1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/Transforms/Instrumentation.h" 95 #include "llvm/ADT/DepthFirstIterator.h" 96 #include "llvm/ADT/SmallString.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/ADT/StringExtras.h" 99 #include "llvm/ADT/Triple.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/Function.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/InstVisitor.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/MDBuilder.h" 108 #include "llvm/IR/Module.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/ValueMap.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/Debug.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ModuleUtils.h" 118 119 using namespace llvm; 120 121 #define DEBUG_TYPE "msan" 122 123 // VMA size definition for architecture that support multiple sizes. 124 // AArch64 has 3 VMA sizes: 39, 42 and 48. 125 #ifndef SANITIZER_AARCH64_VMA 126 # define SANITIZER_AARCH64_VMA 39 127 #else 128 # if SANITIZER_AARCH64_VMA != 39 && SANITIZER_AARCH64_VMA != 42 129 # error "invalid SANITIZER_AARCH64_VMA size" 130 # endif 131 #endif 132 133 static const unsigned kOriginSize = 4; 134 static const unsigned kMinOriginAlignment = 4; 135 static const unsigned kShadowTLSAlignment = 8; 136 137 // These constants must be kept in sync with the ones in msan.h. 138 static const unsigned kParamTLSSize = 800; 139 static const unsigned kRetvalTLSSize = 800; 140 141 // Accesses sizes are powers of two: 1, 2, 4, 8. 142 static const size_t kNumberOfAccessSizes = 4; 143 144 /// \brief Track origins of uninitialized values. 145 /// 146 /// Adds a section to MemorySanitizer report that points to the allocation 147 /// (stack or heap) the uninitialized bits came from originally. 148 static cl::opt<int> ClTrackOrigins("msan-track-origins", 149 cl::desc("Track origins (allocation sites) of poisoned memory"), 150 cl::Hidden, cl::init(0)); 151 static cl::opt<bool> ClKeepGoing("msan-keep-going", 152 cl::desc("keep going after reporting a UMR"), 153 cl::Hidden, cl::init(false)); 154 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 155 cl::desc("poison uninitialized stack variables"), 156 cl::Hidden, cl::init(true)); 157 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 158 cl::desc("poison uninitialized stack variables with a call"), 159 cl::Hidden, cl::init(false)); 160 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 161 cl::desc("poison uninitialized stack variables with the given pattern"), 162 cl::Hidden, cl::init(0xff)); 163 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 164 cl::desc("poison undef temps"), 165 cl::Hidden, cl::init(true)); 166 167 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 168 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 169 cl::Hidden, cl::init(true)); 170 171 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 172 cl::desc("exact handling of relational integer ICmp"), 173 cl::Hidden, cl::init(false)); 174 175 // This flag controls whether we check the shadow of the address 176 // operand of load or store. Such bugs are very rare, since load from 177 // a garbage address typically results in SEGV, but still happen 178 // (e.g. only lower bits of address are garbage, or the access happens 179 // early at program startup where malloc-ed memory is more likely to 180 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 181 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 182 cl::desc("report accesses through a pointer which has poisoned shadow"), 183 cl::Hidden, cl::init(true)); 184 185 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 186 cl::desc("print out instructions with default strict semantics"), 187 cl::Hidden, cl::init(false)); 188 189 static cl::opt<int> ClInstrumentationWithCallThreshold( 190 "msan-instrumentation-with-call-threshold", 191 cl::desc( 192 "If the function being instrumented requires more than " 193 "this number of checks and origin stores, use callbacks instead of " 194 "inline checks (-1 means never use callbacks)."), 195 cl::Hidden, cl::init(3500)); 196 197 // This is an experiment to enable handling of cases where shadow is a non-zero 198 // compile-time constant. For some unexplainable reason they were silently 199 // ignored in the instrumentation. 200 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 201 cl::desc("Insert checks for constant shadow values"), 202 cl::Hidden, cl::init(false)); 203 204 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 205 static const char *const kMsanInitName = "__msan_init"; 206 207 namespace { 208 209 // Memory map parameters used in application-to-shadow address calculation. 210 // Offset = (Addr & ~AndMask) ^ XorMask 211 // Shadow = ShadowBase + Offset 212 // Origin = OriginBase + Offset 213 struct MemoryMapParams { 214 uint64_t AndMask; 215 uint64_t XorMask; 216 uint64_t ShadowBase; 217 uint64_t OriginBase; 218 }; 219 220 struct PlatformMemoryMapParams { 221 const MemoryMapParams *bits32; 222 const MemoryMapParams *bits64; 223 }; 224 225 // i386 Linux 226 static const MemoryMapParams Linux_I386_MemoryMapParams = { 227 0x000080000000, // AndMask 228 0, // XorMask (not used) 229 0, // ShadowBase (not used) 230 0x000040000000, // OriginBase 231 }; 232 233 // x86_64 Linux 234 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 235 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 236 0x400000000000, // AndMask 237 0, // XorMask (not used) 238 0, // ShadowBase (not used) 239 0x200000000000, // OriginBase 240 #else 241 0, // AndMask (not used) 242 0x500000000000, // XorMask 243 0, // ShadowBase (not used) 244 0x100000000000, // OriginBase 245 #endif 246 }; 247 248 // mips64 Linux 249 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 250 0x004000000000, // AndMask 251 0, // XorMask (not used) 252 0, // ShadowBase (not used) 253 0x002000000000, // OriginBase 254 }; 255 256 // ppc64 Linux 257 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 258 0x200000000000, // AndMask 259 0x100000000000, // XorMask 260 0x080000000000, // ShadowBase 261 0x1C0000000000, // OriginBase 262 }; 263 264 // aarch64 Linux 265 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 266 #if SANITIZER_AARCH64_VMA == 39 267 0x007C00000000, // AndMask 268 0x000100000000, // XorMask 269 0x004000000000, // ShadowBase 270 0x004300000000, // OriginBase 271 #elif SANITIZER_AARCH64_VMA == 42 272 0x03E000000000, // AndMask 273 0x001000000000, // XorMask 274 0x010000000000, // ShadowBase 275 0x012000000000, // OriginBase 276 #endif 277 }; 278 279 // i386 FreeBSD 280 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 281 0x000180000000, // AndMask 282 0x000040000000, // XorMask 283 0x000020000000, // ShadowBase 284 0x000700000000, // OriginBase 285 }; 286 287 // x86_64 FreeBSD 288 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 289 0xc00000000000, // AndMask 290 0x200000000000, // XorMask 291 0x100000000000, // ShadowBase 292 0x380000000000, // OriginBase 293 }; 294 295 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 296 &Linux_I386_MemoryMapParams, 297 &Linux_X86_64_MemoryMapParams, 298 }; 299 300 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 301 nullptr, 302 &Linux_MIPS64_MemoryMapParams, 303 }; 304 305 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 306 nullptr, 307 &Linux_PowerPC64_MemoryMapParams, 308 }; 309 310 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 311 nullptr, 312 &Linux_AArch64_MemoryMapParams, 313 }; 314 315 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 316 &FreeBSD_I386_MemoryMapParams, 317 &FreeBSD_X86_64_MemoryMapParams, 318 }; 319 320 /// \brief An instrumentation pass implementing detection of uninitialized 321 /// reads. 322 /// 323 /// MemorySanitizer: instrument the code in module to find 324 /// uninitialized reads. 325 class MemorySanitizer : public FunctionPass { 326 public: 327 MemorySanitizer(int TrackOrigins = 0) 328 : FunctionPass(ID), 329 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 330 WarningFn(nullptr) {} 331 const char *getPassName() const override { return "MemorySanitizer"; } 332 bool runOnFunction(Function &F) override; 333 bool doInitialization(Module &M) override; 334 static char ID; // Pass identification, replacement for typeid. 335 336 private: 337 void initializeCallbacks(Module &M); 338 339 /// \brief Track origins (allocation points) of uninitialized values. 340 int TrackOrigins; 341 342 LLVMContext *C; 343 Type *IntptrTy; 344 Type *OriginTy; 345 /// \brief Thread-local shadow storage for function parameters. 346 GlobalVariable *ParamTLS; 347 /// \brief Thread-local origin storage for function parameters. 348 GlobalVariable *ParamOriginTLS; 349 /// \brief Thread-local shadow storage for function return value. 350 GlobalVariable *RetvalTLS; 351 /// \brief Thread-local origin storage for function return value. 352 GlobalVariable *RetvalOriginTLS; 353 /// \brief Thread-local shadow storage for in-register va_arg function 354 /// parameters (x86_64-specific). 355 GlobalVariable *VAArgTLS; 356 /// \brief Thread-local shadow storage for va_arg overflow area 357 /// (x86_64-specific). 358 GlobalVariable *VAArgOverflowSizeTLS; 359 /// \brief Thread-local space used to pass origin value to the UMR reporting 360 /// function. 361 GlobalVariable *OriginTLS; 362 363 /// \brief The run-time callback to print a warning. 364 Value *WarningFn; 365 // These arrays are indexed by log2(AccessSize). 366 Value *MaybeWarningFn[kNumberOfAccessSizes]; 367 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 368 369 /// \brief Run-time helper that generates a new origin value for a stack 370 /// allocation. 371 Value *MsanSetAllocaOrigin4Fn; 372 /// \brief Run-time helper that poisons stack on function entry. 373 Value *MsanPoisonStackFn; 374 /// \brief Run-time helper that records a store (or any event) of an 375 /// uninitialized value and returns an updated origin id encoding this info. 376 Value *MsanChainOriginFn; 377 /// \brief MSan runtime replacements for memmove, memcpy and memset. 378 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 379 380 /// \brief Memory map parameters used in application-to-shadow calculation. 381 const MemoryMapParams *MapParams; 382 383 MDNode *ColdCallWeights; 384 /// \brief Branch weights for origin store. 385 MDNode *OriginStoreWeights; 386 /// \brief An empty volatile inline asm that prevents callback merge. 387 InlineAsm *EmptyAsm; 388 Function *MsanCtorFunction; 389 390 friend struct MemorySanitizerVisitor; 391 friend struct VarArgAMD64Helper; 392 friend struct VarArgMIPS64Helper; 393 }; 394 } // anonymous namespace 395 396 char MemorySanitizer::ID = 0; 397 INITIALIZE_PASS(MemorySanitizer, "msan", 398 "MemorySanitizer: detects uninitialized reads.", 399 false, false) 400 401 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 402 return new MemorySanitizer(TrackOrigins); 403 } 404 405 /// \brief Create a non-const global initialized with the given string. 406 /// 407 /// Creates a writable global for Str so that we can pass it to the 408 /// run-time lib. Runtime uses first 4 bytes of the string to store the 409 /// frame ID, so the string needs to be mutable. 410 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 411 StringRef Str) { 412 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 413 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 414 GlobalValue::PrivateLinkage, StrConst, ""); 415 } 416 417 /// \brief Insert extern declaration of runtime-provided functions and globals. 418 void MemorySanitizer::initializeCallbacks(Module &M) { 419 // Only do this once. 420 if (WarningFn) 421 return; 422 423 IRBuilder<> IRB(*C); 424 // Create the callback. 425 // FIXME: this function should have "Cold" calling conv, 426 // which is not yet implemented. 427 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 428 : "__msan_warning_noreturn"; 429 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 430 431 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 432 AccessSizeIndex++) { 433 unsigned AccessSize = 1 << AccessSizeIndex; 434 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 435 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 436 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 437 IRB.getInt32Ty(), nullptr); 438 439 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 440 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 441 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 442 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 443 } 444 445 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 446 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 447 IRB.getInt8PtrTy(), IntptrTy, nullptr); 448 MsanPoisonStackFn = 449 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 450 IRB.getInt8PtrTy(), IntptrTy, nullptr); 451 MsanChainOriginFn = M.getOrInsertFunction( 452 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 453 MemmoveFn = M.getOrInsertFunction( 454 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 455 IRB.getInt8PtrTy(), IntptrTy, nullptr); 456 MemcpyFn = M.getOrInsertFunction( 457 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 458 IntptrTy, nullptr); 459 MemsetFn = M.getOrInsertFunction( 460 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 461 IntptrTy, nullptr); 462 463 // Create globals. 