1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 static cl::opt<bool> 311 ClDisableChecks("msan-disable-checks", 312 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 313 cl::init(false)); 314 315 // This is an experiment to enable handling of cases where shadow is a non-zero 316 // compile-time constant. For some unexplainable reason they were silently 317 // ignored in the instrumentation. 318 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 319 cl::desc("Insert checks for constant shadow values"), 320 cl::Hidden, cl::init(false)); 321 322 // This is off by default because of a bug in gold: 323 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 324 static cl::opt<bool> ClWithComdat("msan-with-comdat", 325 cl::desc("Place MSan constructors in comdat sections"), 326 cl::Hidden, cl::init(false)); 327 328 // These options allow to specify custom memory map parameters 329 // See MemoryMapParams for details. 330 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 331 cl::desc("Define custom MSan AndMask"), 332 cl::Hidden, cl::init(0)); 333 334 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 335 cl::desc("Define custom MSan XorMask"), 336 cl::Hidden, cl::init(0)); 337 338 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 339 cl::desc("Define custom MSan ShadowBase"), 340 cl::Hidden, cl::init(0)); 341 342 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 343 cl::desc("Define custom MSan OriginBase"), 344 cl::Hidden, cl::init(0)); 345 346 const char kMsanModuleCtorName[] = "msan.module_ctor"; 347 const char kMsanInitName[] = "__msan_init"; 348 349 namespace { 350 351 // Memory map parameters used in application-to-shadow address calculation. 352 // Offset = (Addr & ~AndMask) ^ XorMask 353 // Shadow = ShadowBase + Offset 354 // Origin = OriginBase + Offset 355 struct MemoryMapParams { 356 uint64_t AndMask; 357 uint64_t XorMask; 358 uint64_t ShadowBase; 359 uint64_t OriginBase; 360 }; 361 362 struct PlatformMemoryMapParams { 363 const MemoryMapParams *bits32; 364 const MemoryMapParams *bits64; 365 }; 366 367 } // end anonymous namespace 368 369 // i386 Linux 370 static const MemoryMapParams Linux_I386_MemoryMapParams = { 371 0x000080000000, // AndMask 372 0, // XorMask (not used) 373 0, // ShadowBase (not used) 374 0x000040000000, // OriginBase 375 }; 376 377 // x86_64 Linux 378 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 379 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 380 0x400000000000, // AndMask 381 0, // XorMask (not used) 382 0, // ShadowBase (not used) 383 0x200000000000, // OriginBase 384 #else 385 0, // AndMask (not used) 386 0x500000000000, // XorMask 387 0, // ShadowBase (not used) 388 0x100000000000, // OriginBase 389 #endif 390 }; 391 392 // mips64 Linux 393 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 394 0, // AndMask (not used) 395 0x008000000000, // XorMask 396 0, // ShadowBase (not used) 397 0x002000000000, // OriginBase 398 }; 399 400 // ppc64 Linux 401 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 402 0xE00000000000, // AndMask 403 0x100000000000, // XorMask 404 0x080000000000, // ShadowBase 405 0x1C0000000000, // OriginBase 406 }; 407 408 // s390x Linux 409 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 410 0xC00000000000, // AndMask 411 0, // XorMask (not used) 412 0x080000000000, // ShadowBase 413 0x1C0000000000, // OriginBase 414 }; 415 416 // aarch64 Linux 417 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 418 0, // AndMask (not used) 419 0x06000000000, // XorMask 420 0, // ShadowBase (not used) 421 0x01000000000, // OriginBase 422 }; 423 424 // i386 FreeBSD 425 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 426 0x000180000000, // AndMask 427 0x000040000000, // XorMask 428 0x000020000000, // ShadowBase 429 0x000700000000, // OriginBase 430 }; 431 432 // x86_64 FreeBSD 433 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 434 0xc00000000000, // AndMask 435 0x200000000000, // XorMask 436 0x100000000000, // ShadowBase 437 0x380000000000, // OriginBase 438 }; 439 440 // x86_64 NetBSD 441 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 442 0, // AndMask 443 0x500000000000, // XorMask 444 0, // ShadowBase 445 0x100000000000, // OriginBase 446 }; 447 448 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 449 &Linux_I386_MemoryMapParams, 450 &Linux_X86_64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 454 nullptr, 455 &Linux_MIPS64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 459 nullptr, 460 &Linux_PowerPC64_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 464 nullptr, 465 &Linux_S390X_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 469 nullptr, 470 &Linux_AArch64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 474 &FreeBSD_I386_MemoryMapParams, 475 &FreeBSD_X86_64_MemoryMapParams, 476 }; 477 478 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 479 nullptr, 480 &NetBSD_X86_64_MemoryMapParams, 481 }; 482 483 namespace { 484 485 /// Instrument functions of a module to detect uninitialized reads. 486 /// 487 /// Instantiating MemorySanitizer inserts the msan runtime library API function 488 /// declarations into the module if they don't exist already. Instantiating 489 /// ensures the __msan_init function is in the list of global constructors for 490 /// the module. 491 class MemorySanitizer { 492 public: 493 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 494 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 495 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 496 initializeModule(M); 497 } 498 499 // MSan cannot be moved or copied because of MapParams. 500 MemorySanitizer(MemorySanitizer &&) = delete; 501 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 502 MemorySanitizer(const MemorySanitizer &) = delete; 503 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 504 505 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 506 507 private: 508 friend struct MemorySanitizerVisitor; 509 friend struct VarArgAMD64Helper; 510 friend struct VarArgMIPS64Helper; 511 friend struct VarArgAArch64Helper; 512 friend struct VarArgPowerPC64Helper; 513 friend struct VarArgSystemZHelper; 514 515 void initializeModule(Module &M); 516 void initializeCallbacks(Module &M); 517 void createKernelApi(Module &M); 518 void createUserspaceApi(Module &M); 519 520 /// True if we're compiling the Linux kernel. 521 bool CompileKernel; 522 /// Track origins (allocation points) of uninitialized values. 523 int TrackOrigins; 524 bool Recover; 525 bool EagerChecks; 526 527 LLVMContext *C; 528 Type *IntptrTy; 529 Type *OriginTy; 530 531 // XxxTLS variables represent the per-thread state in MSan and per-task state 532 // in KMSAN. 533 // For the userspace these point to thread-local globals. In the kernel land 534 // they point to the members of a per-task struct obtained via a call to 535 // __msan_get_context_state(). 536 537 /// Thread-local shadow storage for function parameters. 538 Value *ParamTLS; 539 540 /// Thread-local origin storage for function parameters. 541 Value *ParamOriginTLS; 542 543 /// Thread-local shadow storage for function return value. 544 Value *RetvalTLS; 545 546 /// Thread-local origin storage for function return value. 547 Value *RetvalOriginTLS; 548 549 /// Thread-local shadow storage for in-register va_arg function 550 /// parameters (x86_64-specific). 551 Value *VAArgTLS; 552 553 /// Thread-local shadow storage for in-register va_arg function 554 /// parameters (x86_64-specific). 555 Value *VAArgOriginTLS; 556 557 /// Thread-local shadow storage for va_arg overflow area 558 /// (x86_64-specific). 559 Value *VAArgOverflowSizeTLS; 560 561 /// Are the instrumentation callbacks set up? 562 bool CallbacksInitialized = false; 563 564 /// The run-time callback to print a warning. 565 FunctionCallee WarningFn; 566 567 // These arrays are indexed by log2(AccessSize). 568 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 569 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 570 571 /// Run-time helper that generates a new origin value for a stack 572 /// allocation. 573 FunctionCallee MsanSetAllocaOrigin4Fn; 574 575 /// Run-time helper that poisons stack on function entry. 576 FunctionCallee MsanPoisonStackFn; 577 578 /// Run-time helper that records a store (or any event) of an 579 /// uninitialized value and returns an updated origin id encoding this info. 580 FunctionCallee MsanChainOriginFn; 581 582 /// Run-time helper that paints an origin over a region. 583 FunctionCallee MsanSetOriginFn; 584 585 /// MSan runtime replacements for memmove, memcpy and memset. 586 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 587 588 /// KMSAN callback for task-local function argument shadow. 589 StructType *MsanContextStateTy; 590 FunctionCallee MsanGetContextStateFn; 591 592 /// Functions for poisoning/unpoisoning local variables 593 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 594 595 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 596 /// pointers. 597 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 598 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 599 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 600 FunctionCallee MsanInstrumentAsmStoreFn; 601 602 /// Helper to choose between different MsanMetadataPtrXxx(). 603 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 604 605 /// Memory map parameters used in application-to-shadow calculation. 606 const MemoryMapParams *MapParams; 607 608 /// Custom memory map parameters used when -msan-shadow-base or 609 // -msan-origin-base is provided. 610 MemoryMapParams CustomMapParams; 611 612 MDNode *ColdCallWeights; 613 614 /// Branch weights for origin store. 615 MDNode *OriginStoreWeights; 616 }; 617 618 void insertModuleCtor(Module &M) { 619 getOrCreateSanitizerCtorAndInitFunctions( 620 M, kMsanModuleCtorName, kMsanInitName, 621 /*InitArgTypes=*/{}, 622 /*InitArgs=*/{}, 623 // This callback is invoked when the functions are created the first 624 // time. Hook them into the global ctors list in that case: 625 [&](Function *Ctor, FunctionCallee) { 626 if (!ClWithComdat) { 627 appendToGlobalCtors(M, Ctor, 0); 628 return; 629 } 630 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 631 Ctor->setComdat(MsanCtorComdat); 632 appendToGlobalCtors(M, Ctor, 0, Ctor); 633 }); 634 } 635 636 /// A legacy function pass for msan instrumentation. 637 /// 638 /// Instruments functions to detect uninitialized reads. 639 struct MemorySanitizerLegacyPass : public FunctionPass { 640 // Pass identification, replacement for typeid. 641 static char ID; 642 643 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 644 : FunctionPass(ID), Options(Options) { 645 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 646 } 647 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 648 649 void getAnalysisUsage(AnalysisUsage &AU) const override { 650 AU.addRequired<TargetLibraryInfoWrapperPass>(); 651 } 652 653 bool runOnFunction(Function &F) override { 654 return MSan->sanitizeFunction( 655 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 656 } 657 bool doInitialization(Module &M) override; 658 659 Optional<MemorySanitizer> MSan; 660 MemorySanitizerOptions Options; 661 }; 662 663 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 664 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 665 } 666 667 } // end anonymous namespace 668 669 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 670 bool EagerChecks) 671 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 672 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 673 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 674 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 675 676 PreservedAnalyses MemorySanitizerPass::run(Function &F, 677 FunctionAnalysisManager &FAM) { 678 MemorySanitizer Msan(*F.getParent(), Options); 679 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 680 return PreservedAnalyses::none(); 681 return PreservedAnalyses::all(); 682 } 683 684 PreservedAnalyses 685 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 686 if (Options.Kernel) 687 return PreservedAnalyses::all(); 688 insertModuleCtor(M); 689 return PreservedAnalyses::none(); 690 } 691 692 void MemorySanitizerPass::printPipeline( 693 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 694 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 695 OS, MapClassName2PassName); 696 OS << "<"; 697 if (Options.Recover) 698 OS << "recover;"; 699 if (Options.Kernel) 700 OS << "kernel;"; 701 if (Options.EagerChecks) 702 OS << "eager-checks;"; 703 OS << "track-origins=" << Options.TrackOrigins; 704 OS << ">"; 705 } 706 707 char MemorySanitizerLegacyPass::ID = 0; 708 709 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 710 "MemorySanitizer: detects uninitialized reads.", false, 711 false) 712 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 713 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 714 "MemorySanitizer: detects uninitialized reads.", false, 715 false) 716 717 FunctionPass * 718 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 719 return new MemorySanitizerLegacyPass(Options); 720 } 721 722 /// Create a non-const global initialized with the given string. 723 /// 724 /// Creates a writable global for Str so that we can pass it to the 725 /// run-time lib. Runtime uses first 4 bytes of the string to store the 726 /// frame ID, so the string needs to be mutable. 727 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 728 StringRef Str) { 729 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 730 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 731 GlobalValue::PrivateLinkage, StrConst, ""); 732 } 733 734 /// Create KMSAN API callbacks. 735 void MemorySanitizer::createKernelApi(Module &M) { 736 IRBuilder<> IRB(*C); 737 738 // These will be initialized in insertKmsanPrologue(). 739 RetvalTLS = nullptr; 740 RetvalOriginTLS = nullptr; 741 ParamTLS = nullptr; 742 ParamOriginTLS = nullptr; 743 VAArgTLS = nullptr; 744 VAArgOriginTLS = nullptr; 745 VAArgOverflowSizeTLS = nullptr; 746 747 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 748 IRB.getInt32Ty()); 749 // Requests the per-task context state (kmsan_context_state*) from the 750 // runtime library. 751 MsanContextStateTy = StructType::get( 752 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 753 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 754 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 755 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 756 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 757 OriginTy); 758 MsanGetContextStateFn = M.getOrInsertFunction( 759 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 760 761 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 762 PointerType::get(IRB.getInt32Ty(), 0)); 763 764 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 765 std::string name_load = 766 "__msan_metadata_ptr_for_load_" + std::to_string(size); 767 std::string name_store = 768 "__msan_metadata_ptr_for_store_" + std::to_string(size); 769 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 770 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 771 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 772 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 773 } 774 775 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 776 "__msan_metadata_ptr_for_load_n", RetTy, 777 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 778 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 779 "__msan_metadata_ptr_for_store_n", RetTy, 780 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 781 782 // Functions for poisoning and unpoisoning memory. 783 MsanPoisonAllocaFn = 784 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 785 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 786 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 787 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 788 } 789 790 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 791 return M.getOrInsertGlobal(Name, Ty, [&] { 792 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 793 nullptr, Name, nullptr, 794 GlobalVariable::InitialExecTLSModel); 795 }); 796 } 797 798 /// Insert declarations for userspace-specific functions and globals. 799 void MemorySanitizer::createUserspaceApi(Module &M) { 800 IRBuilder<> IRB(*C); 801 802 // Create the callback. 803 // FIXME: this function should have "Cold" calling conv, 804 // which is not yet implemented. 805 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 806 : "__msan_warning_with_origin_noreturn"; 807 WarningFn = 808 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 809 810 // Create the global TLS variables. 811 RetvalTLS = 812 getOrInsertGlobal(M, "__msan_retval_tls", 813 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 814 815 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 816 817 ParamTLS = 818 getOrInsertGlobal(M, "__msan_param_tls", 819 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 820 821 ParamOriginTLS = 822 getOrInsertGlobal(M, "__msan_param_origin_tls", 823 ArrayType::get(OriginTy, kParamTLSSize / 4)); 824 825 VAArgTLS = 826 getOrInsertGlobal(M, "__msan_va_arg_tls", 827 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 828 829 VAArgOriginTLS = 830 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 831 ArrayType::get(OriginTy, kParamTLSSize / 4)); 832 833 VAArgOverflowSizeTLS = 834 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 835 836 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 837 AccessSizeIndex++) { 838 unsigned AccessSize = 1 << AccessSizeIndex; 839 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 840 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 841 MaybeWarningFnAttrs.push_back(std::make_pair( 842 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 843 MaybeWarningFnAttrs.push_back(std::make_pair( 844 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 845 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 846 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 847 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 848 849 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 850 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 851 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 852 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 853 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 854 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 855 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 856 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 857 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 858 IRB.getInt32Ty()); 859 } 860 861 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 862 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 863 IRB.getInt8PtrTy(), IntptrTy); 864 MsanPoisonStackFn = 865 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 866 IRB.getInt8PtrTy(), IntptrTy); 867 } 868 869 /// Insert extern declaration of runtime-provided functions and globals. 870 void MemorySanitizer::initializeCallbacks(Module &M) { 871 // Only do this once. 872 if (CallbacksInitialized) 873 return; 874 875 IRBuilder<> IRB(*C); 876 // Initialize callbacks that are common for kernel and userspace 877 // instrumentation. 878 MsanChainOriginFn = M.getOrInsertFunction( 879 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 880 MsanSetOriginFn = 881 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 882 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 883 MemmoveFn = M.getOrInsertFunction( 884 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 885 IRB.getInt8PtrTy(), IntptrTy); 886 MemcpyFn = M.getOrInsertFunction( 887 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 888 IntptrTy); 889 MemsetFn = M.getOrInsertFunction( 890 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 891 IntptrTy); 892 893 MsanInstrumentAsmStoreFn = 894 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 895 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 896 897 if (CompileKernel) { 898 createKernelApi(M); 899 } else { 900 createUserspaceApi(M); 901 } 902 CallbacksInitialized = true; 903 } 904 905 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 906 int size) { 907 FunctionCallee *Fns = 908 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 909 switch (size) { 910 case 1: 911 return Fns[0]; 912 case 2: 913 return Fns[1]; 914 case 4: 915 return Fns[2]; 916 case 8: 917 return Fns[3]; 918 default: 919 return nullptr; 920 } 921 } 922 923 /// Module-level initialization. 924 /// 925 /// inserts a call to __msan_init to the module's constructor list. 926 void MemorySanitizer::initializeModule(Module &M) { 927 auto &DL = M.getDataLayout(); 928 929 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 930 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 931 // Check the overrides first 932 if (ShadowPassed || OriginPassed) { 933 CustomMapParams.AndMask = ClAndMask; 934 CustomMapParams.XorMask = ClXorMask; 935 CustomMapParams.ShadowBase = ClShadowBase; 936 CustomMapParams.OriginBase = ClOriginBase; 937 MapParams = &CustomMapParams; 938 } else { 939 Triple TargetTriple(M.getTargetTriple()); 940 switch (TargetTriple.getOS()) { 941 case Triple::FreeBSD: 942 switch (TargetTriple.getArch()) { 943 case Triple::x86_64: 944 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 945 break; 946 case Triple::x86: 947 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 948 break; 949 default: 950 report_fatal_error("unsupported architecture"); 951 } 952 break; 953 case Triple::NetBSD: 954 switch (TargetTriple.getArch()) { 955 case Triple::x86_64: 956 MapParams = NetBSD_X86_MemoryMapParams.bits64; 957 break; 958 default: 959 report_fatal_error("unsupported architecture"); 960 } 961 break; 962 case Triple::Linux: 963 switch (TargetTriple.getArch()) { 964 case Triple::x86_64: 965 MapParams = Linux_X86_MemoryMapParams.bits64; 966 break; 967 case Triple::x86: 968 MapParams = Linux_X86_MemoryMapParams.bits32; 969 break; 970 case Triple::mips64: 971 case Triple::mips64el: 972 MapParams = Linux_MIPS_MemoryMapParams.bits64; 973 break; 974 case Triple::ppc64: 975 case Triple::ppc64le: 976 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 977 break; 978 case Triple::systemz: 979 MapParams = Linux_S390_MemoryMapParams.bits64; 980 break; 981 case Triple::aarch64: 982 case Triple::aarch64_be: 983 MapParams = Linux_ARM_MemoryMapParams.bits64; 984 break; 985 default: 986 report_fatal_error("unsupported architecture"); 987 } 988 break; 989 default: 990 report_fatal_error("unsupported operating system"); 991 } 992 } 993 994 C = &(M.getContext()); 995 IRBuilder<> IRB(*C); 996 IntptrTy = IRB.getIntPtrTy(DL); 997 OriginTy = IRB.getInt32Ty(); 998 999 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1000 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1001 1002 if (!CompileKernel) { 1003 if (TrackOrigins) 1004 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1005 return new GlobalVariable( 1006 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1007 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1008 }); 1009 1010 if (Recover) 1011 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1012 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1013 GlobalValue::WeakODRLinkage, 1014 IRB.getInt32(Recover), "__msan_keep_going"); 1015 }); 1016 } 1017 } 1018 1019 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 1020 if (!Options.Kernel) 1021 insertModuleCtor(M); 1022 MSan.emplace(M, Options); 1023 return true; 1024 } 1025 1026 namespace { 1027 1028 /// A helper class that handles instrumentation of VarArg 1029 /// functions on a particular platform. 