1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/IntrinsicsX86.h" 174 #include "llvm/IR/LLVMContext.h" 175 #include "llvm/IR/MDBuilder.h" 176 #include "llvm/IR/Module.h" 177 #include "llvm/IR/Type.h" 178 #include "llvm/IR/Value.h" 179 #include "llvm/IR/ValueMap.h" 180 #include "llvm/InitializePasses.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/AtomicOrdering.h" 183 #include "llvm/Support/Casting.h" 184 #include "llvm/Support/CommandLine.h" 185 #include "llvm/Support/Compiler.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/ErrorHandling.h" 188 #include "llvm/Support/MathExtras.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Transforms/Instrumentation.h" 191 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 192 #include "llvm/Transforms/Utils/Local.h" 193 #include "llvm/Transforms/Utils/ModuleUtils.h" 194 #include <algorithm> 195 #include <cassert> 196 #include <cstddef> 197 #include <cstdint> 198 #include <memory> 199 #include <string> 200 #include <tuple> 201 202 using namespace llvm; 203 204 #define DEBUG_TYPE "msan" 205 206 static const unsigned kOriginSize = 4; 207 static const Align kMinOriginAlignment = Align(4); 208 static const Align kShadowTLSAlignment = Align(8); 209 210 // These constants must be kept in sync with the ones in msan.h. 211 static const unsigned kParamTLSSize = 800; 212 static const unsigned kRetvalTLSSize = 800; 213 214 // Accesses sizes are powers of two: 1, 2, 4, 8. 215 static const size_t kNumberOfAccessSizes = 4; 216 217 /// Track origins of uninitialized values. 218 /// 219 /// Adds a section to MemorySanitizer report that points to the allocation 220 /// (stack or heap) the uninitialized bits came from originally. 221 static cl::opt<int> ClTrackOrigins("msan-track-origins", 222 cl::desc("Track origins (allocation sites) of poisoned memory"), 223 cl::Hidden, cl::init(0)); 224 225 static cl::opt<bool> ClKeepGoing("msan-keep-going", 226 cl::desc("keep going after reporting a UMR"), 227 cl::Hidden, cl::init(false)); 228 229 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 230 cl::desc("poison uninitialized stack variables"), 231 cl::Hidden, cl::init(true)); 232 233 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 234 cl::desc("poison uninitialized stack variables with a call"), 235 cl::Hidden, cl::init(false)); 236 237 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 238 cl::desc("poison uninitialized stack variables with the given pattern"), 239 cl::Hidden, cl::init(0xff)); 240 241 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 242 cl::desc("poison undef temps"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 246 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 247 cl::Hidden, cl::init(true)); 248 249 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 250 cl::desc("exact handling of relational integer ICmp"), 251 cl::Hidden, cl::init(false)); 252 253 static cl::opt<bool> ClHandleLifetimeIntrinsics( 254 "msan-handle-lifetime-intrinsics", 255 cl::desc( 256 "when possible, poison scoped variables at the beginning of the scope " 257 "(slower, but more precise)"), 258 cl::Hidden, cl::init(true)); 259 260 // When compiling the Linux kernel, we sometimes see false positives related to 261 // MSan being unable to understand that inline assembly calls may initialize 262 // local variables. 263 // This flag makes the compiler conservatively unpoison every memory location 264 // passed into an assembly call. Note that this may cause false positives. 265 // Because it's impossible to figure out the array sizes, we can only unpoison 266 // the first sizeof(type) bytes for each type* pointer. 267 // The instrumentation is only enabled in KMSAN builds, and only if 268 // -msan-handle-asm-conservative is on. This is done because we may want to 269 // quickly disable assembly instrumentation when it breaks. 270 static cl::opt<bool> ClHandleAsmConservative( 271 "msan-handle-asm-conservative", 272 cl::desc("conservative handling of inline assembly"), cl::Hidden, 273 cl::init(true)); 274 275 // This flag controls whether we check the shadow of the address 276 // operand of load or store. Such bugs are very rare, since load from 277 // a garbage address typically results in SEGV, but still happen 278 // (e.g. only lower bits of address are garbage, or the access happens 279 // early at program startup where malloc-ed memory is more likely to 280 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 281 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 282 cl::desc("report accesses through a pointer which has poisoned shadow"), 283 cl::Hidden, cl::init(true)); 284 285 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 286 cl::desc("print out instructions with default strict semantics"), 287 cl::Hidden, cl::init(false)); 288 289 static cl::opt<int> ClInstrumentationWithCallThreshold( 290 "msan-instrumentation-with-call-threshold", 291 cl::desc( 292 "If the function being instrumented requires more than " 293 "this number of checks and origin stores, use callbacks instead of " 294 "inline checks (-1 means never use callbacks)."), 295 cl::Hidden, cl::init(3500)); 296 297 static cl::opt<bool> 298 ClEnableKmsan("msan-kernel", 299 cl::desc("Enable KernelMemorySanitizer instrumentation"), 300 cl::Hidden, cl::init(false)); 301 302 // This is an experiment to enable handling of cases where shadow is a non-zero 303 // compile-time constant. For some unexplainable reason they were silently 304 // ignored in the instrumentation. 305 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 306 cl::desc("Insert checks for constant shadow values"), 307 cl::Hidden, cl::init(false)); 308 309 // This is off by default because of a bug in gold: 310 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 311 static cl::opt<bool> ClWithComdat("msan-with-comdat", 312 cl::desc("Place MSan constructors in comdat sections"), 313 cl::Hidden, cl::init(false)); 314 315 // These options allow to specify custom memory map parameters 316 // See MemoryMapParams for details. 317 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 318 cl::desc("Define custom MSan AndMask"), 319 cl::Hidden, cl::init(0)); 320 321 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 322 cl::desc("Define custom MSan XorMask"), 323 cl::Hidden, cl::init(0)); 324 325 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 326 cl::desc("Define custom MSan ShadowBase"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 330 cl::desc("Define custom MSan OriginBase"), 331 cl::Hidden, cl::init(0)); 332 333 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 334 static const char *const kMsanInitName = "__msan_init"; 335 336 namespace { 337 338 // Memory map parameters used in application-to-shadow address calculation. 339 // Offset = (Addr & ~AndMask) ^ XorMask 340 // Shadow = ShadowBase + Offset 341 // Origin = OriginBase + Offset 342 struct MemoryMapParams { 343 uint64_t AndMask; 344 uint64_t XorMask; 345 uint64_t ShadowBase; 346 uint64_t OriginBase; 347 }; 348 349 struct PlatformMemoryMapParams { 350 const MemoryMapParams *bits32; 351 const MemoryMapParams *bits64; 352 }; 353 354 } // end anonymous namespace 355 356 // i386 Linux 357 static const MemoryMapParams Linux_I386_MemoryMapParams = { 358 0x000080000000, // AndMask 359 0, // XorMask (not used) 360 0, // ShadowBase (not used) 361 0x000040000000, // OriginBase 362 }; 363 364 // x86_64 Linux 365 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 366 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 367 0x400000000000, // AndMask 368 0, // XorMask (not used) 369 0, // ShadowBase (not used) 370 0x200000000000, // OriginBase 371 #else 372 0, // AndMask (not used) 373 0x500000000000, // XorMask 374 0, // ShadowBase (not used) 375 0x100000000000, // OriginBase 376 #endif 377 }; 378 379 // mips64 Linux 380 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 381 0, // AndMask (not used) 382 0x008000000000, // XorMask 383 0, // ShadowBase (not used) 384 0x002000000000, // OriginBase 385 }; 386 387 // ppc64 Linux 388 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 389 0xE00000000000, // AndMask 390 0x100000000000, // XorMask 391 0x080000000000, // ShadowBase 392 0x1C0000000000, // OriginBase 393 }; 394 395 // aarch64 Linux 396 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 397 0, // AndMask (not used) 398 0x06000000000, // XorMask 399 0, // ShadowBase (not used) 400 0x01000000000, // OriginBase 401 }; 402 403 // i386 FreeBSD 404 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 405 0x000180000000, // AndMask 406 0x000040000000, // XorMask 407 0x000020000000, // ShadowBase 408 0x000700000000, // OriginBase 409 }; 410 411 // x86_64 FreeBSD 412 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 413 0xc00000000000, // AndMask 414 0x200000000000, // XorMask 415 0x100000000000, // ShadowBase 416 0x380000000000, // OriginBase 417 }; 418 419 // x86_64 NetBSD 420 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 421 0, // AndMask 422 0x500000000000, // XorMask 423 0, // ShadowBase 424 0x100000000000, // OriginBase 425 }; 426 427 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 428 &Linux_I386_MemoryMapParams, 429 &Linux_X86_64_MemoryMapParams, 430 }; 431 432 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 433 nullptr, 434 &Linux_MIPS64_MemoryMapParams, 435 }; 436 437 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 438 nullptr, 439 &Linux_PowerPC64_MemoryMapParams, 440 }; 441 442 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 443 nullptr, 444 &Linux_AArch64_MemoryMapParams, 445 }; 446 447 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 448 &FreeBSD_I386_MemoryMapParams, 449 &FreeBSD_X86_64_MemoryMapParams, 450 }; 451 452 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 453 nullptr, 454 &NetBSD_X86_64_MemoryMapParams, 455 }; 456 457 namespace { 458 459 /// Instrument functions of a module to detect uninitialized reads. 460 /// 461 /// Instantiating MemorySanitizer inserts the msan runtime library API function 462 /// declarations into the module if they don't exist already. Instantiating 463 /// ensures the __msan_init function is in the list of global constructors for 464 /// the module. 465 class MemorySanitizer { 466 public: 467 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 468 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 469 Recover(Options.Recover) { 470 initializeModule(M); 471 } 472 473 // MSan cannot be moved or copied because of MapParams. 474 MemorySanitizer(MemorySanitizer &&) = delete; 475 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 476 MemorySanitizer(const MemorySanitizer &) = delete; 477 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 478 479 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 480 481 private: 482 friend struct MemorySanitizerVisitor; 483 friend struct VarArgAMD64Helper; 484 friend struct VarArgMIPS64Helper; 485 friend struct VarArgAArch64Helper; 486 friend struct VarArgPowerPC64Helper; 487 488 void initializeModule(Module &M); 489 void initializeCallbacks(Module &M); 490 void createKernelApi(Module &M); 491 void createUserspaceApi(Module &M); 492 493 /// True if we're compiling the Linux kernel. 494 bool CompileKernel; 495 /// Track origins (allocation points) of uninitialized values. 496 int TrackOrigins; 497 bool Recover; 498 499 LLVMContext *C; 500 Type *IntptrTy; 501 Type *OriginTy; 502 503 // XxxTLS variables represent the per-thread state in MSan and per-task state 504 // in KMSAN. 505 // For the userspace these point to thread-local globals. In the kernel land 506 // they point to the members of a per-task struct obtained via a call to 507 // __msan_get_context_state(). 508 509 /// Thread-local shadow storage for function parameters. 510 Value *ParamTLS; 511 512 /// Thread-local origin storage for function parameters. 513 Value *ParamOriginTLS; 514 515 /// Thread-local shadow storage for function return value. 516 Value *RetvalTLS; 517 518 /// Thread-local origin storage for function return value. 519 Value *RetvalOriginTLS; 520 521 /// Thread-local shadow storage for in-register va_arg function 522 /// parameters (x86_64-specific). 523 Value *VAArgTLS; 524 525 /// Thread-local shadow storage for in-register va_arg function 526 /// parameters (x86_64-specific). 527 Value *VAArgOriginTLS; 528 529 /// Thread-local shadow storage for va_arg overflow area 530 /// (x86_64-specific). 531 Value *VAArgOverflowSizeTLS; 532 533 /// Thread-local space used to pass origin value to the UMR reporting 534 /// function. 535 Value *OriginTLS; 536 537 /// Are the instrumentation callbacks set up? 538 bool CallbacksInitialized = false; 539 540 /// The run-time callback to print a warning. 541 FunctionCallee WarningFn; 542 543 // These arrays are indexed by log2(AccessSize). 544 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 545 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 546 547 /// Run-time helper that generates a new origin value for a stack 548 /// allocation. 549 FunctionCallee MsanSetAllocaOrigin4Fn; 550 551 /// Run-time helper that poisons stack on function entry. 552 FunctionCallee MsanPoisonStackFn; 553 554 /// Run-time helper that records a store (or any event) of an 555 /// uninitialized value and returns an updated origin id encoding this info. 556 FunctionCallee MsanChainOriginFn; 557 558 /// MSan runtime replacements for memmove, memcpy and memset. 559 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 560 561 /// KMSAN callback for task-local function argument shadow. 562 StructType *MsanContextStateTy; 563 FunctionCallee MsanGetContextStateFn; 564 565 /// Functions for poisoning/unpoisoning local variables 566 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 567 568 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 569 /// pointers. 570 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 571 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 572 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 573 FunctionCallee MsanInstrumentAsmStoreFn; 574 575 /// Helper to choose between different MsanMetadataPtrXxx(). 576 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 577 578 /// Memory map parameters used in application-to-shadow calculation. 579 const MemoryMapParams *MapParams; 580 581 /// Custom memory map parameters used when -msan-shadow-base or 582 // -msan-origin-base is provided. 583 MemoryMapParams CustomMapParams; 584 585 MDNode *ColdCallWeights; 586 587 /// Branch weights for origin store. 588 MDNode *OriginStoreWeights; 589 590 /// An empty volatile inline asm that prevents callback merge. 591 InlineAsm *EmptyAsm; 592 }; 593 594 void insertModuleCtor(Module &M) { 595 getOrCreateSanitizerCtorAndInitFunctions( 596 M, kMsanModuleCtorName, kMsanInitName, 597 /*InitArgTypes=*/{}, 598 /*InitArgs=*/{}, 599 // This callback is invoked when the functions are created the first 600 // time. Hook them into the global ctors list in that case: 601 [&](Function *Ctor, FunctionCallee) { 602 if (!ClWithComdat) { 603 appendToGlobalCtors(M, Ctor, 0); 604 return; 605 } 606 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 607 Ctor->setComdat(MsanCtorComdat); 608 appendToGlobalCtors(M, Ctor, 0, Ctor); 609 }); 610 } 611 612 /// A legacy function pass for msan instrumentation. 613 /// 614 /// Instruments functions to detect uninitialized reads. 615 struct MemorySanitizerLegacyPass : public FunctionPass { 616 // Pass identification, replacement for typeid. 617 static char ID; 618 619 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 620 : FunctionPass(ID), Options(Options) {} 621 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 622 623 void getAnalysisUsage(AnalysisUsage &AU) const override { 624 AU.addRequired<TargetLibraryInfoWrapperPass>(); 625 } 626 627 bool runOnFunction(Function &F) override { 628 return MSan->sanitizeFunction( 629 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 630 } 631 bool doInitialization(Module &M) override; 632 633 Optional<MemorySanitizer> MSan; 634 MemorySanitizerOptions Options; 635 }; 636 637 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 638 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 639 } 640 641 } // end anonymous namespace 642 643 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 644 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 645 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 646 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 647 648 PreservedAnalyses MemorySanitizerPass::run(Function &F, 649 FunctionAnalysisManager &FAM) { 650 MemorySanitizer Msan(*F.getParent(), Options); 651 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 652 return PreservedAnalyses::none(); 653 return PreservedAnalyses::all(); 654 } 655 656 PreservedAnalyses MemorySanitizerPass::run(Module &M, 657 ModuleAnalysisManager &AM) { 658 if (Options.Kernel) 659 return PreservedAnalyses::all(); 660 insertModuleCtor(M); 661 return PreservedAnalyses::none(); 662 } 663 664 char MemorySanitizerLegacyPass::ID = 0; 665 666 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 667 "MemorySanitizer: detects uninitialized reads.", false, 668 false) 669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 670 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 671 "MemorySanitizer: detects uninitialized reads.", false, 672 false) 673 674 FunctionPass * 675 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 676 return new MemorySanitizerLegacyPass(Options); 677 } 678 679 /// Create a non-const global initialized with the given string. 680 /// 681 /// Creates a writable global for Str so that we can pass it to the 682 /// run-time lib. Runtime uses first 4 bytes of the string to store the 683 /// frame ID, so the string needs to be mutable. 684 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 685 StringRef Str) { 686 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 687 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 688 GlobalValue::PrivateLinkage, StrConst, ""); 689 } 690 691 /// Create KMSAN API callbacks. 692 void MemorySanitizer::createKernelApi(Module &M) { 693 IRBuilder<> IRB(*C); 694 695 // These will be initialized in insertKmsanPrologue(). 696 RetvalTLS = nullptr; 697 RetvalOriginTLS = nullptr; 698 ParamTLS = nullptr; 699 ParamOriginTLS = nullptr; 700 VAArgTLS = nullptr; 701 VAArgOriginTLS = nullptr; 702 VAArgOverflowSizeTLS = nullptr; 703 // OriginTLS is unused in the kernel. 704 OriginTLS = nullptr; 705 706 // __msan_warning() in the kernel takes an origin. 707 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 708 IRB.getInt32Ty()); 709 // Requests the per-task context state (kmsan_context_state*) from the 710 // runtime library. 711 MsanContextStateTy = StructType::get( 712 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 713 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 714 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 715 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 716 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 717 OriginTy); 718 MsanGetContextStateFn = M.getOrInsertFunction( 719 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 720 721 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 722 PointerType::get(IRB.getInt32Ty(), 0)); 723 724 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 725 std::string name_load = 726 "__msan_metadata_ptr_for_load_" + std::to_string(size); 727 std::string name_store = 728 "__msan_metadata_ptr_for_store_" + std::to_string(size); 729 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 730 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 731 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 732 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 733 } 734 735 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 736 "__msan_metadata_ptr_for_load_n", RetTy, 737 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 738 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 739 "__msan_metadata_ptr_for_store_n", RetTy, 740 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 741 742 // Functions for poisoning and unpoisoning memory. 743 MsanPoisonAllocaFn = 744 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 745 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 746 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 747 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 748 } 749 750 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 751 return M.getOrInsertGlobal(Name, Ty, [&] { 752 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 753 nullptr, Name, nullptr, 754 GlobalVariable::InitialExecTLSModel); 755 }); 756 } 757 758 /// Insert declarations for userspace-specific functions and globals. 