue() && 2331 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2332 IRBuilder<> IRB(&I); 2333 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2334 "_msprop_icmp_s"); 2335 setShadow(&I, Shadow); 2336 setOrigin(&I, getOrigin(op)); 2337 } else { 2338 handleShadowOr(I); 2339 } 2340 } 2341 2342 void visitICmpInst(ICmpInst &I) { 2343 if (!ClHandleICmp) { 2344 handleShadowOr(I); 2345 return; 2346 } 2347 if (I.isEquality()) { 2348 handleEqualityComparison(I); 2349 return; 2350 } 2351 2352 assert(I.isRelational()); 2353 if (ClHandleICmpExact) { 2354 handleRelationalComparisonExact(I); 2355 return; 2356 } 2357 if (I.isSigned()) { 2358 handleSignedRelationalComparison(I); 2359 return; 2360 } 2361 2362 assert(I.isUnsigned()); 2363 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2364 handleRelationalComparisonExact(I); 2365 return; 2366 } 2367 2368 handleShadowOr(I); 2369 } 2370 2371 void visitFCmpInst(FCmpInst &I) { 2372 handleShadowOr(I); 2373 } 2374 2375 void handleShift(BinaryOperator &I) { 2376 IRBuilder<> IRB(&I); 2377 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2378 // Otherwise perform the same shift on S1. 2379 Value *S1 = getShadow(&I, 0); 2380 Value *S2 = getShadow(&I, 1); 2381 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2382 S2->getType()); 2383 Value *V2 = I.getOperand(1); 2384 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2385 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2386 setOriginForNaryOp(I); 2387 } 2388 2389 void visitShl(BinaryOperator &I) { handleShift(I); } 2390 void visitAShr(BinaryOperator &I) { handleShift(I); } 2391 void visitLShr(BinaryOperator &I) { handleShift(I); } 2392 2393 /// Instrument llvm.memmove 2394 /// 2395 /// At this point we don't know if llvm.memmove will be inlined or not. 2396 /// If we don't instrument it and it gets inlined, 2397 /// our interceptor will not kick in and we will lose the memmove. 2398 /// If we instrument the call here, but it does not get inlined, 2399 /// we will memove the shadow twice: which is bad in case 2400 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2401 /// 2402 /// Similar situation exists for memcpy and memset. 2403 void visitMemMoveInst(MemMoveInst &I) { 2404 IRBuilder<> IRB(&I); 2405 IRB.CreateCall( 2406 MS.MemmoveFn, 2407 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2408 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2409 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2410 I.eraseFromParent(); 2411 } 2412 2413 // Similar to memmove: avoid copying shadow twice. 2414 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2415 // FIXME: consider doing manual inline for small constant sizes and proper 2416 // alignment. 2417 void visitMemCpyInst(MemCpyInst &I) { 2418 IRBuilder<> IRB(&I); 2419 IRB.CreateCall( 2420 MS.MemcpyFn, 2421 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2422 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2423 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2424 I.eraseFromParent(); 2425 } 2426 2427 // Same as memcpy. 2428 void visitMemSetInst(MemSetInst &I) { 2429 IRBuilder<> IRB(&I); 2430 IRB.CreateCall( 2431 MS.MemsetFn, 2432 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2433 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2434 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2435 I.eraseFromParent(); 2436 } 2437 2438 void visitVAStartInst(VAStartInst &I) { 2439 VAHelper->visitVAStartInst(I); 2440 } 2441 2442 void visitVACopyInst(VACopyInst &I) { 2443 VAHelper->visitVACopyInst(I); 2444 } 2445 2446 /// Handle vector store-like intrinsics. 2447 /// 2448 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2449 /// has 1 pointer argument and 1 vector argument, returns void. 2450 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2451 IRBuilder<> IRB(&I); 2452 Value* Addr = I.getArgOperand(0); 2453 Value *Shadow = getShadow(&I, 1); 2454 Value *ShadowPtr, *OriginPtr; 2455 2456 // We don't know the pointer alignment (could be unaligned SSE store!). 2457 // Have to assume to worst case. 2458 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2459 Addr, IRB, Shadow->getType(), Align::None(), /*isStore*/ true); 2460 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2461 2462 if (ClCheckAccessAddress) 2463 insertShadowCheck(Addr, &I); 2464 2465 // FIXME: factor out common code from materializeStores 2466 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2467 return true; 2468 } 2469 2470 /// Handle vector load-like intrinsics. 2471 /// 2472 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2473 /// has 1 pointer argument, returns a vector. 2474 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2475 IRBuilder<> IRB(&I); 2476 Value *Addr = I.getArgOperand(0); 2477 2478 Type *ShadowTy = getShadowTy(&I); 2479 Value *ShadowPtr, *OriginPtr; 2480 if (PropagateShadow) { 2481 // We don't know the pointer alignment (could be unaligned SSE load!). 2482 // Have to assume to worst case. 2483 const Align Alignment = Align::None(); 2484 std::tie(ShadowPtr, OriginPtr) = 2485 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2486 setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, 2487 Alignment.value(), "_msld")); 2488 } else { 2489 setShadow(&I, getCleanShadow(&I)); 2490 } 2491 2492 if (ClCheckAccessAddress) 2493 insertShadowCheck(Addr, &I); 2494 2495 if (MS.TrackOrigins) { 2496 if (PropagateShadow) 2497 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2498 else 2499 setOrigin(&I, getCleanOrigin()); 2500 } 2501 return true; 2502 } 2503 2504 /// Handle (SIMD arithmetic)-like intrinsics. 2505 /// 2506 /// Instrument intrinsics with any number of arguments of the same type, 2507 /// equal to the return type. The type should be simple (no aggregates or 2508 /// pointers; vectors are fine). 2509 /// Caller guarantees that this intrinsic does not access memory. 2510 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2511 Type *RetTy = I.getType(); 2512 if (!(RetTy->isIntOrIntVectorTy() || 2513 RetTy->isFPOrFPVectorTy() || 2514 RetTy->isX86_MMXTy())) 2515 return false; 2516 2517 unsigned NumArgOperands = I.getNumArgOperands(); 2518 2519 for (unsigned i = 0; i < NumArgOperands; ++i) { 2520 Type *Ty = I.getArgOperand(i)->getType(); 2521 if (Ty != RetTy) 2522 return false; 2523 } 2524 2525 IRBuilder<> IRB(&I); 2526 ShadowAndOriginCombiner SC(this, IRB); 2527 for (unsigned i = 0; i < NumArgOperands; ++i) 2528 SC.Add(I.getArgOperand(i)); 2529 SC.Done(&I); 2530 2531 return true; 2532 } 2533 2534 /// Heuristically instrument unknown intrinsics. 2535 /// 2536 /// The main purpose of this code is to do something reasonable with all 2537 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2538 /// We recognize several classes of intrinsics by their argument types and 2539 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2540 /// sure that we know what the intrinsic does. 2541 /// 2542 /// We special-case intrinsics where this approach fails. See llvm.bswap 2543 /// handling as an example of that. 2544 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2545 unsigned NumArgOperands = I.getNumArgOperands(); 2546 if (NumArgOperands == 0) 2547 return false; 2548 2549 if (NumArgOperands == 2 && 2550 I.getArgOperand(0)->getType()->isPointerTy() && 2551 I.getArgOperand(1)->getType()->isVectorTy() && 2552 I.getType()->isVoidTy() && 2553 !I.onlyReadsMemory()) { 2554 // This looks like a vector store. 2555 return handleVectorStoreIntrinsic(I); 2556 } 2557 2558 if (NumArgOperands == 1 && 2559 I.getArgOperand(0)->getType()->isPointerTy() && 2560 I.getType()->isVectorTy() && 2561 I.onlyReadsMemory()) { 2562 // This looks like a vector load. 2563 return handleVectorLoadIntrinsic(I); 2564 } 2565 2566 if (I.doesNotAccessMemory()) 2567 if (maybeHandleSimpleNomemIntrinsic(I)) 2568 return true; 2569 2570 // FIXME: detect and handle SSE maskstore/maskload 2571 return false; 2572 } 2573 2574 void handleInvariantGroup(IntrinsicInst &I) { 2575 setShadow(&I, getShadow(&I, 0)); 2576 setOrigin(&I, getOrigin(&I, 0)); 2577 } 2578 2579 void handleLifetimeStart(IntrinsicInst &I) { 2580 if (!PoisonStack) 2581 return; 2582 DenseMap<Value *, AllocaInst *> AllocaForValue; 2583 AllocaInst *AI = 2584 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2585 if (!AI) 2586 InstrumentLifetimeStart = false; 2587 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2588 } 2589 2590 void handleBswap(IntrinsicInst &I) { 2591 IRBuilder<> IRB(&I); 2592 Value *Op = I.getArgOperand(0); 2593 Type *OpType = Op->getType(); 2594 Function *BswapFunc = Intrinsic::getDeclaration( 2595 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2596 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2597 setOrigin(&I, getOrigin(Op)); 2598 } 2599 2600 // Instrument vector convert instrinsic. 2601 // 2602 // This function instruments intrinsics like cvtsi2ss: 2603 // %Out = int_xxx_cvtyyy(%ConvertOp) 2604 // or 2605 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2606 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2607 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2608 // elements from \p CopyOp. 2609 // In most cases conversion involves floating-point value which may trigger a 2610 // hardware exception when not fully initialized. For this reason we require 2611 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2612 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2613 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2614 // return a fully initialized value. 2615 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2616 IRBuilder<> IRB(&I); 2617 Value *CopyOp, *ConvertOp; 2618 2619 switch (I.getNumArgOperands()) { 2620 case 3: 2621 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2622 LLVM_FALLTHROUGH; 2623 case 2: 2624 CopyOp = I.getArgOperand(0); 2625 ConvertOp = I.getArgOperand(1); 2626 break; 2627 case 1: 2628 ConvertOp = I.getArgOperand(0); 2629 CopyOp = nullptr; 2630 break; 2631 default: 2632 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2633 } 2634 2635 // The first *NumUsedElements* elements of ConvertOp are converted to the 2636 // same number of output elements. The rest of the output is copied from 2637 // CopyOp, or (if not available) filled with zeroes. 2638 // Combine shadow for elements of ConvertOp that are used in this operation, 2639 // and insert a check. 2640 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2641 // int->any conversion. 