1030 /// 1031 /// Implementations are expected to insert the instrumentation 1032 /// necessary to propagate argument shadow through VarArg function 1033 /// calls. Visit* methods are called during an InstVisitor pass over 1034 /// the function, and should avoid creating new basic blocks. A new 1035 /// instance of this class is created for each instrumented function. 1036 struct VarArgHelper { 1037 virtual ~VarArgHelper() = default; 1038 1039 /// Visit a CallBase. 1040 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1041 1042 /// Visit a va_start call. 1043 virtual void visitVAStartInst(VAStartInst &I) = 0; 1044 1045 /// Visit a va_copy call. 1046 virtual void visitVACopyInst(VACopyInst &I) = 0; 1047 1048 /// Finalize function instrumentation. 1049 /// 1050 /// This method is called after visiting all interesting (see above) 1051 /// instructions in a function. 1052 virtual void finalizeInstrumentation() = 0; 1053 }; 1054 1055 struct MemorySanitizerVisitor; 1056 1057 } // end anonymous namespace 1058 1059 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1060 MemorySanitizerVisitor &Visitor); 1061 1062 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1063 if (TypeSize <= 8) return 0; 1064 return Log2_32_Ceil((TypeSize + 7) / 8); 1065 } 1066 1067 namespace { 1068 1069 /// This class does all the work for a given function. Store and Load 1070 /// instructions store and load corresponding shadow and origin 1071 /// values. Most instructions propagate shadow from arguments to their 1072 /// return values. Certain instructions (most importantly, BranchInst) 1073 /// test their argument shadow and print reports (with a runtime call) if it's 1074 /// non-zero. 1075 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1076 Function &F; 1077 MemorySanitizer &MS; 1078 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1079 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1080 std::unique_ptr<VarArgHelper> VAHelper; 1081 const TargetLibraryInfo *TLI; 1082 Instruction *FnPrologueEnd; 1083 1084 // The following flags disable parts of MSan instrumentation based on 1085 // exclusion list contents and command-line options. 1086 bool InsertChecks; 1087 bool PropagateShadow; 1088 bool PoisonStack; 1089 bool PoisonUndef; 1090 1091 struct ShadowOriginAndInsertPoint { 1092 Value *Shadow; 1093 Value *Origin; 1094 Instruction *OrigIns; 1095 1096 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1097 : Shadow(S), Origin(O), OrigIns(I) {} 1098 }; 1099 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1100 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1101 SmallSet<AllocaInst *, 16> AllocaSet; 1102 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1103 SmallVector<StoreInst *, 16> StoreList; 1104 1105 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1106 const TargetLibraryInfo &TLI) 1107 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1108 bool SanitizeFunction = 1109 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1110 InsertChecks = SanitizeFunction; 1111 PropagateShadow = SanitizeFunction; 1112 PoisonStack = SanitizeFunction && ClPoisonStack; 1113 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1114 1115 // In the presence of unreachable blocks, we may see Phi nodes with 1116 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1117 // blocks, such nodes will not have any shadow value associated with them. 1118 // It's easier to remove unreachable blocks than deal with missing shadow. 1119 removeUnreachableBlocks(F); 1120 1121 MS.initializeCallbacks(*F.getParent()); 1122 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1123 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1124 1125 if (MS.CompileKernel) { 1126 IRBuilder<> IRB(FnPrologueEnd); 1127 insertKmsanPrologue(IRB); 1128 } 1129 1130 LLVM_DEBUG(if (!InsertChecks) dbgs() 1131 << "MemorySanitizer is not inserting checks into '" 1132 << F.getName() << "'\n"); 1133 } 1134 1135 bool isInPrologue(Instruction &I) { 1136 return I.getParent() == FnPrologueEnd->getParent() && 1137 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1138 } 1139 1140 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1141 if (MS.TrackOrigins <= 1) return V; 1142 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1143 } 1144 1145 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1146 const DataLayout &DL = F.getParent()->getDataLayout(); 1147 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1148 if (IntptrSize == kOriginSize) return Origin; 1149 assert(IntptrSize == kOriginSize * 2); 1150 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1151 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1152 } 1153 1154 /// Fill memory range with the given origin value. 1155 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1156 unsigned Size, Align Alignment) { 1157 const DataLayout &DL = F.getParent()->getDataLayout(); 1158 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1159 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1160 assert(IntptrAlignment >= kMinOriginAlignment); 1161 assert(IntptrSize >= kOriginSize); 1162 1163 unsigned Ofs = 0; 1164 Align CurrentAlignment = Alignment; 1165 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1166 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1167 Value *IntptrOriginPtr = 1168 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1169 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1170 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1171 : IntptrOriginPtr; 1172 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1173 Ofs += IntptrSize / kOriginSize; 1174 CurrentAlignment = IntptrAlignment; 1175 } 1176 } 1177 1178 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1179 Value *GEP = 1180 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1181 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1182 CurrentAlignment = kMinOriginAlignment; 1183 } 1184 } 1185 1186 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1187 Value *OriginPtr, Align Alignment, bool AsCall) { 1188 const DataLayout &DL = F.getParent()->getDataLayout(); 1189 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1190 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1191 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1192 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1193 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1194 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1195 OriginAlignment); 1196 return; 1197 } 1198 1199 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1200 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1201 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1202 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1203 Value *ConvertedShadow2 = 1204 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1205 CallBase *CB = IRB.CreateCall( 1206 Fn, {ConvertedShadow2, 1207 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1208 CB->addParamAttr(0, Attribute::ZExt); 1209 CB->addParamAttr(2, Attribute::ZExt); 1210 } else { 1211 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1212 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1213 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1214 IRBuilder<> IRBNew(CheckTerm); 1215 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1216 OriginAlignment); 1217 } 1218 } 1219 1220 void materializeStores(bool InstrumentWithCalls) { 1221 for (StoreInst *SI : StoreList) { 1222 IRBuilder<> IRB(SI); 1223 Value *Val = SI->getValueOperand(); 1224 Value *Addr = SI->getPointerOperand(); 1225 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1226 Value *ShadowPtr, *OriginPtr; 1227 Type *ShadowTy = Shadow->getType(); 1228 const Align Alignment = SI->getAlign(); 1229 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1230 std::tie(ShadowPtr, OriginPtr) = 1231 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1232 1233 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1234 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1235 (void)NewSI; 1236 1237 if (SI->isAtomic()) 1238 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1239 1240 if (MS.TrackOrigins && !SI->isAtomic()) 1241 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1242 OriginAlignment, InstrumentWithCalls); 1243 } 1244 } 1245 1246 /// Helper function to insert a warning at IRB's current insert point. 1247 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1248 if (!Origin) 1249 Origin = (Value *)IRB.getInt32(0); 1250 assert(Origin->getType()->isIntegerTy()); 1251 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1252 // FIXME: Insert UnreachableInst if !MS.Recover? 1253 // This may invalidate some of the following checks and needs to be done 1254 // at the very end. 1255 } 1256 1257 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1258 bool AsCall) { 1259 IRBuilder<> IRB(OrigIns); 1260 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1261 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1262 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1263 1264 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1265 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1266 insertWarningFn(IRB, Origin); 1267 } 1268 return; 1269 } 1270 1271 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1272 1273 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1274 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1275 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1276 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1277 Value *ConvertedShadow2 = 1278 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1279 CallBase *CB = IRB.CreateCall( 1280 Fn, {ConvertedShadow2, 1281 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1282 CB->addParamAttr(0, Attribute::ZExt); 1283 CB->addParamAttr(1, Attribute::ZExt); 1284 } else { 1285 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1286 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1287 Cmp, OrigIns, 1288 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1289 1290 IRB.SetInsertPoint(CheckTerm); 1291 insertWarningFn(IRB, Origin); 1292 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1293 } 1294 } 1295 1296 void materializeChecks(bool InstrumentWithCalls) { 1297 for (const auto &ShadowData : InstrumentationList) { 1298 Instruction *OrigIns = ShadowData.OrigIns; 1299 Value *Shadow = ShadowData.Shadow; 1300 Value *Origin = ShadowData.Origin; 1301 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1302 } 1303 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1304 } 1305 1306 // Returns the last instruction in the new prologue 1307 void insertKmsanPrologue(IRBuilder<> &IRB) { 1308 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1309 Constant *Zero = IRB.getInt32(0); 1310 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1311 {Zero, IRB.getInt32(0)}, "param_shadow"); 1312 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1313 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1314 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1315 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1316 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1317 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1318 MS.VAArgOverflowSizeTLS = 1319 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1320 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1321 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1322 {Zero, IRB.getInt32(5)}, "param_origin"); 1323 MS.RetvalOriginTLS = 1324 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1325 {Zero, IRB.getInt32(6)}, "retval_origin"); 1326 } 1327 1328 /// Add MemorySanitizer instrumentation to a function. 1329 bool runOnFunction() { 1330 // Iterate all BBs in depth-first order and create shadow instructions 1331 // for all instructions (where applicable). 1332 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1333 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1334 visit(*BB); 1335 1336 // Finalize PHI nodes. 1337 for (PHINode *PN : ShadowPHINodes) { 1338 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1339 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1340 size_t NumValues = PN->getNumIncomingValues(); 1341 for (size_t v = 0; v < NumValues; v++) { 1342 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1343 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1344 } 1345 } 1346 1347 VAHelper->finalizeInstrumentation(); 1348 1349 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1350 // instrumenting only allocas. 1351 if (InstrumentLifetimeStart) { 1352 for (auto Item : LifetimeStartList) { 1353 instrumentAlloca(*Item.second, Item.first); 1354 AllocaSet.erase(Item.second); 1355 } 1356 } 1357 // Poison the allocas for which we didn't instrument the corresponding 1358 // lifetime intrinsics. 1359 for (AllocaInst *AI : AllocaSet) 1360 instrumentAlloca(*AI); 1361 1362 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1363 InstrumentationList.size() + StoreList.size() > 1364 (unsigned)ClInstrumentationWithCallThreshold; 1365 1366 // Insert shadow value checks. 1367 materializeChecks(InstrumentWithCalls); 1368 1369 // Delayed instrumentation of StoreInst. 1370 // This may not add new address checks. 1371 materializeStores(InstrumentWithCalls); 1372 1373 return true; 1374 } 1375 1376 /// Compute the shadow type that corresponds to a given Value. 1377 Type *getShadowTy(Value *V) { 1378 return getShadowTy(V->getType()); 1379 } 1380 1381 /// Compute the shadow type that corresponds to a given Type. 1382 Type *getShadowTy(Type *OrigTy) { 1383 if (!OrigTy->isSized()) { 1384 return nullptr; 1385 } 1386 // For integer type, shadow is the same as the original type. 1387 // This may return weird-sized types like i1. 1388 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1389 return IT; 1390 const DataLayout &DL = F.getParent()->getDataLayout(); 1391 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1392 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1393 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1394 cast<FixedVectorType>(VT)->getNumElements()); 1395 } 1396 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1397 return ArrayType::get(getShadowTy(AT->getElementType()), 1398 AT->getNumElements()); 1399 } 1400 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1401 SmallVector<Type*, 4> Elements; 1402 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1403 Elements.push_back(getShadowTy(ST->getElementType(i))); 1404 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1405 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1406 return Res; 1407 } 1408 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1409 return IntegerType::get(*MS.C, TypeSize); 1410 } 1411 1412 /// Flatten a vector type. 1413 Type *getShadowTyNoVec(Type *ty) { 1414 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1415 return IntegerType::get(*MS.C, 1416 vt->getPrimitiveSizeInBits().getFixedSize()); 1417 return ty; 1418 } 1419 1420 /// Extract combined shadow of struct elements as a bool 1421 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1422 IRBuilder<> &IRB) { 1423 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1424 Value *Aggregator = FalseVal; 1425 1426 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1427 // Combine by ORing together each element's bool shadow 1428 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1429 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1430 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1431 1432 if (Aggregator != FalseVal) 1433 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1434 else 1435 Aggregator = ShadowBool; 1436 } 1437 1438 return Aggregator; 1439 } 1440 1441 // Extract combined shadow of array elements 1442 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1443 IRBuilder<> &IRB) { 1444 if (!Array->getNumElements()) 1445 return IRB.getIntN(/* width */ 1, /* value */ 0); 1446 1447 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1448 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1449 1450 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1451 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1452 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1453 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1454 } 1455 return Aggregator; 1456 } 1457 1458 /// Convert a shadow value to it's flattened variant. The resulting 1459 /// shadow may not necessarily have the same bit width as the input 1460 /// value, but it will always be comparable to zero. 1461 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1462 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1463 return collapseStructShadow(Struct, V, IRB); 1464 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1465 return collapseArrayShadow(Array, V, IRB); 1466 Type *Ty = V->getType(); 1467 Type *NoVecTy = getShadowTyNoVec(Ty); 1468 if (Ty == NoVecTy) return V; 1469 return IRB.CreateBitCast(V, NoVecTy); 1470 } 1471 1472 // Convert a scalar value to an i1 by comparing with 0 1473 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1474 Type *VTy = V->getType(); 1475 assert(VTy->isIntegerTy()); 1476 if (VTy->getIntegerBitWidth() == 1) 1477 // Just converting a bool to a bool, so do nothing. 1478 return V; 1479 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1480 } 1481 1482 /// Compute the integer shadow offset that corresponds to a given 1483 /// application address. 1484 /// 1485 /// Offset = (Addr & ~AndMask) ^ XorMask 1486 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1487 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1488 1489 uint64_t AndMask = MS.MapParams->AndMask; 1490 if (AndMask) 1491 OffsetLong = 1492 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1493 1494 uint64_t XorMask = MS.MapParams->XorMask; 1495 if (XorMask) 1496 OffsetLong = 1497 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1498 return OffsetLong; 1499 } 1500 1501 /// Compute the shadow and origin addresses corresponding to a given 1502 /// application address. 1503 /// 1504 /// Shadow = ShadowBase + Offset 1505 /// Origin = (OriginBase + Offset) & ~3ULL 1506 std::pair<Value *, Value *> 1507 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1508 MaybeAlign Alignment) { 1509 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1510 Value *ShadowLong = ShadowOffset; 1511 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1512 if (ShadowBase != 0) { 1513 ShadowLong = 1514 IRB.CreateAdd(ShadowLong, 1515 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1516 } 1517 Value *ShadowPtr = 1518 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1519 Value *OriginPtr = nullptr; 1520 if (MS.TrackOrigins) { 1521 Value *OriginLong = ShadowOffset; 1522 uint64_t OriginBase = MS.MapParams->OriginBase; 1523 if (OriginBase != 0) 1524 OriginLong = IRB.CreateAdd(OriginLong, 1525 ConstantInt::get(MS.IntptrTy, OriginBase)); 1526 if (!Alignment || *Alignment < kMinOriginAlignment) { 1527 uint64_t Mask = kMinOriginAlignment.value() - 1; 1528 OriginLong = 1529 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1530 } 1531 OriginPtr = 1532 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1533 } 1534 return std::make_pair(ShadowPtr, OriginPtr); 1535 } 1536 1537 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1538 IRBuilder<> &IRB, 1539 Type *ShadowTy, 1540 bool isStore) { 1541 Value *ShadowOriginPtrs; 1542 const DataLayout &DL = F.getParent()->getDataLayout(); 1543 int Size = DL.getTypeStoreSize(ShadowTy); 1544 1545 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1546 Value *AddrCast = 1547 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1548 if (Getter) { 1549 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1550 } else { 1551 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1552 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1553 : MS.MsanMetadataPtrForLoadN, 1554 {AddrCast, SizeVal}); 1555 } 1556 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1557 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1558 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1559 1560 return std::make_pair(ShadowPtr, OriginPtr); 1561 } 1562 1563 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1564 Type *ShadowTy, 1565 MaybeAlign Alignment, 1566 bool isStore) { 1567 if (MS.CompileKernel) 1568 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1569 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1570 } 1571 1572 /// Compute the shadow address for a given function argument. 1573 /// 1574 /// Shadow = ParamTLS+ArgOffset. 1575 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1576 int ArgOffset) { 1577 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1578 if (ArgOffset) 1579 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1580 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1581 "_msarg"); 1582 } 1583 1584 /// Compute the origin address for a given function argument. 1585 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1586 int ArgOffset) { 1587 if (!MS.TrackOrigins) 1588 return nullptr; 1589 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1590 if (ArgOffset) 1591 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1592 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1593 "_msarg_o"); 1594 } 1595 1596 /// Compute the shadow address for a retval. 1597 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1598 return IRB.CreatePointerCast(MS.RetvalTLS, 1599 PointerType::get(getShadowTy(A), 0), 1600 "_msret"); 1601 } 1602 1603 /// Compute the origin address for a retval. 1604 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1605 // We keep a single origin for the entire retval. Might be too optimistic. 1606 return MS.RetvalOriginTLS; 1607 } 1608 1609 /// Set SV to be the shadow value for V. 1610 void setShadow(Value *V, Value *SV) { 1611 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1612 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1613 } 1614 1615 /// Set Origin to be the origin value for V. 1616 void setOrigin(Value *V, Value *Origin) { 1617 if (!MS.TrackOrigins) return; 1618 assert(!OriginMap.count(V) && "Values may only have one origin"); 1619 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1620 OriginMap[V] = Origin; 1621 } 1622 1623 Constant *getCleanShadow(Type *OrigTy) { 1624 Type *ShadowTy = getShadowTy(OrigTy); 1625 if (!ShadowTy) 1626 return nullptr; 1627 return Constant::getNullValue(ShadowTy); 1628 } 1629 1630 /// Create a clean shadow value for a given value. 