464 RetvalTLS = new GlobalVariable( 465 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 466 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 467 GlobalVariable::InitialExecTLSModel); 468 RetvalOriginTLS = new GlobalVariable( 469 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 470 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 471 472 ParamTLS = new GlobalVariable( 473 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 474 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 475 GlobalVariable::InitialExecTLSModel); 476 ParamOriginTLS = new GlobalVariable( 477 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 478 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 479 nullptr, GlobalVariable::InitialExecTLSModel); 480 481 VAArgTLS = new GlobalVariable( 482 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 483 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 484 GlobalVariable::InitialExecTLSModel); 485 VAArgOverflowSizeTLS = new GlobalVariable( 486 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 487 "__msan_va_arg_overflow_size_tls", nullptr, 488 GlobalVariable::InitialExecTLSModel); 489 OriginTLS = new GlobalVariable( 490 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 491 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 492 493 // We insert an empty inline asm after __msan_report* to avoid callback merge. 494 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 495 StringRef(""), StringRef(""), 496 /*hasSideEffects=*/true); 497 } 498 499 /// \brief Module-level initialization. 500 /// 501 /// inserts a call to __msan_init to the module's constructor list. 502 bool MemorySanitizer::doInitialization(Module &M) { 503 auto &DL = M.getDataLayout(); 504 505 Triple TargetTriple(M.getTargetTriple()); 506 switch (TargetTriple.getOS()) { 507 case Triple::FreeBSD: 508 switch (TargetTriple.getArch()) { 509 case Triple::x86_64: 510 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 511 break; 512 case Triple::x86: 513 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 514 break; 515 default: 516 report_fatal_error("unsupported architecture"); 517 } 518 break; 519 case Triple::Linux: 520 switch (TargetTriple.getArch()) { 521 case Triple::x86_64: 522 MapParams = Linux_X86_MemoryMapParams.bits64; 523 break; 524 case Triple::x86: 525 MapParams = Linux_X86_MemoryMapParams.bits32; 526 break; 527 case Triple::mips64: 528 case Triple::mips64el: 529 MapParams = Linux_MIPS_MemoryMapParams.bits64; 530 break; 531 case Triple::ppc64: 532 case Triple::ppc64le: 533 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 534 break; 535 case Triple::aarch64: 536 case Triple::aarch64_be: 537 MapParams = Linux_ARM_MemoryMapParams.bits64; 538 break; 539 default: 540 report_fatal_error("unsupported architecture"); 541 } 542 break; 543 default: 544 report_fatal_error("unsupported operating system"); 545 } 546 547 C = &(M.getContext()); 548 IRBuilder<> IRB(*C); 549 IntptrTy = IRB.getIntPtrTy(DL); 550 OriginTy = IRB.getInt32Ty(); 551 552 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 553 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 554 555 std::tie(MsanCtorFunction, std::ignore) = 556 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 557 /*InitArgTypes=*/{}, 558 /*InitArgs=*/{}); 559 560 appendToGlobalCtors(M, MsanCtorFunction, 0); 561 562 if (TrackOrigins) 563 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 564 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 565 566 if (ClKeepGoing) 567 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 568 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 569 570 return true; 571 } 572 573 namespace { 574 575 /// \brief A helper class that handles instrumentation of VarArg 576 /// functions on a particular platform. 577 /// 578 /// Implementations are expected to insert the instrumentation 579 /// necessary to propagate argument shadow through VarArg function 580 /// calls. Visit* methods are called during an InstVisitor pass over 581 /// the function, and should avoid creating new basic blocks. A new 582 /// instance of this class is created for each instrumented function. 583 struct VarArgHelper { 584 /// \brief Visit a CallSite. 585 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 586 587 /// \brief Visit a va_start call. 588 virtual void visitVAStartInst(VAStartInst &I) = 0; 589 590 /// \brief Visit a va_copy call. 591 virtual void visitVACopyInst(VACopyInst &I) = 0; 592 593 /// \brief Finalize function instrumentation. 594 /// 595 /// This method is called after visiting all interesting (see above) 596 /// instructions in a function. 597 virtual void finalizeInstrumentation() = 0; 598 599 virtual ~VarArgHelper() {} 600 }; 601 602 struct MemorySanitizerVisitor; 603 604 VarArgHelper* 605 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 606 MemorySanitizerVisitor &Visitor); 607 608 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 609 if (TypeSize <= 8) return 0; 610 return Log2_32_Ceil(TypeSize / 8); 611 } 612 613 /// This class does all the work for a given function. Store and Load 614 /// instructions store and load corresponding shadow and origin 615 /// values. Most instructions propagate shadow from arguments to their 616 /// return values. Certain instructions (most importantly, BranchInst) 617 /// test their argument shadow and print reports (with a runtime call) if it's 618 /// non-zero. 619 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 620 Function &F; 621 MemorySanitizer &MS; 622 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 623 ValueMap<Value*, Value*> ShadowMap, OriginMap; 624 std::unique_ptr<VarArgHelper> VAHelper; 625 626 // The following flags disable parts of MSan instrumentation based on 627 // blacklist contents and command-line options. 628 bool InsertChecks; 629 bool PropagateShadow; 630 bool PoisonStack; 631 bool PoisonUndef; 632 bool CheckReturnValue; 633 634 struct ShadowOriginAndInsertPoint { 635 Value *Shadow; 636 Value *Origin; 637 Instruction *OrigIns; 638 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 639 : Shadow(S), Origin(O), OrigIns(I) { } 640 }; 641 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 642 SmallVector<Instruction*, 16> StoreList; 643 644 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 645 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 646 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 647 InsertChecks = SanitizeFunction; 648 PropagateShadow = SanitizeFunction; 649 PoisonStack = SanitizeFunction && ClPoisonStack; 650 PoisonUndef = SanitizeFunction && ClPoisonUndef; 651 // FIXME: Consider using SpecialCaseList to specify a list of functions that 652 // must always return fully initialized values. For now, we hardcode "main". 653 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 654 655 DEBUG(if (!InsertChecks) 656 dbgs() << "MemorySanitizer is not inserting checks into '" 657 << F.getName() << "'\n"); 658 } 659 660 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 661 if (MS.TrackOrigins <= 1) return V; 662 return IRB.CreateCall(MS.MsanChainOriginFn, V); 663 } 664 665 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 666 const DataLayout &DL = F.getParent()->getDataLayout(); 667 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 668 if (IntptrSize == kOriginSize) return Origin; 669 assert(IntptrSize == kOriginSize * 2); 670 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 671 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 672 } 673 674 /// \brief Fill memory range with the given origin value. 675 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 676 unsigned Size, unsigned Alignment) { 677 const DataLayout &DL = F.getParent()->getDataLayout(); 678 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 679 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 680 assert(IntptrAlignment >= kMinOriginAlignment); 681 assert(IntptrSize >= kOriginSize); 682 683 unsigned Ofs = 0; 684 unsigned CurrentAlignment = Alignment; 685 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 686 Value *IntptrOrigin = originToIntptr(IRB, Origin); 687 Value *IntptrOriginPtr = 688 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 689 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 690 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 691 : IntptrOriginPtr; 692 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 693 Ofs += IntptrSize / kOriginSize; 694 CurrentAlignment = IntptrAlignment; 695 } 696 } 697 698 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 699 Value *GEP = 700 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 701 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 702 CurrentAlignment = kMinOriginAlignment; 703 } 704 } 705 706 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 707 unsigned Alignment, bool AsCall) { 708 const DataLayout &DL = F.getParent()->getDataLayout(); 709 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 710 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 711 if (isa<StructType>(Shadow->getType())) { 712 paintOrigin(IRB, updateOrigin(Origin, IRB), 713 getOriginPtr(Addr, IRB, Alignment), StoreSize, 714 OriginAlignment); 715 } else { 716 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 717 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 718 if (ConstantShadow) { 719 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 720 paintOrigin(IRB, updateOrigin(Origin, IRB), 721 getOriginPtr(Addr, IRB, Alignment), StoreSize, 722 OriginAlignment); 723 return; 724 } 725 726 unsigned TypeSizeInBits = 727 DL.getTypeSizeInBits(ConvertedShadow->getType()); 728 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 729 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 730 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 731 Value *ConvertedShadow2 = IRB.CreateZExt( 732 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 733 IRB.CreateCall(Fn, {ConvertedShadow2, 734 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 735 Origin}); 736 } else { 737 Value *Cmp = IRB.CreateICmpNE( 738 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 739 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 740 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 741 IRBuilder<> IRBNew(CheckTerm); 742 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 743 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 744 OriginAlignment); 745 } 746 } 747 } 748 749 void materializeStores(bool InstrumentWithCalls) { 750 for (auto Inst : StoreList) { 751 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 752 753 IRBuilder<> IRB(&SI); 754 Value *Val = SI.getValueOperand(); 755 Value *Addr = SI.getPointerOperand(); 756 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 757 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 758 759 StoreInst *NewSI = 760 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 761 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 762 (void)NewSI; 763 764 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 765 766 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 767 768 if (MS.TrackOrigins && !SI.isAtomic()) 769 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 770 InstrumentWithCalls); 771 } 772 } 773 774 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 775 bool AsCall) { 776 IRBuilder<> IRB(OrigIns); 777 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 778 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 779 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 780 781 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 782 if (ConstantShadow) { 783 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 784 if (MS.TrackOrigins) { 785 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 786 MS.OriginTLS); 787 } 788 IRB.CreateCall(MS.WarningFn, {}); 789 IRB.CreateCall(MS.EmptyAsm, {}); 790 // FIXME: Insert UnreachableInst if !ClKeepGoing? 791 // This may invalidate some of the following checks and needs to be done 792 // at the very end. 793 } 794 return; 795 } 796 797 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 798 799 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 800 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 801 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 802 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 803 Value *ConvertedShadow2 = 804 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 805 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 806 ? Origin 807 : (Value *)IRB.getInt32(0)}); 808 } else { 809 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 810 getCleanShadow(ConvertedShadow), "_mscmp"); 811 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 812 Cmp, OrigIns, 813 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 814 815 IRB.SetInsertPoint(CheckTerm); 816 if (MS.TrackOrigins) { 817 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 818 MS.OriginTLS); 819 } 820 IRB.CreateCall(MS.WarningFn, {}); 821 IRB.CreateCall(MS.EmptyAsm, {}); 822 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 823 } 824 } 825 826 void materializeChecks(bool InstrumentWithCalls) { 827 for (const auto &ShadowData : InstrumentationList) { 828 Instruction *OrigIns = ShadowData.OrigIns; 829 Value *Shadow = ShadowData.Shadow; 830 Value *Origin = ShadowData.Origin; 831 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 832 } 833 DEBUG(dbgs() << "DONE:\n" << F); 834 } 835 836 /// \brief Add MemorySanitizer instrumentation to a function. 837 bool runOnFunction() { 838 MS.initializeCallbacks(*F.getParent()); 839 840 // In the presence of unreachable blocks, we may see Phi nodes with 841 // incoming nodes from such blocks. Since InstVisitor skips unreachable 842 // blocks, such nodes will not have any shadow value associated with them. 843 // It's easier to remove unreachable blocks than deal with missing shadow. 844 removeUnreachableBlocks(F); 845 846 // Iterate all BBs in depth-first order and create shadow instructions 847 // for all instructions (where applicable). 848 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 849 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 850 visit(*BB); 851 852 853 // Finalize PHI nodes. 