759 void MemorySanitizer::createUserspaceApi(Module &M) { 760 IRBuilder<> IRB(*C); 761 // Create the callback. 762 // FIXME: this function should have "Cold" calling conv, 763 // which is not yet implemented. 764 StringRef WarningFnName = Recover ? "__msan_warning" 765 : "__msan_warning_noreturn"; 766 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 767 768 // Create the global TLS variables. 769 RetvalTLS = 770 getOrInsertGlobal(M, "__msan_retval_tls", 771 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 772 773 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 774 775 ParamTLS = 776 getOrInsertGlobal(M, "__msan_param_tls", 777 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 778 779 ParamOriginTLS = 780 getOrInsertGlobal(M, "__msan_param_origin_tls", 781 ArrayType::get(OriginTy, kParamTLSSize / 4)); 782 783 VAArgTLS = 784 getOrInsertGlobal(M, "__msan_va_arg_tls", 785 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 786 787 VAArgOriginTLS = 788 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 789 ArrayType::get(OriginTy, kParamTLSSize / 4)); 790 791 VAArgOverflowSizeTLS = 792 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 793 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 794 795 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 796 AccessSizeIndex++) { 797 unsigned AccessSize = 1 << AccessSizeIndex; 798 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 799 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 800 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 801 IRB.getInt32Ty()); 802 803 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 804 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 805 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 806 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 807 } 808 809 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 810 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 811 IRB.getInt8PtrTy(), IntptrTy); 812 MsanPoisonStackFn = 813 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 814 IRB.getInt8PtrTy(), IntptrTy); 815 } 816 817 /// Insert extern declaration of runtime-provided functions and globals. 818 void MemorySanitizer::initializeCallbacks(Module &M) { 819 // Only do this once. 820 if (CallbacksInitialized) 821 return; 822 823 IRBuilder<> IRB(*C); 824 // Initialize callbacks that are common for kernel and userspace 825 // instrumentation. 826 MsanChainOriginFn = M.getOrInsertFunction( 827 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 828 MemmoveFn = M.getOrInsertFunction( 829 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 830 IRB.getInt8PtrTy(), IntptrTy); 831 MemcpyFn = M.getOrInsertFunction( 832 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 833 IntptrTy); 834 MemsetFn = M.getOrInsertFunction( 835 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 836 IntptrTy); 837 // We insert an empty inline asm after __msan_report* to avoid callback merge. 838 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 839 StringRef(""), StringRef(""), 840 /*hasSideEffects=*/true); 841 842 MsanInstrumentAsmStoreFn = 843 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 844 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 845 846 if (CompileKernel) { 847 createKernelApi(M); 848 } else { 849 createUserspaceApi(M); 850 } 851 CallbacksInitialized = true; 852 } 853 854 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 855 int size) { 856 FunctionCallee *Fns = 857 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 858 switch (size) { 859 case 1: 860 return Fns[0]; 861 case 2: 862 return Fns[1]; 863 case 4: 864 return Fns[2]; 865 case 8: 866 return Fns[3]; 867 default: 868 return nullptr; 869 } 870 } 871 872 /// Module-level initialization. 873 /// 874 /// inserts a call to __msan_init to the module's constructor list. 875 void MemorySanitizer::initializeModule(Module &M) { 876 auto &DL = M.getDataLayout(); 877 878 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 879 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 880 // Check the overrides first 881 if (ShadowPassed || OriginPassed) { 882 CustomMapParams.AndMask = ClAndMask; 883 CustomMapParams.XorMask = ClXorMask; 884 CustomMapParams.ShadowBase = ClShadowBase; 885 CustomMapParams.OriginBase = ClOriginBase; 886 MapParams = &CustomMapParams; 887 } else { 888 Triple TargetTriple(M.getTargetTriple()); 889 switch (TargetTriple.getOS()) { 890 case Triple::FreeBSD: 891 switch (TargetTriple.getArch()) { 892 case Triple::x86_64: 893 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 894 break; 895 case Triple::x86: 896 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 897 break; 898 default: 899 report_fatal_error("unsupported architecture"); 900 } 901 break; 902 case Triple::NetBSD: 903 switch (TargetTriple.getArch()) { 904 case Triple::x86_64: 905 MapParams = NetBSD_X86_MemoryMapParams.bits64; 906 break; 907 default: 908 report_fatal_error("unsupported architecture"); 909 } 910 break; 911 case Triple::Linux: 912 switch (TargetTriple.getArch()) { 913 case Triple::x86_64: 914 MapParams = Linux_X86_MemoryMapParams.bits64; 915 break; 916 case Triple::x86: 917 MapParams = Linux_X86_MemoryMapParams.bits32; 918 break; 919 case Triple::mips64: 920 case Triple::mips64el: 921 MapParams = Linux_MIPS_MemoryMapParams.bits64; 922 break; 923 case Triple::ppc64: 924 case Triple::ppc64le: 925 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 926 break; 927 case Triple::aarch64: 928 case Triple::aarch64_be: 929 MapParams = Linux_ARM_MemoryMapParams.bits64; 930 break; 931 default: 932 report_fatal_error("unsupported architecture"); 933 } 934 break; 935 default: 936 report_fatal_error("unsupported operating system"); 937 } 938 } 939 940 C = &(M.getContext()); 941 IRBuilder<> IRB(*C); 942 IntptrTy = IRB.getIntPtrTy(DL); 943 OriginTy = IRB.getInt32Ty(); 944 945 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 946 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 947 948 if (!CompileKernel) { 949 if (TrackOrigins) 950 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 951 return new GlobalVariable( 952 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 953 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 954 }); 955 956 if (Recover) 957 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 958 return new GlobalVariable(M, IRB.getInt32Ty(), true, 959 GlobalValue::WeakODRLinkage, 960 IRB.getInt32(Recover), "__msan_keep_going"); 961 }); 962 } 963 } 964 965 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 966 if (!Options.Kernel) 967 insertModuleCtor(M); 968 MSan.emplace(M, Options); 969 return true; 970 } 971 972 namespace { 973 974 /// A helper class that handles instrumentation of VarArg 975 /// functions on a particular platform. 976 /// 977 /// Implementations are expected to insert the instrumentation 978 /// necessary to propagate argument shadow through VarArg function 979 /// calls. Visit* methods are called during an InstVisitor pass over 980 /// the function, and should avoid creating new basic blocks. A new 981 /// instance of this class is created for each instrumented function. 982 struct VarArgHelper { 983 virtual ~VarArgHelper() = default; 984 985 /// Visit a CallSite. 986 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 987 988 /// Visit a va_start call. 989 virtual void visitVAStartInst(VAStartInst &I) = 0; 990 991 /// Visit a va_copy call. 992 virtual void visitVACopyInst(VACopyInst &I) = 0; 993 994 /// Finalize function instrumentation. 995 /// 996 /// This method is called after visiting all interesting (see above) 997 /// instructions in a function. 998 virtual void finalizeInstrumentation() = 0; 999 }; 1000 1001 struct MemorySanitizerVisitor; 1002 1003 } // end anonymous namespace 1004 1005 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1006 MemorySanitizerVisitor &Visitor); 1007 1008 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1009 if (TypeSize <= 8) return 0; 1010 return Log2_32_Ceil((TypeSize + 7) / 8); 1011 } 1012 1013 namespace { 1014 1015 /// This class does all the work for a given function. Store and Load 1016 /// instructions store and load corresponding shadow and origin 1017 /// values. Most instructions propagate shadow from arguments to their 1018 /// return values. Certain instructions (most importantly, BranchInst) 1019 /// test their argument shadow and print reports (with a runtime call) if it's 1020 /// non-zero. 1021 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1022 Function &F; 1023 MemorySanitizer &MS; 1024 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1025 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1026 std::unique_ptr<VarArgHelper> VAHelper; 1027 const TargetLibraryInfo *TLI; 1028 BasicBlock *ActualFnStart; 1029 1030 // The following flags disable parts of MSan instrumentation based on 1031 // blacklist contents and command-line options. 1032 bool InsertChecks; 1033 bool PropagateShadow; 1034 bool PoisonStack; 1035 bool PoisonUndef; 1036 bool CheckReturnValue; 1037 1038 struct ShadowOriginAndInsertPoint { 1039 Value *Shadow; 1040 Value *Origin; 1041 Instruction *OrigIns; 1042 1043 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1044 : Shadow(S), Origin(O), OrigIns(I) {} 1045 }; 1046 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1047 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1048 SmallSet<AllocaInst *, 16> AllocaSet; 1049 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1050 SmallVector<StoreInst *, 16> StoreList; 1051 1052 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1053 const TargetLibraryInfo &TLI) 1054 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1055 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1056 InsertChecks = SanitizeFunction; 1057 PropagateShadow = SanitizeFunction; 1058 PoisonStack = SanitizeFunction && ClPoisonStack; 1059 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1060 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1061 // must always return fully initialized values. For now, we hardcode "main". 1062 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1063 1064 MS.initializeCallbacks(*F.getParent()); 1065 if (MS.CompileKernel) 1066 ActualFnStart = insertKmsanPrologue(F); 1067 else 1068 ActualFnStart = &F.getEntryBlock(); 1069 1070 LLVM_DEBUG(if (!InsertChecks) dbgs() 1071 << "MemorySanitizer is not inserting checks into '" 1072 << F.getName() << "'\n"); 1073 } 1074 1075 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1076 if (MS.TrackOrigins <= 1) return V; 1077 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1078 } 1079 1080 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1081 const DataLayout &DL = F.getParent()->getDataLayout(); 1082 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1083 if (IntptrSize == kOriginSize) return Origin; 1084 assert(IntptrSize == kOriginSize * 2); 1085 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1086 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1087 } 1088 1089 /// Fill memory range with the given origin value. 1090 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1091 unsigned Size, Align Alignment) { 1092 const DataLayout &DL = F.getParent()->getDataLayout(); 1093 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1094 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1095 assert(IntptrAlignment >= kMinOriginAlignment); 1096 assert(IntptrSize >= kOriginSize); 1097 1098 unsigned Ofs = 0; 1099 Align CurrentAlignment = Alignment; 1100 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1101 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1102 Value *IntptrOriginPtr = 1103 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1104 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1105 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1106 : IntptrOriginPtr; 1107 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1108 Ofs += IntptrSize / kOriginSize; 1109 CurrentAlignment = IntptrAlignment; 1110 } 1111 } 1112 1113 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1114 Value *GEP = 1115 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1116 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1117 CurrentAlignment = kMinOriginAlignment; 1118 } 1119 } 1120 1121 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1122 Value *OriginPtr, Align Alignment, bool AsCall) { 1123 const DataLayout &DL = F.getParent()->getDataLayout(); 1124 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1125 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1126 if (Shadow->getType()->isAggregateType()) { 1127 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1128 OriginAlignment); 1129 } else { 1130 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1131 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1132 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1133 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1134 OriginAlignment); 1135 return; 1136 } 1137 1138 unsigned TypeSizeInBits = 1139 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1140 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1141 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1142 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1143 Value *ConvertedShadow2 = IRB.CreateZExt( 1144 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1145 IRB.CreateCall(Fn, {ConvertedShadow2, 1146 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1147 Origin}); 1148 } else { 1149 Value *Cmp = IRB.CreateICmpNE( 1150 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1151 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1152 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1153 IRBuilder<> IRBNew(CheckTerm); 1154 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1155 OriginAlignment); 1156 } 1157 } 1158 } 1159 1160 void materializeStores(bool InstrumentWithCalls) { 1161 for (StoreInst *SI : StoreList) { 1162 IRBuilder<> IRB(SI); 1163 Value *Val = SI->getValueOperand(); 1164 Value *Addr = SI->getPointerOperand(); 1165 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1166 Value *ShadowPtr, *OriginPtr; 1167 Type *ShadowTy = Shadow->getType(); 1168 const Align Alignment = assumeAligned(SI->getAlignment()); 1169 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1170 std::tie(ShadowPtr, OriginPtr) = 1171 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1172 1173 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1174 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1175 (void)NewSI; 1176 1177 if (SI->isAtomic()) 1178 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1179 1180 if (MS.TrackOrigins && !SI->isAtomic()) 1181 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1182 OriginAlignment, InstrumentWithCalls); 1183 } 1184 } 1185 1186 /// Helper function to insert a warning at IRB's current insert point. 1187 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1188 if (!Origin) 1189 Origin = (Value *)IRB.getInt32(0); 1190 if (MS.CompileKernel) { 1191 IRB.CreateCall(MS.WarningFn, Origin); 1192 } else { 1193 if (MS.TrackOrigins) { 1194 IRB.CreateStore(Origin, MS.OriginTLS); 1195 } 1196 IRB.CreateCall(MS.WarningFn, {}); 1197 } 1198 IRB.CreateCall(MS.EmptyAsm, {}); 1199 // FIXME: Insert UnreachableInst if !MS.Recover? 1200 // This may invalidate some of the following checks and needs to be done 1201 // at the very end. 1202 } 1203 1204 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1205 bool AsCall) { 1206 IRBuilder<> IRB(OrigIns); 1207 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1208 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1209 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1210 1211 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1212 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1213 insertWarningFn(IRB, Origin); 1214 } 1215 return; 1216 } 1217 1218 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1219 1220 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1221 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1222 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1223 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1224 Value *ConvertedShadow2 = 1225 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1226 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1227 ? Origin 1228 : (Value *)IRB.getInt32(0)}); 1229 } else { 1230 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1231 getCleanShadow(ConvertedShadow), "_mscmp"); 1232 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1233 Cmp, OrigIns, 1234 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1235 1236 IRB.SetInsertPoint(CheckTerm); 1237 insertWarningFn(IRB, Origin); 1238 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1239 } 1240 } 1241 1242 void materializeChecks(bool InstrumentWithCalls) { 1243 for (const auto &ShadowData : InstrumentationList) { 1244 Instruction *OrigIns = ShadowData.OrigIns; 1245 Value *Shadow = ShadowData.Shadow; 1246 Value *Origin = ShadowData.Origin; 1247 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1248 } 1249 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1250 } 1251 1252 BasicBlock *insertKmsanPrologue(Function &F) { 1253 BasicBlock *ret = 1254 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1255 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1256 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1257 Constant *Zero = IRB.getInt32(0); 1258 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1259 {Zero, IRB.getInt32(0)}, "param_shadow"); 1260 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1261 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1262 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1263 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1264 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1265 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1266 MS.VAArgOverflowSizeTLS = 1267 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1268 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1269 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1270 {Zero, IRB.getInt32(5)}, "param_origin"); 1271 MS.RetvalOriginTLS = 1272 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1273 {Zero, IRB.getInt32(6)}, "retval_origin"); 1274 return ret; 1275 } 1276 1277 /// Add MemorySanitizer instrumentation to a function. 1278 bool runOnFunction() { 1279 // In the presence of unreachable blocks, we may see Phi nodes with 1280 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1281 // blocks, such nodes will not have any shadow value associated with them. 1282 // It's easier to remove unreachable blocks than deal with missing shadow. 1283 removeUnreachableBlocks(F); 1284 1285 // Iterate all BBs in depth-first order and create shadow instructions 1286 // for all instructions (where applicable). 1287 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1288 for (BasicBlock *BB : depth_first(ActualFnStart)) 1289 visit(*BB); 1290 1291 // Finalize PHI nodes. 1292 for (PHINode *PN : ShadowPHINodes) { 1293 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1294 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1295 size_t NumValues = PN->getNumIncomingValues(); 1296 for (size_t v = 0; v < NumValues; v++) { 1297 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1298 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1299 } 1300 } 1301 1302 VAHelper->finalizeInstrumentation(); 1303 1304 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1305 // instrumenting only allocas. 1306 if (InstrumentLifetimeStart) { 1307 for (auto Item : LifetimeStartList) { 1308 instrumentAlloca(*Item.second, Item.first); 1309 AllocaSet.erase(Item.second); 1310 } 1311 } 1312 // Poison the allocas for which we didn't instrument the corresponding 1313 // lifetime intrinsics. 1314 for (AllocaInst *AI : AllocaSet) 1315 instrumentAlloca(*AI); 1316 1317 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1318 InstrumentationList.size() + StoreList.size() > 1319 (unsigned)ClInstrumentationWithCallThreshold; 1320 1321 // Insert shadow value checks. 1322 materializeChecks(InstrumentWithCalls); 1323 1324 // Delayed instrumentation of StoreInst. 1325 // This may not add new address checks. 