1631 /// 1632 /// Clean shadow (all zeroes) means all bits of the value are defined 1633 /// (initialized). 1634 Constant *getCleanShadow(Value *V) { 1635 return getCleanShadow(V->getType()); 1636 } 1637 1638 /// Create a dirty shadow of a given shadow type. 1639 Constant *getPoisonedShadow(Type *ShadowTy) { 1640 assert(ShadowTy); 1641 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1642 return Constant::getAllOnesValue(ShadowTy); 1643 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1644 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1645 getPoisonedShadow(AT->getElementType())); 1646 return ConstantArray::get(AT, Vals); 1647 } 1648 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1649 SmallVector<Constant *, 4> Vals; 1650 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1651 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1652 return ConstantStruct::get(ST, Vals); 1653 } 1654 llvm_unreachable("Unexpected shadow type"); 1655 } 1656 1657 /// Create a dirty shadow for a given value. 1658 Constant *getPoisonedShadow(Value *V) { 1659 Type *ShadowTy = getShadowTy(V); 1660 if (!ShadowTy) 1661 return nullptr; 1662 return getPoisonedShadow(ShadowTy); 1663 } 1664 1665 /// Create a clean (zero) origin. 1666 Value *getCleanOrigin() { 1667 return Constant::getNullValue(MS.OriginTy); 1668 } 1669 1670 /// Get the shadow value for a given Value. 1671 /// 1672 /// This function either returns the value set earlier with setShadow, 1673 /// or extracts if from ParamTLS (for function arguments). 1674 Value *getShadow(Value *V) { 1675 if (!PropagateShadow) return getCleanShadow(V); 1676 if (Instruction *I = dyn_cast<Instruction>(V)) { 1677 if (I->getMetadata("nosanitize")) 1678 return getCleanShadow(V); 1679 // For instructions the shadow is already stored in the map. 1680 Value *Shadow = ShadowMap[V]; 1681 if (!Shadow) { 1682 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1683 (void)I; 1684 assert(Shadow && "No shadow for a value"); 1685 } 1686 return Shadow; 1687 } 1688 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1689 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1690 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1691 (void)U; 1692 return AllOnes; 1693 } 1694 if (Argument *A = dyn_cast<Argument>(V)) { 1695 // For arguments we compute the shadow on demand and store it in the map. 1696 Value **ShadowPtr = &ShadowMap[V]; 1697 if (*ShadowPtr) 1698 return *ShadowPtr; 1699 Function *F = A->getParent(); 1700 IRBuilder<> EntryIRB(FnPrologueEnd); 1701 unsigned ArgOffset = 0; 1702 const DataLayout &DL = F->getParent()->getDataLayout(); 1703 for (auto &FArg : F->args()) { 1704 if (!FArg.getType()->isSized()) { 1705 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1706 continue; 1707 } 1708 1709 bool FArgByVal = FArg.hasByValAttr(); 1710 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1711 bool FArgEagerCheck = MS.EagerChecks && !FArgByVal && FArgNoUndef; 1712 unsigned Size = 1713 FArg.hasByValAttr() 1714 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1715 : DL.getTypeAllocSize(FArg.getType()); 1716 1717 if (A == &FArg) { 1718 bool Overflow = ArgOffset + Size > kParamTLSSize; 1719 if (FArgEagerCheck) { 1720 *ShadowPtr = getCleanShadow(V); 1721 setOrigin(A, getCleanOrigin()); 1722 break; 1723 } else if (FArgByVal) { 1724 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1725 // ByVal pointer itself has clean shadow. We copy the actual 1726 // argument shadow to the underlying memory. 1727 // Figure out maximal valid memcpy alignment. 1728 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1729 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1730 Value *CpShadowPtr = 1731 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1732 /*isStore*/ true) 1733 .first; 1734 // TODO(glider): need to copy origins. 1735 if (Overflow) { 1736 // ParamTLS overflow. 1737 EntryIRB.CreateMemSet( 1738 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1739 Size, ArgAlign); 1740 } else { 1741 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1742 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1743 CopyAlign, Size); 1744 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1745 (void)Cpy; 1746 } 1747 *ShadowPtr = getCleanShadow(V); 1748 } else { 1749 // Shadow over TLS 1750 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1751 if (Overflow) { 1752 // ParamTLS overflow. 1753 *ShadowPtr = getCleanShadow(V); 1754 } else { 1755 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1756 kShadowTLSAlignment); 1757 } 1758 } 1759 LLVM_DEBUG(dbgs() 1760 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1761 if (MS.TrackOrigins && !Overflow) { 1762 Value *OriginPtr = 1763 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1764 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1765 } else { 1766 setOrigin(A, getCleanOrigin()); 1767 } 1768 1769 break; 1770 } 1771 1772 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1773 } 1774 assert(*ShadowPtr && "Could not find shadow for an argument"); 1775 return *ShadowPtr; 1776 } 1777 // For everything else the shadow is zero. 1778 return getCleanShadow(V); 1779 } 1780 1781 /// Get the shadow for i-th argument of the instruction I. 1782 Value *getShadow(Instruction *I, int i) { 1783 return getShadow(I->getOperand(i)); 1784 } 1785 1786 /// Get the origin for a value. 1787 Value *getOrigin(Value *V) { 1788 if (!MS.TrackOrigins) return nullptr; 1789 if (!PropagateShadow) return getCleanOrigin(); 1790 if (isa<Constant>(V)) return getCleanOrigin(); 1791 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1792 "Unexpected value type in getOrigin()"); 1793 if (Instruction *I = dyn_cast<Instruction>(V)) { 1794 if (I->getMetadata("nosanitize")) 1795 return getCleanOrigin(); 1796 } 1797 Value *Origin = OriginMap[V]; 1798 assert(Origin && "Missing origin"); 1799 return Origin; 1800 } 1801 1802 /// Get the origin for i-th argument of the instruction I. 1803 Value *getOrigin(Instruction *I, int i) { 1804 return getOrigin(I->getOperand(i)); 1805 } 1806 1807 /// Remember the place where a shadow check should be inserted. 1808 /// 1809 /// This location will be later instrumented with a check that will print a 1810 /// UMR warning in runtime if the shadow value is not 0. 1811 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1812 assert(Shadow); 1813 if (!InsertChecks) return; 1814 #ifndef NDEBUG 1815 Type *ShadowTy = Shadow->getType(); 1816 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1817 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1818 "Can only insert checks for integer, vector, and aggregate shadow " 1819 "types"); 1820 #endif 1821 InstrumentationList.push_back( 1822 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1823 } 1824 1825 /// Remember the place where a shadow check should be inserted. 1826 /// 1827 /// This location will be later instrumented with a check that will print a 1828 /// UMR warning in runtime if the value is not fully defined. 1829 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1830 assert(Val); 1831 Value *Shadow, *Origin; 1832 if (ClCheckConstantShadow) { 1833 Shadow = getShadow(Val); 1834 if (!Shadow) return; 1835 Origin = getOrigin(Val); 1836 } else { 1837 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1838 if (!Shadow) return; 1839 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1840 } 1841 insertShadowCheck(Shadow, Origin, OrigIns); 1842 } 1843 1844 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1845 switch (a) { 1846 case AtomicOrdering::NotAtomic: 1847 return AtomicOrdering::NotAtomic; 1848 case AtomicOrdering::Unordered: 1849 case AtomicOrdering::Monotonic: 1850 case AtomicOrdering::Release: 1851 return AtomicOrdering::Release; 1852 case AtomicOrdering::Acquire: 1853 case AtomicOrdering::AcquireRelease: 1854 return AtomicOrdering::AcquireRelease; 1855 case AtomicOrdering::SequentiallyConsistent: 1856 return AtomicOrdering::SequentiallyConsistent; 1857 } 1858 llvm_unreachable("Unknown ordering"); 1859 } 1860 1861 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1862 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1863 uint32_t OrderingTable[NumOrderings] = {}; 1864 1865 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1866 OrderingTable[(int)AtomicOrderingCABI::release] = 1867 (int)AtomicOrderingCABI::release; 1868 OrderingTable[(int)AtomicOrderingCABI::consume] = 1869 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1870 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1871 (int)AtomicOrderingCABI::acq_rel; 1872 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1873 (int)AtomicOrderingCABI::seq_cst; 1874 1875 return ConstantDataVector::get(IRB.getContext(), 1876 makeArrayRef(OrderingTable, NumOrderings)); 1877 } 1878 1879 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1880 switch (a) { 1881 case AtomicOrdering::NotAtomic: 1882 return AtomicOrdering::NotAtomic; 1883 case AtomicOrdering::Unordered: 1884 case AtomicOrdering::Monotonic: 1885 case AtomicOrdering::Acquire: 1886 return AtomicOrdering::Acquire; 1887 case AtomicOrdering::Release: 1888 case AtomicOrdering::AcquireRelease: 1889 return AtomicOrdering::AcquireRelease; 1890 case AtomicOrdering::SequentiallyConsistent: 1891 return AtomicOrdering::SequentiallyConsistent; 1892 } 1893 llvm_unreachable("Unknown ordering"); 1894 } 1895 1896 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1897 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1898 uint32_t OrderingTable[NumOrderings] = {}; 1899 1900 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1901 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1902 OrderingTable[(int)AtomicOrderingCABI::consume] = 1903 (int)AtomicOrderingCABI::acquire; 1904 OrderingTable[(int)AtomicOrderingCABI::release] = 1905 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1906 (int)AtomicOrderingCABI::acq_rel; 1907 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1908 (int)AtomicOrderingCABI::seq_cst; 1909 1910 return ConstantDataVector::get(IRB.getContext(), 1911 makeArrayRef(OrderingTable, NumOrderings)); 1912 } 1913 1914 // ------------------- Visitors. 1915 using InstVisitor<MemorySanitizerVisitor>::visit; 1916 void visit(Instruction &I) { 1917 if (I.getMetadata("nosanitize")) 1918 return; 1919 // Don't want to visit if we're in the prologue 1920 if (isInPrologue(I)) 1921 return; 1922 InstVisitor<MemorySanitizerVisitor>::visit(I); 1923 } 1924 1925 /// Instrument LoadInst 1926 /// 1927 /// Loads the corresponding shadow and (optionally) origin. 1928 /// Optionally, checks that the load address is fully defined. 1929 void visitLoadInst(LoadInst &I) { 1930 assert(I.getType()->isSized() && "Load type must have size"); 1931 assert(!I.getMetadata("nosanitize")); 1932 IRBuilder<> IRB(I.getNextNode()); 1933 Type *ShadowTy = getShadowTy(&I); 1934 Value *Addr = I.getPointerOperand(); 1935 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1936 const Align Alignment = assumeAligned(I.getAlignment()); 1937 if (PropagateShadow) { 1938 std::tie(ShadowPtr, OriginPtr) = 1939 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1940 setShadow(&I, 1941 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1942 } else { 1943 setShadow(&I, getCleanShadow(&I)); 1944 } 1945 1946 if (ClCheckAccessAddress) 1947 insertShadowCheck(I.getPointerOperand(), &I); 1948 1949 if (I.isAtomic()) 1950 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1951 1952 if (MS.TrackOrigins) { 1953 if (PropagateShadow) { 1954 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1955 setOrigin( 1956 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1957 } else { 1958 setOrigin(&I, getCleanOrigin()); 1959 } 1960 } 1961 } 1962 1963 /// Instrument StoreInst 1964 /// 1965 /// Stores the corresponding shadow and (optionally) origin. 1966 /// Optionally, checks that the store address is fully defined. 1967 void visitStoreInst(StoreInst &I) { 1968 StoreList.push_back(&I); 1969 if (ClCheckAccessAddress) 1970 insertShadowCheck(I.getPointerOperand(), &I); 1971 } 1972 1973 void handleCASOrRMW(Instruction &I) { 1974 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1975 1976 IRBuilder<> IRB(&I); 1977 Value *Addr = I.getOperand(0); 1978 Value *Val = I.getOperand(1); 1979 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1980 /*isStore*/ true) 1981 .first; 1982 1983 if (ClCheckAccessAddress) 1984 insertShadowCheck(Addr, &I); 1985 1986 // Only test the conditional argument of cmpxchg instruction. 1987 // The other argument can potentially be uninitialized, but we can not 1988 // detect this situation reliably without possible false positives. 1989 if (isa<AtomicCmpXchgInst>(I)) 1990 insertShadowCheck(Val, &I); 1991 1992 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1993 1994 setShadow(&I, getCleanShadow(&I)); 1995 setOrigin(&I, getCleanOrigin()); 1996 } 1997 1998 void visitAtomicRMWInst(AtomicRMWInst &I) { 1999 handleCASOrRMW(I); 2000 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2001 } 2002 2003 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2004 handleCASOrRMW(I); 2005 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2006 } 2007 2008 // Vector manipulation. 2009 void visitExtractElementInst(ExtractElementInst &I) { 2010 insertShadowCheck(I.getOperand(1), &I); 2011 IRBuilder<> IRB(&I); 2012 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2013 "_msprop")); 2014 setOrigin(&I, getOrigin(&I, 0)); 2015 } 2016 2017 void visitInsertElementInst(InsertElementInst &I) { 2018 insertShadowCheck(I.getOperand(2), &I); 2019 IRBuilder<> IRB(&I); 2020 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 2021 I.getOperand(2), "_msprop")); 2022 setOriginForNaryOp(I); 2023 } 2024 2025 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2026 IRBuilder<> IRB(&I); 2027 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2028 I.getShuffleMask(), "_msprop")); 2029 setOriginForNaryOp(I); 2030 } 2031 2032 // Casts. 2033 void visitSExtInst(SExtInst &I) { 2034 IRBuilder<> IRB(&I); 2035 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2036 setOrigin(&I, getOrigin(&I, 0)); 2037 } 2038 2039 void visitZExtInst(ZExtInst &I) { 2040 IRBuilder<> IRB(&I); 2041 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2042 setOrigin(&I, getOrigin(&I, 0)); 2043 } 2044 2045 void visitTruncInst(TruncInst &I) { 2046 IRBuilder<> IRB(&I); 2047 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2048 setOrigin(&I, getOrigin(&I, 0)); 2049 } 2050 2051 void visitBitCastInst(BitCastInst &I) { 2052 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2053 // a musttail call and a ret, don't instrument. New instructions are not 2054 // allowed after a musttail call. 2055 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2056 if (CI->isMustTailCall()) 2057 return; 2058 IRBuilder<> IRB(&I); 2059 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2060 setOrigin(&I, getOrigin(&I, 0)); 2061 } 2062 2063 void visitPtrToIntInst(PtrToIntInst &I) { 2064 IRBuilder<> IRB(&I); 2065 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2066 "_msprop_ptrtoint")); 2067 setOrigin(&I, getOrigin(&I, 0)); 2068 } 2069 2070 void visitIntToPtrInst(IntToPtrInst &I) { 2071 IRBuilder<> IRB(&I); 2072 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2073 "_msprop_inttoptr")); 2074 setOrigin(&I, getOrigin(&I, 0)); 2075 } 2076 2077 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2078 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2079 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2080 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2081 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2082 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2083 2084 /// Propagate shadow for bitwise AND. 2085 /// 2086 /// This code is exact, i.e. if, for example, a bit in the left argument 2087 /// is defined and 0, then neither the value not definedness of the 2088 /// corresponding bit in B don't affect the resulting shadow. 2089 void visitAnd(BinaryOperator &I) { 2090 IRBuilder<> IRB(&I); 2091 // "And" of 0 and a poisoned value results in unpoisoned value. 2092 // 1&1 => 1; 0&1 => 0; p&1 => p; 2093 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2094 // 1&p => p; 0&p => 0; p&p => p; 2095 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2096 Value *S1 = getShadow(&I, 0); 2097 Value *S2 = getShadow(&I, 1); 2098 Value *V1 = I.getOperand(0); 2099 Value *V2 = I.getOperand(1); 2100 if (V1->getType() != S1->getType()) { 2101 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2102 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2103 } 2104 Value *S1S2 = IRB.CreateAnd(S1, S2); 2105 Value *V1S2 = IRB.CreateAnd(V1, S2); 2106 Value *S1V2 = IRB.CreateAnd(S1, V2); 2107 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2108 setOriginForNaryOp(I); 2109 } 2110 2111 void visitOr(BinaryOperator &I) { 2112 IRBuilder<> IRB(&I); 2113 // "Or" of 1 and a poisoned value results in unpoisoned value. 2114 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2115 // 1|0 => 1; 0|0 => 0; p|0 => p; 2116 // 1|p => 1; 0|p => p; p|p => p; 2117 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2118 Value *S1 = getShadow(&I, 0); 2119 Value *S2 = getShadow(&I, 1); 2120 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2121 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2122 if (V1->getType() != S1->getType()) { 2123 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2124 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2125 } 2126 Value *S1S2 = IRB.CreateAnd(S1, S2); 2127 Value *V1S2 = IRB.CreateAnd(V1, S2); 2128 Value *S1V2 = IRB.CreateAnd(S1, V2); 2129 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2130 setOriginForNaryOp(I); 2131 } 2132 2133 /// Default propagation of shadow and/or origin. 2134 /// 2135 /// This class implements the general case of shadow propagation, used in all 2136 /// cases where we don't know and/or don't care about what the operation 2137 /// actually does. It converts all input shadow values to a common type 2138 /// (extending or truncating as necessary), and bitwise OR's them. 2139 /// 2140 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2141 /// fully initialized), and less prone to false positives. 2142 /// 2143 /// This class also implements the general case of origin propagation. For a 2144 /// Nary operation, result origin is set to the origin of an argument that is 2145 /// not entirely initialized. If there is more than one such arguments, the 2146 /// rightmost of them is picked. It does not matter which one is picked if all 2147 /// arguments are initialized. 2148 template <bool CombineShadow> 2149 class Combiner { 2150 Value *Shadow = nullptr; 2151 Value *Origin = nullptr; 2152 IRBuilder<> &IRB; 2153 MemorySanitizerVisitor *MSV; 2154 2155 public: 2156 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2157 : IRB(IRB), MSV(MSV) {} 2158 2159 /// Add a pair of shadow and origin values to the mix. 2160 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2161 if (CombineShadow) { 2162 assert(OpShadow); 2163 if (!Shadow) 2164 Shadow = OpShadow; 2165 else { 2166 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2167 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2168 } 2169 } 2170 2171 if (MSV->MS.TrackOrigins) { 2172 assert(OpOrigin); 2173 if (!Origin) { 2174 Origin = OpOrigin; 2175 } else { 2176 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2177 // No point in adding something that might result in 0 origin value. 2178 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2179 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2180 Value *Cond = 2181 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2182 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2183 } 2184 } 2185 } 2186 return *this; 2187 } 2188 2189 /// Add an application value to the mix. 2190 Combiner &Add(Value *V) { 2191 Value *OpShadow = MSV->getShadow(V); 2192 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2193 return Add(OpShadow, OpOrigin); 2194 } 2195 2196 /// Set the current combined values as the given instruction's shadow 2197 /// and origin. 2198 void Done(Instruction *I) { 2199 if (CombineShadow) { 2200 assert(Shadow); 2201 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2202 MSV->setShadow(I, Shadow); 2203 } 2204 if (MSV->MS.TrackOrigins) { 2205 assert(Origin); 2206 MSV->setOrigin(I, Origin); 2207 } 2208 } 2209 }; 2210 2211 using ShadowAndOriginCombiner = Combiner<true>; 2212 using OriginCombiner = Combiner<false>; 2213 2214 /// Propagate origin for arbitrary operation. 2215 void setOriginForNaryOp(Instruction &I) { 2216 if (!MS.TrackOrigins) return; 2217 IRBuilder<> IRB(&I); 2218 OriginCombiner OC(this, IRB); 2219 for (Use &Op : I.operands()) 2220 OC.Add(Op.get()); 2221 OC.Done(&I); 2222 } 2223 2224 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2225 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2226 "Vector of pointers is not a valid shadow type"); 2227 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2228 Ty->getScalarSizeInBits() 2229 : Ty->getPrimitiveSizeInBits(); 2230 } 2231 2232 /// Cast between two shadow types, extending or truncating as 2233 /// necessary. 2234 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2235 bool Signed = false) { 2236 Type *srcTy = V->getType(); 2237 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2238 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2239 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2240 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2241 2242 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2243 return IRB.CreateIntCast(V, dstTy, Signed); 2244 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2245 cast<FixedVectorType>(dstTy)->getNumElements() == 2246 cast<FixedVectorType>(srcTy)->getNumElements()) 2247 return IRB.CreateIntCast(V, dstTy, Signed); 2248 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2249 Value *V2 = 2250 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2251 return IRB.CreateBitCast(V2, dstTy); 2252 // TODO: handle struct types. 2253 } 2254 2255 /// Cast an application value to the type of its own shadow. 2256 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2257 Type *ShadowTy = getShadowTy(V); 2258 if (V->getType() == ShadowTy) 2259 return V; 2260 if (V->getType()->isPtrOrPtrVectorTy()) 2261 return IRB.CreatePtrToInt(V, ShadowTy); 2262 else 2263 return IRB.CreateBitCast(V, ShadowTy); 2264 } 2265 2266 /// Propagate shadow for arbitrary operation. 2267 void handleShadowOr(Instruction &I) { 2268 IRBuilder<> IRB(&I); 2269 ShadowAndOriginCombiner SC(this, IRB); 2270 for (Use &Op : I.operands()) 2271 SC.Add(Op.get()); 2272 SC.Done(&I); 2273 } 2274 2275 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2276 2277 // Handle multiplication by constant. 