1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //
141 // FIXME: This sanitizer does not yet handle scalable vectors
142 //
143 //===----------------------------------------------------------------------===//
144 
145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
146 #include "llvm/ADT/APInt.h"
147 #include "llvm/ADT/ArrayRef.h"
148 #include "llvm/ADT/DepthFirstIterator.h"
149 #include "llvm/ADT/SmallSet.h"
150 #include "llvm/ADT/SmallString.h"
151 #include "llvm/ADT/SmallVector.h"
152 #include "llvm/ADT/StringExtras.h"
153 #include "llvm/ADT/StringRef.h"
154 #include "llvm/ADT/Triple.h"
155 #include "llvm/Analysis/TargetLibraryInfo.h"
156 #include "llvm/Analysis/ValueTracking.h"
157 #include "llvm/IR/Argument.h"
158 #include "llvm/IR/Attributes.h"
159 #include "llvm/IR/BasicBlock.h"
160 #include "llvm/IR/CallingConv.h"
161 #include "llvm/IR/Constant.h"
162 #include "llvm/IR/Constants.h"
163 #include "llvm/IR/DataLayout.h"
164 #include "llvm/IR/DerivedTypes.h"
165 #include "llvm/IR/Function.h"
166 #include "llvm/IR/GlobalValue.h"
167 #include "llvm/IR/GlobalVariable.h"
168 #include "llvm/IR/IRBuilder.h"
169 #include "llvm/IR/InlineAsm.h"
170 #include "llvm/IR/InstVisitor.h"
171 #include "llvm/IR/InstrTypes.h"
172 #include "llvm/IR/Instruction.h"
173 #include "llvm/IR/Instructions.h"
174 #include "llvm/IR/IntrinsicInst.h"
175 #include "llvm/IR/Intrinsics.h"
176 #include "llvm/IR/IntrinsicsX86.h"
177 #include "llvm/IR/LLVMContext.h"
178 #include "llvm/IR/MDBuilder.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/IR/Type.h"
181 #include "llvm/IR/Value.h"
182 #include "llvm/IR/ValueMap.h"
183 #include "llvm/InitializePasses.h"
184 #include "llvm/Pass.h"
185 #include "llvm/Support/AtomicOrdering.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/Compiler.h"
189 #include "llvm/Support/Debug.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/MathExtras.h"
192 #include "llvm/Support/raw_ostream.h"
193 #include "llvm/Transforms/Instrumentation.h"
194 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
195 #include "llvm/Transforms/Utils/Local.h"
196 #include "llvm/Transforms/Utils/ModuleUtils.h"
197 #include <algorithm>
198 #include <cassert>
199 #include <cstddef>
200 #include <cstdint>
201 #include <memory>
202 #include <string>
203 #include <tuple>
204 
205 using namespace llvm;
206 
207 #define DEBUG_TYPE "msan"
208 
209 static const unsigned kOriginSize = 4;
210 static const Align kMinOriginAlignment = Align(4);
211 static const Align kShadowTLSAlignment = Align(8);
212 
213 // These constants must be kept in sync with the ones in msan.h.
214 static const unsigned kParamTLSSize = 800;
215 static const unsigned kRetvalTLSSize = 800;
216 
217 // Accesses sizes are powers of two: 1, 2, 4, 8.
218 static const size_t kNumberOfAccessSizes = 4;
219 
220 /// Track origins of uninitialized values.
221 ///
222 /// Adds a section to MemorySanitizer report that points to the allocation
223 /// (stack or heap) the uninitialized bits came from originally.
224 static cl::opt<int> ClTrackOrigins("msan-track-origins",
225        cl::desc("Track origins (allocation sites) of poisoned memory"),
226        cl::Hidden, cl::init(0));
227 
228 static cl::opt<bool> ClKeepGoing("msan-keep-going",
229        cl::desc("keep going after reporting a UMR"),
230        cl::Hidden, cl::init(false));
231 
232 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
233        cl::desc("poison uninitialized stack variables"),
234        cl::Hidden, cl::init(true));
235 
236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
237        cl::desc("poison uninitialized stack variables with a call"),
238        cl::Hidden, cl::init(false));
239 
240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
241        cl::desc("poison uninitialized stack variables with the given pattern"),
242        cl::Hidden, cl::init(0xff));
243 
244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
245        cl::desc("poison undef temps"),
246        cl::Hidden, cl::init(true));
247 
248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
249        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
250        cl::Hidden, cl::init(true));
251 
252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
253        cl::desc("exact handling of relational integer ICmp"),
254        cl::Hidden, cl::init(false));
255 
256 static cl::opt<bool> ClHandleLifetimeIntrinsics(
257     "msan-handle-lifetime-intrinsics",
258     cl::desc(
259         "when possible, poison scoped variables at the beginning of the scope "
260         "(slower, but more precise)"),
261     cl::Hidden, cl::init(true));
262 
263 // When compiling the Linux kernel, we sometimes see false positives related to
264 // MSan being unable to understand that inline assembly calls may initialize
265 // local variables.
266 // This flag makes the compiler conservatively unpoison every memory location
267 // passed into an assembly call. Note that this may cause false positives.
268 // Because it's impossible to figure out the array sizes, we can only unpoison
269 // the first sizeof(type) bytes for each type* pointer.
270 // The instrumentation is only enabled in KMSAN builds, and only if
271 // -msan-handle-asm-conservative is on. This is done because we may want to
272 // quickly disable assembly instrumentation when it breaks.
273 static cl::opt<bool> ClHandleAsmConservative(
274     "msan-handle-asm-conservative",
275     cl::desc("conservative handling of inline assembly"), cl::Hidden,
276     cl::init(true));
277 
278 // This flag controls whether we check the shadow of the address
279 // operand of load or store. Such bugs are very rare, since load from
280 // a garbage address typically results in SEGV, but still happen
281 // (e.g. only lower bits of address are garbage, or the access happens
282 // early at program startup where malloc-ed memory is more likely to
283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
285        cl::desc("report accesses through a pointer which has poisoned shadow"),
286        cl::Hidden, cl::init(true));
287 
288 static cl::opt<bool> ClEagerChecks(
289     "msan-eager-checks",
290     cl::desc("check arguments and return values at function call boundaries"),
291     cl::Hidden, cl::init(false));
292 
293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
294        cl::desc("print out instructions with default strict semantics"),
295        cl::Hidden, cl::init(false));
296 
297 static cl::opt<int> ClInstrumentationWithCallThreshold(
298     "msan-instrumentation-with-call-threshold",
299     cl::desc(
300         "If the function being instrumented requires more than "
301         "this number of checks and origin stores, use callbacks instead of "
302         "inline checks (-1 means never use callbacks)."),
303     cl::Hidden, cl::init(3500));
304 
305 static cl::opt<bool>
306     ClEnableKmsan("msan-kernel",
307                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
308                   cl::Hidden, cl::init(false));
309 
310 // This is an experiment to enable handling of cases where shadow is a non-zero
311 // compile-time constant. For some unexplainable reason they were silently
312 // ignored in the instrumentation.
313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
314        cl::desc("Insert checks for constant shadow values"),
315        cl::Hidden, cl::init(false));
316 
317 // This is off by default because of a bug in gold:
318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
319 static cl::opt<bool> ClWithComdat("msan-with-comdat",
320        cl::desc("Place MSan constructors in comdat sections"),
321        cl::Hidden, cl::init(false));
322 
323 // These options allow to specify custom memory map parameters
324 // See MemoryMapParams for details.
325 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
326                                    cl::desc("Define custom MSan AndMask"),
327                                    cl::Hidden, cl::init(0));
328 
329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
330                                    cl::desc("Define custom MSan XorMask"),
331                                    cl::Hidden, cl::init(0));
332 
333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
334                                       cl::desc("Define custom MSan ShadowBase"),
335                                       cl::Hidden, cl::init(0));
336 
337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
338                                       cl::desc("Define custom MSan OriginBase"),
339                                       cl::Hidden, cl::init(0));
340 
341 const char kMsanModuleCtorName[] = "msan.module_ctor";
342 const char kMsanInitName[] = "__msan_init";
343 
344 namespace {
345 
346 // Memory map parameters used in application-to-shadow address calculation.
347 // Offset = (Addr & ~AndMask) ^ XorMask
348 // Shadow = ShadowBase + Offset
349 // Origin = OriginBase + Offset
350 struct MemoryMapParams {
351   uint64_t AndMask;
352   uint64_t XorMask;
353   uint64_t ShadowBase;
354   uint64_t OriginBase;
355 };
356 
357 struct PlatformMemoryMapParams {
358   const MemoryMapParams *bits32;
359   const MemoryMapParams *bits64;
360 };
361 
362 } // end anonymous namespace
363 
364 // i386 Linux
365 static const MemoryMapParams Linux_I386_MemoryMapParams = {
366   0x000080000000,  // AndMask
367   0,               // XorMask (not used)
368   0,               // ShadowBase (not used)
369   0x000040000000,  // OriginBase
370 };
371 
372 // x86_64 Linux
373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
375   0x400000000000,  // AndMask
376   0,               // XorMask (not used)
377   0,               // ShadowBase (not used)
378   0x200000000000,  // OriginBase
379 #else
380   0,               // AndMask (not used)
381   0x500000000000,  // XorMask
382   0,               // ShadowBase (not used)
383   0x100000000000,  // OriginBase
384 #endif
385 };
386 
387 // mips64 Linux
388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
389   0,               // AndMask (not used)
390   0x008000000000,  // XorMask
391   0,               // ShadowBase (not used)
392   0x002000000000,  // OriginBase
393 };
394 
395 // ppc64 Linux
396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
397   0xE00000000000,  // AndMask
398   0x100000000000,  // XorMask
399   0x080000000000,  // ShadowBase
400   0x1C0000000000,  // OriginBase
401 };
402 
403 // s390x Linux
404 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
405     0xC00000000000, // AndMask
406     0,              // XorMask (not used)
407     0x080000000000, // ShadowBase
408     0x1C0000000000, // OriginBase
409 };
410 
411 // aarch64 Linux
412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
413   0,               // AndMask (not used)
414   0x06000000000,   // XorMask
415   0,               // ShadowBase (not used)
416   0x01000000000,   // OriginBase
417 };
418 
419 // i386 FreeBSD
420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
421   0x000180000000,  // AndMask
422   0x000040000000,  // XorMask
423   0x000020000000,  // ShadowBase
424   0x000700000000,  // OriginBase
425 };
426 
427 // x86_64 FreeBSD
428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
429   0xc00000000000,  // AndMask
430   0x200000000000,  // XorMask
431   0x100000000000,  // ShadowBase
432   0x380000000000,  // OriginBase
433 };
434 
435 // x86_64 NetBSD
436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
437   0,               // AndMask
438   0x500000000000,  // XorMask
439   0,               // ShadowBase
440   0x100000000000,  // OriginBase
441 };
442 
443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
444   &Linux_I386_MemoryMapParams,
445   &Linux_X86_64_MemoryMapParams,
446 };
447 
448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
449   nullptr,
450   &Linux_MIPS64_MemoryMapParams,
451 };
452 
453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
454   nullptr,
455   &Linux_PowerPC64_MemoryMapParams,
456 };
457 
458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
459     nullptr,
460     &Linux_S390X_MemoryMapParams,
461 };
462 
463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
464   nullptr,
465   &Linux_AArch64_MemoryMapParams,
466 };
467 
468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
469   &FreeBSD_I386_MemoryMapParams,
470   &FreeBSD_X86_64_MemoryMapParams,
471 };
472 
473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
474   nullptr,
475   &NetBSD_X86_64_MemoryMapParams,
476 };
477 
478 namespace {
479 
480 /// Instrument functions of a module to detect uninitialized reads.
481 ///
482 /// Instantiating MemorySanitizer inserts the msan runtime library API function
483 /// declarations into the module if they don't exist already. Instantiating
484 /// ensures the __msan_init function is in the list of global constructors for
485 /// the module.
486 class MemorySanitizer {
487 public:
488   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
489       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
490         Recover(Options.Recover) {
491     initializeModule(M);
492   }
493 
494   // MSan cannot be moved or copied because of MapParams.
495   MemorySanitizer(MemorySanitizer &&) = delete;
496   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
497   MemorySanitizer(const MemorySanitizer &) = delete;
498   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
499 
500   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
501 
502 private:
503   friend struct MemorySanitizerVisitor;
504   friend struct VarArgAMD64Helper;
505   friend struct VarArgMIPS64Helper;
506   friend struct VarArgAArch64Helper;
507   friend struct VarArgPowerPC64Helper;
508   friend struct VarArgSystemZHelper;
509 
510   void initializeModule(Module &M);
511   void initializeCallbacks(Module &M);
512   void createKernelApi(Module &M);
513   void createUserspaceApi(Module &M);
514 
515   /// True if we're compiling the Linux kernel.
516   bool CompileKernel;
517   /// Track origins (allocation points) of uninitialized values.
518   int TrackOrigins;
519   bool Recover;
520 
521   LLVMContext *C;
522   Type *IntptrTy;
523   Type *OriginTy;
524 
525   // XxxTLS variables represent the per-thread state in MSan and per-task state
526   // in KMSAN.
527   // For the userspace these point to thread-local globals. In the kernel land
528   // they point to the members of a per-task struct obtained via a call to
529   // __msan_get_context_state().
530 
531   /// Thread-local shadow storage for function parameters.
532   Value *ParamTLS;
533 
534   /// Thread-local origin storage for function parameters.
535   Value *ParamOriginTLS;
536 
537   /// Thread-local shadow storage for function return value.
538   Value *RetvalTLS;
539 
540   /// Thread-local origin storage for function return value.
541   Value *RetvalOriginTLS;
542 
543   /// Thread-local shadow storage for in-register va_arg function
544   /// parameters (x86_64-specific).
545   Value *VAArgTLS;
546 
547   /// Thread-local shadow storage for in-register va_arg function
548   /// parameters (x86_64-specific).
549   Value *VAArgOriginTLS;
550 
551   /// Thread-local shadow storage for va_arg overflow area
552   /// (x86_64-specific).
553   Value *VAArgOverflowSizeTLS;
554 
555   /// Are the instrumentation callbacks set up?
556   bool CallbacksInitialized = false;
557 
558   /// The run-time callback to print a warning.
559   FunctionCallee WarningFn;
560 
561   // These arrays are indexed by log2(AccessSize).
562   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
563   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
564 
565   /// Run-time helper that generates a new origin value for a stack
566   /// allocation.
567   FunctionCallee MsanSetAllocaOrigin4Fn;
568 
569   /// Run-time helper that poisons stack on function entry.
570   FunctionCallee MsanPoisonStackFn;
571 
572   /// Run-time helper that records a store (or any event) of an
573   /// uninitialized value and returns an updated origin id encoding this info.
574   FunctionCallee MsanChainOriginFn;
575 
576   /// Run-time helper that paints an origin over a region.
577   FunctionCallee MsanSetOriginFn;
578 
579   /// MSan runtime replacements for memmove, memcpy and memset.
580   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
581 
582   /// KMSAN callback for task-local function argument shadow.
583   StructType *MsanContextStateTy;
584   FunctionCallee MsanGetContextStateFn;
585 
586   /// Functions for poisoning/unpoisoning local variables
587   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
588 
589   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
590   /// pointers.
591   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
592   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
593   FunctionCallee MsanMetadataPtrForStore_1_8[4];
594   FunctionCallee MsanInstrumentAsmStoreFn;
595 
596   /// Helper to choose between different MsanMetadataPtrXxx().
597   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
598 
599   /// Memory map parameters used in application-to-shadow calculation.
600   const MemoryMapParams *MapParams;
601 
602   /// Custom memory map parameters used when -msan-shadow-base or
603   // -msan-origin-base is provided.
604   MemoryMapParams CustomMapParams;
605 
606   MDNode *ColdCallWeights;
607 
608   /// Branch weights for origin store.
609   MDNode *OriginStoreWeights;
610 };
611 
612 void insertModuleCtor(Module &M) {
613   getOrCreateSanitizerCtorAndInitFunctions(
614       M, kMsanModuleCtorName, kMsanInitName,
615       /*InitArgTypes=*/{},
616       /*InitArgs=*/{},
617       // This callback is invoked when the functions are created the first
618       // time. Hook them into the global ctors list in that case:
619       [&](Function *Ctor, FunctionCallee) {
620         if (!ClWithComdat) {
621           appendToGlobalCtors(M, Ctor, 0);
622           return;
623         }
624         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
625         Ctor->setComdat(MsanCtorComdat);
626         appendToGlobalCtors(M, Ctor, 0, Ctor);
627       });
628 }
629 
630 /// A legacy function pass for msan instrumentation.
631 ///
632 /// Instruments functions to detect uninitialized reads.
633 struct MemorySanitizerLegacyPass : public FunctionPass {
634   // Pass identification, replacement for typeid.
635   static char ID;
636 
637   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
638       : FunctionPass(ID), Options(Options) {
639     initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
640   }
641   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
642 
643   void getAnalysisUsage(AnalysisUsage &AU) const override {
644     AU.addRequired<TargetLibraryInfoWrapperPass>();
645   }
646 
647   bool runOnFunction(Function &F) override {
648     return MSan->sanitizeFunction(
649         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
650   }
651   bool doInitialization(Module &M) override;
652 
653   Optional<MemorySanitizer> MSan;
654   MemorySanitizerOptions Options;
655 };
656 
657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
658   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
659 }
660 
661 } // end anonymous namespace
662 
663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
664     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
665       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
666       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
667 
668 PreservedAnalyses MemorySanitizerPass::run(Function &F,
669                                            FunctionAnalysisManager &FAM) {
670   MemorySanitizer Msan(*F.getParent(), Options);
671   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
672     return PreservedAnalyses::none();
673   return PreservedAnalyses::all();
674 }
675 
676 PreservedAnalyses MemorySanitizerPass::run(Module &M,
677                                            ModuleAnalysisManager &AM) {
678   if (Options.Kernel)
679     return PreservedAnalyses::all();
680   insertModuleCtor(M);
681   return PreservedAnalyses::none();
682 }
683 
684 char MemorySanitizerLegacyPass::ID = 0;
685 
686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
687                       "MemorySanitizer: detects uninitialized reads.", false,
688                       false)
689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
691                     "MemorySanitizer: detects uninitialized reads.", false,
692                     false)
693 
694 FunctionPass *
695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
696   return new MemorySanitizerLegacyPass(Options);
697 }
698 
699 /// Create a non-const global initialized with the given string.
700 ///
701 /// Creates a writable global for Str so that we can pass it to the
702 /// run-time lib. Runtime uses first 4 bytes of the string to store the
703 /// frame ID, so the string needs to be mutable.
704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
705                                                             StringRef Str) {
706   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
707   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
708                             GlobalValue::PrivateLinkage, StrConst, "");
709 }
710 
711 /// Create KMSAN API callbacks.
712 void MemorySanitizer::createKernelApi(Module &M) {
713   IRBuilder<> IRB(*C);
714 
715   // These will be initialized in insertKmsanPrologue().
716   RetvalTLS = nullptr;
717   RetvalOriginTLS = nullptr;
718   ParamTLS = nullptr;
719   ParamOriginTLS = nullptr;
720   VAArgTLS = nullptr;
721   VAArgOriginTLS = nullptr;
722   VAArgOverflowSizeTLS = nullptr;
723 
724   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
725                                     IRB.getInt32Ty());
726   // Requests the per-task context state (kmsan_context_state*) from the
727   // runtime library.
728   MsanContextStateTy = StructType::get(
729       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
730       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
731       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
732       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
733       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
734       OriginTy);
735   MsanGetContextStateFn = M.getOrInsertFunction(
736       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
737 
738   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
739                                 PointerType::get(IRB.getInt32Ty(), 0));
740 
741   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
742     std::string name_load =
743         "__msan_metadata_ptr_for_load_" + std::to_string(size);
744     std::string name_store =
745         "__msan_metadata_ptr_for_store_" + std::to_string(size);
746     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
747         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
748     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
749         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
750   }
751 
752   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
753       "__msan_metadata_ptr_for_load_n", RetTy,
754       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
755   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
756       "__msan_metadata_ptr_for_store_n", RetTy,
757       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
758 
759   // Functions for poisoning and unpoisoning memory.
760   MsanPoisonAllocaFn =
761       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
762                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
763   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
764       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
765 }
766 
767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
768   return M.getOrInsertGlobal(Name, Ty, [&] {
769     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
770                               nullptr, Name, nullptr,
771                               GlobalVariable::InitialExecTLSModel);
772   });
773 }
774 
775 /// Insert declarations for userspace-specific functions and globals.
776 void MemorySanitizer::createUserspaceApi(Module &M) {
777   IRBuilder<> IRB(*C);
778 
779   // Create the callback.
780   // FIXME: this function should have "Cold" calling conv,
781   // which is not yet implemented.
782   StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
783                                     : "__msan_warning_with_origin_noreturn";
784   WarningFn =
785       M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty());
786 
787   // Create the global TLS variables.
