1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/ADT/DepthFirstIterator.h" 95 #include "llvm/ADT/SmallString.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/ADT/StringExtras.h" 98 #include "llvm/ADT/Triple.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/Function.h" 101 #include "llvm/IR/IRBuilder.h" 102 #include "llvm/IR/InlineAsm.h" 103 #include "llvm/IR/InstVisitor.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/MDBuilder.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Instrumentation.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ModuleUtils.h" 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "msan" 121 122 static const unsigned kOriginSize = 4; 123 static const unsigned kMinOriginAlignment = 4; 124 static const unsigned kShadowTLSAlignment = 8; 125 126 // These constants must be kept in sync with the ones in msan.h. 127 static const unsigned kParamTLSSize = 800; 128 static const unsigned kRetvalTLSSize = 800; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8. 131 static const size_t kNumberOfAccessSizes = 4; 132 133 /// \brief Track origins of uninitialized values. 134 /// 135 /// Adds a section to MemorySanitizer report that points to the allocation 136 /// (stack or heap) the uninitialized bits came from originally. 137 static cl::opt<int> ClTrackOrigins("msan-track-origins", 138 cl::desc("Track origins (allocation sites) of poisoned memory"), 139 cl::Hidden, cl::init(0)); 140 static cl::opt<bool> ClKeepGoing("msan-keep-going", 141 cl::desc("keep going after reporting a UMR"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 144 cl::desc("poison uninitialized stack variables"), 145 cl::Hidden, cl::init(true)); 146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 147 cl::desc("poison uninitialized stack variables with a call"), 148 cl::Hidden, cl::init(false)); 149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 150 cl::desc("poison uninitialized stack variables with the given pattern"), 151 cl::Hidden, cl::init(0xff)); 152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 153 cl::desc("poison undef temps"), 154 cl::Hidden, cl::init(true)); 155 156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 158 cl::Hidden, cl::init(true)); 159 160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 161 cl::desc("exact handling of relational integer ICmp"), 162 cl::Hidden, cl::init(false)); 163 164 // This flag controls whether we check the shadow of the address 165 // operand of load or store. Such bugs are very rare, since load from 166 // a garbage address typically results in SEGV, but still happen 167 // (e.g. only lower bits of address are garbage, or the access happens 168 // early at program startup where malloc-ed memory is more likely to 169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 171 cl::desc("report accesses through a pointer which has poisoned shadow"), 172 cl::Hidden, cl::init(true)); 173 174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 175 cl::desc("print out instructions with default strict semantics"), 176 cl::Hidden, cl::init(false)); 177 178 static cl::opt<int> ClInstrumentationWithCallThreshold( 179 "msan-instrumentation-with-call-threshold", 180 cl::desc( 181 "If the function being instrumented requires more than " 182 "this number of checks and origin stores, use callbacks instead of " 183 "inline checks (-1 means never use callbacks)."), 184 cl::Hidden, cl::init(3500)); 185 186 // This is an experiment to enable handling of cases where shadow is a non-zero 187 // compile-time constant. For some unexplainable reason they were silently 188 // ignored in the instrumentation. 189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 190 cl::desc("Insert checks for constant shadow values"), 191 cl::Hidden, cl::init(false)); 192 193 // This is off by default because of a bug in gold: 194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 195 static cl::opt<bool> ClWithComdat("msan-with-comdat", 196 cl::desc("Place MSan constructors in comdat sections"), 197 cl::Hidden, cl::init(false)); 198 199 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 200 static const char *const kMsanInitName = "__msan_init"; 201 202 namespace { 203 204 // Memory map parameters used in application-to-shadow address calculation. 205 // Offset = (Addr & ~AndMask) ^ XorMask 206 // Shadow = ShadowBase + Offset 207 // Origin = OriginBase + Offset 208 struct MemoryMapParams { 209 uint64_t AndMask; 210 uint64_t XorMask; 211 uint64_t ShadowBase; 212 uint64_t OriginBase; 213 }; 214 215 struct PlatformMemoryMapParams { 216 const MemoryMapParams *bits32; 217 const MemoryMapParams *bits64; 218 }; 219 220 // i386 Linux 221 static const MemoryMapParams Linux_I386_MemoryMapParams = { 222 0x000080000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x000040000000, // OriginBase 226 }; 227 228 // x86_64 Linux 229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 231 0x400000000000, // AndMask 232 0, // XorMask (not used) 233 0, // ShadowBase (not used) 234 0x200000000000, // OriginBase 235 #else 236 0, // AndMask (not used) 237 0x500000000000, // XorMask 238 0, // ShadowBase (not used) 239 0x100000000000, // OriginBase 240 #endif 241 }; 242 243 // mips64 Linux 244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 245 0x004000000000, // AndMask 246 0, // XorMask (not used) 247 0, // ShadowBase (not used) 248 0x002000000000, // OriginBase 249 }; 250 251 // ppc64 Linux 252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 253 0x200000000000, // AndMask 254 0x100000000000, // XorMask 255 0x080000000000, // ShadowBase 256 0x1C0000000000, // OriginBase 257 }; 258 259 // aarch64 Linux 260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 261 0, // AndMask (not used) 262 0x06000000000, // XorMask 263 0, // ShadowBase (not used) 264 0x01000000000, // OriginBase 265 }; 266 267 // i386 FreeBSD 268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 269 0x000180000000, // AndMask 270 0x000040000000, // XorMask 271 0x000020000000, // ShadowBase 272 0x000700000000, // OriginBase 273 }; 274 275 // x86_64 FreeBSD 276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 277 0xc00000000000, // AndMask 278 0x200000000000, // XorMask 279 0x100000000000, // ShadowBase 280 0x380000000000, // OriginBase 281 }; 282 283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 284 &Linux_I386_MemoryMapParams, 285 &Linux_X86_64_MemoryMapParams, 286 }; 287 288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 289 nullptr, 290 &Linux_MIPS64_MemoryMapParams, 291 }; 292 293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 294 nullptr, 295 &Linux_PowerPC64_MemoryMapParams, 296 }; 297 298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 299 nullptr, 300 &Linux_AArch64_MemoryMapParams, 301 }; 302 303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 304 &FreeBSD_I386_MemoryMapParams, 305 &FreeBSD_X86_64_MemoryMapParams, 306 }; 307 308 /// \brief An instrumentation pass implementing detection of uninitialized 309 /// reads. 310 /// 311 /// MemorySanitizer: instrument the code in module to find 312 /// uninitialized reads. 313 class MemorySanitizer : public FunctionPass { 314 public: 315 MemorySanitizer(int TrackOrigins = 0) 316 : FunctionPass(ID), 317 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 318 WarningFn(nullptr) {} 319 const char *getPassName() const override { return "MemorySanitizer"; } 320 bool runOnFunction(Function &F) override; 321 bool doInitialization(Module &M) override; 322 static char ID; // Pass identification, replacement for typeid. 