2278 // 2279 // Handle a special case of multiplication by constant that may have one or 2280 // more zeros in the lower bits. This makes corresponding number of lower bits 2281 // of the result zero as well. We model it by shifting the other operand 2282 // shadow left by the required number of bits. Effectively, we transform 2283 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2284 // We use multiplication by 2**N instead of shift to cover the case of 2285 // multiplication by 0, which may occur in some elements of a vector operand. 2286 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2287 Value *OtherArg) { 2288 Constant *ShadowMul; 2289 Type *Ty = ConstArg->getType(); 2290 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2291 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2292 Type *EltTy = VTy->getElementType(); 2293 SmallVector<Constant *, 16> Elements; 2294 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2295 if (ConstantInt *Elt = 2296 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2297 const APInt &V = Elt->getValue(); 2298 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2299 Elements.push_back(ConstantInt::get(EltTy, V2)); 2300 } else { 2301 Elements.push_back(ConstantInt::get(EltTy, 1)); 2302 } 2303 } 2304 ShadowMul = ConstantVector::get(Elements); 2305 } else { 2306 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2307 const APInt &V = Elt->getValue(); 2308 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2309 ShadowMul = ConstantInt::get(Ty, V2); 2310 } else { 2311 ShadowMul = ConstantInt::get(Ty, 1); 2312 } 2313 } 2314 2315 IRBuilder<> IRB(&I); 2316 setShadow(&I, 2317 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2318 setOrigin(&I, getOrigin(OtherArg)); 2319 } 2320 2321 void visitMul(BinaryOperator &I) { 2322 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2323 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2324 if (constOp0 && !constOp1) 2325 handleMulByConstant(I, constOp0, I.getOperand(1)); 2326 else if (constOp1 && !constOp0) 2327 handleMulByConstant(I, constOp1, I.getOperand(0)); 2328 else 2329 handleShadowOr(I); 2330 } 2331 2332 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2333 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2334 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2335 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2336 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2337 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2338 2339 void handleIntegerDiv(Instruction &I) { 2340 IRBuilder<> IRB(&I); 2341 // Strict on the second argument. 2342 insertShadowCheck(I.getOperand(1), &I); 2343 setShadow(&I, getShadow(&I, 0)); 2344 setOrigin(&I, getOrigin(&I, 0)); 2345 } 2346 2347 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2348 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2349 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2350 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2351 2352 // Floating point division is side-effect free. We can not require that the 2353 // divisor is fully initialized and must propagate shadow. See PR37523. 2354 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2355 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2356 2357 /// Instrument == and != comparisons. 2358 /// 2359 /// Sometimes the comparison result is known even if some of the bits of the 2360 /// arguments are not. 2361 void handleEqualityComparison(ICmpInst &I) { 2362 IRBuilder<> IRB(&I); 2363 Value *A = I.getOperand(0); 2364 Value *B = I.getOperand(1); 2365 Value *Sa = getShadow(A); 2366 Value *Sb = getShadow(B); 2367 2368 // Get rid of pointers and vectors of pointers. 2369 // For ints (and vectors of ints), types of A and Sa match, 2370 // and this is a no-op. 2371 A = IRB.CreatePointerCast(A, Sa->getType()); 2372 B = IRB.CreatePointerCast(B, Sb->getType()); 2373 2374 // A == B <==> (C = A^B) == 0 2375 // A != B <==> (C = A^B) != 0 2376 // Sc = Sa | Sb 2377 Value *C = IRB.CreateXor(A, B); 2378 Value *Sc = IRB.CreateOr(Sa, Sb); 2379 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2380 // Result is defined if one of the following is true 2381 // * there is a defined 1 bit in C 2382 // * C is fully defined 2383 // Si = !(C & ~Sc) && Sc 2384 Value *Zero = Constant::getNullValue(Sc->getType()); 2385 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2386 Value *Si = 2387 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2388 IRB.CreateICmpEQ( 2389 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2390 Si->setName("_msprop_icmp"); 2391 setShadow(&I, Si); 2392 setOriginForNaryOp(I); 2393 } 2394 2395 /// Build the lowest possible value of V, taking into account V's 2396 /// uninitialized bits. 2397 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2398 bool isSigned) { 2399 if (isSigned) { 2400 // Split shadow into sign bit and other bits. 2401 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2402 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2403 // Maximise the undefined shadow bit, minimize other undefined bits. 2404 return 2405 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2406 } else { 2407 // Minimize undefined bits. 2408 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2409 } 2410 } 2411 2412 /// Build the highest possible value of V, taking into account V's 2413 /// uninitialized bits. 2414 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2415 bool isSigned) { 2416 if (isSigned) { 2417 // Split shadow into sign bit and other bits. 2418 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2419 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2420 // Minimise the undefined shadow bit, maximise other undefined bits. 2421 return 2422 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2423 } else { 2424 // Maximize undefined bits. 2425 return IRB.CreateOr(A, Sa); 2426 } 2427 } 2428 2429 /// Instrument relational comparisons. 2430 /// 2431 /// This function does exact shadow propagation for all relational 2432 /// comparisons of integers, pointers and vectors of those. 2433 /// FIXME: output seems suboptimal when one of the operands is a constant 2434 void handleRelationalComparisonExact(ICmpInst &I) { 2435 IRBuilder<> IRB(&I); 2436 Value *A = I.getOperand(0); 2437 Value *B = I.getOperand(1); 2438 Value *Sa = getShadow(A); 2439 Value *Sb = getShadow(B); 2440 2441 // Get rid of pointers and vectors of pointers. 2442 // For ints (and vectors of ints), types of A and Sa match, 2443 // and this is a no-op. 2444 A = IRB.CreatePointerCast(A, Sa->getType()); 2445 B = IRB.CreatePointerCast(B, Sb->getType()); 2446 2447 // Let [a0, a1] be the interval of possible values of A, taking into account 2448 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2449 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2450 bool IsSigned = I.isSigned(); 2451 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2452 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2453 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2454 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2455 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2456 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2457 Value *Si = IRB.CreateXor(S1, S2); 2458 setShadow(&I, Si); 2459 setOriginForNaryOp(I); 2460 } 2461 2462 /// Instrument signed relational comparisons. 2463 /// 2464 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2465 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2466 void handleSignedRelationalComparison(ICmpInst &I) { 2467 Constant *constOp; 2468 Value *op = nullptr; 2469 CmpInst::Predicate pre; 2470 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2471 op = I.getOperand(0); 2472 pre = I.getPredicate(); 2473 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2474 op = I.getOperand(1); 2475 pre = I.getSwappedPredicate(); 2476 } else { 2477 handleShadowOr(I); 2478 return; 2479 } 2480 2481 if ((constOp->isNullValue() && 2482 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2483 (constOp->isAllOnesValue() && 2484 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2485 IRBuilder<> IRB(&I); 2486 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2487 "_msprop_icmp_s"); 2488 setShadow(&I, Shadow); 2489 setOrigin(&I, getOrigin(op)); 2490 } else { 2491 handleShadowOr(I); 2492 } 2493 } 2494 2495 void visitICmpInst(ICmpInst &I) { 2496 if (!ClHandleICmp) { 2497 handleShadowOr(I); 2498 return; 2499 } 2500 if (I.isEquality()) { 2501 handleEqualityComparison(I); 2502 return; 2503 } 2504 2505 assert(I.isRelational()); 2506 if (ClHandleICmpExact) { 2507 handleRelationalComparisonExact(I); 2508 return; 2509 } 2510 if (I.isSigned()) { 2511 handleSignedRelationalComparison(I); 2512 return; 2513 } 2514 2515 assert(I.isUnsigned()); 2516 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2517 handleRelationalComparisonExact(I); 2518 return; 2519 } 2520 2521 handleShadowOr(I); 2522 } 2523 2524 void visitFCmpInst(FCmpInst &I) { 2525 handleShadowOr(I); 2526 } 2527 2528 void handleShift(BinaryOperator &I) { 2529 IRBuilder<> IRB(&I); 2530 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2531 // Otherwise perform the same shift on S1. 2532 Value *S1 = getShadow(&I, 0); 2533 Value *S2 = getShadow(&I, 1); 2534 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2535 S2->getType()); 2536 Value *V2 = I.getOperand(1); 2537 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2538 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2539 setOriginForNaryOp(I); 2540 } 2541 2542 void visitShl(BinaryOperator &I) { handleShift(I); } 2543 void visitAShr(BinaryOperator &I) { handleShift(I); } 2544 void visitLShr(BinaryOperator &I) { handleShift(I); } 2545 2546 void handleFunnelShift(IntrinsicInst &I) { 2547 IRBuilder<> IRB(&I); 2548 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2549 // Otherwise perform the same shift on S0 and S1. 2550 Value *S0 = getShadow(&I, 0); 2551 Value *S1 = getShadow(&I, 1); 2552 Value *S2 = getShadow(&I, 2); 2553 Value *S2Conv = 2554 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2555 Value *V2 = I.getOperand(2); 2556 Function *Intrin = Intrinsic::getDeclaration( 2557 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2558 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2559 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2560 setOriginForNaryOp(I); 2561 } 2562 2563 /// Instrument llvm.memmove 2564 /// 2565 /// At this point we don't know if llvm.memmove will be inlined or not. 2566 /// If we don't instrument it and it gets inlined, 2567 /// our interceptor will not kick in and we will lose the memmove. 2568 /// If we instrument the call here, but it does not get inlined, 2569 /// we will memove the shadow twice: which is bad in case 2570 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2571 /// 2572 /// Similar situation exists for memcpy and memset. 2573 void visitMemMoveInst(MemMoveInst &I) { 2574 IRBuilder<> IRB(&I); 2575 IRB.CreateCall( 2576 MS.MemmoveFn, 2577 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2578 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2579 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2580 I.eraseFromParent(); 2581 } 2582 2583 // Similar to memmove: avoid copying shadow twice. 2584 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2585 // FIXME: consider doing manual inline for small constant sizes and proper 2586 // alignment. 2587 void visitMemCpyInst(MemCpyInst &I) { 2588 IRBuilder<> IRB(&I); 2589 IRB.CreateCall( 2590 MS.MemcpyFn, 2591 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2592 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2593 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2594 I.eraseFromParent(); 2595 } 2596 2597 // Same as memcpy. 2598 void visitMemSetInst(MemSetInst &I) { 2599 IRBuilder<> IRB(&I); 2600 IRB.CreateCall( 2601 MS.MemsetFn, 2602 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2603 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2604 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2605 I.eraseFromParent(); 2606 } 2607 2608 void visitVAStartInst(VAStartInst &I) { 2609 VAHelper->visitVAStartInst(I); 2610 } 2611 2612 void visitVACopyInst(VACopyInst &I) { 2613 VAHelper->visitVACopyInst(I); 2614 } 2615 2616 /// Handle vector store-like intrinsics. 2617 /// 2618 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2619 /// has 1 pointer argument and 1 vector argument, returns void. 2620 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2621 IRBuilder<> IRB(&I); 2622 Value* Addr = I.getArgOperand(0); 2623 Value *Shadow = getShadow(&I, 1); 2624 Value *ShadowPtr, *OriginPtr; 2625 2626 // We don't know the pointer alignment (could be unaligned SSE store!). 2627 // Have to assume to worst case. 2628 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2629 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2630 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2631 2632 if (ClCheckAccessAddress) 2633 insertShadowCheck(Addr, &I); 2634 2635 // FIXME: factor out common code from materializeStores 2636 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2637 return true; 2638 } 2639 2640 /// Handle vector load-like intrinsics. 2641 /// 2642 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2643 /// has 1 pointer argument, returns a vector. 2644 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2645 IRBuilder<> IRB(&I); 2646 Value *Addr = I.getArgOperand(0); 2647 2648 Type *ShadowTy = getShadowTy(&I); 2649 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2650 if (PropagateShadow) { 2651 // We don't know the pointer alignment (could be unaligned SSE load!). 2652 // Have to assume to worst case. 2653 const Align Alignment = Align(1); 2654 std::tie(ShadowPtr, OriginPtr) = 2655 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2656 setShadow(&I, 2657 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2658 } else { 2659 setShadow(&I, getCleanShadow(&I)); 2660 } 2661 2662 if (ClCheckAccessAddress) 2663 insertShadowCheck(Addr, &I); 2664 2665 if (MS.TrackOrigins) { 2666 if (PropagateShadow) 2667 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2668 else 2669 setOrigin(&I, getCleanOrigin()); 2670 } 2671 return true; 2672 } 2673 2674 /// Handle (SIMD arithmetic)-like intrinsics. 2675 /// 2676 /// Instrument intrinsics with any number of arguments of the same type, 2677 /// equal to the return type. The type should be simple (no aggregates or 2678 /// pointers; vectors are fine). 2679 /// Caller guarantees that this intrinsic does not access memory. 2680 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2681 Type *RetTy = I.getType(); 2682 if (!(RetTy->isIntOrIntVectorTy() || 2683 RetTy->isFPOrFPVectorTy() || 2684 RetTy->isX86_MMXTy())) 2685 return false; 2686 2687 unsigned NumArgOperands = I.arg_size(); 2688 for (unsigned i = 0; i < NumArgOperands; ++i) { 2689 Type *Ty = I.getArgOperand(i)->getType(); 2690 if (Ty != RetTy) 2691 return false; 2692 } 2693 2694 IRBuilder<> IRB(&I); 2695 ShadowAndOriginCombiner SC(this, IRB); 2696 for (unsigned i = 0; i < NumArgOperands; ++i) 2697 SC.Add(I.getArgOperand(i)); 2698 SC.Done(&I); 2699 2700 return true; 2701 } 2702 2703 /// Heuristically instrument unknown intrinsics. 2704 /// 2705 /// The main purpose of this code is to do something reasonable with all 2706 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2707 /// We recognize several classes of intrinsics by their argument types and 2708 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2709 /// sure that we know what the intrinsic does. 2710 /// 2711 /// We special-case intrinsics where this approach fails. See llvm.bswap 2712 /// handling as an example of that. 2713 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2714 unsigned NumArgOperands = I.arg_size(); 2715 if (NumArgOperands == 0) 2716 return false; 2717 2718 if (NumArgOperands == 2 && 2719 I.getArgOperand(0)->getType()->isPointerTy() && 2720 I.getArgOperand(1)->getType()->isVectorTy() && 2721 I.getType()->isVoidTy() && 2722 !I.onlyReadsMemory()) { 2723 // This looks like a vector store. 2724 return handleVectorStoreIntrinsic(I); 2725 } 2726 2727 if (NumArgOperands == 1 && 2728 I.getArgOperand(0)->getType()->isPointerTy() && 2729 I.getType()->isVectorTy() && 2730 I.onlyReadsMemory()) { 2731 // This looks like a vector load. 2732 return handleVectorLoadIntrinsic(I); 2733 } 2734 2735 if (I.doesNotAccessMemory()) 2736 if (maybeHandleSimpleNomemIntrinsic(I)) 2737 return true; 2738 2739 // FIXME: detect and handle SSE maskstore/maskload 2740 return false; 2741 } 2742 2743 void handleInvariantGroup(IntrinsicInst &I) { 2744 setShadow(&I, getShadow(&I, 0)); 2745 setOrigin(&I, getOrigin(&I, 0)); 2746 } 2747 2748 void handleLifetimeStart(IntrinsicInst &I) { 2749 if (!PoisonStack) 2750 return; 2751 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2752 if (!AI) 2753 InstrumentLifetimeStart = false; 2754 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2755 } 2756 2757 void handleBswap(IntrinsicInst &I) { 2758 IRBuilder<> IRB(&I); 2759 Value *Op = I.getArgOperand(0); 2760 Type *OpType = Op->getType(); 2761 Function *BswapFunc = Intrinsic::getDeclaration( 2762 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2763 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2764 setOrigin(&I, getOrigin(Op)); 2765 } 2766 2767 // Instrument vector convert intrinsic. 2768 // 2769 // This function instruments intrinsics like cvtsi2ss: 2770 // %Out = int_xxx_cvtyyy(%ConvertOp) 2771 // or 2772 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2773 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2774 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2775 // elements from \p CopyOp. 2776 // In most cases conversion involves floating-point value which may trigger a 2777 // hardware exception when not fully initialized. For this reason we require 2778 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2779 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2780 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2781 // return a fully initialized value. 2782 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2783 bool HasRoundingMode = false) { 2784 IRBuilder<> IRB(&I); 2785 Value *CopyOp, *ConvertOp; 2786 2787 assert((!HasRoundingMode || 2788 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2789 "Invalid rounding mode"); 2790 2791 switch (I.arg_size() - HasRoundingMode) { 2792 case 2: 2793 CopyOp = I.getArgOperand(0); 2794 ConvertOp = I.getArgOperand(1); 2795 break; 2796 case 1: 2797 ConvertOp = I.getArgOperand(0); 2798 CopyOp = nullptr; 2799 break; 2800 default: 2801 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2802 } 2803 2804 // The first *NumUsedElements* elements of ConvertOp are converted to the 2805 // same number of output elements. The rest of the output is copied from 2806 // CopyOp, or (if not available) filled with zeroes. 2807 // Combine shadow for elements of ConvertOp that are used in this operation, 2808 // and insert a check. 2809 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2810 // int->any conversion. 2811 Value *ConvertShadow = getShadow(ConvertOp); 2812 Value *AggShadow = nullptr; 2813 if (ConvertOp->getType()->isVectorTy()) { 2814 AggShadow = IRB.CreateExtractElement( 2815 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2816 for (int i = 1; i < NumUsedElements; ++i) { 2817 Value *MoreShadow = IRB.CreateExtractElement( 2818 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2819 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2820 } 2821 } else { 2822 AggShadow = ConvertShadow; 2823 } 2824 assert(AggShadow->getType()->isIntegerTy()); 2825 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2826 2827 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2828 // ConvertOp. 2829 if (CopyOp) { 2830 assert(CopyOp->getType() == I.getType()); 2831 assert(CopyOp->getType()->isVectorTy()); 2832 Value *ResultShadow = getShadow(CopyOp); 2833 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2834 for (int i = 0; i < NumUsedElements; ++i) { 2835 ResultShadow = IRB.CreateInsertElement( 2836 ResultShadow, ConstantInt::getNullValue(EltTy), 2837 ConstantInt::get(IRB.getInt32Ty(), i)); 2838 } 2839 setShadow(&I, ResultShadow); 2840 setOrigin(&I, getOrigin(CopyOp)); 2841 } else { 2842 setShadow(&I, getCleanShadow(&I)); 2843 setOrigin(&I, getCleanOrigin()); 2844 } 2845 } 2846 2847 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2848 // zeroes if it is zero, and all ones otherwise. 2849 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2850 if (S->getType()->isVectorTy()) 2851 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2852 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2853 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2854 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2855 } 2856 2857 // Given a vector, extract its first element, and return all 2858 // zeroes if it is zero, and all ones otherwise. 2859 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2860 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2861 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2862 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2863 } 2864 2865 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2866 Type *T = S->getType(); 2867 assert(T->isVectorTy()); 2868 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2869 return IRB.CreateSExt(S2, T); 2870 } 2871 2872 // Instrument vector shift intrinsic. 2873 // 2874 // This function instruments intrinsics like int_x86_avx2_psll_w. 2875 // Intrinsic shifts %In by %ShiftSize bits. 2876 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2877 // size, and the rest is ignored. Behavior is defined even if shift size is 2878 // greater than register (or field) width. 2879 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2880 assert(I.arg_size() == 2); 2881 IRBuilder<> IRB(&I); 2882 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2883 // Otherwise perform the same shift on S1. 2884 Value *S1 = getShadow(&I, 0); 2885 Value *S2 = getShadow(&I, 1); 2886 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2887 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2888 Value *V1 = I.getOperand(0); 2889 Value *V2 = I.getOperand(1); 2890 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2891 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2892 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2893 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2894 setOriginForNaryOp(I); 2895 } 2896 2897 // Get an X86_MMX-sized vector type. 2898 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2899 const unsigned X86_MMXSizeInBits = 64; 2900 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2901 "Illegal MMX vector element size"); 2902 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2903 X86_MMXSizeInBits / EltSizeInBits); 2904 } 2905 2906 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2907 // intrinsic. 