788   RetvalTLS =
789       getOrInsertGlobal(M, "__msan_retval_tls",
790                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
791 
792   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
793 
794   ParamTLS =
795       getOrInsertGlobal(M, "__msan_param_tls",
796                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
797 
798   ParamOriginTLS =
799       getOrInsertGlobal(M, "__msan_param_origin_tls",
800                         ArrayType::get(OriginTy, kParamTLSSize / 4));
801 
802   VAArgTLS =
803       getOrInsertGlobal(M, "__msan_va_arg_tls",
804                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
805 
806   VAArgOriginTLS =
807       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
808                         ArrayType::get(OriginTy, kParamTLSSize / 4));
809 
810   VAArgOverflowSizeTLS =
811       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
812 
813   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
814        AccessSizeIndex++) {
815     unsigned AccessSize = 1 << AccessSizeIndex;
816     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
817     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs;
818     MaybeWarningFnAttrs.push_back(std::make_pair(
819         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
820     MaybeWarningFnAttrs.push_back(std::make_pair(
821         AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt)));
822     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
823         FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs),
824         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
825 
826     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
827     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs;
828     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
829         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
830     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
831         AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt)));
832     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
833         FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs),
834         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
835         IRB.getInt32Ty());
836   }
837 
838   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
839     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
840     IRB.getInt8PtrTy(), IntptrTy);
841   MsanPoisonStackFn =
842       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
843                             IRB.getInt8PtrTy(), IntptrTy);
844 }
845 
846 /// Insert extern declaration of runtime-provided functions and globals.
847 void MemorySanitizer::initializeCallbacks(Module &M) {
848   // Only do this once.
849   if (CallbacksInitialized)
850     return;
851 
852   IRBuilder<> IRB(*C);
853   // Initialize callbacks that are common for kernel and userspace
854   // instrumentation.
855   MsanChainOriginFn = M.getOrInsertFunction(
856     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
857   MsanSetOriginFn =
858       M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(),
859                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
860   MemmoveFn = M.getOrInsertFunction(
861     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
862     IRB.getInt8PtrTy(), IntptrTy);
863   MemcpyFn = M.getOrInsertFunction(
864     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
865     IntptrTy);
866   MemsetFn = M.getOrInsertFunction(
867     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
868     IntptrTy);
869 
870   MsanInstrumentAsmStoreFn =
871       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
872                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
873 
874   if (CompileKernel) {
875     createKernelApi(M);
876   } else {
877     createUserspaceApi(M);
878   }
879   CallbacksInitialized = true;
880 }
881 
882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
883                                                              int size) {
884   FunctionCallee *Fns =
885       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
886   switch (size) {
887   case 1:
888     return Fns[0];
889   case 2:
890     return Fns[1];
891   case 4:
892     return Fns[2];
893   case 8:
894     return Fns[3];
895   default:
896     return nullptr;
897   }
898 }
899 
900 /// Module-level initialization.
901 ///
902 /// inserts a call to __msan_init to the module's constructor list.
903 void MemorySanitizer::initializeModule(Module &M) {
904   auto &DL = M.getDataLayout();
905 
906   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
907   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
908   // Check the overrides first
909   if (ShadowPassed || OriginPassed) {
910     CustomMapParams.AndMask = ClAndMask;
911     CustomMapParams.XorMask = ClXorMask;
912     CustomMapParams.ShadowBase = ClShadowBase;
913     CustomMapParams.OriginBase = ClOriginBase;
914     MapParams = &CustomMapParams;
915   } else {
916     Triple TargetTriple(M.getTargetTriple());
917     switch (TargetTriple.getOS()) {
918       case Triple::FreeBSD:
919         switch (TargetTriple.getArch()) {
920           case Triple::x86_64:
921             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
922             break;
923           case Triple::x86:
924             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
925             break;
926           default:
927             report_fatal_error("unsupported architecture");
928         }
929         break;
930       case Triple::NetBSD:
931         switch (TargetTriple.getArch()) {
932           case Triple::x86_64:
933             MapParams = NetBSD_X86_MemoryMapParams.bits64;
934             break;
935           default:
936             report_fatal_error("unsupported architecture");
937         }
938         break;
939       case Triple::Linux:
940         switch (TargetTriple.getArch()) {
941           case Triple::x86_64:
942             MapParams = Linux_X86_MemoryMapParams.bits64;
943             break;
944           case Triple::x86:
945             MapParams = Linux_X86_MemoryMapParams.bits32;
946             break;
947           case Triple::mips64:
948           case Triple::mips64el:
949             MapParams = Linux_MIPS_MemoryMapParams.bits64;
950             break;
951           case Triple::ppc64:
952           case Triple::ppc64le:
953             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
954             break;
955           case Triple::systemz:
956             MapParams = Linux_S390_MemoryMapParams.bits64;
957             break;
958           case Triple::aarch64:
959           case Triple::aarch64_be:
960             MapParams = Linux_ARM_MemoryMapParams.bits64;
961             break;
962           default:
963             report_fatal_error("unsupported architecture");
964         }
965         break;
966       default:
967         report_fatal_error("unsupported operating system");
968     }
969   }
970 
971   C = &(M.getContext());
972   IRBuilder<> IRB(*C);
973   IntptrTy = IRB.getIntPtrTy(DL);
974   OriginTy = IRB.getInt32Ty();
975 
976   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
977   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
978 
979   if (!CompileKernel) {
980     if (TrackOrigins)
981       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
982         return new GlobalVariable(
983             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
984             IRB.getInt32(TrackOrigins), "__msan_track_origins");
985       });
986 
987     if (Recover)
988       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
989         return new GlobalVariable(M, IRB.getInt32Ty(), true,
990                                   GlobalValue::WeakODRLinkage,
991                                   IRB.getInt32(Recover), "__msan_keep_going");
992       });
993 }
994 }
995 
996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
997   if (!Options.Kernel)
998     insertModuleCtor(M);
999   MSan.emplace(M, Options);
1000   return true;
1001 }
1002 
1003 namespace {
1004 
1005 /// A helper class that handles instrumentation of VarArg
1006 /// functions on a particular platform.
1007 ///
1008 /// Implementations are expected to insert the instrumentation
1009 /// necessary to propagate argument shadow through VarArg function
1010 /// calls. Visit* methods are called during an InstVisitor pass over
1011 /// the function, and should avoid creating new basic blocks. A new
1012 /// instance of this class is created for each instrumented function.
1013 struct VarArgHelper {
1014   virtual ~VarArgHelper() = default;
1015 
1016   /// Visit a CallBase.
1017   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1018 
1019   /// Visit a va_start call.
1020   virtual void visitVAStartInst(VAStartInst &I) = 0;
1021 
1022   /// Visit a va_copy call.
1023   virtual void visitVACopyInst(VACopyInst &I) = 0;
1024 
1025   /// Finalize function instrumentation.
1026   ///
1027   /// This method is called after visiting all interesting (see above)
1028   /// instructions in a function.
1029   virtual void finalizeInstrumentation() = 0;
1030 };
1031 
1032 struct MemorySanitizerVisitor;
1033 
1034 } // end anonymous namespace
1035 
1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1037                                         MemorySanitizerVisitor &Visitor);
1038 
1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1040   if (TypeSize <= 8) return 0;
1041   return Log2_32_Ceil((TypeSize + 7) / 8);
1042 }
1043 
1044 namespace {
1045 
1046 /// This class does all the work for a given function. Store and Load
1047 /// instructions store and load corresponding shadow and origin
1048 /// values. Most instructions propagate shadow from arguments to their
1049 /// return values. Certain instructions (most importantly, BranchInst)
1050 /// test their argument shadow and print reports (with a runtime call) if it's
1051 /// non-zero.
1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1053   Function &F;
1054   MemorySanitizer &MS;
1055   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1056   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1057   std::unique_ptr<VarArgHelper> VAHelper;
1058   const TargetLibraryInfo *TLI;
1059   Instruction *FnPrologueEnd;
1060 
1061   // The following flags disable parts of MSan instrumentation based on
1062   // exclusion list contents and command-line options.
1063   bool InsertChecks;
1064   bool PropagateShadow;
1065   bool PoisonStack;
1066   bool PoisonUndef;
1067 
1068   struct ShadowOriginAndInsertPoint {
1069     Value *Shadow;
1070     Value *Origin;
1071     Instruction *OrigIns;
1072 
1073     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1074       : Shadow(S), Origin(O), OrigIns(I) {}
1075   };
1076   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1077   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1078   SmallSet<AllocaInst *, 16> AllocaSet;
1079   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1080   SmallVector<StoreInst *, 16> StoreList;
1081 
1082   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1083                          const TargetLibraryInfo &TLI)
1084       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1085     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1086     InsertChecks = SanitizeFunction;
1087     PropagateShadow = SanitizeFunction;
1088     PoisonStack = SanitizeFunction && ClPoisonStack;
1089     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1090 
1091     // In the presence of unreachable blocks, we may see Phi nodes with
1092     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1093     // blocks, such nodes will not have any shadow value associated with them.
1094     // It's easier to remove unreachable blocks than deal with missing shadow.
1095     removeUnreachableBlocks(F);
1096 
1097     MS.initializeCallbacks(*F.getParent());
1098     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1099                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1100 
1101     if (MS.CompileKernel) {
1102       IRBuilder<> IRB(FnPrologueEnd);
1103       insertKmsanPrologue(IRB);
1104     }
1105 
1106     LLVM_DEBUG(if (!InsertChecks) dbgs()
1107                << "MemorySanitizer is not inserting checks into '"
1108                << F.getName() << "'\n");
1109   }
1110 
1111   bool isInPrologue(Instruction &I) {
1112     return I.getParent() == FnPrologueEnd->getParent() &&
1113            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1114   }
1115 
1116   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1117     if (MS.TrackOrigins <= 1) return V;
1118     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1119   }
1120 
1121   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1122     const DataLayout &DL = F.getParent()->getDataLayout();
1123     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1124     if (IntptrSize == kOriginSize) return Origin;
1125     assert(IntptrSize == kOriginSize * 2);
1126     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1127     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1128   }
1129 
1130   /// Fill memory range with the given origin value.
1131   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1132                    unsigned Size, Align Alignment) {
1133     const DataLayout &DL = F.getParent()->getDataLayout();
1134     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1135     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1136     assert(IntptrAlignment >= kMinOriginAlignment);
1137     assert(IntptrSize >= kOriginSize);
1138 
1139     unsigned Ofs = 0;
1140     Align CurrentAlignment = Alignment;
1141     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1142       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1143       Value *IntptrOriginPtr =
1144           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1145       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1146         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1147                        : IntptrOriginPtr;
1148         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1149         Ofs += IntptrSize / kOriginSize;
1150         CurrentAlignment = IntptrAlignment;
1151       }
1152     }
1153 
1154     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1155       Value *GEP =
1156           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1157       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1158       CurrentAlignment = kMinOriginAlignment;
1159     }
1160   }
1161 
1162   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1163                    Value *OriginPtr, Align Alignment, bool AsCall) {
1164     const DataLayout &DL = F.getParent()->getDataLayout();
1165     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1166     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1167     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1168     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1169       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1170         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1171                     OriginAlignment);
1172       return;
1173     }
1174 
1175     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1176     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1177     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1178       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1179       Value *ConvertedShadow2 =
1180           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1181       IRB.CreateCall(Fn,
1182                      {ConvertedShadow2,
1183                       IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1184     } else {
1185       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1186       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1187           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1188       IRBuilder<> IRBNew(CheckTerm);
1189       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1190                   OriginAlignment);
1191     }
1192   }
1193 
1194   void materializeStores(bool InstrumentWithCalls) {
1195     for (StoreInst *SI : StoreList) {
1196       IRBuilder<> IRB(SI);
1197       Value *Val = SI->getValueOperand();
1198       Value *Addr = SI->getPointerOperand();
1199       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1200       Value *ShadowPtr, *OriginPtr;
1201       Type *ShadowTy = Shadow->getType();
1202       const Align Alignment = assumeAligned(SI->getAlignment());
1203       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1204       std::tie(ShadowPtr, OriginPtr) =
1205           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1206 
1207       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1208       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1209       (void)NewSI;
1210 
1211       if (SI->isAtomic())
1212         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1213 
1214       if (MS.TrackOrigins && !SI->isAtomic())
1215         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1216                     OriginAlignment, InstrumentWithCalls);
1217     }
1218   }
1219 
1220   /// Helper function to insert a warning at IRB's current insert point.
1221   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1222     if (!Origin)
1223       Origin = (Value *)IRB.getInt32(0);
1224     assert(Origin->getType()->isIntegerTy());
1225     IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1226     // FIXME: Insert UnreachableInst if !MS.Recover?
1227     // This may invalidate some of the following checks and needs to be done
1228     // at the very end.
1229   }
1230 
1231   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1232                            bool AsCall) {
1233     IRBuilder<> IRB(OrigIns);
1234     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1235     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1236     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1237 
1238     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1239       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1240         insertWarningFn(IRB, Origin);
1241       }
1242       return;
1243     }
1244 
1245     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1246 
1247     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1248     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1249     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1250       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1251       Value *ConvertedShadow2 =
1252           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1253       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
1254                                                 ? Origin
1255                                                 : (Value *)IRB.getInt32(0)});
1256     } else {
1257       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1258       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1259           Cmp, OrigIns,
1260           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1261 
1262       IRB.SetInsertPoint(CheckTerm);
1263       insertWarningFn(IRB, Origin);
1264       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1265     }
1266   }
1267 
1268   void materializeChecks(bool InstrumentWithCalls) {
1269     for (const auto &ShadowData : InstrumentationList) {
1270       Instruction *OrigIns = ShadowData.OrigIns;
1271       Value *Shadow = ShadowData.Shadow;
1272       Value *Origin = ShadowData.Origin;
1273       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1274     }
1275     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1276   }
1277 
1278   // Returns the last instruction in the new prologue
1279   void insertKmsanPrologue(IRBuilder<> &IRB) {
1280     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1281     Constant *Zero = IRB.getInt32(0);
1282     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1283                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1284     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1285                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1286     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1287                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1288     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1289                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1290     MS.VAArgOverflowSizeTLS =
1291         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1292                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1293     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1294                                       {Zero, IRB.getInt32(5)}, "param_origin");
1295     MS.RetvalOriginTLS =
1296         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1297                       {Zero, IRB.getInt32(6)}, "retval_origin");
1298   }
1299 
1300   /// Add MemorySanitizer instrumentation to a function.
1301   bool runOnFunction() {
1302     // Iterate all BBs in depth-first order and create shadow instructions
1303     // for all instructions (where applicable).
1304     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1305     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1306       visit(*BB);
1307 
1308     // Finalize PHI nodes.
1309     for (PHINode *PN : ShadowPHINodes) {
1310       PHINode *PNS = cast<PHINode>(getShadow(PN));
1311       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1312       size_t NumValues = PN->getNumIncomingValues();
1313       for (size_t v = 0; v < NumValues; v++) {
1314         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1315         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1316       }
1317     }
1318 
1319     VAHelper->finalizeInstrumentation();
1320 
1321     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1322     // instrumenting only allocas.
1323     if (InstrumentLifetimeStart) {
1324       for (auto Item : LifetimeStartList) {
1325         instrumentAlloca(*Item.second, Item.first);
1326         AllocaSet.erase(Item.second);
1327       }
1328     }
1329     // Poison the allocas for which we didn't instrument the corresponding
1330     // lifetime intrinsics.
1331     for (AllocaInst *AI : AllocaSet)
1332       instrumentAlloca(*AI);
1333 
1334     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1335                                InstrumentationList.size() + StoreList.size() >
1336                                    (unsigned)ClInstrumentationWithCallThreshold;
1337 
1338     // Insert shadow value checks.
1339     materializeChecks(InstrumentWithCalls);
1340 
1341     // Delayed instrumentation of StoreInst.
1342     // This may not add new address checks.
1343     materializeStores(InstrumentWithCalls);
1344 
1345     return true;
1346   }
1347 
1348   /// Compute the shadow type that corresponds to a given Value.
1349   Type *getShadowTy(Value *V) {
1350     return getShadowTy(V->getType());
1351   }
1352 
1353   /// Compute the shadow type that corresponds to a given Type.
1354   Type *getShadowTy(Type *OrigTy) {
1355     if (!OrigTy->isSized()) {
1356       return nullptr;
1357     }
1358     // For integer type, shadow is the same as the original type.
1359     // This may return weird-sized types like i1.
1360     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1361       return IT;
1362     const DataLayout &DL = F.getParent()->getDataLayout();
1363     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1364       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1365       return FixedVectorType::get(IntegerType::get(*MS.C, EltSize),
1366                                   cast<FixedVectorType>(VT)->getNumElements());
1367     }
1368     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1369       return ArrayType::get(getShadowTy(AT->getElementType()),
1370                             AT->getNumElements());
1371     }
1372     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1373       SmallVector<Type*, 4> Elements;
1374       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1375         Elements.push_back(getShadowTy(ST->getElementType(i)));
1376       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1377       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1378       return Res;
1379     }
1380     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1381     return IntegerType::get(*MS.C, TypeSize);
1382   }
1383 
1384   /// Flatten a vector type.
1385   Type *getShadowTyNoVec(Type *ty) {
1386     if (VectorType *vt = dyn_cast<VectorType>(ty))
1387       return IntegerType::get(*MS.C,
1388                               vt->getPrimitiveSizeInBits().getFixedSize());
1389     return ty;
1390   }
1391 
1392   /// Extract combined shadow of struct elements as a bool
1393   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1394                               IRBuilder<> &IRB) {
1395     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1396     Value *Aggregator = FalseVal;
1397 
1398     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1399       // Combine by ORing together each element's bool shadow
1400       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1401       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1402       Value *ShadowBool = convertToBool(ShadowInner, IRB);
1403 
1404       if (Aggregator != FalseVal)
1405         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1406       else
1407         Aggregator = ShadowBool;
1408     }
1409 
1410     return Aggregator;
1411   }
1412 
1413   // Extract combined shadow of array elements
1414   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1415                              IRBuilder<> &IRB) {
1416     if (!Array->getNumElements())
1417       return IRB.getIntN(/* width */ 1, /* value */ 0);
1418 
1419     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1420     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1421 
1422     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1423       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1424       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1425       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1426     }
1427     return Aggregator;
1428   }
1429 
1430   /// Convert a shadow value to it's flattened variant. The resulting
1431   /// shadow may not necessarily have the same bit width as the input
1432   /// value, but it will always be comparable to zero.
1433   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1434     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1435       return collapseStructShadow(Struct, V, IRB);
1436     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1437       return collapseArrayShadow(Array, V, IRB);
1438     Type *Ty = V->getType();
1439     Type *NoVecTy = getShadowTyNoVec(Ty);
1440     if (Ty == NoVecTy) return V;
1441     return IRB.CreateBitCast(V, NoVecTy);
1442   }
1443 
1444   // Convert a scalar value to an i1 by comparing with 0
1445   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1446     Type *VTy = V->getType();
1447     assert(VTy->isIntegerTy());
1448     if (VTy->getIntegerBitWidth() == 1)
1449       // Just converting a bool to a bool, so do nothing.
1450       return V;
1451     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1452   }
1453 
1454   /// Compute the integer shadow offset that corresponds to a given
1455   /// application address.
1456   ///
1457   /// Offset = (Addr & ~AndMask) ^ XorMask
1458   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1459     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1460 
1461     uint64_t AndMask = MS.MapParams->AndMask;
1462     if (AndMask)
1463       OffsetLong =
1464           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1465 
1466     uint64_t XorMask = MS.MapParams->XorMask;
1467     if (XorMask)
1468       OffsetLong =
1469           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1470     return OffsetLong;
1471   }
1472 
1473   /// Compute the shadow and origin addresses corresponding to a given
1474   /// application address.
1475   ///
1476   /// Shadow = ShadowBase + Offset
1477   /// Origin = (OriginBase + Offset) & ~3ULL
1478   std::pair<Value *, Value *>
1479   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1480                               MaybeAlign Alignment) {
1481     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1482     Value *ShadowLong = ShadowOffset;
1483     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1484     if (ShadowBase != 0) {
1485       ShadowLong =
1486         IRB.CreateAdd(ShadowLong,
1487                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1488     }
1489     Value *ShadowPtr =
1490         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1491     Value *OriginPtr = nullptr;
1492     if (MS.TrackOrigins) {
1493       Value *OriginLong = ShadowOffset;
1494       uint64_t OriginBase = MS.MapParams->OriginBase;
1495       if (OriginBase != 0)
1496         OriginLong = IRB.CreateAdd(OriginLong,
1497                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1498       if (!Alignment || *Alignment < kMinOriginAlignment) {
1499         uint64_t Mask = kMinOriginAlignment.value() - 1;
1500         OriginLong =
1501             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1502       }
1503       OriginPtr =
1504           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1505     }
1506     return std::make_pair(ShadowPtr, OriginPtr);
1507   }
1508 
1509   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1510                                                        IRBuilder<> &IRB,
1511                                                        Type *ShadowTy,
1512                                                        bool isStore) {
1513     Value *ShadowOriginPtrs;
1514     const DataLayout &DL = F.getParent()->getDataLayout();
1515     int Size = DL.getTypeStoreSize(ShadowTy);
1516 
1517     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1518     Value *AddrCast =
1519         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1520     if (Getter) {
1521       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1522     } else {
1523       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1524       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1525                                                 : MS.MsanMetadataPtrForLoadN,
1526                                         {AddrCast, SizeVal});
1527     }
1528     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1529     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1530     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1531 
1532     return std::make_pair(ShadowPtr, OriginPtr);
1533   }
1534 
1535   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1536                                                  Type *ShadowTy,
1537                                                  MaybeAlign Alignment,
1538                                                  bool isStore) {
1539     if (MS.CompileKernel)
1540       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1541     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1542   }
1543 
1544   /// Compute the shadow address for a given function argument.
1545   ///
1546   /// Shadow = ParamTLS+ArgOffset.
1547   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1548                                  int ArgOffset) {
1549     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1550     if (ArgOffset)
1551       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1552     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1553                               "_msarg");
1554   }
1555 
1556   /// Compute the origin address for a given function argument.
1557   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1558                                  int ArgOffset) {
1559     if (!MS.TrackOrigins)
1560       return nullptr;
1561     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1562     if (ArgOffset)
1563       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1564     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1565                               "_msarg_o");
1566   }
1567 
1568   /// Compute the shadow address for a retval.