854 for (PHINode *PN : ShadowPHINodes) { 855 PHINode *PNS = cast<PHINode>(getShadow(PN)); 856 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 857 size_t NumValues = PN->getNumIncomingValues(); 858 for (size_t v = 0; v < NumValues; v++) { 859 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 860 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 861 } 862 } 863 864 VAHelper->finalizeInstrumentation(); 865 866 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 867 InstrumentationList.size() + StoreList.size() > 868 (unsigned)ClInstrumentationWithCallThreshold; 869 870 // Delayed instrumentation of StoreInst. 871 // This may add new checks to be inserted later. 872 materializeStores(InstrumentWithCalls); 873 874 // Insert shadow value checks. 875 materializeChecks(InstrumentWithCalls); 876 877 return true; 878 } 879 880 /// \brief Compute the shadow type that corresponds to a given Value. 881 Type *getShadowTy(Value *V) { 882 return getShadowTy(V->getType()); 883 } 884 885 /// \brief Compute the shadow type that corresponds to a given Type. 886 Type *getShadowTy(Type *OrigTy) { 887 if (!OrigTy->isSized()) { 888 return nullptr; 889 } 890 // For integer type, shadow is the same as the original type. 891 // This may return weird-sized types like i1. 892 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 893 return IT; 894 const DataLayout &DL = F.getParent()->getDataLayout(); 895 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 896 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 897 return VectorType::get(IntegerType::get(*MS.C, EltSize), 898 VT->getNumElements()); 899 } 900 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 901 return ArrayType::get(getShadowTy(AT->getElementType()), 902 AT->getNumElements()); 903 } 904 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 905 SmallVector<Type*, 4> Elements; 906 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 907 Elements.push_back(getShadowTy(ST->getElementType(i))); 908 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 909 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 910 return Res; 911 } 912 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 913 return IntegerType::get(*MS.C, TypeSize); 914 } 915 916 /// \brief Flatten a vector type. 917 Type *getShadowTyNoVec(Type *ty) { 918 if (VectorType *vt = dyn_cast<VectorType>(ty)) 919 return IntegerType::get(*MS.C, vt->getBitWidth()); 920 return ty; 921 } 922 923 /// \brief Convert a shadow value to it's flattened variant. 924 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 925 Type *Ty = V->getType(); 926 Type *NoVecTy = getShadowTyNoVec(Ty); 927 if (Ty == NoVecTy) return V; 928 return IRB.CreateBitCast(V, NoVecTy); 929 } 930 931 /// \brief Compute the integer shadow offset that corresponds to a given 932 /// application address. 933 /// 934 /// Offset = (Addr & ~AndMask) ^ XorMask 935 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 936 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 937 938 uint64_t AndMask = MS.MapParams->AndMask; 939 if (AndMask) 940 OffsetLong = 941 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 942 943 uint64_t XorMask = MS.MapParams->XorMask; 944 if (XorMask) 945 OffsetLong = 946 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 947 return OffsetLong; 948 } 949 950 /// \brief Compute the shadow address that corresponds to a given application 951 /// address. 952 /// 953 /// Shadow = ShadowBase + Offset 954 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 955 IRBuilder<> &IRB) { 956 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 957 uint64_t ShadowBase = MS.MapParams->ShadowBase; 958 if (ShadowBase != 0) 959 ShadowLong = 960 IRB.CreateAdd(ShadowLong, 961 ConstantInt::get(MS.IntptrTy, ShadowBase)); 962 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 963 } 964 965 /// \brief Compute the origin address that corresponds to a given application 966 /// address. 967 /// 968 /// OriginAddr = (OriginBase + Offset) & ~3ULL 969 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 970 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 971 uint64_t OriginBase = MS.MapParams->OriginBase; 972 if (OriginBase != 0) 973 OriginLong = 974 IRB.CreateAdd(OriginLong, 975 ConstantInt::get(MS.IntptrTy, OriginBase)); 976 if (Alignment < kMinOriginAlignment) { 977 uint64_t Mask = kMinOriginAlignment - 1; 978 OriginLong = IRB.CreateAnd(OriginLong, 979 ConstantInt::get(MS.IntptrTy, ~Mask)); 980 } 981 return IRB.CreateIntToPtr(OriginLong, 982 PointerType::get(IRB.getInt32Ty(), 0)); 983 } 984 985 /// \brief Compute the shadow address for a given function argument. 986 /// 987 /// Shadow = ParamTLS+ArgOffset. 988 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 989 int ArgOffset) { 990 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 991 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 992 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 993 "_msarg"); 994 } 995 996 /// \brief Compute the origin address for a given function argument. 997 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 998 int ArgOffset) { 999 if (!MS.TrackOrigins) return nullptr; 1000 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1001 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1002 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1003 "_msarg_o"); 1004 } 1005 1006 /// \brief Compute the shadow address for a retval. 1007 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1008 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1009 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1010 "_msret"); 1011 } 1012 1013 /// \brief Compute the origin address for a retval. 1014 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1015 // We keep a single origin for the entire retval. Might be too optimistic. 1016 return MS.RetvalOriginTLS; 1017 } 1018 1019 /// \brief Set SV to be the shadow value for V. 1020 void setShadow(Value *V, Value *SV) { 1021 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1022 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1023 } 1024 1025 /// \brief Set Origin to be the origin value for V. 1026 void setOrigin(Value *V, Value *Origin) { 1027 if (!MS.TrackOrigins) return; 1028 assert(!OriginMap.count(V) && "Values may only have one origin"); 1029 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1030 OriginMap[V] = Origin; 1031 } 1032 1033 /// \brief Create a clean shadow value for a given value. 1034 /// 1035 /// Clean shadow (all zeroes) means all bits of the value are defined 1036 /// (initialized). 1037 Constant *getCleanShadow(Value *V) { 1038 Type *ShadowTy = getShadowTy(V); 1039 if (!ShadowTy) 1040 return nullptr; 1041 return Constant::getNullValue(ShadowTy); 1042 } 1043 1044 /// \brief Create a dirty shadow of a given shadow type. 1045 Constant *getPoisonedShadow(Type *ShadowTy) { 1046 assert(ShadowTy); 1047 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1048 return Constant::getAllOnesValue(ShadowTy); 1049 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1050 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1051 getPoisonedShadow(AT->getElementType())); 1052 return ConstantArray::get(AT, Vals); 1053 } 1054 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1055 SmallVector<Constant *, 4> Vals; 1056 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1057 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1058 return ConstantStruct::get(ST, Vals); 1059 } 1060 llvm_unreachable("Unexpected shadow type"); 1061 } 1062 1063 /// \brief Create a dirty shadow for a given value. 1064 Constant *getPoisonedShadow(Value *V) { 1065 Type *ShadowTy = getShadowTy(V); 1066 if (!ShadowTy) 1067 return nullptr; 1068 return getPoisonedShadow(ShadowTy); 1069 } 1070 1071 /// \brief Create a clean (zero) origin. 1072 Value *getCleanOrigin() { 1073 return Constant::getNullValue(MS.OriginTy); 1074 } 1075 1076 /// \brief Get the shadow value for a given Value. 1077 /// 1078 /// This function either returns the value set earlier with setShadow, 1079 /// or extracts if from ParamTLS (for function arguments). 1080 Value *getShadow(Value *V) { 1081 if (!PropagateShadow) return getCleanShadow(V); 1082 if (Instruction *I = dyn_cast<Instruction>(V)) { 1083 // For instructions the shadow is already stored in the map. 1084 Value *Shadow = ShadowMap[V]; 1085 if (!Shadow) { 1086 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1087 (void)I; 1088 assert(Shadow && "No shadow for a value"); 1089 } 1090 return Shadow; 1091 } 1092 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1093 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1094 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1095 (void)U; 1096 return AllOnes; 1097 } 1098 if (Argument *A = dyn_cast<Argument>(V)) { 1099 // For arguments we compute the shadow on demand and store it in the map. 1100 Value **ShadowPtr = &ShadowMap[V]; 1101 if (*ShadowPtr) 1102 return *ShadowPtr; 1103 Function *F = A->getParent(); 1104 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1105 unsigned ArgOffset = 0; 1106 const DataLayout &DL = F->getParent()->getDataLayout(); 1107 for (auto &FArg : F->args()) { 1108 if (!FArg.getType()->isSized()) { 1109 DEBUG(dbgs() << "Arg is not sized\n"); 1110 continue; 1111 } 1112 unsigned Size = 1113 FArg.hasByValAttr() 1114 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1115 : DL.getTypeAllocSize(FArg.getType()); 1116 if (A == &FArg) { 1117 bool Overflow = ArgOffset + Size > kParamTLSSize; 1118 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1119 if (FArg.hasByValAttr()) { 1120 // ByVal pointer itself has clean shadow. We copy the actual 1121 // argument shadow to the underlying memory. 1122 // Figure out maximal valid memcpy alignment. 1123 unsigned ArgAlign = FArg.getParamAlignment(); 1124 if (ArgAlign == 0) { 1125 Type *EltType = A->getType()->getPointerElementType(); 1126 ArgAlign = DL.getABITypeAlignment(EltType); 1127 } 1128 if (Overflow) { 1129 // ParamTLS overflow. 1130 EntryIRB.CreateMemSet( 1131 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1132 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1133 } else { 1134 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1135 Value *Cpy = EntryIRB.CreateMemCpy( 1136 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1137 CopyAlign); 1138 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1139 (void)Cpy; 1140 } 1141 *ShadowPtr = getCleanShadow(V); 1142 } else { 1143 if (Overflow) { 1144 // ParamTLS overflow. 1145 *ShadowPtr = getCleanShadow(V); 1146 } else { 1147 *ShadowPtr = 1148 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1149 } 1150 } 1151 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1152 **ShadowPtr << "\n"); 1153 if (MS.TrackOrigins && !Overflow) { 1154 Value *OriginPtr = 1155 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1156 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1157 } else { 1158 setOrigin(A, getCleanOrigin()); 1159 } 1160 } 1161 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment); 1162 } 1163 assert(*ShadowPtr && "Could not find shadow for an argument"); 1164 return *ShadowPtr; 1165 } 1166 // For everything else the shadow is zero. 1167 return getCleanShadow(V); 1168 } 1169 1170 /// \brief Get the shadow for i-th argument of the instruction I. 1171 Value *getShadow(Instruction *I, int i) { 1172 return getShadow(I->getOperand(i)); 1173 } 1174 1175 /// \brief Get the origin for a value. 1176 Value *getOrigin(Value *V) { 1177 if (!MS.TrackOrigins) return nullptr; 1178 if (!PropagateShadow) return getCleanOrigin(); 1179 if (isa<Constant>(V)) return getCleanOrigin(); 1180 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1181 "Unexpected value type in getOrigin()"); 1182 Value *Origin = OriginMap[V]; 1183 assert(Origin && "Missing origin"); 1184 return Origin; 1185 } 1186 1187 /// \brief Get the origin for i-th argument of the instruction I. 1188 Value *getOrigin(Instruction *I, int i) { 1189 return getOrigin(I->getOperand(i)); 1190 } 1191 1192 /// \brief Remember the place where a shadow check should be inserted. 1193 /// 1194 /// This location will be later instrumented with a check that will print a 1195 /// UMR warning in runtime if the shadow value is not 0. 1196 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1197 assert(Shadow); 1198 if (!InsertChecks) return; 1199 #ifndef NDEBUG 1200 Type *ShadowTy = Shadow->getType(); 1201 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1202 "Can only insert checks for integer and vector shadow types"); 1203 #endif 1204 InstrumentationList.push_back( 1205 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1206 } 1207 1208 /// \brief Remember the place where a shadow check should be inserted. 1209 /// 1210 /// This location will be later instrumented with a check that will print a 1211 /// UMR warning in runtime if the value is not fully defined. 1212 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1213 assert(Val); 1214 Value *Shadow, *Origin; 1215 if (ClCheckConstantShadow) { 1216 Shadow = getShadow(Val); 1217 if (!Shadow) return; 1218 Origin = getOrigin(Val); 1219 } else { 1220 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1221 if (!Shadow) return; 1222 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1223 } 1224 insertShadowCheck(Shadow, Origin, OrigIns); 1225 } 1226 1227 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1228 switch (a) { 1229 case NotAtomic: 1230 return NotAtomic; 1231 case Unordered: 1232 case Monotonic: 1233 case Release: 1234 return Release; 1235 case Acquire: 1236 case AcquireRelease: 1237 return AcquireRelease; 1238 case SequentiallyConsistent: 1239 return SequentiallyConsistent; 1240 } 1241 llvm_unreachable("Unknown ordering"); 1242 } 1243 1244 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1245 switch (a) { 1246 case NotAtomic: 1247 return NotAtomic; 1248 case Unordered: 1249 case Monotonic: 1250 case Acquire: 1251 return Acquire; 1252 case Release: 1253 case AcquireRelease: 1254 return AcquireRelease; 1255 case SequentiallyConsistent: 1256 return SequentiallyConsistent; 1257 } 1258 llvm_unreachable("Unknown ordering"); 1259 } 1260 1261 // ------------------- Visitors. 