2908 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2909 switch (id) { 2910 case Intrinsic::x86_sse2_packsswb_128: 2911 case Intrinsic::x86_sse2_packuswb_128: 2912 return Intrinsic::x86_sse2_packsswb_128; 2913 2914 case Intrinsic::x86_sse2_packssdw_128: 2915 case Intrinsic::x86_sse41_packusdw: 2916 return Intrinsic::x86_sse2_packssdw_128; 2917 2918 case Intrinsic::x86_avx2_packsswb: 2919 case Intrinsic::x86_avx2_packuswb: 2920 return Intrinsic::x86_avx2_packsswb; 2921 2922 case Intrinsic::x86_avx2_packssdw: 2923 case Intrinsic::x86_avx2_packusdw: 2924 return Intrinsic::x86_avx2_packssdw; 2925 2926 case Intrinsic::x86_mmx_packsswb: 2927 case Intrinsic::x86_mmx_packuswb: 2928 return Intrinsic::x86_mmx_packsswb; 2929 2930 case Intrinsic::x86_mmx_packssdw: 2931 return Intrinsic::x86_mmx_packssdw; 2932 default: 2933 llvm_unreachable("unexpected intrinsic id"); 2934 } 2935 } 2936 2937 // Instrument vector pack intrinsic. 2938 // 2939 // This function instruments intrinsics like x86_mmx_packsswb, that 2940 // packs elements of 2 input vectors into half as many bits with saturation. 2941 // Shadow is propagated with the signed variant of the same intrinsic applied 2942 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2943 // EltSizeInBits is used only for x86mmx arguments. 2944 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2945 assert(I.arg_size() == 2); 2946 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2947 IRBuilder<> IRB(&I); 2948 Value *S1 = getShadow(&I, 0); 2949 Value *S2 = getShadow(&I, 1); 2950 assert(isX86_MMX || S1->getType()->isVectorTy()); 2951 2952 // SExt and ICmpNE below must apply to individual elements of input vectors. 2953 // In case of x86mmx arguments, cast them to appropriate vector types and 2954 // back. 2955 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2956 if (isX86_MMX) { 2957 S1 = IRB.CreateBitCast(S1, T); 2958 S2 = IRB.CreateBitCast(S2, T); 2959 } 2960 Value *S1_ext = IRB.CreateSExt( 2961 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2962 Value *S2_ext = IRB.CreateSExt( 2963 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2964 if (isX86_MMX) { 2965 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2966 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2967 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2968 } 2969 2970 Function *ShadowFn = Intrinsic::getDeclaration( 2971 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2972 2973 Value *S = 2974 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2975 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2976 setShadow(&I, S); 2977 setOriginForNaryOp(I); 2978 } 2979 2980 // Instrument sum-of-absolute-differences intrinsic. 2981 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2982 const unsigned SignificantBitsPerResultElement = 16; 2983 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2984 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2985 unsigned ZeroBitsPerResultElement = 2986 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2987 2988 IRBuilder<> IRB(&I); 2989 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2990 S = IRB.CreateBitCast(S, ResTy); 2991 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2992 ResTy); 2993 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2994 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2995 setShadow(&I, S); 2996 setOriginForNaryOp(I); 2997 } 2998 2999 // Instrument multiply-add intrinsic. 3000 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3001 unsigned EltSizeInBits = 0) { 3002 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3003 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3004 IRBuilder<> IRB(&I); 3005 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3006 S = IRB.CreateBitCast(S, ResTy); 3007 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3008 ResTy); 3009 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3010 setShadow(&I, S); 3011 setOriginForNaryOp(I); 3012 } 3013 3014 // Instrument compare-packed intrinsic. 3015 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3016 // all-ones shadow. 3017 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3018 IRBuilder<> IRB(&I); 3019 Type *ResTy = getShadowTy(&I); 3020 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3021 Value *S = IRB.CreateSExt( 3022 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3023 setShadow(&I, S); 3024 setOriginForNaryOp(I); 3025 } 3026 3027 // Instrument compare-scalar intrinsic. 3028 // This handles both cmp* intrinsics which return the result in the first 3029 // element of a vector, and comi* which return the result as i32. 3030 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3031 IRBuilder<> IRB(&I); 3032 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3033 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3034 setShadow(&I, S); 3035 setOriginForNaryOp(I); 3036 } 3037 3038 // Instrument generic vector reduction intrinsics 3039 // by ORing together all their fields. 3040 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3041 IRBuilder<> IRB(&I); 3042 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3043 setShadow(&I, S); 3044 setOrigin(&I, getOrigin(&I, 0)); 3045 } 3046 3047 // Instrument vector.reduce.or intrinsic. 3048 // Valid (non-poisoned) set bits in the operand pull low the 3049 // corresponding shadow bits. 3050 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3051 IRBuilder<> IRB(&I); 3052 Value *OperandShadow = getShadow(&I, 0); 3053 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3054 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3055 // Bit N is clean if any field's bit N is 1 and unpoison 3056 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3057 // Otherwise, it is clean if every field's bit N is unpoison 3058 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3059 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3060 3061 setShadow(&I, S); 3062 setOrigin(&I, getOrigin(&I, 0)); 3063 } 3064 3065 // Instrument vector.reduce.and intrinsic. 3066 // Valid (non-poisoned) unset bits in the operand pull down the 3067 // corresponding shadow bits. 3068 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3069 IRBuilder<> IRB(&I); 3070 Value *OperandShadow = getShadow(&I, 0); 3071 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3072 // Bit N is clean if any field's bit N is 0 and unpoison 3073 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3074 // Otherwise, it is clean if every field's bit N is unpoison 3075 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3076 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3077 3078 setShadow(&I, S); 3079 setOrigin(&I, getOrigin(&I, 0)); 3080 } 3081 3082 void handleStmxcsr(IntrinsicInst &I) { 3083 IRBuilder<> IRB(&I); 3084 Value* Addr = I.getArgOperand(0); 3085 Type *Ty = IRB.getInt32Ty(); 3086 Value *ShadowPtr = 3087 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3088 3089 IRB.CreateStore(getCleanShadow(Ty), 3090 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3091 3092 if (ClCheckAccessAddress) 3093 insertShadowCheck(Addr, &I); 3094 } 3095 3096 void handleLdmxcsr(IntrinsicInst &I) { 3097 if (!InsertChecks) return; 3098 3099 IRBuilder<> IRB(&I); 3100 Value *Addr = I.getArgOperand(0); 3101 Type *Ty = IRB.getInt32Ty(); 3102 const Align Alignment = Align(1); 3103 Value *ShadowPtr, *OriginPtr; 3104 std::tie(ShadowPtr, OriginPtr) = 3105 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3106 3107 if (ClCheckAccessAddress) 3108 insertShadowCheck(Addr, &I); 3109 3110 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3111 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3112 : getCleanOrigin(); 3113 insertShadowCheck(Shadow, Origin, &I); 3114 } 3115 3116 void handleMaskedStore(IntrinsicInst &I) { 3117 IRBuilder<> IRB(&I); 3118 Value *V = I.getArgOperand(0); 3119 Value *Addr = I.getArgOperand(1); 3120 const Align Alignment( 3121 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3122 Value *Mask = I.getArgOperand(3); 3123 Value *Shadow = getShadow(V); 3124 3125 Value *ShadowPtr; 3126 Value *OriginPtr; 3127 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3128 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3129 3130 if (ClCheckAccessAddress) { 3131 insertShadowCheck(Addr, &I); 3132 // Uninitialized mask is kind of like uninitialized address, but not as 3133 // scary. 3134 insertShadowCheck(Mask, &I); 3135 } 3136 3137 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3138 3139 if (MS.TrackOrigins) { 3140 auto &DL = F.getParent()->getDataLayout(); 3141 paintOrigin(IRB, getOrigin(V), OriginPtr, 3142 DL.getTypeStoreSize(Shadow->getType()), 3143 std::max(Alignment, kMinOriginAlignment)); 3144 } 3145 } 3146 3147 bool handleMaskedLoad(IntrinsicInst &I) { 3148 IRBuilder<> IRB(&I); 3149 Value *Addr = I.getArgOperand(0); 3150 const Align Alignment( 3151 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3152 Value *Mask = I.getArgOperand(2); 3153 Value *PassThru = I.getArgOperand(3); 3154 3155 Type *ShadowTy = getShadowTy(&I); 3156 Value *ShadowPtr, *OriginPtr; 3157 if (PropagateShadow) { 3158 std::tie(ShadowPtr, OriginPtr) = 3159 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3160 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3161 getShadow(PassThru), "_msmaskedld")); 3162 } else { 3163 setShadow(&I, getCleanShadow(&I)); 3164 } 3165 3166 if (ClCheckAccessAddress) { 3167 insertShadowCheck(Addr, &I); 3168 insertShadowCheck(Mask, &I); 3169 } 3170 3171 if (MS.TrackOrigins) { 3172 if (PropagateShadow) { 3173 // Choose between PassThru's and the loaded value's origins. 3174 Value *MaskedPassThruShadow = IRB.CreateAnd( 3175 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3176 3177 Value *Acc = IRB.CreateExtractElement( 3178 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3179 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3180 ->getNumElements(); 3181 i < N; ++i) { 3182 Value *More = IRB.CreateExtractElement( 3183 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3184 Acc = IRB.CreateOr(Acc, More); 3185 } 3186 3187 Value *Origin = IRB.CreateSelect( 3188 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3189 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3190 3191 setOrigin(&I, Origin); 3192 } else { 3193 setOrigin(&I, getCleanOrigin()); 3194 } 3195 } 3196 return true; 3197 } 3198 3199 // Instrument BMI / BMI2 intrinsics. 3200 // All of these intrinsics are Z = I(X, Y) 3201 // where the types of all operands and the result match, and are either i32 or i64. 3202 // The following instrumentation happens to work for all of them: 3203 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3204 void handleBmiIntrinsic(IntrinsicInst &I) { 3205 IRBuilder<> IRB(&I); 3206 Type *ShadowTy = getShadowTy(&I); 3207 3208 // If any bit of the mask operand is poisoned, then the whole thing is. 3209 Value *SMask = getShadow(&I, 1); 3210 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3211 ShadowTy); 3212 // Apply the same intrinsic to the shadow of the first operand. 3213 Value *S = IRB.CreateCall(I.getCalledFunction(), 3214 {getShadow(&I, 0), I.getOperand(1)}); 3215 S = IRB.CreateOr(SMask, S); 3216 setShadow(&I, S); 3217 setOriginForNaryOp(I); 3218 } 3219 3220 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3221 SmallVector<int, 8> Mask; 3222 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3223 Mask.append(2, X); 3224 } 3225 return Mask; 3226 } 3227 3228 // Instrument pclmul intrinsics. 3229 // These intrinsics operate either on odd or on even elements of the input 3230 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3231 // Replace the unused elements with copies of the used ones, ex: 3232 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3233 // or 3234 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3235 // and then apply the usual shadow combining logic. 3236 void handlePclmulIntrinsic(IntrinsicInst &I) { 3237 IRBuilder<> IRB(&I); 3238 unsigned Width = 3239 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3240 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3241 "pclmul 3rd operand must be a constant"); 3242 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3243 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3244 getPclmulMask(Width, Imm & 0x01)); 3245 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3246 getPclmulMask(Width, Imm & 0x10)); 3247 ShadowAndOriginCombiner SOC(this, IRB); 3248 SOC.Add(Shuf0, getOrigin(&I, 0)); 3249 SOC.Add(Shuf1, getOrigin(&I, 1)); 3250 SOC.Done(&I); 3251 } 3252 3253 // Instrument _mm_*_sd intrinsics 3254 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3255 IRBuilder<> IRB(&I); 3256 Value *First = getShadow(&I, 0); 3257 Value *Second = getShadow(&I, 1); 3258 // High word of first operand, low word of second 3259 Value *Shadow = 3260 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3261 3262 setShadow(&I, Shadow); 3263 setOriginForNaryOp(I); 3264 } 3265 3266 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3267 IRBuilder<> IRB(&I); 3268 Value *First = getShadow(&I, 0); 3269 Value *Second = getShadow(&I, 1); 3270 Value *OrShadow = IRB.CreateOr(First, Second); 3271 // High word of first operand, low word of both OR'd together 3272 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3273 llvm::makeArrayRef<int>({2, 1})); 3274 3275 setShadow(&I, Shadow); 3276 setOriginForNaryOp(I); 3277 } 3278 3279 // Instrument abs intrinsic. 3280 // handleUnknownIntrinsic can't handle it because of the last 3281 // is_int_min_poison argument which does not match the result type. 3282 void handleAbsIntrinsic(IntrinsicInst &I) { 3283 assert(I.getType()->isIntOrIntVectorTy()); 3284 assert(I.getArgOperand(0)->getType() == I.getType()); 3285 3286 // FIXME: Handle is_int_min_poison. 3287 IRBuilder<> IRB(&I); 3288 setShadow(&I, getShadow(&I, 0)); 3289 setOrigin(&I, getOrigin(&I, 0)); 3290 } 3291 3292 void visitIntrinsicInst(IntrinsicInst &I) { 3293 switch (I.getIntrinsicID()) { 3294 case Intrinsic::abs: 3295 handleAbsIntrinsic(I); 3296 break; 3297 case Intrinsic::lifetime_start: 3298 handleLifetimeStart(I); 3299 break; 3300 case Intrinsic::launder_invariant_group: 3301 case Intrinsic::strip_invariant_group: 3302 handleInvariantGroup(I); 3303 break; 3304 case Intrinsic::bswap: 3305 handleBswap(I); 3306 break; 3307 case Intrinsic::masked_store: 3308 handleMaskedStore(I); 3309 break; 3310 case Intrinsic::masked_load: 3311 handleMaskedLoad(I); 3312 break; 3313 case Intrinsic::vector_reduce_and: 3314 handleVectorReduceAndIntrinsic(I); 3315 break; 3316 case Intrinsic::vector_reduce_or: 3317 handleVectorReduceOrIntrinsic(I); 3318 break; 3319 case Intrinsic::vector_reduce_add: 3320 case Intrinsic::vector_reduce_xor: 3321 case Intrinsic::vector_reduce_mul: 3322 handleVectorReduceIntrinsic(I); 3323 break; 3324 case Intrinsic::x86_sse_stmxcsr: 3325 handleStmxcsr(I); 3326 break; 3327 case Intrinsic::x86_sse_ldmxcsr: 3328 handleLdmxcsr(I); 3329 break; 3330 case Intrinsic::x86_avx512_vcvtsd2usi64: 3331 case Intrinsic::x86_avx512_vcvtsd2usi32: 3332 case Intrinsic::x86_avx512_vcvtss2usi64: 3333 case Intrinsic::x86_avx512_vcvtss2usi32: 3334 case Intrinsic::x86_avx512_cvttss2usi64: 3335 case Intrinsic::x86_avx512_cvttss2usi: 3336 case Intrinsic::x86_avx512_cvttsd2usi64: 3337 case Intrinsic::x86_avx512_cvttsd2usi: 3338 case Intrinsic::x86_avx512_cvtusi2ss: 3339 case Intrinsic::x86_avx512_cvtusi642sd: 3340 case Intrinsic::x86_avx512_cvtusi642ss: 3341 handleVectorConvertIntrinsic(I, 1, true); 3342 break; 3343 case Intrinsic::x86_sse2_cvtsd2si64: 3344 case Intrinsic::x86_sse2_cvtsd2si: 3345 case Intrinsic::x86_sse2_cvtsd2ss: 3346 case Intrinsic::x86_sse2_cvttsd2si64: 3347 case Intrinsic::x86_sse2_cvttsd2si: 3348 case Intrinsic::x86_sse_cvtss2si64: 3349 case Intrinsic::x86_sse_cvtss2si: 3350 case Intrinsic::x86_sse_cvttss2si64: 3351 case Intrinsic::x86_sse_cvttss2si: 3352 handleVectorConvertIntrinsic(I, 1); 3353 break; 3354 case Intrinsic::x86_sse_cvtps2pi: 3355 case Intrinsic::x86_sse_cvttps2pi: 3356 handleVectorConvertIntrinsic(I, 2); 3357 break; 3358 3359 case Intrinsic::x86_avx512_psll_w_512: 3360 case Intrinsic::x86_avx512_psll_d_512: 3361 case Intrinsic::x86_avx512_psll_q_512: 3362 case Intrinsic::x86_avx512_pslli_w_512: 3363 case Intrinsic::x86_avx512_pslli_d_512: 3364 case Intrinsic::x86_avx512_pslli_q_512: 3365 case Intrinsic::x86_avx512_psrl_w_512: 3366 case Intrinsic::x86_avx512_psrl_d_512: 3367 case Intrinsic::x86_avx512_psrl_q_512: 3368 case Intrinsic::x86_avx512_psra_w_512: 3369 case Intrinsic::x86_avx512_psra_d_512: 3370 case Intrinsic::x86_avx512_psra_q_512: 3371 case Intrinsic::x86_avx512_psrli_w_512: 3372 case Intrinsic::x86_avx512_psrli_d_512: 3373 case Intrinsic::x86_avx512_psrli_q_512: 3374 case Intrinsic::x86_avx512_psrai_w_512: 3375 case Intrinsic::x86_avx512_psrai_d_512: 3376 case Intrinsic::x86_avx512_psrai_q_512: 3377 case Intrinsic::x86_avx512_psra_q_256: 3378 case Intrinsic::x86_avx512_psra_q_128: 3379 case Intrinsic::x86_avx512_psrai_q_256: 3380 case Intrinsic::x86_avx512_psrai_q_128: 3381 case Intrinsic::x86_avx2_psll_w: 3382 case Intrinsic::x86_avx2_psll_d: 3383 case Intrinsic::x86_avx2_psll_q: 3384 case Intrinsic::x86_avx2_pslli_w: 3385 case Intrinsic::x86_avx2_pslli_d: 3386 case Intrinsic::x86_avx2_pslli_q: 3387 case Intrinsic::x86_avx2_psrl_w: 3388 case Intrinsic::x86_avx2_psrl_d: 3389 case Intrinsic::x86_avx2_psrl_q: 3390 case Intrinsic::x86_avx2_psra_w: 3391 case Intrinsic::x86_avx2_psra_d: 3392 case Intrinsic::x86_avx2_psrli_w: 3393 case Intrinsic::x86_avx2_psrli_d: 3394 case Intrinsic::x86_avx2_psrli_q: 3395 case Intrinsic::x86_avx2_psrai_w: 3396 case Intrinsic::x86_avx2_psrai_d: 3397 case Intrinsic::x86_sse2_psll_w: 3398 case Intrinsic::x86_sse2_psll_d: 3399 case Intrinsic::x86_sse2_psll_q: 3400 case Intrinsic::x86_sse2_pslli_w: 3401 case Intrinsic::x86_sse2_pslli_d: 3402 case Intrinsic::x86_sse2_pslli_q: 3403 case Intrinsic::x86_sse2_psrl_w: 3404 case Intrinsic::x86_sse2_psrl_d: 3405 case Intrinsic::x86_sse2_psrl_q: 3406 case Intrinsic::x86_sse2_psra_w: 3407 case Intrinsic::x86_sse2_psra_d: 3408 case Intrinsic::x86_sse2_psrli_w: 3409 case Intrinsic::x86_sse2_psrli_d: 3410 case Intrinsic::x86_sse2_psrli_q: 3411 case Intrinsic::x86_sse2_psrai_w: 3412 case Intrinsic::x86_sse2_psrai_d: 3413 case Intrinsic::x86_mmx_psll_w: 3414 case Intrinsic::x86_mmx_psll_d: 3415 case Intrinsic::x86_mmx_psll_q: 3416 case Intrinsic::x86_mmx_pslli_w: 3417 case Intrinsic::x86_mmx_pslli_d: 3418 case Intrinsic::x86_mmx_pslli_q: 3419 case Intrinsic::x86_mmx_psrl_w: 3420 case Intrinsic::x86_mmx_psrl_d: 3421 case Intrinsic::x86_mmx_psrl_q: 3422 case Intrinsic::x86_mmx_psra_w: 3423 case Intrinsic::x86_mmx_psra_d: 3424 case Intrinsic::x86_mmx_psrli_w: 3425 case Intrinsic::x86_mmx_psrli_d: 3426 case Intrinsic::x86_mmx_psrli_q: 3427 case Intrinsic::x86_mmx_psrai_w: 3428 case Intrinsic::x86_mmx_psrai_d: 3429 handleVectorShiftIntrinsic(I, /* Variable */ false); 3430 break; 3431 case Intrinsic::x86_avx2_psllv_d: 3432 case Intrinsic::x86_avx2_psllv_d_256: 3433 case Intrinsic::x86_avx512_psllv_d_512: 3434 case Intrinsic::x86_avx2_psllv_q: 3435 case Intrinsic::x86_avx2_psllv_q_256: 3436 case Intrinsic::x86_avx512_psllv_q_512: 3437 case Intrinsic::x86_avx2_psrlv_d: 3438 case Intrinsic::x86_avx2_psrlv_d_256: 3439 case Intrinsic::x86_avx512_psrlv_d_512: 3440 case Intrinsic::x86_avx2_psrlv_q: 3441 case Intrinsic::x86_avx2_psrlv_q_256: 3442 case Intrinsic::x86_avx512_psrlv_q_512: 3443 case Intrinsic::x86_avx2_psrav_d: 3444 case Intrinsic::x86_avx2_psrav_d_256: 3445 case Intrinsic::x86_avx512_psrav_d_512: 3446 case Intrinsic::x86_avx512_psrav_q_128: 3447 case Intrinsic::x86_avx512_psrav_q_256: 3448 case Intrinsic::x86_avx512_psrav_q_512: 3449 handleVectorShiftIntrinsic(I, /* Variable */ true); 3450 break; 3451 3452 case Intrinsic::x86_sse2_packsswb_128: 3453 case Intrinsic::x86_sse2_packssdw_128: 3454 case Intrinsic::x86_sse2_packuswb_128: 3455 case Intrinsic::x86_sse41_packusdw: 3456 case Intrinsic::x86_avx2_packsswb: 3457 case Intrinsic::x86_avx2_packssdw: 3458 case Intrinsic::x86_avx2_packuswb: 3459 case Intrinsic::x86_avx2_packusdw: 3460 handleVectorPackIntrinsic(I); 3461 break; 3462 3463 case Intrinsic::x86_mmx_packsswb: 3464 case Intrinsic::x86_mmx_packuswb: 3465 handleVectorPackIntrinsic(I, 16); 3466 break; 3467 3468 case Intrinsic::x86_mmx_packssdw: 3469 handleVectorPackIntrinsic(I, 32); 3470 break; 3471 3472 case Intrinsic::x86_mmx_psad_bw: 3473 case Intrinsic::x86_sse2_psad_bw: 3474 case Intrinsic::x86_avx2_psad_bw: 3475 handleVectorSadIntrinsic(I); 3476 break; 3477 3478 case Intrinsic::x86_sse2_pmadd_wd: 3479 case Intrinsic::x86_avx2_pmadd_wd: 3480 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3481 case Intrinsic::x86_avx2_pmadd_ub_sw: 3482 handleVectorPmaddIntrinsic(I); 3483 break; 3484 3485 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3486 handleVectorPmaddIntrinsic(I, 8); 3487 break; 3488 3489 case Intrinsic::x86_mmx_pmadd_wd: 3490 handleVectorPmaddIntrinsic(I, 16); 3491 break; 3492 3493 case Intrinsic::x86_sse_cmp_ss: 3494 case Intrinsic::x86_sse2_cmp_sd: 3495 case Intrinsic::x86_sse_comieq_ss: 3496 case Intrinsic::x86_sse_comilt_ss: 3497 case Intrinsic::x86_sse_comile_ss: 3498 case Intrinsic::x86_sse_comigt_ss: 3499 case Intrinsic::x86_sse_comige_ss: 3500 case Intrinsic::x86_sse_comineq_ss: 3501 case Intrinsic::x86_sse_ucomieq_ss: 3502 case Intrinsic::x86_sse_ucomilt_ss: 3503 case Intrinsic::x86_sse_ucomile_ss: 3504 case Intrinsic::x86_sse_ucomigt_ss: 3505 case Intrinsic::x86_sse_ucomige_ss: 3506 case Intrinsic::x86_sse_ucomineq_ss: 3507 case Intrinsic::x86_sse2_comieq_sd: 3508 case Intrinsic::x86_sse2_comilt_sd: 3509 case Intrinsic::x86_sse2_comile_sd: 3510 case Intrinsic::x86_sse2_comigt_sd: 3511 case Intrinsic::x86_sse2_comige_sd: 3512 case Intrinsic::x86_sse2_comineq_sd: 3513 case Intrinsic::x86_sse2_ucomieq_sd: 3514 case Intrinsic::x86_sse2_ucomilt_sd: 3515 case Intrinsic::x86_sse2_ucomile_sd: 3516 case Intrinsic::x86_sse2_ucomigt_sd: 3517 case Intrinsic::x86_sse2_ucomige_sd: 3518 case Intrinsic::x86_sse2_ucomineq_sd: 3519 handleVectorCompareScalarIntrinsic(I); 3520 break; 3521 3522 case Intrinsic::x86_sse_cmp_ps: 3523 case Intrinsic::x86_sse2_cmp_pd: 3524 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3525 // generates reasonably looking IR that fails in the backend with "Do not 3526 // know how to split the result of this operator!". 3527 handleVectorComparePackedIntrinsic(I); 3528 break; 3529 3530 case Intrinsic::x86_bmi_bextr_32: 3531 case Intrinsic::x86_bmi_bextr_64: 3532 case Intrinsic::x86_bmi_bzhi_32: 3533 case Intrinsic::x86_bmi_bzhi_64: 3534 case Intrinsic::x86_bmi_pdep_32: 3535 case Intrinsic::x86_bmi_pdep_64: 3536 case Intrinsic::x86_bmi_pext_32: 3537 case Intrinsic::x86_bmi_pext_64: 3538 handleBmiIntrinsic(I); 3539 break; 3540 3541 case Intrinsic::x86_pclmulqdq: 3542 case Intrinsic::x86_pclmulqdq_256: 3543 case Intrinsic::x86_pclmulqdq_512: 3544 handlePclmulIntrinsic(I); 3545 break; 3546 3547 case Intrinsic::x86_sse41_round_sd: 3548 handleUnarySdIntrinsic(I); 3549 break; 3550 case Intrinsic::x86_sse2_max_sd: 3551 case Intrinsic::x86_sse2_min_sd: 3552 handleBinarySdIntrinsic(I); 3553 break; 3554 3555 case Intrinsic::fshl: 3556 case Intrinsic::fshr: 3557 handleFunnelShift(I); 3558 break; 3559 3560 case Intrinsic::is_constant: 3561 // The result of llvm.is.constant() is always defined. 