2642 Value *ConvertShadow = getShadow(ConvertOp); 2643 Value *AggShadow = nullptr; 2644 if (ConvertOp->getType()->isVectorTy()) { 2645 AggShadow = IRB.CreateExtractElement( 2646 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2647 for (int i = 1; i < NumUsedElements; ++i) { 2648 Value *MoreShadow = IRB.CreateExtractElement( 2649 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2650 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2651 } 2652 } else { 2653 AggShadow = ConvertShadow; 2654 } 2655 assert(AggShadow->getType()->isIntegerTy()); 2656 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2657 2658 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2659 // ConvertOp. 2660 if (CopyOp) { 2661 assert(CopyOp->getType() == I.getType()); 2662 assert(CopyOp->getType()->isVectorTy()); 2663 Value *ResultShadow = getShadow(CopyOp); 2664 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2665 for (int i = 0; i < NumUsedElements; ++i) { 2666 ResultShadow = IRB.CreateInsertElement( 2667 ResultShadow, ConstantInt::getNullValue(EltTy), 2668 ConstantInt::get(IRB.getInt32Ty(), i)); 2669 } 2670 setShadow(&I, ResultShadow); 2671 setOrigin(&I, getOrigin(CopyOp)); 2672 } else { 2673 setShadow(&I, getCleanShadow(&I)); 2674 setOrigin(&I, getCleanOrigin()); 2675 } 2676 } 2677 2678 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2679 // zeroes if it is zero, and all ones otherwise. 2680 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2681 if (S->getType()->isVectorTy()) 2682 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2683 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2684 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2685 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2686 } 2687 2688 // Given a vector, extract its first element, and return all 2689 // zeroes if it is zero, and all ones otherwise. 2690 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2691 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2692 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2693 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2694 } 2695 2696 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2697 Type *T = S->getType(); 2698 assert(T->isVectorTy()); 2699 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2700 return IRB.CreateSExt(S2, T); 2701 } 2702 2703 // Instrument vector shift instrinsic. 2704 // 2705 // This function instruments intrinsics like int_x86_avx2_psll_w. 2706 // Intrinsic shifts %In by %ShiftSize bits. 2707 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2708 // size, and the rest is ignored. Behavior is defined even if shift size is 2709 // greater than register (or field) width. 2710 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2711 assert(I.getNumArgOperands() == 2); 2712 IRBuilder<> IRB(&I); 2713 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2714 // Otherwise perform the same shift on S1. 2715 Value *S1 = getShadow(&I, 0); 2716 Value *S2 = getShadow(&I, 1); 2717 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2718 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2719 Value *V1 = I.getOperand(0); 2720 Value *V2 = I.getOperand(1); 2721 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 2722 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2723 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2724 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2725 setOriginForNaryOp(I); 2726 } 2727 2728 // Get an X86_MMX-sized vector type. 2729 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2730 const unsigned X86_MMXSizeInBits = 64; 2731 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2732 "Illegal MMX vector element size"); 2733 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2734 X86_MMXSizeInBits / EltSizeInBits); 2735 } 2736 2737 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2738 // intrinsic. 2739 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2740 switch (id) { 2741 case Intrinsic::x86_sse2_packsswb_128: 2742 case Intrinsic::x86_sse2_packuswb_128: 2743 return Intrinsic::x86_sse2_packsswb_128; 2744 2745 case Intrinsic::x86_sse2_packssdw_128: 2746 case Intrinsic::x86_sse41_packusdw: 2747 return Intrinsic::x86_sse2_packssdw_128; 2748 2749 case Intrinsic::x86_avx2_packsswb: 2750 case Intrinsic::x86_avx2_packuswb: 2751 return Intrinsic::x86_avx2_packsswb; 2752 2753 case Intrinsic::x86_avx2_packssdw: 2754 case Intrinsic::x86_avx2_packusdw: 2755 return Intrinsic::x86_avx2_packssdw; 2756 2757 case Intrinsic::x86_mmx_packsswb: 2758 case Intrinsic::x86_mmx_packuswb: 2759 return Intrinsic::x86_mmx_packsswb; 2760 2761 case Intrinsic::x86_mmx_packssdw: 2762 return Intrinsic::x86_mmx_packssdw; 2763 default: 2764 llvm_unreachable("unexpected intrinsic id"); 2765 } 2766 } 2767 2768 // Instrument vector pack instrinsic. 2769 // 2770 // This function instruments intrinsics like x86_mmx_packsswb, that 2771 // packs elements of 2 input vectors into half as many bits with saturation. 2772 // Shadow is propagated with the signed variant of the same intrinsic applied 2773 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2774 // EltSizeInBits is used only for x86mmx arguments. 2775 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2776 assert(I.getNumArgOperands() == 2); 2777 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2778 IRBuilder<> IRB(&I); 2779 Value *S1 = getShadow(&I, 0); 2780 Value *S2 = getShadow(&I, 1); 2781 assert(isX86_MMX || S1->getType()->isVectorTy()); 2782 2783 // SExt and ICmpNE below must apply to individual elements of input vectors. 2784 // In case of x86mmx arguments, cast them to appropriate vector types and 2785 // back. 2786 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2787 if (isX86_MMX) { 2788 S1 = IRB.CreateBitCast(S1, T); 2789 S2 = IRB.CreateBitCast(S2, T); 2790 } 2791 Value *S1_ext = IRB.CreateSExt( 2792 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2793 Value *S2_ext = IRB.CreateSExt( 2794 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2795 if (isX86_MMX) { 2796 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2797 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2798 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2799 } 2800 2801 Function *ShadowFn = Intrinsic::getDeclaration( 2802 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2803 2804 Value *S = 2805 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2806 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2807 setShadow(&I, S); 2808 setOriginForNaryOp(I); 2809 } 2810 2811 // Instrument sum-of-absolute-differencies intrinsic. 2812 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2813 const unsigned SignificantBitsPerResultElement = 16; 2814 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2815 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2816 unsigned ZeroBitsPerResultElement = 2817 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2818 2819 IRBuilder<> IRB(&I); 2820 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2821 S = IRB.CreateBitCast(S, ResTy); 2822 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2823 ResTy); 2824 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2825 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2826 setShadow(&I, S); 2827 setOriginForNaryOp(I); 2828 } 2829 2830 // Instrument multiply-add intrinsic. 2831 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2832 unsigned EltSizeInBits = 0) { 2833 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2834 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2835 IRBuilder<> IRB(&I); 2836 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2837 S = IRB.CreateBitCast(S, ResTy); 2838 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2839 ResTy); 2840 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2841 setShadow(&I, S); 2842 setOriginForNaryOp(I); 2843 } 2844 2845 // Instrument compare-packed intrinsic. 2846 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2847 // all-ones shadow. 2848 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2849 IRBuilder<> IRB(&I); 2850 Type *ResTy = getShadowTy(&I); 2851 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2852 Value *S = IRB.CreateSExt( 2853 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2854 setShadow(&I, S); 2855 setOriginForNaryOp(I); 2856 } 2857 2858 // Instrument compare-scalar intrinsic. 2859 // This handles both cmp* intrinsics which return the result in the first 2860 // element of a vector, and comi* which return the result as i32. 2861 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2862 IRBuilder<> IRB(&I); 2863 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2864 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2865 setShadow(&I, S); 2866 setOriginForNaryOp(I); 2867 } 2868 2869 void handleStmxcsr(IntrinsicInst &I) { 2870 IRBuilder<> IRB(&I); 2871 Value* Addr = I.getArgOperand(0); 2872 Type *Ty = IRB.getInt32Ty(); 2873 Value *ShadowPtr = 2874 getShadowOriginPtr(Addr, IRB, Ty, Align::None(), /*isStore*/ true) 2875 .first; 2876 2877 IRB.CreateStore(getCleanShadow(Ty), 2878 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2879 2880 if (ClCheckAccessAddress) 2881 insertShadowCheck(Addr, &I); 2882 } 2883 2884 void handleLdmxcsr(IntrinsicInst &I) { 2885 if (!InsertChecks) return; 2886 2887 IRBuilder<> IRB(&I); 2888 Value *Addr = I.getArgOperand(0); 2889 Type *Ty = IRB.getInt32Ty(); 2890 const Align Alignment = Align::None(); 2891 Value *ShadowPtr, *OriginPtr; 2892 std::tie(ShadowPtr, OriginPtr) = 2893 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2894 2895 if (ClCheckAccessAddress) 2896 insertShadowCheck(Addr, &I); 2897 2898 Value *Shadow = 2899 IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment.value(), "_ldmxcsr"); 2900 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2901 : getCleanOrigin(); 2902 insertShadowCheck(Shadow, Origin, &I); 2903 } 2904 2905 void handleMaskedStore(IntrinsicInst &I) { 2906 IRBuilder<> IRB(&I); 2907 Value *V = I.getArgOperand(0); 2908 Value *Addr = I.getArgOperand(1); 2909 const MaybeAlign Alignment( 2910 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2911 Value *Mask = I.getArgOperand(3); 2912 Value *Shadow = getShadow(V); 2913 2914 Value *ShadowPtr; 2915 Value *OriginPtr; 2916 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2917 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2918 2919 if (ClCheckAccessAddress) { 2920 insertShadowCheck(Addr, &I); 2921 // Uninitialized mask is kind of like uninitialized address, but not as 2922 // scary. 