1326 materializeStores(InstrumentWithCalls); 1327 1328 return true; 1329 } 1330 1331 /// Compute the shadow type that corresponds to a given Value. 1332 Type *getShadowTy(Value *V) { 1333 return getShadowTy(V->getType()); 1334 } 1335 1336 /// Compute the shadow type that corresponds to a given Type. 1337 Type *getShadowTy(Type *OrigTy) { 1338 if (!OrigTy->isSized()) { 1339 return nullptr; 1340 } 1341 // For integer type, shadow is the same as the original type. 1342 // This may return weird-sized types like i1. 1343 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1344 return IT; 1345 const DataLayout &DL = F.getParent()->getDataLayout(); 1346 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1347 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1348 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1349 VT->getNumElements()); 1350 } 1351 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1352 return ArrayType::get(getShadowTy(AT->getElementType()), 1353 AT->getNumElements()); 1354 } 1355 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1356 SmallVector<Type*, 4> Elements; 1357 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1358 Elements.push_back(getShadowTy(ST->getElementType(i))); 1359 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1360 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1361 return Res; 1362 } 1363 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1364 return IntegerType::get(*MS.C, TypeSize); 1365 } 1366 1367 /// Flatten a vector type. 1368 Type *getShadowTyNoVec(Type *ty) { 1369 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1370 return IntegerType::get(*MS.C, vt->getBitWidth()); 1371 return ty; 1372 } 1373 1374 /// Convert a shadow value to it's flattened variant. 1375 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1376 Type *Ty = V->getType(); 1377 Type *NoVecTy = getShadowTyNoVec(Ty); 1378 if (Ty == NoVecTy) return V; 1379 return IRB.CreateBitCast(V, NoVecTy); 1380 } 1381 1382 /// Compute the integer shadow offset that corresponds to a given 1383 /// application address. 1384 /// 1385 /// Offset = (Addr & ~AndMask) ^ XorMask 1386 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1387 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1388 1389 uint64_t AndMask = MS.MapParams->AndMask; 1390 if (AndMask) 1391 OffsetLong = 1392 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1393 1394 uint64_t XorMask = MS.MapParams->XorMask; 1395 if (XorMask) 1396 OffsetLong = 1397 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1398 return OffsetLong; 1399 } 1400 1401 /// Compute the shadow and origin addresses corresponding to a given 1402 /// application address. 1403 /// 1404 /// Shadow = ShadowBase + Offset 1405 /// Origin = (OriginBase + Offset) & ~3ULL 1406 std::pair<Value *, Value *> 1407 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1408 MaybeAlign Alignment) { 1409 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1410 Value *ShadowLong = ShadowOffset; 1411 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1412 if (ShadowBase != 0) { 1413 ShadowLong = 1414 IRB.CreateAdd(ShadowLong, 1415 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1416 } 1417 Value *ShadowPtr = 1418 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1419 Value *OriginPtr = nullptr; 1420 if (MS.TrackOrigins) { 1421 Value *OriginLong = ShadowOffset; 1422 uint64_t OriginBase = MS.MapParams->OriginBase; 1423 if (OriginBase != 0) 1424 OriginLong = IRB.CreateAdd(OriginLong, 1425 ConstantInt::get(MS.IntptrTy, OriginBase)); 1426 if (!Alignment || *Alignment < kMinOriginAlignment) { 1427 uint64_t Mask = kMinOriginAlignment.value() - 1; 1428 OriginLong = 1429 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1430 } 1431 OriginPtr = 1432 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1433 } 1434 return std::make_pair(ShadowPtr, OriginPtr); 1435 } 1436 1437 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1438 IRBuilder<> &IRB, 1439 Type *ShadowTy, 1440 bool isStore) { 1441 Value *ShadowOriginPtrs; 1442 const DataLayout &DL = F.getParent()->getDataLayout(); 1443 int Size = DL.getTypeStoreSize(ShadowTy); 1444 1445 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1446 Value *AddrCast = 1447 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1448 if (Getter) { 1449 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1450 } else { 1451 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1452 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1453 : MS.MsanMetadataPtrForLoadN, 1454 {AddrCast, SizeVal}); 1455 } 1456 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1457 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1458 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1459 1460 return std::make_pair(ShadowPtr, OriginPtr); 1461 } 1462 1463 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1464 Type *ShadowTy, 1465 MaybeAlign Alignment, 1466 bool isStore) { 1467 if (MS.CompileKernel) 1468 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1469 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1470 } 1471 1472 /// Compute the shadow address for a given function argument. 1473 /// 1474 /// Shadow = ParamTLS+ArgOffset. 1475 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1476 int ArgOffset) { 1477 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1478 if (ArgOffset) 1479 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1480 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1481 "_msarg"); 1482 } 1483 1484 /// Compute the origin address for a given function argument. 1485 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1486 int ArgOffset) { 1487 if (!MS.TrackOrigins) 1488 return nullptr; 1489 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1490 if (ArgOffset) 1491 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1492 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1493 "_msarg_o"); 1494 } 1495 1496 /// Compute the shadow address for a retval. 1497 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1498 return IRB.CreatePointerCast(MS.RetvalTLS, 1499 PointerType::get(getShadowTy(A), 0), 1500 "_msret"); 1501 } 1502 1503 /// Compute the origin address for a retval. 1504 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1505 // We keep a single origin for the entire retval. Might be too optimistic. 1506 return MS.RetvalOriginTLS; 1507 } 1508 1509 /// Set SV to be the shadow value for V. 1510 void setShadow(Value *V, Value *SV) { 1511 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1512 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1513 } 1514 1515 /// Set Origin to be the origin value for V. 1516 void setOrigin(Value *V, Value *Origin) { 1517 if (!MS.TrackOrigins) return; 1518 assert(!OriginMap.count(V) && "Values may only have one origin"); 1519 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1520 OriginMap[V] = Origin; 1521 } 1522 1523 Constant *getCleanShadow(Type *OrigTy) { 1524 Type *ShadowTy = getShadowTy(OrigTy); 1525 if (!ShadowTy) 1526 return nullptr; 1527 return Constant::getNullValue(ShadowTy); 1528 } 1529 1530 /// Create a clean shadow value for a given value. 1531 /// 1532 /// Clean shadow (all zeroes) means all bits of the value are defined 1533 /// (initialized). 1534 Constant *getCleanShadow(Value *V) { 1535 return getCleanShadow(V->getType()); 1536 } 1537 1538 /// Create a dirty shadow of a given shadow type. 1539 Constant *getPoisonedShadow(Type *ShadowTy) { 1540 assert(ShadowTy); 1541 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1542 return Constant::getAllOnesValue(ShadowTy); 1543 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1544 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1545 getPoisonedShadow(AT->getElementType())); 1546 return ConstantArray::get(AT, Vals); 1547 } 1548 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1549 SmallVector<Constant *, 4> Vals; 1550 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1551 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1552 return ConstantStruct::get(ST, Vals); 1553 } 1554 llvm_unreachable("Unexpected shadow type"); 1555 } 1556 1557 /// Create a dirty shadow for a given value. 1558 Constant *getPoisonedShadow(Value *V) { 1559 Type *ShadowTy = getShadowTy(V); 1560 if (!ShadowTy) 1561 return nullptr; 1562 return getPoisonedShadow(ShadowTy); 1563 } 1564 1565 /// Create a clean (zero) origin. 1566 Value *getCleanOrigin() { 1567 return Constant::getNullValue(MS.OriginTy); 1568 } 1569 1570 /// Get the shadow value for a given Value. 1571 /// 1572 /// This function either returns the value set earlier with setShadow, 1573 /// or extracts if from ParamTLS (for function arguments). 1574 Value *getShadow(Value *V) { 1575 if (!PropagateShadow) return getCleanShadow(V); 1576 if (Instruction *I = dyn_cast<Instruction>(V)) { 1577 if (I->getMetadata("nosanitize")) 1578 return getCleanShadow(V); 1579 // For instructions the shadow is already stored in the map. 1580 Value *Shadow = ShadowMap[V]; 1581 if (!Shadow) { 1582 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1583 (void)I; 1584 assert(Shadow && "No shadow for a value"); 1585 } 1586 return Shadow; 1587 } 1588 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1589 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1590 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1591 (void)U; 1592 return AllOnes; 1593 } 1594 if (Argument *A = dyn_cast<Argument>(V)) { 1595 // For arguments we compute the shadow on demand and store it in the map. 1596 Value **ShadowPtr = &ShadowMap[V]; 1597 if (*ShadowPtr) 1598 return *ShadowPtr; 1599 Function *F = A->getParent(); 1600 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1601 unsigned ArgOffset = 0; 1602 const DataLayout &DL = F->getParent()->getDataLayout(); 1603 for (auto &FArg : F->args()) { 1604 if (!FArg.getType()->isSized()) { 1605 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1606 continue; 1607 } 1608 unsigned Size = 1609 FArg.hasByValAttr() 1610 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1611 : DL.getTypeAllocSize(FArg.getType()); 1612 if (A == &FArg) { 1613 bool Overflow = ArgOffset + Size > kParamTLSSize; 1614 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1615 if (FArg.hasByValAttr()) { 1616 // ByVal pointer itself has clean shadow. We copy the actual 1617 // argument shadow to the underlying memory. 1618 // Figure out maximal valid memcpy alignment. 1619 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1620 MaybeAlign(FArg.getParamAlignment()), 1621 A->getType()->getPointerElementType()); 1622 Value *CpShadowPtr = 1623 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1624 /*isStore*/ true) 1625 .first; 1626 // TODO(glider): need to copy origins. 1627 if (Overflow) { 1628 // ParamTLS overflow. 1629 EntryIRB.CreateMemSet( 1630 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1631 Size, ArgAlign); 1632 } else { 1633 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1634 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1635 CopyAlign, Size); 1636 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1637 (void)Cpy; 1638 } 1639 *ShadowPtr = getCleanShadow(V); 1640 } else { 1641 if (Overflow) { 1642 // ParamTLS overflow. 1643 *ShadowPtr = getCleanShadow(V); 1644 } else { 1645 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1646 kShadowTLSAlignment); 1647 } 1648 } 1649 LLVM_DEBUG(dbgs() 1650 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1651 if (MS.TrackOrigins && !Overflow) { 1652 Value *OriginPtr = 1653 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1654 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1655 } else { 1656 setOrigin(A, getCleanOrigin()); 1657 } 1658 } 1659 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1660 } 1661 assert(*ShadowPtr && "Could not find shadow for an argument"); 1662 return *ShadowPtr; 1663 } 1664 // For everything else the shadow is zero. 1665 return getCleanShadow(V); 1666 } 1667 1668 /// Get the shadow for i-th argument of the instruction I. 1669 Value *getShadow(Instruction *I, int i) { 1670 return getShadow(I->getOperand(i)); 1671 } 1672 1673 /// Get the origin for a value. 1674 Value *getOrigin(Value *V) { 1675 if (!MS.TrackOrigins) return nullptr; 1676 if (!PropagateShadow) return getCleanOrigin(); 1677 if (isa<Constant>(V)) return getCleanOrigin(); 1678 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1679 "Unexpected value type in getOrigin()"); 1680 if (Instruction *I = dyn_cast<Instruction>(V)) { 1681 if (I->getMetadata("nosanitize")) 1682 return getCleanOrigin(); 1683 } 1684 Value *Origin = OriginMap[V]; 1685 assert(Origin && "Missing origin"); 1686 return Origin; 1687 } 1688 1689 /// Get the origin for i-th argument of the instruction I. 1690 Value *getOrigin(Instruction *I, int i) { 1691 return getOrigin(I->getOperand(i)); 1692 } 1693 1694 /// Remember the place where a shadow check should be inserted. 1695 /// 1696 /// This location will be later instrumented with a check that will print a 1697 /// UMR warning in runtime if the shadow value is not 0. 1698 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1699 assert(Shadow); 1700 if (!InsertChecks) return; 1701 #ifndef NDEBUG 1702 Type *ShadowTy = Shadow->getType(); 1703 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1704 "Can only insert checks for integer and vector shadow types"); 1705 #endif 1706 InstrumentationList.push_back( 1707 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1708 } 1709 1710 /// Remember the place where a shadow check should be inserted. 1711 /// 1712 /// This location will be later instrumented with a check that will print a 1713 /// UMR warning in runtime if the value is not fully defined. 1714 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1715 assert(Val); 1716 Value *Shadow, *Origin; 1717 if (ClCheckConstantShadow) { 1718 Shadow = getShadow(Val); 1719 if (!Shadow) return; 1720 Origin = getOrigin(Val); 1721 } else { 1722 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1723 if (!Shadow) return; 1724 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1725 } 1726 insertShadowCheck(Shadow, Origin, OrigIns); 1727 } 1728 1729 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1730 switch (a) { 1731 case AtomicOrdering::NotAtomic: 1732 return AtomicOrdering::NotAtomic; 1733 case AtomicOrdering::Unordered: 1734 case AtomicOrdering::Monotonic: 1735 case AtomicOrdering::Release: 1736 return AtomicOrdering::Release; 1737 case AtomicOrdering::Acquire: 1738 case AtomicOrdering::AcquireRelease: 1739 return AtomicOrdering::AcquireRelease; 1740 case AtomicOrdering::SequentiallyConsistent: 1741 return AtomicOrdering::SequentiallyConsistent; 1742 } 1743 llvm_unreachable("Unknown ordering"); 1744 } 1745 1746 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1747 switch (a) { 1748 case AtomicOrdering::NotAtomic: 1749 return AtomicOrdering::NotAtomic; 1750 case AtomicOrdering::Unordered: 1751 case AtomicOrdering::Monotonic: 1752 case AtomicOrdering::Acquire: 1753 return AtomicOrdering::Acquire; 1754 case AtomicOrdering::Release: 1755 case AtomicOrdering::AcquireRelease: 1756 return AtomicOrdering::AcquireRelease; 1757 case AtomicOrdering::SequentiallyConsistent: 1758 return AtomicOrdering::SequentiallyConsistent; 1759 } 1760 llvm_unreachable("Unknown ordering"); 1761 } 1762 1763 // ------------------- Visitors. 1764 using InstVisitor<MemorySanitizerVisitor>::visit; 1765 void visit(Instruction &I) { 1766 if (!I.getMetadata("nosanitize")) 1767 InstVisitor<MemorySanitizerVisitor>::visit(I); 1768 } 1769 1770 /// Instrument LoadInst 1771 /// 1772 /// Loads the corresponding shadow and (optionally) origin. 1773 /// Optionally, checks that the load address is fully defined. 1774 void visitLoadInst(LoadInst &I) { 1775 assert(I.getType()->isSized() && "Load type must have size"); 1776 assert(!I.getMetadata("nosanitize")); 1777 IRBuilder<> IRB(I.getNextNode()); 1778 Type *ShadowTy = getShadowTy(&I); 1779 Value *Addr = I.getPointerOperand(); 1780 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1781 const Align Alignment = assumeAligned(I.getAlignment()); 1782 if (PropagateShadow) { 1783 std::tie(ShadowPtr, OriginPtr) = 1784 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1785 setShadow(&I, 1786 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1787 } else { 1788 setShadow(&I, getCleanShadow(&I)); 1789 } 1790 1791 if (ClCheckAccessAddress) 1792 insertShadowCheck(I.getPointerOperand(), &I); 1793 1794 if (I.isAtomic()) 1795 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1796 1797 if (MS.TrackOrigins) { 1798 if (PropagateShadow) { 1799 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1800 setOrigin( 1801 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1802 } else { 1803 setOrigin(&I, getCleanOrigin()); 1804 } 1805 } 1806 } 1807 1808 /// Instrument StoreInst 1809 /// 1810 /// Stores the corresponding shadow and (optionally) origin. 1811 /// Optionally, checks that the store address is fully defined. 1812 void visitStoreInst(StoreInst &I) { 1813 StoreList.push_back(&I); 1814 if (ClCheckAccessAddress) 1815 insertShadowCheck(I.getPointerOperand(), &I); 1816 } 1817 1818 void handleCASOrRMW(Instruction &I) { 1819 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1820 1821 IRBuilder<> IRB(&I); 1822 Value *Addr = I.getOperand(0); 1823 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1824 /*isStore*/ true) 1825 .first; 1826 1827 if (ClCheckAccessAddress) 1828 insertShadowCheck(Addr, &I); 1829 1830 // Only test the conditional argument of cmpxchg instruction. 1831 // The other argument can potentially be uninitialized, but we can not 1832 // detect this situation reliably without possible false positives. 1833 if (isa<AtomicCmpXchgInst>(I)) 1834 insertShadowCheck(I.getOperand(1), &I); 1835 1836 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1837 1838 setShadow(&I, getCleanShadow(&I)); 1839 setOrigin(&I, getCleanOrigin()); 1840 } 1841 1842 void visitAtomicRMWInst(AtomicRMWInst &I) { 1843 handleCASOrRMW(I); 1844 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1845 } 1846 1847 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1848 handleCASOrRMW(I); 1849 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1850 } 1851 1852 // Vector manipulation. 1853 void visitExtractElementInst(ExtractElementInst &I) { 1854 insertShadowCheck(I.getOperand(1), &I); 1855 IRBuilder<> IRB(&I); 1856 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1857 "_msprop")); 1858 setOrigin(&I, getOrigin(&I, 0)); 1859 } 1860 1861 void visitInsertElementInst(InsertElementInst &I) { 1862 insertShadowCheck(I.getOperand(2), &I); 1863 IRBuilder<> IRB(&I); 1864 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1865 I.getOperand(2), "_msprop")); 1866 setOriginForNaryOp(I); 1867 } 1868 1869 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1870 insertShadowCheck(I.getOperand(2), &I); 1871 IRBuilder<> IRB(&I); 1872 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1873 I.getOperand(2), "_msprop")); 1874 setOriginForNaryOp(I); 1875 } 1876 1877 // Casts. 1878 void visitSExtInst(SExtInst &I) { 1879 IRBuilder<> IRB(&I); 1880 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1881 setOrigin(&I, getOrigin(&I, 0)); 1882 } 1883 1884 void visitZExtInst(ZExtInst &I) { 1885 IRBuilder<> IRB(&I); 1886 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1887 setOrigin(&I, getOrigin(&I, 0)); 1888 } 1889 1890 void visitTruncInst(TruncInst &I) { 1891 IRBuilder<> IRB(&I); 1892 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1893 setOrigin(&I, getOrigin(&I, 0)); 1894 } 1895 1896 void visitBitCastInst(BitCastInst &I) { 1897 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1898 // a musttail call and a ret, don't instrument. New instructions are not 1899 // allowed after a musttail call. 1900 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1901 if (CI->isMustTailCall()) 1902 return; 1903 IRBuilder<> IRB(&I); 1904 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1905 setOrigin(&I, getOrigin(&I, 0)); 1906 } 1907 1908 void visitPtrToIntInst(PtrToIntInst &I) { 1909 IRBuilder<> IRB(&I); 1910 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1911 "_msprop_ptrtoint")); 1912 setOrigin(&I, getOrigin(&I, 0)); 1913 } 1914 1915 void visitIntToPtrInst(IntToPtrInst &I) { 1916 IRBuilder<> IRB(&I); 1917 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1918 "_msprop_inttoptr")); 1919 setOrigin(&I, getOrigin(&I, 0)); 1920 } 1921 1922 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1923 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1924 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1925 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1926 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1927 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1928 1929 /// Propagate shadow for bitwise AND. 1930 /// 1931 /// This code is exact, i.e. if, for example, a bit in the left argument 1932 /// is defined and 0, then neither the value not definedness of the 1933 /// corresponding bit in B don't affect the resulting shadow. 