323 324 private: 325 void initializeCallbacks(Module &M); 326 327 /// \brief Track origins (allocation points) of uninitialized values. 328 int TrackOrigins; 329 330 LLVMContext *C; 331 Type *IntptrTy; 332 Type *OriginTy; 333 /// \brief Thread-local shadow storage for function parameters. 334 GlobalVariable *ParamTLS; 335 /// \brief Thread-local origin storage for function parameters. 336 GlobalVariable *ParamOriginTLS; 337 /// \brief Thread-local shadow storage for function return value. 338 GlobalVariable *RetvalTLS; 339 /// \brief Thread-local origin storage for function return value. 340 GlobalVariable *RetvalOriginTLS; 341 /// \brief Thread-local shadow storage for in-register va_arg function 342 /// parameters (x86_64-specific). 343 GlobalVariable *VAArgTLS; 344 /// \brief Thread-local shadow storage for va_arg overflow area 345 /// (x86_64-specific). 346 GlobalVariable *VAArgOverflowSizeTLS; 347 /// \brief Thread-local space used to pass origin value to the UMR reporting 348 /// function. 349 GlobalVariable *OriginTLS; 350 351 /// \brief The run-time callback to print a warning. 352 Value *WarningFn; 353 // These arrays are indexed by log2(AccessSize). 354 Value *MaybeWarningFn[kNumberOfAccessSizes]; 355 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 356 357 /// \brief Run-time helper that generates a new origin value for a stack 358 /// allocation. 359 Value *MsanSetAllocaOrigin4Fn; 360 /// \brief Run-time helper that poisons stack on function entry. 361 Value *MsanPoisonStackFn; 362 /// \brief Run-time helper that records a store (or any event) of an 363 /// uninitialized value and returns an updated origin id encoding this info. 364 Value *MsanChainOriginFn; 365 /// \brief MSan runtime replacements for memmove, memcpy and memset. 366 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 367 368 /// \brief Memory map parameters used in application-to-shadow calculation. 369 const MemoryMapParams *MapParams; 370 371 MDNode *ColdCallWeights; 372 /// \brief Branch weights for origin store. 373 MDNode *OriginStoreWeights; 374 /// \brief An empty volatile inline asm that prevents callback merge. 375 InlineAsm *EmptyAsm; 376 Function *MsanCtorFunction; 377 378 friend struct MemorySanitizerVisitor; 379 friend struct VarArgAMD64Helper; 380 friend struct VarArgMIPS64Helper; 381 friend struct VarArgAArch64Helper; 382 friend struct VarArgPowerPC64Helper; 383 }; 384 } // anonymous namespace 385 386 char MemorySanitizer::ID = 0; 387 INITIALIZE_PASS(MemorySanitizer, "msan", 388 "MemorySanitizer: detects uninitialized reads.", 389 false, false) 390 391 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 392 return new MemorySanitizer(TrackOrigins); 393 } 394 395 /// \brief Create a non-const global initialized with the given string. 396 /// 397 /// Creates a writable global for Str so that we can pass it to the 398 /// run-time lib. Runtime uses first 4 bytes of the string to store the 399 /// frame ID, so the string needs to be mutable. 400 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 401 StringRef Str) { 402 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 403 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 404 GlobalValue::PrivateLinkage, StrConst, ""); 405 } 406 407 /// \brief Insert extern declaration of runtime-provided functions and globals. 408 void MemorySanitizer::initializeCallbacks(Module &M) { 409 // Only do this once. 410 if (WarningFn) 411 return; 412 413 IRBuilder<> IRB(*C); 414 // Create the callback. 415 // FIXME: this function should have "Cold" calling conv, 416 // which is not yet implemented. 417 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 418 : "__msan_warning_noreturn"; 419 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 420 421 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 422 AccessSizeIndex++) { 423 unsigned AccessSize = 1 << AccessSizeIndex; 424 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 425 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 426 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 427 IRB.getInt32Ty(), nullptr); 428 429 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 430 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 431 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 432 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 433 } 434 435 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 436 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 437 IRB.getInt8PtrTy(), IntptrTy, nullptr); 438 MsanPoisonStackFn = 439 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 440 IRB.getInt8PtrTy(), IntptrTy, nullptr); 441 MsanChainOriginFn = M.getOrInsertFunction( 442 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 443 MemmoveFn = M.getOrInsertFunction( 444 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 445 IRB.getInt8PtrTy(), IntptrTy, nullptr); 446 MemcpyFn = M.getOrInsertFunction( 447 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 448 IntptrTy, nullptr); 449 MemsetFn = M.getOrInsertFunction( 450 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 451 IntptrTy, nullptr); 452 453 // Create globals. 454 RetvalTLS = new GlobalVariable( 455 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 456 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 457 GlobalVariable::InitialExecTLSModel); 458 RetvalOriginTLS = new GlobalVariable( 459 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 460 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 461 462 ParamTLS = new GlobalVariable( 463 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 464 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 465 GlobalVariable::InitialExecTLSModel); 466 ParamOriginTLS = new GlobalVariable( 467 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 468 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 469 nullptr, GlobalVariable::InitialExecTLSModel); 470 471 VAArgTLS = new GlobalVariable( 472 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 473 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 474 GlobalVariable::InitialExecTLSModel); 475 VAArgOverflowSizeTLS = new GlobalVariable( 476 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 477 "__msan_va_arg_overflow_size_tls", nullptr, 478 GlobalVariable::InitialExecTLSModel); 479 OriginTLS = new GlobalVariable( 480 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 481 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 482 483 // We insert an empty inline asm after __msan_report* to avoid callback merge. 484 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 485 StringRef(""), StringRef(""), 486 /*hasSideEffects=*/true); 487 } 488 489 /// \brief Module-level initialization. 