2923 insertShadowCheck(Mask, &I); 2924 } 2925 2926 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment ? Alignment->value() : 0, 2927 Mask); 2928 2929 if (MS.TrackOrigins) { 2930 auto &DL = F.getParent()->getDataLayout(); 2931 paintOrigin(IRB, getOrigin(V), OriginPtr, 2932 DL.getTypeStoreSize(Shadow->getType()), 2933 llvm::max(Alignment, kMinOriginAlignment)); 2934 } 2935 } 2936 2937 bool handleMaskedLoad(IntrinsicInst &I) { 2938 IRBuilder<> IRB(&I); 2939 Value *Addr = I.getArgOperand(0); 2940 const MaybeAlign Alignment( 2941 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2942 Value *Mask = I.getArgOperand(2); 2943 Value *PassThru = I.getArgOperand(3); 2944 2945 Type *ShadowTy = getShadowTy(&I); 2946 Value *ShadowPtr, *OriginPtr; 2947 if (PropagateShadow) { 2948 std::tie(ShadowPtr, OriginPtr) = 2949 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2950 setShadow(&I, IRB.CreateMaskedLoad( 2951 ShadowPtr, Alignment ? Alignment->value() : 0, Mask, 2952 getShadow(PassThru), "_msmaskedld")); 2953 } else { 2954 setShadow(&I, getCleanShadow(&I)); 2955 } 2956 2957 if (ClCheckAccessAddress) { 2958 insertShadowCheck(Addr, &I); 2959 insertShadowCheck(Mask, &I); 2960 } 2961 2962 if (MS.TrackOrigins) { 2963 if (PropagateShadow) { 2964 // Choose between PassThru's and the loaded value's origins. 2965 Value *MaskedPassThruShadow = IRB.CreateAnd( 2966 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2967 2968 Value *Acc = IRB.CreateExtractElement( 2969 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2970 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2971 ++i) { 2972 Value *More = IRB.CreateExtractElement( 2973 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2974 Acc = IRB.CreateOr(Acc, More); 2975 } 2976 2977 Value *Origin = IRB.CreateSelect( 2978 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2979 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2980 2981 setOrigin(&I, Origin); 2982 } else { 2983 setOrigin(&I, getCleanOrigin()); 2984 } 2985 } 2986 return true; 2987 } 2988 2989 // Instrument BMI / BMI2 intrinsics. 2990 // All of these intrinsics are Z = I(X, Y) 2991 // where the types of all operands and the result match, and are either i32 or i64. 2992 // The following instrumentation happens to work for all of them: 2993 // Sz = I(Sx, Y) | (sext (Sy != 0)) 2994 void handleBmiIntrinsic(IntrinsicInst &I) { 2995 IRBuilder<> IRB(&I); 2996 Type *ShadowTy = getShadowTy(&I); 2997 2998 // If any bit of the mask operand is poisoned, then the whole thing is. 2999 Value *SMask = getShadow(&I, 1); 3000 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3001 ShadowTy); 3002 // Apply the same intrinsic to the shadow of the first operand. 3003 Value *S = IRB.CreateCall(I.getCalledFunction(), 3004 {getShadow(&I, 0), I.getOperand(1)}); 3005 S = IRB.CreateOr(SMask, S); 3006 setShadow(&I, S); 3007 setOriginForNaryOp(I); 3008 } 3009 3010 void visitIntrinsicInst(IntrinsicInst &I) { 3011 switch (I.getIntrinsicID()) { 3012 case Intrinsic::lifetime_start: 3013 handleLifetimeStart(I); 3014 break; 3015 case Intrinsic::launder_invariant_group: 3016 case Intrinsic::strip_invariant_group: 3017 handleInvariantGroup(I); 3018 break; 3019 case Intrinsic::bswap: 3020 handleBswap(I); 3021 break; 3022 case Intrinsic::masked_store: 3023 handleMaskedStore(I); 3024 break; 3025 case Intrinsic::masked_load: 3026 handleMaskedLoad(I); 3027 break; 3028 case Intrinsic::x86_sse_stmxcsr: 3029 handleStmxcsr(I); 3030 break; 3031 case Intrinsic::x86_sse_ldmxcsr: 3032 handleLdmxcsr(I); 3033 break; 3034 case Intrinsic::x86_avx512_vcvtsd2usi64: 3035 case Intrinsic::x86_avx512_vcvtsd2usi32: 3036 case Intrinsic::x86_avx512_vcvtss2usi64: 3037 case Intrinsic::x86_avx512_vcvtss2usi32: 3038 case Intrinsic::x86_avx512_cvttss2usi64: 3039 case Intrinsic::x86_avx512_cvttss2usi: 3040 case Intrinsic::x86_avx512_cvttsd2usi64: 3041 case Intrinsic::x86_avx512_cvttsd2usi: 3042 case Intrinsic::x86_avx512_cvtusi2ss: 3043 case Intrinsic::x86_avx512_cvtusi642sd: 3044 case Intrinsic::x86_avx512_cvtusi642ss: 3045 case Intrinsic::x86_sse2_cvtsd2si64: 3046 case Intrinsic::x86_sse2_cvtsd2si: 3047 case Intrinsic::x86_sse2_cvtsd2ss: 3048 case Intrinsic::x86_sse2_cvttsd2si64: 3049 case Intrinsic::x86_sse2_cvttsd2si: 3050 case Intrinsic::x86_sse_cvtss2si64: 3051 case Intrinsic::x86_sse_cvtss2si: 3052 case Intrinsic::x86_sse_cvttss2si64: 3053 case Intrinsic::x86_sse_cvttss2si: 3054 handleVectorConvertIntrinsic(I, 1); 3055 break; 3056 case Intrinsic::x86_sse_cvtps2pi: 3057 case Intrinsic::x86_sse_cvttps2pi: 3058 handleVectorConvertIntrinsic(I, 2); 3059 break; 3060 3061 case Intrinsic::x86_avx512_psll_w_512: 3062 case Intrinsic::x86_avx512_psll_d_512: 3063 case Intrinsic::x86_avx512_psll_q_512: 3064 case Intrinsic::x86_avx512_pslli_w_512: 3065 case Intrinsic::x86_avx512_pslli_d_512: 3066 case Intrinsic::x86_avx512_pslli_q_512: 3067 case Intrinsic::x86_avx512_psrl_w_512: 3068 case Intrinsic::x86_avx512_psrl_d_512: 3069 case Intrinsic::x86_avx512_psrl_q_512: 3070 case Intrinsic::x86_avx512_psra_w_512: 3071 case Intrinsic::x86_avx512_psra_d_512: 3072 case Intrinsic::x86_avx512_psra_q_512: 3073 case Intrinsic::x86_avx512_psrli_w_512: 3074 case Intrinsic::x86_avx512_psrli_d_512: 3075 case Intrinsic::x86_avx512_psrli_q_512: 3076 case Intrinsic::x86_avx512_psrai_w_512: 3077 case Intrinsic::x86_avx512_psrai_d_512: 3078 case Intrinsic::x86_avx512_psrai_q_512: 3079 case Intrinsic::x86_avx512_psra_q_256: 3080 case Intrinsic::x86_avx512_psra_q_128: 3081 case Intrinsic::x86_avx512_psrai_q_256: 3082 case Intrinsic::x86_avx512_psrai_q_128: 3083 case Intrinsic::x86_avx2_psll_w: 3084 case Intrinsic::x86_avx2_psll_d: 3085 case Intrinsic::x86_avx2_psll_q: 3086 case Intrinsic::x86_avx2_pslli_w: 3087 case Intrinsic::x86_avx2_pslli_d: 3088 case Intrinsic::x86_avx2_pslli_q: 3089 case Intrinsic::x86_avx2_psrl_w: 3090 case Intrinsic::x86_avx2_psrl_d: 3091 case Intrinsic::x86_avx2_psrl_q: 3092 case Intrinsic::x86_avx2_psra_w: 3093 case Intrinsic::x86_avx2_psra_d: 3094 case Intrinsic::x86_avx2_psrli_w: 3095 case Intrinsic::x86_avx2_psrli_d: 3096 case Intrinsic::x86_avx2_psrli_q: 3097 case Intrinsic::x86_avx2_psrai_w: 3098 case Intrinsic::x86_avx2_psrai_d: 3099 case Intrinsic::x86_sse2_psll_w: 3100 case Intrinsic::x86_sse2_psll_d: 3101 case Intrinsic::x86_sse2_psll_q: 3102 case Intrinsic::x86_sse2_pslli_w: 3103 case Intrinsic::x86_sse2_pslli_d: 3104 case Intrinsic::x86_sse2_pslli_q: 3105 case Intrinsic::x86_sse2_psrl_w: 3106 case Intrinsic::x86_sse2_psrl_d: 3107 case Intrinsic::x86_sse2_psrl_q: 3108 case Intrinsic::x86_sse2_psra_w: 3109 case Intrinsic::x86_sse2_psra_d: 3110 case Intrinsic::x86_sse2_psrli_w: 3111 case Intrinsic::x86_sse2_psrli_d: 3112 case Intrinsic::x86_sse2_psrli_q: 3113 case Intrinsic::x86_sse2_psrai_w: 3114 case Intrinsic::x86_sse2_psrai_d: 3115 case Intrinsic::x86_mmx_psll_w: 3116 case Intrinsic::x86_mmx_psll_d: 3117 case Intrinsic::x86_mmx_psll_q: 3118 case Intrinsic::x86_mmx_pslli_w: 3119 case Intrinsic::x86_mmx_pslli_d: 3120 case Intrinsic::x86_mmx_pslli_q: 3121 case Intrinsic::x86_mmx_psrl_w: 3122 case Intrinsic::x86_mmx_psrl_d: 3123 case Intrinsic::x86_mmx_psrl_q: 3124 case Intrinsic::x86_mmx_psra_w: 3125 case Intrinsic::x86_mmx_psra_d: 3126 case Intrinsic::x86_mmx_psrli_w: 3127 case Intrinsic::x86_mmx_psrli_d: 3128 case Intrinsic::x86_mmx_psrli_q: 3129 case Intrinsic::x86_mmx_psrai_w: 3130 case Intrinsic::x86_mmx_psrai_d: 3131 handleVectorShiftIntrinsic(I, /* Variable */ false); 3132 break; 3133 case Intrinsic::x86_avx2_psllv_d: 3134 case Intrinsic::x86_avx2_psllv_d_256: 3135 case Intrinsic::x86_avx512_psllv_d_512: 3136 case Intrinsic::x86_avx2_psllv_q: 3137 case Intrinsic::x86_avx2_psllv_q_256: 3138 case Intrinsic::x86_avx512_psllv_q_512: 3139 case Intrinsic::x86_avx2_psrlv_d: 3140 case Intrinsic::x86_avx2_psrlv_d_256: 3141 case Intrinsic::x86_avx512_psrlv_d_512: 3142 case Intrinsic::x86_avx2_psrlv_q: 3143 case Intrinsic::x86_avx2_psrlv_q_256: 3144 case Intrinsic::x86_avx512_psrlv_q_512: 3145 case Intrinsic::x86_avx2_psrav_d: 3146 case Intrinsic::x86_avx2_psrav_d_256: 3147 case Intrinsic::x86_avx512_psrav_d_512: 3148 case Intrinsic::x86_avx512_psrav_q_128: 3149 case Intrinsic::x86_avx512_psrav_q_256: 3150 case Intrinsic::x86_avx512_psrav_q_512: 3151 handleVectorShiftIntrinsic(I, /* Variable */ true); 3152 break; 3153 3154 case Intrinsic::x86_sse2_packsswb_128: 3155 case Intrinsic::x86_sse2_packssdw_128: 3156 case Intrinsic::x86_sse2_packuswb_128: 3157 case Intrinsic::x86_sse41_packusdw: 3158 case Intrinsic::x86_avx2_packsswb: 3159 case Intrinsic::x86_avx2_packssdw: 3160 case Intrinsic::x86_avx2_packuswb: 3161 case Intrinsic::x86_avx2_packusdw: 3162 handleVectorPackIntrinsic(I); 3163 break; 3164 3165 case Intrinsic::x86_mmx_packsswb: 3166 case Intrinsic::x86_mmx_packuswb: 3167 handleVectorPackIntrinsic(I, 16); 3168 break; 3169 3170 case Intrinsic::x86_mmx_packssdw: 3171 handleVectorPackIntrinsic(I, 32); 3172 break; 3173 3174 case Intrinsic::x86_mmx_psad_bw: 3175 case Intrinsic::x86_sse2_psad_bw: 3176 case Intrinsic::x86_avx2_psad_bw: 3177 handleVectorSadIntrinsic(I); 3178 break; 3179 3180 case Intrinsic::x86_sse2_pmadd_wd: 3181 case Intrinsic::x86_avx2_pmadd_wd: 3182 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3183 case Intrinsic::x86_avx2_pmadd_ub_sw: 3184 handleVectorPmaddIntrinsic(I); 3185 break; 3186 3187 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3188 handleVectorPmaddIntrinsic(I, 8); 3189 break; 3190 3191 case Intrinsic::x86_mmx_pmadd_wd: 3192 handleVectorPmaddIntrinsic(I, 16); 3193 break; 3194 3195 case Intrinsic::x86_sse_cmp_ss: 3196 case Intrinsic::x86_sse2_cmp_sd: 3197 case Intrinsic::x86_sse_comieq_ss: 3198 case Intrinsic::x86_sse_comilt_ss: 3199 case Intrinsic::x86_sse_comile_ss: 3200 case Intrinsic::x86_sse_comigt_ss: 3201 case Intrinsic::x86_sse_comige_ss: 3202 case Intrinsic::x86_sse_comineq_ss: 3203 case Intrinsic::x86_sse_ucomieq_ss: 3204 case Intrinsic::x86_sse_ucomilt_ss: 3205 case Intrinsic::x86_sse_ucomile_ss: 3206 case Intrinsic::x86_sse_ucomigt_ss: 3207 case Intrinsic::x86_sse_ucomige_ss: 3208 case Intrinsic::x86_sse_ucomineq_ss: 3209 case Intrinsic::x86_sse2_comieq_sd: 3210 case Intrinsic::x86_sse2_comilt_sd: 3211 case Intrinsic::x86_sse2_comile_sd: 3212 case Intrinsic::x86_sse2_comigt_sd: 3213 case Intrinsic::x86_sse2_comige_sd: 3214 case Intrinsic::x86_sse2_comineq_sd: 3215 case Intrinsic::x86_sse2_ucomieq_sd: 3216 case Intrinsic::x86_sse2_ucomilt_sd: 3217 case Intrinsic::x86_sse2_ucomile_sd: 3218 case Intrinsic::x86_sse2_ucomigt_sd: 3219 case Intrinsic::x86_sse2_ucomige_sd: 3220 case Intrinsic::x86_sse2_ucomineq_sd: 3221 handleVectorCompareScalarIntrinsic(I); 3222 break; 3223 3224 case Intrinsic::x86_sse_cmp_ps: 3225 case Intrinsic::x86_sse2_cmp_pd: 3226 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3227 // generates reasonably looking IR that fails in the backend with "Do not 3228 // know how to split the result of this operator!". 