1934 void visitAnd(BinaryOperator &I) { 1935 IRBuilder<> IRB(&I); 1936 // "And" of 0 and a poisoned value results in unpoisoned value. 1937 // 1&1 => 1; 0&1 => 0; p&1 => p; 1938 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1939 // 1&p => p; 0&p => 0; p&p => p; 1940 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1941 Value *S1 = getShadow(&I, 0); 1942 Value *S2 = getShadow(&I, 1); 1943 Value *V1 = I.getOperand(0); 1944 Value *V2 = I.getOperand(1); 1945 if (V1->getType() != S1->getType()) { 1946 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1947 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1948 } 1949 Value *S1S2 = IRB.CreateAnd(S1, S2); 1950 Value *V1S2 = IRB.CreateAnd(V1, S2); 1951 Value *S1V2 = IRB.CreateAnd(S1, V2); 1952 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1953 setOriginForNaryOp(I); 1954 } 1955 1956 void visitOr(BinaryOperator &I) { 1957 IRBuilder<> IRB(&I); 1958 // "Or" of 1 and a poisoned value results in unpoisoned value. 1959 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1960 // 1|0 => 1; 0|0 => 0; p|0 => p; 1961 // 1|p => 1; 0|p => p; p|p => p; 1962 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1963 Value *S1 = getShadow(&I, 0); 1964 Value *S2 = getShadow(&I, 1); 1965 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1966 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1967 if (V1->getType() != S1->getType()) { 1968 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1969 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1970 } 1971 Value *S1S2 = IRB.CreateAnd(S1, S2); 1972 Value *V1S2 = IRB.CreateAnd(V1, S2); 1973 Value *S1V2 = IRB.CreateAnd(S1, V2); 1974 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1975 setOriginForNaryOp(I); 1976 } 1977 1978 /// Default propagation of shadow and/or origin. 1979 /// 1980 /// This class implements the general case of shadow propagation, used in all 1981 /// cases where we don't know and/or don't care about what the operation 1982 /// actually does. It converts all input shadow values to a common type 1983 /// (extending or truncating as necessary), and bitwise OR's them. 1984 /// 1985 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1986 /// fully initialized), and less prone to false positives. 1987 /// 1988 /// This class also implements the general case of origin propagation. For a 1989 /// Nary operation, result origin is set to the origin of an argument that is 1990 /// not entirely initialized. If there is more than one such arguments, the 1991 /// rightmost of them is picked. It does not matter which one is picked if all 1992 /// arguments are initialized. 1993 template <bool CombineShadow> 1994 class Combiner { 1995 Value *Shadow = nullptr; 1996 Value *Origin = nullptr; 1997 IRBuilder<> &IRB; 1998 MemorySanitizerVisitor *MSV; 1999 2000 public: 2001 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2002 : IRB(IRB), MSV(MSV) {} 2003 2004 /// Add a pair of shadow and origin values to the mix. 2005 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2006 if (CombineShadow) { 2007 assert(OpShadow); 2008 if (!Shadow) 2009 Shadow = OpShadow; 2010 else { 2011 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2012 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2013 } 2014 } 2015 2016 if (MSV->MS.TrackOrigins) { 2017 assert(OpOrigin); 2018 if (!Origin) { 2019 Origin = OpOrigin; 2020 } else { 2021 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2022 // No point in adding something that might result in 0 origin value. 2023 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2024 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2025 Value *Cond = 2026 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2027 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2028 } 2029 } 2030 } 2031 return *this; 2032 } 2033 2034 /// Add an application value to the mix. 2035 Combiner &Add(Value *V) { 2036 Value *OpShadow = MSV->getShadow(V); 2037 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2038 return Add(OpShadow, OpOrigin); 2039 } 2040 2041 /// Set the current combined values as the given instruction's shadow 2042 /// and origin. 2043 void Done(Instruction *I) { 2044 if (CombineShadow) { 2045 assert(Shadow); 2046 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2047 MSV->setShadow(I, Shadow); 2048 } 2049 if (MSV->MS.TrackOrigins) { 2050 assert(Origin); 2051 MSV->setOrigin(I, Origin); 2052 } 2053 } 2054 }; 2055 2056 using ShadowAndOriginCombiner = Combiner<true>; 2057 using OriginCombiner = Combiner<false>; 2058 2059 /// Propagate origin for arbitrary operation. 2060 void setOriginForNaryOp(Instruction &I) { 2061 if (!MS.TrackOrigins) return; 2062 IRBuilder<> IRB(&I); 2063 OriginCombiner OC(this, IRB); 2064 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2065 OC.Add(OI->get()); 2066 OC.Done(&I); 2067 } 2068 2069 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2070 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2071 "Vector of pointers is not a valid shadow type"); 2072 return Ty->isVectorTy() ? 2073 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2074 Ty->getPrimitiveSizeInBits(); 2075 } 2076 2077 /// Cast between two shadow types, extending or truncating as 2078 /// necessary. 2079 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2080 bool Signed = false) { 2081 Type *srcTy = V->getType(); 2082 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2083 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2084 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2085 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2086 2087 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2088 return IRB.CreateIntCast(V, dstTy, Signed); 2089 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2090 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2091 return IRB.CreateIntCast(V, dstTy, Signed); 2092 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2093 Value *V2 = 2094 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2095 return IRB.CreateBitCast(V2, dstTy); 2096 // TODO: handle struct types. 2097 } 2098 2099 /// Cast an application value to the type of its own shadow. 2100 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2101 Type *ShadowTy = getShadowTy(V); 2102 if (V->getType() == ShadowTy) 2103 return V; 2104 if (V->getType()->isPtrOrPtrVectorTy()) 2105 return IRB.CreatePtrToInt(V, ShadowTy); 2106 else 2107 return IRB.CreateBitCast(V, ShadowTy); 2108 } 2109 2110 /// Propagate shadow for arbitrary operation. 2111 void handleShadowOr(Instruction &I) { 2112 IRBuilder<> IRB(&I); 2113 ShadowAndOriginCombiner SC(this, IRB); 2114 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2115 SC.Add(OI->get()); 2116 SC.Done(&I); 2117 } 2118 2119 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2120 2121 // Handle multiplication by constant. 2122 // 2123 // Handle a special case of multiplication by constant that may have one or 2124 // more zeros in the lower bits. This makes corresponding number of lower bits 2125 // of the result zero as well. We model it by shifting the other operand 2126 // shadow left by the required number of bits. Effectively, we transform 2127 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2128 // We use multiplication by 2**N instead of shift to cover the case of 2129 // multiplication by 0, which may occur in some elements of a vector operand. 2130 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2131 Value *OtherArg) { 2132 Constant *ShadowMul; 2133 Type *Ty = ConstArg->getType(); 2134 if (Ty->isVectorTy()) { 2135 unsigned NumElements = Ty->getVectorNumElements(); 2136 Type *EltTy = Ty->getSequentialElementType(); 2137 SmallVector<Constant *, 16> Elements; 2138 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2139 if (ConstantInt *Elt = 2140 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2141 const APInt &V = Elt->getValue(); 2142 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2143 Elements.push_back(ConstantInt::get(EltTy, V2)); 2144 } else { 2145 Elements.push_back(ConstantInt::get(EltTy, 1)); 2146 } 2147 } 2148 ShadowMul = ConstantVector::get(Elements); 2149 } else { 2150 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2151 const APInt &V = Elt->getValue(); 2152 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2153 ShadowMul = ConstantInt::get(Ty, V2); 2154 } else { 2155 ShadowMul = ConstantInt::get(Ty, 1); 2156 } 2157 } 2158 2159 IRBuilder<> IRB(&I); 2160 setShadow(&I, 2161 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2162 setOrigin(&I, getOrigin(OtherArg)); 2163 } 2164 2165 void visitMul(BinaryOperator &I) { 2166 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2167 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2168 if (constOp0 && !constOp1) 2169 handleMulByConstant(I, constOp0, I.getOperand(1)); 2170 else if (constOp1 && !constOp0) 2171 handleMulByConstant(I, constOp1, I.getOperand(0)); 2172 else 2173 handleShadowOr(I); 2174 } 2175 2176 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2177 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2178 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2179 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2180 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2181 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2182 2183 void handleIntegerDiv(Instruction &I) { 2184 IRBuilder<> IRB(&I); 2185 // Strict on the second argument. 2186 insertShadowCheck(I.getOperand(1), &I); 2187 setShadow(&I, getShadow(&I, 0)); 2188 setOrigin(&I, getOrigin(&I, 0)); 2189 } 2190 2191 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2192 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2193 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2194 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2195 2196 // Floating point division is side-effect free. We can not require that the 2197 // divisor is fully initialized and must propagate shadow. See PR37523. 2198 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2199 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2200 2201 /// Instrument == and != comparisons. 2202 /// 2203 /// Sometimes the comparison result is known even if some of the bits of the 2204 /// arguments are not. 2205 void handleEqualityComparison(ICmpInst &I) { 2206 IRBuilder<> IRB(&I); 2207 Value *A = I.getOperand(0); 2208 Value *B = I.getOperand(1); 2209 Value *Sa = getShadow(A); 2210 Value *Sb = getShadow(B); 2211 2212 // Get rid of pointers and vectors of pointers. 2213 // For ints (and vectors of ints), types of A and Sa match, 2214 // and this is a no-op. 2215 A = IRB.CreatePointerCast(A, Sa->getType()); 2216 B = IRB.CreatePointerCast(B, Sb->getType()); 2217 2218 // A == B <==> (C = A^B) == 0 2219 // A != B <==> (C = A^B) != 0 2220 // Sc = Sa | Sb 2221 Value *C = IRB.CreateXor(A, B); 2222 Value *Sc = IRB.CreateOr(Sa, Sb); 2223 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2224 // Result is defined if one of the following is true 2225 // * there is a defined 1 bit in C 2226 // * C is fully defined 2227 // Si = !(C & ~Sc) && Sc 2228 Value *Zero = Constant::getNullValue(Sc->getType()); 2229 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2230 Value *Si = 2231 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2232 IRB.CreateICmpEQ( 2233 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2234 Si->setName("_msprop_icmp"); 2235 setShadow(&I, Si); 2236 setOriginForNaryOp(I); 2237 } 2238 2239 /// Build the lowest possible value of V, taking into account V's 2240 /// uninitialized bits. 2241 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2242 bool isSigned) { 2243 if (isSigned) { 2244 // Split shadow into sign bit and other bits. 2245 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2246 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2247 // Maximise the undefined shadow bit, minimize other undefined bits. 2248 return 2249 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2250 } else { 2251 // Minimize undefined bits. 2252 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2253 } 2254 } 2255 2256 /// Build the highest possible value of V, taking into account V's 2257 /// uninitialized bits. 2258 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2259 bool isSigned) { 2260 if (isSigned) { 2261 // Split shadow into sign bit and other bits. 2262 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2263 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2264 // Minimise the undefined shadow bit, maximise other undefined bits. 2265 return 2266 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2267 } else { 2268 // Maximize undefined bits. 2269 return IRB.CreateOr(A, Sa); 2270 } 2271 } 2272 2273 /// Instrument relational comparisons. 2274 /// 2275 /// This function does exact shadow propagation for all relational 2276 /// comparisons of integers, pointers and vectors of those. 2277 /// FIXME: output seems suboptimal when one of the operands is a constant 2278 void handleRelationalComparisonExact(ICmpInst &I) { 2279 IRBuilder<> IRB(&I); 2280 Value *A = I.getOperand(0); 2281 Value *B = I.getOperand(1); 2282 Value *Sa = getShadow(A); 2283 Value *Sb = getShadow(B); 2284 2285 // Get rid of pointers and vectors of pointers. 2286 // For ints (and vectors of ints), types of A and Sa match, 2287 // and this is a no-op. 2288 A = IRB.CreatePointerCast(A, Sa->getType()); 2289 B = IRB.CreatePointerCast(B, Sb->getType()); 2290 2291 // Let [a0, a1] be the interval of possible values of A, taking into account 2292 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2293 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2294 bool IsSigned = I.isSigned(); 2295 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2296 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2297 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2298 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2299 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2300 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2301 Value *Si = IRB.CreateXor(S1, S2); 2302 setShadow(&I, Si); 2303 setOriginForNaryOp(I); 2304 } 2305 2306 /// Instrument signed relational comparisons. 2307 /// 2308 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2309 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2310 void handleSignedRelationalComparison(ICmpInst &I) { 2311 Constant *constOp; 2312 Value *op = nullptr; 2313 CmpInst::Predicate pre; 2314 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2315 op = I.getOperand(0); 2316 pre = I.getPredicate(); 2317 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2318 op = I.getOperand(1); 2319 pre = I.getSwappedPredicate(); 2320 } else { 2321 handleShadowOr(I); 2322 return; 2323 } 2324 2325 if ((constOp->isNullValue() && 2326 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2327 (constOp->isAllOnesValue() && 2328 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2329 IRBuilder<> IRB(&I); 2330 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2331 "_msprop_icmp_s"); 2332 setShadow(&I, Shadow); 2333 setOrigin(&I, getOrigin(op)); 2334 } else { 2335 handleShadowOr(I); 2336 } 2337 } 2338 2339 void visitICmpInst(ICmpInst &I) { 2340 if (!ClHandleICmp) { 2341 handleShadowOr(I); 2342 return; 2343 } 2344 if (I.isEquality()) { 2345 handleEqualityComparison(I); 2346 return; 2347 } 2348 2349 assert(I.isRelational()); 2350 if (ClHandleICmpExact) { 2351 handleRelationalComparisonExact(I); 2352 return; 2353 } 2354 if (I.isSigned()) { 2355 handleSignedRelationalComparison(I); 2356 return; 2357 } 2358 2359 assert(I.isUnsigned()); 2360 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2361 handleRelationalComparisonExact(I); 2362 return; 2363 } 2364 2365 handleShadowOr(I); 2366 } 2367 2368 void visitFCmpInst(FCmpInst &I) { 2369 handleShadowOr(I); 2370 } 2371 2372 void handleShift(BinaryOperator &I) { 2373 IRBuilder<> IRB(&I); 2374 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2375 // Otherwise perform the same shift on S1. 2376 Value *S1 = getShadow(&I, 0); 2377 Value *S2 = getShadow(&I, 1); 2378 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2379 S2->getType()); 2380 Value *V2 = I.getOperand(1); 2381 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2382 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2383 setOriginForNaryOp(I); 2384 } 2385 2386 void visitShl(BinaryOperator &I) { handleShift(I); } 2387 void visitAShr(BinaryOperator &I) { handleShift(I); } 2388 void visitLShr(BinaryOperator &I) { handleShift(I); } 2389 2390 /// Instrument llvm.memmove 2391 /// 2392 /// At this point we don't know if llvm.memmove will be inlined or not. 2393 /// If we don't instrument it and it gets inlined, 2394 /// our interceptor will not kick in and we will lose the memmove. 2395 /// If we instrument the call here, but it does not get inlined, 2396 /// we will memove the shadow twice: which is bad in case 2397 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2398 /// 2399 /// Similar situation exists for memcpy and memset. 2400 void visitMemMoveInst(MemMoveInst &I) { 2401 IRBuilder<> IRB(&I); 2402 IRB.CreateCall( 2403 MS.MemmoveFn, 2404 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2405 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2406 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2407 I.eraseFromParent(); 2408 } 2409 2410 // Similar to memmove: avoid copying shadow twice. 2411 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2412 // FIXME: consider doing manual inline for small constant sizes and proper 2413 // alignment. 2414 void visitMemCpyInst(MemCpyInst &I) { 2415 IRBuilder<> IRB(&I); 2416 IRB.CreateCall( 2417 MS.MemcpyFn, 2418 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2419 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2420 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2421 I.eraseFromParent(); 2422 } 2423 2424 // Same as memcpy. 2425 void visitMemSetInst(MemSetInst &I) { 2426 IRBuilder<> IRB(&I); 2427 IRB.CreateCall( 2428 MS.MemsetFn, 2429 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2430 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2431 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2432 I.eraseFromParent(); 2433 } 2434 2435 void visitVAStartInst(VAStartInst &I) { 2436 VAHelper->visitVAStartInst(I); 2437 } 2438 2439 void visitVACopyInst(VACopyInst &I) { 2440 VAHelper->visitVACopyInst(I); 2441 } 2442 2443 /// Handle vector store-like intrinsics. 2444 /// 2445 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2446 /// has 1 pointer argument and 1 vector argument, returns void. 2447 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2448 IRBuilder<> IRB(&I); 2449 Value* Addr = I.getArgOperand(0); 2450 Value *Shadow = getShadow(&I, 1); 2451 Value *ShadowPtr, *OriginPtr; 2452 2453 // We don't know the pointer alignment (could be unaligned SSE store!). 2454 // Have to assume to worst case. 2455 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2456 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2457 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2458 2459 if (ClCheckAccessAddress) 2460 insertShadowCheck(Addr, &I); 2461 2462 // FIXME: factor out common code from materializeStores 2463 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2464 return true; 2465 } 2466 2467 /// Handle vector load-like intrinsics. 2468 /// 2469 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2470 /// has 1 pointer argument, returns a vector. 2471 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2472 IRBuilder<> IRB(&I); 2473 Value *Addr = I.getArgOperand(0); 2474 2475 Type *ShadowTy = getShadowTy(&I); 2476 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2477 if (PropagateShadow) { 2478 // We don't know the pointer alignment (could be unaligned SSE load!). 