1262 1263 /// \brief Instrument LoadInst 1264 /// 1265 /// Loads the corresponding shadow and (optionally) origin. 1266 /// Optionally, checks that the load address is fully defined. 1267 void visitLoadInst(LoadInst &I) { 1268 assert(I.getType()->isSized() && "Load type must have size"); 1269 IRBuilder<> IRB(I.getNextNode()); 1270 Type *ShadowTy = getShadowTy(&I); 1271 Value *Addr = I.getPointerOperand(); 1272 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1273 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1274 setShadow(&I, 1275 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1276 } else { 1277 setShadow(&I, getCleanShadow(&I)); 1278 } 1279 1280 if (ClCheckAccessAddress) 1281 insertShadowCheck(I.getPointerOperand(), &I); 1282 1283 if (I.isAtomic()) 1284 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1285 1286 if (MS.TrackOrigins) { 1287 if (PropagateShadow) { 1288 unsigned Alignment = I.getAlignment(); 1289 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1290 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1291 OriginAlignment)); 1292 } else { 1293 setOrigin(&I, getCleanOrigin()); 1294 } 1295 } 1296 } 1297 1298 /// \brief Instrument StoreInst 1299 /// 1300 /// Stores the corresponding shadow and (optionally) origin. 1301 /// Optionally, checks that the store address is fully defined. 1302 void visitStoreInst(StoreInst &I) { 1303 StoreList.push_back(&I); 1304 } 1305 1306 void handleCASOrRMW(Instruction &I) { 1307 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1308 1309 IRBuilder<> IRB(&I); 1310 Value *Addr = I.getOperand(0); 1311 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1312 1313 if (ClCheckAccessAddress) 1314 insertShadowCheck(Addr, &I); 1315 1316 // Only test the conditional argument of cmpxchg instruction. 1317 // The other argument can potentially be uninitialized, but we can not 1318 // detect this situation reliably without possible false positives. 1319 if (isa<AtomicCmpXchgInst>(I)) 1320 insertShadowCheck(I.getOperand(1), &I); 1321 1322 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1323 1324 setShadow(&I, getCleanShadow(&I)); 1325 setOrigin(&I, getCleanOrigin()); 1326 } 1327 1328 void visitAtomicRMWInst(AtomicRMWInst &I) { 1329 handleCASOrRMW(I); 1330 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1331 } 1332 1333 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1334 handleCASOrRMW(I); 1335 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1336 } 1337 1338 // Vector manipulation. 1339 void visitExtractElementInst(ExtractElementInst &I) { 1340 insertShadowCheck(I.getOperand(1), &I); 1341 IRBuilder<> IRB(&I); 1342 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1343 "_msprop")); 1344 setOrigin(&I, getOrigin(&I, 0)); 1345 } 1346 1347 void visitInsertElementInst(InsertElementInst &I) { 1348 insertShadowCheck(I.getOperand(2), &I); 1349 IRBuilder<> IRB(&I); 1350 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1351 I.getOperand(2), "_msprop")); 1352 setOriginForNaryOp(I); 1353 } 1354 1355 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1356 insertShadowCheck(I.getOperand(2), &I); 1357 IRBuilder<> IRB(&I); 1358 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1359 I.getOperand(2), "_msprop")); 1360 setOriginForNaryOp(I); 1361 } 1362 1363 // Casts. 1364 void visitSExtInst(SExtInst &I) { 1365 IRBuilder<> IRB(&I); 1366 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1367 setOrigin(&I, getOrigin(&I, 0)); 1368 } 1369 1370 void visitZExtInst(ZExtInst &I) { 1371 IRBuilder<> IRB(&I); 1372 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1373 setOrigin(&I, getOrigin(&I, 0)); 1374 } 1375 1376 void visitTruncInst(TruncInst &I) { 1377 IRBuilder<> IRB(&I); 1378 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1379 setOrigin(&I, getOrigin(&I, 0)); 1380 } 1381 1382 void visitBitCastInst(BitCastInst &I) { 1383 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1384 // a musttail call and a ret, don't instrument. New instructions are not 1385 // allowed after a musttail call. 1386 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1387 if (CI->isMustTailCall()) 1388 return; 1389 IRBuilder<> IRB(&I); 1390 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1391 setOrigin(&I, getOrigin(&I, 0)); 1392 } 1393 1394 void visitPtrToIntInst(PtrToIntInst &I) { 1395 IRBuilder<> IRB(&I); 1396 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1397 "_msprop_ptrtoint")); 1398 setOrigin(&I, getOrigin(&I, 0)); 1399 } 1400 1401 void visitIntToPtrInst(IntToPtrInst &I) { 1402 IRBuilder<> IRB(&I); 1403 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1404 "_msprop_inttoptr")); 1405 setOrigin(&I, getOrigin(&I, 0)); 1406 } 1407 1408 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1409 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1410 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1411 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1412 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1413 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1414 1415 /// \brief Propagate shadow for bitwise AND. 1416 /// 1417 /// This code is exact, i.e. if, for example, a bit in the left argument 1418 /// is defined and 0, then neither the value not definedness of the 1419 /// corresponding bit in B don't affect the resulting shadow. 1420 void visitAnd(BinaryOperator &I) { 1421 IRBuilder<> IRB(&I); 1422 // "And" of 0 and a poisoned value results in unpoisoned value. 1423 // 1&1 => 1; 0&1 => 0; p&1 => p; 1424 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1425 // 1&p => p; 0&p => 0; p&p => p; 1426 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1427 Value *S1 = getShadow(&I, 0); 1428 Value *S2 = getShadow(&I, 1); 1429 Value *V1 = I.getOperand(0); 1430 Value *V2 = I.getOperand(1); 1431 if (V1->getType() != S1->getType()) { 1432 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1433 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1434 } 1435 Value *S1S2 = IRB.CreateAnd(S1, S2); 1436 Value *V1S2 = IRB.CreateAnd(V1, S2); 1437 Value *S1V2 = IRB.CreateAnd(S1, V2); 1438 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1439 setOriginForNaryOp(I); 1440 } 1441 1442 void visitOr(BinaryOperator &I) { 1443 IRBuilder<> IRB(&I); 1444 // "Or" of 1 and a poisoned value results in unpoisoned value. 1445 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1446 // 1|0 => 1; 0|0 => 0; p|0 => p; 1447 // 1|p => 1; 0|p => p; p|p => p; 1448 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1449 Value *S1 = getShadow(&I, 0); 1450 Value *S2 = getShadow(&I, 1); 1451 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1452 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1453 if (V1->getType() != S1->getType()) { 1454 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1455 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1456 } 1457 Value *S1S2 = IRB.CreateAnd(S1, S2); 1458 Value *V1S2 = IRB.CreateAnd(V1, S2); 1459 Value *S1V2 = IRB.CreateAnd(S1, V2); 1460 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1461 setOriginForNaryOp(I); 1462 } 1463 1464 /// \brief Default propagation of shadow and/or origin. 1465 /// 1466 /// This class implements the general case of shadow propagation, used in all 1467 /// cases where we don't know and/or don't care about what the operation 1468 /// actually does. It converts all input shadow values to a common type 1469 /// (extending or truncating as necessary), and bitwise OR's them. 1470 /// 1471 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1472 /// fully initialized), and less prone to false positives. 1473 /// 1474 /// This class also implements the general case of origin propagation. For a 1475 /// Nary operation, result origin is set to the origin of an argument that is 1476 /// not entirely initialized. If there is more than one such arguments, the 1477 /// rightmost of them is picked. It does not matter which one is picked if all 1478 /// arguments are initialized. 1479 template <bool CombineShadow> 1480 class Combiner { 1481 Value *Shadow; 1482 Value *Origin; 1483 IRBuilder<> &IRB; 1484 MemorySanitizerVisitor *MSV; 1485 1486 public: 1487 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1488 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1489 1490 /// \brief Add a pair of shadow and origin values to the mix. 1491 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1492 if (CombineShadow) { 1493 assert(OpShadow); 1494 if (!Shadow) 1495 Shadow = OpShadow; 1496 else { 1497 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1498 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1499 } 1500 } 1501 1502 if (MSV->MS.TrackOrigins) { 1503 assert(OpOrigin); 1504 if (!Origin) { 1505 Origin = OpOrigin; 1506 } else { 1507 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1508 // No point in adding something that might result in 0 origin value. 1509 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1510 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1511 Value *Cond = 1512 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1513 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1514 } 1515 } 1516 } 1517 return *this; 1518 } 1519 1520 /// \brief Add an application value to the mix. 1521 Combiner &Add(Value *V) { 1522 Value *OpShadow = MSV->getShadow(V); 1523 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1524 return Add(OpShadow, OpOrigin); 1525 } 1526 1527 /// \brief Set the current combined values as the given instruction's shadow 1528 /// and origin. 1529 void Done(Instruction *I) { 1530 if (CombineShadow) { 1531 assert(Shadow); 1532 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1533 MSV->setShadow(I, Shadow); 1534 } 1535 if (MSV->MS.TrackOrigins) { 1536 assert(Origin); 1537 MSV->setOrigin(I, Origin); 1538 } 1539 } 1540 }; 1541 1542 typedef Combiner<true> ShadowAndOriginCombiner; 1543 typedef Combiner<false> OriginCombiner; 1544 1545 /// \brief Propagate origin for arbitrary operation. 1546 void setOriginForNaryOp(Instruction &I) { 1547 if (!MS.TrackOrigins) return; 1548 IRBuilder<> IRB(&I); 1549 OriginCombiner OC(this, IRB); 1550 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1551 OC.Add(OI->get()); 1552 OC.Done(&I); 1553 } 1554 1555 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1556 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1557 "Vector of pointers is not a valid shadow type"); 1558 return Ty->isVectorTy() ? 1559 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1560 Ty->getPrimitiveSizeInBits(); 1561 } 1562 1563 /// \brief Cast between two shadow types, extending or truncating as 1564 /// necessary. 1565 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1566 bool Signed = false) { 1567 Type *srcTy = V->getType(); 1568 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1569 return IRB.CreateIntCast(V, dstTy, Signed); 1570 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1571 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1572 return IRB.CreateIntCast(V, dstTy, Signed); 1573 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1574 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1575 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1576 Value *V2 = 1577 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1578 return IRB.CreateBitCast(V2, dstTy); 1579 // TODO: handle struct types. 1580 } 1581 1582 /// \brief Cast an application value to the type of its own shadow. 1583 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1584 Type *ShadowTy = getShadowTy(V); 1585 if (V->getType() == ShadowTy) 1586 return V; 1587 if (V->getType()->isPtrOrPtrVectorTy()) 1588 return IRB.CreatePtrToInt(V, ShadowTy); 1589 else 1590 return IRB.CreateBitCast(V, ShadowTy); 1591 } 1592 1593 /// \brief Propagate shadow for arbitrary operation. 1594 void handleShadowOr(Instruction &I) { 1595 IRBuilder<> IRB(&I); 1596 ShadowAndOriginCombiner SC(this, IRB); 1597 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1598 SC.Add(OI->get()); 1599 SC.Done(&I); 1600 } 1601 1602 // \brief Handle multiplication by constant. 1603 // 1604 // Handle a special case of multiplication by constant that may have one or 1605 // more zeros in the lower bits. This makes corresponding number of lower bits 1606 // of the result zero as well. We model it by shifting the other operand 1607 // shadow left by the required number of bits. Effectively, we transform 1608 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1609 // We use multiplication by 2**N instead of shift to cover the case of 1610 // multiplication by 0, which may occur in some elements of a vector operand. 