3562 setShadow(&I, getCleanShadow(&I)); 3563 setOrigin(&I, getCleanOrigin()); 3564 break; 3565 3566 default: 3567 if (!handleUnknownIntrinsic(I)) 3568 visitInstruction(I); 3569 break; 3570 } 3571 } 3572 3573 void visitLibAtomicLoad(CallBase &CB) { 3574 // Since we use getNextNode here, we can't have CB terminate the BB. 3575 assert(isa<CallInst>(CB)); 3576 3577 IRBuilder<> IRB(&CB); 3578 Value *Size = CB.getArgOperand(0); 3579 Value *SrcPtr = CB.getArgOperand(1); 3580 Value *DstPtr = CB.getArgOperand(2); 3581 Value *Ordering = CB.getArgOperand(3); 3582 // Convert the call to have at least Acquire ordering to make sure 3583 // the shadow operations aren't reordered before it. 3584 Value *NewOrdering = 3585 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3586 CB.setArgOperand(3, NewOrdering); 3587 3588 IRBuilder<> NextIRB(CB.getNextNode()); 3589 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3590 3591 Value *SrcShadowPtr, *SrcOriginPtr; 3592 std::tie(SrcShadowPtr, SrcOriginPtr) = 3593 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3594 /*isStore*/ false); 3595 Value *DstShadowPtr = 3596 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3597 /*isStore*/ true) 3598 .first; 3599 3600 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3601 if (MS.TrackOrigins) { 3602 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3603 kMinOriginAlignment); 3604 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3605 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3606 } 3607 } 3608 3609 void visitLibAtomicStore(CallBase &CB) { 3610 IRBuilder<> IRB(&CB); 3611 Value *Size = CB.getArgOperand(0); 3612 Value *DstPtr = CB.getArgOperand(2); 3613 Value *Ordering = CB.getArgOperand(3); 3614 // Convert the call to have at least Release ordering to make sure 3615 // the shadow operations aren't reordered after it. 3616 Value *NewOrdering = 3617 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3618 CB.setArgOperand(3, NewOrdering); 3619 3620 Value *DstShadowPtr = 3621 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3622 /*isStore*/ true) 3623 .first; 3624 3625 // Atomic store always paints clean shadow/origin. See file header. 3626 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3627 Align(1)); 3628 } 3629 3630 void visitCallBase(CallBase &CB) { 3631 assert(!CB.getMetadata("nosanitize")); 3632 if (CB.isInlineAsm()) { 3633 // For inline asm (either a call to asm function, or callbr instruction), 3634 // do the usual thing: check argument shadow and mark all outputs as 3635 // clean. Note that any side effects of the inline asm that are not 3636 // immediately visible in its constraints are not handled. 3637 if (ClHandleAsmConservative && MS.CompileKernel) 3638 visitAsmInstruction(CB); 3639 else 3640 visitInstruction(CB); 3641 return; 3642 } 3643 LibFunc LF; 3644 if (TLI->getLibFunc(CB, LF)) { 3645 // libatomic.a functions need to have special handling because there isn't 3646 // a good way to intercept them or compile the library with 3647 // instrumentation. 3648 switch (LF) { 3649 case LibFunc_atomic_load: 3650 if (!isa<CallInst>(CB)) { 3651 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3652 "Ignoring!\n"; 3653 break; 3654 } 3655 visitLibAtomicLoad(CB); 3656 return; 3657 case LibFunc_atomic_store: 3658 visitLibAtomicStore(CB); 3659 return; 3660 default: 3661 break; 3662 } 3663 } 3664 3665 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3666 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3667 3668 // We are going to insert code that relies on the fact that the callee 3669 // will become a non-readonly function after it is instrumented by us. To 3670 // prevent this code from being optimized out, mark that function 3671 // non-readonly in advance. 3672 AttributeMask B; 3673 B.addAttribute(Attribute::ReadOnly) 3674 .addAttribute(Attribute::ReadNone) 3675 .addAttribute(Attribute::WriteOnly) 3676 .addAttribute(Attribute::ArgMemOnly) 3677 .addAttribute(Attribute::Speculatable); 3678 3679 Call->removeFnAttrs(B); 3680 if (Function *Func = Call->getCalledFunction()) { 3681 Func->removeFnAttrs(B); 3682 } 3683 3684 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3685 } 3686 IRBuilder<> IRB(&CB); 3687 bool MayCheckCall = MS.EagerChecks; 3688 if (Function *Func = CB.getCalledFunction()) { 3689 // __sanitizer_unaligned_{load,store} functions may be called by users 3690 // and always expects shadows in the TLS. So don't check them. 3691 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3692 } 3693 3694 unsigned ArgOffset = 0; 3695 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3696 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3697 ++ArgIt) { 3698 Value *A = *ArgIt; 3699 unsigned i = ArgIt - CB.arg_begin(); 3700 if (!A->getType()->isSized()) { 3701 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3702 continue; 3703 } 3704 unsigned Size = 0; 3705 Value *Store = nullptr; 3706 // Compute the Shadow for arg even if it is ByVal, because 3707 // in that case getShadow() will copy the actual arg shadow to 3708 // __msan_param_tls. 3709 Value *ArgShadow = getShadow(A); 3710 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3711 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3712 << " Shadow: " << *ArgShadow << "\n"); 3713 bool ArgIsInitialized = false; 3714 const DataLayout &DL = F.getParent()->getDataLayout(); 3715 3716 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3717 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3718 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3719 3720 if (EagerCheck) { 3721 insertShadowCheck(A, &CB); 3722 Size = DL.getTypeAllocSize(A->getType()); 3723 } else { 3724 if (ByVal) { 3725 // ByVal requires some special handling as it's too big for a single 3726 // load 3727 assert(A->getType()->isPointerTy() && 3728 "ByVal argument is not a pointer!"); 3729 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3730 if (ArgOffset + Size > kParamTLSSize) 3731 break; 3732 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3733 MaybeAlign Alignment = llvm::None; 3734 if (ParamAlignment) 3735 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3736 Value *AShadowPtr = 3737 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3738 /*isStore*/ false) 3739 .first; 3740 3741 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3742 Alignment, Size); 3743 // TODO(glider): need to copy origins. 3744 } else { 3745 // Any other parameters mean we need bit-grained tracking of uninit 3746 // data 3747 Size = DL.getTypeAllocSize(A->getType()); 3748 if (ArgOffset + Size > kParamTLSSize) 3749 break; 3750 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3751 kShadowTLSAlignment); 3752 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3753 if (Cst && Cst->isNullValue()) 3754 ArgIsInitialized = true; 3755 } 3756 if (MS.TrackOrigins && !ArgIsInitialized) 3757 IRB.CreateStore(getOrigin(A), 3758 getOriginPtrForArgument(A, IRB, ArgOffset)); 3759 (void)Store; 3760 assert(Store != nullptr); 3761 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3762 } 3763 assert(Size != 0); 3764 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3765 } 3766 LLVM_DEBUG(dbgs() << " done with call args\n"); 3767 3768 FunctionType *FT = CB.getFunctionType(); 3769 if (FT->isVarArg()) { 3770 VAHelper->visitCallBase(CB, IRB); 3771 } 3772 3773 // Now, get the shadow for the RetVal. 3774 if (!CB.getType()->isSized()) 3775 return; 3776 // Don't emit the epilogue for musttail call returns. 3777 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3778 return; 3779 3780 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3781 setShadow(&CB, getCleanShadow(&CB)); 3782 setOrigin(&CB, getCleanOrigin()); 3783 return; 3784 } 3785 3786 IRBuilder<> IRBBefore(&CB); 3787 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3788 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3789 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3790 kShadowTLSAlignment); 3791 BasicBlock::iterator NextInsn; 3792 if (isa<CallInst>(CB)) { 3793 NextInsn = ++CB.getIterator(); 3794 assert(NextInsn != CB.getParent()->end()); 3795 } else { 3796 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3797 if (!NormalDest->getSinglePredecessor()) { 3798 // FIXME: this case is tricky, so we are just conservative here. 3799 // Perhaps we need to split the edge between this BB and NormalDest, 3800 // but a naive attempt to use SplitEdge leads to a crash. 3801 setShadow(&CB, getCleanShadow(&CB)); 3802 setOrigin(&CB, getCleanOrigin()); 3803 return; 3804 } 3805 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3806 // Anything inserted there will be instrumented by MSan later! 3807 NextInsn = NormalDest->getFirstInsertionPt(); 3808 assert(NextInsn != NormalDest->end() && 3809 "Could not find insertion point for retval shadow load"); 3810 } 3811 IRBuilder<> IRBAfter(&*NextInsn); 3812 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3813 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3814 kShadowTLSAlignment, "_msret"); 3815 setShadow(&CB, RetvalShadow); 3816 if (MS.TrackOrigins) 3817 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3818 getOriginPtrForRetval(IRBAfter))); 3819 } 3820 3821 bool isAMustTailRetVal(Value *RetVal) { 3822 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3823 RetVal = I->getOperand(0); 3824 } 3825 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3826 return I->isMustTailCall(); 3827 } 3828 return false; 3829 } 3830 3831 void visitReturnInst(ReturnInst &I) { 3832 IRBuilder<> IRB(&I); 3833 Value *RetVal = I.getReturnValue(); 3834 if (!RetVal) return; 3835 // Don't emit the epilogue for musttail call returns. 3836 if (isAMustTailRetVal(RetVal)) return; 3837 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3838 bool HasNoUndef = 3839 F.hasRetAttribute(Attribute::NoUndef); 3840 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 3841 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3842 // must always return fully initialized values. For now, we hardcode "main". 3843 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 3844 3845 Value *Shadow = getShadow(RetVal); 3846 bool StoreOrigin = true; 3847 if (EagerCheck) { 3848 insertShadowCheck(RetVal, &I); 3849 Shadow = getCleanShadow(RetVal); 3850 StoreOrigin = false; 3851 } 3852 3853 // The caller may still expect information passed over TLS if we pass our 3854 // check 3855 if (StoreShadow) { 3856 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3857 if (MS.TrackOrigins && StoreOrigin) 3858 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3859 } 3860 } 3861 3862 void visitPHINode(PHINode &I) { 3863 IRBuilder<> IRB(&I); 3864 if (!PropagateShadow) { 3865 setShadow(&I, getCleanShadow(&I)); 3866 setOrigin(&I, getCleanOrigin()); 3867 return; 3868 } 3869 3870 ShadowPHINodes.push_back(&I); 3871 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3872 "_msphi_s")); 3873 if (MS.TrackOrigins) 3874 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3875 "_msphi_o")); 3876 } 3877 3878 Value *getLocalVarDescription(AllocaInst &I) { 3879 SmallString<2048> StackDescriptionStorage; 3880 raw_svector_ostream StackDescription(StackDescriptionStorage); 3881 // We create a string with a description of the stack allocation and 3882 // pass it into __msan_set_alloca_origin. 3883 // It will be printed by the run-time if stack-originated UMR is found. 3884 // The first 4 bytes of the string are set to '----' and will be replaced 3885 // by __msan_va_arg_overflow_size_tls at the first call. 3886 StackDescription << "----" << I.getName() << "@" << F.getName(); 3887 return createPrivateNonConstGlobalForString(*F.getParent(), 3888 StackDescription.str()); 3889 } 3890 3891 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3892 if (PoisonStack && ClPoisonStackWithCall) { 3893 IRB.CreateCall(MS.MsanPoisonStackFn, 3894 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3895 } else { 3896 Value *ShadowBase, *OriginBase; 3897 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3898 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3899 3900 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3901 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 3902 } 3903 3904 if (PoisonStack && MS.TrackOrigins) { 3905 Value *Descr = getLocalVarDescription(I); 3906 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3907 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3908 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3909 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3910 } 3911 } 3912 3913 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3914 Value *Descr = getLocalVarDescription(I); 3915 if (PoisonStack) { 3916 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3917 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3918 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3919 } else { 3920 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3921 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3922 } 3923 } 3924 3925 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3926 if (!InsPoint) 3927 InsPoint = &I; 3928 IRBuilder<> IRB(InsPoint->getNextNode()); 3929 const DataLayout &DL = F.getParent()->getDataLayout(); 3930 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3931 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3932 if (I.isArrayAllocation()) 3933 Len = IRB.CreateMul(Len, I.getArraySize()); 3934 3935 if (MS.CompileKernel) 3936 poisonAllocaKmsan(I, IRB, Len); 3937 else 3938 poisonAllocaUserspace(I, IRB, Len); 3939 } 3940 3941 void visitAllocaInst(AllocaInst &I) { 3942 setShadow(&I, getCleanShadow(&I)); 3943 setOrigin(&I, getCleanOrigin()); 3944 // We'll get to this alloca later unless it's poisoned at the corresponding 3945 // llvm.lifetime.start. 3946 AllocaSet.insert(&I); 3947 } 3948 3949 void visitSelectInst(SelectInst& I) { 3950 IRBuilder<> IRB(&I); 3951 // a = select b, c, d 3952 Value *B = I.getCondition(); 3953 Value *C = I.getTrueValue(); 3954 Value *D = I.getFalseValue(); 3955 Value *Sb = getShadow(B); 3956 Value *Sc = getShadow(C); 3957 Value *Sd = getShadow(D); 3958 3959 // Result shadow if condition shadow is 0. 3960 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3961 Value *Sa1; 3962 if (I.getType()->isAggregateType()) { 3963 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3964 // an extra "select". This results in much more compact IR. 3965 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3966 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3967 } else { 3968 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3969 // If Sb (condition is poisoned), look for bits in c and d that are equal 3970 // and both unpoisoned. 3971 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3972 3973 // Cast arguments to shadow-compatible type. 3974 C = CreateAppToShadowCast(IRB, C); 3975 D = CreateAppToShadowCast(IRB, D); 3976 3977 // Result shadow if condition shadow is 1. 3978 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3979 } 3980 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3981 setShadow(&I, Sa); 3982 if (MS.TrackOrigins) { 3983 // Origins are always i32, so any vector conditions must be flattened. 3984 // FIXME: consider tracking vector origins for app vectors? 3985 if (B->getType()->isVectorTy()) { 3986 Type *FlatTy = getShadowTyNoVec(B->getType()); 3987 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3988 ConstantInt::getNullValue(FlatTy)); 3989 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3990 ConstantInt::getNullValue(FlatTy)); 3991 } 3992 // a = select b, c, d 3993 // Oa = Sb ? Ob : (b ? Oc : Od) 3994 setOrigin( 3995 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3996 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3997 getOrigin(I.getFalseValue())))); 3998 } 3999 } 4000 4001 void visitLandingPadInst(LandingPadInst &I) { 4002 // Do nothing. 4003 // See https://github.com/google/sanitizers/issues/504 4004 setShadow(&I, getCleanShadow(&I)); 4005 setOrigin(&I, getCleanOrigin()); 4006 } 4007 4008 void visitCatchSwitchInst(CatchSwitchInst &I) { 4009 setShadow(&I, getCleanShadow(&I)); 4010 setOrigin(&I, getCleanOrigin()); 4011 } 4012 4013 void visitFuncletPadInst(FuncletPadInst &I) { 4014 setShadow(&I, getCleanShadow(&I)); 4015 setOrigin(&I, getCleanOrigin()); 4016 } 4017 4018 void visitGetElementPtrInst(GetElementPtrInst &I) { 4019 handleShadowOr(I); 4020 } 4021 4022 void visitExtractValueInst(ExtractValueInst &I) { 4023 IRBuilder<> IRB(&I); 4024 Value *Agg = I.getAggregateOperand(); 4025 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4026 Value *AggShadow = getShadow(Agg); 4027 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4028 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4029 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4030 setShadow(&I, ResShadow); 4031 setOriginForNaryOp(I); 4032 } 4033 4034 void visitInsertValueInst(InsertValueInst &I) { 4035 IRBuilder<> IRB(&I); 4036 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4037 Value *AggShadow = getShadow(I.getAggregateOperand()); 4038 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4039 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4040 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4041 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4042 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4043 setShadow(&I, Res); 4044 setOriginForNaryOp(I); 4045 } 4046 4047 void dumpInst(Instruction &I) { 4048 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4049 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4050 } else { 4051 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4052 } 4053 errs() << "QQQ " << I << "\n"; 4054 } 4055 4056 void visitResumeInst(ResumeInst &I) { 4057 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4058 // Nothing to do here. 4059 } 4060 4061 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4062 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4063 // Nothing to do here. 4064 } 4065 4066 void visitCatchReturnInst(CatchReturnInst &CRI) { 4067 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4068 // Nothing to do here. 4069 } 4070 4071 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4072 const DataLayout &DL, bool isOutput) { 4073 // For each assembly argument, we check its value for being initialized. 4074 // If the argument is a pointer, we assume it points to a single element 4075 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4076 // Each such pointer is instrumented with a call to the runtime library. 4077 Type *OpType = Operand->getType(); 4078 // Check the operand value itself. 4079 insertShadowCheck(Operand, &I); 4080 if (!OpType->isPointerTy() || !isOutput) { 4081 assert(!isOutput); 4082 return; 4083 } 4084 Type *ElType = OpType->getPointerElementType(); 4085 if (!ElType->isSized()) 4086 return; 4087 int Size = DL.getTypeStoreSize(ElType); 4088 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4089 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4090 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4091 } 4092 4093 /// Get the number of output arguments returned by pointers. 4094 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4095 int NumRetOutputs = 0; 4096 int NumOutputs = 0; 4097 Type *RetTy = cast<Value>(CB)->getType(); 4098 if (!RetTy->isVoidTy()) { 4099 // Register outputs are returned via the CallInst return value. 4100 auto *ST = dyn_cast<StructType>(RetTy); 4101 if (ST) 4102 NumRetOutputs = ST->getNumElements(); 4103 else 4104 NumRetOutputs = 1; 4105 } 4106 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4107 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4108 switch (Info.Type) { 4109 case InlineAsm::isOutput: 4110 NumOutputs++; 4111 break; 4112 default: 4113 break; 4114 } 4115 } 4116 return NumOutputs - NumRetOutputs; 4117 } 4118 4119 void visitAsmInstruction(Instruction &I) { 4120 // Conservative inline assembly handling: check for poisoned shadow of 4121 // asm() arguments, then unpoison the result and all the memory locations 4122 // pointed to by those arguments. 4123 // An inline asm() statement in C++ contains lists of input and output 4124 // arguments used by the assembly code. These are mapped to operands of the 4125 // CallInst as follows: 4126 // - nR register outputs ("=r) are returned by value in a single structure 4127 // (SSA value of the CallInst); 4128 // - nO other outputs ("=m" and others) are returned by pointer as first 4129 // nO operands of the CallInst; 4130 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4131 // remaining nI operands. 4132 // The total number of asm() arguments in the source is nR+nO+nI, and the 4133 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4134 // function to be called). 4135 const DataLayout &DL = F.getParent()->getDataLayout(); 4136 CallBase *CB = cast<CallBase>(&I); 4137 IRBuilder<> IRB(&I); 4138 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4139 int OutputArgs = getNumOutputArgs(IA, CB); 4140 // The last operand of a CallInst is the function itself. 4141 int NumOperands = CB->getNumOperands() - 1; 4142 4143 // Check input arguments. Doing so before unpoisoning output arguments, so 4144 // that we won't overwrite uninit values before checking them. 4145 for (int i = OutputArgs; i < NumOperands; i++) { 4146 Value *Operand = CB->getOperand(i); 4147 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4148 } 4149 // Unpoison output arguments. This must happen before the actual InlineAsm 4150 // call, so that the shadow for memory published in the asm() statement 4151 // remains valid. 4152 for (int i = 0; i < OutputArgs; i++) { 4153 Value *Operand = CB->getOperand(i); 4154 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4155 } 4156 4157 setShadow(&I, getCleanShadow(&I)); 4158 setOrigin(&I, getCleanOrigin()); 4159 } 4160 4161 void visitFreezeInst(FreezeInst &I) { 4162 // Freeze always returns a fully defined value. 4163 setShadow(&I, getCleanShadow(&I)); 4164 setOrigin(&I, getCleanOrigin()); 4165 } 4166 4167 void visitInstruction(Instruction &I) { 4168 // Everything else: stop propagating and check for poisoned shadow. 4169 if (ClDumpStrictInstructions) 4170 dumpInst(I); 4171 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4172 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4173 Value *Operand = I.getOperand(i); 4174 if (Operand->getType()->isSized()) 4175 insertShadowCheck(Operand, &I); 4176 } 4177 setShadow(&I, getCleanShadow(&I)); 4178 setOrigin(&I, getCleanOrigin()); 4179 } 4180 }; 4181 4182 /// AMD64-specific implementation of VarArgHelper. 