490 /// 491 /// inserts a call to __msan_init to the module's constructor list. 492 bool MemorySanitizer::doInitialization(Module &M) { 493 auto &DL = M.getDataLayout(); 494 495 Triple TargetTriple(M.getTargetTriple()); 496 switch (TargetTriple.getOS()) { 497 case Triple::FreeBSD: 498 switch (TargetTriple.getArch()) { 499 case Triple::x86_64: 500 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 501 break; 502 case Triple::x86: 503 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 504 break; 505 default: 506 report_fatal_error("unsupported architecture"); 507 } 508 break; 509 case Triple::Linux: 510 switch (TargetTriple.getArch()) { 511 case Triple::x86_64: 512 MapParams = Linux_X86_MemoryMapParams.bits64; 513 break; 514 case Triple::x86: 515 MapParams = Linux_X86_MemoryMapParams.bits32; 516 break; 517 case Triple::mips64: 518 case Triple::mips64el: 519 MapParams = Linux_MIPS_MemoryMapParams.bits64; 520 break; 521 case Triple::ppc64: 522 case Triple::ppc64le: 523 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 524 break; 525 case Triple::aarch64: 526 case Triple::aarch64_be: 527 MapParams = Linux_ARM_MemoryMapParams.bits64; 528 break; 529 default: 530 report_fatal_error("unsupported architecture"); 531 } 532 break; 533 default: 534 report_fatal_error("unsupported operating system"); 535 } 536 537 C = &(M.getContext()); 538 IRBuilder<> IRB(*C); 539 IntptrTy = IRB.getIntPtrTy(DL); 540 OriginTy = IRB.getInt32Ty(); 541 542 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 543 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 544 545 std::tie(MsanCtorFunction, std::ignore) = 546 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 547 /*InitArgTypes=*/{}, 548 /*InitArgs=*/{}); 549 if (ClWithComdat) { 550 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 551 MsanCtorFunction->setComdat(MsanCtorComdat); 552 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 553 } else { 554 appendToGlobalCtors(M, MsanCtorFunction, 0); 555 } 556 557 558 if (TrackOrigins) 559 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 560 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 561 562 if (ClKeepGoing) 563 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 564 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 565 566 return true; 567 } 568 569 namespace { 570 571 /// \brief A helper class that handles instrumentation of VarArg 572 /// functions on a particular platform. 573 /// 574 /// Implementations are expected to insert the instrumentation 575 /// necessary to propagate argument shadow through VarArg function 576 /// calls. Visit* methods are called during an InstVisitor pass over 577 /// the function, and should avoid creating new basic blocks. A new 578 /// instance of this class is created for each instrumented function. 579 struct VarArgHelper { 580 /// \brief Visit a CallSite. 581 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 582 583 /// \brief Visit a va_start call. 584 virtual void visitVAStartInst(VAStartInst &I) = 0; 585 586 /// \brief Visit a va_copy call. 587 virtual void visitVACopyInst(VACopyInst &I) = 0; 588 589 /// \brief Finalize function instrumentation. 590 /// 591 /// This method is called after visiting all interesting (see above) 592 /// instructions in a function. 593 virtual void finalizeInstrumentation() = 0; 594 595 virtual ~VarArgHelper() {} 596 }; 597 598 struct MemorySanitizerVisitor; 599 600 VarArgHelper* 601 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 602 MemorySanitizerVisitor &Visitor); 603 604 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 605 if (TypeSize <= 8) return 0; 606 return Log2_32_Ceil(TypeSize / 8); 607 } 608 609 /// This class does all the work for a given function. Store and Load 610 /// instructions store and load corresponding shadow and origin 611 /// values. Most instructions propagate shadow from arguments to their 612 /// return values. Certain instructions (most importantly, BranchInst) 613 /// test their argument shadow and print reports (with a runtime call) if it's 614 /// non-zero. 615 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 616 Function &F; 617 MemorySanitizer &MS; 618 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 619 ValueMap<Value*, Value*> ShadowMap, OriginMap; 620 std::unique_ptr<VarArgHelper> VAHelper; 621 622 // The following flags disable parts of MSan instrumentation based on 623 // blacklist contents and command-line options. 624 bool InsertChecks; 625 bool PropagateShadow; 626 bool PoisonStack; 627 bool PoisonUndef; 628 bool CheckReturnValue; 629 630 struct ShadowOriginAndInsertPoint { 631 Value *Shadow; 632 Value *Origin; 633 Instruction *OrigIns; 634 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 635 : Shadow(S), Origin(O), OrigIns(I) { } 636 }; 637 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 638 SmallVector<Instruction*, 16> StoreList; 639 640 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 641 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 642 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 643 InsertChecks = SanitizeFunction; 644 PropagateShadow = SanitizeFunction; 645 PoisonStack = SanitizeFunction && ClPoisonStack; 646 PoisonUndef = SanitizeFunction && ClPoisonUndef; 647 // FIXME: Consider using SpecialCaseList to specify a list of functions that 648 // must always return fully initialized values. For now, we hardcode "main". 649 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 650 651 DEBUG(if (!InsertChecks) 652 dbgs() << "MemorySanitizer is not inserting checks into '" 653 << F.getName() << "'\n"); 654 } 655 656 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 657 if (MS.TrackOrigins <= 1) return V; 658 return IRB.CreateCall(MS.MsanChainOriginFn, V); 659 } 660 661 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 662 const DataLayout &DL = F.getParent()->getDataLayout(); 663 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 664 if (IntptrSize == kOriginSize) return Origin; 665 assert(IntptrSize == kOriginSize * 2); 666 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 667 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 668 } 669 670 /// \brief Fill memory range with the given origin value. 671 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 672 unsigned Size, unsigned Alignment) { 673 const DataLayout &DL = F.getParent()->getDataLayout(); 674 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 675 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 676 assert(IntptrAlignment >= kMinOriginAlignment); 677 assert(IntptrSize >= kOriginSize); 678 679 unsigned Ofs = 0; 680 unsigned CurrentAlignment = Alignment; 681 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 682 Value *IntptrOrigin = originToIntptr(IRB, Origin); 683 Value *IntptrOriginPtr = 684 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 685 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 686 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 687 : IntptrOriginPtr; 688 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 689 Ofs += IntptrSize / kOriginSize; 690 CurrentAlignment = IntptrAlignment; 691 } 692 } 693 694 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 695 Value *GEP = 696 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 697 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 698 CurrentAlignment = kMinOriginAlignment; 699 } 700 } 701 702 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 703 unsigned Alignment, bool AsCall) { 704 const DataLayout &DL = F.getParent()->getDataLayout(); 705 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 706 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 707 if (Shadow->getType()->isAggregateType()) { 708 paintOrigin(IRB, updateOrigin(Origin, IRB), 709 getOriginPtr(Addr, IRB, Alignment), StoreSize, 710 OriginAlignment); 711 } else { 712 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 713 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 714 if (ConstantShadow) { 715 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 716 paintOrigin(IRB, updateOrigin(Origin, IRB), 717 getOriginPtr(Addr, IRB, Alignment), StoreSize, 718 OriginAlignment); 719 return; 720 } 721 722 unsigned TypeSizeInBits = 723 DL.getTypeSizeInBits(ConvertedShadow->getType()); 724 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 725 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 726 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 727 Value *ConvertedShadow2 = IRB.CreateZExt( 728 