1569   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1570     return IRB.CreatePointerCast(MS.RetvalTLS,
1571                                  PointerType::get(getShadowTy(A), 0),
1572                                  "_msret");
1573   }
1574 
1575   /// Compute the origin address for a retval.
1576   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1577     // We keep a single origin for the entire retval. Might be too optimistic.
1578     return MS.RetvalOriginTLS;
1579   }
1580 
1581   /// Set SV to be the shadow value for V.
1582   void setShadow(Value *V, Value *SV) {
1583     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1584     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1585   }
1586 
1587   /// Set Origin to be the origin value for V.
1588   void setOrigin(Value *V, Value *Origin) {
1589     if (!MS.TrackOrigins) return;
1590     assert(!OriginMap.count(V) && "Values may only have one origin");
1591     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1592     OriginMap[V] = Origin;
1593   }
1594 
1595   Constant *getCleanShadow(Type *OrigTy) {
1596     Type *ShadowTy = getShadowTy(OrigTy);
1597     if (!ShadowTy)
1598       return nullptr;
1599     return Constant::getNullValue(ShadowTy);
1600   }
1601 
1602   /// Create a clean shadow value for a given value.
1603   ///
1604   /// Clean shadow (all zeroes) means all bits of the value are defined
1605   /// (initialized).
1606   Constant *getCleanShadow(Value *V) {
1607     return getCleanShadow(V->getType());
1608   }
1609 
1610   /// Create a dirty shadow of a given shadow type.
1611   Constant *getPoisonedShadow(Type *ShadowTy) {
1612     assert(ShadowTy);
1613     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1614       return Constant::getAllOnesValue(ShadowTy);
1615     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1616       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1617                                       getPoisonedShadow(AT->getElementType()));
1618       return ConstantArray::get(AT, Vals);
1619     }
1620     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1621       SmallVector<Constant *, 4> Vals;
1622       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1623         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1624       return ConstantStruct::get(ST, Vals);
1625     }
1626     llvm_unreachable("Unexpected shadow type");
1627   }
1628 
1629   /// Create a dirty shadow for a given value.
1630   Constant *getPoisonedShadow(Value *V) {
1631     Type *ShadowTy = getShadowTy(V);
1632     if (!ShadowTy)
1633       return nullptr;
1634     return getPoisonedShadow(ShadowTy);
1635   }
1636 
1637   /// Create a clean (zero) origin.
1638   Value *getCleanOrigin() {
1639     return Constant::getNullValue(MS.OriginTy);
1640   }
1641 
1642   /// Get the shadow value for a given Value.
1643   ///
1644   /// This function either returns the value set earlier with setShadow,
1645   /// or extracts if from ParamTLS (for function arguments).
1646   Value *getShadow(Value *V) {
1647     if (!PropagateShadow) return getCleanShadow(V);
1648     if (Instruction *I = dyn_cast<Instruction>(V)) {
1649       if (I->getMetadata("nosanitize"))
1650         return getCleanShadow(V);
1651       // For instructions the shadow is already stored in the map.
1652       Value *Shadow = ShadowMap[V];
1653       if (!Shadow) {
1654         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1655         (void)I;
1656         assert(Shadow && "No shadow for a value");
1657       }
1658       return Shadow;
1659     }
1660     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1661       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1662       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1663       (void)U;
1664       return AllOnes;
1665     }
1666     if (Argument *A = dyn_cast<Argument>(V)) {
1667       // For arguments we compute the shadow on demand and store it in the map.
1668       Value **ShadowPtr = &ShadowMap[V];
1669       if (*ShadowPtr)
1670         return *ShadowPtr;
1671       Function *F = A->getParent();
1672       IRBuilder<> EntryIRB(FnPrologueEnd);
1673       unsigned ArgOffset = 0;
1674       const DataLayout &DL = F->getParent()->getDataLayout();
1675       for (auto &FArg : F->args()) {
1676         if (!FArg.getType()->isSized()) {
1677           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1678           continue;
1679         }
1680 
1681         bool FArgByVal = FArg.hasByValAttr();
1682         bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef);
1683         bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef;
1684         unsigned Size =
1685             FArg.hasByValAttr()
1686                 ? DL.getTypeAllocSize(FArg.getParamByValType())
1687                 : DL.getTypeAllocSize(FArg.getType());
1688 
1689         if (A == &FArg) {
1690           bool Overflow = ArgOffset + Size > kParamTLSSize;
1691           if (FArgEagerCheck) {
1692             *ShadowPtr = getCleanShadow(V);
1693             setOrigin(A, getCleanOrigin());
1694             continue;
1695           } else if (FArgByVal) {
1696             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1697             // ByVal pointer itself has clean shadow. We copy the actual
1698             // argument shadow to the underlying memory.
1699             // Figure out maximal valid memcpy alignment.
1700             const Align ArgAlign = DL.getValueOrABITypeAlignment(
1701                 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType());
1702             Value *CpShadowPtr =
1703                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1704                                    /*isStore*/ true)
1705                     .first;
1706             // TODO(glider): need to copy origins.
1707             if (Overflow) {
1708               // ParamTLS overflow.
1709               EntryIRB.CreateMemSet(
1710                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1711                   Size, ArgAlign);
1712             } else {
1713               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1714               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1715                                                  CopyAlign, Size);
1716               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1717               (void)Cpy;
1718             }
1719             *ShadowPtr = getCleanShadow(V);
1720           } else {
1721             // Shadow over TLS
1722             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1723             if (Overflow) {
1724               // ParamTLS overflow.
1725               *ShadowPtr = getCleanShadow(V);
1726             } else {
1727               *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1728                                                       kShadowTLSAlignment);
1729             }
1730           }
1731           LLVM_DEBUG(dbgs()
1732                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1733           if (MS.TrackOrigins && !Overflow) {
1734             Value *OriginPtr =
1735                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1736             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1737           } else {
1738             setOrigin(A, getCleanOrigin());
1739           }
1740 
1741           break;
1742         }
1743 
1744         if (!FArgEagerCheck)
1745           ArgOffset += alignTo(Size, kShadowTLSAlignment);
1746       }
1747       assert(*ShadowPtr && "Could not find shadow for an argument");
1748       return *ShadowPtr;
1749     }
1750     // For everything else the shadow is zero.
1751     return getCleanShadow(V);
1752   }
1753 
1754   /// Get the shadow for i-th argument of the instruction I.
1755   Value *getShadow(Instruction *I, int i) {
1756     return getShadow(I->getOperand(i));
1757   }
1758 
1759   /// Get the origin for a value.
1760   Value *getOrigin(Value *V) {
1761     if (!MS.TrackOrigins) return nullptr;
1762     if (!PropagateShadow) return getCleanOrigin();
1763     if (isa<Constant>(V)) return getCleanOrigin();
1764     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1765            "Unexpected value type in getOrigin()");
1766     if (Instruction *I = dyn_cast<Instruction>(V)) {
1767       if (I->getMetadata("nosanitize"))
1768         return getCleanOrigin();
1769     }
1770     Value *Origin = OriginMap[V];
1771     assert(Origin && "Missing origin");
1772     return Origin;
1773   }
1774 
1775   /// Get the origin for i-th argument of the instruction I.
1776   Value *getOrigin(Instruction *I, int i) {
1777     return getOrigin(I->getOperand(i));
1778   }
1779 
1780   /// Remember the place where a shadow check should be inserted.
1781   ///
1782   /// This location will be later instrumented with a check that will print a
1783   /// UMR warning in runtime if the shadow value is not 0.
1784   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1785     assert(Shadow);
1786     if (!InsertChecks) return;
1787 #ifndef NDEBUG
1788     Type *ShadowTy = Shadow->getType();
1789     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
1790             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
1791            "Can only insert checks for integer, vector, and aggregate shadow "
1792            "types");
1793 #endif
1794     InstrumentationList.push_back(
1795         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1796   }
1797 
1798   /// Remember the place where a shadow check should be inserted.
1799   ///
1800   /// This location will be later instrumented with a check that will print a
1801   /// UMR warning in runtime if the value is not fully defined.
1802   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1803     assert(Val);
1804     Value *Shadow, *Origin;
1805     if (ClCheckConstantShadow) {
1806       Shadow = getShadow(Val);
1807       if (!Shadow) return;
1808       Origin = getOrigin(Val);
1809     } else {
1810       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1811       if (!Shadow) return;
1812       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1813     }
1814     insertShadowCheck(Shadow, Origin, OrigIns);
1815   }
1816 
1817   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1818     switch (a) {
1819       case AtomicOrdering::NotAtomic:
1820         return AtomicOrdering::NotAtomic;
1821       case AtomicOrdering::Unordered:
1822       case AtomicOrdering::Monotonic:
1823       case AtomicOrdering::Release:
1824         return AtomicOrdering::Release;
1825       case AtomicOrdering::Acquire:
1826       case AtomicOrdering::AcquireRelease:
1827         return AtomicOrdering::AcquireRelease;
1828       case AtomicOrdering::SequentiallyConsistent:
1829         return AtomicOrdering::SequentiallyConsistent;
1830     }
1831     llvm_unreachable("Unknown ordering");
1832   }
1833 
1834   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
1835     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1836     uint32_t OrderingTable[NumOrderings] = {};
1837 
1838     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1839         OrderingTable[(int)AtomicOrderingCABI::release] =
1840             (int)AtomicOrderingCABI::release;
1841     OrderingTable[(int)AtomicOrderingCABI::consume] =
1842         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1843             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1844                 (int)AtomicOrderingCABI::acq_rel;
1845     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1846         (int)AtomicOrderingCABI::seq_cst;
1847 
1848     return ConstantDataVector::get(IRB.getContext(),
1849                                    makeArrayRef(OrderingTable, NumOrderings));
1850   }
1851 
1852   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1853     switch (a) {
1854       case AtomicOrdering::NotAtomic:
1855         return AtomicOrdering::NotAtomic;
1856       case AtomicOrdering::Unordered:
1857       case AtomicOrdering::Monotonic:
1858       case AtomicOrdering::Acquire:
1859         return AtomicOrdering::Acquire;
1860       case AtomicOrdering::Release:
1861       case AtomicOrdering::AcquireRelease:
1862         return AtomicOrdering::AcquireRelease;
1863       case AtomicOrdering::SequentiallyConsistent:
1864         return AtomicOrdering::SequentiallyConsistent;
1865     }
1866     llvm_unreachable("Unknown ordering");
1867   }
1868 
1869   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
1870     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1871     uint32_t OrderingTable[NumOrderings] = {};
1872 
1873     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1874         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1875             OrderingTable[(int)AtomicOrderingCABI::consume] =
1876                 (int)AtomicOrderingCABI::acquire;
1877     OrderingTable[(int)AtomicOrderingCABI::release] =
1878         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1879             (int)AtomicOrderingCABI::acq_rel;
1880     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1881         (int)AtomicOrderingCABI::seq_cst;
1882 
1883     return ConstantDataVector::get(IRB.getContext(),
1884                                    makeArrayRef(OrderingTable, NumOrderings));
1885   }
1886 
1887   // ------------------- Visitors.
1888   using InstVisitor<MemorySanitizerVisitor>::visit;
1889   void visit(Instruction &I) {
1890     if (I.getMetadata("nosanitize"))
1891       return;
1892     // Don't want to visit if we're in the prologue
1893     if (isInPrologue(I))
1894       return;
1895     InstVisitor<MemorySanitizerVisitor>::visit(I);
1896   }
1897 
1898   /// Instrument LoadInst
1899   ///
1900   /// Loads the corresponding shadow and (optionally) origin.
1901   /// Optionally, checks that the load address is fully defined.
1902   void visitLoadInst(LoadInst &I) {
1903     assert(I.getType()->isSized() && "Load type must have size");
1904     assert(!I.getMetadata("nosanitize"));
1905     IRBuilder<> IRB(I.getNextNode());
1906     Type *ShadowTy = getShadowTy(&I);
1907     Value *Addr = I.getPointerOperand();
1908     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
1909     const Align Alignment = assumeAligned(I.getAlignment());
1910     if (PropagateShadow) {
1911       std::tie(ShadowPtr, OriginPtr) =
1912           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1913       setShadow(&I,
1914                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1915     } else {
1916       setShadow(&I, getCleanShadow(&I));
1917     }
1918 
1919     if (ClCheckAccessAddress)
1920       insertShadowCheck(I.getPointerOperand(), &I);
1921 
1922     if (I.isAtomic())
1923       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1924 
1925     if (MS.TrackOrigins) {
1926       if (PropagateShadow) {
1927         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1928         setOrigin(
1929             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1930       } else {
1931         setOrigin(&I, getCleanOrigin());
1932       }
1933     }
1934   }
1935 
1936   /// Instrument StoreInst
1937   ///
1938   /// Stores the corresponding shadow and (optionally) origin.
1939   /// Optionally, checks that the store address is fully defined.
1940   void visitStoreInst(StoreInst &I) {
1941     StoreList.push_back(&I);
1942     if (ClCheckAccessAddress)
1943       insertShadowCheck(I.getPointerOperand(), &I);
1944   }
1945 
1946   void handleCASOrRMW(Instruction &I) {
1947     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1948 
1949     IRBuilder<> IRB(&I);
1950     Value *Addr = I.getOperand(0);
1951     Value *Val = I.getOperand(1);
1952     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1),
1953                                           /*isStore*/ true)
1954                            .first;
1955 
1956     if (ClCheckAccessAddress)
1957       insertShadowCheck(Addr, &I);
1958 
1959     // Only test the conditional argument of cmpxchg instruction.
1960     // The other argument can potentially be uninitialized, but we can not
1961     // detect this situation reliably without possible false positives.
1962     if (isa<AtomicCmpXchgInst>(I))
1963       insertShadowCheck(Val, &I);
1964 
1965     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
1966 
1967     setShadow(&I, getCleanShadow(&I));
1968     setOrigin(&I, getCleanOrigin());
1969   }
1970 
1971   void visitAtomicRMWInst(AtomicRMWInst &I) {
1972     handleCASOrRMW(I);
1973     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1974   }
1975 
1976   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1977     handleCASOrRMW(I);
1978     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1979   }
1980 
1981   // Vector manipulation.
1982   void visitExtractElementInst(ExtractElementInst &I) {
1983     insertShadowCheck(I.getOperand(1), &I);
1984     IRBuilder<> IRB(&I);
1985     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1986               "_msprop"));
1987     setOrigin(&I, getOrigin(&I, 0));
1988   }
1989 
1990   void visitInsertElementInst(InsertElementInst &I) {
1991     insertShadowCheck(I.getOperand(2), &I);
1992     IRBuilder<> IRB(&I);
1993     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1994               I.getOperand(2), "_msprop"));
1995     setOriginForNaryOp(I);
1996   }
1997 
1998   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1999     IRBuilder<> IRB(&I);
2000     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
2001                                           I.getShuffleMask(), "_msprop"));
2002     setOriginForNaryOp(I);
2003   }
2004 
2005   // Casts.
2006   void visitSExtInst(SExtInst &I) {
2007     IRBuilder<> IRB(&I);
2008     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2009     setOrigin(&I, getOrigin(&I, 0));
2010   }
2011 
2012   void visitZExtInst(ZExtInst &I) {
2013     IRBuilder<> IRB(&I);
2014     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2015     setOrigin(&I, getOrigin(&I, 0));
2016   }
2017 
2018   void visitTruncInst(TruncInst &I) {
2019     IRBuilder<> IRB(&I);
2020     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2021     setOrigin(&I, getOrigin(&I, 0));
2022   }
2023 
2024   void visitBitCastInst(BitCastInst &I) {
2025     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2026     // a musttail call and a ret, don't instrument. New instructions are not
2027     // allowed after a musttail call.
2028     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2029       if (CI->isMustTailCall())
2030         return;
2031     IRBuilder<> IRB(&I);
2032     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2033     setOrigin(&I, getOrigin(&I, 0));
2034   }
2035 
2036   void visitPtrToIntInst(PtrToIntInst &I) {
2037     IRBuilder<> IRB(&I);
2038     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2039              "_msprop_ptrtoint"));
2040     setOrigin(&I, getOrigin(&I, 0));
2041   }
2042 
2043   void visitIntToPtrInst(IntToPtrInst &I) {
2044     IRBuilder<> IRB(&I);
2045     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2046              "_msprop_inttoptr"));
2047     setOrigin(&I, getOrigin(&I, 0));
2048   }
2049 
2050   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
2051   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
2052   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
2053   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
2054   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
2055   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
2056 
2057   /// Propagate shadow for bitwise AND.
2058   ///
2059   /// This code is exact, i.e. if, for example, a bit in the left argument
2060   /// is defined and 0, then neither the value not definedness of the
2061   /// corresponding bit in B don't affect the resulting shadow.
2062   void visitAnd(BinaryOperator &I) {
2063     IRBuilder<> IRB(&I);
2064     //  "And" of 0 and a poisoned value results in unpoisoned value.
2065     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2066     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2067     //  1&p => p;     0&p => 0;     p&p => p;
2068     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2069     Value *S1 = getShadow(&I, 0);
2070     Value *S2 = getShadow(&I, 1);
2071     Value *V1 = I.getOperand(0);
2072     Value *V2 = I.getOperand(1);
2073     if (V1->getType() != S1->getType()) {
2074       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2075       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2076     }
2077     Value *S1S2 = IRB.CreateAnd(S1, S2);
2078     Value *V1S2 = IRB.CreateAnd(V1, S2);
2079     Value *S1V2 = IRB.CreateAnd(S1, V2);
2080     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2081     setOriginForNaryOp(I);
2082   }
2083 
2084   void visitOr(BinaryOperator &I) {
2085     IRBuilder<> IRB(&I);
2086     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2087     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2088     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2089     //  1|p => 1;     0|p => p;     p|p => p;
2090     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2091     Value *S1 = getShadow(&I, 0);
2092     Value *S2 = getShadow(&I, 1);
2093     Value *V1 = IRB.CreateNot(I.getOperand(0));
2094     Value *V2 = IRB.CreateNot(I.getOperand(1));
2095     if (V1->getType() != S1->getType()) {
2096       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2097       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2098     }
2099     Value *S1S2 = IRB.CreateAnd(S1, S2);
2100     Value *V1S2 = IRB.CreateAnd(V1, S2);
2101     Value *S1V2 = IRB.CreateAnd(S1, V2);
2102     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2103     setOriginForNaryOp(I);
2104   }
2105 
2106   /// Default propagation of shadow and/or origin.
2107   ///
2108   /// This class implements the general case of shadow propagation, used in all
2109   /// cases where we don't know and/or don't care about what the operation
2110   /// actually does. It converts all input shadow values to a common type
2111   /// (extending or truncating as necessary), and bitwise OR's them.
2112   ///
2113   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2114   /// fully initialized), and less prone to false positives.
2115   ///
2116   /// This class also implements the general case of origin propagation. For a
2117   /// Nary operation, result origin is set to the origin of an argument that is
2118   /// not entirely initialized. If there is more than one such arguments, the
2119   /// rightmost of them is picked. It does not matter which one is picked if all
2120   /// arguments are initialized.
2121   template <bool CombineShadow>
2122   class Combiner {
2123     Value *Shadow = nullptr;
2124     Value *Origin = nullptr;
2125     IRBuilder<> &IRB;
2126     MemorySanitizerVisitor *MSV;
2127 
2128   public:
2129     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2130         : IRB(IRB), MSV(MSV) {}
2131 
2132     /// Add a pair of shadow and origin values to the mix.
2133     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2134       if (CombineShadow) {
2135         assert(OpShadow);
2136         if (!Shadow)
2137           Shadow = OpShadow;
2138         else {
2139           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2140           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2141         }
2142       }
2143 
2144       if (MSV->MS.TrackOrigins) {
2145         assert(OpOrigin);
2146         if (!Origin) {
2147           Origin = OpOrigin;
2148         } else {
2149           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2150           // No point in adding something that might result in 0 origin value.
2151           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2152             Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB);
2153             Value *Cond =
2154                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2155             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2156           }
2157         }
2158       }
2159       return *this;
2160     }
2161 
2162     /// Add an application value to the mix.
2163     Combiner &Add(Value *V) {
2164       Value *OpShadow = MSV->getShadow(V);
2165       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2166       return Add(OpShadow, OpOrigin);
2167     }
2168 
2169     /// Set the current combined values as the given instruction's shadow
2170     /// and origin.
2171     void Done(Instruction *I) {
2172       if (CombineShadow) {
2173         assert(Shadow);
2174         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2175         MSV->setShadow(I, Shadow);
2176       }
2177       if (MSV->MS.TrackOrigins) {
2178         assert(Origin);
2179         MSV->setOrigin(I, Origin);
2180       }
2181     }
2182   };
2183 
2184   using ShadowAndOriginCombiner = Combiner<true>;
2185   using OriginCombiner = Combiner<false>;
2186 
2187   /// Propagate origin for arbitrary operation.
2188   void setOriginForNaryOp(Instruction &I) {
2189     if (!MS.TrackOrigins) return;
2190     IRBuilder<> IRB(&I);
2191     OriginCombiner OC(this, IRB);
2192     for (Use &Op : I.operands())
2193       OC.Add(Op.get());
2194     OC.Done(&I);
2195   }
2196 
2197   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2198     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2199            "Vector of pointers is not a valid shadow type");
2200     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2201                                   Ty->getScalarSizeInBits()
2202                             : Ty->getPrimitiveSizeInBits();
2203   }
2204 
2205   /// Cast between two shadow types, extending or truncating as
2206   /// necessary.