2479 // Have to assume to worst case. 2480 const Align Alignment = Align(1); 2481 std::tie(ShadowPtr, OriginPtr) = 2482 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2483 setShadow(&I, 2484 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2485 } else { 2486 setShadow(&I, getCleanShadow(&I)); 2487 } 2488 2489 if (ClCheckAccessAddress) 2490 insertShadowCheck(Addr, &I); 2491 2492 if (MS.TrackOrigins) { 2493 if (PropagateShadow) 2494 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2495 else 2496 setOrigin(&I, getCleanOrigin()); 2497 } 2498 return true; 2499 } 2500 2501 /// Handle (SIMD arithmetic)-like intrinsics. 2502 /// 2503 /// Instrument intrinsics with any number of arguments of the same type, 2504 /// equal to the return type. The type should be simple (no aggregates or 2505 /// pointers; vectors are fine). 2506 /// Caller guarantees that this intrinsic does not access memory. 2507 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2508 Type *RetTy = I.getType(); 2509 if (!(RetTy->isIntOrIntVectorTy() || 2510 RetTy->isFPOrFPVectorTy() || 2511 RetTy->isX86_MMXTy())) 2512 return false; 2513 2514 unsigned NumArgOperands = I.getNumArgOperands(); 2515 2516 for (unsigned i = 0; i < NumArgOperands; ++i) { 2517 Type *Ty = I.getArgOperand(i)->getType(); 2518 if (Ty != RetTy) 2519 return false; 2520 } 2521 2522 IRBuilder<> IRB(&I); 2523 ShadowAndOriginCombiner SC(this, IRB); 2524 for (unsigned i = 0; i < NumArgOperands; ++i) 2525 SC.Add(I.getArgOperand(i)); 2526 SC.Done(&I); 2527 2528 return true; 2529 } 2530 2531 /// Heuristically instrument unknown intrinsics. 2532 /// 2533 /// The main purpose of this code is to do something reasonable with all 2534 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2535 /// We recognize several classes of intrinsics by their argument types and 2536 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2537 /// sure that we know what the intrinsic does. 2538 /// 2539 /// We special-case intrinsics where this approach fails. See llvm.bswap 2540 /// handling as an example of that. 2541 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2542 unsigned NumArgOperands = I.getNumArgOperands(); 2543 if (NumArgOperands == 0) 2544 return false; 2545 2546 if (NumArgOperands == 2 && 2547 I.getArgOperand(0)->getType()->isPointerTy() && 2548 I.getArgOperand(1)->getType()->isVectorTy() && 2549 I.getType()->isVoidTy() && 2550 !I.onlyReadsMemory()) { 2551 // This looks like a vector store. 2552 return handleVectorStoreIntrinsic(I); 2553 } 2554 2555 if (NumArgOperands == 1 && 2556 I.getArgOperand(0)->getType()->isPointerTy() && 2557 I.getType()->isVectorTy() && 2558 I.onlyReadsMemory()) { 2559 // This looks like a vector load. 2560 return handleVectorLoadIntrinsic(I); 2561 } 2562 2563 if (I.doesNotAccessMemory()) 2564 if (maybeHandleSimpleNomemIntrinsic(I)) 2565 return true; 2566 2567 // FIXME: detect and handle SSE maskstore/maskload 2568 return false; 2569 } 2570 2571 void handleInvariantGroup(IntrinsicInst &I) { 2572 setShadow(&I, getShadow(&I, 0)); 2573 setOrigin(&I, getOrigin(&I, 0)); 2574 } 2575 2576 void handleLifetimeStart(IntrinsicInst &I) { 2577 if (!PoisonStack) 2578 return; 2579 DenseMap<Value *, AllocaInst *> AllocaForValue; 2580 AllocaInst *AI = 2581 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2582 if (!AI) 2583 InstrumentLifetimeStart = false; 2584 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2585 } 2586 2587 void handleBswap(IntrinsicInst &I) { 2588 IRBuilder<> IRB(&I); 2589 Value *Op = I.getArgOperand(0); 2590 Type *OpType = Op->getType(); 2591 Function *BswapFunc = Intrinsic::getDeclaration( 2592 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2593 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2594 setOrigin(&I, getOrigin(Op)); 2595 } 2596 2597 // Instrument vector convert intrinsic. 2598 // 2599 // This function instruments intrinsics like cvtsi2ss: 2600 // %Out = int_xxx_cvtyyy(%ConvertOp) 2601 // or 2602 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2603 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2604 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2605 // elements from \p CopyOp. 2606 // In most cases conversion involves floating-point value which may trigger a 2607 // hardware exception when not fully initialized. For this reason we require 2608 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2609 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2610 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2611 // return a fully initialized value. 2612 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2613 IRBuilder<> IRB(&I); 2614 Value *CopyOp, *ConvertOp; 2615 2616 switch (I.getNumArgOperands()) { 2617 case 3: 2618 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2619 LLVM_FALLTHROUGH; 2620 case 2: 2621 CopyOp = I.getArgOperand(0); 2622 ConvertOp = I.getArgOperand(1); 2623 break; 2624 case 1: 2625 ConvertOp = I.getArgOperand(0); 2626 CopyOp = nullptr; 2627 break; 2628 default: 2629 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2630 } 2631 2632 // The first *NumUsedElements* elements of ConvertOp are converted to the 2633 // same number of output elements. The rest of the output is copied from 2634 // CopyOp, or (if not available) filled with zeroes. 2635 // Combine shadow for elements of ConvertOp that are used in this operation, 2636 // and insert a check. 2637 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2638 // int->any conversion. 2639 Value *ConvertShadow = getShadow(ConvertOp); 2640 Value *AggShadow = nullptr; 2641 if (ConvertOp->getType()->isVectorTy()) { 2642 AggShadow = IRB.CreateExtractElement( 2643 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2644 for (int i = 1; i < NumUsedElements; ++i) { 2645 Value *MoreShadow = IRB.CreateExtractElement( 2646 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2647 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2648 } 2649 } else { 2650 AggShadow = ConvertShadow; 2651 } 2652 assert(AggShadow->getType()->isIntegerTy()); 2653 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2654 2655 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2656 // ConvertOp. 2657 if (CopyOp) { 2658 assert(CopyOp->getType() == I.getType()); 2659 assert(CopyOp->getType()->isVectorTy()); 2660 Value *ResultShadow = getShadow(CopyOp); 2661 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2662 for (int i = 0; i < NumUsedElements; ++i) { 2663 ResultShadow = IRB.CreateInsertElement( 2664 ResultShadow, ConstantInt::getNullValue(EltTy), 2665 ConstantInt::get(IRB.getInt32Ty(), i)); 2666 } 2667 setShadow(&I, ResultShadow); 2668 setOrigin(&I, getOrigin(CopyOp)); 2669 } else { 2670 setShadow(&I, getCleanShadow(&I)); 2671 setOrigin(&I, getCleanOrigin()); 2672 } 2673 } 2674 2675 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2676 // zeroes if it is zero, and all ones otherwise. 2677 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2678 if (S->getType()->isVectorTy()) 2679 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2680 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2681 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2682 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2683 } 2684 2685 // Given a vector, extract its first element, and return all 2686 // zeroes if it is zero, and all ones otherwise. 2687 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2688 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2689 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2690 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2691 } 2692 2693 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2694 Type *T = S->getType(); 2695 assert(T->isVectorTy()); 2696 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2697 return IRB.CreateSExt(S2, T); 2698 } 2699 2700 // Instrument vector shift intrinsic. 2701 // 2702 // This function instruments intrinsics like int_x86_avx2_psll_w. 2703 // Intrinsic shifts %In by %ShiftSize bits. 2704 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2705 // size, and the rest is ignored. Behavior is defined even if shift size is 2706 // greater than register (or field) width. 2707 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2708 assert(I.getNumArgOperands() == 2); 2709 IRBuilder<> IRB(&I); 2710 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2711 // Otherwise perform the same shift on S1. 2712 Value *S1 = getShadow(&I, 0); 2713 Value *S2 = getShadow(&I, 1); 2714 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2715 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2716 Value *V1 = I.getOperand(0); 2717 Value *V2 = I.getOperand(1); 2718 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 2719 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2720 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2721 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2722 setOriginForNaryOp(I); 2723 } 2724 2725 // Get an X86_MMX-sized vector type. 2726 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2727 const unsigned X86_MMXSizeInBits = 64; 2728 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2729 "Illegal MMX vector element size"); 2730 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2731 X86_MMXSizeInBits / EltSizeInBits); 2732 } 2733 2734 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2735 // intrinsic. 2736 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2737 switch (id) { 2738 case Intrinsic::x86_sse2_packsswb_128: 2739 case Intrinsic::x86_sse2_packuswb_128: 2740 return Intrinsic::x86_sse2_packsswb_128; 2741 2742 case Intrinsic::x86_sse2_packssdw_128: 2743 case Intrinsic::x86_sse41_packusdw: 2744 return Intrinsic::x86_sse2_packssdw_128; 2745 2746 case Intrinsic::x86_avx2_packsswb: 2747 case Intrinsic::x86_avx2_packuswb: 2748 return Intrinsic::x86_avx2_packsswb; 2749 2750 case Intrinsic::x86_avx2_packssdw: 2751 case Intrinsic::x86_avx2_packusdw: 2752 return Intrinsic::x86_avx2_packssdw; 2753 2754 case Intrinsic::x86_mmx_packsswb: 2755 case Intrinsic::x86_mmx_packuswb: 2756 return Intrinsic::x86_mmx_packsswb; 2757 2758 case Intrinsic::x86_mmx_packssdw: 2759 return Intrinsic::x86_mmx_packssdw; 2760 default: 2761 llvm_unreachable("unexpected intrinsic id"); 2762 } 2763 } 2764 2765 // Instrument vector pack intrinsic. 2766 // 2767 // This function instruments intrinsics like x86_mmx_packsswb, that 2768 // packs elements of 2 input vectors into half as many bits with saturation. 2769 // Shadow is propagated with the signed variant of the same intrinsic applied 2770 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2771 // EltSizeInBits is used only for x86mmx arguments. 2772 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2773 assert(I.getNumArgOperands() == 2); 2774 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2775 IRBuilder<> IRB(&I); 2776 Value *S1 = getShadow(&I, 0); 2777 Value *S2 = getShadow(&I, 1); 2778 assert(isX86_MMX || S1->getType()->isVectorTy()); 2779 2780 // SExt and ICmpNE below must apply to individual elements of input vectors. 2781 // In case of x86mmx arguments, cast them to appropriate vector types and 2782 // back. 2783 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2784 if (isX86_MMX) { 2785 S1 = IRB.CreateBitCast(S1, T); 2786 S2 = IRB.CreateBitCast(S2, T); 2787 } 2788 Value *S1_ext = IRB.CreateSExt( 2789 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2790 Value *S2_ext = IRB.CreateSExt( 2791 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2792 if (isX86_MMX) { 2793 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2794 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2795 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2796 } 2797 2798 Function *ShadowFn = Intrinsic::getDeclaration( 2799 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2800 2801 Value *S = 2802 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2803 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2804 setShadow(&I, S); 2805 setOriginForNaryOp(I); 2806 } 2807 2808 // Instrument sum-of-absolute-differences intrinsic. 2809 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2810 const unsigned SignificantBitsPerResultElement = 16; 2811 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2812 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2813 unsigned ZeroBitsPerResultElement = 2814 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2815 2816 IRBuilder<> IRB(&I); 2817 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2818 S = IRB.CreateBitCast(S, ResTy); 2819 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2820 ResTy); 2821 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2822 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2823 setShadow(&I, S); 2824 setOriginForNaryOp(I); 2825 } 2826 2827 // Instrument multiply-add intrinsic. 2828 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2829 unsigned EltSizeInBits = 0) { 2830 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2831 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2832 IRBuilder<> IRB(&I); 2833 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2834 S = IRB.CreateBitCast(S, ResTy); 2835 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2836 ResTy); 2837 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2838 setShadow(&I, S); 2839 setOriginForNaryOp(I); 2840 } 2841 2842 // Instrument compare-packed intrinsic. 2843 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2844 // all-ones shadow. 2845 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2846 IRBuilder<> IRB(&I); 2847 Type *ResTy = getShadowTy(&I); 2848 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2849 Value *S = IRB.CreateSExt( 2850 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2851 setShadow(&I, S); 2852 setOriginForNaryOp(I); 2853 } 2854 2855 // Instrument compare-scalar intrinsic. 2856 // This handles both cmp* intrinsics which return the result in the first 2857 // element of a vector, and comi* which return the result as i32. 2858 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2859 IRBuilder<> IRB(&I); 2860 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2861 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2862 setShadow(&I, S); 2863 setOriginForNaryOp(I); 2864 } 2865 2866 void handleStmxcsr(IntrinsicInst &I) { 2867 IRBuilder<> IRB(&I); 2868 Value* Addr = I.getArgOperand(0); 2869 Type *Ty = IRB.getInt32Ty(); 2870 Value *ShadowPtr = 2871 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2872 2873 IRB.CreateStore(getCleanShadow(Ty), 2874 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2875 2876 if (ClCheckAccessAddress) 2877 insertShadowCheck(Addr, &I); 2878 } 2879 2880 void handleLdmxcsr(IntrinsicInst &I) { 2881 if (!InsertChecks) return; 2882 2883 IRBuilder<> IRB(&I); 2884 Value *Addr = I.getArgOperand(0); 2885 Type *Ty = IRB.getInt32Ty(); 2886 const Align Alignment = Align(1); 2887 Value *ShadowPtr, *OriginPtr; 2888 std::tie(ShadowPtr, OriginPtr) = 2889 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2890 2891 if (ClCheckAccessAddress) 2892 insertShadowCheck(Addr, &I); 2893 2894 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2895 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2896 : getCleanOrigin(); 2897 insertShadowCheck(Shadow, Origin, &I); 2898 } 2899 2900 void handleMaskedStore(IntrinsicInst &I) { 2901 IRBuilder<> IRB(&I); 2902 Value *V = I.getArgOperand(0); 2903 Value *Addr = I.getArgOperand(1); 2904 const Align Alignment( 2905 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2906 Value *Mask = I.getArgOperand(3); 2907 Value *Shadow = getShadow(V); 2908 2909 Value *ShadowPtr; 2910 Value *OriginPtr; 2911 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2912 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2913 2914 if (ClCheckAccessAddress) { 2915 insertShadowCheck(Addr, &I); 2916 // Uninitialized mask is kind of like uninitialized address, but not as 2917 // scary. 2918 insertShadowCheck(Mask, &I); 2919 } 2920 2921 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 2922 2923 if (MS.TrackOrigins) { 2924 auto &DL = F.getParent()->getDataLayout(); 2925 paintOrigin(IRB, getOrigin(V), OriginPtr, 2926 DL.getTypeStoreSize(Shadow->getType()), 2927 std::max(Alignment, kMinOriginAlignment)); 2928 } 2929 } 2930 2931 bool handleMaskedLoad(IntrinsicInst &I) { 2932 IRBuilder<> IRB(&I); 2933 Value *Addr = I.getArgOperand(0); 2934 const Align Alignment( 2935 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2936 Value *Mask = I.getArgOperand(2); 2937 Value *PassThru = I.getArgOperand(3); 2938 2939 Type *ShadowTy = getShadowTy(&I); 2940 Value *ShadowPtr, *OriginPtr; 2941 if (PropagateShadow) { 2942 std::tie(ShadowPtr, OriginPtr) = 2943 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2944 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 2945 getShadow(PassThru), "_msmaskedld")); 2946 } else { 2947 setShadow(&I, getCleanShadow(&I)); 2948 } 2949 2950 if (ClCheckAccessAddress) { 2951 insertShadowCheck(Addr, &I); 2952 insertShadowCheck(Mask, &I); 2953 } 2954 2955 if (MS.TrackOrigins) { 2956 if (PropagateShadow) { 2957 // Choose between PassThru's and the loaded value's origins. 2958 Value *MaskedPassThruShadow = IRB.CreateAnd( 2959 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2960 2961 Value *Acc = IRB.CreateExtractElement( 2962 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2963 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2964 ++i) { 2965 Value *More = IRB.CreateExtractElement( 2966 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2967 Acc = IRB.CreateOr(Acc, More); 2968 } 2969 2970 Value *Origin = IRB.CreateSelect( 2971 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2972 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2973 2974 setOrigin(&I, Origin); 2975 } else { 2976 setOrigin(&I, getCleanOrigin()); 2977 } 2978 } 2979 return true; 2980 } 2981 2982 // Instrument BMI / BMI2 intrinsics. 2983 // All of these intrinsics are Z = I(X, Y) 2984 // where the types of all operands and the result match, and are either i32 or i64. 2985 // The following instrumentation happens to work for all of them: 2986 // Sz = I(Sx, Y) | (sext (Sy != 0)) 2987 void handleBmiIntrinsic(IntrinsicInst &I) { 2988 IRBuilder<> IRB(&I); 2989 Type *ShadowTy = getShadowTy(&I); 2990 2991 // If any bit of the mask operand is poisoned, then the whole thing is. 2992 Value *SMask = getShadow(&I, 1); 2993 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 2994 ShadowTy); 2995 // Apply the same intrinsic to the shadow of the first operand. 2996 Value *S = IRB.CreateCall(I.getCalledFunction(), 2997 {getShadow(&I, 0), I.getOperand(1)}); 2998 S = IRB.CreateOr(SMask, S); 2999 setShadow(&I, S); 3000 setOriginForNaryOp(I); 3001 } 3002 3003 Constant *getPclmulMask(IRBuilder<> &IRB, unsigned Width, bool OddElements) { 3004 SmallVector<Constant *, 8> Mask; 3005 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3006 Constant *C = ConstantInt::get(IRB.getInt32Ty(), X); 3007 Mask.push_back(C); 3008 Mask.push_back(C); 3009 } 3010 return ConstantVector::get(Mask); 3011 } 3012 3013 // Instrument pclmul intrinsics. 3014 // These intrinsics operate either on odd or on even elements of the input 3015 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3016 // Replace the unused elements with copies of the used ones, ex: 3017 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3018 // or 3019 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3020 // and then apply the usual shadow combining logic. 