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 729 IRB.CreateCall(Fn, {ConvertedShadow2, 730 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 731 Origin}); 732 } else { 733 Value *Cmp = IRB.CreateICmpNE( 734 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 735 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 736 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 737 IRBuilder<> IRBNew(CheckTerm); 738 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 739 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 740 OriginAlignment); 741 } 742 } 743 } 744 745 void materializeStores(bool InstrumentWithCalls) { 746 for (auto Inst : StoreList) { 747 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 748 749 IRBuilder<> IRB(&SI); 750 Value *Val = SI.getValueOperand(); 751 Value *Addr = SI.getPointerOperand(); 752 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 753 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 754 755 StoreInst *NewSI = 756 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 757 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 758 (void)NewSI; 759 760 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 761 762 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 763 764 if (MS.TrackOrigins && !SI.isAtomic()) 765 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 766 InstrumentWithCalls); 767 } 768 } 769 770 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 771 bool AsCall) { 772 IRBuilder<> IRB(OrigIns); 773 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 774 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 775 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 776 777 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 778 if (ConstantShadow) { 779 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 780 if (MS.TrackOrigins) { 781 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 782 MS.OriginTLS); 783 } 784 IRB.CreateCall(MS.WarningFn, {}); 785 IRB.CreateCall(MS.EmptyAsm, {}); 786 // FIXME: Insert UnreachableInst if !ClKeepGoing? 787 // This may invalidate some of the following checks and needs to be done 788 // at the very end. 789 } 790 return; 791 } 792 793 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 794 795 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 796 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 797 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 798 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 799 Value *ConvertedShadow2 = 800 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 801 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 802 ? Origin 803 : (Value *)IRB.getInt32(0)}); 804 } else { 805 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 806 getCleanShadow(ConvertedShadow), "_mscmp"); 807 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 808 Cmp, OrigIns, 809 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 810 811 IRB.SetInsertPoint(CheckTerm); 812 if (MS.TrackOrigins) { 813 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 814 MS.OriginTLS); 815 } 816 IRB.CreateCall(MS.WarningFn, {}); 817 IRB.CreateCall(MS.EmptyAsm, {}); 818 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 819 } 820 } 821 822 void materializeChecks(bool InstrumentWithCalls) { 823 for (const auto &ShadowData : InstrumentationList) { 824 Instruction *OrigIns = ShadowData.OrigIns; 825 Value *Shadow = ShadowData.Shadow; 826 Value *Origin = ShadowData.Origin; 827 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 828 } 829 DEBUG(dbgs() << "DONE:\n" << F); 830 } 831 832 /// \brief Add MemorySanitizer instrumentation to a function. 833 bool runOnFunction() { 834 MS.initializeCallbacks(*F.getParent()); 835 836 // In the presence of unreachable blocks, we may see Phi nodes with 837 // incoming nodes from such blocks. Since InstVisitor skips unreachable 838 // blocks, such nodes will not have any shadow value associated with them. 839 // It's easier to remove unreachable blocks than deal with missing shadow. 840 removeUnreachableBlocks(F); 841 842 // Iterate all BBs in depth-first order and create shadow instructions 843 // for all instructions (where applicable). 844 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 845 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 846 visit(*BB); 847 848 849 // Finalize PHI nodes. 850 for (PHINode *PN : ShadowPHINodes) { 851 PHINode *PNS = cast<PHINode>(getShadow(PN)); 852 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 853 size_t NumValues = PN->getNumIncomingValues(); 854 for (size_t v = 0; v < NumValues; v++) { 855 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 856 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 857 } 858 } 859 860 VAHelper->finalizeInstrumentation(); 861 862 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 863 InstrumentationList.size() + StoreList.size() > 864 (unsigned)ClInstrumentationWithCallThreshold; 865 866 // Delayed instrumentation of StoreInst. 867 // This may add new checks to be inserted later. 868 materializeStores(InstrumentWithCalls); 869 870 // Insert shadow value checks. 871 materializeChecks(InstrumentWithCalls); 872 873 return true; 874 } 875 876 /// \brief Compute the shadow type that corresponds to a given Value. 877 Type *getShadowTy(Value *V) { 878 return getShadowTy(V->getType()); 879 } 880 881 /// \brief Compute the shadow type that corresponds to a given Type. 882 Type *getShadowTy(Type *OrigTy) { 883 if (!OrigTy->isSized()) { 884 return nullptr; 885 } 886 // For integer type, shadow is the same as the original type. 887 // This may return weird-sized types like i1. 888 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 889 return IT; 890 const DataLayout &DL = F.getParent()->getDataLayout(); 891 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 892 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 893 return VectorType::get(IntegerType::get(*MS.C, EltSize), 894 VT->getNumElements()); 895 } 896 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 897 return ArrayType::get(getShadowTy(AT->getElementType()), 898 AT->getNumElements()); 899 } 900 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 901 SmallVector<Type*, 4> Elements; 902 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 903 Elements.push_back(getShadowTy(ST->getElementType(i))); 904 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 905 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 906 return Res; 907 } 908 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 909 return IntegerType::get(*MS.C, TypeSize); 910 } 911 912 /// \brief Flatten a vector type. 913 Type *getShadowTyNoVec(Type *ty) { 914 if (VectorType *vt = dyn_cast<VectorType>(ty)) 915 return IntegerType::get(*MS.C, vt->getBitWidth()); 916 return ty; 917 } 918 919 /// \brief Convert a shadow value to it's flattened variant. 920 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 921 Type *Ty = V->getType(); 922 Type *NoVecTy = getShadowTyNoVec(Ty); 923 if (Ty == NoVecTy) return V; 924 return IRB.CreateBitCast(V, NoVecTy); 925 } 926 927 /// \brief Compute the integer shadow offset that corresponds to a given 928 /// application address. 929 /// 930 /// Offset = (Addr & ~AndMask) ^ XorMask 931 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 932 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 933 934 uint64_t AndMask = MS.MapParams->AndMask; 935 if (AndMask) 936 OffsetLong = 937 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 938 939 uint64_t XorMask = MS.MapParams->XorMask; 940 if (XorMask) 941 OffsetLong = 942 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 943 return OffsetLong; 944 } 945 946 /// \brief Compute the shadow address that corresponds to a given application 947 /// address. 