3229 handleVectorComparePackedIntrinsic(I); 3230 break; 3231 3232 case Intrinsic::x86_bmi_bextr_32: 3233 case Intrinsic::x86_bmi_bextr_64: 3234 case Intrinsic::x86_bmi_bzhi_32: 3235 case Intrinsic::x86_bmi_bzhi_64: 3236 case Intrinsic::x86_bmi_pdep_32: 3237 case Intrinsic::x86_bmi_pdep_64: 3238 case Intrinsic::x86_bmi_pext_32: 3239 case Intrinsic::x86_bmi_pext_64: 3240 handleBmiIntrinsic(I); 3241 break; 3242 3243 case Intrinsic::is_constant: 3244 // The result of llvm.is.constant() is always defined. 3245 setShadow(&I, getCleanShadow(&I)); 3246 setOrigin(&I, getCleanOrigin()); 3247 break; 3248 3249 default: 3250 if (!handleUnknownIntrinsic(I)) 3251 visitInstruction(I); 3252 break; 3253 } 3254 } 3255 3256 void visitCallSite(CallSite CS) { 3257 Instruction &I = *CS.getInstruction(); 3258 assert(!I.getMetadata("nosanitize")); 3259 assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && 3260 "Unknown type of CallSite"); 3261 if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { 3262 // For inline asm (either a call to asm function, or callbr instruction), 3263 // do the usual thing: check argument shadow and mark all outputs as 3264 // clean. Note that any side effects of the inline asm that are not 3265 // immediately visible in its constraints are not handled. 3266 if (ClHandleAsmConservative && MS.CompileKernel) 3267 visitAsmInstruction(I); 3268 else 3269 visitInstruction(I); 3270 return; 3271 } 3272 if (CS.isCall()) { 3273 CallInst *Call = cast<CallInst>(&I); 3274 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3275 3276 // We are going to insert code that relies on the fact that the callee 3277 // will become a non-readonly function after it is instrumented by us. To 3278 // prevent this code from being optimized out, mark that function 3279 // non-readonly in advance. 3280 if (Function *Func = Call->getCalledFunction()) { 3281 // Clear out readonly/readnone attributes. 3282 AttrBuilder B; 3283 B.addAttribute(Attribute::ReadOnly) 3284 .addAttribute(Attribute::ReadNone) 3285 .addAttribute(Attribute::WriteOnly) 3286 .addAttribute(Attribute::ArgMemOnly) 3287 .addAttribute(Attribute::Speculatable); 3288 Func->removeAttributes(AttributeList::FunctionIndex, B); 3289 } 3290 3291 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3292 } 3293 IRBuilder<> IRB(&I); 3294 3295 unsigned ArgOffset = 0; 3296 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3297 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3298 ArgIt != End; ++ArgIt) { 3299 Value *A = *ArgIt; 3300 unsigned i = ArgIt - CS.arg_begin(); 3301 if (!A->getType()->isSized()) { 3302 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3303 continue; 3304 } 3305 unsigned Size = 0; 3306 Value *Store = nullptr; 3307 // Compute the Shadow for arg even if it is ByVal, because 3308 // in that case getShadow() will copy the actual arg shadow to 3309 // __msan_param_tls. 3310 Value *ArgShadow = getShadow(A); 3311 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3312 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3313 << " Shadow: " << *ArgShadow << "\n"); 3314 bool ArgIsInitialized = false; 3315 const DataLayout &DL = F.getParent()->getDataLayout(); 3316 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3317 assert(A->getType()->isPointerTy() && 3318 "ByVal argument is not a pointer!"); 3319 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3320 if (ArgOffset + Size > kParamTLSSize) break; 3321 const MaybeAlign ParamAlignment(CS.getParamAlignment(i)); 3322 MaybeAlign Alignment = llvm::None; 3323 if (ParamAlignment) 3324 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3325 Value *AShadowPtr = 3326 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3327 /*isStore*/ false) 3328 .first; 3329 3330 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3331 Alignment, Size); 3332 // TODO(glider): need to copy origins. 3333 } else { 3334 Size = DL.getTypeAllocSize(A->getType()); 3335 if (ArgOffset + Size > kParamTLSSize) break; 3336 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3337 kShadowTLSAlignment.value()); 3338 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3339 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3340 } 3341 if (MS.TrackOrigins && !ArgIsInitialized) 3342 IRB.CreateStore(getOrigin(A), 3343 getOriginPtrForArgument(A, IRB, ArgOffset)); 3344 (void)Store; 3345 assert(Size != 0 && Store != nullptr); 3346 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3347 ArgOffset += alignTo(Size, 8); 3348 } 3349 LLVM_DEBUG(dbgs() << " done with call args\n"); 3350 3351 FunctionType *FT = CS.getFunctionType(); 3352 if (FT->isVarArg()) { 3353 VAHelper->visitCallSite(CS, IRB); 3354 } 3355 3356 // Now, get the shadow for the RetVal. 3357 if (!I.getType()->isSized()) return; 3358 // Don't emit the epilogue for musttail call returns. 3359 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3360 IRBuilder<> IRBBefore(&I); 3361 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3362 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3363 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, 3364 kShadowTLSAlignment.value()); 3365 BasicBlock::iterator NextInsn; 3366 if (CS.isCall()) { 3367 NextInsn = ++I.getIterator(); 3368 assert(NextInsn != I.getParent()->end()); 3369 } else { 3370 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3371 if (!NormalDest->getSinglePredecessor()) { 3372 // FIXME: this case is tricky, so we are just conservative here. 3373 // Perhaps we need to split the edge between this BB and NormalDest, 3374 // but a naive attempt to use SplitEdge leads to a crash. 3375 setShadow(&I, getCleanShadow(&I)); 3376 setOrigin(&I, getCleanOrigin()); 3377 return; 3378 } 3379 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3380 // Anything inserted there will be instrumented by MSan later! 3381 NextInsn = NormalDest->getFirstInsertionPt(); 3382 assert(NextInsn != NormalDest->end() && 3383 "Could not find insertion point for retval shadow load"); 3384 } 3385 IRBuilder<> IRBAfter(&*NextInsn); 3386 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3387 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), 3388 kShadowTLSAlignment.value(), "_msret"); 3389 setShadow(&I, RetvalShadow); 3390 if (MS.TrackOrigins) 3391 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, 3392 getOriginPtrForRetval(IRBAfter))); 3393 } 3394 3395 bool isAMustTailRetVal(Value *RetVal) { 3396 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3397 RetVal = I->getOperand(0); 3398 } 3399 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3400 return I->isMustTailCall(); 3401 } 3402 return false; 3403 } 3404 3405 void visitReturnInst(ReturnInst &I) { 3406 IRBuilder<> IRB(&I); 3407 Value *RetVal = I.getReturnValue(); 3408 if (!RetVal) return; 3409 // Don't emit the epilogue for musttail call returns. 3410 if (isAMustTailRetVal(RetVal)) return; 3411 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3412 if (CheckReturnValue) { 3413 insertShadowCheck(RetVal, &I); 3414 Value *Shadow = getCleanShadow(RetVal); 3415 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); 3416 } else { 3417 Value *Shadow = getShadow(RetVal); 3418 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); 3419 if (MS.TrackOrigins) 3420 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3421 } 3422 } 3423 3424 void visitPHINode(PHINode &I) { 3425 IRBuilder<> IRB(&I); 3426 if (!PropagateShadow) { 3427 setShadow(&I, getCleanShadow(&I)); 3428 setOrigin(&I, getCleanOrigin()); 3429 return; 3430 } 3431 3432 ShadowPHINodes.push_back(&I); 3433 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3434 "_msphi_s")); 3435 if (MS.TrackOrigins) 3436 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3437 "_msphi_o")); 3438 } 3439 3440 Value *getLocalVarDescription(AllocaInst &I) { 3441 SmallString<2048> StackDescriptionStorage; 3442 raw_svector_ostream StackDescription(StackDescriptionStorage); 3443 // We create a string with a description of the stack allocation and 3444 // pass it into __msan_set_alloca_origin. 3445 // It will be printed by the run-time if stack-originated UMR is found. 3446 // The first 4 bytes of the string are set to '----' and will be replaced 3447 // by __msan_va_arg_overflow_size_tls at the first call. 3448 StackDescription << "----" << I.getName() << "@" << F.getName(); 3449 return createPrivateNonConstGlobalForString(*F.getParent(), 3450 StackDescription.str()); 3451 } 3452 3453 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3454 if (PoisonStack && ClPoisonStackWithCall) { 3455 IRB.CreateCall(MS.MsanPoisonStackFn, 3456 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3457 } else { 3458 Value *ShadowBase, *OriginBase; 3459 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3460 &I, IRB, IRB.getInt8Ty(), Align::None(), /*isStore*/ true); 3461 3462 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3463 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3464 MaybeAlign(I.getAlignment())); 3465 } 3466 3467 if (PoisonStack && MS.TrackOrigins) { 3468 Value *Descr = getLocalVarDescription(I); 3469 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3470 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3471 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3472 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3473 } 3474 } 3475 3476 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3477 Value *Descr = getLocalVarDescription(I); 3478 if (PoisonStack) { 3479 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3480 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3481 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3482 } else { 3483 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3484 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3485 } 3486 } 3487 3488 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3489 if (!InsPoint) 3490 InsPoint = &I; 3491 IRBuilder<> IRB(InsPoint->getNextNode()); 3492 const DataLayout &DL = F.getParent()->getDataLayout(); 3493 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3494 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3495 if (I.isArrayAllocation()) 3496 Len = IRB.CreateMul(Len, I.getArraySize()); 3497 3498 if (MS.CompileKernel) 3499 poisonAllocaKmsan(I, IRB, Len); 3500 else 3501 poisonAllocaUserspace(I, IRB, Len); 3502 } 3503 3504 void visitAllocaInst(AllocaInst &I) { 3505 setShadow(&I, getCleanShadow(&I)); 3506 setOrigin(&I, getCleanOrigin()); 3507 // We'll get to this alloca later unless it's poisoned at the corresponding 3508 // llvm.lifetime.start. 3509 AllocaSet.insert(&I); 3510 } 3511 3512 void visitSelectInst(SelectInst& I) { 3513 IRBuilder<> IRB(&I); 3514 // a = select b, c, d 3515 Value *B = I.getCondition(); 3516 Value *C = I.getTrueValue(); 3517 Value *D = I.getFalseValue(); 3518 Value *Sb = getShadow(B); 3519 Value *Sc = getShadow(C); 3520 Value *Sd = getShadow(D); 3521 3522 // Result shadow if condition shadow is 0. 