1611 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1612 Value *OtherArg) { 1613 Constant *ShadowMul; 1614 Type *Ty = ConstArg->getType(); 1615 if (Ty->isVectorTy()) { 1616 unsigned NumElements = Ty->getVectorNumElements(); 1617 Type *EltTy = Ty->getSequentialElementType(); 1618 SmallVector<Constant *, 16> Elements; 1619 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1620 if (ConstantInt *Elt = 1621 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1622 APInt V = Elt->getValue(); 1623 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1624 Elements.push_back(ConstantInt::get(EltTy, V2)); 1625 } else { 1626 Elements.push_back(ConstantInt::get(EltTy, 1)); 1627 } 1628 } 1629 ShadowMul = ConstantVector::get(Elements); 1630 } else { 1631 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1632 APInt V = Elt->getValue(); 1633 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1634 ShadowMul = ConstantInt::get(Ty, V2); 1635 } else { 1636 ShadowMul = ConstantInt::get(Ty, 1); 1637 } 1638 } 1639 1640 IRBuilder<> IRB(&I); 1641 setShadow(&I, 1642 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1643 setOrigin(&I, getOrigin(OtherArg)); 1644 } 1645 1646 void visitMul(BinaryOperator &I) { 1647 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1648 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1649 if (constOp0 && !constOp1) 1650 handleMulByConstant(I, constOp0, I.getOperand(1)); 1651 else if (constOp1 && !constOp0) 1652 handleMulByConstant(I, constOp1, I.getOperand(0)); 1653 else 1654 handleShadowOr(I); 1655 } 1656 1657 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1658 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1659 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1660 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1661 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1662 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1663 1664 void handleDiv(Instruction &I) { 1665 IRBuilder<> IRB(&I); 1666 // Strict on the second argument. 1667 insertShadowCheck(I.getOperand(1), &I); 1668 setShadow(&I, getShadow(&I, 0)); 1669 setOrigin(&I, getOrigin(&I, 0)); 1670 } 1671 1672 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1673 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1674 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1675 void visitURem(BinaryOperator &I) { handleDiv(I); } 1676 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1677 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1678 1679 /// \brief Instrument == and != comparisons. 1680 /// 1681 /// Sometimes the comparison result is known even if some of the bits of the 1682 /// arguments are not. 1683 void handleEqualityComparison(ICmpInst &I) { 1684 IRBuilder<> IRB(&I); 1685 Value *A = I.getOperand(0); 1686 Value *B = I.getOperand(1); 1687 Value *Sa = getShadow(A); 1688 Value *Sb = getShadow(B); 1689 1690 // Get rid of pointers and vectors of pointers. 1691 // For ints (and vectors of ints), types of A and Sa match, 1692 // and this is a no-op. 1693 A = IRB.CreatePointerCast(A, Sa->getType()); 1694 B = IRB.CreatePointerCast(B, Sb->getType()); 1695 1696 // A == B <==> (C = A^B) == 0 1697 // A != B <==> (C = A^B) != 0 1698 // Sc = Sa | Sb 1699 Value *C = IRB.CreateXor(A, B); 1700 Value *Sc = IRB.CreateOr(Sa, Sb); 1701 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1702 // Result is defined if one of the following is true 1703 // * there is a defined 1 bit in C 1704 // * C is fully defined 1705 // Si = !(C & ~Sc) && Sc 1706 Value *Zero = Constant::getNullValue(Sc->getType()); 1707 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1708 Value *Si = 1709 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1710 IRB.CreateICmpEQ( 1711 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1712 Si->setName("_msprop_icmp"); 1713 setShadow(&I, Si); 1714 setOriginForNaryOp(I); 1715 } 1716 1717 /// \brief Build the lowest possible value of V, taking into account V's 1718 /// uninitialized bits. 1719 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1720 bool isSigned) { 1721 if (isSigned) { 1722 // Split shadow into sign bit and other bits. 1723 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1724 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1725 // Maximise the undefined shadow bit, minimize other undefined bits. 1726 return 1727 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1728 } else { 1729 // Minimize undefined bits. 1730 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1731 } 1732 } 1733 1734 /// \brief Build the highest possible value of V, taking into account V's 1735 /// uninitialized bits. 1736 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1737 bool isSigned) { 1738 if (isSigned) { 1739 // Split shadow into sign bit and other bits. 1740 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1741 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1742 // Minimise the undefined shadow bit, maximise other undefined bits. 1743 return 1744 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1745 } else { 1746 // Maximize undefined bits. 1747 return IRB.CreateOr(A, Sa); 1748 } 1749 } 1750 1751 /// \brief Instrument relational comparisons. 1752 /// 1753 /// This function does exact shadow propagation for all relational 1754 /// comparisons of integers, pointers and vectors of those. 1755 /// FIXME: output seems suboptimal when one of the operands is a constant 1756 void handleRelationalComparisonExact(ICmpInst &I) { 1757 IRBuilder<> IRB(&I); 1758 Value *A = I.getOperand(0); 1759 Value *B = I.getOperand(1); 1760 Value *Sa = getShadow(A); 1761 Value *Sb = getShadow(B); 1762 1763 // Get rid of pointers and vectors of pointers. 1764 // For ints (and vectors of ints), types of A and Sa match, 1765 // and this is a no-op. 1766 A = IRB.CreatePointerCast(A, Sa->getType()); 1767 B = IRB.CreatePointerCast(B, Sb->getType()); 1768 1769 // Let [a0, a1] be the interval of possible values of A, taking into account 1770 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1771 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1772 bool IsSigned = I.isSigned(); 1773 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1774 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1775 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1776 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1777 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1778 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1779 Value *Si = IRB.CreateXor(S1, S2); 1780 setShadow(&I, Si); 1781 setOriginForNaryOp(I); 1782 } 1783 1784 /// \brief Instrument signed relational comparisons. 1785 /// 1786 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1787 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1788 void handleSignedRelationalComparison(ICmpInst &I) { 1789 Constant *constOp; 1790 Value *op = nullptr; 1791 CmpInst::Predicate pre; 1792 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1793 op = I.getOperand(0); 1794 pre = I.getPredicate(); 1795 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1796 op = I.getOperand(1); 1797 pre = I.getSwappedPredicate(); 1798 } else { 1799 handleShadowOr(I); 1800 return; 1801 } 1802 1803 if ((constOp->isNullValue() && 1804 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1805 (constOp->isAllOnesValue() && 1806 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1807 IRBuilder<> IRB(&I); 1808 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1809 "_msprop_icmp_s"); 1810 setShadow(&I, Shadow); 1811 setOrigin(&I, getOrigin(op)); 1812 } else { 1813 handleShadowOr(I); 1814 } 1815 } 1816 1817 void visitICmpInst(ICmpInst &I) { 1818 if (!ClHandleICmp) { 1819 handleShadowOr(I); 1820 return; 1821 } 1822 if (I.isEquality()) { 1823 handleEqualityComparison(I); 1824 return; 1825 } 1826 1827 assert(I.isRelational()); 1828 if (ClHandleICmpExact) { 1829 handleRelationalComparisonExact(I); 1830 return; 1831 } 1832 if (I.isSigned()) { 1833 handleSignedRelationalComparison(I); 1834 return; 1835 } 1836 1837 assert(I.isUnsigned()); 1838 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1839 handleRelationalComparisonExact(I); 1840 return; 1841 } 1842 1843 handleShadowOr(I); 1844 } 1845 1846 void visitFCmpInst(FCmpInst &I) { 1847 handleShadowOr(I); 1848 } 1849 1850 void handleShift(BinaryOperator &I) { 1851 IRBuilder<> IRB(&I); 1852 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1853 // Otherwise perform the same shift on S1. 1854 Value *S1 = getShadow(&I, 0); 1855 Value *S2 = getShadow(&I, 1); 1856 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1857 S2->getType()); 1858 Value *V2 = I.getOperand(1); 1859 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1860 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1861 setOriginForNaryOp(I); 1862 } 1863 1864 void visitShl(BinaryOperator &I) { handleShift(I); } 1865 void visitAShr(BinaryOperator &I) { handleShift(I); } 1866 void visitLShr(BinaryOperator &I) { handleShift(I); } 1867 1868 /// \brief Instrument llvm.memmove 1869 /// 1870 /// At this point we don't know if llvm.memmove will be inlined or not. 1871 /// If we don't instrument it and it gets inlined, 1872 /// our interceptor will not kick in and we will lose the memmove. 1873 /// If we instrument the call here, but it does not get inlined, 1874 /// we will memove the shadow twice: which is bad in case 1875 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1876 /// 1877 /// Similar situation exists for memcpy and memset. 1878 void visitMemMoveInst(MemMoveInst &I) { 1879 IRBuilder<> IRB(&I); 1880 IRB.CreateCall( 1881 MS.MemmoveFn, 1882 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1883 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1884 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1885 I.eraseFromParent(); 1886 } 1887 1888 // Similar to memmove: avoid copying shadow twice. 1889 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1890 // FIXME: consider doing manual inline for small constant sizes and proper 1891 // alignment. 1892 void visitMemCpyInst(MemCpyInst &I) { 1893 IRBuilder<> IRB(&I); 1894 IRB.CreateCall( 1895 MS.MemcpyFn, 1896 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1897 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1898 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1899 I.eraseFromParent(); 1900 } 1901 1902 // Same as memcpy. 1903 void visitMemSetInst(MemSetInst &I) { 1904 IRBuilder<> IRB(&I); 1905 IRB.CreateCall( 1906 MS.MemsetFn, 1907 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1908 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1909 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1910 I.eraseFromParent(); 1911 } 1912 1913 void visitVAStartInst(VAStartInst &I) { 1914 VAHelper->visitVAStartInst(I); 1915 } 1916 1917 void visitVACopyInst(VACopyInst &I) { 1918 VAHelper->visitVACopyInst(I); 1919 } 1920 1921 /// \brief Handle vector store-like intrinsics. 1922 /// 1923 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1924 /// has 1 pointer argument and 1 vector argument, returns void. 1925 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1926 IRBuilder<> IRB(&I); 1927 Value* Addr = I.getArgOperand(0); 1928 Value *Shadow = getShadow(&I, 1); 1929 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1930 1931 // We don't know the pointer alignment (could be unaligned SSE store!). 1932 // Have to assume to worst case. 1933 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1934 1935 if (ClCheckAccessAddress) 1936 insertShadowCheck(Addr, &I); 1937 1938 // FIXME: use ClStoreCleanOrigin 1939 // FIXME: factor out common code from materializeStores 1940 if (MS.TrackOrigins) 1941 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1942 return true; 1943 } 1944 1945 /// \brief Handle vector load-like intrinsics. 1946 /// 1947 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1948 /// has 1 pointer argument, returns a vector. 1949 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1950 IRBuilder<> IRB(&I); 1951 Value *Addr = I.getArgOperand(0); 1952 1953 Type *ShadowTy = getShadowTy(&I); 1954 if (PropagateShadow) { 1955 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1956 // We don't know the pointer alignment (could be unaligned SSE load!). 1957 // Have to assume to worst case. 1958 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1959 } else { 1960 setShadow(&I, getCleanShadow(&I)); 1961 } 1962 1963 if (ClCheckAccessAddress) 1964 insertShadowCheck(Addr, &I); 1965 1966 if (MS.TrackOrigins) { 1967 if (PropagateShadow) 1968 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1969 else 1970 setOrigin(&I, getCleanOrigin()); 1971 } 1972 return true; 1973 } 1974 1975 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1976 /// 1977 /// Instrument intrinsics with any number of arguments of the same type, 1978 /// equal to the return type. The type should be simple (no aggregates or 1979 /// pointers; vectors are fine). 1980 /// Caller guarantees that this intrinsic does not access memory. 1981 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1982 Type *RetTy = I.getType(); 1983 if (!(RetTy->isIntOrIntVectorTy() || 1984 RetTy->isFPOrFPVectorTy() || 1985 RetTy->isX86_MMXTy())) 1986 return false; 1987 1988 unsigned NumArgOperands = I.getNumArgOperands(); 1989 1990 for (unsigned i = 0; i < NumArgOperands; ++i) { 1991 Type *Ty = I.getArgOperand(i)->getType(); 1992 if (Ty != RetTy) 1993 return false; 1994 } 1995 1996 IRBuilder<> IRB(&I); 1997 ShadowAndOriginCombiner SC(this, IRB); 1998 for (unsigned i = 0; i < NumArgOperands; ++i) 1999 SC.Add(I.getArgOperand(i)); 2000 SC.Done(&I); 2001 2002 return true; 2003 } 2004 2005 /// \brief Heuristically instrument unknown intrinsics. 2006 /// 2007 /// The main purpose of this code is to do something reasonable with all 2008 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2009 /// We recognize several classes of intrinsics by their argument types and 2010 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2011 /// sure that we know what the intrinsic does. 2012 /// 2013 /// We special-case intrinsics where this approach fails. See llvm.bswap 2014 /// handling as an example of that. 2015 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2016 unsigned NumArgOperands = I.getNumArgOperands(); 2017 if (NumArgOperands == 0) 2018 return false; 2019 2020 if (NumArgOperands == 2 && 2021 I.getArgOperand(0)->getType()->isPointerTy() && 2022 I.getArgOperand(1)->getType()->isVectorTy() && 2023 I.getType()->isVoidTy() && 2024 !I.onlyReadsMemory()) { 2025 // This looks like a vector store. 