3021 void handlePclmulIntrinsic(IntrinsicInst &I) { 3022 IRBuilder<> IRB(&I); 3023 Type *ShadowTy = getShadowTy(&I); 3024 unsigned Width = I.getArgOperand(0)->getType()->getVectorNumElements(); 3025 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3026 "pclmul 3rd operand must be a constant"); 3027 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3028 Value *Shuf0 = 3029 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3030 getPclmulMask(IRB, Width, Imm & 0x01)); 3031 Value *Shuf1 = 3032 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3033 getPclmulMask(IRB, Width, Imm & 0x10)); 3034 ShadowAndOriginCombiner SOC(this, IRB); 3035 SOC.Add(Shuf0, getOrigin(&I, 0)); 3036 SOC.Add(Shuf1, getOrigin(&I, 1)); 3037 SOC.Done(&I); 3038 } 3039 3040 void visitIntrinsicInst(IntrinsicInst &I) { 3041 switch (I.getIntrinsicID()) { 3042 case Intrinsic::lifetime_start: 3043 handleLifetimeStart(I); 3044 break; 3045 case Intrinsic::launder_invariant_group: 3046 case Intrinsic::strip_invariant_group: 3047 handleInvariantGroup(I); 3048 break; 3049 case Intrinsic::bswap: 3050 handleBswap(I); 3051 break; 3052 case Intrinsic::masked_store: 3053 handleMaskedStore(I); 3054 break; 3055 case Intrinsic::masked_load: 3056 handleMaskedLoad(I); 3057 break; 3058 case Intrinsic::x86_sse_stmxcsr: 3059 handleStmxcsr(I); 3060 break; 3061 case Intrinsic::x86_sse_ldmxcsr: 3062 handleLdmxcsr(I); 3063 break; 3064 case Intrinsic::x86_avx512_vcvtsd2usi64: 3065 case Intrinsic::x86_avx512_vcvtsd2usi32: 3066 case Intrinsic::x86_avx512_vcvtss2usi64: 3067 case Intrinsic::x86_avx512_vcvtss2usi32: 3068 case Intrinsic::x86_avx512_cvttss2usi64: 3069 case Intrinsic::x86_avx512_cvttss2usi: 3070 case Intrinsic::x86_avx512_cvttsd2usi64: 3071 case Intrinsic::x86_avx512_cvttsd2usi: 3072 case Intrinsic::x86_avx512_cvtusi2ss: 3073 case Intrinsic::x86_avx512_cvtusi642sd: 3074 case Intrinsic::x86_avx512_cvtusi642ss: 3075 case Intrinsic::x86_sse2_cvtsd2si64: 3076 case Intrinsic::x86_sse2_cvtsd2si: 3077 case Intrinsic::x86_sse2_cvtsd2ss: 3078 case Intrinsic::x86_sse2_cvttsd2si64: 3079 case Intrinsic::x86_sse2_cvttsd2si: 3080 case Intrinsic::x86_sse_cvtss2si64: 3081 case Intrinsic::x86_sse_cvtss2si: 3082 case Intrinsic::x86_sse_cvttss2si64: 3083 case Intrinsic::x86_sse_cvttss2si: 3084 handleVectorConvertIntrinsic(I, 1); 3085 break; 3086 case Intrinsic::x86_sse_cvtps2pi: 3087 case Intrinsic::x86_sse_cvttps2pi: 3088 handleVectorConvertIntrinsic(I, 2); 3089 break; 3090 3091 case Intrinsic::x86_avx512_psll_w_512: 3092 case Intrinsic::x86_avx512_psll_d_512: 3093 case Intrinsic::x86_avx512_psll_q_512: 3094 case Intrinsic::x86_avx512_pslli_w_512: 3095 case Intrinsic::x86_avx512_pslli_d_512: 3096 case Intrinsic::x86_avx512_pslli_q_512: 3097 case Intrinsic::x86_avx512_psrl_w_512: 3098 case Intrinsic::x86_avx512_psrl_d_512: 3099 case Intrinsic::x86_avx512_psrl_q_512: 3100 case Intrinsic::x86_avx512_psra_w_512: 3101 case Intrinsic::x86_avx512_psra_d_512: 3102 case Intrinsic::x86_avx512_psra_q_512: 3103 case Intrinsic::x86_avx512_psrli_w_512: 3104 case Intrinsic::x86_avx512_psrli_d_512: 3105 case Intrinsic::x86_avx512_psrli_q_512: 3106 case Intrinsic::x86_avx512_psrai_w_512: 3107 case Intrinsic::x86_avx512_psrai_d_512: 3108 case Intrinsic::x86_avx512_psrai_q_512: 3109 case Intrinsic::x86_avx512_psra_q_256: 3110 case Intrinsic::x86_avx512_psra_q_128: 3111 case Intrinsic::x86_avx512_psrai_q_256: 3112 case Intrinsic::x86_avx512_psrai_q_128: 3113 case Intrinsic::x86_avx2_psll_w: 3114 case Intrinsic::x86_avx2_psll_d: 3115 case Intrinsic::x86_avx2_psll_q: 3116 case Intrinsic::x86_avx2_pslli_w: 3117 case Intrinsic::x86_avx2_pslli_d: 3118 case Intrinsic::x86_avx2_pslli_q: 3119 case Intrinsic::x86_avx2_psrl_w: 3120 case Intrinsic::x86_avx2_psrl_d: 3121 case Intrinsic::x86_avx2_psrl_q: 3122 case Intrinsic::x86_avx2_psra_w: 3123 case Intrinsic::x86_avx2_psra_d: 3124 case Intrinsic::x86_avx2_psrli_w: 3125 case Intrinsic::x86_avx2_psrli_d: 3126 case Intrinsic::x86_avx2_psrli_q: 3127 case Intrinsic::x86_avx2_psrai_w: 3128 case Intrinsic::x86_avx2_psrai_d: 3129 case Intrinsic::x86_sse2_psll_w: 3130 case Intrinsic::x86_sse2_psll_d: 3131 case Intrinsic::x86_sse2_psll_q: 3132 case Intrinsic::x86_sse2_pslli_w: 3133 case Intrinsic::x86_sse2_pslli_d: 3134 case Intrinsic::x86_sse2_pslli_q: 3135 case Intrinsic::x86_sse2_psrl_w: 3136 case Intrinsic::x86_sse2_psrl_d: 3137 case Intrinsic::x86_sse2_psrl_q: 3138 case Intrinsic::x86_sse2_psra_w: 3139 case Intrinsic::x86_sse2_psra_d: 3140 case Intrinsic::x86_sse2_psrli_w: 3141 case Intrinsic::x86_sse2_psrli_d: 3142 case Intrinsic::x86_sse2_psrli_q: 3143 case Intrinsic::x86_sse2_psrai_w: 3144 case Intrinsic::x86_sse2_psrai_d: 3145 case Intrinsic::x86_mmx_psll_w: 3146 case Intrinsic::x86_mmx_psll_d: 3147 case Intrinsic::x86_mmx_psll_q: 3148 case Intrinsic::x86_mmx_pslli_w: 3149 case Intrinsic::x86_mmx_pslli_d: 3150 case Intrinsic::x86_mmx_pslli_q: 3151 case Intrinsic::x86_mmx_psrl_w: 3152 case Intrinsic::x86_mmx_psrl_d: 3153 case Intrinsic::x86_mmx_psrl_q: 3154 case Intrinsic::x86_mmx_psra_w: 3155 case Intrinsic::x86_mmx_psra_d: 3156 case Intrinsic::x86_mmx_psrli_w: 3157 case Intrinsic::x86_mmx_psrli_d: 3158 case Intrinsic::x86_mmx_psrli_q: 3159 case Intrinsic::x86_mmx_psrai_w: 3160 case Intrinsic::x86_mmx_psrai_d: 3161 handleVectorShiftIntrinsic(I, /* Variable */ false); 3162 break; 3163 case Intrinsic::x86_avx2_psllv_d: 3164 case Intrinsic::x86_avx2_psllv_d_256: 3165 case Intrinsic::x86_avx512_psllv_d_512: 3166 case Intrinsic::x86_avx2_psllv_q: 3167 case Intrinsic::x86_avx2_psllv_q_256: 3168 case Intrinsic::x86_avx512_psllv_q_512: 3169 case Intrinsic::x86_avx2_psrlv_d: 3170 case Intrinsic::x86_avx2_psrlv_d_256: 3171 case Intrinsic::x86_avx512_psrlv_d_512: 3172 case Intrinsic::x86_avx2_psrlv_q: 3173 case Intrinsic::x86_avx2_psrlv_q_256: 3174 case Intrinsic::x86_avx512_psrlv_q_512: 3175 case Intrinsic::x86_avx2_psrav_d: 3176 case Intrinsic::x86_avx2_psrav_d_256: 3177 case Intrinsic::x86_avx512_psrav_d_512: 3178 case Intrinsic::x86_avx512_psrav_q_128: 3179 case Intrinsic::x86_avx512_psrav_q_256: 3180 case Intrinsic::x86_avx512_psrav_q_512: 3181 handleVectorShiftIntrinsic(I, /* Variable */ true); 3182 break; 3183 3184 case Intrinsic::x86_sse2_packsswb_128: 3185 case Intrinsic::x86_sse2_packssdw_128: 3186 case Intrinsic::x86_sse2_packuswb_128: 3187 case Intrinsic::x86_sse41_packusdw: 3188 case Intrinsic::x86_avx2_packsswb: 3189 case Intrinsic::x86_avx2_packssdw: 3190 case Intrinsic::x86_avx2_packuswb: 3191 case Intrinsic::x86_avx2_packusdw: 3192 handleVectorPackIntrinsic(I); 3193 break; 3194 3195 case Intrinsic::x86_mmx_packsswb: 3196 case Intrinsic::x86_mmx_packuswb: 3197 handleVectorPackIntrinsic(I, 16); 3198 break; 3199 3200 case Intrinsic::x86_mmx_packssdw: 3201 handleVectorPackIntrinsic(I, 32); 3202 break; 3203 3204 case Intrinsic::x86_mmx_psad_bw: 3205 case Intrinsic::x86_sse2_psad_bw: 3206 case Intrinsic::x86_avx2_psad_bw: 3207 handleVectorSadIntrinsic(I); 3208 break; 3209 3210 case Intrinsic::x86_sse2_pmadd_wd: 3211 case Intrinsic::x86_avx2_pmadd_wd: 3212 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3213 case Intrinsic::x86_avx2_pmadd_ub_sw: 3214 handleVectorPmaddIntrinsic(I); 3215 break; 3216 3217 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3218 handleVectorPmaddIntrinsic(I, 8); 3219 break; 3220 3221 case Intrinsic::x86_mmx_pmadd_wd: 3222 handleVectorPmaddIntrinsic(I, 16); 3223 break; 3224 3225 case Intrinsic::x86_sse_cmp_ss: 3226 case Intrinsic::x86_sse2_cmp_sd: 3227 case Intrinsic::x86_sse_comieq_ss: 3228 case Intrinsic::x86_sse_comilt_ss: 3229 case Intrinsic::x86_sse_comile_ss: 3230 case Intrinsic::x86_sse_comigt_ss: 3231 case Intrinsic::x86_sse_comige_ss: 3232 case Intrinsic::x86_sse_comineq_ss: 3233 case Intrinsic::x86_sse_ucomieq_ss: 3234 case Intrinsic::x86_sse_ucomilt_ss: 3235 case Intrinsic::x86_sse_ucomile_ss: 3236 case Intrinsic::x86_sse_ucomigt_ss: 3237 case Intrinsic::x86_sse_ucomige_ss: 3238 case Intrinsic::x86_sse_ucomineq_ss: 3239 case Intrinsic::x86_sse2_comieq_sd: 3240 case Intrinsic::x86_sse2_comilt_sd: 3241 case Intrinsic::x86_sse2_comile_sd: 3242 case Intrinsic::x86_sse2_comigt_sd: 3243 case Intrinsic::x86_sse2_comige_sd: 3244 case Intrinsic::x86_sse2_comineq_sd: 3245 case Intrinsic::x86_sse2_ucomieq_sd: 3246 case Intrinsic::x86_sse2_ucomilt_sd: 3247 case Intrinsic::x86_sse2_ucomile_sd: 3248 case Intrinsic::x86_sse2_ucomigt_sd: 3249 case Intrinsic::x86_sse2_ucomige_sd: 3250 case Intrinsic::x86_sse2_ucomineq_sd: 3251 handleVectorCompareScalarIntrinsic(I); 3252 break; 3253 3254 case Intrinsic::x86_sse_cmp_ps: 3255 case Intrinsic::x86_sse2_cmp_pd: 3256 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3257 // generates reasonably looking IR that fails in the backend with "Do not 3258 // know how to split the result of this operator!". 3259 handleVectorComparePackedIntrinsic(I); 3260 break; 3261 3262 case Intrinsic::x86_bmi_bextr_32: 3263 case Intrinsic::x86_bmi_bextr_64: 3264 case Intrinsic::x86_bmi_bzhi_32: 3265 case Intrinsic::x86_bmi_bzhi_64: 3266 case Intrinsic::x86_bmi_pdep_32: 3267 case Intrinsic::x86_bmi_pdep_64: 3268 case Intrinsic::x86_bmi_pext_32: 3269 case Intrinsic::x86_bmi_pext_64: 3270 handleBmiIntrinsic(I); 3271 break; 3272 3273 case Intrinsic::x86_pclmulqdq: 3274 case Intrinsic::x86_pclmulqdq_256: 3275 case Intrinsic::x86_pclmulqdq_512: 3276 handlePclmulIntrinsic(I); 3277 break; 3278 3279 case Intrinsic::is_constant: 3280 // The result of llvm.is.constant() is always defined. 3281 setShadow(&I, getCleanShadow(&I)); 3282 setOrigin(&I, getCleanOrigin()); 3283 break; 3284 3285 default: 3286 if (!handleUnknownIntrinsic(I)) 3287 visitInstruction(I); 3288 break; 3289 } 3290 } 3291 3292 void visitCallSite(CallSite CS) { 3293 Instruction &I = *CS.getInstruction(); 3294 assert(!I.getMetadata("nosanitize")); 3295 assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && 3296 "Unknown type of CallSite"); 3297 if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { 3298 // For inline asm (either a call to asm function, or callbr instruction), 3299 // do the usual thing: check argument shadow and mark all outputs as 3300 // clean. Note that any side effects of the inline asm that are not 3301 // immediately visible in its constraints are not handled. 3302 if (ClHandleAsmConservative && MS.CompileKernel) 3303 visitAsmInstruction(I); 3304 else 3305 visitInstruction(I); 3306 return; 3307 } 3308 if (CS.isCall()) { 3309 CallInst *Call = cast<CallInst>(&I); 3310 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3311 3312 // We are going to insert code that relies on the fact that the callee 3313 // will become a non-readonly function after it is instrumented by us. To 3314 // prevent this code from being optimized out, mark that function 3315 // non-readonly in advance. 3316 if (Function *Func = Call->getCalledFunction()) { 3317 // Clear out readonly/readnone attributes. 3318 AttrBuilder B; 3319 B.addAttribute(Attribute::ReadOnly) 3320 .addAttribute(Attribute::ReadNone) 3321 .addAttribute(Attribute::WriteOnly) 3322 .addAttribute(Attribute::ArgMemOnly) 3323 .addAttribute(Attribute::Speculatable); 3324 Func->removeAttributes(AttributeList::FunctionIndex, B); 3325 } 3326 3327 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3328 } 3329 IRBuilder<> IRB(&I); 3330 3331 unsigned ArgOffset = 0; 3332 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3333 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3334 ArgIt != End; ++ArgIt) { 3335 Value *A = *ArgIt; 3336 unsigned i = ArgIt - CS.arg_begin(); 3337 if (!A->getType()->isSized()) { 3338 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3339 continue; 3340 } 3341 unsigned Size = 0; 3342 Value *Store = nullptr; 3343 // Compute the Shadow for arg even if it is ByVal, because 3344 // in that case getShadow() will copy the actual arg shadow to 3345 // __msan_param_tls. 3346 Value *ArgShadow = getShadow(A); 3347 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3348 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3349 << " Shadow: " << *ArgShadow << "\n"); 3350 bool ArgIsInitialized = false; 3351 const DataLayout &DL = F.getParent()->getDataLayout(); 3352 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3353 assert(A->getType()->isPointerTy() && 3354 "ByVal argument is not a pointer!"); 3355 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3356 if (ArgOffset + Size > kParamTLSSize) break; 3357 const MaybeAlign ParamAlignment(CS.getParamAlignment(i)); 3358 MaybeAlign Alignment = llvm::None; 3359 if (ParamAlignment) 3360 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3361 Value *AShadowPtr = 3362 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3363 /*isStore*/ false) 3364 .first; 3365 3366 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3367 Alignment, Size); 3368 // TODO(glider): need to copy origins. 3369 } else { 3370 Size = DL.getTypeAllocSize(A->getType()); 3371 if (ArgOffset + Size > kParamTLSSize) break; 3372 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3373 kShadowTLSAlignment); 3374 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3375 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3376 } 3377 if (MS.TrackOrigins && !ArgIsInitialized) 3378 IRB.CreateStore(getOrigin(A), 3379 getOriginPtrForArgument(A, IRB, ArgOffset)); 3380 (void)Store; 3381 assert(Size != 0 && Store != nullptr); 3382 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3383 ArgOffset += alignTo(Size, 8); 3384 } 3385 LLVM_DEBUG(dbgs() << " done with call args\n"); 3386 3387 FunctionType *FT = CS.getFunctionType(); 3388 if (FT->isVarArg()) { 3389 VAHelper->visitCallSite(CS, IRB); 3390 } 3391 3392 // Now, get the shadow for the RetVal. 3393 if (!I.getType()->isSized()) return; 3394 // Don't emit the epilogue for musttail call returns. 3395 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3396 IRBuilder<> IRBBefore(&I); 3397 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3398 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3399 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 3400 BasicBlock::iterator NextInsn; 3401 if (CS.isCall()) { 3402 NextInsn = ++I.getIterator(); 3403 assert(NextInsn != I.getParent()->end()); 3404 } else { 3405 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3406 if (!NormalDest->getSinglePredecessor()) { 3407 // FIXME: this case is tricky, so we are just conservative here. 3408 // Perhaps we need to split the edge between this BB and NormalDest, 3409 // but a naive attempt to use SplitEdge leads to a crash. 3410 setShadow(&I, getCleanShadow(&I)); 3411 setOrigin(&I, getCleanOrigin()); 3412 return; 3413 } 3414 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3415 // Anything inserted there will be instrumented by MSan later! 3416 NextInsn = NormalDest->getFirstInsertionPt(); 3417 assert(NextInsn != NormalDest->end() && 3418 "Could not find insertion point for retval shadow load"); 3419 } 3420 IRBuilder<> IRBAfter(&*NextInsn); 3421 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3422 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), 3423 kShadowTLSAlignment, "_msret"); 3424 setShadow(&I, RetvalShadow); 3425 if (MS.TrackOrigins) 3426 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, 3427 getOriginPtrForRetval(IRBAfter))); 3428 } 3429 3430 bool isAMustTailRetVal(Value *RetVal) { 3431 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3432 RetVal = I->getOperand(0); 3433 } 3434 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3435 return I->isMustTailCall(); 3436 } 3437 return false; 3438 } 3439 3440 void visitReturnInst(ReturnInst &I) { 3441 IRBuilder<> IRB(&I); 3442 Value *RetVal = I.getReturnValue(); 3443 if (!RetVal) return; 3444 // Don't emit the epilogue for musttail call returns. 3445 if (isAMustTailRetVal(RetVal)) return; 3446 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3447 if (CheckReturnValue) { 3448 insertShadowCheck(RetVal, &I); 3449 Value *Shadow = getCleanShadow(RetVal); 3450 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3451 } else { 3452 Value *Shadow = getShadow(RetVal); 3453 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3454 if (MS.TrackOrigins) 3455 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3456 } 3457 } 3458 3459 void visitPHINode(PHINode &I) { 3460 IRBuilder<> IRB(&I); 3461 if (!PropagateShadow) { 3462 setShadow(&I, getCleanShadow(&I)); 3463 setOrigin(&I, getCleanOrigin()); 3464 return; 3465 } 3466 3467 ShadowPHINodes.push_back(&I); 3468 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3469 "_msphi_s")); 3470 if (MS.TrackOrigins) 3471 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3472 "_msphi_o")); 3473 } 3474 3475 Value *getLocalVarDescription(AllocaInst &I) { 3476 SmallString<2048> StackDescriptionStorage; 3477 raw_svector_ostream StackDescription(StackDescriptionStorage); 3478 // We create a string with a description of the stack allocation and 3479 // pass it into __msan_set_alloca_origin. 3480 // It will be printed by the run-time if stack-originated UMR is found. 3481 // The first 4 bytes of the string are set to '----' and will be replaced 3482 // by __msan_va_arg_overflow_size_tls at the first call. 3483 StackDescription << "----" << I.getName() << "@" << F.getName(); 3484 return createPrivateNonConstGlobalForString(*F.getParent(), 3485 StackDescription.str()); 3486 } 3487 3488 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3489 if (PoisonStack && ClPoisonStackWithCall) { 3490 IRB.CreateCall(MS.MsanPoisonStackFn, 3491 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3492 } else { 3493 Value *ShadowBase, *OriginBase; 3494 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3495 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3496 3497 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3498 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3499 MaybeAlign(I.getAlignment())); 3500 } 3501 3502 if (PoisonStack && MS.TrackOrigins) { 3503 Value *Descr = getLocalVarDescription(I); 3504 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3505 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3506 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3507 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3508 } 3509 } 3510 3511 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3512 Value *Descr = getLocalVarDescription(I); 3513 if (PoisonStack) { 3514 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3515 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3516 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3517 } else { 3518 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3519 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3520 } 3521 } 3522 3523 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3524 if (!InsPoint) 3525 InsPoint = &I; 3526 IRBuilder<> IRB(InsPoint->getNextNode()); 3527 const DataLayout &DL = F.getParent()->getDataLayout(); 3528 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3529 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3530 if (I.isArrayAllocation()) 3531 Len = IRB.CreateMul(Len, I.getArraySize()); 3532 3533 if (MS.CompileKernel) 3534 poisonAllocaKmsan(I, IRB, Len); 3535 else 3536 poisonAllocaUserspace(I, IRB, Len); 3537 } 3538 3539 void visitAllocaInst(AllocaInst &I) { 3540 setShadow(&I, getCleanShadow(&I)); 3541 setOrigin(&I, getCleanOrigin()); 3542 // We'll get to this alloca later unless it's poisoned at the corresponding 3543 // llvm.lifetime.start. 3544 AllocaSet.insert(&I); 3545 } 3546 3547 void visitSelectInst(SelectInst& I) { 3548 IRBuilder<> IRB(&I); 3549 // a = select b, c, d 3550 Value *B = I.getCondition(); 3551 Value *C = I.getTrueValue(); 3552 Value *D = I.getFalseValue(); 3553 Value *Sb = getShadow(B); 3554 Value *Sc = getShadow(C); 3555 Value *Sd = getShadow(D); 3556 3557 // Result shadow if condition shadow is 0. 3558 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3559 Value *Sa1; 3560 if (I.getType()->isAggregateType()) { 3561 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3562 // an extra "select". This results in much more compact IR. 3563 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3564 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3565 } else { 3566 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3567 // If Sb (condition is poisoned), look for bits in c and d that are equal 3568 // and both unpoisoned. 3569 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3570 3571 // Cast arguments to shadow-compatible type. 3572 C = CreateAppToShadowCast(IRB, C); 3573 D = CreateAppToShadowCast(IRB, D); 3574 3575 // Result shadow if condition shadow is 1. 3576 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3577 } 3578 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3579 setShadow(&I, Sa); 3580 if (MS.TrackOrigins) { 3581 // Origins are always i32, so any vector conditions must be flattened. 3582 // FIXME: consider tracking vector origins for app vectors? 3583 if (B->getType()->isVectorTy()) { 3584 Type *FlatTy = getShadowTyNoVec(B->getType()); 3585 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3586 ConstantInt::getNullValue(FlatTy)); 3587 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3588 ConstantInt::getNullValue(FlatTy)); 3589 } 3590 // a = select b, c, d 3591 // Oa = Sb ? Ob : (b ? Oc : Od) 3592 setOrigin( 3593 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3594 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3595 getOrigin(I.getFalseValue())))); 3596 } 3597 } 3598 3599 void visitLandingPadInst(LandingPadInst &I) { 3600 // Do nothing. 