3523 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3524 Value *Sa1; 3525 if (I.getType()->isAggregateType()) { 3526 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3527 // an extra "select". This results in much more compact IR. 3528 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3529 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3530 } else { 3531 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3532 // If Sb (condition is poisoned), look for bits in c and d that are equal 3533 // and both unpoisoned. 3534 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3535 3536 // Cast arguments to shadow-compatible type. 3537 C = CreateAppToShadowCast(IRB, C); 3538 D = CreateAppToShadowCast(IRB, D); 3539 3540 // Result shadow if condition shadow is 1. 3541 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3542 } 3543 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3544 setShadow(&I, Sa); 3545 if (MS.TrackOrigins) { 3546 // Origins are always i32, so any vector conditions must be flattened. 3547 // FIXME: consider tracking vector origins for app vectors? 3548 if (B->getType()->isVectorTy()) { 3549 Type *FlatTy = getShadowTyNoVec(B->getType()); 3550 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3551 ConstantInt::getNullValue(FlatTy)); 3552 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3553 ConstantInt::getNullValue(FlatTy)); 3554 } 3555 // a = select b, c, d 3556 // Oa = Sb ? Ob : (b ? Oc : Od) 3557 setOrigin( 3558 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3559 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3560 getOrigin(I.getFalseValue())))); 3561 } 3562 } 3563 3564 void visitLandingPadInst(LandingPadInst &I) { 3565 // Do nothing. 3566 // See https://github.com/google/sanitizers/issues/504 3567 setShadow(&I, getCleanShadow(&I)); 3568 setOrigin(&I, getCleanOrigin()); 3569 } 3570 3571 void visitCatchSwitchInst(CatchSwitchInst &I) { 3572 setShadow(&I, getCleanShadow(&I)); 3573 setOrigin(&I, getCleanOrigin()); 3574 } 3575 3576 void visitFuncletPadInst(FuncletPadInst &I) { 3577 setShadow(&I, getCleanShadow(&I)); 3578 setOrigin(&I, getCleanOrigin()); 3579 } 3580 3581 void visitGetElementPtrInst(GetElementPtrInst &I) { 3582 handleShadowOr(I); 3583 } 3584 3585 void visitExtractValueInst(ExtractValueInst &I) { 3586 IRBuilder<> IRB(&I); 3587 Value *Agg = I.getAggregateOperand(); 3588 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3589 Value *AggShadow = getShadow(Agg); 3590 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3591 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3592 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3593 setShadow(&I, ResShadow); 3594 setOriginForNaryOp(I); 3595 } 3596 3597 void visitInsertValueInst(InsertValueInst &I) { 3598 IRBuilder<> IRB(&I); 3599 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3600 Value *AggShadow = getShadow(I.getAggregateOperand()); 3601 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3602 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3603 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3604 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3605 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3606 setShadow(&I, Res); 3607 setOriginForNaryOp(I); 3608 } 3609 3610 void dumpInst(Instruction &I) { 3611 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3612 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3613 } else { 3614 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3615 } 3616 errs() << "QQQ " << I << "\n"; 3617 } 3618 3619 void visitResumeInst(ResumeInst &I) { 3620 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3621 // Nothing to do here. 3622 } 3623 3624 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3625 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3626 // Nothing to do here. 3627 } 3628 3629 void visitCatchReturnInst(CatchReturnInst &CRI) { 3630 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3631 // Nothing to do here. 3632 } 3633 3634 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3635 const DataLayout &DL, bool isOutput) { 3636 // For each assembly argument, we check its value for being initialized. 3637 // If the argument is a pointer, we assume it points to a single element 3638 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3639 // Each such pointer is instrumented with a call to the runtime library. 3640 Type *OpType = Operand->getType(); 3641 // Check the operand value itself. 3642 insertShadowCheck(Operand, &I); 3643 if (!OpType->isPointerTy() || !isOutput) { 3644 assert(!isOutput); 3645 return; 3646 } 3647 Type *ElType = OpType->getPointerElementType(); 3648 if (!ElType->isSized()) 3649 return; 3650 int Size = DL.getTypeStoreSize(ElType); 3651 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3652 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3653 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3654 } 3655 3656 /// Get the number of output arguments returned by pointers. 3657 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3658 int NumRetOutputs = 0; 3659 int NumOutputs = 0; 3660 Type *RetTy = cast<Value>(CB)->getType(); 3661 if (!RetTy->isVoidTy()) { 3662 // Register outputs are returned via the CallInst return value. 3663 auto *ST = dyn_cast<StructType>(RetTy); 3664 if (ST) 3665 NumRetOutputs = ST->getNumElements(); 3666 else 3667 NumRetOutputs = 1; 3668 } 3669 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3670 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3671 InlineAsm::ConstraintInfo Info = Constraints[i]; 3672 switch (Info.Type) { 3673 case InlineAsm::isOutput: 3674 NumOutputs++; 3675 break; 3676 default: 3677 break; 3678 } 3679 } 3680 return NumOutputs - NumRetOutputs; 3681 } 3682 3683 void visitAsmInstruction(Instruction &I) { 3684 // Conservative inline assembly handling: check for poisoned shadow of 3685 // asm() arguments, then unpoison the result and all the memory locations 3686 // pointed to by those arguments. 3687 // An inline asm() statement in C++ contains lists of input and output 3688 // arguments used by the assembly code. These are mapped to operands of the 3689 // CallInst as follows: 3690 // - nR register outputs ("=r) are returned by value in a single structure 3691 // (SSA value of the CallInst); 3692 // - nO other outputs ("=m" and others) are returned by pointer as first 3693 // nO operands of the CallInst; 3694 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3695 // remaining nI operands. 3696 // The total number of asm() arguments in the source is nR+nO+nI, and the 3697 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3698 // function to be called). 3699 const DataLayout &DL = F.getParent()->getDataLayout(); 3700 CallBase *CB = cast<CallBase>(&I); 3701 IRBuilder<> IRB(&I); 3702 InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); 3703 int OutputArgs = getNumOutputArgs(IA, CB); 3704 // The last operand of a CallInst is the function itself. 3705 int NumOperands = CB->getNumOperands() - 1; 3706 3707 // Check input arguments. Doing so before unpoisoning output arguments, so 3708 // that we won't overwrite uninit values before checking them. 3709 for (int i = OutputArgs; i < NumOperands; i++) { 3710 Value *Operand = CB->getOperand(i); 3711 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3712 } 3713 // Unpoison output arguments. This must happen before the actual InlineAsm 3714 // call, so that the shadow for memory published in the asm() statement 3715 // remains valid. 3716 for (int i = 0; i < OutputArgs; i++) { 3717 Value *Operand = CB->getOperand(i); 3718 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3719 } 3720 3721 setShadow(&I, getCleanShadow(&I)); 3722 setOrigin(&I, getCleanOrigin()); 3723 } 3724 3725 void visitInstruction(Instruction &I) { 3726 // Everything else: stop propagating and check for poisoned shadow. 3727 if (ClDumpStrictInstructions) 3728 dumpInst(I); 3729 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3730 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3731 Value *Operand = I.getOperand(i); 3732 if (Operand->getType()->isSized()) 3733 insertShadowCheck(Operand, &I); 3734 } 3735 setShadow(&I, getCleanShadow(&I)); 3736 setOrigin(&I, getCleanOrigin()); 3737 } 3738 }; 3739 3740 /// AMD64-specific implementation of VarArgHelper. 3741 struct VarArgAMD64Helper : public VarArgHelper { 3742 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3743 // See a comment in visitCallSite for more details. 3744 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3745 static const unsigned AMD64FpEndOffsetSSE = 176; 3746 // If SSE is disabled, fp_offset in va_list is zero. 3747 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3748 3749 unsigned AMD64FpEndOffset; 3750 Function &F; 3751 MemorySanitizer &MS; 3752 MemorySanitizerVisitor &MSV; 3753 Value *VAArgTLSCopy = nullptr; 3754 Value *VAArgTLSOriginCopy = nullptr; 3755 Value *VAArgOverflowSize = nullptr; 3756 3757 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3758 3759 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3760 3761 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3762 MemorySanitizerVisitor &MSV) 3763 : F(F), MS(MS), MSV(MSV) { 3764 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3765 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3766 if (Attr.isStringAttribute() && 3767 (Attr.getKindAsString() == "target-features")) { 3768 if (Attr.getValueAsString().contains("-sse")) 3769 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3770 break; 3771 } 3772 } 3773 } 3774 3775 ArgKind classifyArgument(Value* arg) { 3776 // A very rough approximation of X86_64 argument classification rules. 3777 Type *T = arg->getType(); 3778 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3779 return AK_FloatingPoint; 3780 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3781 return AK_GeneralPurpose; 3782 if (T->isPointerTy()) 3783 return AK_GeneralPurpose; 3784 return AK_Memory; 3785 } 3786 3787 // For VarArg functions, store the argument shadow in an ABI-specific format 3788 // that corresponds to va_list layout. 3789 // We do this because Clang lowers va_arg in the frontend, and this pass 3790 // only sees the low level code that deals with va_list internals. 3791 // A much easier alternative (provided that Clang emits va_arg instructions) 3792 // would have been to associate each live instance of va_list with a copy of 3793 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3794 // order. 