4183 struct VarArgAMD64Helper : public VarArgHelper { 4184 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4185 // See a comment in visitCallBase for more details. 4186 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4187 static const unsigned AMD64FpEndOffsetSSE = 176; 4188 // If SSE is disabled, fp_offset in va_list is zero. 4189 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4190 4191 unsigned AMD64FpEndOffset; 4192 Function &F; 4193 MemorySanitizer &MS; 4194 MemorySanitizerVisitor &MSV; 4195 Value *VAArgTLSCopy = nullptr; 4196 Value *VAArgTLSOriginCopy = nullptr; 4197 Value *VAArgOverflowSize = nullptr; 4198 4199 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4200 4201 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4202 4203 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4204 MemorySanitizerVisitor &MSV) 4205 : F(F), MS(MS), MSV(MSV) { 4206 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4207 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4208 if (Attr.isStringAttribute() && 4209 (Attr.getKindAsString() == "target-features")) { 4210 if (Attr.getValueAsString().contains("-sse")) 4211 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4212 break; 4213 } 4214 } 4215 } 4216 4217 ArgKind classifyArgument(Value* arg) { 4218 // A very rough approximation of X86_64 argument classification rules. 4219 Type *T = arg->getType(); 4220 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4221 return AK_FloatingPoint; 4222 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4223 return AK_GeneralPurpose; 4224 if (T->isPointerTy()) 4225 return AK_GeneralPurpose; 4226 return AK_Memory; 4227 } 4228 4229 // For VarArg functions, store the argument shadow in an ABI-specific format 4230 // that corresponds to va_list layout. 4231 // We do this because Clang lowers va_arg in the frontend, and this pass 4232 // only sees the low level code that deals with va_list internals. 4233 // A much easier alternative (provided that Clang emits va_arg instructions) 4234 // would have been to associate each live instance of va_list with a copy of 4235 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4236 // order. 4237 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4238 unsigned GpOffset = 0; 4239 unsigned FpOffset = AMD64GpEndOffset; 4240 unsigned OverflowOffset = AMD64FpEndOffset; 4241 const DataLayout &DL = F.getParent()->getDataLayout(); 4242 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4243 ++ArgIt) { 4244 Value *A = *ArgIt; 4245 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4246 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4247 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4248 if (IsByVal) { 4249 // ByVal arguments always go to the overflow area. 4250 // Fixed arguments passed through the overflow area will be stepped 4251 // over by va_start, so don't count them towards the offset. 4252 if (IsFixed) 4253 continue; 4254 assert(A->getType()->isPointerTy()); 4255 Type *RealTy = CB.getParamByValType(ArgNo); 4256 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4257 Value *ShadowBase = getShadowPtrForVAArgument( 4258 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4259 Value *OriginBase = nullptr; 4260 if (MS.TrackOrigins) 4261 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4262 OverflowOffset += alignTo(ArgSize, 8); 4263 if (!ShadowBase) 4264 continue; 4265 Value *ShadowPtr, *OriginPtr; 4266 std::tie(ShadowPtr, OriginPtr) = 4267 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4268 /*isStore*/ false); 4269 4270 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4271 kShadowTLSAlignment, ArgSize); 4272 if (MS.TrackOrigins) 4273 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4274 kShadowTLSAlignment, ArgSize); 4275 } else { 4276 ArgKind AK = classifyArgument(A); 4277 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4278 AK = AK_Memory; 4279 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4280 AK = AK_Memory; 4281 Value *ShadowBase, *OriginBase = nullptr; 4282 switch (AK) { 4283 case AK_GeneralPurpose: 4284 ShadowBase = 4285 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4286 if (MS.TrackOrigins) 4287 OriginBase = 4288 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4289 GpOffset += 8; 4290 break; 4291 case AK_FloatingPoint: 4292 ShadowBase = 4293 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4294 if (MS.TrackOrigins) 4295 OriginBase = 4296 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4297 FpOffset += 16; 4298 break; 4299 case AK_Memory: 4300 if (IsFixed) 4301 continue; 4302 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4303 ShadowBase = 4304 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4305 if (MS.TrackOrigins) 4306 OriginBase = 4307 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4308 OverflowOffset += alignTo(ArgSize, 8); 4309 } 4310 // Take fixed arguments into account for GpOffset and FpOffset, 4311 // but don't actually store shadows for them. 4312 // TODO(glider): don't call get*PtrForVAArgument() for them. 4313 if (IsFixed) 4314 continue; 4315 if (!ShadowBase) 4316 continue; 4317 Value *Shadow = MSV.getShadow(A); 4318 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4319 if (MS.TrackOrigins) { 4320 Value *Origin = MSV.getOrigin(A); 4321 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4322 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4323 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4324 } 4325 } 4326 } 4327 Constant *OverflowSize = 4328 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4329 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4330 } 4331 4332 /// Compute the shadow address for a given va_arg. 4333 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4334 unsigned ArgOffset, unsigned ArgSize) { 4335 // Make sure we don't overflow __msan_va_arg_tls. 4336 if (ArgOffset + ArgSize > kParamTLSSize) 4337 return nullptr; 4338 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4339 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4340 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4341 "_msarg_va_s"); 4342 } 4343 4344 /// Compute the origin address for a given va_arg. 4345 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4346 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4347 // getOriginPtrForVAArgument() is always called after 4348 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4349 // overflow. 4350 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4351 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4352 "_msarg_va_o"); 4353 } 4354 4355 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4356 IRBuilder<> IRB(&I); 4357 Value *VAListTag = I.getArgOperand(0); 4358 Value *ShadowPtr, *OriginPtr; 4359 const Align Alignment = Align(8); 4360 std::tie(ShadowPtr, OriginPtr) = 4361 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4362 /*isStore*/ true); 4363 4364 // Unpoison the whole __va_list_tag. 4365 // FIXME: magic ABI constants. 4366 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4367 /* size */ 24, Alignment, false); 4368 // We shouldn't need to zero out the origins, as they're only checked for 4369 // nonzero shadow. 4370 } 4371 4372 void visitVAStartInst(VAStartInst &I) override { 4373 if (F.getCallingConv() == CallingConv::Win64) 4374 return; 4375 VAStartInstrumentationList.push_back(&I); 4376 unpoisonVAListTagForInst(I); 4377 } 4378 4379 void visitVACopyInst(VACopyInst &I) override { 4380 if (F.getCallingConv() == CallingConv::Win64) return; 4381 unpoisonVAListTagForInst(I); 4382 } 4383 4384 void finalizeInstrumentation() override { 4385 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4386 "finalizeInstrumentation called twice"); 4387 if (!VAStartInstrumentationList.empty()) { 4388 // If there is a va_start in this function, make a backup copy of 4389 // va_arg_tls somewhere in the function entry block. 4390 IRBuilder<> IRB(MSV.FnPrologueEnd); 4391 VAArgOverflowSize = 4392 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4393 Value *CopySize = 4394 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4395 VAArgOverflowSize); 4396 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4397 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4398 if (MS.TrackOrigins) { 4399 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4400 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4401 Align(8), CopySize); 4402 } 4403 } 4404 4405 // Instrument va_start. 4406 // Copy va_list shadow from the backup copy of the TLS contents. 4407 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4408 CallInst *OrigInst = VAStartInstrumentationList[i]; 4409 IRBuilder<> IRB(OrigInst->getNextNode()); 4410 Value *VAListTag = OrigInst->getArgOperand(0); 4411 4412 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4413 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4414 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4415 ConstantInt::get(MS.IntptrTy, 16)), 4416 PointerType::get(RegSaveAreaPtrTy, 0)); 4417 Value *RegSaveAreaPtr = 4418 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4419 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4420 const Align Alignment = Align(16); 4421 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4422 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4423 Alignment, /*isStore*/ true); 4424 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4425 AMD64FpEndOffset); 4426 if (MS.TrackOrigins) 4427 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4428 Alignment, AMD64FpEndOffset); 4429 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4430 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4431 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4432 ConstantInt::get(MS.IntptrTy, 8)), 4433 PointerType::get(OverflowArgAreaPtrTy, 0)); 4434 Value *OverflowArgAreaPtr = 4435 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4436 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4437 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4438 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4439 Alignment, /*isStore*/ true); 4440 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4441 AMD64FpEndOffset); 4442 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4443 VAArgOverflowSize); 4444 if (MS.TrackOrigins) { 4445 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4446 AMD64FpEndOffset); 4447 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4448 VAArgOverflowSize); 4449 } 4450 } 4451 } 4452 }; 4453 4454 /// MIPS64-specific implementation of VarArgHelper. 4455 struct VarArgMIPS64Helper : public VarArgHelper { 4456 Function &F; 4457 MemorySanitizer &MS; 4458 MemorySanitizerVisitor &MSV; 4459 Value *VAArgTLSCopy = nullptr; 4460 Value *VAArgSize = nullptr; 4461 4462 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4463 4464 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4465 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4466 4467 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4468 unsigned VAArgOffset = 0; 4469 const DataLayout &DL = F.getParent()->getDataLayout(); 4470 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4471 End = CB.arg_end(); 4472 ArgIt != End; ++ArgIt) { 4473 Triple TargetTriple(F.getParent()->getTargetTriple()); 4474 Value *A = *ArgIt; 4475 Value *Base; 4476 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4477 if (TargetTriple.getArch() == Triple::mips64) { 4478 // Adjusting the shadow for argument with size < 8 to match the placement 4479 // of bits in big endian system 4480 if (ArgSize < 8) 4481 VAArgOffset += (8 - ArgSize); 4482 } 4483 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4484 VAArgOffset += ArgSize; 4485 VAArgOffset = alignTo(VAArgOffset, 8); 4486 if (!Base) 4487 continue; 4488 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4489 } 4490 4491 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4492 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4493 // a new class member i.e. it is the total size of all VarArgs. 4494 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4495 } 4496 4497 /// Compute the shadow address for a given va_arg. 4498 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4499 unsigned ArgOffset, unsigned ArgSize) { 4500 // Make sure we don't overflow __msan_va_arg_tls. 4501 if (ArgOffset + ArgSize > kParamTLSSize) 4502 return nullptr; 4503 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4504 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4505 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4506 "_msarg"); 4507 } 4508 4509 void visitVAStartInst(VAStartInst &I) override { 4510 IRBuilder<> IRB(&I); 4511 VAStartInstrumentationList.push_back(&I); 4512 Value *VAListTag = I.getArgOperand(0); 4513 Value *ShadowPtr, *OriginPtr; 4514 const Align Alignment = Align(8); 4515 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4516 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4517 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4518 /* size */ 8, Alignment, false); 4519 } 4520 4521 void visitVACopyInst(VACopyInst &I) override { 4522 IRBuilder<> IRB(&I); 4523 VAStartInstrumentationList.push_back(&I); 4524 Value *VAListTag = I.getArgOperand(0); 4525 Value *ShadowPtr, *OriginPtr; 4526 const Align Alignment = Align(8); 4527 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4528 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4529 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4530 /* size */ 8, Alignment, false); 4531 } 4532 4533 void finalizeInstrumentation() override { 4534 assert(!VAArgSize && !VAArgTLSCopy && 4535 "finalizeInstrumentation called twice"); 4536 IRBuilder<> IRB(MSV.FnPrologueEnd); 4537 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4538 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4539 VAArgSize); 4540 4541 if (!VAStartInstrumentationList.empty()) { 4542 // If there is a va_start in this function, make a backup copy of 4543 // va_arg_tls somewhere in the function entry block. 4544 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4545 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4546 } 4547 4548 // Instrument va_start. 4549 // Copy va_list shadow from the backup copy of the TLS contents. 4550 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4551 CallInst *OrigInst = VAStartInstrumentationList[i]; 4552 IRBuilder<> IRB(OrigInst->getNextNode()); 4553 Value *VAListTag = OrigInst->getArgOperand(0); 4554 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4555 Value *RegSaveAreaPtrPtr = 4556 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4557 PointerType::get(RegSaveAreaPtrTy, 0)); 4558 Value *RegSaveAreaPtr = 4559 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4560 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4561 const Align Alignment = Align(8); 4562 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4563 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4564 Alignment, /*isStore*/ true); 4565 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4566 CopySize); 4567 } 4568 } 4569 }; 4570 4571 /// AArch64-specific implementation of VarArgHelper. 4572 struct VarArgAArch64Helper : public VarArgHelper { 4573 static const unsigned kAArch64GrArgSize = 64; 4574 static const unsigned kAArch64VrArgSize = 128; 4575 4576 static const unsigned AArch64GrBegOffset = 0; 4577 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4578 // Make VR space aligned to 16 bytes. 4579 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4580 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4581 + kAArch64VrArgSize; 4582 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4583 4584 Function &F; 4585 MemorySanitizer &MS; 4586 MemorySanitizerVisitor &MSV; 4587 Value *VAArgTLSCopy = nullptr; 4588 Value *VAArgOverflowSize = nullptr; 4589 4590 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4591 4592 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4593 4594 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4595 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4596 4597 ArgKind classifyArgument(Value* arg) { 4598 Type *T = arg->getType(); 4599 if (T->isFPOrFPVectorTy()) 4600 return AK_FloatingPoint; 4601 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4602 || (T->isPointerTy())) 4603 return AK_GeneralPurpose; 4604 return AK_Memory; 4605 } 4606 4607 // The instrumentation stores the argument shadow in a non ABI-specific 4608 // format because it does not know which argument is named (since Clang, 4609 // like x86_64 case, lowers the va_args in the frontend and this pass only 4610 // sees the low level code that deals with va_list internals). 4611 // The first seven GR registers are saved in the first 56 bytes of the 4612 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4613 // the remaining arguments. 4614 // Using constant offset within the va_arg TLS array allows fast copy 4615 // in the finalize instrumentation. 4616 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4617 unsigned GrOffset = AArch64GrBegOffset; 4618 unsigned VrOffset = AArch64VrBegOffset; 4619 unsigned OverflowOffset = AArch64VAEndOffset; 4620 4621 const DataLayout &DL = F.getParent()->getDataLayout(); 4622 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4623 ++ArgIt) { 4624 Value *A = *ArgIt; 4625 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4626 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4627 ArgKind AK = classifyArgument(A); 4628 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4629 AK = AK_Memory; 4630 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4631 AK = AK_Memory; 4632 Value *Base; 4633 switch (AK) { 4634 case AK_GeneralPurpose: 4635 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4636 GrOffset += 8; 4637 break; 4638 case AK_FloatingPoint: 4639 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4640 VrOffset += 16; 4641 break; 4642 case AK_Memory: 4643 // Don't count fixed arguments in the overflow area - va_start will 4644 // skip right over them. 4645 if (IsFixed) 4646 continue; 4647 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4648 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4649 alignTo(ArgSize, 8)); 4650 OverflowOffset += alignTo(ArgSize, 8); 4651 break; 4652 } 4653 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4654 // bother to actually store a shadow. 4655 if (IsFixed) 4656 continue; 4657 if (!Base) 4658 continue; 4659 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4660 } 4661 Constant *OverflowSize = 4662 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4663 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4664 } 4665 4666 /// Compute the shadow address for a given va_arg. 4667 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4668 unsigned ArgOffset, unsigned ArgSize) { 4669 // Make sure we don't overflow __msan_va_arg_tls. 4670 if (ArgOffset + ArgSize > kParamTLSSize) 4671 return nullptr; 4672 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4673 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4674 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4675 "_msarg"); 4676 } 4677 4678 void visitVAStartInst(VAStartInst &I) override { 4679 IRBuilder<> IRB(&I); 4680 VAStartInstrumentationList.push_back(&I); 4681 Value *VAListTag = I.getArgOperand(0); 4682 Value *ShadowPtr, *OriginPtr; 4683 const Align Alignment = Align(8); 4684 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4685 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4686 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4687 /* size */ 32, Alignment, false); 4688 } 4689 4690 void visitVACopyInst(VACopyInst &I) override { 4691 IRBuilder<> IRB(&I); 4692 VAStartInstrumentationList.push_back(&I); 4693 Value *VAListTag = I.getArgOperand(0); 4694 Value *ShadowPtr, *OriginPtr; 4695 const Align Alignment = Align(8); 4696 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4697 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4698 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4699 /* size */ 32, Alignment, false); 4700 } 4701 4702 // Retrieve a va_list field of 'void*' size. 4703 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4704 Value *SaveAreaPtrPtr = 4705 IRB.CreateIntToPtr( 4706 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4707 ConstantInt::get(MS.IntptrTy, offset)), 4708 Type::getInt64PtrTy(*MS.C)); 4709 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4710 } 4711 4712 // Retrieve a va_list field of 'int' size. 4713 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4714 Value *SaveAreaPtr = 4715 IRB.CreateIntToPtr( 4716 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4717 ConstantInt::get(MS.IntptrTy, offset)), 4718 Type::getInt32PtrTy(*MS.C)); 4719 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4720 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4721 } 4722 4723 void finalizeInstrumentation() override { 4724 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4725 "finalizeInstrumentation called twice"); 4726 if (!VAStartInstrumentationList.empty()) { 4727 // If there is a va_start in this function, make a backup copy of 4728 // va_arg_tls somewhere in the function entry block. 4729 IRBuilder<> IRB(MSV.FnPrologueEnd); 4730 VAArgOverflowSize = 4731 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4732 Value *CopySize = 4733 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4734 VAArgOverflowSize); 4735 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4736 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4737 } 4738 4739 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4740 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4741 4742 // Instrument va_start, copy va_list shadow from the backup copy of 4743 // the TLS contents. 4744 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4745 CallInst *OrigInst = VAStartInstrumentationList[i]; 4746 IRBuilder<> IRB(OrigInst->getNextNode()); 4747 4748 Value *VAListTag = OrigInst->getArgOperand(0); 4749 4750 // The variadic ABI for AArch64 creates two areas to save the incoming 4751 // argument registers (one for 64-bit general register xn-x7 and another 4752 // for 128-bit FP/SIMD vn-v7). 4753 // We need then to propagate the shadow arguments on both regions 4754 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4755 // The remaining arguments are saved on shadow for 'va::stack'. 4756 // One caveat is it requires only to propagate the non-named arguments, 4757 // however on the call site instrumentation 'all' the arguments are 4758 // saved. So to copy the shadow values from the va_arg TLS array 4759 // we need to adjust the offset for both GR and VR fields based on 4760 // the __{gr,vr}_offs value (since they are stores based on incoming 4761 // named arguments). 