948 /// 949 /// Shadow = ShadowBase + Offset 950 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 951 IRBuilder<> &IRB) { 952 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 953 uint64_t ShadowBase = MS.MapParams->ShadowBase; 954 if (ShadowBase != 0) 955 ShadowLong = 956 IRB.CreateAdd(ShadowLong, 957 ConstantInt::get(MS.IntptrTy, ShadowBase)); 958 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 959 } 960 961 /// \brief Compute the origin address that corresponds to a given application 962 /// address. 963 /// 964 /// OriginAddr = (OriginBase + Offset) & ~3ULL 965 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 966 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 967 uint64_t OriginBase = MS.MapParams->OriginBase; 968 if (OriginBase != 0) 969 OriginLong = 970 IRB.CreateAdd(OriginLong, 971 ConstantInt::get(MS.IntptrTy, OriginBase)); 972 if (Alignment < kMinOriginAlignment) { 973 uint64_t Mask = kMinOriginAlignment - 1; 974 OriginLong = IRB.CreateAnd(OriginLong, 975 ConstantInt::get(MS.IntptrTy, ~Mask)); 976 } 977 return IRB.CreateIntToPtr(OriginLong, 978 PointerType::get(IRB.getInt32Ty(), 0)); 979 } 980 981 /// \brief Compute the shadow address for a given function argument. 982 /// 983 /// Shadow = ParamTLS+ArgOffset. 984 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 985 int ArgOffset) { 986 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 987 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 988 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 989 "_msarg"); 990 } 991 992 /// \brief Compute the origin address for a given function argument. 993 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 994 int ArgOffset) { 995 if (!MS.TrackOrigins) return nullptr; 996 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 997 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 998 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 999 "_msarg_o"); 1000 } 1001 1002 /// \brief Compute the shadow address for a retval. 1003 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1004 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1005 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1006 "_msret"); 1007 } 1008 1009 /// \brief Compute the origin address for a retval. 1010 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1011 // We keep a single origin for the entire retval. Might be too optimistic. 1012 return MS.RetvalOriginTLS; 1013 } 1014 1015 /// \brief Set SV to be the shadow value for V. 1016 void setShadow(Value *V, Value *SV) { 1017 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1018 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1019 } 1020 1021 /// \brief Set Origin to be the origin value for V. 1022 void setOrigin(Value *V, Value *Origin) { 1023 if (!MS.TrackOrigins) return; 1024 assert(!OriginMap.count(V) && "Values may only have one origin"); 1025 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1026 OriginMap[V] = Origin; 1027 } 1028 1029 /// \brief Create a clean shadow value for a given value. 1030 /// 1031 /// Clean shadow (all zeroes) means all bits of the value are defined 1032 /// (initialized). 1033 Constant *getCleanShadow(Value *V) { 1034 Type *ShadowTy = getShadowTy(V); 1035 if (!ShadowTy) 1036 return nullptr; 1037 return Constant::getNullValue(ShadowTy); 1038 } 1039 1040 /// \brief Create a dirty shadow of a given shadow type. 1041 Constant *getPoisonedShadow(Type *ShadowTy) { 1042 assert(ShadowTy); 1043 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1044 return Constant::getAllOnesValue(ShadowTy); 1045 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1046 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1047 getPoisonedShadow(AT->getElementType())); 1048 return ConstantArray::get(AT, Vals); 1049 } 1050 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1051 SmallVector<Constant *, 4> Vals; 1052 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1053 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1054 return ConstantStruct::get(ST, Vals); 1055 } 1056 llvm_unreachable("Unexpected shadow type"); 1057 } 1058 1059 /// \brief Create a dirty shadow for a given value. 1060 Constant *getPoisonedShadow(Value *V) { 1061 Type *ShadowTy = getShadowTy(V); 1062 if (!ShadowTy) 1063 return nullptr; 1064 return getPoisonedShadow(ShadowTy); 1065 } 1066 1067 /// \brief Create a clean (zero) origin. 1068 Value *getCleanOrigin() { 1069 return Constant::getNullValue(MS.OriginTy); 1070 } 1071 1072 /// \brief Get the shadow value for a given Value. 1073 /// 1074 /// This function either returns the value set earlier with setShadow, 1075 /// or extracts if from ParamTLS (for function arguments). 1076 Value *getShadow(Value *V) { 1077 if (!PropagateShadow) return getCleanShadow(V); 1078 if (Instruction *I = dyn_cast<Instruction>(V)) { 1079 // For instructions the shadow is already stored in the map. 1080 Value *Shadow = ShadowMap[V]; 1081 if (!Shadow) { 1082 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1083 (void)I; 1084 assert(Shadow && "No shadow for a value"); 1085 } 1086 return Shadow; 1087 } 1088 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1089 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1090 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1091 (void)U; 1092 return AllOnes; 1093 } 1094 if (Argument *A = dyn_cast<Argument>(V)) { 1095 // For arguments we compute the shadow on demand and store it in the map. 1096 Value **ShadowPtr = &ShadowMap[V]; 1097 if (*ShadowPtr) 1098 return *ShadowPtr; 1099 Function *F = A->getParent(); 1100 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1101 unsigned ArgOffset = 0; 1102 const DataLayout &DL = F->getParent()->getDataLayout(); 1103 for (auto &FArg : F->args()) { 1104 if (!FArg.getType()->isSized()) { 1105 DEBUG(dbgs() << "Arg is not sized\n"); 1106 continue; 1107 } 1108 unsigned Size = 1109 FArg.hasByValAttr() 1110 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1111 : DL.getTypeAllocSize(FArg.getType()); 1112 if (A == &FArg) { 1113 bool Overflow = ArgOffset + Size > kParamTLSSize; 1114 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1115 if (FArg.hasByValAttr()) { 1116 // ByVal pointer itself has clean shadow. We copy the actual 1117 // argument shadow to the underlying memory. 1118 // Figure out maximal valid memcpy alignment. 1119 unsigned ArgAlign = FArg.getParamAlignment(); 1120 if (ArgAlign == 0) { 1121 Type *EltType = A->getType()->getPointerElementType(); 1122 ArgAlign = DL.getABITypeAlignment(EltType); 1123 } 1124 if (Overflow) { 1125 // ParamTLS overflow. 1126 EntryIRB.CreateMemSet( 1127 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1128 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1129 } else { 1130 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1131 Value *Cpy = EntryIRB.CreateMemCpy( 1132 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1133 CopyAlign); 1134 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1135 (void)Cpy; 1136 } 1137 *ShadowPtr = getCleanShadow(V); 1138 } else { 1139 if (Overflow) { 1140 // ParamTLS overflow. 