2026 return handleVectorStoreIntrinsic(I); 2027 } 2028 2029 if (NumArgOperands == 1 && 2030 I.getArgOperand(0)->getType()->isPointerTy() && 2031 I.getType()->isVectorTy() && 2032 I.onlyReadsMemory()) { 2033 // This looks like a vector load. 2034 return handleVectorLoadIntrinsic(I); 2035 } 2036 2037 if (I.doesNotAccessMemory()) 2038 if (maybeHandleSimpleNomemIntrinsic(I)) 2039 return true; 2040 2041 // FIXME: detect and handle SSE maskstore/maskload 2042 return false; 2043 } 2044 2045 void handleBswap(IntrinsicInst &I) { 2046 IRBuilder<> IRB(&I); 2047 Value *Op = I.getArgOperand(0); 2048 Type *OpType = Op->getType(); 2049 Function *BswapFunc = Intrinsic::getDeclaration( 2050 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2051 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2052 setOrigin(&I, getOrigin(Op)); 2053 } 2054 2055 // \brief Instrument vector convert instrinsic. 2056 // 2057 // This function instruments intrinsics like cvtsi2ss: 2058 // %Out = int_xxx_cvtyyy(%ConvertOp) 2059 // or 2060 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2061 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2062 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2063 // elements from \p CopyOp. 2064 // In most cases conversion involves floating-point value which may trigger a 2065 // hardware exception when not fully initialized. For this reason we require 2066 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2067 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2068 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2069 // return a fully initialized value. 2070 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2071 IRBuilder<> IRB(&I); 2072 Value *CopyOp, *ConvertOp; 2073 2074 switch (I.getNumArgOperands()) { 2075 case 3: 2076 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2077 case 2: 2078 CopyOp = I.getArgOperand(0); 2079 ConvertOp = I.getArgOperand(1); 2080 break; 2081 case 1: 2082 ConvertOp = I.getArgOperand(0); 2083 CopyOp = nullptr; 2084 break; 2085 default: 2086 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2087 } 2088 2089 // The first *NumUsedElements* elements of ConvertOp are converted to the 2090 // same number of output elements. The rest of the output is copied from 2091 // CopyOp, or (if not available) filled with zeroes. 2092 // Combine shadow for elements of ConvertOp that are used in this operation, 2093 // and insert a check. 2094 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2095 // int->any conversion. 2096 Value *ConvertShadow = getShadow(ConvertOp); 2097 Value *AggShadow = nullptr; 2098 if (ConvertOp->getType()->isVectorTy()) { 2099 AggShadow = IRB.CreateExtractElement( 2100 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2101 for (int i = 1; i < NumUsedElements; ++i) { 2102 Value *MoreShadow = IRB.CreateExtractElement( 2103 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2104 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2105 } 2106 } else { 2107 AggShadow = ConvertShadow; 2108 } 2109 assert(AggShadow->getType()->isIntegerTy()); 2110 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2111 2112 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2113 // ConvertOp. 2114 if (CopyOp) { 2115 assert(CopyOp->getType() == I.getType()); 2116 assert(CopyOp->getType()->isVectorTy()); 2117 Value *ResultShadow = getShadow(CopyOp); 2118 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2119 for (int i = 0; i < NumUsedElements; ++i) { 2120 ResultShadow = IRB.CreateInsertElement( 2121 ResultShadow, ConstantInt::getNullValue(EltTy), 2122 ConstantInt::get(IRB.getInt32Ty(), i)); 2123 } 2124 setShadow(&I, ResultShadow); 2125 setOrigin(&I, getOrigin(CopyOp)); 2126 } else { 2127 setShadow(&I, getCleanShadow(&I)); 2128 setOrigin(&I, getCleanOrigin()); 2129 } 2130 } 2131 2132 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2133 // zeroes if it is zero, and all ones otherwise. 2134 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2135 if (S->getType()->isVectorTy()) 2136 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2137 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2138 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2139 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2140 } 2141 2142 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2143 Type *T = S->getType(); 2144 assert(T->isVectorTy()); 2145 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2146 return IRB.CreateSExt(S2, T); 2147 } 2148 2149 // \brief Instrument vector shift instrinsic. 2150 // 2151 // This function instruments intrinsics like int_x86_avx2_psll_w. 2152 // Intrinsic shifts %In by %ShiftSize bits. 2153 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2154 // size, and the rest is ignored. Behavior is defined even if shift size is 2155 // greater than register (or field) width. 2156 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2157 assert(I.getNumArgOperands() == 2); 2158 IRBuilder<> IRB(&I); 2159 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2160 // Otherwise perform the same shift on S1. 2161 Value *S1 = getShadow(&I, 0); 2162 Value *S2 = getShadow(&I, 1); 2163 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2164 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2165 Value *V1 = I.getOperand(0); 2166 Value *V2 = I.getOperand(1); 2167 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2168 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2169 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2170 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2171 setOriginForNaryOp(I); 2172 } 2173 2174 // \brief Get an X86_MMX-sized vector type. 2175 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2176 const unsigned X86_MMXSizeInBits = 64; 2177 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2178 X86_MMXSizeInBits / EltSizeInBits); 2179 } 2180 2181 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2182 // intrinsic. 2183 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2184 switch (id) { 2185 case llvm::Intrinsic::x86_sse2_packsswb_128: 2186 case llvm::Intrinsic::x86_sse2_packuswb_128: 2187 return llvm::Intrinsic::x86_sse2_packsswb_128; 2188 2189 case llvm::Intrinsic::x86_sse2_packssdw_128: 2190 case llvm::Intrinsic::x86_sse41_packusdw: 2191 return llvm::Intrinsic::x86_sse2_packssdw_128; 2192 2193 case llvm::Intrinsic::x86_avx2_packsswb: 2194 case llvm::Intrinsic::x86_avx2_packuswb: 2195 return llvm::Intrinsic::x86_avx2_packsswb; 2196 2197 case llvm::Intrinsic::x86_avx2_packssdw: 2198 case llvm::Intrinsic::x86_avx2_packusdw: 2199 return llvm::Intrinsic::x86_avx2_packssdw; 2200 2201 case llvm::Intrinsic::x86_mmx_packsswb: 2202 case llvm::Intrinsic::x86_mmx_packuswb: 2203 return llvm::Intrinsic::x86_mmx_packsswb; 2204 2205 case llvm::Intrinsic::x86_mmx_packssdw: 2206 return llvm::Intrinsic::x86_mmx_packssdw; 2207 default: 2208 llvm_unreachable("unexpected intrinsic id"); 2209 } 2210 } 2211 2212 // \brief Instrument vector pack instrinsic. 2213 // 2214 // This function instruments intrinsics like x86_mmx_packsswb, that 2215 // packs elements of 2 input vectors into half as many bits with saturation. 2216 // Shadow is propagated with the signed variant of the same intrinsic applied 2217 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2218 // EltSizeInBits is used only for x86mmx arguments. 2219 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2220 assert(I.getNumArgOperands() == 2); 2221 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2222 IRBuilder<> IRB(&I); 2223 Value *S1 = getShadow(&I, 0); 2224 Value *S2 = getShadow(&I, 1); 2225 assert(isX86_MMX || S1->getType()->isVectorTy()); 2226 2227 // SExt and ICmpNE below must apply to individual elements of input vectors. 2228 // In case of x86mmx arguments, cast them to appropriate vector types and 2229 // back. 2230 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2231 if (isX86_MMX) { 2232 S1 = IRB.CreateBitCast(S1, T); 2233 S2 = IRB.CreateBitCast(S2, T); 2234 } 2235 Value *S1_ext = IRB.CreateSExt( 2236 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2237 Value *S2_ext = IRB.CreateSExt( 2238 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2239 if (isX86_MMX) { 2240 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2241 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2242 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2243 } 2244 2245 Function *ShadowFn = Intrinsic::getDeclaration( 2246 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2247 2248 Value *S = 2249 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2250 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2251 setShadow(&I, S); 2252 setOriginForNaryOp(I); 2253 } 2254 2255 // \brief Instrument sum-of-absolute-differencies intrinsic. 2256 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2257 const unsigned SignificantBitsPerResultElement = 16; 2258 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2259 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2260 unsigned ZeroBitsPerResultElement = 2261 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2262 2263 IRBuilder<> IRB(&I); 2264 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2265 S = IRB.CreateBitCast(S, ResTy); 2266 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2267 ResTy); 2268 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2269 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2270 setShadow(&I, S); 2271 setOriginForNaryOp(I); 2272 } 2273 2274 // \brief Instrument multiply-add intrinsic. 2275 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2276 unsigned EltSizeInBits = 0) { 2277 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2278 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2279 IRBuilder<> IRB(&I); 2280 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2281 S = IRB.CreateBitCast(S, ResTy); 2282 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2283 ResTy); 2284 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2285 setShadow(&I, S); 2286 setOriginForNaryOp(I); 2287 } 2288 2289 void visitIntrinsicInst(IntrinsicInst &I) { 2290 switch (I.getIntrinsicID()) { 2291 case llvm::Intrinsic::bswap: 2292 handleBswap(I); 2293 break; 2294 case llvm::Intrinsic::x86_avx512_cvtsd2usi64: 2295 case llvm::Intrinsic::x86_avx512_cvtsd2usi: 2296 case llvm::Intrinsic::x86_avx512_cvtss2usi64: 2297 case llvm::Intrinsic::x86_avx512_cvtss2usi: 2298 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2299 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2300 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2301 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2302 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2303 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2304 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2305 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2306 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2307 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2308 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2309 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2310 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2311 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2312 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2313 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2314 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2315 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2316 case llvm::Intrinsic::x86_sse_cvtss2si64: 2317 case llvm::Intrinsic::x86_sse_cvtss2si: 2318 case llvm::Intrinsic::x86_sse_cvttss2si64: 2319 case llvm::Intrinsic::x86_sse_cvttss2si: 2320 handleVectorConvertIntrinsic(I, 1); 2321 break; 2322 case llvm::Intrinsic::x86_sse2_cvtdq2pd: 2323 case llvm::Intrinsic::x86_sse2_cvtps2pd: 2324 case llvm::Intrinsic::x86_sse_cvtps2pi: 2325 case llvm::Intrinsic::x86_sse_cvttps2pi: 2326 handleVectorConvertIntrinsic(I, 2); 2327 break; 2328 case llvm::Intrinsic::x86_avx2_psll_w: 2329 case llvm::Intrinsic::x86_avx2_psll_d: 2330 case llvm::Intrinsic::x86_avx2_psll_q: 2331 case llvm::Intrinsic::x86_avx2_pslli_w: 2332 case llvm::Intrinsic::x86_avx2_pslli_d: 2333 case llvm::Intrinsic::x86_avx2_pslli_q: 2334 case llvm::Intrinsic::x86_avx2_psrl_w: 2335 case llvm::Intrinsic::x86_avx2_psrl_d: 2336 case llvm::Intrinsic::x86_avx2_psrl_q: 2337 case llvm::Intrinsic::x86_avx2_psra_w: 2338 case llvm::Intrinsic::x86_avx2_psra_d: 2339 case llvm::Intrinsic::x86_avx2_psrli_w: 2340 case llvm::Intrinsic::x86_avx2_psrli_d: 2341 case llvm::Intrinsic::x86_avx2_psrli_q: 2342 case llvm::Intrinsic::x86_avx2_psrai_w: 2343 case llvm::Intrinsic::x86_avx2_psrai_d: 2344 case llvm::Intrinsic::x86_sse2_psll_w: 2345 case llvm::Intrinsic::x86_sse2_psll_d: 2346 case llvm::Intrinsic::x86_sse2_psll_q: 2347 case llvm::Intrinsic::x86_sse2_pslli_w: 2348 case llvm::Intrinsic::x86_sse2_pslli_d: 2349 case llvm::Intrinsic::x86_sse2_pslli_q: 2350 case llvm::Intrinsic::x86_sse2_psrl_w: 2351 case llvm::Intrinsic::x86_sse2_psrl_d: 2352 case llvm::Intrinsic::x86_sse2_psrl_q: 2353 case llvm::Intrinsic::x86_sse2_psra_w: 2354 case llvm::Intrinsic::x86_sse2_psra_d: 2355 case llvm::Intrinsic::x86_sse2_psrli_w: 2356 case llvm::Intrinsic::x86_sse2_psrli_d: 2357 case llvm::Intrinsic::x86_sse2_psrli_q: 2358 case llvm::Intrinsic::x86_sse2_psrai_w: 2359 case llvm::Intrinsic::x86_sse2_psrai_d: 2360 case llvm::Intrinsic::x86_mmx_psll_w: 2361 case llvm::Intrinsic::x86_mmx_psll_d: 2362 case llvm::Intrinsic::x86_mmx_psll_q: 2363 case llvm::Intrinsic::x86_mmx_pslli_w: 2364 case llvm::Intrinsic::x86_mmx_pslli_d: 2365 case llvm::Intrinsic::x86_mmx_pslli_q: 2366 case llvm::Intrinsic::x86_mmx_psrl_w: 2367 case llvm::Intrinsic::x86_mmx_psrl_d: 2368 case llvm::Intrinsic::x86_mmx_psrl_q: 2369 case llvm::Intrinsic::x86_mmx_psra_w: 2370 case llvm::Intrinsic::x86_mmx_psra_d: 2371 case llvm::Intrinsic::x86_mmx_psrli_w: 2372 case llvm::Intrinsic::x86_mmx_psrli_d: 2373 case llvm::Intrinsic::x86_mmx_psrli_q: 2374 case llvm::Intrinsic::x86_mmx_psrai_w: 2375 case