2207   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2208                           bool Signed = false) {
2209     Type *srcTy = V->getType();
2210     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2211     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2212     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2213       return IRB.CreateICmpNE(V, getCleanShadow(V));
2214 
2215     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2216       return IRB.CreateIntCast(V, dstTy, Signed);
2217     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2218         cast<FixedVectorType>(dstTy)->getNumElements() ==
2219             cast<FixedVectorType>(srcTy)->getNumElements())
2220       return IRB.CreateIntCast(V, dstTy, Signed);
2221     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2222     Value *V2 =
2223       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2224     return IRB.CreateBitCast(V2, dstTy);
2225     // TODO: handle struct types.
2226   }
2227 
2228   /// Cast an application value to the type of its own shadow.
2229   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2230     Type *ShadowTy = getShadowTy(V);
2231     if (V->getType() == ShadowTy)
2232       return V;
2233     if (V->getType()->isPtrOrPtrVectorTy())
2234       return IRB.CreatePtrToInt(V, ShadowTy);
2235     else
2236       return IRB.CreateBitCast(V, ShadowTy);
2237   }
2238 
2239   /// Propagate shadow for arbitrary operation.
2240   void handleShadowOr(Instruction &I) {
2241     IRBuilder<> IRB(&I);
2242     ShadowAndOriginCombiner SC(this, IRB);
2243     for (Use &Op : I.operands())
2244       SC.Add(Op.get());
2245     SC.Done(&I);
2246   }
2247 
2248   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2249 
2250   // Handle multiplication by constant.
2251   //
2252   // Handle a special case of multiplication by constant that may have one or
2253   // more zeros in the lower bits. This makes corresponding number of lower bits
2254   // of the result zero as well. We model it by shifting the other operand
2255   // shadow left by the required number of bits. Effectively, we transform
2256   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2257   // We use multiplication by 2**N instead of shift to cover the case of
2258   // multiplication by 0, which may occur in some elements of a vector operand.
2259   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2260                            Value *OtherArg) {
2261     Constant *ShadowMul;
2262     Type *Ty = ConstArg->getType();
2263     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2264       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2265       Type *EltTy = VTy->getElementType();
2266       SmallVector<Constant *, 16> Elements;
2267       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2268         if (ConstantInt *Elt =
2269                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2270           const APInt &V = Elt->getValue();
2271           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2272           Elements.push_back(ConstantInt::get(EltTy, V2));
2273         } else {
2274           Elements.push_back(ConstantInt::get(EltTy, 1));
2275         }
2276       }
2277       ShadowMul = ConstantVector::get(Elements);
2278     } else {
2279       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2280         const APInt &V = Elt->getValue();
2281         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2282         ShadowMul = ConstantInt::get(Ty, V2);
2283       } else {
2284         ShadowMul = ConstantInt::get(Ty, 1);
2285       }
2286     }
2287 
2288     IRBuilder<> IRB(&I);
2289     setShadow(&I,
2290               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2291     setOrigin(&I, getOrigin(OtherArg));
2292   }
2293 
2294   void visitMul(BinaryOperator &I) {
2295     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2296     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2297     if (constOp0 && !constOp1)
2298       handleMulByConstant(I, constOp0, I.getOperand(1));
2299     else if (constOp1 && !constOp0)
2300       handleMulByConstant(I, constOp1, I.getOperand(0));
2301     else
2302       handleShadowOr(I);
2303   }
2304 
2305   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2306   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2307   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2308   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2309   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2310   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2311 
2312   void handleIntegerDiv(Instruction &I) {
2313     IRBuilder<> IRB(&I);
2314     // Strict on the second argument.
2315     insertShadowCheck(I.getOperand(1), &I);
2316     setShadow(&I, getShadow(&I, 0));
2317     setOrigin(&I, getOrigin(&I, 0));
2318   }
2319 
2320   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2321   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2322   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2323   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2324 
2325   // Floating point division is side-effect free. We can not require that the
2326   // divisor is fully initialized and must propagate shadow. See PR37523.
2327   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2328   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2329 
2330   /// Instrument == and != comparisons.
2331   ///
2332   /// Sometimes the comparison result is known even if some of the bits of the
2333   /// arguments are not.
2334   void handleEqualityComparison(ICmpInst &I) {
2335     IRBuilder<> IRB(&I);
2336     Value *A = I.getOperand(0);
2337     Value *B = I.getOperand(1);
2338     Value *Sa = getShadow(A);
2339     Value *Sb = getShadow(B);
2340 
2341     // Get rid of pointers and vectors of pointers.
2342     // For ints (and vectors of ints), types of A and Sa match,
2343     // and this is a no-op.
2344     A = IRB.CreatePointerCast(A, Sa->getType());
2345     B = IRB.CreatePointerCast(B, Sb->getType());
2346 
2347     // A == B  <==>  (C = A^B) == 0
2348     // A != B  <==>  (C = A^B) != 0
2349     // Sc = Sa | Sb
2350     Value *C = IRB.CreateXor(A, B);
2351     Value *Sc = IRB.CreateOr(Sa, Sb);
2352     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2353     // Result is defined if one of the following is true
2354     // * there is a defined 1 bit in C
2355     // * C is fully defined
2356     // Si = !(C & ~Sc) && Sc
2357     Value *Zero = Constant::getNullValue(Sc->getType());
2358     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2359     Value *Si =
2360       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2361                     IRB.CreateICmpEQ(
2362                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2363     Si->setName("_msprop_icmp");
2364     setShadow(&I, Si);
2365     setOriginForNaryOp(I);
2366   }
2367 
2368   /// Build the lowest possible value of V, taking into account V's
2369   ///        uninitialized bits.
2370   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2371                                 bool isSigned) {
2372     if (isSigned) {
2373       // Split shadow into sign bit and other bits.
2374       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2375       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2376       // Maximise the undefined shadow bit, minimize other undefined bits.
2377       return
2378         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2379     } else {
2380       // Minimize undefined bits.
2381       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2382     }
2383   }
2384 
2385   /// Build the highest possible value of V, taking into account V's
2386   ///        uninitialized bits.
2387   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2388                                 bool isSigned) {
2389     if (isSigned) {
2390       // Split shadow into sign bit and other bits.
2391       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2392       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2393       // Minimise the undefined shadow bit, maximise other undefined bits.
2394       return
2395         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2396     } else {
2397       // Maximize undefined bits.
2398       return IRB.CreateOr(A, Sa);
2399     }
2400   }
2401 
2402   /// Instrument relational comparisons.
2403   ///
2404   /// This function does exact shadow propagation for all relational
2405   /// comparisons of integers, pointers and vectors of those.
2406   /// FIXME: output seems suboptimal when one of the operands is a constant
2407   void handleRelationalComparisonExact(ICmpInst &I) {
2408     IRBuilder<> IRB(&I);
2409     Value *A = I.getOperand(0);
2410     Value *B = I.getOperand(1);
2411     Value *Sa = getShadow(A);
2412     Value *Sb = getShadow(B);
2413 
2414     // Get rid of pointers and vectors of pointers.
2415     // For ints (and vectors of ints), types of A and Sa match,
2416     // and this is a no-op.
2417     A = IRB.CreatePointerCast(A, Sa->getType());
2418     B = IRB.CreatePointerCast(B, Sb->getType());
2419 
2420     // Let [a0, a1] be the interval of possible values of A, taking into account
2421     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2422     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2423     bool IsSigned = I.isSigned();
2424     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2425                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2426                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2427     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2428                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2429                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2430     Value *Si = IRB.CreateXor(S1, S2);
2431     setShadow(&I, Si);
2432     setOriginForNaryOp(I);
2433   }
2434 
2435   /// Instrument signed relational comparisons.
2436   ///
2437   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2438   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2439   void handleSignedRelationalComparison(ICmpInst &I) {
2440     Constant *constOp;
2441     Value *op = nullptr;
2442     CmpInst::Predicate pre;
2443     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2444       op = I.getOperand(0);
2445       pre = I.getPredicate();
2446     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2447       op = I.getOperand(1);
2448       pre = I.getSwappedPredicate();
2449     } else {
2450       handleShadowOr(I);
2451       return;
2452     }
2453 
2454     if ((constOp->isNullValue() &&
2455          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2456         (constOp->isAllOnesValue() &&
2457          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2458       IRBuilder<> IRB(&I);
2459       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2460                                         "_msprop_icmp_s");
2461       setShadow(&I, Shadow);
2462       setOrigin(&I, getOrigin(op));
2463     } else {
2464       handleShadowOr(I);
2465     }
2466   }
2467 
2468   void visitICmpInst(ICmpInst &I) {
2469     if (!ClHandleICmp) {
2470       handleShadowOr(I);
2471       return;
2472     }
2473     if (I.isEquality()) {
2474       handleEqualityComparison(I);
2475       return;
2476     }
2477 
2478     assert(I.isRelational());
2479     if (ClHandleICmpExact) {
2480       handleRelationalComparisonExact(I);
2481       return;
2482     }
2483     if (I.isSigned()) {
2484       handleSignedRelationalComparison(I);
2485       return;
2486     }
2487 
2488     assert(I.isUnsigned());
2489     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2490       handleRelationalComparisonExact(I);
2491       return;
2492     }
2493 
2494     handleShadowOr(I);
2495   }
2496 
2497   void visitFCmpInst(FCmpInst &I) {
2498     handleShadowOr(I);
2499   }
2500 
2501   void handleShift(BinaryOperator &I) {
2502     IRBuilder<> IRB(&I);
2503     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2504     // Otherwise perform the same shift on S1.
2505     Value *S1 = getShadow(&I, 0);
2506     Value *S2 = getShadow(&I, 1);
2507     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2508                                    S2->getType());
2509     Value *V2 = I.getOperand(1);
2510     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2511     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2512     setOriginForNaryOp(I);
2513   }
2514 
2515   void visitShl(BinaryOperator &I) { handleShift(I); }
2516   void visitAShr(BinaryOperator &I) { handleShift(I); }
2517   void visitLShr(BinaryOperator &I) { handleShift(I); }
2518 
2519   /// Instrument llvm.memmove
2520   ///
2521   /// At this point we don't know if llvm.memmove will be inlined or not.
2522   /// If we don't instrument it and it gets inlined,
2523   /// our interceptor will not kick in and we will lose the memmove.
2524   /// If we instrument the call here, but it does not get inlined,
2525   /// we will memove the shadow twice: which is bad in case
2526   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2527   ///
2528   /// Similar situation exists for memcpy and memset.
2529   void visitMemMoveInst(MemMoveInst &I) {
2530     IRBuilder<> IRB(&I);
2531     IRB.CreateCall(
2532         MS.MemmoveFn,
2533         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2534          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2535          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2536     I.eraseFromParent();
2537   }
2538 
2539   // Similar to memmove: avoid copying shadow twice.
2540   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2541   // FIXME: consider doing manual inline for small constant sizes and proper
2542   // alignment.
2543   void visitMemCpyInst(MemCpyInst &I) {
2544     IRBuilder<> IRB(&I);
2545     IRB.CreateCall(
2546         MS.MemcpyFn,
2547         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2548          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2549          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2550     I.eraseFromParent();
2551   }
2552 
2553   // Same as memcpy.
2554   void visitMemSetInst(MemSetInst &I) {
2555     IRBuilder<> IRB(&I);
2556     IRB.CreateCall(
2557         MS.MemsetFn,
2558         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2559          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2560          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2561     I.eraseFromParent();
2562   }
2563 
2564   void visitVAStartInst(VAStartInst &I) {
2565     VAHelper->visitVAStartInst(I);
2566   }
2567 
2568   void visitVACopyInst(VACopyInst &I) {
2569     VAHelper->visitVACopyInst(I);
2570   }
2571 
2572   /// Handle vector store-like intrinsics.
2573   ///
2574   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2575   /// has 1 pointer argument and 1 vector argument, returns void.
2576   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2577     IRBuilder<> IRB(&I);
2578     Value* Addr = I.getArgOperand(0);
2579     Value *Shadow = getShadow(&I, 1);
2580     Value *ShadowPtr, *OriginPtr;
2581 
2582     // We don't know the pointer alignment (could be unaligned SSE store!).
2583     // Have to assume to worst case.
2584     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2585         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2586     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2587 
2588     if (ClCheckAccessAddress)
2589       insertShadowCheck(Addr, &I);
2590 
2591     // FIXME: factor out common code from materializeStores
2592     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2593     return true;
2594   }
2595 
2596   /// Handle vector load-like intrinsics.
2597   ///
2598   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2599   /// has 1 pointer argument, returns a vector.
2600   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2601     IRBuilder<> IRB(&I);
2602     Value *Addr = I.getArgOperand(0);
2603 
2604     Type *ShadowTy = getShadowTy(&I);
2605     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2606     if (PropagateShadow) {
2607       // We don't know the pointer alignment (could be unaligned SSE load!).
2608       // Have to assume to worst case.
2609       const Align Alignment = Align(1);
2610       std::tie(ShadowPtr, OriginPtr) =
2611           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2612       setShadow(&I,
2613                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2614     } else {
2615       setShadow(&I, getCleanShadow(&I));
2616     }
2617 
2618     if (ClCheckAccessAddress)
2619       insertShadowCheck(Addr, &I);
2620 
2621     if (MS.TrackOrigins) {
2622       if (PropagateShadow)
2623         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2624       else
2625         setOrigin(&I, getCleanOrigin());
2626     }
2627     return true;
2628   }
2629 
2630   /// Handle (SIMD arithmetic)-like intrinsics.
2631   ///
2632   /// Instrument intrinsics with any number of arguments of the same type,
2633   /// equal to the return type. The type should be simple (no aggregates or
2634   /// pointers; vectors are fine).
2635   /// Caller guarantees that this intrinsic does not access memory.
2636   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2637     Type *RetTy = I.getType();
2638     if (!(RetTy->isIntOrIntVectorTy() ||
2639           RetTy->isFPOrFPVectorTy() ||
2640           RetTy->isX86_MMXTy()))
2641       return false;
2642 
2643     unsigned NumArgOperands = I.getNumArgOperands();
2644     for (unsigned i = 0; i < NumArgOperands; ++i) {
2645       Type *Ty = I.getArgOperand(i)->getType();
2646       if (Ty != RetTy)
2647         return false;
2648     }
2649 
2650     IRBuilder<> IRB(&I);
2651     ShadowAndOriginCombiner SC(this, IRB);
2652     for (unsigned i = 0; i < NumArgOperands; ++i)
2653       SC.Add(I.getArgOperand(i));
2654     SC.Done(&I);
2655 
2656     return true;
2657   }
2658 
2659   /// Heuristically instrument unknown intrinsics.
2660   ///
2661   /// The main purpose of this code is to do something reasonable with all
2662   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2663   /// We recognize several classes of intrinsics by their argument types and
2664   /// ModRefBehaviour and apply special instrumentation when we are reasonably
2665   /// sure that we know what the intrinsic does.
2666   ///
2667   /// We special-case intrinsics where this approach fails. See llvm.bswap
2668   /// handling as an example of that.
2669   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2670     unsigned NumArgOperands = I.getNumArgOperands();
2671     if (NumArgOperands == 0)
2672       return false;
2673 
2674     if (NumArgOperands == 2 &&
2675         I.getArgOperand(0)->getType()->isPointerTy() &&
2676         I.getArgOperand(1)->getType()->isVectorTy() &&
2677         I.getType()->isVoidTy() &&
2678         !I.onlyReadsMemory()) {
2679       // This looks like a vector store.
2680       return handleVectorStoreIntrinsic(I);
2681     }
2682 
2683     if (NumArgOperands == 1 &&
2684         I.getArgOperand(0)->getType()->isPointerTy() &&
2685         I.getType()->isVectorTy() &&
2686         I.onlyReadsMemory()) {
2687       // This looks like a vector load.
2688       return handleVectorLoadIntrinsic(I);
2689     }
2690 
2691     if (I.doesNotAccessMemory())
2692       if (maybeHandleSimpleNomemIntrinsic(I))
2693         return true;
2694 
2695     // FIXME: detect and handle SSE maskstore/maskload
2696     return false;
2697   }
2698 
2699   void handleInvariantGroup(IntrinsicInst &I) {
2700     setShadow(&I, getShadow(&I, 0));
2701     setOrigin(&I, getOrigin(&I, 0));
2702   }
2703 
2704   void handleLifetimeStart(IntrinsicInst &I) {
2705     if (!PoisonStack)
2706       return;
2707     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
2708     if (!AI)
2709       InstrumentLifetimeStart = false;
2710     LifetimeStartList.push_back(std::make_pair(&I, AI));
2711   }
2712 
2713   void handleBswap(IntrinsicInst &I) {
2714     IRBuilder<> IRB(&I);
2715     Value *Op = I.getArgOperand(0);
2716     Type *OpType = Op->getType();
2717     Function *BswapFunc = Intrinsic::getDeclaration(
2718       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2719     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2720     setOrigin(&I, getOrigin(Op));
2721   }
2722 
2723   // Instrument vector convert intrinsic.
2724   //
2725   // This function instruments intrinsics like cvtsi2ss:
2726   // %Out = int_xxx_cvtyyy(%ConvertOp)
2727   // or
2728   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2729   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2730   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2731   // elements from \p CopyOp.
2732   // In most cases conversion involves floating-point value which may trigger a
2733   // hardware exception when not fully initialized. For this reason we require
2734   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2735   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2736   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2737   // return a fully initialized value.
2738   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
2739                                     bool HasRoundingMode = false) {
2740     IRBuilder<> IRB(&I);
2741     Value *CopyOp, *ConvertOp;
2742 
2743     assert((!HasRoundingMode ||
2744             isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) &&
2745            "Invalid rounding mode");
2746 
2747     switch (I.getNumArgOperands() - HasRoundingMode) {
2748     case 2:
2749       CopyOp = I.getArgOperand(0);
2750       ConvertOp = I.getArgOperand(1);
2751       break;
2752     case 1:
2753       ConvertOp = I.getArgOperand(0);
2754       CopyOp = nullptr;
2755       break;
2756     default:
2757       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2758     }
2759 
2760     // The first *NumUsedElements* elements of ConvertOp are converted to the
2761     // same number of output elements. The rest of the output is copied from
2762     // CopyOp, or (if not available) filled with zeroes.
2763     // Combine shadow for elements of ConvertOp that are used in this operation,
2764     // and insert a check.
2765     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2766     // int->any conversion.
2767     Value *ConvertShadow = getShadow(ConvertOp);
2768     Value *AggShadow = nullptr;
2769     if (ConvertOp->getType()->isVectorTy()) {
2770       AggShadow = IRB.CreateExtractElement(
2771           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2772       for (int i = 1; i < NumUsedElements; ++i) {
2773         Value *MoreShadow = IRB.CreateExtractElement(
2774             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2775         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2776       }
2777     } else {
2778       AggShadow = ConvertShadow;
2779     }
2780     assert(AggShadow->getType()->isIntegerTy());
2781     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2782 
2783     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2784     // ConvertOp.
2785     if (CopyOp) {
2786       assert(CopyOp->getType() == I.getType());
2787       assert(CopyOp->getType()->isVectorTy());
2788       Value *ResultShadow = getShadow(CopyOp);
2789       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
2790       for (int i = 0; i < NumUsedElements; ++i) {
2791         ResultShadow = IRB.CreateInsertElement(
2792             ResultShadow, ConstantInt::getNullValue(EltTy),
2793             ConstantInt::get(IRB.getInt32Ty(), i));
2794       }
2795       setShadow(&I, ResultShadow);
2796       setOrigin(&I, getOrigin(CopyOp));
2797     } else {
2798       setShadow(&I, getCleanShadow(&I));
2799       setOrigin(&I, getCleanOrigin());
2800     }
2801   }
2802 
2803   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2804   // zeroes if it is zero, and all ones otherwise.
2805   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2806     if (S->getType()->isVectorTy())
2807       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2808     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2809     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2810     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2811   }
2812 
2813   // Given a vector, extract its first element, and return all
2814   // zeroes if it is zero, and all ones otherwise.
2815   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2816     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2817     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2818     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2819   }
2820 
2821   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2822     Type *T = S->getType();
2823     assert(T->isVectorTy());
2824     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2825     return IRB.CreateSExt(S2, T);
2826   }
2827 
2828   // Instrument vector shift intrinsic.
2829   //
2830   // This function instruments intrinsics like int_x86_avx2_psll_w.
2831   // Intrinsic shifts %In by %ShiftSize bits.
2832   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2833   // size, and the rest is ignored. Behavior is defined even if shift size is
2834   // greater than register (or field) width.
2835   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2836     assert(I.getNumArgOperands() == 2);
2837     IRBuilder<> IRB(&I);
2838     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2839     // Otherwise perform the same shift on S1.
2840     Value *S1 = getShadow(&I, 0);
2841     Value *S2 = getShadow(&I, 1);
2842     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2843                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2844     Value *V1 = I.getOperand(0);
2845     Value *V2 = I.getOperand(1);
2846     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2847                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2848     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2849     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2850     setOriginForNaryOp(I);
2851   }
2852 
2853   // Get an X86_MMX-sized vector type.
2854   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2855     const unsigned X86_MMXSizeInBits = 64;
2856     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2857            "Illegal MMX vector element size");
2858     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2859                                 X86_MMXSizeInBits / EltSizeInBits);
2860   }
2861 
2862   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2863   // intrinsic.