1141 *ShadowPtr = getCleanShadow(V); 1142 } else { 1143 *ShadowPtr = 1144 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1145 } 1146 } 1147 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1148 **ShadowPtr << "\n"); 1149 if (MS.TrackOrigins && !Overflow) { 1150 Value *OriginPtr = 1151 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1152 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1153 } else { 1154 setOrigin(A, getCleanOrigin()); 1155 } 1156 } 1157 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1158 } 1159 assert(*ShadowPtr && "Could not find shadow for an argument"); 1160 return *ShadowPtr; 1161 } 1162 // For everything else the shadow is zero. 1163 return getCleanShadow(V); 1164 } 1165 1166 /// \brief Get the shadow for i-th argument of the instruction I. 1167 Value *getShadow(Instruction *I, int i) { 1168 return getShadow(I->getOperand(i)); 1169 } 1170 1171 /// \brief Get the origin for a value. 1172 Value *getOrigin(Value *V) { 1173 if (!MS.TrackOrigins) return nullptr; 1174 if (!PropagateShadow) return getCleanOrigin(); 1175 if (isa<Constant>(V)) return getCleanOrigin(); 1176 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1177 "Unexpected value type in getOrigin()"); 1178 Value *Origin = OriginMap[V]; 1179 assert(Origin && "Missing origin"); 1180 return Origin; 1181 } 1182 1183 /// \brief Get the origin for i-th argument of the instruction I. 1184 Value *getOrigin(Instruction *I, int i) { 1185 return getOrigin(I->getOperand(i)); 1186 } 1187 1188 /// \brief Remember the place where a shadow check should be inserted. 1189 /// 1190 /// This location will be later instrumented with a check that will print a 1191 /// UMR warning in runtime if the shadow value is not 0. 1192 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1193 assert(Shadow); 1194 if (!InsertChecks) return; 1195 #ifndef NDEBUG 1196 Type *ShadowTy = Shadow->getType(); 1197 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1198 "Can only insert checks for integer and vector shadow types"); 1199 #endif 1200 InstrumentationList.push_back( 1201 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1202 } 1203 1204 /// \brief Remember the place where a shadow check should be inserted. 1205 /// 1206 /// This location will be later instrumented with a check that will print a 1207 /// UMR warning in runtime if the value is not fully defined. 1208 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1209 assert(Val); 1210 Value *Shadow, *Origin; 1211 if (ClCheckConstantShadow) { 1212 Shadow = getShadow(Val); 1213 if (!Shadow) return; 1214 Origin = getOrigin(Val); 1215 } else { 1216 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1217 if (!Shadow) return; 1218 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1219 } 1220 insertShadowCheck(Shadow, Origin, OrigIns); 1221 } 1222 1223 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1224 switch (a) { 1225 case AtomicOrdering::NotAtomic: 1226 return AtomicOrdering::NotAtomic; 1227 case AtomicOrdering::Unordered: 1228 case AtomicOrdering::Monotonic: 1229 case AtomicOrdering::Release: 1230 return AtomicOrdering::Release; 1231 case AtomicOrdering::Acquire: 1232 case AtomicOrdering::AcquireRelease: 1233 return AtomicOrdering::AcquireRelease; 1234 case AtomicOrdering::SequentiallyConsistent: 1235 return AtomicOrdering::SequentiallyConsistent; 1236 } 1237 llvm_unreachable("Unknown ordering"); 1238 } 1239 1240 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1241 switch (a) { 1242 case AtomicOrdering::NotAtomic: 1243 return AtomicOrdering::NotAtomic; 1244 case AtomicOrdering::Unordered: 1245 case AtomicOrdering::Monotonic: 1246 case AtomicOrdering::Acquire: 1247 return AtomicOrdering::Acquire; 1248 case AtomicOrdering::Release: 1249 case AtomicOrdering::AcquireRelease: 1250 return AtomicOrdering::AcquireRelease; 1251 case AtomicOrdering::SequentiallyConsistent: 1252 return AtomicOrdering::SequentiallyConsistent; 1253 } 1254 llvm_unreachable("Unknown ordering"); 1255 } 1256 1257 // ------------------- Visitors. 1258 1259 /// \brief Instrument LoadInst 1260 /// 1261 /// Loads the corresponding shadow and (optionally) origin. 1262 /// Optionally, checks that the load address is fully defined. 1263 void visitLoadInst(LoadInst &I) { 1264 assert(I.getType()->isSized() && "Load type must have size"); 1265 IRBuilder<> IRB(I.getNextNode()); 1266 Type *ShadowTy = getShadowTy(&I); 1267 Value *Addr = I.getPointerOperand(); 1268 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1269 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1270 setShadow(&I, 1271 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1272 } else { 1273 setShadow(&I, getCleanShadow(&I)); 1274 } 1275 1276 if (ClCheckAccessAddress) 1277 insertShadowCheck(I.getPointerOperand(), &I); 1278 1279 if (I.isAtomic()) 1280 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1281 1282 if (MS.TrackOrigins) { 1283 if (PropagateShadow) { 1284 unsigned Alignment = I.getAlignment(); 1285 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1286 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1287 OriginAlignment)); 1288 } else { 1289 setOrigin(&I, getCleanOrigin()); 1290 } 1291 } 1292 } 1293 1294 /// \brief Instrument StoreInst 1295 /// 1296 /// Stores the corresponding shadow and (optionally) origin. 1297 /// Optionally, checks that the store address is fully defined. 1298 void visitStoreInst(StoreInst &I) { 1299 StoreList.push_back(&I); 1300 } 1301 1302 void handleCASOrRMW(Instruction &I) { 1303 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1304 1305 IRBuilder<> IRB(&I); 1306 Value *Addr = I.getOperand(0); 1307 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1308 1309 if (ClCheckAccessAddress) 1310 insertShadowCheck(Addr, &I); 1311 1312 // Only test the conditional argument of cmpxchg instruction. 1313 // The other argument can potentially be uninitialized, but we can not 1314 // detect this situation reliably without possible false positives. 1315 if (isa<AtomicCmpXchgInst>(I)) 1316 insertShadowCheck(I.getOperand(1), &I); 1317 1318 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1319 1320 setShadow(&I, getCleanShadow(&I)); 1321 setOrigin(&I, getCleanOrigin()); 1322 } 1323 1324 void visitAtomicRMWInst(AtomicRMWInst &I) { 1325 handleCASOrRMW(I); 1326 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1327 } 1328 1329 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1330 handleCASOrRMW(I); 1331 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1332 } 1333 1334 // Vector manipulation. 1335 void visitExtractElementInst(ExtractElementInst &I) { 1336 insertShadowCheck(I.getOperand(1), &I); 1337 IRBuilder<> IRB(&I); 1338 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1339 "_msprop")); 1340 setOrigin(&I, getOrigin(&I, 0)); 1341 } 1342 1343 void visitInsertElementInst(InsertElementInst &I) { 1344 insertShadowCheck(I.getOperand(2), &I); 1345 IRBuilder<> IRB(&I); 1346 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1347 I.getOperand(2), "_msprop")); 1348 setOriginForNaryOp(I); 1349 } 1350 1351 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1352 insertShadowCheck(I.getOperand(2), &I); 1353 IRBuilder<> IRB(&I); 1354 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1355 I.getOperand(2), "_msprop")); 1356 setOriginForNaryOp(I); 1357 } 1358 1359 // Casts. 