3601 // See https://github.com/google/sanitizers/issues/504 3602 setShadow(&I, getCleanShadow(&I)); 3603 setOrigin(&I, getCleanOrigin()); 3604 } 3605 3606 void visitCatchSwitchInst(CatchSwitchInst &I) { 3607 setShadow(&I, getCleanShadow(&I)); 3608 setOrigin(&I, getCleanOrigin()); 3609 } 3610 3611 void visitFuncletPadInst(FuncletPadInst &I) { 3612 setShadow(&I, getCleanShadow(&I)); 3613 setOrigin(&I, getCleanOrigin()); 3614 } 3615 3616 void visitGetElementPtrInst(GetElementPtrInst &I) { 3617 handleShadowOr(I); 3618 } 3619 3620 void visitExtractValueInst(ExtractValueInst &I) { 3621 IRBuilder<> IRB(&I); 3622 Value *Agg = I.getAggregateOperand(); 3623 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3624 Value *AggShadow = getShadow(Agg); 3625 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3626 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3627 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3628 setShadow(&I, ResShadow); 3629 setOriginForNaryOp(I); 3630 } 3631 3632 void visitInsertValueInst(InsertValueInst &I) { 3633 IRBuilder<> IRB(&I); 3634 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3635 Value *AggShadow = getShadow(I.getAggregateOperand()); 3636 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3637 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3638 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3639 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3640 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3641 setShadow(&I, Res); 3642 setOriginForNaryOp(I); 3643 } 3644 3645 void dumpInst(Instruction &I) { 3646 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3647 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3648 } else { 3649 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3650 } 3651 errs() << "QQQ " << I << "\n"; 3652 } 3653 3654 void visitResumeInst(ResumeInst &I) { 3655 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3656 // Nothing to do here. 3657 } 3658 3659 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3660 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3661 // Nothing to do here. 3662 } 3663 3664 void visitCatchReturnInst(CatchReturnInst &CRI) { 3665 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3666 // Nothing to do here. 3667 } 3668 3669 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3670 const DataLayout &DL, bool isOutput) { 3671 // For each assembly argument, we check its value for being initialized. 3672 // If the argument is a pointer, we assume it points to a single element 3673 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3674 // Each such pointer is instrumented with a call to the runtime library. 3675 Type *OpType = Operand->getType(); 3676 // Check the operand value itself. 3677 insertShadowCheck(Operand, &I); 3678 if (!OpType->isPointerTy() || !isOutput) { 3679 assert(!isOutput); 3680 return; 3681 } 3682 Type *ElType = OpType->getPointerElementType(); 3683 if (!ElType->isSized()) 3684 return; 3685 int Size = DL.getTypeStoreSize(ElType); 3686 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3687 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3688 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3689 } 3690 3691 /// Get the number of output arguments returned by pointers. 3692 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3693 int NumRetOutputs = 0; 3694 int NumOutputs = 0; 3695 Type *RetTy = cast<Value>(CB)->getType(); 3696 if (!RetTy->isVoidTy()) { 3697 // Register outputs are returned via the CallInst return value. 3698 auto *ST = dyn_cast<StructType>(RetTy); 3699 if (ST) 3700 NumRetOutputs = ST->getNumElements(); 3701 else 3702 NumRetOutputs = 1; 3703 } 3704 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3705 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3706 InlineAsm::ConstraintInfo Info = Constraints[i]; 3707 switch (Info.Type) { 3708 case InlineAsm::isOutput: 3709 NumOutputs++; 3710 break; 3711 default: 3712 break; 3713 } 3714 } 3715 return NumOutputs - NumRetOutputs; 3716 } 3717 3718 void visitAsmInstruction(Instruction &I) { 3719 // Conservative inline assembly handling: check for poisoned shadow of 3720 // asm() arguments, then unpoison the result and all the memory locations 3721 // pointed to by those arguments. 3722 // An inline asm() statement in C++ contains lists of input and output 3723 // arguments used by the assembly code. These are mapped to operands of the 3724 // CallInst as follows: 3725 // - nR register outputs ("=r) are returned by value in a single structure 3726 // (SSA value of the CallInst); 3727 // - nO other outputs ("=m" and others) are returned by pointer as first 3728 // nO operands of the CallInst; 3729 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3730 // remaining nI operands. 3731 // The total number of asm() arguments in the source is nR+nO+nI, and the 3732 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3733 // function to be called). 3734 const DataLayout &DL = F.getParent()->getDataLayout(); 3735 CallBase *CB = cast<CallBase>(&I); 3736 IRBuilder<> IRB(&I); 3737 InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); 3738 int OutputArgs = getNumOutputArgs(IA, CB); 3739 // The last operand of a CallInst is the function itself. 3740 int NumOperands = CB->getNumOperands() - 1; 3741 3742 // Check input arguments. Doing so before unpoisoning output arguments, so 3743 // that we won't overwrite uninit values before checking them. 3744 for (int i = OutputArgs; i < NumOperands; i++) { 3745 Value *Operand = CB->getOperand(i); 3746 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3747 } 3748 // Unpoison output arguments. This must happen before the actual InlineAsm 3749 // call, so that the shadow for memory published in the asm() statement 3750 // remains valid. 3751 for (int i = 0; i < OutputArgs; i++) { 3752 Value *Operand = CB->getOperand(i); 3753 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3754 } 3755 3756 setShadow(&I, getCleanShadow(&I)); 3757 setOrigin(&I, getCleanOrigin()); 3758 } 3759 3760 void visitInstruction(Instruction &I) { 3761 // Everything else: stop propagating and check for poisoned shadow. 3762 if (ClDumpStrictInstructions) 3763 dumpInst(I); 3764 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3765 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3766 Value *Operand = I.getOperand(i); 3767 if (Operand->getType()->isSized()) 3768 insertShadowCheck(Operand, &I); 3769 } 3770 setShadow(&I, getCleanShadow(&I)); 3771 setOrigin(&I, getCleanOrigin()); 3772 } 3773 }; 3774 3775 /// AMD64-specific implementation of VarArgHelper. 3776 struct VarArgAMD64Helper : public VarArgHelper { 3777 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3778 // See a comment in visitCallSite for more details. 3779 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3780 static const unsigned AMD64FpEndOffsetSSE = 176; 3781 // If SSE is disabled, fp_offset in va_list is zero. 3782 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3783 3784 unsigned AMD64FpEndOffset; 3785 Function &F; 3786 MemorySanitizer &MS; 3787 MemorySanitizerVisitor &MSV; 3788 Value *VAArgTLSCopy = nullptr; 3789 Value *VAArgTLSOriginCopy = nullptr; 3790 Value *VAArgOverflowSize = nullptr; 3791 3792 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3793 3794 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3795 3796 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3797 MemorySanitizerVisitor &MSV) 3798 : F(F), MS(MS), MSV(MSV) { 3799 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3800 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3801 if (Attr.isStringAttribute() && 3802 (Attr.getKindAsString() == "target-features")) { 3803 if (Attr.getValueAsString().contains("-sse")) 3804 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3805 break; 3806 } 3807 } 3808 } 3809 3810 ArgKind classifyArgument(Value* arg) { 3811 // A very rough approximation of X86_64 argument classification rules. 3812 Type *T = arg->getType(); 3813 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3814 return AK_FloatingPoint; 3815 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3816 return AK_GeneralPurpose; 3817 if (T->isPointerTy()) 3818 return AK_GeneralPurpose; 3819 return AK_Memory; 3820 } 3821 3822 // For VarArg functions, store the argument shadow in an ABI-specific format 3823 // that corresponds to va_list layout. 3824 // We do this because Clang lowers va_arg in the frontend, and this pass 3825 // only sees the low level code that deals with va_list internals. 3826 // A much easier alternative (provided that Clang emits va_arg instructions) 3827 // would have been to associate each live instance of va_list with a copy of 3828 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3829 // order. 3830 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3831 unsigned GpOffset = 0; 3832 unsigned FpOffset = AMD64GpEndOffset; 3833 unsigned OverflowOffset = AMD64FpEndOffset; 3834 const DataLayout &DL = F.getParent()->getDataLayout(); 3835 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3836 ArgIt != End; ++ArgIt) { 3837 Value *A = *ArgIt; 3838 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3839 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3840 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3841 if (IsByVal) { 3842 // ByVal arguments always go to the overflow area. 3843 // Fixed arguments passed through the overflow area will be stepped 3844 // over by va_start, so don't count them towards the offset. 3845 if (IsFixed) 3846 continue; 3847 assert(A->getType()->isPointerTy()); 3848 Type *RealTy = A->getType()->getPointerElementType(); 3849 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3850 Value *ShadowBase = getShadowPtrForVAArgument( 3851 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3852 Value *OriginBase = nullptr; 3853 if (MS.TrackOrigins) 3854 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3855 OverflowOffset += alignTo(ArgSize, 8); 3856 if (!ShadowBase) 3857 continue; 3858 Value *ShadowPtr, *OriginPtr; 3859 std::tie(ShadowPtr, OriginPtr) = 3860 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3861 /*isStore*/ false); 3862 3863 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3864 kShadowTLSAlignment, ArgSize); 3865 if (MS.TrackOrigins) 3866 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3867 kShadowTLSAlignment, ArgSize); 3868 } else { 3869 ArgKind AK = classifyArgument(A); 3870 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3871 AK = AK_Memory; 3872 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3873 AK = AK_Memory; 3874 Value *ShadowBase, *OriginBase = nullptr; 3875 switch (AK) { 3876 case AK_GeneralPurpose: 3877 ShadowBase = 3878 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3879 if (MS.TrackOrigins) 3880 OriginBase = 3881 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3882 GpOffset += 8; 3883 break; 3884 case AK_FloatingPoint: 3885 ShadowBase = 3886 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3887 if (MS.TrackOrigins) 3888 OriginBase = 3889 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3890 FpOffset += 16; 3891 break; 3892 case AK_Memory: 3893 if (IsFixed) 3894 continue; 3895 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3896 ShadowBase = 3897 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3898 if (MS.TrackOrigins) 3899 OriginBase = 3900 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3901 OverflowOffset += alignTo(ArgSize, 8); 3902 } 3903 // Take fixed arguments into account for GpOffset and FpOffset, 3904 // but don't actually store shadows for them. 3905 // TODO(glider): don't call get*PtrForVAArgument() for them. 3906 if (IsFixed) 3907 continue; 3908 if (!ShadowBase) 3909 continue; 3910 Value *Shadow = MSV.getShadow(A); 3911 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3912 if (MS.TrackOrigins) { 3913 Value *Origin = MSV.getOrigin(A); 3914 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3915 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3916 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3917 } 3918 } 3919 } 3920 Constant *OverflowSize = 3921 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3922 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3923 } 3924 3925 /// Compute the shadow address for a given va_arg. 3926 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3927 unsigned ArgOffset, unsigned ArgSize) { 3928 // Make sure we don't overflow __msan_va_arg_tls. 3929 if (ArgOffset + ArgSize > kParamTLSSize) 3930 return nullptr; 3931 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3932 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3933 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3934 "_msarg_va_s"); 3935 } 3936 3937 /// Compute the origin address for a given va_arg. 3938 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3939 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3940 // getOriginPtrForVAArgument() is always called after 3941 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3942 // overflow. 3943 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3944 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3945 "_msarg_va_o"); 3946 } 3947 3948 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3949 IRBuilder<> IRB(&I); 3950 Value *VAListTag = I.getArgOperand(0); 3951 Value *ShadowPtr, *OriginPtr; 3952 const Align Alignment = Align(8); 3953 std::tie(ShadowPtr, OriginPtr) = 3954 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3955 /*isStore*/ true); 3956 3957 // Unpoison the whole __va_list_tag. 3958 // FIXME: magic ABI constants. 3959 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3960 /* size */ 24, Alignment, false); 3961 // We shouldn't need to zero out the origins, as they're only checked for 3962 // nonzero shadow. 3963 } 3964 3965 void visitVAStartInst(VAStartInst &I) override { 3966 if (F.getCallingConv() == CallingConv::Win64) 3967 return; 3968 VAStartInstrumentationList.push_back(&I); 3969 unpoisonVAListTagForInst(I); 3970 } 3971 3972 void visitVACopyInst(VACopyInst &I) override { 3973 if (F.getCallingConv() == CallingConv::Win64) return; 3974 unpoisonVAListTagForInst(I); 3975 } 3976 3977 void finalizeInstrumentation() override { 3978 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3979 "finalizeInstrumentation called twice"); 3980 if (!VAStartInstrumentationList.empty()) { 3981 // If there is a va_start in this function, make a backup copy of 3982 // va_arg_tls somewhere in the function entry block. 3983 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3984 VAArgOverflowSize = 3985 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 3986 Value *CopySize = 3987 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3988 VAArgOverflowSize); 3989 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3990 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 3991 if (MS.TrackOrigins) { 3992 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3993 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 3994 Align(8), CopySize); 3995 } 3996 } 3997 3998 // Instrument va_start. 3999 // Copy va_list shadow from the backup copy of the TLS contents. 4000 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4001 CallInst *OrigInst = VAStartInstrumentationList[i]; 4002 IRBuilder<> IRB(OrigInst->getNextNode()); 4003 Value *VAListTag = OrigInst->getArgOperand(0); 4004 4005 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4006 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4007 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4008 ConstantInt::get(MS.IntptrTy, 16)), 4009 PointerType::get(RegSaveAreaPtrTy, 0)); 4010 Value *RegSaveAreaPtr = 4011 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4012 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4013 const Align Alignment = Align(16); 4014 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4015 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4016 Alignment, /*isStore*/ true); 4017 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4018 AMD64FpEndOffset); 4019 if (MS.TrackOrigins) 4020 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4021 Alignment, AMD64FpEndOffset); 4022 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4023 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4024 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4025 ConstantInt::get(MS.IntptrTy, 8)), 4026 PointerType::get(OverflowArgAreaPtrTy, 0)); 4027 Value *OverflowArgAreaPtr = 4028 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4029 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4030 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4031 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4032 Alignment, /*isStore*/ true); 4033 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4034 AMD64FpEndOffset); 4035 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4036 VAArgOverflowSize); 4037 if (MS.TrackOrigins) { 4038 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4039 AMD64FpEndOffset); 4040 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4041 VAArgOverflowSize); 4042 } 4043 } 4044 } 4045 }; 4046 4047 /// MIPS64-specific implementation of VarArgHelper. 4048 struct VarArgMIPS64Helper : public VarArgHelper { 4049 Function &F; 4050 MemorySanitizer &MS; 4051 MemorySanitizerVisitor &MSV; 4052 Value *VAArgTLSCopy = nullptr; 4053 Value *VAArgSize = nullptr; 4054 4055 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4056 4057 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4058 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4059 4060 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4061 unsigned VAArgOffset = 0; 4062 const DataLayout &DL = F.getParent()->getDataLayout(); 4063 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 4064 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 4065 ArgIt != End; ++ArgIt) { 4066 Triple TargetTriple(F.getParent()->getTargetTriple()); 4067 Value *A = *ArgIt; 4068 Value *Base; 4069 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4070 if (TargetTriple.getArch() == Triple::mips64) { 4071 // Adjusting the shadow for argument with size < 8 to match the placement 4072 // of bits in big endian system 4073 if (ArgSize < 8) 4074 VAArgOffset += (8 - ArgSize); 4075 } 4076 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4077 VAArgOffset += ArgSize; 4078 VAArgOffset = alignTo(VAArgOffset, 8); 4079 if (!Base) 4080 continue; 4081 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4082 } 4083 4084 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4085 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4086 // a new class member i.e. it is the total size of all VarArgs. 4087 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4088 } 4089 4090 /// Compute the shadow address for a given va_arg. 4091 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4092 unsigned ArgOffset, unsigned ArgSize) { 4093 // Make sure we don't overflow __msan_va_arg_tls. 4094 if (ArgOffset + ArgSize > kParamTLSSize) 4095 return nullptr; 4096 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4097 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4098 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4099 "_msarg"); 4100 } 4101 4102 void visitVAStartInst(VAStartInst &I) override { 4103 IRBuilder<> IRB(&I); 4104 VAStartInstrumentationList.push_back(&I); 4105 Value *VAListTag = I.getArgOperand(0); 4106 Value *ShadowPtr, *OriginPtr; 4107 const Align Alignment = Align(8); 4108 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4109 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4110 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4111 /* size */ 8, Alignment, false); 4112 } 4113 4114 void visitVACopyInst(VACopyInst &I) override { 4115 IRBuilder<> IRB(&I); 4116 VAStartInstrumentationList.push_back(&I); 4117 Value *VAListTag = I.getArgOperand(0); 4118 Value *ShadowPtr, *OriginPtr; 4119 const Align Alignment = Align(8); 4120 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4121 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4122 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4123 /* size */ 8, Alignment, false); 4124 } 4125 4126 void finalizeInstrumentation() override { 4127 assert(!VAArgSize && !VAArgTLSCopy && 4128 "finalizeInstrumentation called twice"); 4129 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4130 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4131 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4132 VAArgSize); 4133 4134 if (!VAStartInstrumentationList.empty()) { 4135 // If there is a va_start in this function, make a backup copy of 4136 // va_arg_tls somewhere in the function entry block. 