2864   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2865     switch (id) {
2866       case Intrinsic::x86_sse2_packsswb_128:
2867       case Intrinsic::x86_sse2_packuswb_128:
2868         return Intrinsic::x86_sse2_packsswb_128;
2869 
2870       case Intrinsic::x86_sse2_packssdw_128:
2871       case Intrinsic::x86_sse41_packusdw:
2872         return Intrinsic::x86_sse2_packssdw_128;
2873 
2874       case Intrinsic::x86_avx2_packsswb:
2875       case Intrinsic::x86_avx2_packuswb:
2876         return Intrinsic::x86_avx2_packsswb;
2877 
2878       case Intrinsic::x86_avx2_packssdw:
2879       case Intrinsic::x86_avx2_packusdw:
2880         return Intrinsic::x86_avx2_packssdw;
2881 
2882       case Intrinsic::x86_mmx_packsswb:
2883       case Intrinsic::x86_mmx_packuswb:
2884         return Intrinsic::x86_mmx_packsswb;
2885 
2886       case Intrinsic::x86_mmx_packssdw:
2887         return Intrinsic::x86_mmx_packssdw;
2888       default:
2889         llvm_unreachable("unexpected intrinsic id");
2890     }
2891   }
2892 
2893   // Instrument vector pack intrinsic.
2894   //
2895   // This function instruments intrinsics like x86_mmx_packsswb, that
2896   // packs elements of 2 input vectors into half as many bits with saturation.
2897   // Shadow is propagated with the signed variant of the same intrinsic applied
2898   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2899   // EltSizeInBits is used only for x86mmx arguments.
2900   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2901     assert(I.getNumArgOperands() == 2);
2902     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2903     IRBuilder<> IRB(&I);
2904     Value *S1 = getShadow(&I, 0);
2905     Value *S2 = getShadow(&I, 1);
2906     assert(isX86_MMX || S1->getType()->isVectorTy());
2907 
2908     // SExt and ICmpNE below must apply to individual elements of input vectors.
2909     // In case of x86mmx arguments, cast them to appropriate vector types and
2910     // back.
2911     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2912     if (isX86_MMX) {
2913       S1 = IRB.CreateBitCast(S1, T);
2914       S2 = IRB.CreateBitCast(S2, T);
2915     }
2916     Value *S1_ext = IRB.CreateSExt(
2917         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2918     Value *S2_ext = IRB.CreateSExt(
2919         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2920     if (isX86_MMX) {
2921       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2922       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2923       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2924     }
2925 
2926     Function *ShadowFn = Intrinsic::getDeclaration(
2927         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2928 
2929     Value *S =
2930         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2931     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2932     setShadow(&I, S);
2933     setOriginForNaryOp(I);
2934   }
2935 
2936   // Instrument sum-of-absolute-differences intrinsic.
2937   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2938     const unsigned SignificantBitsPerResultElement = 16;
2939     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2940     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2941     unsigned ZeroBitsPerResultElement =
2942         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2943 
2944     IRBuilder<> IRB(&I);
2945     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2946     S = IRB.CreateBitCast(S, ResTy);
2947     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2948                        ResTy);
2949     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2950     S = IRB.CreateBitCast(S, getShadowTy(&I));
2951     setShadow(&I, S);
2952     setOriginForNaryOp(I);
2953   }
2954 
2955   // Instrument multiply-add intrinsic.
2956   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2957                                   unsigned EltSizeInBits = 0) {
2958     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2959     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2960     IRBuilder<> IRB(&I);
2961     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2962     S = IRB.CreateBitCast(S, ResTy);
2963     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2964                        ResTy);
2965     S = IRB.CreateBitCast(S, getShadowTy(&I));
2966     setShadow(&I, S);
2967     setOriginForNaryOp(I);
2968   }
2969 
2970   // Instrument compare-packed intrinsic.
2971   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2972   // all-ones shadow.
2973   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2974     IRBuilder<> IRB(&I);
2975     Type *ResTy = getShadowTy(&I);
2976     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2977     Value *S = IRB.CreateSExt(
2978         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2979     setShadow(&I, S);
2980     setOriginForNaryOp(I);
2981   }
2982 
2983   // Instrument compare-scalar intrinsic.
2984   // This handles both cmp* intrinsics which return the result in the first
2985   // element of a vector, and comi* which return the result as i32.
2986   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2987     IRBuilder<> IRB(&I);
2988     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2989     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2990     setShadow(&I, S);
2991     setOriginForNaryOp(I);
2992   }
2993 
2994   // Instrument generic vector reduction intrinsics
2995   // by ORing together all their fields.
2996   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
2997     IRBuilder<> IRB(&I);
2998     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
2999     setShadow(&I, S);
3000     setOrigin(&I, getOrigin(&I, 0));
3001   }
3002 
3003   // Instrument vector.reduce.or intrinsic.
3004   // Valid (non-poisoned) set bits in the operand pull low the
3005   // corresponding shadow bits.
3006   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3007     IRBuilder<> IRB(&I);
3008     Value *OperandShadow = getShadow(&I, 0);
3009     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3010     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3011     // Bit N is clean if any field's bit N is 1 and unpoison
3012     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3013     // Otherwise, it is clean if every field's bit N is unpoison
3014     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3015     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3016 
3017     setShadow(&I, S);
3018     setOrigin(&I, getOrigin(&I, 0));
3019   }
3020 
3021   // Instrument vector.reduce.and intrinsic.
3022   // Valid (non-poisoned) unset bits in the operand pull down the
3023   // corresponding shadow bits.
3024   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3025     IRBuilder<> IRB(&I);
3026     Value *OperandShadow = getShadow(&I, 0);
3027     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3028     // Bit N is clean if any field's bit N is 0 and unpoison
3029     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3030     // Otherwise, it is clean if every field's bit N is unpoison
3031     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3032     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3033 
3034     setShadow(&I, S);
3035     setOrigin(&I, getOrigin(&I, 0));
3036   }
3037 
3038   void handleStmxcsr(IntrinsicInst &I) {
3039     IRBuilder<> IRB(&I);
3040     Value* Addr = I.getArgOperand(0);
3041     Type *Ty = IRB.getInt32Ty();
3042     Value *ShadowPtr =
3043         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3044 
3045     IRB.CreateStore(getCleanShadow(Ty),
3046                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3047 
3048     if (ClCheckAccessAddress)
3049       insertShadowCheck(Addr, &I);
3050   }
3051 
3052   void handleLdmxcsr(IntrinsicInst &I) {
3053     if (!InsertChecks) return;
3054 
3055     IRBuilder<> IRB(&I);
3056     Value *Addr = I.getArgOperand(0);
3057     Type *Ty = IRB.getInt32Ty();
3058     const Align Alignment = Align(1);
3059     Value *ShadowPtr, *OriginPtr;
3060     std::tie(ShadowPtr, OriginPtr) =
3061         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3062 
3063     if (ClCheckAccessAddress)
3064       insertShadowCheck(Addr, &I);
3065 
3066     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3067     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3068                                     : getCleanOrigin();
3069     insertShadowCheck(Shadow, Origin, &I);
3070   }
3071 
3072   void handleMaskedStore(IntrinsicInst &I) {
3073     IRBuilder<> IRB(&I);
3074     Value *V = I.getArgOperand(0);
3075     Value *Addr = I.getArgOperand(1);
3076     const Align Alignment(
3077         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3078     Value *Mask = I.getArgOperand(3);
3079     Value *Shadow = getShadow(V);
3080 
3081     Value *ShadowPtr;
3082     Value *OriginPtr;
3083     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3084         Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3085 
3086     if (ClCheckAccessAddress) {
3087       insertShadowCheck(Addr, &I);
3088       // Uninitialized mask is kind of like uninitialized address, but not as
3089       // scary.
3090       insertShadowCheck(Mask, &I);
3091     }
3092 
3093     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3094 
3095     if (MS.TrackOrigins) {
3096       auto &DL = F.getParent()->getDataLayout();
3097       paintOrigin(IRB, getOrigin(V), OriginPtr,
3098                   DL.getTypeStoreSize(Shadow->getType()),
3099                   std::max(Alignment, kMinOriginAlignment));
3100     }
3101   }
3102 
3103   bool handleMaskedLoad(IntrinsicInst &I) {
3104     IRBuilder<> IRB(&I);
3105     Value *Addr = I.getArgOperand(0);
3106     const Align Alignment(
3107         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3108     Value *Mask = I.getArgOperand(2);
3109     Value *PassThru = I.getArgOperand(3);
3110 
3111     Type *ShadowTy = getShadowTy(&I);
3112     Value *ShadowPtr, *OriginPtr;
3113     if (PropagateShadow) {
3114       std::tie(ShadowPtr, OriginPtr) =
3115           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3116       setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask,
3117                                          getShadow(PassThru), "_msmaskedld"));
3118     } else {
3119       setShadow(&I, getCleanShadow(&I));
3120     }
3121 
3122     if (ClCheckAccessAddress) {
3123       insertShadowCheck(Addr, &I);
3124       insertShadowCheck(Mask, &I);
3125     }
3126 
3127     if (MS.TrackOrigins) {
3128       if (PropagateShadow) {
3129         // Choose between PassThru's and the loaded value's origins.
3130         Value *MaskedPassThruShadow = IRB.CreateAnd(
3131             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3132 
3133         Value *Acc = IRB.CreateExtractElement(
3134             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3135         for (int i = 1, N = cast<FixedVectorType>(PassThru->getType())
3136                                 ->getNumElements();
3137              i < N; ++i) {
3138           Value *More = IRB.CreateExtractElement(
3139               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3140           Acc = IRB.CreateOr(Acc, More);
3141         }
3142 
3143         Value *Origin = IRB.CreateSelect(
3144             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
3145             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
3146 
3147         setOrigin(&I, Origin);
3148       } else {
3149         setOrigin(&I, getCleanOrigin());
3150       }
3151     }
3152     return true;
3153   }
3154 
3155   // Instrument BMI / BMI2 intrinsics.
3156   // All of these intrinsics are Z = I(X, Y)
3157   // where the types of all operands and the result match, and are either i32 or i64.
3158   // The following instrumentation happens to work for all of them:
3159   //   Sz = I(Sx, Y) | (sext (Sy != 0))
3160   void handleBmiIntrinsic(IntrinsicInst &I) {
3161     IRBuilder<> IRB(&I);
3162     Type *ShadowTy = getShadowTy(&I);
3163 
3164     // If any bit of the mask operand is poisoned, then the whole thing is.
3165     Value *SMask = getShadow(&I, 1);
3166     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3167                            ShadowTy);
3168     // Apply the same intrinsic to the shadow of the first operand.
3169     Value *S = IRB.CreateCall(I.getCalledFunction(),
3170                               {getShadow(&I, 0), I.getOperand(1)});
3171     S = IRB.CreateOr(SMask, S);
3172     setShadow(&I, S);
3173     setOriginForNaryOp(I);
3174   }
3175 
3176   SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3177     SmallVector<int, 8> Mask;
3178     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3179       Mask.append(2, X);
3180     }
3181     return Mask;
3182   }
3183 
3184   // Instrument pclmul intrinsics.
3185   // These intrinsics operate either on odd or on even elements of the input
3186   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3187   // Replace the unused elements with copies of the used ones, ex:
3188   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3189   // or
3190   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3191   // and then apply the usual shadow combining logic.
3192   void handlePclmulIntrinsic(IntrinsicInst &I) {
3193     IRBuilder<> IRB(&I);
3194     unsigned Width =
3195         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3196     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3197            "pclmul 3rd operand must be a constant");
3198     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3199     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3200                                            getPclmulMask(Width, Imm & 0x01));
3201     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3202                                            getPclmulMask(Width, Imm & 0x10));
3203     ShadowAndOriginCombiner SOC(this, IRB);
3204     SOC.Add(Shuf0, getOrigin(&I, 0));
3205     SOC.Add(Shuf1, getOrigin(&I, 1));
3206     SOC.Done(&I);
3207   }
3208 
3209   // Instrument _mm_*_sd intrinsics
3210   void handleUnarySdIntrinsic(IntrinsicInst &I) {
3211     IRBuilder<> IRB(&I);
3212     Value *First = getShadow(&I, 0);
3213     Value *Second = getShadow(&I, 1);
3214     // High word of first operand, low word of second
3215     Value *Shadow =
3216         IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1}));
3217 
3218     setShadow(&I, Shadow);
3219     setOriginForNaryOp(I);
3220   }
3221 
3222   void handleBinarySdIntrinsic(IntrinsicInst &I) {
3223     IRBuilder<> IRB(&I);
3224     Value *First = getShadow(&I, 0);
3225     Value *Second = getShadow(&I, 1);
3226     Value *OrShadow = IRB.CreateOr(First, Second);
3227     // High word of first operand, low word of both OR'd together
3228     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow,
3229                                             llvm::makeArrayRef<int>({2, 1}));
3230 
3231     setShadow(&I, Shadow);
3232     setOriginForNaryOp(I);
3233   }
3234 
3235   // Instrument abs intrinsic.
3236   // handleUnknownIntrinsic can't handle it because of the last
3237   // is_int_min_poison argument which does not match the result type.
3238   void handleAbsIntrinsic(IntrinsicInst &I) {
3239     assert(I.getType()->isIntOrIntVectorTy());
3240     assert(I.getArgOperand(0)->getType() == I.getType());
3241 
3242     // FIXME: Handle is_int_min_poison.
3243     IRBuilder<> IRB(&I);
3244     setShadow(&I, getShadow(&I, 0));
3245     setOrigin(&I, getOrigin(&I, 0));
3246   }
3247 
3248   void visitIntrinsicInst(IntrinsicInst &I) {
3249     switch (I.getIntrinsicID()) {
3250     case Intrinsic::abs:
3251       handleAbsIntrinsic(I);
3252       break;
3253     case Intrinsic::lifetime_start:
3254       handleLifetimeStart(I);
3255       break;
3256     case Intrinsic::launder_invariant_group:
3257     case Intrinsic::strip_invariant_group:
3258       handleInvariantGroup(I);
3259       break;
3260     case Intrinsic::bswap:
3261       handleBswap(I);
3262       break;
3263     case Intrinsic::masked_store:
3264       handleMaskedStore(I);
3265       break;
3266     case Intrinsic::masked_load:
3267       handleMaskedLoad(I);
3268       break;
3269     case Intrinsic::vector_reduce_and:
3270       handleVectorReduceAndIntrinsic(I);
3271       break;
3272     case Intrinsic::vector_reduce_or:
3273       handleVectorReduceOrIntrinsic(I);
3274       break;
3275     case Intrinsic::vector_reduce_add:
3276     case Intrinsic::vector_reduce_xor:
3277     case Intrinsic::vector_reduce_mul:
3278       handleVectorReduceIntrinsic(I);
3279       break;
3280     case Intrinsic::x86_sse_stmxcsr:
3281       handleStmxcsr(I);
3282       break;
3283     case Intrinsic::x86_sse_ldmxcsr:
3284       handleLdmxcsr(I);
3285       break;
3286     case Intrinsic::x86_avx512_vcvtsd2usi64:
3287     case Intrinsic::x86_avx512_vcvtsd2usi32:
3288     case Intrinsic::x86_avx512_vcvtss2usi64:
3289     case Intrinsic::x86_avx512_vcvtss2usi32:
3290     case Intrinsic::x86_avx512_cvttss2usi64:
3291     case Intrinsic::x86_avx512_cvttss2usi:
3292     case Intrinsic::x86_avx512_cvttsd2usi64:
3293     case Intrinsic::x86_avx512_cvttsd2usi:
3294     case Intrinsic::x86_avx512_cvtusi2ss:
3295     case Intrinsic::x86_avx512_cvtusi642sd:
3296     case Intrinsic::x86_avx512_cvtusi642ss:
3297       handleVectorConvertIntrinsic(I, 1, true);
3298       break;
3299     case Intrinsic::x86_sse2_cvtsd2si64:
3300     case Intrinsic::x86_sse2_cvtsd2si:
3301     case Intrinsic::x86_sse2_cvtsd2ss:
3302     case Intrinsic::x86_sse2_cvttsd2si64:
3303     case Intrinsic::x86_sse2_cvttsd2si:
3304     case Intrinsic::x86_sse_cvtss2si64:
3305     case Intrinsic::x86_sse_cvtss2si:
3306     case Intrinsic::x86_sse_cvttss2si64:
3307     case Intrinsic::x86_sse_cvttss2si:
3308       handleVectorConvertIntrinsic(I, 1);
3309       break;
3310     case Intrinsic::x86_sse_cvtps2pi:
3311     case Intrinsic::x86_sse_cvttps2pi:
3312       handleVectorConvertIntrinsic(I, 2);
3313       break;
3314 
3315     case Intrinsic::x86_avx512_psll_w_512:
3316     case Intrinsic::x86_avx512_psll_d_512:
3317     case Intrinsic::x86_avx512_psll_q_512:
3318     case Intrinsic::x86_avx512_pslli_w_512:
3319     case Intrinsic::x86_avx512_pslli_d_512:
3320     case Intrinsic::x86_avx512_pslli_q_512:
3321     case Intrinsic::x86_avx512_psrl_w_512:
3322     case Intrinsic::x86_avx512_psrl_d_512:
3323     case Intrinsic::x86_avx512_psrl_q_512:
3324     case Intrinsic::x86_avx512_psra_w_512:
3325     case Intrinsic::x86_avx512_psra_d_512:
3326     case Intrinsic::x86_avx512_psra_q_512:
3327     case Intrinsic::x86_avx512_psrli_w_512:
3328     case Intrinsic::x86_avx512_psrli_d_512:
3329     case Intrinsic::x86_avx512_psrli_q_512:
3330     case Intrinsic::x86_avx512_psrai_w_512:
3331     case Intrinsic::x86_avx512_psrai_d_512:
3332     case Intrinsic::x86_avx512_psrai_q_512:
3333     case Intrinsic::x86_avx512_psra_q_256:
3334     case Intrinsic::x86_avx512_psra_q_128:
3335     case Intrinsic::x86_avx512_psrai_q_256:
3336     case Intrinsic::x86_avx512_psrai_q_128:
3337     case Intrinsic::x86_avx2_psll_w:
3338     case Intrinsic::x86_avx2_psll_d:
3339     case Intrinsic::x86_avx2_psll_q:
3340     case Intrinsic::x86_avx2_pslli_w:
3341     case Intrinsic::x86_avx2_pslli_d:
3342     case Intrinsic::x86_avx2_pslli_q:
3343     case Intrinsic::x86_avx2_psrl_w:
3344     case Intrinsic::x86_avx2_psrl_d:
3345     case Intrinsic::x86_avx2_psrl_q:
3346     case Intrinsic::x86_avx2_psra_w:
3347     case Intrinsic::x86_avx2_psra_d:
3348     case Intrinsic::x86_avx2_psrli_w:
3349     case Intrinsic::x86_avx2_psrli_d:
3350     case Intrinsic::x86_avx2_psrli_q:
3351     case Intrinsic::x86_avx2_psrai_w:
3352     case Intrinsic::x86_avx2_psrai_d:
3353     case Intrinsic::x86_sse2_psll_w:
3354     case Intrinsic::x86_sse2_psll_d:
3355     case Intrinsic::x86_sse2_psll_q:
3356     case Intrinsic::x86_sse2_pslli_w:
3357     case Intrinsic::x86_sse2_pslli_d:
3358     case Intrinsic::x86_sse2_pslli_q:
3359     case Intrinsic::x86_sse2_psrl_w:
3360     case Intrinsic::x86_sse2_psrl_d:
3361     case Intrinsic::x86_sse2_psrl_q:
3362     case Intrinsic::x86_sse2_psra_w:
3363     case Intrinsic::x86_sse2_psra_d:
3364     case Intrinsic::x86_sse2_psrli_w:
3365     case Intrinsic::x86_sse2_psrli_d:
3366     case Intrinsic::x86_sse2_psrli_q:
3367     case Intrinsic::x86_sse2_psrai_w:
3368     case Intrinsic::x86_sse2_psrai_d:
3369     case Intrinsic::x86_mmx_psll_w:
3370     case Intrinsic::x86_mmx_psll_d:
3371     case Intrinsic::x86_mmx_psll_q:
3372     case Intrinsic::x86_mmx_pslli_w:
3373     case Intrinsic::x86_mmx_pslli_d:
3374     case Intrinsic::x86_mmx_pslli_q:
3375     case Intrinsic::x86_mmx_psrl_w:
3376     case Intrinsic::x86_mmx_psrl_d:
3377     case Intrinsic::x86_mmx_psrl_q:
3378     case Intrinsic::x86_mmx_psra_w:
3379     case Intrinsic::x86_mmx_psra_d:
3380     case Intrinsic::x86_mmx_psrli_w:
3381     case Intrinsic::x86_mmx_psrli_d:
3382     case Intrinsic::x86_mmx_psrli_q:
3383     case Intrinsic::x86_mmx_psrai_w:
3384     case Intrinsic::x86_mmx_psrai_d:
3385       handleVectorShiftIntrinsic(I, /* Variable */ false);
3386       break;
3387     case Intrinsic::x86_avx2_psllv_d:
3388     case Intrinsic::x86_avx2_psllv_d_256:
3389     case Intrinsic::x86_avx512_psllv_d_512:
3390     case Intrinsic::x86_avx2_psllv_q:
3391     case Intrinsic::x86_avx2_psllv_q_256:
3392     case Intrinsic::x86_avx512_psllv_q_512:
3393     case Intrinsic::x86_avx2_psrlv_d:
3394     case Intrinsic::x86_avx2_psrlv_d_256:
3395     case Intrinsic::x86_avx512_psrlv_d_512:
3396     case Intrinsic::x86_avx2_psrlv_q:
3397     case Intrinsic::x86_avx2_psrlv_q_256:
3398     case Intrinsic::x86_avx512_psrlv_q_512:
3399     case Intrinsic::x86_avx2_psrav_d:
3400     case Intrinsic::x86_avx2_psrav_d_256:
3401     case Intrinsic::x86_avx512_psrav_d_512:
3402     case Intrinsic::x86_avx512_psrav_q_128:
3403     case Intrinsic::x86_avx512_psrav_q_256:
3404     case Intrinsic::x86_avx512_psrav_q_512:
3405       handleVectorShiftIntrinsic(I, /* Variable */ true);
3406       break;
3407 
3408     case Intrinsic::x86_sse2_packsswb_128:
3409     case Intrinsic::x86_sse2_packssdw_128:
3410     case Intrinsic::x86_sse2_packuswb_128:
3411     case Intrinsic::x86_sse41_packusdw:
3412     case Intrinsic::x86_avx2_packsswb:
3413     case Intrinsic::x86_avx2_packssdw:
3414     case Intrinsic::x86_avx2_packuswb:
3415     case Intrinsic::x86_avx2_packusdw:
3416       handleVectorPackIntrinsic(I);
3417       break;
3418 
3419     case Intrinsic::x86_mmx_packsswb:
3420     case Intrinsic::x86_mmx_packuswb:
3421       handleVectorPackIntrinsic(I, 16);
3422       break;
3423 
3424     case Intrinsic::x86_mmx_packssdw:
3425       handleVectorPackIntrinsic(I, 32);
3426       break;
3427 
3428     case Intrinsic::x86_mmx_psad_bw:
3429     case Intrinsic::x86_sse2_psad_bw:
3430     case Intrinsic::x86_avx2_psad_bw:
3431       handleVectorSadIntrinsic(I);
3432       break;
3433 
3434     case Intrinsic::x86_sse2_pmadd_wd:
3435     case Intrinsic::x86_avx2_pmadd_wd:
3436     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3437     case Intrinsic::x86_avx2_pmadd_ub_sw:
3438       handleVectorPmaddIntrinsic(I);
3439       break;
3440 
3441     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3442       handleVectorPmaddIntrinsic(I, 8);
3443       break;
3444 
3445     case Intrinsic::x86_mmx_pmadd_wd:
3446       handleVectorPmaddIntrinsic(I, 16);
3447       break;
3448 
3449     case Intrinsic::x86_sse_cmp_ss:
3450     case Intrinsic::x86_sse2_cmp_sd:
3451     case Intrinsic::x86_sse_comieq_ss:
3452     case Intrinsic::x86_sse_comilt_ss:
3453     case Intrinsic::x86_sse_comile_ss:
3454     case Intrinsic::x86_sse_comigt_ss:
3455     case Intrinsic::x86_sse_comige_ss:
3456     case Intrinsic::x86_sse_comineq_ss:
3457     case Intrinsic::x86_sse_ucomieq_ss:
3458     case Intrinsic::x86_sse_ucomilt_ss:
3459     case Intrinsic::x86_sse_ucomile_ss:
3460     case Intrinsic::x86_sse_ucomigt_ss:
3461     case Intrinsic::x86_sse_ucomige_ss:
3462     case Intrinsic::x86_sse_ucomineq_ss:
3463     case Intrinsic::x86_sse2_comieq_sd:
3464     case Intrinsic::x86_sse2_comilt_sd:
3465     case Intrinsic::x86_sse2_comile_sd:
3466     case Intrinsic::x86_sse2_comigt_sd:
3467     case Intrinsic::x86_sse2_comige_sd:
3468     case Intrinsic::x86_sse2_comineq_sd:
3469     case Intrinsic::x86_sse2_ucomieq_sd:
3470     case Intrinsic::x86_sse2_ucomilt_sd:
3471     case Intrinsic::x86_sse2_ucomile_sd:
3472     case Intrinsic::x86_sse2_ucomigt_sd:
3473     case Intrinsic::x86_sse2_ucomige_sd:
3474     case Intrinsic::x86_sse2_ucomineq_sd:
3475       handleVectorCompareScalarIntrinsic(I);
3476       break;
3477 
3478     case Intrinsic::x86_sse_cmp_ps:
3479     case Intrinsic::x86_sse2_cmp_pd:
3480       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3481       // generates reasonably looking IR that fails in the backend with "Do not
3482       // know how to split the result of this operator!".