1360 void visitSExtInst(SExtInst &I) { 1361 IRBuilder<> IRB(&I); 1362 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1363 setOrigin(&I, getOrigin(&I, 0)); 1364 } 1365 1366 void visitZExtInst(ZExtInst &I) { 1367 IRBuilder<> IRB(&I); 1368 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1369 setOrigin(&I, getOrigin(&I, 0)); 1370 } 1371 1372 void visitTruncInst(TruncInst &I) { 1373 IRBuilder<> IRB(&I); 1374 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1375 setOrigin(&I, getOrigin(&I, 0)); 1376 } 1377 1378 void visitBitCastInst(BitCastInst &I) { 1379 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1380 // a musttail call and a ret, don't instrument. New instructions are not 1381 // allowed after a musttail call. 1382 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1383 if (CI->isMustTailCall()) 1384 return; 1385 IRBuilder<> IRB(&I); 1386 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1387 setOrigin(&I, getOrigin(&I, 0)); 1388 } 1389 1390 void visitPtrToIntInst(PtrToIntInst &I) { 1391 IRBuilder<> IRB(&I); 1392 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1393 "_msprop_ptrtoint")); 1394 setOrigin(&I, getOrigin(&I, 0)); 1395 } 1396 1397 void visitIntToPtrInst(IntToPtrInst &I) { 1398 IRBuilder<> IRB(&I); 1399 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1400 "_msprop_inttoptr")); 1401 setOrigin(&I, getOrigin(&I, 0)); 1402 } 1403 1404 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1405 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1406 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1407 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1408 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1409 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1410 1411 /// \brief Propagate shadow for bitwise AND. 1412 /// 1413 /// This code is exact, i.e. if, for example, a bit in the left argument 1414 /// is defined and 0, then neither the value not definedness of the 1415 /// corresponding bit in B don't affect the resulting shadow. 1416 void visitAnd(BinaryOperator &I) { 1417 IRBuilder<> IRB(&I); 1418 // "And" of 0 and a poisoned value results in unpoisoned value. 1419 // 1&1 => 1; 0&1 => 0; p&1 => p; 1420 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1421 // 1&p => p; 0&p => 0; p&p => p; 1422 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1423 Value *S1 = getShadow(&I, 0); 1424 Value *S2 = getShadow(&I, 1); 1425 Value *V1 = I.getOperand(0); 1426 Value *V2 = I.getOperand(1); 1427 if (V1->getType() != S1->getType()) { 1428 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1429 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1430 } 1431 Value *S1S2 = IRB.CreateAnd(S1, S2); 1432 Value *V1S2 = IRB.CreateAnd(V1, S2); 1433 Value *S1V2 = IRB.CreateAnd(S1, V2); 1434 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1435 setOriginForNaryOp(I); 1436 } 1437 1438 void visitOr(BinaryOperator &I) { 1439 IRBuilder<> IRB(&I); 1440 // "Or" of 1 and a poisoned value results in unpoisoned value. 1441 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1442 // 1|0 => 1; 0|0 => 0; p|0 => p; 1443 // 1|p => 1; 0|p => p; p|p => p; 1444 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1445 Value *S1 = getShadow(&I, 0); 1446 Value *S2 = getShadow(&I, 1); 1447 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1448 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1449 if (V1->getType() != S1->getType()) { 1450 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1451 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1452 } 1453 Value *S1S2 = IRB.CreateAnd(S1, S2); 1454 Value *V1S2 = IRB.CreateAnd(V1, S2); 1455 Value *S1V2 = IRB.CreateAnd(S1, V2); 1456 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1457 setOriginForNaryOp(I); 1458 } 1459 1460 /// \brief Default propagation of shadow and/or origin. 1461 /// 1462 /// This class implements the general case of shadow propagation, used in all 1463 /// cases where we don't know and/or don't care about what the operation 1464 /// actually does. It converts all input shadow values to a common type 1465 /// (extending or truncating as necessary), and bitwise OR's them. 1466 /// 1467 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1468 /// fully initialized), and less prone to false positives. 1469 /// 1470 /// This class also implements the general case of origin propagation. For a 1471 /// Nary operation, result origin is set to the origin of an argument that is 1472 /// not entirely initialized. If there is more than one such arguments, the 1473 /// rightmost of them is picked. It does not matter which one is picked if all 1474 /// arguments are initialized. 1475 template <bool CombineShadow> 1476 class Combiner { 1477 Value *Shadow; 1478 Value *Origin; 1479 IRBuilder<> &IRB; 1480 MemorySanitizerVisitor *MSV; 1481 1482 public: 1483 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1484 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1485 1486 /// \brief Add a pair of shadow and origin values to the mix. 1487 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1488 if (CombineShadow) { 1489 assert(OpShadow); 1490 if (!Shadow) 1491 Shadow = OpShadow; 1492 else { 1493 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1494 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1495 } 1496 } 1497 1498 if (MSV->MS.TrackOrigins) { 1499 assert(OpOrigin); 1500 if (!Origin) { 1501 Origin = OpOrigin; 1502 } else { 1503 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1504 // No point in adding something that might result in 0 origin value. 1505 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1506 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1507 Value *Cond = 1508 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1509 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1510 } 1511 } 1512 } 1513 return *this; 1514 } 1515 1516 /// \brief Add an application value to the mix. 1517 Combiner &Add(Value *V) { 1518 Value *OpShadow = MSV->getShadow(V); 1519 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1520 return Add(OpShadow, OpOrigin); 1521 } 1522 1523 /// \brief Set the current combined values as the given instruction's shadow 1524 /// and origin. 1525 void Done(Instruction *I) { 1526 if (CombineShadow) { 1527 assert(Shadow); 1528 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1529 MSV->setShadow(I, Shadow); 1530 } 1531 if (MSV->MS.TrackOrigins) { 1532 assert(Origin); 1533 MSV->setOrigin(I, Origin); 1534 } 1535 } 1536 }; 1537 1538 typedef Combiner<true> ShadowAndOriginCombiner; 1539 typedef Combiner<false> OriginCombiner; 1540 1541 /// \brief Propagate origin for arbitrary operation. 1542 void setOriginForNaryOp(Instruction &I) { 1543 if (!MS.TrackOrigins) return; 1544 IRBuilder<> IRB(&I); 1545 OriginCombiner OC(this, IRB); 1546 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1547 OC.Add(OI->get()); 1548 OC.Done(&I); 1549 } 1550 1551 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1552 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1553 "Vector of pointers is not a valid shadow type"); 1554 return Ty->isVectorTy() ? 1555 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1556 Ty->getPrimitiveSizeInBits(); 1557 } 1558 1559 /// \brief Cast between two shadow types, extending or truncating as 1560 /// necessary. 1561 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1562 bool Signed = false) { 1563 Type *srcTy = V->getType(); 1564 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1565 return IRB.CreateIntCast(V, dstTy, Signed); 1566 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1567 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1568 return IRB.CreateIntCast(V, dstTy, Signed); 1569 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1570 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1571 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1572 Value *V2 = 1573 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1574 return IRB.CreateBitCast(V2, dstTy); 1575 // TODO: handle struct types. 1576 } 1577 1578 /// \brief Cast an application value to the type of its own shadow. 