4137 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4138 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4139 } 4140 4141 // Instrument va_start. 4142 // Copy va_list shadow from the backup copy of the TLS contents. 4143 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4144 CallInst *OrigInst = VAStartInstrumentationList[i]; 4145 IRBuilder<> IRB(OrigInst->getNextNode()); 4146 Value *VAListTag = OrigInst->getArgOperand(0); 4147 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4148 Value *RegSaveAreaPtrPtr = 4149 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4150 PointerType::get(RegSaveAreaPtrTy, 0)); 4151 Value *RegSaveAreaPtr = 4152 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4153 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4154 const Align Alignment = Align(8); 4155 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4156 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4157 Alignment, /*isStore*/ true); 4158 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4159 CopySize); 4160 } 4161 } 4162 }; 4163 4164 /// AArch64-specific implementation of VarArgHelper. 4165 struct VarArgAArch64Helper : public VarArgHelper { 4166 static const unsigned kAArch64GrArgSize = 64; 4167 static const unsigned kAArch64VrArgSize = 128; 4168 4169 static const unsigned AArch64GrBegOffset = 0; 4170 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4171 // Make VR space aligned to 16 bytes. 4172 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4173 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4174 + kAArch64VrArgSize; 4175 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4176 4177 Function &F; 4178 MemorySanitizer &MS; 4179 MemorySanitizerVisitor &MSV; 4180 Value *VAArgTLSCopy = nullptr; 4181 Value *VAArgOverflowSize = nullptr; 4182 4183 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4184 4185 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4186 4187 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4188 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4189 4190 ArgKind classifyArgument(Value* arg) { 4191 Type *T = arg->getType(); 4192 if (T->isFPOrFPVectorTy()) 4193 return AK_FloatingPoint; 4194 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4195 || (T->isPointerTy())) 4196 return AK_GeneralPurpose; 4197 return AK_Memory; 4198 } 4199 4200 // The instrumentation stores the argument shadow in a non ABI-specific 4201 // format because it does not know which argument is named (since Clang, 4202 // like x86_64 case, lowers the va_args in the frontend and this pass only 4203 // sees the low level code that deals with va_list internals). 4204 // The first seven GR registers are saved in the first 56 bytes of the 4205 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4206 // the remaining arguments. 4207 // Using constant offset within the va_arg TLS array allows fast copy 4208 // in the finalize instrumentation. 4209 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4210 unsigned GrOffset = AArch64GrBegOffset; 4211 unsigned VrOffset = AArch64VrBegOffset; 4212 unsigned OverflowOffset = AArch64VAEndOffset; 4213 4214 const DataLayout &DL = F.getParent()->getDataLayout(); 4215 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4216 ArgIt != End; ++ArgIt) { 4217 Value *A = *ArgIt; 4218 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4219 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4220 ArgKind AK = classifyArgument(A); 4221 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4222 AK = AK_Memory; 4223 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4224 AK = AK_Memory; 4225 Value *Base; 4226 switch (AK) { 4227 case AK_GeneralPurpose: 4228 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4229 GrOffset += 8; 4230 break; 4231 case AK_FloatingPoint: 4232 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4233 VrOffset += 16; 4234 break; 4235 case AK_Memory: 4236 // Don't count fixed arguments in the overflow area - va_start will 4237 // skip right over them. 4238 if (IsFixed) 4239 continue; 4240 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4241 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4242 alignTo(ArgSize, 8)); 4243 OverflowOffset += alignTo(ArgSize, 8); 4244 break; 4245 } 4246 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4247 // bother to actually store a shadow. 4248 if (IsFixed) 4249 continue; 4250 if (!Base) 4251 continue; 4252 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4253 } 4254 Constant *OverflowSize = 4255 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4256 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4257 } 4258 4259 /// Compute the shadow address for a given va_arg. 4260 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4261 unsigned ArgOffset, unsigned ArgSize) { 4262 // Make sure we don't overflow __msan_va_arg_tls. 4263 if (ArgOffset + ArgSize > kParamTLSSize) 4264 return nullptr; 4265 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4266 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4267 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4268 "_msarg"); 4269 } 4270 4271 void visitVAStartInst(VAStartInst &I) override { 4272 IRBuilder<> IRB(&I); 4273 VAStartInstrumentationList.push_back(&I); 4274 Value *VAListTag = I.getArgOperand(0); 4275 Value *ShadowPtr, *OriginPtr; 4276 const Align Alignment = Align(8); 4277 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4278 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4279 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4280 /* size */ 32, Alignment, false); 4281 } 4282 4283 void visitVACopyInst(VACopyInst &I) override { 4284 IRBuilder<> IRB(&I); 4285 VAStartInstrumentationList.push_back(&I); 4286 Value *VAListTag = I.getArgOperand(0); 4287 Value *ShadowPtr, *OriginPtr; 4288 const Align Alignment = Align(8); 4289 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4290 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4291 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4292 /* size */ 32, Alignment, false); 4293 } 4294 4295 // Retrieve a va_list field of 'void*' size. 4296 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4297 Value *SaveAreaPtrPtr = 4298 IRB.CreateIntToPtr( 4299 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4300 ConstantInt::get(MS.IntptrTy, offset)), 4301 Type::getInt64PtrTy(*MS.C)); 4302 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4303 } 4304 4305 // Retrieve a va_list field of 'int' size. 4306 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4307 Value *SaveAreaPtr = 4308 IRB.CreateIntToPtr( 4309 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4310 ConstantInt::get(MS.IntptrTy, offset)), 4311 Type::getInt32PtrTy(*MS.C)); 4312 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4313 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4314 } 4315 4316 void finalizeInstrumentation() override { 4317 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4318 "finalizeInstrumentation called twice"); 4319 if (!VAStartInstrumentationList.empty()) { 4320 // If there is a va_start in this function, make a backup copy of 4321 // va_arg_tls somewhere in the function entry block. 4322 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4323 VAArgOverflowSize = 4324 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4325 Value *CopySize = 4326 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4327 VAArgOverflowSize); 4328 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4329 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4330 } 4331 4332 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4333 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4334 4335 // Instrument va_start, copy va_list shadow from the backup copy of 4336 // the TLS contents. 4337 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4338 CallInst *OrigInst = VAStartInstrumentationList[i]; 4339 IRBuilder<> IRB(OrigInst->getNextNode()); 4340 4341 Value *VAListTag = OrigInst->getArgOperand(0); 4342 4343 // The variadic ABI for AArch64 creates two areas to save the incoming 4344 // argument registers (one for 64-bit general register xn-x7 and another 4345 // for 128-bit FP/SIMD vn-v7). 4346 // We need then to propagate the shadow arguments on both regions 4347 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4348 // The remaining arguments are saved on shadow for 'va::stack'. 4349 // One caveat is it requires only to propagate the non-named arguments, 4350 // however on the call site instrumentation 'all' the arguments are 4351 // saved. So to copy the shadow values from the va_arg TLS array 4352 // we need to adjust the offset for both GR and VR fields based on 4353 // the __{gr,vr}_offs value (since they are stores based on incoming 4354 // named arguments). 4355 4356 // Read the stack pointer from the va_list. 4357 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4358 4359 // Read both the __gr_top and __gr_off and add them up. 4360 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4361 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4362 4363 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4364 4365 // Read both the __vr_top and __vr_off and add them up. 4366 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4367 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4368 4369 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4370 4371 // It does not know how many named arguments is being used and, on the 4372 // callsite all the arguments were saved. Since __gr_off is defined as 4373 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4374 // argument by ignoring the bytes of shadow from named arguments. 4375 Value *GrRegSaveAreaShadowPtrOff = 4376 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4377 4378 Value *GrRegSaveAreaShadowPtr = 4379 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4380 Align(8), /*isStore*/ true) 4381 .first; 4382 4383 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4384 GrRegSaveAreaShadowPtrOff); 4385 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4386 4387 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4388 GrCopySize); 4389 4390 // Again, but for FP/SIMD values. 4391 Value *VrRegSaveAreaShadowPtrOff = 4392 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4393 4394 Value *VrRegSaveAreaShadowPtr = 4395 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4396 Align(8), /*isStore*/ true) 4397 .first; 4398 4399 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4400 IRB.getInt8Ty(), 4401 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4402 IRB.getInt32(AArch64VrBegOffset)), 4403 VrRegSaveAreaShadowPtrOff); 4404 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4405 4406 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4407 VrCopySize); 4408 4409 // And finally for remaining arguments. 4410 Value *StackSaveAreaShadowPtr = 4411 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4412 Align(16), /*isStore*/ true) 4413 .first; 4414 4415 Value *StackSrcPtr = 4416 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4417 IRB.getInt32(AArch64VAEndOffset)); 4418 4419 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4420 Align(16), VAArgOverflowSize); 4421 } 4422 } 4423 }; 4424 4425 /// PowerPC64-specific implementation of VarArgHelper. 4426 struct VarArgPowerPC64Helper : public VarArgHelper { 4427 Function &F; 4428 MemorySanitizer &MS; 4429 MemorySanitizerVisitor &MSV; 4430 Value *VAArgTLSCopy = nullptr; 4431 Value *VAArgSize = nullptr; 4432 4433 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4434 4435 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4436 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4437 4438 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4439 // For PowerPC, we need to deal with alignment of stack arguments - 4440 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4441 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4442 // and QPX vectors are aligned to 32 bytes. For that reason, we 4443 // compute current offset from stack pointer (which is always properly 4444 // aligned), and offset for the first vararg, then subtract them. 4445 unsigned VAArgBase; 4446 Triple TargetTriple(F.getParent()->getTargetTriple()); 4447 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4448 // and 32 bytes for ABIv2. This is usually determined by target 4449 // endianness, but in theory could be overridden by function attribute. 4450 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4451 if (TargetTriple.getArch() == Triple::ppc64) 4452 VAArgBase = 48; 4453 else 4454 VAArgBase = 32; 4455 unsigned VAArgOffset = VAArgBase; 4456 const DataLayout &DL = F.getParent()->getDataLayout(); 4457 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4458 ArgIt != End; ++ArgIt) { 4459 Value *A = *ArgIt; 4460 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4461 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4462 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4463 if (IsByVal) { 4464 assert(A->getType()->isPointerTy()); 4465 Type *RealTy = A->getType()->getPointerElementType(); 4466 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4467 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4468 if (ArgAlign < 8) 4469 ArgAlign = 8; 4470 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4471 if (!IsFixed) { 4472 Value *Base = getShadowPtrForVAArgument( 4473 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4474 if (Base) { 4475 Value *AShadowPtr, *AOriginPtr; 4476 std::tie(AShadowPtr, AOriginPtr) = 4477 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4478 kShadowTLSAlignment, /*isStore*/ false); 4479 4480 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4481 kShadowTLSAlignment, ArgSize); 4482 } 4483 } 4484 VAArgOffset += alignTo(ArgSize, 8); 4485 } else { 4486 Value *Base; 4487 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4488 uint64_t ArgAlign = 8; 4489 if (A->getType()->isArrayTy()) { 4490 // Arrays are aligned to element size, except for long double 4491 // arrays, which are aligned to 8 bytes. 4492 Type *ElementTy = A->getType()->getArrayElementType(); 4493 if (!ElementTy->isPPC_FP128Ty()) 4494 ArgAlign = DL.getTypeAllocSize(ElementTy); 4495 } else if (A->getType()->isVectorTy()) { 4496 // Vectors are naturally aligned. 4497 ArgAlign = DL.getTypeAllocSize(A->getType()); 4498 } 4499 if (ArgAlign < 8) 4500 ArgAlign = 8; 4501 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4502 if (DL.isBigEndian()) { 4503 // Adjusting the shadow for argument with size < 8 to match the placement 4504 // of bits in big endian system 4505 if (ArgSize < 8) 4506 VAArgOffset += (8 - ArgSize); 4507 } 4508 if (!IsFixed) { 4509 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4510 VAArgOffset - VAArgBase, ArgSize); 4511 if (Base) 4512 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4513 } 4514 VAArgOffset += ArgSize; 4515 VAArgOffset = alignTo(VAArgOffset, 8); 4516 } 4517 if (IsFixed) 4518 VAArgBase = VAArgOffset; 4519 } 4520 4521 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4522 VAArgOffset - VAArgBase); 4523 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4524 // a new class member i.e. it is the total size of all VarArgs. 4525 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4526 } 4527 4528 /// Compute the shadow address for a given va_arg. 4529 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4530 unsigned ArgOffset, unsigned ArgSize) { 4531 // Make sure we don't overflow __msan_va_arg_tls. 4532 if (ArgOffset + ArgSize > kParamTLSSize) 4533 return nullptr; 4534 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4535 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4536 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4537 "_msarg"); 4538 } 4539 4540 void visitVAStartInst(VAStartInst &I) override { 4541 IRBuilder<> IRB(&I); 4542 VAStartInstrumentationList.push_back(&I); 4543 Value *VAListTag = I.getArgOperand(0); 4544 Value *ShadowPtr, *OriginPtr; 4545 const Align Alignment = Align(8); 4546 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4547 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4548 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4549 /* size */ 8, Alignment, false); 4550 } 4551 4552 void visitVACopyInst(VACopyInst &I) override { 4553 IRBuilder<> IRB(&I); 4554 Value *VAListTag = I.getArgOperand(0); 4555 Value *ShadowPtr, *OriginPtr; 4556 const Align Alignment = Align(8); 4557 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4558 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4559 // Unpoison the whole __va_list_tag. 4560 // FIXME: magic ABI constants. 4561 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4562 /* size */ 8, Alignment, false); 4563 } 4564 4565 void finalizeInstrumentation() override { 4566 assert(!VAArgSize && !VAArgTLSCopy && 4567 "finalizeInstrumentation called twice"); 4568 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4569 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4570 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4571 VAArgSize); 4572 4573 if (!VAStartInstrumentationList.empty()) { 4574 // If there is a va_start in this function, make a backup copy of 4575 // va_arg_tls somewhere in the function entry block. 4576 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4577 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4578 } 4579 4580 // Instrument va_start. 4581 // Copy va_list shadow from the backup copy of the TLS contents. 4582 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4583 CallInst *OrigInst = VAStartInstrumentationList[i]; 4584 IRBuilder<> IRB(OrigInst->getNextNode()); 4585 Value *VAListTag = OrigInst->getArgOperand(0); 4586 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4587 Value *RegSaveAreaPtrPtr = 4588 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4589 PointerType::get(RegSaveAreaPtrTy, 0)); 4590 Value *RegSaveAreaPtr = 4591 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4592 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4593 const Align Alignment = Align(8); 4594 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4595 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4596 Alignment, /*isStore*/ true); 4597 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4598 CopySize); 4599 } 4600 } 4601 }; 4602 4603 /// A no-op implementation of VarArgHelper. 4604 struct VarArgNoOpHelper : public VarArgHelper { 4605 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4606 MemorySanitizerVisitor &MSV) {} 4607 4608 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4609 4610 void visitVAStartInst(VAStartInst &I) override {} 4611 4612 void visitVACopyInst(VACopyInst &I) override {} 4613 4614 void finalizeInstrumentation() override {} 4615 }; 4616 4617 } // end anonymous namespace 4618 4619 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4620 MemorySanitizerVisitor &Visitor) { 4621 // VarArg handling is only implemented on AMD64. False positives are possible 4622 // on other platforms. 4623 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4624 if (TargetTriple.getArch() == Triple::x86_64) 4625 return new VarArgAMD64Helper(Func, Msan, Visitor); 4626 else if (TargetTriple.isMIPS64()) 4627 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4628 else if (TargetTriple.getArch() == Triple::aarch64) 4629 return new VarArgAArch64Helper(Func, Msan, Visitor); 4630 else if (TargetTriple.getArch() == Triple::ppc64 || 4631 TargetTriple.getArch() == Triple::ppc64le) 4632 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4633 else 4634 return new VarArgNoOpHelper(Func, Msan, Visitor); 4635 } 4636 4637 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4638 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4639 return false; 4640 4641 MemorySanitizerVisitor Visitor(F, *this, TLI); 4642 4643 // Clear out readonly/readnone attributes. 4644 AttrBuilder B; 4645 B.addAttribute(Attribute::ReadOnly) 4646 .addAttribute(Attribute::ReadNone) 4647 .addAttribute(Attribute::WriteOnly) 4648 .addAttribute(Attribute::ArgMemOnly) 4649 .addAttribute(Attribute::Speculatable); 4650 F.removeAttributes(AttributeList::FunctionIndex, B); 4651 4652 return Visitor.runOnFunction(); 4653 } 4654