3483       handleVectorComparePackedIntrinsic(I);
3484       break;
3485 
3486     case Intrinsic::x86_bmi_bextr_32:
3487     case Intrinsic::x86_bmi_bextr_64:
3488     case Intrinsic::x86_bmi_bzhi_32:
3489     case Intrinsic::x86_bmi_bzhi_64:
3490     case Intrinsic::x86_bmi_pdep_32:
3491     case Intrinsic::x86_bmi_pdep_64:
3492     case Intrinsic::x86_bmi_pext_32:
3493     case Intrinsic::x86_bmi_pext_64:
3494       handleBmiIntrinsic(I);
3495       break;
3496 
3497     case Intrinsic::x86_pclmulqdq:
3498     case Intrinsic::x86_pclmulqdq_256:
3499     case Intrinsic::x86_pclmulqdq_512:
3500       handlePclmulIntrinsic(I);
3501       break;
3502 
3503     case Intrinsic::x86_sse41_round_sd:
3504       handleUnarySdIntrinsic(I);
3505       break;
3506     case Intrinsic::x86_sse2_max_sd:
3507     case Intrinsic::x86_sse2_min_sd:
3508       handleBinarySdIntrinsic(I);
3509       break;
3510 
3511     case Intrinsic::is_constant:
3512       // The result of llvm.is.constant() is always defined.
3513       setShadow(&I, getCleanShadow(&I));
3514       setOrigin(&I, getCleanOrigin());
3515       break;
3516 
3517     default:
3518       if (!handleUnknownIntrinsic(I))
3519         visitInstruction(I);
3520       break;
3521     }
3522   }
3523 
3524   void visitLibAtomicLoad(CallBase &CB) {
3525     // Since we use getNextNode here, we can't have CB terminate the BB.
3526     assert(isa<CallInst>(CB));
3527 
3528     IRBuilder<> IRB(&CB);
3529     Value *Size = CB.getArgOperand(0);
3530     Value *SrcPtr = CB.getArgOperand(1);
3531     Value *DstPtr = CB.getArgOperand(2);
3532     Value *Ordering = CB.getArgOperand(3);
3533     // Convert the call to have at least Acquire ordering to make sure
3534     // the shadow operations aren't reordered before it.
3535     Value *NewOrdering =
3536         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3537     CB.setArgOperand(3, NewOrdering);
3538 
3539     IRBuilder<> NextIRB(CB.getNextNode());
3540     NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3541 
3542     Value *SrcShadowPtr, *SrcOriginPtr;
3543     std::tie(SrcShadowPtr, SrcOriginPtr) =
3544         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3545                            /*isStore*/ false);
3546     Value *DstShadowPtr =
3547         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3548                            /*isStore*/ true)
3549             .first;
3550 
3551     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
3552     if (MS.TrackOrigins) {
3553       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
3554                                                    kMinOriginAlignment);
3555       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
3556       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
3557     }
3558   }
3559 
3560   void visitLibAtomicStore(CallBase &CB) {
3561     IRBuilder<> IRB(&CB);
3562     Value *Size = CB.getArgOperand(0);
3563     Value *DstPtr = CB.getArgOperand(2);
3564     Value *Ordering = CB.getArgOperand(3);
3565     // Convert the call to have at least Release ordering to make sure
3566     // the shadow operations aren't reordered after it.
3567     Value *NewOrdering =
3568         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3569     CB.setArgOperand(3, NewOrdering);
3570 
3571     Value *DstShadowPtr =
3572         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
3573                            /*isStore*/ true)
3574             .first;
3575 
3576     // Atomic store always paints clean shadow/origin. See file header.
3577     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
3578                      Align(1));
3579   }
3580 
3581   void visitCallBase(CallBase &CB) {
3582     assert(!CB.getMetadata("nosanitize"));
3583     if (CB.isInlineAsm()) {
3584       // For inline asm (either a call to asm function, or callbr instruction),
3585       // do the usual thing: check argument shadow and mark all outputs as
3586       // clean. Note that any side effects of the inline asm that are not
3587       // immediately visible in its constraints are not handled.
3588       if (ClHandleAsmConservative && MS.CompileKernel)
3589         visitAsmInstruction(CB);
3590       else
3591         visitInstruction(CB);
3592       return;
3593     }
3594     LibFunc LF;
3595     if (TLI->getLibFunc(CB, LF)) {
3596       // libatomic.a functions need to have special handling because there isn't
3597       // a good way to intercept them or compile the library with
3598       // instrumentation.
3599       switch (LF) {
3600       case LibFunc_atomic_load:
3601         if (!isa<CallInst>(CB)) {
3602           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
3603                           "Ignoring!\n";
3604           break;
3605         }
3606         visitLibAtomicLoad(CB);
3607         return;
3608       case LibFunc_atomic_store:
3609         visitLibAtomicStore(CB);
3610         return;
3611       default:
3612         break;
3613       }
3614     }
3615 
3616     if (auto *Call = dyn_cast<CallInst>(&CB)) {
3617       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
3618 
3619       // We are going to insert code that relies on the fact that the callee
3620       // will become a non-readonly function after it is instrumented by us. To
3621       // prevent this code from being optimized out, mark that function
3622       // non-readonly in advance.
3623       AttrBuilder B;
3624       B.addAttribute(Attribute::ReadOnly)
3625           .addAttribute(Attribute::ReadNone)
3626           .addAttribute(Attribute::WriteOnly)
3627           .addAttribute(Attribute::ArgMemOnly)
3628           .addAttribute(Attribute::Speculatable);
3629 
3630       Call->removeAttributes(AttributeList::FunctionIndex, B);
3631       if (Function *Func = Call->getCalledFunction()) {
3632         Func->removeAttributes(AttributeList::FunctionIndex, B);
3633       }
3634 
3635       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3636     }
3637     IRBuilder<> IRB(&CB);
3638     bool MayCheckCall = ClEagerChecks;
3639     if (Function *Func = CB.getCalledFunction()) {
3640       // __sanitizer_unaligned_{load,store} functions may be called by users
3641       // and always expects shadows in the TLS. So don't check them.
3642       MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
3643     }
3644 
3645     unsigned ArgOffset = 0;
3646     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
3647     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
3648          ++ArgIt) {
3649       Value *A = *ArgIt;
3650       unsigned i = ArgIt - CB.arg_begin();
3651       if (!A->getType()->isSized()) {
3652         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
3653         continue;
3654       }
3655       unsigned Size = 0;
3656       Value *Store = nullptr;
3657       // Compute the Shadow for arg even if it is ByVal, because
3658       // in that case getShadow() will copy the actual arg shadow to
3659       // __msan_param_tls.
3660       Value *ArgShadow = getShadow(A);
3661       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3662       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3663                         << " Shadow: " << *ArgShadow << "\n");
3664       bool ArgIsInitialized = false;
3665       const DataLayout &DL = F.getParent()->getDataLayout();
3666 
3667       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
3668       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
3669       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
3670 
3671       if (EagerCheck) {
3672         insertShadowCheck(A, &CB);
3673         continue;
3674       }
3675       if (ByVal) {
3676         // ByVal requires some special handling as it's too big for a single
3677         // load
3678         assert(A->getType()->isPointerTy() &&
3679                "ByVal argument is not a pointer!");
3680         Size = DL.getTypeAllocSize(CB.getParamByValType(i));
3681         if (ArgOffset + Size > kParamTLSSize) break;
3682         const MaybeAlign ParamAlignment(CB.getParamAlign(i));
3683         MaybeAlign Alignment = llvm::None;
3684         if (ParamAlignment)
3685           Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
3686         Value *AShadowPtr =
3687             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3688                                /*isStore*/ false)
3689                 .first;
3690 
3691         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3692                                  Alignment, Size);
3693         // TODO(glider): need to copy origins.
3694       } else {
3695         // Any other parameters mean we need bit-grained tracking of uninit data
3696         Size = DL.getTypeAllocSize(A->getType());
3697         if (ArgOffset + Size > kParamTLSSize) break;
3698         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3699                                        kShadowTLSAlignment);
3700         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3701         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3702       }
3703       if (MS.TrackOrigins && !ArgIsInitialized)
3704         IRB.CreateStore(getOrigin(A),
3705                         getOriginPtrForArgument(A, IRB, ArgOffset));
3706       (void)Store;
3707       assert(Size != 0 && Store != nullptr);
3708       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3709       ArgOffset += alignTo(Size, kShadowTLSAlignment);
3710     }
3711     LLVM_DEBUG(dbgs() << "  done with call args\n");
3712 
3713     FunctionType *FT = CB.getFunctionType();
3714     if (FT->isVarArg()) {
3715       VAHelper->visitCallBase(CB, IRB);
3716     }
3717 
3718     // Now, get the shadow for the RetVal.
3719     if (!CB.getType()->isSized())
3720       return;
3721     // Don't emit the epilogue for musttail call returns.
3722     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3723       return;
3724 
3725     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
3726       setShadow(&CB, getCleanShadow(&CB));
3727       setOrigin(&CB, getCleanOrigin());
3728       return;
3729     }
3730 
3731     IRBuilder<> IRBBefore(&CB);
3732     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3733     Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
3734     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
3735                                  kShadowTLSAlignment);
3736     BasicBlock::iterator NextInsn;
3737     if (isa<CallInst>(CB)) {
3738       NextInsn = ++CB.getIterator();
3739       assert(NextInsn != CB.getParent()->end());
3740     } else {
3741       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
3742       if (!NormalDest->getSinglePredecessor()) {
3743         // FIXME: this case is tricky, so we are just conservative here.
3744         // Perhaps we need to split the edge between this BB and NormalDest,
3745         // but a naive attempt to use SplitEdge leads to a crash.
3746         setShadow(&CB, getCleanShadow(&CB));
3747         setOrigin(&CB, getCleanOrigin());
3748         return;
3749       }
3750       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3751       // Anything inserted there will be instrumented by MSan later!
3752       NextInsn = NormalDest->getFirstInsertionPt();
3753       assert(NextInsn != NormalDest->end() &&
3754              "Could not find insertion point for retval shadow load");
3755     }
3756     IRBuilder<> IRBAfter(&*NextInsn);
3757     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3758         getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
3759         kShadowTLSAlignment, "_msret");
3760     setShadow(&CB, RetvalShadow);
3761     if (MS.TrackOrigins)
3762       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
3763                                          getOriginPtrForRetval(IRBAfter)));
3764   }
3765 
3766   bool isAMustTailRetVal(Value *RetVal) {
3767     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3768       RetVal = I->getOperand(0);
3769     }
3770     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3771       return I->isMustTailCall();
3772     }
3773     return false;
3774   }
3775 
3776   void visitReturnInst(ReturnInst &I) {
3777     IRBuilder<> IRB(&I);
3778     Value *RetVal = I.getReturnValue();
3779     if (!RetVal) return;
3780     // Don't emit the epilogue for musttail call returns.
3781     if (isAMustTailRetVal(RetVal)) return;
3782     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3783     bool HasNoUndef =
3784         F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef);
3785     bool StoreShadow = !(ClEagerChecks && HasNoUndef);
3786     // FIXME: Consider using SpecialCaseList to specify a list of functions that
3787     // must always return fully initialized values. For now, we hardcode "main".
3788     bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main");
3789 
3790     Value *Shadow = getShadow(RetVal);
3791     bool StoreOrigin = true;
3792     if (EagerCheck) {
3793       insertShadowCheck(RetVal, &I);
3794       Shadow = getCleanShadow(RetVal);
3795       StoreOrigin = false;
3796     }
3797 
3798     // The caller may still expect information passed over TLS if we pass our
3799     // check
3800     if (StoreShadow) {
3801       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3802       if (MS.TrackOrigins && StoreOrigin)
3803         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3804     }
3805   }
3806 
3807   void visitPHINode(PHINode &I) {
3808     IRBuilder<> IRB(&I);
3809     if (!PropagateShadow) {
3810       setShadow(&I, getCleanShadow(&I));
3811       setOrigin(&I, getCleanOrigin());
3812       return;
3813     }
3814 
3815     ShadowPHINodes.push_back(&I);
3816     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3817                                 "_msphi_s"));
3818     if (MS.TrackOrigins)
3819       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3820                                   "_msphi_o"));
3821   }
3822 
3823   Value *getLocalVarDescription(AllocaInst &I) {
3824     SmallString<2048> StackDescriptionStorage;
3825     raw_svector_ostream StackDescription(StackDescriptionStorage);
3826     // We create a string with a description of the stack allocation and
3827     // pass it into __msan_set_alloca_origin.
3828     // It will be printed by the run-time if stack-originated UMR is found.
3829     // The first 4 bytes of the string are set to '----' and will be replaced
3830     // by __msan_va_arg_overflow_size_tls at the first call.
3831     StackDescription << "----" << I.getName() << "@" << F.getName();
3832     return createPrivateNonConstGlobalForString(*F.getParent(),
3833                                                 StackDescription.str());
3834   }
3835 
3836   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3837     if (PoisonStack && ClPoisonStackWithCall) {
3838       IRB.CreateCall(MS.MsanPoisonStackFn,
3839                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3840     } else {
3841       Value *ShadowBase, *OriginBase;
3842       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
3843           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
3844 
3845       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3846       IRB.CreateMemSet(ShadowBase, PoisonValue, Len,
3847                        MaybeAlign(I.getAlignment()));
3848     }
3849 
3850     if (PoisonStack && MS.TrackOrigins) {
3851       Value *Descr = getLocalVarDescription(I);
3852       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3853                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3854                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3855                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3856     }
3857   }
3858 
3859   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3860     Value *Descr = getLocalVarDescription(I);
3861     if (PoisonStack) {
3862       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3863                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3864                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3865     } else {
3866       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3867                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3868     }
3869   }
3870 
3871   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3872     if (!InsPoint)
3873       InsPoint = &I;
3874     IRBuilder<> IRB(InsPoint->getNextNode());
3875     const DataLayout &DL = F.getParent()->getDataLayout();
3876     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3877     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3878     if (I.isArrayAllocation())
3879       Len = IRB.CreateMul(Len, I.getArraySize());
3880 
3881     if (MS.CompileKernel)
3882       poisonAllocaKmsan(I, IRB, Len);
3883     else
3884       poisonAllocaUserspace(I, IRB, Len);
3885   }
3886 
3887   void visitAllocaInst(AllocaInst &I) {
3888     setShadow(&I, getCleanShadow(&I));
3889     setOrigin(&I, getCleanOrigin());
3890     // We'll get to this alloca later unless it's poisoned at the corresponding
3891     // llvm.lifetime.start.
3892     AllocaSet.insert(&I);
3893   }
3894 
3895   void visitSelectInst(SelectInst& I) {
3896     IRBuilder<> IRB(&I);
3897     // a = select b, c, d
3898     Value *B = I.getCondition();
3899     Value *C = I.getTrueValue();
3900     Value *D = I.getFalseValue();
3901     Value *Sb = getShadow(B);
3902     Value *Sc = getShadow(C);
3903     Value *Sd = getShadow(D);
3904 
3905     // Result shadow if condition shadow is 0.
3906     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3907     Value *Sa1;
3908     if (I.getType()->isAggregateType()) {
3909       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3910       // an extra "select". This results in much more compact IR.
3911       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3912       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3913     } else {
3914       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3915       // If Sb (condition is poisoned), look for bits in c and d that are equal
3916       // and both unpoisoned.
3917       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3918 
3919       // Cast arguments to shadow-compatible type.
3920       C = CreateAppToShadowCast(IRB, C);
3921       D = CreateAppToShadowCast(IRB, D);
3922 
3923       // Result shadow if condition shadow is 1.
3924       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3925     }
3926     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3927     setShadow(&I, Sa);
3928     if (MS.TrackOrigins) {
3929       // Origins are always i32, so any vector conditions must be flattened.
3930       // FIXME: consider tracking vector origins for app vectors?
3931       if (B->getType()->isVectorTy()) {
3932         Type *FlatTy = getShadowTyNoVec(B->getType());
3933         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3934                                 ConstantInt::getNullValue(FlatTy));
3935         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3936                                       ConstantInt::getNullValue(FlatTy));
3937       }
3938       // a = select b, c, d
3939       // Oa = Sb ? Ob : (b ? Oc : Od)
3940       setOrigin(
3941           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3942                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3943                                                 getOrigin(I.getFalseValue()))));
3944     }
3945   }
3946 
3947   void visitLandingPadInst(LandingPadInst &I) {
3948     // Do nothing.
3949     // See https://github.com/google/sanitizers/issues/504
3950     setShadow(&I, getCleanShadow(&I));
3951     setOrigin(&I, getCleanOrigin());
3952   }
3953 
3954   void visitCatchSwitchInst(CatchSwitchInst &I) {
3955     setShadow(&I, getCleanShadow(&I));
3956     setOrigin(&I, getCleanOrigin());
3957   }
3958 
3959   void visitFuncletPadInst(FuncletPadInst &I) {
3960     setShadow(&I, getCleanShadow(&I));
3961     setOrigin(&I, getCleanOrigin());
3962   }
3963 
3964   void visitGetElementPtrInst(GetElementPtrInst &I) {
3965     handleShadowOr(I);
3966   }
3967 
3968   void visitExtractValueInst(ExtractValueInst &I) {
3969     IRBuilder<> IRB(&I);
3970     Value *Agg = I.getAggregateOperand();
3971     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3972     Value *AggShadow = getShadow(Agg);
3973     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3974     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3975     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3976     setShadow(&I, ResShadow);
3977     setOriginForNaryOp(I);
3978   }
3979 
3980   void visitInsertValueInst(InsertValueInst &I) {
3981     IRBuilder<> IRB(&I);
3982     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3983     Value *AggShadow = getShadow(I.getAggregateOperand());
3984     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3985     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3986     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3987     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3988     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3989     setShadow(&I, Res);
3990     setOriginForNaryOp(I);
3991   }
3992 
3993   void dumpInst(Instruction &I) {
3994     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3995       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3996     } else {
3997       errs() << "ZZZ " << I.getOpcodeName() << "\n";
3998     }
3999     errs() << "QQQ " << I << "\n";
4000   }
4001 
4002   void visitResumeInst(ResumeInst &I) {
4003     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
4004     // Nothing to do here.