3795 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3796 unsigned GpOffset = 0; 3797 unsigned FpOffset = AMD64GpEndOffset; 3798 unsigned OverflowOffset = AMD64FpEndOffset; 3799 const DataLayout &DL = F.getParent()->getDataLayout(); 3800 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3801 ArgIt != End; ++ArgIt) { 3802 Value *A = *ArgIt; 3803 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3804 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3805 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3806 if (IsByVal) { 3807 // ByVal arguments always go to the overflow area. 3808 // Fixed arguments passed through the overflow area will be stepped 3809 // over by va_start, so don't count them towards the offset. 3810 if (IsFixed) 3811 continue; 3812 assert(A->getType()->isPointerTy()); 3813 Type *RealTy = A->getType()->getPointerElementType(); 3814 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3815 Value *ShadowBase = getShadowPtrForVAArgument( 3816 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3817 Value *OriginBase = nullptr; 3818 if (MS.TrackOrigins) 3819 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3820 OverflowOffset += alignTo(ArgSize, 8); 3821 if (!ShadowBase) 3822 continue; 3823 Value *ShadowPtr, *OriginPtr; 3824 std::tie(ShadowPtr, OriginPtr) = 3825 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3826 /*isStore*/ false); 3827 3828 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3829 kShadowTLSAlignment, ArgSize); 3830 if (MS.TrackOrigins) 3831 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3832 kShadowTLSAlignment, ArgSize); 3833 } else { 3834 ArgKind AK = classifyArgument(A); 3835 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3836 AK = AK_Memory; 3837 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3838 AK = AK_Memory; 3839 Value *ShadowBase, *OriginBase = nullptr; 3840 switch (AK) { 3841 case AK_GeneralPurpose: 3842 ShadowBase = 3843 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3844 if (MS.TrackOrigins) 3845 OriginBase = 3846 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3847 GpOffset += 8; 3848 break; 3849 case AK_FloatingPoint: 3850 ShadowBase = 3851 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3852 if (MS.TrackOrigins) 3853 OriginBase = 3854 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3855 FpOffset += 16; 3856 break; 3857 case AK_Memory: 3858 if (IsFixed) 3859 continue; 3860 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3861 ShadowBase = 3862 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3863 if (MS.TrackOrigins) 3864 OriginBase = 3865 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3866 OverflowOffset += alignTo(ArgSize, 8); 3867 } 3868 // Take fixed arguments into account for GpOffset and FpOffset, 3869 // but don't actually store shadows for them. 3870 // TODO(glider): don't call get*PtrForVAArgument() for them. 3871 if (IsFixed) 3872 continue; 3873 if (!ShadowBase) 3874 continue; 3875 Value *Shadow = MSV.getShadow(A); 3876 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment.value()); 3877 if (MS.TrackOrigins) { 3878 Value *Origin = MSV.getOrigin(A); 3879 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3880 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3881 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3882 } 3883 } 3884 } 3885 Constant *OverflowSize = 3886 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3887 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3888 } 3889 3890 /// Compute the shadow address for a given va_arg. 3891 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3892 unsigned ArgOffset, unsigned ArgSize) { 3893 // Make sure we don't overflow __msan_va_arg_tls. 3894 if (ArgOffset + ArgSize > kParamTLSSize) 3895 return nullptr; 3896 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3897 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3898 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3899 "_msarg_va_s"); 3900 } 3901 3902 /// Compute the origin address for a given va_arg. 3903 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3904 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3905 // getOriginPtrForVAArgument() is always called after 3906 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3907 // overflow. 3908 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3909 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3910 "_msarg_va_o"); 3911 } 3912 3913 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3914 IRBuilder<> IRB(&I); 3915 Value *VAListTag = I.getArgOperand(0); 3916 Value *ShadowPtr, *OriginPtr; 3917 const Align Alignment = Align(8); 3918 std::tie(ShadowPtr, OriginPtr) = 3919 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3920 /*isStore*/ true); 3921 3922 // Unpoison the whole __va_list_tag. 3923 // FIXME: magic ABI constants. 3924 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3925 /* size */ 24, Alignment, false); 3926 // We shouldn't need to zero out the origins, as they're only checked for 3927 // nonzero shadow. 3928 } 3929 3930 void visitVAStartInst(VAStartInst &I) override { 3931 if (F.getCallingConv() == CallingConv::Win64) 3932 return; 3933 VAStartInstrumentationList.push_back(&I); 3934 unpoisonVAListTagForInst(I); 3935 } 3936 3937 void visitVACopyInst(VACopyInst &I) override { 3938 if (F.getCallingConv() == CallingConv::Win64) return; 3939 unpoisonVAListTagForInst(I); 3940 } 3941 3942 void finalizeInstrumentation() override { 3943 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3944 "finalizeInstrumentation called twice"); 3945 if (!VAStartInstrumentationList.empty()) { 3946 // If there is a va_start in this function, make a backup copy of 3947 // va_arg_tls somewhere in the function entry block. 3948 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3949 VAArgOverflowSize = 3950 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 3951 Value *CopySize = 3952 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3953 VAArgOverflowSize); 3954 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3955 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 3956 if (MS.TrackOrigins) { 3957 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3958 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 3959 Align(8), CopySize); 3960 } 3961 } 3962 3963 // Instrument va_start. 3964 // Copy va_list shadow from the backup copy of the TLS contents. 3965 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3966 CallInst *OrigInst = VAStartInstrumentationList[i]; 3967 IRBuilder<> IRB(OrigInst->getNextNode()); 3968 Value *VAListTag = OrigInst->getArgOperand(0); 3969 3970 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3971 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 3972 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3973 ConstantInt::get(MS.IntptrTy, 16)), 3974 PointerType::get(RegSaveAreaPtrTy, 0)); 3975 Value *RegSaveAreaPtr = 3976 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 3977 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3978 const Align Alignment = Align(16); 3979 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3980 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3981 Alignment, /*isStore*/ true); 3982 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3983 AMD64FpEndOffset); 3984 if (MS.TrackOrigins) 3985 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 3986 Alignment, AMD64FpEndOffset); 3987 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3988 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 3989 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3990 ConstantInt::get(MS.IntptrTy, 8)), 3991 PointerType::get(OverflowArgAreaPtrTy, 0)); 3992 Value *OverflowArgAreaPtr = 3993 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 3994 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 3995 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 3996 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 3997 Alignment, /*isStore*/ true); 3998 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3999 AMD64FpEndOffset); 4000 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4001 VAArgOverflowSize); 4002 if (MS.TrackOrigins) { 4003 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4004 AMD64FpEndOffset); 4005 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4006 VAArgOverflowSize); 4007 } 4008 } 4009 } 4010 }; 4011 4012 /// MIPS64-specific implementation of VarArgHelper. 4013 struct VarArgMIPS64Helper : public VarArgHelper { 4014 Function &F; 4015 MemorySanitizer &MS; 4016 MemorySanitizerVisitor &MSV; 4017 Value *VAArgTLSCopy = nullptr; 4018 Value *VAArgSize = nullptr; 4019 4020 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4021 4022 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4023 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4024 4025 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4026 unsigned VAArgOffset = 0; 4027 const DataLayout &DL = F.getParent()->getDataLayout(); 4028 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 4029 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 4030 ArgIt != End; ++ArgIt) { 4031 Triple TargetTriple(F.getParent()->getTargetTriple()); 4032 Value *A = *ArgIt; 4033 Value *Base; 4034 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4035 if (TargetTriple.getArch() == Triple::mips64) { 4036 // Adjusting the shadow for argument with size < 8 to match the placement 4037 // of bits in big endian system 4038 if (ArgSize < 8) 4039 VAArgOffset += (8 - ArgSize); 4040 } 4041 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4042 VAArgOffset += ArgSize; 4043 VAArgOffset = alignTo(VAArgOffset, 8); 4044 if (!Base) 4045 continue; 4046 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4047 kShadowTLSAlignment.value()); 4048 } 4049 4050 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4051 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4052 // a new class member i.e. it is the total size of all VarArgs. 