llvm::Intrinsic::x86_mmx_psrai_d: 2376 handleVectorShiftIntrinsic(I, /* Variable */ false); 2377 break; 2378 case llvm::Intrinsic::x86_avx2_psllv_d: 2379 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2380 case llvm::Intrinsic::x86_avx2_psllv_q: 2381 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2382 case llvm::Intrinsic::x86_avx2_psrlv_d: 2383 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2384 case llvm::Intrinsic::x86_avx2_psrlv_q: 2385 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2386 case llvm::Intrinsic::x86_avx2_psrav_d: 2387 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2388 handleVectorShiftIntrinsic(I, /* Variable */ true); 2389 break; 2390 2391 case llvm::Intrinsic::x86_sse2_packsswb_128: 2392 case llvm::Intrinsic::x86_sse2_packssdw_128: 2393 case llvm::Intrinsic::x86_sse2_packuswb_128: 2394 case llvm::Intrinsic::x86_sse41_packusdw: 2395 case llvm::Intrinsic::x86_avx2_packsswb: 2396 case llvm::Intrinsic::x86_avx2_packssdw: 2397 case llvm::Intrinsic::x86_avx2_packuswb: 2398 case llvm::Intrinsic::x86_avx2_packusdw: 2399 handleVectorPackIntrinsic(I); 2400 break; 2401 2402 case llvm::Intrinsic::x86_mmx_packsswb: 2403 case llvm::Intrinsic::x86_mmx_packuswb: 2404 handleVectorPackIntrinsic(I, 16); 2405 break; 2406 2407 case llvm::Intrinsic::x86_mmx_packssdw: 2408 handleVectorPackIntrinsic(I, 32); 2409 break; 2410 2411 case llvm::Intrinsic::x86_mmx_psad_bw: 2412 case llvm::Intrinsic::x86_sse2_psad_bw: 2413 case llvm::Intrinsic::x86_avx2_psad_bw: 2414 handleVectorSadIntrinsic(I); 2415 break; 2416 2417 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2418 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2419 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2420 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2421 handleVectorPmaddIntrinsic(I); 2422 break; 2423 2424 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2425 handleVectorPmaddIntrinsic(I, 8); 2426 break; 2427 2428 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2429 handleVectorPmaddIntrinsic(I, 16); 2430 break; 2431 2432 default: 2433 if (!handleUnknownIntrinsic(I)) 2434 visitInstruction(I); 2435 break; 2436 } 2437 } 2438 2439 void visitCallSite(CallSite CS) { 2440 Instruction &I = *CS.getInstruction(); 2441 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2442 if (CS.isCall()) { 2443 CallInst *Call = cast<CallInst>(&I); 2444 2445 // For inline asm, do the usual thing: check argument shadow and mark all 2446 // outputs as clean. Note that any side effects of the inline asm that are 2447 // not immediately visible in its constraints are not handled. 2448 if (Call->isInlineAsm()) { 2449 visitInstruction(I); 2450 return; 2451 } 2452 2453 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2454 2455 // We are going to insert code that relies on the fact that the callee 2456 // will become a non-readonly function after it is instrumented by us. To 2457 // prevent this code from being optimized out, mark that function 2458 // non-readonly in advance. 2459 if (Function *Func = Call->getCalledFunction()) { 2460 // Clear out readonly/readnone attributes. 2461 AttrBuilder B; 2462 B.addAttribute(Attribute::ReadOnly) 2463 .addAttribute(Attribute::ReadNone); 2464 Func->removeAttributes(AttributeSet::FunctionIndex, 2465 AttributeSet::get(Func->getContext(), 2466 AttributeSet::FunctionIndex, 2467 B)); 2468 } 2469 } 2470 IRBuilder<> IRB(&I); 2471 2472 unsigned ArgOffset = 0; 2473 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2474 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2475 ArgIt != End; ++ArgIt) { 2476 Value *A = *ArgIt; 2477 unsigned i = ArgIt - CS.arg_begin(); 2478 if (!A->getType()->isSized()) { 2479 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2480 continue; 2481 } 2482 unsigned Size = 0; 2483 Value *Store = nullptr; 2484 // Compute the Shadow for arg even if it is ByVal, because 2485 // in that case getShadow() will copy the actual arg shadow to 2486 // __msan_param_tls. 2487 Value *ArgShadow = getShadow(A); 2488 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2489 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2490 " Shadow: " << *ArgShadow << "\n"); 2491 bool ArgIsInitialized = false; 2492 const DataLayout &DL = F.getParent()->getDataLayout(); 2493 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2494 assert(A->getType()->isPointerTy() && 2495 "ByVal argument is not a pointer!"); 2496 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2497 if (ArgOffset + Size > kParamTLSSize) break; 2498 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2499 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2500 Store = IRB.CreateMemCpy(ArgShadowBase, 2501 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2502 Size, Alignment); 2503 } else { 2504 Size = DL.getTypeAllocSize(A->getType()); 2505 if (ArgOffset + Size > kParamTLSSize) break; 2506 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2507 kShadowTLSAlignment); 2508 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2509 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2510 } 2511 if (MS.TrackOrigins && !ArgIsInitialized) 2512 IRB.CreateStore(getOrigin(A), 2513 getOriginPtrForArgument(A, IRB, ArgOffset)); 2514 (void)Store; 2515 assert(Size != 0 && Store != nullptr); 2516 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2517 ArgOffset += RoundUpToAlignment(Size, 8); 2518 } 2519 DEBUG(dbgs() << " done with call args\n"); 2520 2521 FunctionType *FT = 2522 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2523 if (FT->isVarArg()) { 2524 VAHelper->visitCallSite(CS, IRB); 2525 } 2526 2527 // Now, get the shadow for the RetVal. 2528 if (!I.getType()->isSized()) return; 2529 // Don't emit the epilogue for musttail call returns. 2530 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2531 IRBuilder<> IRBBefore(&I); 2532 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2533 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2534 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2535 BasicBlock::iterator NextInsn; 2536 if (CS.isCall()) { 2537 NextInsn = ++I.getIterator(); 2538 assert(NextInsn != I.getParent()->end()); 2539 } else { 2540 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2541 if (!NormalDest->getSinglePredecessor()) { 2542 // FIXME: this case is tricky, so we are just conservative here. 2543 // Perhaps we need to split the edge between this BB and NormalDest, 2544 // but a naive attempt to use SplitEdge leads to a crash. 2545 setShadow(&I, getCleanShadow(&I)); 2546 setOrigin(&I, getCleanOrigin()); 2547 return; 2548 } 2549 NextInsn = NormalDest->getFirstInsertionPt(); 2550 assert(NextInsn != NormalDest->end() && 2551 "Could not find insertion point for retval shadow load"); 2552 } 2553 IRBuilder<> IRBAfter(&*NextInsn); 2554 Value *RetvalShadow = 2555 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2556 kShadowTLSAlignment, "_msret"); 2557 setShadow(&I, RetvalShadow); 2558 if (MS.TrackOrigins) 2559 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2560 } 2561 2562 bool isAMustTailRetVal(Value *RetVal) { 2563 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2564 RetVal = I->getOperand(0); 2565 } 2566 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2567 return I->isMustTailCall(); 2568 } 2569 return false; 2570 } 2571 2572 void visitReturnInst(ReturnInst &I) { 2573 IRBuilder<> IRB(&I); 2574 Value *RetVal = I.getReturnValue(); 2575 if (!RetVal) return; 2576 // Don't emit the epilogue for musttail call returns. 2577 if (isAMustTailRetVal(RetVal)) return; 2578 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2579 if (CheckReturnValue) { 2580 insertShadowCheck(RetVal, &I); 2581 Value *Shadow = getCleanShadow(RetVal); 2582 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2583 } else { 2584 Value *Shadow = getShadow(RetVal); 2585 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2586 // FIXME: make it conditional if ClStoreCleanOrigin==0 2587 if (MS.TrackOrigins) 2588 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2589 } 2590 } 2591 2592 void visitPHINode(PHINode &I) { 2593 IRBuilder<> IRB(&I); 2594 if (!PropagateShadow) { 2595 setShadow(&I, getCleanShadow(&I)); 2596 setOrigin(&I, getCleanOrigin()); 2597 return; 2598 } 2599 2600 ShadowPHINodes.push_back(&I); 2601 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2602 "_msphi_s")); 2603 if (MS.TrackOrigins) 2604 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2605 "_msphi_o")); 2606 } 2607 2608 void visitAllocaInst(AllocaInst &I) { 2609 setShadow(&I, getCleanShadow(&I)); 2610 setOrigin(&I, getCleanOrigin()); 2611 IRBuilder<> IRB(I.getNextNode()); 2612 const DataLayout &DL = F.getParent()->getDataLayout(); 2613 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2614 if (PoisonStack && ClPoisonStackWithCall) { 2615 IRB.CreateCall(MS.MsanPoisonStackFn, 2616 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2617 ConstantInt::get(MS.IntptrTy, Size)}); 2618 } else { 2619 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2620 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2621 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2622 } 2623 2624 if (PoisonStack && MS.TrackOrigins) { 2625 SmallString<2048> StackDescriptionStorage; 2626 raw_svector_ostream StackDescription(StackDescriptionStorage); 2627 // We create a string with a description of the stack allocation and 2628 // pass it into __msan_set_alloca_origin. 2629 // It will be printed by the run-time if stack-originated UMR is found. 2630 // The first 4 bytes of the string are set to '----' and will be replaced 2631 // by __msan_va_arg_overflow_size_tls at the first call. 2632 StackDescription << "----" << I.getName() << "@" << F.getName(); 2633 Value *Descr = 2634 createPrivateNonConstGlobalForString(*F.getParent(), 2635 StackDescription.str()); 2636 2637 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2638 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2639 ConstantInt::get(MS.IntptrTy, Size), 2640 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2641 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2642 } 2643 } 2644 2645 void visitSelectInst(SelectInst& I) { 2646 IRBuilder<> IRB(&I); 2647 // a = select b, c, d 2648 Value *B = I.getCondition(); 2649 Value *C = I.getTrueValue(); 2650 Value *D = I.getFalseValue(); 2651 Value *Sb = getShadow(B); 2652 Value *Sc = getShadow(C); 2653 Value *Sd = getShadow(D); 2654 2655 // Result shadow if condition shadow is 0. 2656 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2657 Value *Sa1; 2658 if (I.getType()->isAggregateType()) { 2659 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2660 // an extra "select". This results in much more compact IR. 2661 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2662 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2663 } else { 2664 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2665 // If Sb (condition is poisoned), look for bits in c and d that are equal 2666 // and both unpoisoned. 2667 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2668 2669 // Cast arguments to shadow-compatible type. 2670 C = CreateAppToShadowCast(IRB, C); 2671 D = CreateAppToShadowCast(IRB, D); 2672 2673 // Result shadow if condition shadow is 1. 2674 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2675 } 2676 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2677 setShadow(&I, Sa); 2678 if (MS.TrackOrigins) { 2679 // Origins are always i32, so any vector conditions must be flattened. 2680 // FIXME: consider tracking vector origins for app vectors? 2681 if (B->getType()->isVectorTy()) { 2682 Type *FlatTy = getShadowTyNoVec(B->getType()); 2683 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2684 ConstantInt::getNullValue(FlatTy)); 2685 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2686 ConstantInt::getNullValue(FlatTy)); 2687 } 2688 // a = select b, c, d 2689 // Oa = Sb ? Ob : (b ? Oc : Od) 2690 setOrigin( 2691 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2692 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2693 getOrigin(I.getFalseValue())))); 2694 } 2695 } 2696 2697 void visitLandingPadInst(LandingPadInst &I) { 2698 // Do nothing. 2699 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2700 setShadow(&I, getCleanShadow(&I)); 2701 setOrigin(&I, getCleanOrigin()); 2702 } 2703 2704 void visitCleanupPadInst(CleanupPadInst &I) { 2705 setShadow(&I, getCleanShadow(&I)); 2706 setOrigin(&I, getCleanOrigin()); 2707 } 2708 2709 void visitCatchPad(CatchPadInst &I) { 2710 setShadow(&I, getCleanShadow(&I)); 2711 setOrigin(&I, getCleanOrigin()); 2712 } 2713 2714 void visitTerminatePad(TerminatePadInst &I) { 2715 DEBUG(dbgs() << "TerminatePad: " << I << "\n"); 2716 // Nothing to do here. 2717 } 2718 2719 void visitCatchEndPadInst(CatchEndPadInst &I) { 2720 DEBUG(dbgs() << "CatchEndPad: " << I << "\n"); 2721 // Nothing to do here. 2722 } 2723 2724 void visitCleanupEndPadInst(CleanupEndPadInst &I) { 2725 DEBUG(dbgs() << "CleanupEndPad: " << I << "\n"); 2726 // Nothing to do here. 2727 } 2728 2729 void visitGetElementPtrInst(GetElementPtrInst &I) { 2730 handleShadowOr(I); 2731 } 2732 2733 void visitExtractValueInst(ExtractValueInst &I) { 2734 IRBuilder<> IRB(&I); 2735 Value *Agg = I.getAggregateOperand(); 2736 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2737 Value *AggShadow = getShadow(Agg); 2738 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2739 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2740 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2741 setShadow(&I, ResShadow); 2742 setOriginForNaryOp(I); 2743 } 2744 2745 void visitInsertValueInst(InsertValueInst &I) { 2746 IRBuilder<> IRB(&I); 2747 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2748 Value *AggShadow = getShadow(I.getAggregateOperand()); 2749 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2750 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2751 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2752 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2753 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2754 setShadow(&I, Res); 2755 setOriginForNaryOp(I); 2756 } 2757 2758 void dumpInst(Instruction &I) { 2759 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2760 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2761 } else { 2762 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2763 } 2764 errs() << "QQQ " << I << "\n"; 2765 } 2766 2767 void visitResumeInst(ResumeInst &I) { 2768 DEBUG(dbgs() << "Resume: " << I << "\n"); 2769 // Nothing to do here. 2770 } 2771 2772 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2773 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2774 // Nothing to do here. 2775 } 2776 2777 void visitCatchReturnInst(CatchReturnInst &CRI) { 2778 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2779 // Nothing to do here. 2780 } 2781 2782 void visitInstruction(Instruction &I) { 2783 // Everything else: stop propagating and check for poisoned shadow. 