4005   }
4006 
4007   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4008     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
4009     // Nothing to do here.
4010   }
4011 
4012   void visitCatchReturnInst(CatchReturnInst &CRI) {
4013     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
4014     // Nothing to do here.
4015   }
4016 
4017   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
4018                              const DataLayout &DL, bool isOutput) {
4019     // For each assembly argument, we check its value for being initialized.
4020     // If the argument is a pointer, we assume it points to a single element
4021     // of the corresponding type (or to a 8-byte word, if the type is unsized).
4022     // Each such pointer is instrumented with a call to the runtime library.
4023     Type *OpType = Operand->getType();
4024     // Check the operand value itself.
4025     insertShadowCheck(Operand, &I);
4026     if (!OpType->isPointerTy() || !isOutput) {
4027       assert(!isOutput);
4028       return;
4029     }
4030     Type *ElType = OpType->getPointerElementType();
4031     if (!ElType->isSized())
4032       return;
4033     int Size = DL.getTypeStoreSize(ElType);
4034     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4035     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
4036     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4037   }
4038 
4039   /// Get the number of output arguments returned by pointers.
4040   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4041     int NumRetOutputs = 0;
4042     int NumOutputs = 0;
4043     Type *RetTy = cast<Value>(CB)->getType();
4044     if (!RetTy->isVoidTy()) {
4045       // Register outputs are returned via the CallInst return value.
4046       auto *ST = dyn_cast<StructType>(RetTy);
4047       if (ST)
4048         NumRetOutputs = ST->getNumElements();
4049       else
4050         NumRetOutputs = 1;
4051     }
4052     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4053     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4054       switch (Info.Type) {
4055       case InlineAsm::isOutput:
4056         NumOutputs++;
4057         break;
4058       default:
4059         break;
4060       }
4061     }
4062     return NumOutputs - NumRetOutputs;
4063   }
4064 
4065   void visitAsmInstruction(Instruction &I) {
4066     // Conservative inline assembly handling: check for poisoned shadow of
4067     // asm() arguments, then unpoison the result and all the memory locations
4068     // pointed to by those arguments.
4069     // An inline asm() statement in C++ contains lists of input and output
4070     // arguments used by the assembly code. These are mapped to operands of the
4071     // CallInst as follows:
4072     //  - nR register outputs ("=r) are returned by value in a single structure
4073     //  (SSA value of the CallInst);
4074     //  - nO other outputs ("=m" and others) are returned by pointer as first
4075     // nO operands of the CallInst;
4076     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
4077     // remaining nI operands.
4078     // The total number of asm() arguments in the source is nR+nO+nI, and the
4079     // corresponding CallInst has nO+nI+1 operands (the last operand is the
4080     // function to be called).
4081     const DataLayout &DL = F.getParent()->getDataLayout();
4082     CallBase *CB = cast<CallBase>(&I);
4083     IRBuilder<> IRB(&I);
4084     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4085     int OutputArgs = getNumOutputArgs(IA, CB);
4086     // The last operand of a CallInst is the function itself.
4087     int NumOperands = CB->getNumOperands() - 1;
4088 
4089     // Check input arguments. Doing so before unpoisoning output arguments, so
4090     // that we won't overwrite uninit values before checking them.
4091     for (int i = OutputArgs; i < NumOperands; i++) {
4092       Value *Operand = CB->getOperand(i);
4093       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
4094     }
4095     // Unpoison output arguments. This must happen before the actual InlineAsm
4096     // call, so that the shadow for memory published in the asm() statement
4097     // remains valid.
4098     for (int i = 0; i < OutputArgs; i++) {
4099       Value *Operand = CB->getOperand(i);
4100       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
4101     }
4102 
4103     setShadow(&I, getCleanShadow(&I));
4104     setOrigin(&I, getCleanOrigin());
4105   }
4106 
4107   void visitFreezeInst(FreezeInst &I) {
4108     // Freeze always returns a fully defined value.
4109     setShadow(&I, getCleanShadow(&I));
4110     setOrigin(&I, getCleanOrigin());
4111   }
4112 
4113   void visitInstruction(Instruction &I) {
4114     // Everything else: stop propagating and check for poisoned shadow.
4115     if (ClDumpStrictInstructions)
4116       dumpInst(I);
4117     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
4118     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4119       Value *Operand = I.getOperand(i);
4120       if (Operand->getType()->isSized())
4121         insertShadowCheck(Operand, &I);
4122     }
4123     setShadow(&I, getCleanShadow(&I));
4124     setOrigin(&I, getCleanOrigin());
4125   }
4126 };
4127 
4128 /// AMD64-specific implementation of VarArgHelper.
4129 struct VarArgAMD64Helper : public VarArgHelper {
4130   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4131   // See a comment in visitCallBase for more details.
4132   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
4133   static const unsigned AMD64FpEndOffsetSSE = 176;
4134   // If SSE is disabled, fp_offset in va_list is zero.
4135   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4136 
4137   unsigned AMD64FpEndOffset;
4138   Function &F;
4139   MemorySanitizer &MS;
4140   MemorySanitizerVisitor &MSV;
4141   Value *VAArgTLSCopy = nullptr;
4142   Value *VAArgTLSOriginCopy = nullptr;
4143   Value *VAArgOverflowSize = nullptr;
4144 
4145   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4146 
4147   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4148 
4149   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4150                     MemorySanitizerVisitor &MSV)
4151       : F(F), MS(MS), MSV(MSV) {
4152     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4153     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
4154       if (Attr.isStringAttribute() &&
4155           (Attr.getKindAsString() == "target-features")) {
4156         if (Attr.getValueAsString().contains("-sse"))
4157           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4158         break;
4159       }
4160     }
4161   }
4162 
4163   ArgKind classifyArgument(Value* arg) {
4164     // A very rough approximation of X86_64 argument classification rules.
4165     Type *T = arg->getType();
4166     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4167       return AK_FloatingPoint;
4168     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4169       return AK_GeneralPurpose;
4170     if (T->isPointerTy())
4171       return AK_GeneralPurpose;
4172     return AK_Memory;
4173   }
4174 
4175   // For VarArg functions, store the argument shadow in an ABI-specific format
4176   // that corresponds to va_list layout.
4177   // We do this because Clang lowers va_arg in the frontend, and this pass
4178   // only sees the low level code that deals with va_list internals.
4179   // A much easier alternative (provided that Clang emits va_arg instructions)
4180   // would have been to associate each live instance of va_list with a copy of
4181   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4182   // order.
4183   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4184     unsigned GpOffset = 0;
4185     unsigned FpOffset = AMD64GpEndOffset;
4186     unsigned OverflowOffset = AMD64FpEndOffset;
4187     const DataLayout &DL = F.getParent()->getDataLayout();
4188     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4189          ++ArgIt) {
4190       Value *A = *ArgIt;
4191       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4192       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4193       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4194       if (IsByVal) {
4195         // ByVal arguments always go to the overflow area.
4196         // Fixed arguments passed through the overflow area will be stepped
4197         // over by va_start, so don't count them towards the offset.
4198         if (IsFixed)
4199           continue;
4200         assert(A->getType()->isPointerTy());
4201         Type *RealTy = CB.getParamByValType(ArgNo);
4202         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4203         Value *ShadowBase = getShadowPtrForVAArgument(
4204             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4205         Value *OriginBase = nullptr;
4206         if (MS.TrackOrigins)
4207           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4208         OverflowOffset += alignTo(ArgSize, 8);
4209         if (!ShadowBase)
4210           continue;
4211         Value *ShadowPtr, *OriginPtr;
4212         std::tie(ShadowPtr, OriginPtr) =
4213             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4214                                    /*isStore*/ false);
4215 
4216         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4217                          kShadowTLSAlignment, ArgSize);
4218         if (MS.TrackOrigins)
4219           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4220                            kShadowTLSAlignment, ArgSize);
4221       } else {
4222         ArgKind AK = classifyArgument(A);
4223         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4224           AK = AK_Memory;
4225         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4226           AK = AK_Memory;
4227         Value *ShadowBase, *OriginBase = nullptr;
4228         switch (AK) {
4229           case AK_GeneralPurpose:
4230             ShadowBase =
4231                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4232             if (MS.TrackOrigins)
4233               OriginBase =
4234                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4235             GpOffset += 8;
4236             break;
4237           case AK_FloatingPoint:
4238             ShadowBase =
4239                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4240             if (MS.TrackOrigins)
4241               OriginBase =
4242                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4243             FpOffset += 16;
4244             break;
4245           case AK_Memory:
4246             if (IsFixed)
4247               continue;
4248             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4249             ShadowBase =
4250                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4251             if (MS.TrackOrigins)
4252               OriginBase =
4253                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4254             OverflowOffset += alignTo(ArgSize, 8);
4255         }
4256         // Take fixed arguments into account for GpOffset and FpOffset,
4257         // but don't actually store shadows for them.
4258         // TODO(glider): don't call get*PtrForVAArgument() for them.
4259         if (IsFixed)
4260           continue;
4261         if (!ShadowBase)
4262           continue;
4263         Value *Shadow = MSV.getShadow(A);
4264         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4265         if (MS.TrackOrigins) {
4266           Value *Origin = MSV.getOrigin(A);
4267           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
4268           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4269                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
4270         }
4271       }
4272     }
4273     Constant *OverflowSize =
4274       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4275     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4276   }
4277 
4278   /// Compute the shadow address for a given va_arg.
4279   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4280                                    unsigned ArgOffset, unsigned ArgSize) {
4281     // Make sure we don't overflow __msan_va_arg_tls.
4282     if (ArgOffset + ArgSize > kParamTLSSize)
4283       return nullptr;
4284     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4285     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4286     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4287                               "_msarg_va_s");
4288   }
4289 
4290   /// Compute the origin address for a given va_arg.
4291   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4292     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4293     // getOriginPtrForVAArgument() is always called after
4294     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4295     // overflow.
4296     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4297     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4298                               "_msarg_va_o");
4299   }
4300 
4301   void unpoisonVAListTagForInst(IntrinsicInst &I) {
4302     IRBuilder<> IRB(&I);
4303     Value *VAListTag = I.getArgOperand(0);
4304     Value *ShadowPtr, *OriginPtr;
4305     const Align Alignment = Align(8);
4306     std::tie(ShadowPtr, OriginPtr) =
4307         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4308                                /*isStore*/ true);
4309 
4310     // Unpoison the whole __va_list_tag.
4311     // FIXME: magic ABI constants.
4312     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4313                      /* size */ 24, Alignment, false);
4314     // We shouldn't need to zero out the origins, as they're only checked for
4315     // nonzero shadow.
4316   }
4317 
4318   void visitVAStartInst(VAStartInst &I) override {
4319     if (F.getCallingConv() == CallingConv::Win64)
4320       return;
4321     VAStartInstrumentationList.push_back(&I);
4322     unpoisonVAListTagForInst(I);
4323   }
4324 
4325   void visitVACopyInst(VACopyInst &I) override {
4326     if (F.getCallingConv() == CallingConv::Win64) return;
4327     unpoisonVAListTagForInst(I);
4328   }
4329 
4330   void finalizeInstrumentation() override {
4331     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4332            "finalizeInstrumentation called twice");
4333     if (!VAStartInstrumentationList.empty()) {
4334       // If there is a va_start in this function, make a backup copy of
4335       // va_arg_tls somewhere in the function entry block.
4336       IRBuilder<> IRB(MSV.FnPrologueEnd);
4337       VAArgOverflowSize =
4338           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4339       Value *CopySize =
4340         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
4341                       VAArgOverflowSize);
4342       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4343       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4344       if (MS.TrackOrigins) {
4345         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4346         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4347                          Align(8), CopySize);
4348       }
4349     }
4350 
4351     // Instrument va_start.
4352     // Copy va_list shadow from the backup copy of the TLS contents.
4353     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4354       CallInst *OrigInst = VAStartInstrumentationList[i];
4355       IRBuilder<> IRB(OrigInst->getNextNode());
4356       Value *VAListTag = OrigInst->getArgOperand(0);
4357 
4358       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4359       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4360           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4361                         ConstantInt::get(MS.IntptrTy, 16)),
4362           PointerType::get(RegSaveAreaPtrTy, 0));
4363       Value *RegSaveAreaPtr =
4364           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4365       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4366       const Align Alignment = Align(16);
4367       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4368           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4369                                  Alignment, /*isStore*/ true);
4370       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4371                        AMD64FpEndOffset);
4372       if (MS.TrackOrigins)
4373         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4374                          Alignment, AMD64FpEndOffset);
4375       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4376       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4377           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4378                         ConstantInt::get(MS.IntptrTy, 8)),
4379           PointerType::get(OverflowArgAreaPtrTy, 0));
4380       Value *OverflowArgAreaPtr =
4381           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4382       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4383       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4384           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4385                                  Alignment, /*isStore*/ true);
4386       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4387                                              AMD64FpEndOffset);
4388       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4389                        VAArgOverflowSize);
4390       if (MS.TrackOrigins) {
4391         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4392                                         AMD64FpEndOffset);
4393         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4394                          VAArgOverflowSize);
4395       }
4396     }
4397   }
4398 };
4399 
4400 /// MIPS64-specific implementation of VarArgHelper.
4401 struct VarArgMIPS64Helper : public VarArgHelper {
4402   Function &F;
4403   MemorySanitizer &MS;
4404   MemorySanitizerVisitor &MSV;
4405   Value *VAArgTLSCopy = nullptr;
4406   Value *VAArgSize = nullptr;
4407 
4408   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4409 
4410   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4411                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4412 
4413   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4414     unsigned VAArgOffset = 0;
4415     const DataLayout &DL = F.getParent()->getDataLayout();
4416     for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(),
4417               End = CB.arg_end();
4418          ArgIt != End; ++ArgIt) {
4419       Triple TargetTriple(F.getParent()->getTargetTriple());
4420       Value *A = *ArgIt;
4421       Value *Base;
4422       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4423       if (TargetTriple.getArch() == Triple::mips64) {
4424         // Adjusting the shadow for argument with size < 8 to match the placement
4425         // of bits in big endian system
4426         if (ArgSize < 8)
4427           VAArgOffset += (8 - ArgSize);
4428       }
4429       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4430       VAArgOffset += ArgSize;
4431       VAArgOffset = alignTo(VAArgOffset, 8);
4432       if (!Base)
4433         continue;
4434       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4435     }
4436 
4437     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4438     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4439     // a new class member i.e. it is the total size of all VarArgs.
4440     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4441   }
4442 
4443   /// Compute the shadow address for a given va_arg.
4444   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4445                                    unsigned ArgOffset, unsigned ArgSize) {
4446     // Make sure we don't overflow __msan_va_arg_tls.
4447     if (ArgOffset + ArgSize > kParamTLSSize)
4448       return nullptr;
4449     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4450     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4451     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4452                               "_msarg");
4453   }
4454 
4455   void visitVAStartInst(VAStartInst &I) override {
4456     IRBuilder<> IRB(&I);
4457     VAStartInstrumentationList.push_back(&I);
4458     Value *VAListTag = I.getArgOperand(0);
4459     Value *ShadowPtr, *OriginPtr;
4460     const Align Alignment = Align(8);
4461     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4462         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4463     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4464                      /* size */ 8, Alignment, false);
4465   }
4466 
4467   void visitVACopyInst(VACopyInst &I) override {
4468     IRBuilder<> IRB(&I);
4469     VAStartInstrumentationList.push_back(&I);
4470     Value *VAListTag = I.getArgOperand(0);
4471     Value *ShadowPtr, *OriginPtr;
4472     const Align Alignment = Align(8);
4473     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4474         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4475     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4476                      /* size */ 8, Alignment, false);
4477   }
4478 
4479   void finalizeInstrumentation() override {
4480     assert(!VAArgSize && !VAArgTLSCopy &&
4481            "finalizeInstrumentation called twice");
4482     IRBuilder<> IRB(MSV.FnPrologueEnd);
4483     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4484     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4485                                     VAArgSize);
4486 
4487     if (!VAStartInstrumentationList.empty()) {
4488       // If there is a va_start in this function, make a backup copy of
4489       // va_arg_tls somewhere in the function entry block.
4490       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4491       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4492     }
4493 
4494     // Instrument va_start.
4495     // Copy va_list shadow from the backup copy of the TLS contents.
4496     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4497       CallInst *OrigInst = VAStartInstrumentationList[i];
4498       IRBuilder<> IRB(OrigInst->getNextNode());
4499       Value *VAListTag = OrigInst->getArgOperand(0);
4500       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4501       Value *RegSaveAreaPtrPtr =
4502           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4503                              PointerType::get(RegSaveAreaPtrTy, 0));
4504       Value *RegSaveAreaPtr =
4505           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4506       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4507       const Align Alignment = Align(8);
4508       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4509           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4510                                  Alignment, /*isStore*/ true);
4511       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4512                        CopySize);
4513     }
4514   }
4515 };
4516 
4517 /// AArch64-specific implementation of VarArgHelper.
4518 struct VarArgAArch64Helper : public VarArgHelper {
4519   static const unsigned kAArch64GrArgSize = 64;
4520   static const unsigned kAArch64VrArgSize = 128;
4521 
4522   static const unsigned AArch64GrBegOffset = 0;
4523   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4524   // Make VR space aligned to 16 bytes.
4525   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4526   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4527                                              + kAArch64VrArgSize;
4528   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4529 
4530   Function &F;
4531   MemorySanitizer &MS;
4532   MemorySanitizerVisitor &MSV;
4533   Value *VAArgTLSCopy = nullptr;
4534   Value *VAArgOverflowSize = nullptr;
4535 
4536   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4537 
4538   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4539 
4540   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4541                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4542 
4543   ArgKind classifyArgument(Value* arg) {
4544     Type *T = arg->getType();
4545     if (T->isFPOrFPVectorTy())
4546       return AK_FloatingPoint;
4547     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4548         || (T->isPointerTy()))
4549       return AK_GeneralPurpose;
4550     return AK_Memory;
4551   }
4552 
4553   // The instrumentation stores the argument shadow in a non ABI-specific
4554   // format because it does not know which argument is named (since Clang,
4555   // like x86_64 case, lowers the va_args in the frontend and this pass only
4556   // sees the low level code that deals with va_list internals).
4557   // The first seven GR registers are saved in the first 56 bytes of the
4558   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4559   // the remaining arguments.
4560   // Using constant offset within the va_arg TLS array allows fast copy
4561   // in the finalize instrumentation.
4562   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4563     unsigned GrOffset = AArch64GrBegOffset;
4564     unsigned VrOffset = AArch64VrBegOffset;
4565     unsigned OverflowOffset = AArch64VAEndOffset;
4566 
4567     const DataLayout &DL = F.getParent()->getDataLayout();
4568     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4569          ++ArgIt) {
4570       Value *A = *ArgIt;
4571       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4572       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4573       ArgKind AK = classifyArgument(A);
4574       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4575         AK = AK_Memory;
4576       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4577         AK = AK_Memory;
4578       Value *Base;
4579       switch (AK) {
4580         case AK_GeneralPurpose:
4581           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4582           GrOffset += 8;
4583           break;
4584         case AK_FloatingPoint:
4585           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4586           VrOffset += 16;
4587           break;
4588         case AK_Memory:
4589           // Don't count fixed arguments in the overflow area - va_start will
4590           // skip right over them.
4591           if (IsFixed)
4592             continue;
4593           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4594           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4595                                            alignTo(ArgSize, 8));
4596           OverflowOffset += alignTo(ArgSize, 8);
4597           break;
4598       }
4599       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4600       // bother to actually store a shadow.
4601       if (IsFixed)
4602         continue;
4603       if (!Base)
4604         continue;
4605       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4606     }
4607     Constant *OverflowSize =
4608       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4609     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4610   }
4611 
4612   /// Compute the shadow address for a given va_arg.
4613   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4614                                    unsigned ArgOffset, unsigned ArgSize) {
4615     // Make sure we don't overflow __msan_va_arg_tls.
4616     if (ArgOffset + ArgSize > kParamTLSSize)
4617       return nullptr;
4618     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4619     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4620     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4621                               "_msarg");
4622   }
4623 
4624   void visitVAStartInst(VAStartInst &I) override {
4625     IRBuilder<> IRB(&I);
4626     VAStartInstrumentationList.push_back(&I);
4627     Value *VAListTag = I.getArgOperand(0);
4628     Value *ShadowPtr, *OriginPtr;
4629     const Align Alignment = Align(8);
4630     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4631         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4632     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4633                      /* size */ 32, Alignment, false);
4634   }
4635 
4636   void visitVACopyInst(VACopyInst &I) override {
4637     IRBuilder<> IRB(&I);
4638     VAStartInstrumentationList.push_back(&I);
4639     Value *VAListTag = I.getArgOperand(0);
4640     Value *ShadowPtr, *OriginPtr;
4641     const Align Alignment = Align(8);
4642     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4643         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4644     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4645                      /* size */ 32, Alignment, false);
4646   }
4647 
4648   // Retrieve a va_list field of 'void*' size.
4649   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4650     Value *SaveAreaPtrPtr =
4651       IRB.CreateIntToPtr(
4652         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4653                       ConstantInt::get(MS.IntptrTy, offset)),
4654         Type::getInt64PtrTy(*MS.C));
4655     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4656   }
4657 
4658   // Retrieve a va_list field of 'int' size.
4659   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4660     Value *SaveAreaPtr =
4661       IRB.CreateIntToPtr(
4662         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4663                       ConstantInt::get(MS.IntptrTy, offset)),
4664         Type::getInt32PtrTy(*MS.C));
4665     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4666     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4667   }
4668 
4669   void finalizeInstrumentation() override {
4670     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4671            "finalizeInstrumentation called twice");
4672     if (!VAStartInstrumentationList.empty()) {
4673       // If there is a va_start in this function, make a backup copy of
4674       // va_arg_tls somewhere in the function entry block.