4053 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4054 } 4055 4056 /// Compute the shadow address for a given va_arg. 4057 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4058 unsigned ArgOffset, unsigned ArgSize) { 4059 // Make sure we don't overflow __msan_va_arg_tls. 4060 if (ArgOffset + ArgSize > kParamTLSSize) 4061 return nullptr; 4062 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4063 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4064 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4065 "_msarg"); 4066 } 4067 4068 void visitVAStartInst(VAStartInst &I) override { 4069 IRBuilder<> IRB(&I); 4070 VAStartInstrumentationList.push_back(&I); 4071 Value *VAListTag = I.getArgOperand(0); 4072 Value *ShadowPtr, *OriginPtr; 4073 const Align Alignment = Align(8); 4074 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4075 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4076 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4077 /* size */ 8, Alignment, false); 4078 } 4079 4080 void visitVACopyInst(VACopyInst &I) override { 4081 IRBuilder<> IRB(&I); 4082 VAStartInstrumentationList.push_back(&I); 4083 Value *VAListTag = I.getArgOperand(0); 4084 Value *ShadowPtr, *OriginPtr; 4085 const Align Alignment = Align(8); 4086 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4087 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4088 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4089 /* size */ 8, Alignment, false); 4090 } 4091 4092 void finalizeInstrumentation() override { 4093 assert(!VAArgSize && !VAArgTLSCopy && 4094 "finalizeInstrumentation called twice"); 4095 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4096 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4097 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4098 VAArgSize); 4099 4100 if (!VAStartInstrumentationList.empty()) { 4101 // If there is a va_start in this function, make a backup copy of 4102 // va_arg_tls somewhere in the function entry block. 4103 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4104 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4105 } 4106 4107 // Instrument va_start. 4108 // Copy va_list shadow from the backup copy of the TLS contents. 4109 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4110 CallInst *OrigInst = VAStartInstrumentationList[i]; 4111 IRBuilder<> IRB(OrigInst->getNextNode()); 4112 Value *VAListTag = OrigInst->getArgOperand(0); 4113 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4114 Value *RegSaveAreaPtrPtr = 4115 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4116 PointerType::get(RegSaveAreaPtrTy, 0)); 4117 Value *RegSaveAreaPtr = 4118 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4119 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4120 const Align Alignment = Align(8); 4121 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4122 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4123 Alignment, /*isStore*/ true); 4124 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4125 CopySize); 4126 } 4127 } 4128 }; 4129 4130 /// AArch64-specific implementation of VarArgHelper. 4131 struct VarArgAArch64Helper : public VarArgHelper { 4132 static const unsigned kAArch64GrArgSize = 64; 4133 static const unsigned kAArch64VrArgSize = 128; 4134 4135 static const unsigned AArch64GrBegOffset = 0; 4136 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4137 // Make VR space aligned to 16 bytes. 4138 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4139 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4140 + kAArch64VrArgSize; 4141 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4142 4143 Function &F; 4144 MemorySanitizer &MS; 4145 MemorySanitizerVisitor &MSV; 4146 Value *VAArgTLSCopy = nullptr; 4147 Value *VAArgOverflowSize = nullptr; 4148 4149 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4150 4151 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4152 4153 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4154 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4155 4156 ArgKind classifyArgument(Value* arg) { 4157 Type *T = arg->getType(); 4158 if (T->isFPOrFPVectorTy()) 4159 return AK_FloatingPoint; 4160 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4161 || (T->isPointerTy())) 4162 return AK_GeneralPurpose; 4163 return AK_Memory; 4164 } 4165 4166 // The instrumentation stores the argument shadow in a non ABI-specific 4167 // format because it does not know which argument is named (since Clang, 4168 // like x86_64 case, lowers the va_args in the frontend and this pass only 4169 // sees the low level code that deals with va_list internals). 4170 // The first seven GR registers are saved in the first 56 bytes of the 4171 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4172 // the remaining arguments. 4173 // Using constant offset within the va_arg TLS array allows fast copy 4174 // in the finalize instrumentation. 4175 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4176 unsigned GrOffset = AArch64GrBegOffset; 4177 unsigned VrOffset = AArch64VrBegOffset; 4178 unsigned OverflowOffset = AArch64VAEndOffset; 4179 4180 const DataLayout &DL = F.getParent()->getDataLayout(); 4181 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4182 ArgIt != End; ++ArgIt) { 4183 Value *A = *ArgIt; 4184 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4185 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4186 ArgKind AK = classifyArgument(A); 4187 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4188 AK = AK_Memory; 4189 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4190 AK = AK_Memory; 4191 Value *Base; 4192 switch (AK) { 4193 case AK_GeneralPurpose: 4194 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4195 GrOffset += 8; 4196 break; 4197 case AK_FloatingPoint: 4198 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4199 VrOffset += 16; 4200 break; 4201 case AK_Memory: 4202 // Don't count fixed arguments in the overflow area - va_start will 4203 // skip right over them. 4204 if (IsFixed) 4205 continue; 4206 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4207 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4208 alignTo(ArgSize, 8)); 4209 OverflowOffset += alignTo(ArgSize, 8); 4210 break; 4211 } 4212 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4213 // bother to actually store a shadow. 4214 if (IsFixed) 4215 continue; 4216 if (!Base) 4217 continue; 4218 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4219 kShadowTLSAlignment.value()); 4220 } 4221 Constant *OverflowSize = 4222 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4223 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4224 } 4225 4226 /// Compute the shadow address for a given va_arg. 4227 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4228 unsigned ArgOffset, unsigned ArgSize) { 4229 // Make sure we don't overflow __msan_va_arg_tls. 4230 if (ArgOffset + ArgSize > kParamTLSSize) 4231 return nullptr; 4232 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4233 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4234 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4235 "_msarg"); 4236 } 4237 4238 void visitVAStartInst(VAStartInst &I) override { 4239 IRBuilder<> IRB(&I); 4240 VAStartInstrumentationList.push_back(&I); 4241 Value *VAListTag = I.getArgOperand(0); 4242 Value *ShadowPtr, *OriginPtr; 4243 const Align Alignment = Align(8); 4244 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4245 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4246 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4247 /* size */ 32, Alignment, false); 4248 } 4249 4250 void visitVACopyInst(VACopyInst &I) override { 4251 IRBuilder<> IRB(&I); 4252 VAStartInstrumentationList.push_back(&I); 4253 Value *VAListTag = I.getArgOperand(0); 4254 Value *ShadowPtr, *OriginPtr; 4255 const Align Alignment = Align(8); 4256 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4257 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4258 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4259 /* size */ 32, Alignment, false); 4260 } 4261 4262 // Retrieve a va_list field of 'void*' size. 4263 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4264 Value *SaveAreaPtrPtr = 4265 IRB.CreateIntToPtr( 4266 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4267 ConstantInt::get(MS.IntptrTy, offset)), 4268 Type::getInt64PtrTy(*MS.C)); 4269 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4270 } 4271 4272 // Retrieve a va_list field of 'int' size. 4273 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4274 Value *SaveAreaPtr = 4275 IRB.CreateIntToPtr( 4276 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4277 ConstantInt::get(MS.IntptrTy, offset)), 4278 Type::getInt32PtrTy(*MS.C)); 4279 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4280 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4281 } 4282 4283 void finalizeInstrumentation() override { 4284 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4285 "finalizeInstrumentation called twice"); 4286 if (!VAStartInstrumentationList.empty()) { 4287 // If there is a va_start in this function, make a backup copy of 4288 // va_arg_tls somewhere in the function entry block. 4289 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4290 VAArgOverflowSize = 4291 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4292 Value *CopySize = 4293 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4294 VAArgOverflowSize); 4295 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4296 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4297 } 4298 4299 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4300 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4301 4302 // Instrument va_start, copy va_list shadow from the backup copy of 4303 // the TLS contents. 4304 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4305 CallInst *OrigInst = VAStartInstrumentationList[i]; 4306 IRBuilder<> IRB(OrigInst->getNextNode()); 4307 4308 Value *VAListTag = OrigInst->getArgOperand(0); 4309 4310 // The variadic ABI for AArch64 creates two areas to save the incoming 4311 // argument registers (one for 64-bit general register xn-x7 and another 4312 // for 128-bit FP/SIMD vn-v7). 4313 // We need then to propagate the shadow arguments on both regions 4314 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4315 // The remaning arguments are saved on shadow for 'va::stack'. 4316 // One caveat is it requires only to propagate the non-named arguments, 4317 // however on the call site instrumentation 'all' the arguments are 4318 // saved. So to copy the shadow values from the va_arg TLS array 4319 // we need to adjust the offset for both GR and VR fields based on 4320 // the __{gr,vr}_offs value (since they are stores based on incoming 4321 // named arguments). 4322 4323 // Read the stack pointer from the va_list. 4324 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4325 4326 // Read both the __gr_top and __gr_off and add them up. 4327 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4328 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4329 4330 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4331 4332 // Read both the __vr_top and __vr_off and add them up. 4333 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4334 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4335 4336 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4337 4338 // It does not know how many named arguments is being used and, on the 4339 // callsite all the arguments were saved. Since __gr_off is defined as 4340 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4341 // argument by ignoring the bytes of shadow from named arguments. 