4762 4763 // Read the stack pointer from the va_list. 4764 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4765 4766 // Read both the __gr_top and __gr_off and add them up. 4767 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4768 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4769 4770 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4771 4772 // Read both the __vr_top and __vr_off and add them up. 4773 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4774 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4775 4776 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4777 4778 // It does not know how many named arguments is being used and, on the 4779 // callsite all the arguments were saved. Since __gr_off is defined as 4780 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4781 // argument by ignoring the bytes of shadow from named arguments. 4782 Value *GrRegSaveAreaShadowPtrOff = 4783 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4784 4785 Value *GrRegSaveAreaShadowPtr = 4786 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4787 Align(8), /*isStore*/ true) 4788 .first; 4789 4790 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4791 GrRegSaveAreaShadowPtrOff); 4792 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4793 4794 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4795 GrCopySize); 4796 4797 // Again, but for FP/SIMD values. 4798 Value *VrRegSaveAreaShadowPtrOff = 4799 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4800 4801 Value *VrRegSaveAreaShadowPtr = 4802 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4803 Align(8), /*isStore*/ true) 4804 .first; 4805 4806 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4807 IRB.getInt8Ty(), 4808 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4809 IRB.getInt32(AArch64VrBegOffset)), 4810 VrRegSaveAreaShadowPtrOff); 4811 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4812 4813 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4814 VrCopySize); 4815 4816 // And finally for remaining arguments. 4817 Value *StackSaveAreaShadowPtr = 4818 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4819 Align(16), /*isStore*/ true) 4820 .first; 4821 4822 Value *StackSrcPtr = 4823 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4824 IRB.getInt32(AArch64VAEndOffset)); 4825 4826 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4827 Align(16), VAArgOverflowSize); 4828 } 4829 } 4830 }; 4831 4832 /// PowerPC64-specific implementation of VarArgHelper. 4833 struct VarArgPowerPC64Helper : public VarArgHelper { 4834 Function &F; 4835 MemorySanitizer &MS; 4836 MemorySanitizerVisitor &MSV; 4837 Value *VAArgTLSCopy = nullptr; 4838 Value *VAArgSize = nullptr; 4839 4840 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4841 4842 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4843 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4844 4845 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4846 // For PowerPC, we need to deal with alignment of stack arguments - 4847 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4848 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4849 // For that reason, we compute current offset from stack pointer (which is 4850 // always properly aligned), and offset for the first vararg, then subtract 4851 // them. 4852 unsigned VAArgBase; 4853 Triple TargetTriple(F.getParent()->getTargetTriple()); 4854 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4855 // and 32 bytes for ABIv2. This is usually determined by target 4856 // endianness, but in theory could be overridden by function attribute. 4857 if (TargetTriple.getArch() == Triple::ppc64) 4858 VAArgBase = 48; 4859 else 4860 VAArgBase = 32; 4861 unsigned VAArgOffset = VAArgBase; 4862 const DataLayout &DL = F.getParent()->getDataLayout(); 4863 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4864 ++ArgIt) { 4865 Value *A = *ArgIt; 4866 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4867 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4868 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4869 if (IsByVal) { 4870 assert(A->getType()->isPointerTy()); 4871 Type *RealTy = CB.getParamByValType(ArgNo); 4872 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4873 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4874 if (!ArgAlign || *ArgAlign < Align(8)) 4875 ArgAlign = Align(8); 4876 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4877 if (!IsFixed) { 4878 Value *Base = getShadowPtrForVAArgument( 4879 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4880 if (Base) { 4881 Value *AShadowPtr, *AOriginPtr; 4882 std::tie(AShadowPtr, AOriginPtr) = 4883 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4884 kShadowTLSAlignment, /*isStore*/ false); 4885 4886 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4887 kShadowTLSAlignment, ArgSize); 4888 } 4889 } 4890 VAArgOffset += alignTo(ArgSize, 8); 4891 } else { 4892 Value *Base; 4893 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4894 uint64_t ArgAlign = 8; 4895 if (A->getType()->isArrayTy()) { 4896 // Arrays are aligned to element size, except for long double 4897 // arrays, which are aligned to 8 bytes. 4898 Type *ElementTy = A->getType()->getArrayElementType(); 4899 if (!ElementTy->isPPC_FP128Ty()) 4900 ArgAlign = DL.getTypeAllocSize(ElementTy); 4901 } else if (A->getType()->isVectorTy()) { 4902 // Vectors are naturally aligned. 4903 ArgAlign = DL.getTypeAllocSize(A->getType()); 4904 } 4905 if (ArgAlign < 8) 4906 ArgAlign = 8; 4907 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4908 if (DL.isBigEndian()) { 4909 // Adjusting the shadow for argument with size < 8 to match the placement 4910 // of bits in big endian system 4911 if (ArgSize < 8) 4912 VAArgOffset += (8 - ArgSize); 4913 } 4914 if (!IsFixed) { 4915 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4916 VAArgOffset - VAArgBase, ArgSize); 4917 if (Base) 4918 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4919 } 4920 VAArgOffset += ArgSize; 4921 VAArgOffset = alignTo(VAArgOffset, 8); 4922 } 4923 if (IsFixed) 4924 VAArgBase = VAArgOffset; 4925 } 4926 4927 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4928 VAArgOffset - VAArgBase); 4929 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4930 // a new class member i.e. it is the total size of all VarArgs. 4931 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4932 } 4933 4934 /// Compute the shadow address for a given va_arg. 4935 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4936 unsigned ArgOffset, unsigned ArgSize) { 4937 // Make sure we don't overflow __msan_va_arg_tls. 4938 if (ArgOffset + ArgSize > kParamTLSSize) 4939 return nullptr; 4940 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4941 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4942 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4943 "_msarg"); 4944 } 4945 4946 void visitVAStartInst(VAStartInst &I) override { 4947 IRBuilder<> IRB(&I); 4948 VAStartInstrumentationList.push_back(&I); 4949 Value *VAListTag = I.getArgOperand(0); 4950 Value *ShadowPtr, *OriginPtr; 4951 const Align Alignment = Align(8); 4952 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4953 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4954 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4955 /* size */ 8, Alignment, false); 4956 } 4957 4958 void visitVACopyInst(VACopyInst &I) override { 4959 IRBuilder<> IRB(&I); 4960 Value *VAListTag = I.getArgOperand(0); 4961 Value *ShadowPtr, *OriginPtr; 4962 const Align Alignment = Align(8); 4963 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4964 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4965 // Unpoison the whole __va_list_tag. 4966 // FIXME: magic ABI constants. 4967 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4968 /* size */ 8, Alignment, false); 4969 } 4970 4971 void finalizeInstrumentation() override { 4972 assert(!VAArgSize && !VAArgTLSCopy && 4973 "finalizeInstrumentation called twice"); 4974 IRBuilder<> IRB(MSV.FnPrologueEnd); 4975 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4976 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4977 VAArgSize); 4978 4979 if (!VAStartInstrumentationList.empty()) { 4980 // If there is a va_start in this function, make a backup copy of 4981 // va_arg_tls somewhere in the function entry block. 4982 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4983 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4984 } 4985 4986 // Instrument va_start. 4987 // Copy va_list shadow from the backup copy of the TLS contents. 4988 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4989 CallInst *OrigInst = VAStartInstrumentationList[i]; 4990 IRBuilder<> IRB(OrigInst->getNextNode()); 4991 Value *VAListTag = OrigInst->getArgOperand(0); 4992 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4993 Value *RegSaveAreaPtrPtr = 4994 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4995 PointerType::get(RegSaveAreaPtrTy, 0)); 4996 Value *RegSaveAreaPtr = 4997 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4998 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4999 const Align Alignment = Align(8); 5000 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5001 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5002 Alignment, /*isStore*/ true); 5003 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5004 CopySize); 5005 } 5006 } 5007 }; 5008 5009 /// SystemZ-specific implementation of VarArgHelper. 5010 struct VarArgSystemZHelper : public VarArgHelper { 5011 static const unsigned SystemZGpOffset = 16; 5012 static const unsigned SystemZGpEndOffset = 56; 5013 static const unsigned SystemZFpOffset = 128; 5014 static const unsigned SystemZFpEndOffset = 160; 5015 static const unsigned SystemZMaxVrArgs = 8; 5016 static const unsigned SystemZRegSaveAreaSize = 160; 5017 static const unsigned SystemZOverflowOffset = 160; 5018 static const unsigned SystemZVAListTagSize = 32; 5019 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5020 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5021 5022 Function &F; 5023 MemorySanitizer &MS; 5024 MemorySanitizerVisitor &MSV; 5025 Value *VAArgTLSCopy = nullptr; 5026 Value *VAArgTLSOriginCopy = nullptr; 5027 Value *VAArgOverflowSize = nullptr; 5028 5029 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5030 5031 enum class ArgKind { 5032 GeneralPurpose, 5033 FloatingPoint, 5034 Vector, 5035 Memory, 5036 Indirect, 5037 }; 5038 5039 enum class ShadowExtension { None, Zero, Sign }; 5040 5041 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5042 MemorySanitizerVisitor &MSV) 5043 : F(F), MS(MS), MSV(MSV) {} 5044 5045 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5046 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5047 // only a few possibilities of what it can be. In particular, enums, single 5048 // element structs and large types have already been taken care of. 5049 5050 // Some i128 and fp128 arguments are converted to pointers only in the 5051 // back end. 5052 if (T->isIntegerTy(128) || T->isFP128Ty()) 5053 return ArgKind::Indirect; 5054 if (T->isFloatingPointTy()) 5055 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5056 if (T->isIntegerTy() || T->isPointerTy()) 5057 return ArgKind::GeneralPurpose; 5058 if (T->isVectorTy()) 5059 return ArgKind::Vector; 5060 return ArgKind::Memory; 5061 } 5062 5063 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5064 // ABI says: "One of the simple integer types no more than 64 bits wide. 5065 // ... If such an argument is shorter than 64 bits, replace it by a full 5066 // 64-bit integer representing the same number, using sign or zero 5067 // extension". Shadow for an integer argument has the same type as the 5068 // argument itself, so it can be sign or zero extended as well. 5069 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5070 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5071 if (ZExt) { 5072 assert(!SExt); 5073 return ShadowExtension::Zero; 5074 } 5075 if (SExt) { 5076 assert(!ZExt); 5077 return ShadowExtension::Sign; 5078 } 5079 return ShadowExtension::None; 5080 } 5081 5082 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5083 bool IsSoftFloatABI = CB.getCalledFunction() 5084 ->getFnAttribute("use-soft-float") 5085 .getValueAsBool(); 5086 unsigned GpOffset = SystemZGpOffset; 5087 unsigned FpOffset = SystemZFpOffset; 5088 unsigned VrIndex = 0; 5089 unsigned OverflowOffset = SystemZOverflowOffset; 5090 const DataLayout &DL = F.getParent()->getDataLayout(); 5091 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5092 ++ArgIt) { 5093 Value *A = *ArgIt; 5094 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5095 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5096 // SystemZABIInfo does not produce ByVal parameters. 5097 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5098 Type *T = A->getType(); 5099 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5100 if (AK == ArgKind::Indirect) { 5101 T = PointerType::get(T, 0); 5102 AK = ArgKind::GeneralPurpose; 5103 } 5104 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5105 AK = ArgKind::Memory; 5106 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5107 AK = ArgKind::Memory; 5108 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5109 AK = ArgKind::Memory; 5110 Value *ShadowBase = nullptr; 5111 Value *OriginBase = nullptr; 5112 ShadowExtension SE = ShadowExtension::None; 5113 switch (AK) { 5114 case ArgKind::GeneralPurpose: { 5115 // Always keep track of GpOffset, but store shadow only for varargs. 5116 uint64_t ArgSize = 8; 5117 if (GpOffset + ArgSize <= kParamTLSSize) { 5118 if (!IsFixed) { 5119 SE = getShadowExtension(CB, ArgNo); 5120 uint64_t GapSize = 0; 5121 if (SE == ShadowExtension::None) { 5122 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5123 assert(ArgAllocSize <= ArgSize); 5124 GapSize = ArgSize - ArgAllocSize; 5125 } 5126 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5127 if (MS.TrackOrigins) 5128 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5129 } 5130 GpOffset += ArgSize; 5131 } else { 5132 GpOffset = kParamTLSSize; 5133 } 5134 break; 5135 } 5136 case ArgKind::FloatingPoint: { 5137 // Always keep track of FpOffset, but store shadow only for varargs. 5138 uint64_t ArgSize = 8; 5139 if (FpOffset + ArgSize <= kParamTLSSize) { 5140 if (!IsFixed) { 5141 // PoP says: "A short floating-point datum requires only the 5142 // left-most 32 bit positions of a floating-point register". 5143 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5144 // don't extend shadow and don't mind the gap. 5145 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5146 if (MS.TrackOrigins) 5147 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5148 } 5149 FpOffset += ArgSize; 5150 } else { 5151 FpOffset = kParamTLSSize; 5152 } 5153 break; 5154 } 5155 case ArgKind::Vector: { 5156 // Keep track of VrIndex. No need to store shadow, since vector varargs 5157 // go through AK_Memory. 5158 assert(IsFixed); 5159 VrIndex++; 5160 break; 5161 } 5162 case ArgKind::Memory: { 5163 // Keep track of OverflowOffset and store shadow only for varargs. 5164 // Ignore fixed args, since we need to copy only the vararg portion of 5165 // the overflow area shadow. 5166 if (!IsFixed) { 5167 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5168 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5169 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5170 SE = getShadowExtension(CB, ArgNo); 5171 uint64_t GapSize = 5172 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5173 ShadowBase = 5174 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5175 if (MS.TrackOrigins) 5176 OriginBase = 5177 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5178 OverflowOffset += ArgSize; 5179 } else { 5180 OverflowOffset = kParamTLSSize; 5181 } 5182 } 5183 break; 5184 } 5185 case ArgKind::Indirect: 5186 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5187 } 5188 if (ShadowBase == nullptr) 5189 continue; 5190 Value *Shadow = MSV.getShadow(A); 5191 if (SE != ShadowExtension::None) 5192 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5193 /*Signed*/ SE == ShadowExtension::Sign); 5194 ShadowBase = IRB.CreateIntToPtr( 5195 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5196 IRB.CreateStore(Shadow, ShadowBase); 5197 if (MS.TrackOrigins) { 5198 Value *Origin = MSV.getOrigin(A); 5199 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5200 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5201 kMinOriginAlignment); 5202 } 5203 } 5204 Constant *OverflowSize = ConstantInt::get( 5205 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5206 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5207 } 5208 5209 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5210 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5211 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5212 } 5213 5214 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5215 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5216 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5217 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5218 "_msarg_va_o"); 5219 } 5220 5221 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5222 IRBuilder<> IRB(&I); 5223 Value *VAListTag = I.getArgOperand(0); 5224 Value *ShadowPtr, *OriginPtr; 5225 const Align Alignment = Align(8); 5226 std::tie(ShadowPtr, OriginPtr) = 5227 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5228 /*isStore*/ true); 5229 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5230 SystemZVAListTagSize, Alignment, false); 5231 } 5232 5233 void visitVAStartInst(VAStartInst &I) override { 5234 VAStartInstrumentationList.push_back(&I); 5235 unpoisonVAListTagForInst(I); 5236 } 5237 5238 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5239 5240 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5241 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5242 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5243 IRB.CreateAdd( 5244 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5245 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5246 PointerType::get(RegSaveAreaPtrTy, 0)); 5247 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5248 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5249 const Align Alignment = Align(8); 5250 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5251 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5252 /*isStore*/ true); 5253 // TODO(iii): copy only fragments filled by visitCallBase() 5254 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5255 SystemZRegSaveAreaSize); 5256 if (MS.TrackOrigins) 5257 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5258 Alignment, SystemZRegSaveAreaSize); 5259 } 5260 5261 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5262 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5263 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5264 IRB.CreateAdd( 5265 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5266 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5267 PointerType::get(OverflowArgAreaPtrTy, 0)); 5268 Value *OverflowArgAreaPtr = 5269 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5270 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5271 const Align Alignment = Align(8); 5272 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5273 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5274 Alignment, /*isStore*/ true); 5275 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5276 SystemZOverflowOffset); 5277 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5278 VAArgOverflowSize); 5279 if (MS.TrackOrigins) { 5280 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5281 SystemZOverflowOffset); 5282 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5283 VAArgOverflowSize); 5284 } 5285 } 5286 5287 void finalizeInstrumentation() override { 5288 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5289 "finalizeInstrumentation called twice"); 5290 if (!VAStartInstrumentationList.empty()) { 5291 // If there is a va_start in this function, make a backup copy of 5292 // va_arg_tls somewhere in the function entry block. 5293 IRBuilder<> IRB(MSV.FnPrologueEnd); 5294 VAArgOverflowSize = 5295 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5296 Value *CopySize = 5297 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5298 VAArgOverflowSize); 5299 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5300 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5301 if (MS.TrackOrigins) { 5302 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5303 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5304 Align(8), CopySize); 5305 } 5306 } 5307 5308 // Instrument va_start. 5309 // Copy va_list shadow from the backup copy of the TLS contents. 5310 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5311 VaStartNo < VaStartNum; VaStartNo++) { 5312 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5313 IRBuilder<> IRB(OrigInst->getNextNode()); 5314 Value *VAListTag = OrigInst->getArgOperand(0); 5315 copyRegSaveArea(IRB, VAListTag); 5316 copyOverflowArea(IRB, VAListTag); 5317 } 5318 } 5319 }; 5320 5321 /// A no-op implementation of VarArgHelper. 5322 struct VarArgNoOpHelper : public VarArgHelper { 5323 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5324 MemorySanitizerVisitor &MSV) {} 5325 5326 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5327 5328 void visitVAStartInst(VAStartInst &I) override {} 5329 5330 void visitVACopyInst(VACopyInst &I) override {} 5331 5332 void finalizeInstrumentation() override {} 5333 }; 5334 5335 } // end anonymous namespace 5336 5337 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5338 MemorySanitizerVisitor &Visitor) { 5339 // VarArg handling is only implemented on AMD64. False positives are possible 5340 // on other platforms. 5341 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5342 if (TargetTriple.getArch() == Triple::x86_64) 5343 return new VarArgAMD64Helper(Func, Msan, Visitor); 5344 else if (TargetTriple.isMIPS64()) 5345 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5346 else if (TargetTriple.getArch() == Triple::aarch64) 5347 return new VarArgAArch64Helper(Func, Msan, Visitor); 5348 else if (TargetTriple.getArch() == Triple::ppc64 || 5349 TargetTriple.getArch() == Triple::ppc64le) 5350 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5351 else if (TargetTriple.getArch() == Triple::systemz) 5352 return new VarArgSystemZHelper(Func, Msan, Visitor); 5353 else 5354 return new VarArgNoOpHelper(Func, Msan, Visitor); 5355 } 5356 5357 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5358 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5359 return false; 5360 5361 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5362 return false; 5363 5364 MemorySanitizerVisitor Visitor(F, *this, TLI); 5365 5366 // Clear out readonly/readnone attributes. 5367 AttributeMask B; 5368 B.addAttribute(Attribute::ReadOnly) 5369 .addAttribute(Attribute::ReadNone) 5370 .addAttribute(Attribute::WriteOnly) 5371 .addAttribute(Attribute::ArgMemOnly) 5372 .addAttribute(Attribute::Speculatable); 5373 F.removeFnAttrs(B); 5374 5375 return Visitor.runOnFunction(); 5376 } 5377