4675       IRBuilder<> IRB(MSV.FnPrologueEnd);
4676       VAArgOverflowSize =
4677           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4678       Value *CopySize =
4679         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4680                       VAArgOverflowSize);
4681       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4682       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4683     }
4684 
4685     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4686     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4687 
4688     // Instrument va_start, copy va_list shadow from the backup copy of
4689     // the TLS contents.
4690     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4691       CallInst *OrigInst = VAStartInstrumentationList[i];
4692       IRBuilder<> IRB(OrigInst->getNextNode());
4693 
4694       Value *VAListTag = OrigInst->getArgOperand(0);
4695 
4696       // The variadic ABI for AArch64 creates two areas to save the incoming
4697       // argument registers (one for 64-bit general register xn-x7 and another
4698       // for 128-bit FP/SIMD vn-v7).
4699       // We need then to propagate the shadow arguments on both regions
4700       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4701       // The remaining arguments are saved on shadow for 'va::stack'.
4702       // One caveat is it requires only to propagate the non-named arguments,
4703       // however on the call site instrumentation 'all' the arguments are
4704       // saved. So to copy the shadow values from the va_arg TLS array
4705       // we need to adjust the offset for both GR and VR fields based on
4706       // the __{gr,vr}_offs value (since they are stores based on incoming
4707       // named arguments).
4708 
4709       // Read the stack pointer from the va_list.
4710       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4711 
4712       // Read both the __gr_top and __gr_off and add them up.
4713       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4714       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4715 
4716       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4717 
4718       // Read both the __vr_top and __vr_off and add them up.
4719       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4720       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4721 
4722       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4723 
4724       // It does not know how many named arguments is being used and, on the
4725       // callsite all the arguments were saved.  Since __gr_off is defined as
4726       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4727       // argument by ignoring the bytes of shadow from named arguments.
4728       Value *GrRegSaveAreaShadowPtrOff =
4729         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4730 
4731       Value *GrRegSaveAreaShadowPtr =
4732           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4733                                  Align(8), /*isStore*/ true)
4734               .first;
4735 
4736       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4737                                               GrRegSaveAreaShadowPtrOff);
4738       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4739 
4740       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
4741                        GrCopySize);
4742 
4743       // Again, but for FP/SIMD values.
4744       Value *VrRegSaveAreaShadowPtrOff =
4745           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4746 
4747       Value *VrRegSaveAreaShadowPtr =
4748           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4749                                  Align(8), /*isStore*/ true)
4750               .first;
4751 
4752       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4753         IRB.getInt8Ty(),
4754         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4755                               IRB.getInt32(AArch64VrBegOffset)),
4756         VrRegSaveAreaShadowPtrOff);
4757       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4758 
4759       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
4760                        VrCopySize);
4761 
4762       // And finally for remaining arguments.
4763       Value *StackSaveAreaShadowPtr =
4764           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4765                                  Align(16), /*isStore*/ true)
4766               .first;
4767 
4768       Value *StackSrcPtr =
4769         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4770                               IRB.getInt32(AArch64VAEndOffset));
4771 
4772       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
4773                        Align(16), VAArgOverflowSize);
4774     }
4775   }
4776 };
4777 
4778 /// PowerPC64-specific implementation of VarArgHelper.
4779 struct VarArgPowerPC64Helper : public VarArgHelper {
4780   Function &F;
4781   MemorySanitizer &MS;
4782   MemorySanitizerVisitor &MSV;
4783   Value *VAArgTLSCopy = nullptr;
4784   Value *VAArgSize = nullptr;
4785 
4786   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4787 
4788   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4789                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4790 
4791   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4792     // For PowerPC, we need to deal with alignment of stack arguments -
4793     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4794     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4795     // For that reason, we compute current offset from stack pointer (which is
4796     // always properly aligned), and offset for the first vararg, then subtract
4797     // them.
4798     unsigned VAArgBase;
4799     Triple TargetTriple(F.getParent()->getTargetTriple());
4800     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4801     // and 32 bytes for ABIv2.  This is usually determined by target
4802     // endianness, but in theory could be overridden by function attribute.
4803     if (TargetTriple.getArch() == Triple::ppc64)
4804       VAArgBase = 48;
4805     else
4806       VAArgBase = 32;
4807     unsigned VAArgOffset = VAArgBase;
4808     const DataLayout &DL = F.getParent()->getDataLayout();
4809     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4810          ++ArgIt) {
4811       Value *A = *ArgIt;
4812       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4813       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4814       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4815       if (IsByVal) {
4816         assert(A->getType()->isPointerTy());
4817         Type *RealTy = CB.getParamByValType(ArgNo);
4818         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4819         MaybeAlign ArgAlign = CB.getParamAlign(ArgNo);
4820         if (!ArgAlign || *ArgAlign < Align(8))
4821           ArgAlign = Align(8);
4822         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4823         if (!IsFixed) {
4824           Value *Base = getShadowPtrForVAArgument(
4825               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4826           if (Base) {
4827             Value *AShadowPtr, *AOriginPtr;
4828             std::tie(AShadowPtr, AOriginPtr) =
4829                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4830                                        kShadowTLSAlignment, /*isStore*/ false);
4831 
4832             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4833                              kShadowTLSAlignment, ArgSize);
4834           }
4835         }
4836         VAArgOffset += alignTo(ArgSize, 8);
4837       } else {
4838         Value *Base;
4839         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4840         uint64_t ArgAlign = 8;
4841         if (A->getType()->isArrayTy()) {
4842           // Arrays are aligned to element size, except for long double
4843           // arrays, which are aligned to 8 bytes.
4844           Type *ElementTy = A->getType()->getArrayElementType();
4845           if (!ElementTy->isPPC_FP128Ty())
4846             ArgAlign = DL.getTypeAllocSize(ElementTy);
4847         } else if (A->getType()->isVectorTy()) {
4848           // Vectors are naturally aligned.
4849           ArgAlign = DL.getTypeAllocSize(A->getType());
4850         }
4851         if (ArgAlign < 8)
4852           ArgAlign = 8;
4853         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4854         if (DL.isBigEndian()) {
4855           // Adjusting the shadow for argument with size < 8 to match the placement
4856           // of bits in big endian system
4857           if (ArgSize < 8)
4858             VAArgOffset += (8 - ArgSize);
4859         }
4860         if (!IsFixed) {
4861           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4862                                            VAArgOffset - VAArgBase, ArgSize);
4863           if (Base)
4864             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4865         }
4866         VAArgOffset += ArgSize;
4867         VAArgOffset = alignTo(VAArgOffset, 8);
4868       }
4869       if (IsFixed)
4870         VAArgBase = VAArgOffset;
4871     }
4872 
4873     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4874                                                 VAArgOffset - VAArgBase);
4875     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4876     // a new class member i.e. it is the total size of all VarArgs.
4877     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4878   }
4879 
4880   /// Compute the shadow address for a given va_arg.
4881   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4882                                    unsigned ArgOffset, unsigned ArgSize) {
4883     // Make sure we don't overflow __msan_va_arg_tls.
4884     if (ArgOffset + ArgSize > kParamTLSSize)
4885       return nullptr;
4886     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4887     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4888     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4889                               "_msarg");
4890   }
4891 
4892   void visitVAStartInst(VAStartInst &I) override {
4893     IRBuilder<> IRB(&I);
4894     VAStartInstrumentationList.push_back(&I);
4895     Value *VAListTag = I.getArgOperand(0);
4896     Value *ShadowPtr, *OriginPtr;
4897     const Align Alignment = Align(8);
4898     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4899         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4900     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4901                      /* size */ 8, Alignment, false);
4902   }
4903 
4904   void visitVACopyInst(VACopyInst &I) override {
4905     IRBuilder<> IRB(&I);
4906     Value *VAListTag = I.getArgOperand(0);
4907     Value *ShadowPtr, *OriginPtr;
4908     const Align Alignment = Align(8);
4909     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4910         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4911     // Unpoison the whole __va_list_tag.
4912     // FIXME: magic ABI constants.
4913     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4914                      /* size */ 8, Alignment, false);
4915   }
4916 
4917   void finalizeInstrumentation() override {
4918     assert(!VAArgSize && !VAArgTLSCopy &&
4919            "finalizeInstrumentation called twice");
4920     IRBuilder<> IRB(MSV.FnPrologueEnd);
4921     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4922     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4923                                     VAArgSize);
4924 
4925     if (!VAStartInstrumentationList.empty()) {
4926       // If there is a va_start in this function, make a backup copy of
4927       // va_arg_tls somewhere in the function entry block.
4928       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4929       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4930     }
4931 
4932     // Instrument va_start.
4933     // Copy va_list shadow from the backup copy of the TLS contents.
4934     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4935       CallInst *OrigInst = VAStartInstrumentationList[i];
4936       IRBuilder<> IRB(OrigInst->getNextNode());
4937       Value *VAListTag = OrigInst->getArgOperand(0);
4938       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4939       Value *RegSaveAreaPtrPtr =
4940           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4941                              PointerType::get(RegSaveAreaPtrTy, 0));
4942       Value *RegSaveAreaPtr =
4943           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4944       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4945       const Align Alignment = Align(8);
4946       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4947           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4948                                  Alignment, /*isStore*/ true);
4949       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4950                        CopySize);
4951     }
4952   }
4953 };
4954 
4955 /// SystemZ-specific implementation of VarArgHelper.
4956 struct VarArgSystemZHelper : public VarArgHelper {
4957   static const unsigned SystemZGpOffset = 16;
4958   static const unsigned SystemZGpEndOffset = 56;
4959   static const unsigned SystemZFpOffset = 128;
4960   static const unsigned SystemZFpEndOffset = 160;
4961   static const unsigned SystemZMaxVrArgs = 8;
4962   static const unsigned SystemZRegSaveAreaSize = 160;
4963   static const unsigned SystemZOverflowOffset = 160;
4964   static const unsigned SystemZVAListTagSize = 32;
4965   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
4966   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
4967 
4968   Function &F;
4969   MemorySanitizer &MS;
4970   MemorySanitizerVisitor &MSV;
4971   Value *VAArgTLSCopy = nullptr;
4972   Value *VAArgTLSOriginCopy = nullptr;
4973   Value *VAArgOverflowSize = nullptr;
4974 
4975   SmallVector<CallInst *, 16> VAStartInstrumentationList;
4976 
4977   enum class ArgKind {
4978     GeneralPurpose,
4979     FloatingPoint,
4980     Vector,
4981     Memory,
4982     Indirect,
4983   };
4984 
4985   enum class ShadowExtension { None, Zero, Sign };
4986 
4987   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
4988                       MemorySanitizerVisitor &MSV)
4989       : F(F), MS(MS), MSV(MSV) {}
4990 
4991   ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) {
4992     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
4993     // only a few possibilities of what it can be. In particular, enums, single
4994     // element structs and large types have already been taken care of.
4995 
4996     // Some i128 and fp128 arguments are converted to pointers only in the
4997     // back end.
4998     if (T->isIntegerTy(128) || T->isFP128Ty())
4999       return ArgKind::Indirect;
5000     if (T->isFloatingPointTy())
5001       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5002     if (T->isIntegerTy() || T->isPointerTy())
5003       return ArgKind::GeneralPurpose;
5004     if (T->isVectorTy())
5005       return ArgKind::Vector;
5006     return ArgKind::Memory;
5007   }
5008 
5009   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5010     // ABI says: "One of the simple integer types no more than 64 bits wide.
5011     // ... If such an argument is shorter than 64 bits, replace it by a full
5012     // 64-bit integer representing the same number, using sign or zero
5013     // extension". Shadow for an integer argument has the same type as the
5014     // argument itself, so it can be sign or zero extended as well.
5015     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5016     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5017     if (ZExt) {
5018       assert(!SExt);
5019       return ShadowExtension::Zero;
5020     }
5021     if (SExt) {
5022       assert(!ZExt);
5023       return ShadowExtension::Sign;
5024     }
5025     return ShadowExtension::None;
5026   }
5027 
5028   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5029     bool IsSoftFloatABI = CB.getCalledFunction()
5030                               ->getFnAttribute("use-soft-float")
5031                               .getValueAsString() == "true";
5032     unsigned GpOffset = SystemZGpOffset;
5033     unsigned FpOffset = SystemZFpOffset;
5034     unsigned VrIndex = 0;
5035     unsigned OverflowOffset = SystemZOverflowOffset;
5036     const DataLayout &DL = F.getParent()->getDataLayout();
5037     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
5038          ++ArgIt) {
5039       Value *A = *ArgIt;
5040       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
5041       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5042       // SystemZABIInfo does not produce ByVal parameters.
5043       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5044       Type *T = A->getType();
5045       ArgKind AK = classifyArgument(T, IsSoftFloatABI);
5046       if (AK == ArgKind::Indirect) {
5047         T = PointerType::get(T, 0);
5048         AK = ArgKind::GeneralPurpose;
5049       }
5050       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5051         AK = ArgKind::Memory;
5052       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5053         AK = ArgKind::Memory;
5054       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5055         AK = ArgKind::Memory;
5056       Value *ShadowBase = nullptr;
5057       Value *OriginBase = nullptr;
5058       ShadowExtension SE = ShadowExtension::None;
5059       switch (AK) {
5060       case ArgKind::GeneralPurpose: {
5061         // Always keep track of GpOffset, but store shadow only for varargs.
5062         uint64_t ArgSize = 8;
5063         if (GpOffset + ArgSize <= kParamTLSSize) {
5064           if (!IsFixed) {
5065             SE = getShadowExtension(CB, ArgNo);
5066             uint64_t GapSize = 0;
5067             if (SE == ShadowExtension::None) {
5068               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5069               assert(ArgAllocSize <= ArgSize);
5070               GapSize = ArgSize - ArgAllocSize;
5071             }
5072             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5073             if (MS.TrackOrigins)
5074               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5075           }
5076           GpOffset += ArgSize;
5077         } else {
5078           GpOffset = kParamTLSSize;
5079         }
5080         break;
5081       }
5082       case ArgKind::FloatingPoint: {
5083         // Always keep track of FpOffset, but store shadow only for varargs.
5084         uint64_t ArgSize = 8;
5085         if (FpOffset + ArgSize <= kParamTLSSize) {
5086           if (!IsFixed) {
5087             // PoP says: "A short floating-point datum requires only the
5088             // left-most 32 bit positions of a floating-point register".
5089             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5090             // don't extend shadow and don't mind the gap.
5091             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5092             if (MS.TrackOrigins)
5093               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5094           }
5095           FpOffset += ArgSize;
5096         } else {
5097           FpOffset = kParamTLSSize;
5098         }
5099         break;
5100       }
5101       case ArgKind::Vector: {
5102         // Keep track of VrIndex. No need to store shadow, since vector varargs
5103         // go through AK_Memory.
5104         assert(IsFixed);
5105         VrIndex++;
5106         break;
5107       }
5108       case ArgKind::Memory: {
5109         // Keep track of OverflowOffset and store shadow only for varargs.
5110         // Ignore fixed args, since we need to copy only the vararg portion of
5111         // the overflow area shadow.
5112         if (!IsFixed) {
5113           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5114           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5115           if (OverflowOffset + ArgSize <= kParamTLSSize) {
5116             SE = getShadowExtension(CB, ArgNo);
5117             uint64_t GapSize =
5118                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5119             ShadowBase =
5120                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5121             if (MS.TrackOrigins)
5122               OriginBase =
5123                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5124             OverflowOffset += ArgSize;
5125           } else {
5126             OverflowOffset = kParamTLSSize;
5127           }
5128         }
5129         break;
5130       }
5131       case ArgKind::Indirect:
5132         llvm_unreachable("Indirect must be converted to GeneralPurpose");
5133       }
5134       if (ShadowBase == nullptr)
5135         continue;
5136       Value *Shadow = MSV.getShadow(A);
5137       if (SE != ShadowExtension::None)
5138         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5139                                       /*Signed*/ SE == ShadowExtension::Sign);
5140       ShadowBase = IRB.CreateIntToPtr(
5141           ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5142       IRB.CreateStore(Shadow, ShadowBase);
5143       if (MS.TrackOrigins) {
5144         Value *Origin = MSV.getOrigin(A);
5145         unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
5146         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5147                         kMinOriginAlignment);
5148       }
5149     }
5150     Constant *OverflowSize = ConstantInt::get(
5151         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5152     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5153   }
5154 
5155   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5156     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5157     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5158   }
5159 
5160   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5161     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5162     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5163     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5164                               "_msarg_va_o");
5165   }
5166 
5167   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5168     IRBuilder<> IRB(&I);
5169     Value *VAListTag = I.getArgOperand(0);
5170     Value *ShadowPtr, *OriginPtr;
5171     const Align Alignment = Align(8);
5172     std::tie(ShadowPtr, OriginPtr) =
5173         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5174                                /*isStore*/ true);
5175     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5176                      SystemZVAListTagSize, Alignment, false);
5177   }
5178 
5179   void visitVAStartInst(VAStartInst &I) override {
5180     VAStartInstrumentationList.push_back(&I);
5181     unpoisonVAListTagForInst(I);
5182   }
5183 
5184   void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5185 
5186   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5187     Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5188     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5189         IRB.CreateAdd(
5190             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5191             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5192         PointerType::get(RegSaveAreaPtrTy, 0));
5193     Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5194     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5195     const Align Alignment = Align(8);
5196     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5197         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5198                                /*isStore*/ true);
5199     // TODO(iii): copy only fragments filled by visitCallBase()
5200     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5201                      SystemZRegSaveAreaSize);
5202     if (MS.TrackOrigins)
5203       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5204                        Alignment, SystemZRegSaveAreaSize);
5205   }
5206 
5207   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5208     Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5209     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5210         IRB.CreateAdd(
5211             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5212             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5213         PointerType::get(OverflowArgAreaPtrTy, 0));
5214     Value *OverflowArgAreaPtr =
5215         IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5216     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5217     const Align Alignment = Align(8);
5218     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5219         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5220                                Alignment, /*isStore*/ true);
5221     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5222                                            SystemZOverflowOffset);
5223     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5224                      VAArgOverflowSize);
5225     if (MS.TrackOrigins) {
5226       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5227                                       SystemZOverflowOffset);
5228       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5229                        VAArgOverflowSize);
5230     }
5231   }
5232 
5233   void finalizeInstrumentation() override {
5234     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5235            "finalizeInstrumentation called twice");
5236     if (!VAStartInstrumentationList.empty()) {
5237       // If there is a va_start in this function, make a backup copy of
5238       // va_arg_tls somewhere in the function entry block.
5239       IRBuilder<> IRB(MSV.FnPrologueEnd);
5240       VAArgOverflowSize =
5241           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5242       Value *CopySize =
5243           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5244                         VAArgOverflowSize);
5245       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5246       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5247       if (MS.TrackOrigins) {
5248         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5249         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
5250                          Align(8), CopySize);
5251       }
5252     }
5253 
5254     // Instrument va_start.
5255     // Copy va_list shadow from the backup copy of the TLS contents.
5256     for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5257          VaStartNo < VaStartNum; VaStartNo++) {
5258       CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5259       IRBuilder<> IRB(OrigInst->getNextNode());
5260       Value *VAListTag = OrigInst->getArgOperand(0);
5261       copyRegSaveArea(IRB, VAListTag);
5262       copyOverflowArea(IRB, VAListTag);
5263     }
5264   }
5265 };
5266 
5267 /// A no-op implementation of VarArgHelper.
5268 struct VarArgNoOpHelper : public VarArgHelper {
5269   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5270                    MemorySanitizerVisitor &MSV) {}
5271 
5272   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5273 
5274   void visitVAStartInst(VAStartInst &I) override {}
5275 
5276   void visitVACopyInst(VACopyInst &I) override {}
5277 
5278   void finalizeInstrumentation() override {}
5279 };
5280 
5281 } // end anonymous namespace
5282 
5283 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5284                                         MemorySanitizerVisitor &Visitor) {
5285   // VarArg handling is only implemented on AMD64. False positives are possible
5286   // on other platforms.
5287   Triple TargetTriple(Func.getParent()->getTargetTriple());
5288   if (TargetTriple.getArch() == Triple::x86_64)
5289     return new VarArgAMD64Helper(Func, Msan, Visitor);
5290   else if (TargetTriple.isMIPS64())
5291     return new VarArgMIPS64Helper(Func, Msan, Visitor);
5292   else if (TargetTriple.getArch() == Triple::aarch64)
5293     return new VarArgAArch64Helper(Func, Msan, Visitor);
5294   else if (TargetTriple.getArch() == Triple::ppc64 ||
5295            TargetTriple.getArch() == Triple::ppc64le)
5296     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5297   else if (TargetTriple.getArch() == Triple::systemz)
5298     return new VarArgSystemZHelper(Func, Msan, Visitor);
5299   else
5300     return new VarArgNoOpHelper(Func, Msan, Visitor);
5301 }
5302 
5303 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5304   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5305     return false;
5306 
5307   MemorySanitizerVisitor Visitor(F, *this, TLI);
5308 
5309   // Clear out readonly/readnone attributes.
5310   AttrBuilder B;
5311   B.addAttribute(Attribute::ReadOnly)
5312       .addAttribute(Attribute::ReadNone)
5313       .addAttribute(Attribute::WriteOnly)
5314       .addAttribute(Attribute::ArgMemOnly)
5315       .addAttribute(Attribute::Speculatable);
5316   F.removeAttributes(AttributeList::FunctionIndex, B);
5317 
5318   return Visitor.runOnFunction();
5319 }
5320