4342 Value *GrRegSaveAreaShadowPtrOff = 4343 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4344 4345 Value *GrRegSaveAreaShadowPtr = 4346 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4347 Align(8), /*isStore*/ true) 4348 .first; 4349 4350 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4351 GrRegSaveAreaShadowPtrOff); 4352 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4353 4354 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4355 GrCopySize); 4356 4357 // Again, but for FP/SIMD values. 4358 Value *VrRegSaveAreaShadowPtrOff = 4359 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4360 4361 Value *VrRegSaveAreaShadowPtr = 4362 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4363 Align(8), /*isStore*/ true) 4364 .first; 4365 4366 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4367 IRB.getInt8Ty(), 4368 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4369 IRB.getInt32(AArch64VrBegOffset)), 4370 VrRegSaveAreaShadowPtrOff); 4371 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4372 4373 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4374 VrCopySize); 4375 4376 // And finally for remaining arguments. 4377 Value *StackSaveAreaShadowPtr = 4378 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4379 Align(16), /*isStore*/ true) 4380 .first; 4381 4382 Value *StackSrcPtr = 4383 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4384 IRB.getInt32(AArch64VAEndOffset)); 4385 4386 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4387 Align(16), VAArgOverflowSize); 4388 } 4389 } 4390 }; 4391 4392 /// PowerPC64-specific implementation of VarArgHelper. 4393 struct VarArgPowerPC64Helper : public VarArgHelper { 4394 Function &F; 4395 MemorySanitizer &MS; 4396 MemorySanitizerVisitor &MSV; 4397 Value *VAArgTLSCopy = nullptr; 4398 Value *VAArgSize = nullptr; 4399 4400 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4401 4402 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4403 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4404 4405 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4406 // For PowerPC, we need to deal with alignment of stack arguments - 4407 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4408 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4409 // and QPX vectors are aligned to 32 bytes. For that reason, we 4410 // compute current offset from stack pointer (which is always properly 4411 // aligned), and offset for the first vararg, then subtract them. 4412 unsigned VAArgBase; 4413 Triple TargetTriple(F.getParent()->getTargetTriple()); 4414 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4415 // and 32 bytes for ABIv2. This is usually determined by target 4416 // endianness, but in theory could be overriden by function attribute. 4417 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4418 if (TargetTriple.getArch() == Triple::ppc64) 4419 VAArgBase = 48; 4420 else 4421 VAArgBase = 32; 4422 unsigned VAArgOffset = VAArgBase; 4423 const DataLayout &DL = F.getParent()->getDataLayout(); 4424 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4425 ArgIt != End; ++ArgIt) { 4426 Value *A = *ArgIt; 4427 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4428 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4429 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4430 if (IsByVal) { 4431 assert(A->getType()->isPointerTy()); 4432 Type *RealTy = A->getType()->getPointerElementType(); 4433 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4434 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4435 if (ArgAlign < 8) 4436 ArgAlign = 8; 4437 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4438 if (!IsFixed) { 4439 Value *Base = getShadowPtrForVAArgument( 4440 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4441 if (Base) { 4442 Value *AShadowPtr, *AOriginPtr; 4443 std::tie(AShadowPtr, AOriginPtr) = 4444 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4445 kShadowTLSAlignment, /*isStore*/ false); 4446 4447 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4448 kShadowTLSAlignment, ArgSize); 4449 } 4450 } 4451 VAArgOffset += alignTo(ArgSize, 8); 4452 } else { 4453 Value *Base; 4454 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4455 uint64_t ArgAlign = 8; 4456 if (A->getType()->isArrayTy()) { 4457 // Arrays are aligned to element size, except for long double 4458 // arrays, which are aligned to 8 bytes. 4459 Type *ElementTy = A->getType()->getArrayElementType(); 4460 if (!ElementTy->isPPC_FP128Ty()) 4461 ArgAlign = DL.getTypeAllocSize(ElementTy); 4462 } else if (A->getType()->isVectorTy()) { 4463 // Vectors are naturally aligned. 4464 ArgAlign = DL.getTypeAllocSize(A->getType()); 4465 } 4466 if (ArgAlign < 8) 4467 ArgAlign = 8; 4468 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4469 if (DL.isBigEndian()) { 4470 // Adjusting the shadow for argument with size < 8 to match the placement 4471 // of bits in big endian system 4472 if (ArgSize < 8) 4473 VAArgOffset += (8 - ArgSize); 4474 } 4475 if (!IsFixed) { 4476 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4477 VAArgOffset - VAArgBase, ArgSize); 4478 if (Base) 4479 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4480 kShadowTLSAlignment.value()); 4481 } 4482 VAArgOffset += ArgSize; 4483 VAArgOffset = alignTo(VAArgOffset, 8); 4484 } 4485 if (IsFixed) 4486 VAArgBase = VAArgOffset; 4487 } 4488 4489 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4490 VAArgOffset - VAArgBase); 4491 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4492 // a new class member i.e. it is the total size of all VarArgs. 4493 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4494 } 4495 4496 /// Compute the shadow address for a given va_arg. 4497 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4498 unsigned ArgOffset, unsigned ArgSize) { 4499 // Make sure we don't overflow __msan_va_arg_tls. 4500 if (ArgOffset + ArgSize > kParamTLSSize) 4501 return nullptr; 4502 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4503 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4504 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4505 "_msarg"); 4506 } 4507 4508 void visitVAStartInst(VAStartInst &I) override { 4509 IRBuilder<> IRB(&I); 4510 VAStartInstrumentationList.push_back(&I); 4511 Value *VAListTag = I.getArgOperand(0); 4512 Value *ShadowPtr, *OriginPtr; 4513 const Align Alignment = Align(8); 4514 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4515 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4516 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4517 /* size */ 8, Alignment, false); 4518 } 4519 4520 void visitVACopyInst(VACopyInst &I) override { 4521 IRBuilder<> IRB(&I); 4522 Value *VAListTag = I.getArgOperand(0); 4523 Value *ShadowPtr, *OriginPtr; 4524 const Align Alignment = Align(8); 4525 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4526 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4527 // Unpoison the whole __va_list_tag. 4528 // FIXME: magic ABI constants. 4529 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4530 /* size */ 8, Alignment, false); 4531 } 4532 4533 void finalizeInstrumentation() override { 4534 assert(!VAArgSize && !VAArgTLSCopy && 4535 "finalizeInstrumentation called twice"); 4536 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4537 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4538 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4539 VAArgSize); 4540 4541 if (!VAStartInstrumentationList.empty()) { 4542 // If there is a va_start in this function, make a backup copy of 4543 // va_arg_tls somewhere in the function entry block. 4544 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4545 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4546 } 4547 4548 // Instrument va_start. 4549 // Copy va_list shadow from the backup copy of the TLS contents. 4550 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4551 CallInst *OrigInst = VAStartInstrumentationList[i]; 4552 IRBuilder<> IRB(OrigInst->getNextNode()); 4553 Value *VAListTag = OrigInst->getArgOperand(0); 4554 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4555 Value *RegSaveAreaPtrPtr = 4556 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4557 PointerType::get(RegSaveAreaPtrTy, 0)); 4558 Value *RegSaveAreaPtr = 4559 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4560 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4561 const Align Alignment = Align(8); 4562 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4563 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4564 Alignment, /*isStore*/ true); 4565 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4566 CopySize); 4567 } 4568 } 4569 }; 4570 4571 /// A no-op implementation of VarArgHelper. 4572 struct VarArgNoOpHelper : public VarArgHelper { 4573 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4574 MemorySanitizerVisitor &MSV) {} 4575 4576 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4577 4578 void visitVAStartInst(VAStartInst &I) override {} 4579 4580 void visitVACopyInst(VACopyInst &I) override {} 4581 4582 void finalizeInstrumentation() override {} 4583 }; 4584 4585 } // end anonymous namespace 4586 4587 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4588 MemorySanitizerVisitor &Visitor) { 4589 // VarArg handling is only implemented on AMD64. False positives are possible 4590 // on other platforms. 4591 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4592 if (TargetTriple.getArch() == Triple::x86_64) 4593 return new VarArgAMD64Helper(Func, Msan, Visitor); 4594 else if (TargetTriple.isMIPS64()) 4595 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4596 else if (TargetTriple.getArch() == Triple::aarch64) 4597 return new VarArgAArch64Helper(Func, Msan, Visitor); 4598 else if (TargetTriple.getArch() == Triple::ppc64 || 4599 TargetTriple.getArch() == Triple::ppc64le) 4600 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4601 else 4602 return new VarArgNoOpHelper(Func, Msan, Visitor); 4603 } 4604 4605 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4606 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4607 return false; 4608 4609 MemorySanitizerVisitor Visitor(F, *this, TLI); 4610 4611 // Clear out readonly/readnone attributes. 4612 AttrBuilder B; 4613 B.addAttribute(Attribute::ReadOnly) 4614 .addAttribute(Attribute::ReadNone) 4615 .addAttribute(Attribute::WriteOnly) 4616 .addAttribute(Attribute::ArgMemOnly) 4617 .addAttribute(Attribute::Speculatable); 4618 F.removeAttributes(AttributeList::FunctionIndex, B); 4619 4620 return Visitor.runOnFunction(); 4621 } 4622