2784 if (ClDumpStrictInstructions) 2785 dumpInst(I); 2786 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2787 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2788 insertShadowCheck(I.getOperand(i), &I); 2789 setShadow(&I, getCleanShadow(&I)); 2790 setOrigin(&I, getCleanOrigin()); 2791 } 2792 }; 2793 2794 /// \brief AMD64-specific implementation of VarArgHelper. 2795 struct VarArgAMD64Helper : public VarArgHelper { 2796 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2797 // See a comment in visitCallSite for more details. 2798 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2799 static const unsigned AMD64FpEndOffset = 176; 2800 2801 Function &F; 2802 MemorySanitizer &MS; 2803 MemorySanitizerVisitor &MSV; 2804 Value *VAArgTLSCopy; 2805 Value *VAArgOverflowSize; 2806 2807 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2808 2809 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2810 MemorySanitizerVisitor &MSV) 2811 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2812 VAArgOverflowSize(nullptr) {} 2813 2814 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2815 2816 ArgKind classifyArgument(Value* arg) { 2817 // A very rough approximation of X86_64 argument classification rules. 2818 Type *T = arg->getType(); 2819 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2820 return AK_FloatingPoint; 2821 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2822 return AK_GeneralPurpose; 2823 if (T->isPointerTy()) 2824 return AK_GeneralPurpose; 2825 return AK_Memory; 2826 } 2827 2828 // For VarArg functions, store the argument shadow in an ABI-specific format 2829 // that corresponds to va_list layout. 2830 // We do this because Clang lowers va_arg in the frontend, and this pass 2831 // only sees the low level code that deals with va_list internals. 2832 // A much easier alternative (provided that Clang emits va_arg instructions) 2833 // would have been to associate each live instance of va_list with a copy of 2834 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2835 // order. 2836 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2837 unsigned GpOffset = 0; 2838 unsigned FpOffset = AMD64GpEndOffset; 2839 unsigned OverflowOffset = AMD64FpEndOffset; 2840 const DataLayout &DL = F.getParent()->getDataLayout(); 2841 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2842 ArgIt != End; ++ArgIt) { 2843 Value *A = *ArgIt; 2844 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2845 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2846 if (IsByVal) { 2847 // ByVal arguments always go to the overflow area. 2848 assert(A->getType()->isPointerTy()); 2849 Type *RealTy = A->getType()->getPointerElementType(); 2850 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2851 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2852 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2853 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2854 ArgSize, kShadowTLSAlignment); 2855 } else { 2856 ArgKind AK = classifyArgument(A); 2857 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2858 AK = AK_Memory; 2859 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2860 AK = AK_Memory; 2861 Value *Base; 2862 switch (AK) { 2863 case AK_GeneralPurpose: 2864 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2865 GpOffset += 8; 2866 break; 2867 case AK_FloatingPoint: 2868 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2869 FpOffset += 16; 2870 break; 2871 case AK_Memory: 2872 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2873 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2874 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2875 } 2876 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2877 } 2878 } 2879 Constant *OverflowSize = 2880 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2881 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2882 } 2883 2884 /// \brief Compute the shadow address for a given va_arg. 2885 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2886 int ArgOffset) { 2887 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2888 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2889 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2890 "_msarg"); 2891 } 2892 2893 void visitVAStartInst(VAStartInst &I) override { 2894 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2895 return; 2896 IRBuilder<> IRB(&I); 2897 VAStartInstrumentationList.push_back(&I); 2898 Value *VAListTag = I.getArgOperand(0); 2899 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2900 2901 // Unpoison the whole __va_list_tag. 2902 // FIXME: magic ABI constants. 2903 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2904 /* size */24, /* alignment */8, false); 2905 } 2906 2907 void visitVACopyInst(VACopyInst &I) override { 2908 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2909 return; 2910 IRBuilder<> IRB(&I); 2911 Value *VAListTag = I.getArgOperand(0); 2912 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2913 2914 // Unpoison the whole __va_list_tag. 2915 // FIXME: magic ABI constants. 2916 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2917 /* size */24, /* alignment */8, false); 2918 } 2919 2920 void finalizeInstrumentation() override { 2921 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2922 "finalizeInstrumentation called twice"); 2923 if (!VAStartInstrumentationList.empty()) { 2924 // If there is a va_start in this function, make a backup copy of 2925 // va_arg_tls somewhere in the function entry block. 2926 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2927 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2928 Value *CopySize = 2929 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2930 VAArgOverflowSize); 2931 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2932 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2933 } 2934 2935 // Instrument va_start. 2936 // Copy va_list shadow from the backup copy of the TLS contents. 2937 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2938 CallInst *OrigInst = VAStartInstrumentationList[i]; 2939 IRBuilder<> IRB(OrigInst->getNextNode()); 2940 Value *VAListTag = OrigInst->getArgOperand(0); 2941 2942 Value *RegSaveAreaPtrPtr = 2943 IRB.CreateIntToPtr( 2944 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2945 ConstantInt::get(MS.IntptrTy, 16)), 2946 Type::getInt64PtrTy(*MS.C)); 2947 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2948 Value *RegSaveAreaShadowPtr = 2949 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2950 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 2951 AMD64FpEndOffset, 16); 2952 2953 Value *OverflowArgAreaPtrPtr = 2954 IRB.CreateIntToPtr( 2955 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2956 ConstantInt::get(MS.IntptrTy, 8)), 2957 Type::getInt64PtrTy(*MS.C)); 2958 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 2959 Value *OverflowArgAreaShadowPtr = 2960 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 2961 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 2962 AMD64FpEndOffset); 2963 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 2964 } 2965 } 2966 }; 2967 2968 /// \brief MIPS64-specific implementation of VarArgHelper. 2969 struct VarArgMIPS64Helper : public VarArgHelper { 2970 Function &F; 2971 MemorySanitizer &MS; 2972 MemorySanitizerVisitor &MSV; 2973 Value *VAArgTLSCopy; 2974 Value *VAArgSize; 2975 2976 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2977 2978 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 2979 MemorySanitizerVisitor &MSV) 2980 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2981 VAArgSize(nullptr) {} 2982 2983 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2984 unsigned VAArgOffset = 0; 2985 const DataLayout &DL = F.getParent()->getDataLayout(); 2986 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 2987 ArgIt != End; ++ArgIt) { 2988 Value *A = *ArgIt; 2989 Value *Base; 2990 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2991 #if defined(__MIPSEB__) || defined(MIPSEB) 2992 // Adjusting the shadow for argument with size < 8 to match the placement 2993 // of bits in big endian system 2994 if (ArgSize < 8) 2995 VAArgOffset += (8 - ArgSize); 2996 #endif 2997 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 2998 VAArgOffset += ArgSize; 2999 VAArgOffset = RoundUpToAlignment(VAArgOffset, 8); 3000 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3001 } 3002 3003 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3004 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3005 // a new class member i.e. it is the total size of all VarArgs. 3006 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3007 } 3008 3009 /// \brief Compute the shadow address for a given va_arg. 3010 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3011 int ArgOffset) { 3012 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3013 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3014 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3015 "_msarg"); 3016 } 3017 3018 void visitVAStartInst(VAStartInst &I) override { 3019 IRBuilder<> IRB(&I); 3020 VAStartInstrumentationList.push_back(&I); 3021 Value *VAListTag = I.getArgOperand(0); 3022 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3023 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3024 /* size */8, /* alignment */8, false); 3025 } 3026 3027 void visitVACopyInst(VACopyInst &I) override { 3028 IRBuilder<> IRB(&I); 3029 Value *VAListTag = I.getArgOperand(0); 3030 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3031 // Unpoison the whole __va_list_tag. 3032 // FIXME: magic ABI constants. 3033 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3034 /* size */8, /* alignment */8, false); 3035 } 3036 3037 void finalizeInstrumentation() override { 3038 assert(!VAArgSize && !VAArgTLSCopy && 3039 "finalizeInstrumentation called twice"); 3040 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3041 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3042 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3043 VAArgSize); 3044 3045 if (!VAStartInstrumentationList.empty()) { 3046 // If there is a va_start in this function, make a backup copy of 3047 // va_arg_tls somewhere in the function entry block. 3048 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3049 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3050 } 3051 3052 // Instrument va_start. 3053 // Copy va_list shadow from the backup copy of the TLS contents. 3054 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3055 CallInst *OrigInst = VAStartInstrumentationList[i]; 3056 IRBuilder<> IRB(OrigInst->getNextNode()); 3057 Value *VAListTag = OrigInst->getArgOperand(0); 3058 Value *RegSaveAreaPtrPtr = 3059 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3060 Type::getInt64PtrTy(*MS.C)); 3061 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3062 Value *RegSaveAreaShadowPtr = 3063 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3064 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3065 } 3066 } 3067 }; 3068 3069 /// \brief A no-op implementation of VarArgHelper. 3070 struct VarArgNoOpHelper : public VarArgHelper { 3071 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3072 MemorySanitizerVisitor &MSV) {} 3073 3074 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3075 3076 void visitVAStartInst(VAStartInst &I) override {} 3077 3078 void visitVACopyInst(VACopyInst &I) override {} 3079 3080 void finalizeInstrumentation() override {} 3081 }; 3082 3083 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3084 MemorySanitizerVisitor &Visitor) { 3085 // VarArg handling is only implemented on AMD64. False positives are possible 3086 // on other platforms. 3087 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3088 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3089 return new VarArgAMD64Helper(Func, Msan, Visitor); 3090 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3091 TargetTriple.getArch() == llvm::Triple::mips64el) 3092 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3093 else 3094 return new VarArgNoOpHelper(Func, Msan, Visitor); 3095 } 3096 3097 } // anonymous namespace 3098 3099 bool MemorySanitizer::runOnFunction(Function &F) { 3100 if (&F == MsanCtorFunction) 3101 return false; 3102 MemorySanitizerVisitor Visitor(F, *this); 3103 3104 // Clear out readonly/readnone attributes. 3105 AttrBuilder B; 3106 B.addAttribute(Attribute::ReadOnly) 3107 .addAttribute(Attribute::ReadNone); 3108 F.removeAttributes(AttributeSet::FunctionIndex, 3109 AttributeSet::get(F.getContext(), 3110 AttributeSet::FunctionIndex, B)); 3111 3112 return Visitor.runOnFunction(); 3113 } 3114