1579 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1580 Type *ShadowTy = getShadowTy(V); 1581 if (V->getType() == ShadowTy) 1582 return V; 1583 if (V->getType()->isPtrOrPtrVectorTy()) 1584 return IRB.CreatePtrToInt(V, ShadowTy); 1585 else 1586 return IRB.CreateBitCast(V, ShadowTy); 1587 } 1588 1589 /// \brief Propagate shadow for arbitrary operation. 1590 void handleShadowOr(Instruction &I) { 1591 IRBuilder<> IRB(&I); 1592 ShadowAndOriginCombiner SC(this, IRB); 1593 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1594 SC.Add(OI->get()); 1595 SC.Done(&I); 1596 } 1597 1598 // \brief Handle multiplication by constant. 1599 // 1600 // Handle a special case of multiplication by constant that may have one or 1601 // more zeros in the lower bits. This makes corresponding number of lower bits 1602 // of the result zero as well. We model it by shifting the other operand 1603 // shadow left by the required number of bits. Effectively, we transform 1604 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1605 // We use multiplication by 2**N instead of shift to cover the case of 1606 // multiplication by 0, which may occur in some elements of a vector operand. 1607 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1608 Value *OtherArg) { 1609 Constant *ShadowMul; 1610 Type *Ty = ConstArg->getType(); 1611 if (Ty->isVectorTy()) { 1612 unsigned NumElements = Ty->getVectorNumElements(); 1613 Type *EltTy = Ty->getSequentialElementType(); 1614 SmallVector<Constant *, 16> Elements; 1615 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1616 if (ConstantInt *Elt = 1617 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1618 APInt V = Elt->getValue(); 1619 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1620 Elements.push_back(ConstantInt::get(EltTy, V2)); 1621 } else { 1622 Elements.push_back(ConstantInt::get(EltTy, 1)); 1623 } 1624 } 1625 ShadowMul = ConstantVector::get(Elements); 1626 } else { 1627 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1628 APInt V = Elt->getValue(); 1629 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1630 ShadowMul = ConstantInt::get(Ty, V2); 1631 } else { 1632 ShadowMul = ConstantInt::get(Ty, 1); 1633 } 1634 } 1635 1636 IRBuilder<> IRB(&I); 1637 setShadow(&I, 1638 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1639 setOrigin(&I, getOrigin(OtherArg)); 1640 } 1641 1642 void visitMul(BinaryOperator &I) { 1643 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1644 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1645 if (constOp0 && !constOp1) 1646 handleMulByConstant(I, constOp0, I.getOperand(1)); 1647 else if (constOp1 && !constOp0) 1648 handleMulByConstant(I, constOp1, I.getOperand(0)); 1649 else 1650 handleShadowOr(I); 1651 } 1652 1653 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1654 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1655 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1656 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1657 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1658 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1659 1660 void handleDiv(Instruction &I) { 1661 IRBuilder<> IRB(&I); 1662 // Strict on the second argument. 1663 insertShadowCheck(I.getOperand(1), &I); 1664 setShadow(&I, getShadow(&I, 0)); 1665 setOrigin(&I, getOrigin(&I, 0)); 1666 } 1667 1668 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1669 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1670 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1671 void visitURem(BinaryOperator &I) { handleDiv(I); } 1672 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1673 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1674 1675 /// \brief Instrument == and != comparisons. 1676 /// 1677 /// Sometimes the comparison result is known even if some of the bits of the 1678 /// arguments are not. 1679 void handleEqualityComparison(ICmpInst &I) { 1680 IRBuilder<> IRB(&I); 1681 Value *A = I.getOperand(0); 1682 Value *B = I.getOperand(1); 1683 Value *Sa = getShadow(A); 1684 Value *Sb = getShadow(B); 1685 1686 // Get rid of pointers and vectors of pointers. 1687 // For ints (and vectors of ints), types of A and Sa match, 1688 // and this is a no-op. 1689 A = IRB.CreatePointerCast(A, Sa->getType()); 1690 B = IRB.CreatePointerCast(B, Sb->getType()); 1691 1692 // A == B <==> (C = A^B) == 0 1693 // A != B <==> (C = A^B) != 0 1694 // Sc = Sa | Sb 1695 Value *C = IRB.CreateXor(A, B); 1696 Value *Sc = IRB.CreateOr(Sa, Sb); 1697 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1698 // Result is defined if one of the following is true 1699 // * there is a defined 1 bit in C 1700 // * C is fully defined 1701 // Si = !(C & ~Sc) && Sc 1702 Value *Zero = Constant::getNullValue(Sc->getType()); 1703 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1704 Value *Si = 1705 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1706 IRB.CreateICmpEQ( 1707 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1708 Si->setName("_msprop_icmp"); 1709 setShadow(&I, Si); 1710 setOriginForNaryOp(I); 1711 } 1712 1713 /// \brief Build the lowest possible value of V, taking into account V's 1714 /// uninitialized bits. 1715 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1716 bool isSigned) { 1717 if (isSigned) { 1718 // Split shadow into sign bit and other bits. 1719 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1720 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1721 // Maximise the undefined shadow bit, minimize other undefined bits. 1722 return 1723 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1724 } else { 1725 // Minimize undefined bits. 1726 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1727 } 1728 } 1729 1730 /// \brief Build the highest possible value of V, taking into account V's 1731 /// uninitialized bits. 1732 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1733 bool isSigned) { 1734 if (isSigned) { 1735 // Split shadow into sign bit and other bits. 1736 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1737 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1738 // Minimise the undefined shadow bit, maximise other undefined bits. 1739 return 1740 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1741 } else { 1742 // Maximize undefined bits. 1743 return IRB.CreateOr(A, Sa); 1744 } 1745 } 1746 1747 /// \brief Instrument relational comparisons. 1748 /// 1749 /// This function does exact shadow propagation for all relational 1750 /// comparisons of integers, pointers and vectors of those. 1751 /// FIXME: output seems suboptimal when one of the operands is a constant 1752 void handleRelationalComparisonExact(ICmpInst &I) { 1753 IRBuilder<> IRB(&I); 1754 Value *A = I.getOperand(0); 1755 Value *B = I.getOperand(1); 1756 Value *Sa = getShadow(A); 1757 Value *Sb = getShadow(B); 1758 1759 // Get rid of pointers and vectors of pointers. 1760 // For ints (and vectors of ints), types of A and Sa match, 1761 // and this is a no-op. 1762 A = IRB.CreatePointerCast(A, Sa->getType()); 1763 B = IRB.CreatePointerCast(B, Sb->getType()); 1764 1765 // Let [a0, a1] be the interval of possible values of A, taking into account 1766 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1767 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1768 bool IsSigned = I.isSigned(); 1769 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1770 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1771 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1772 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1773 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1774 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1775 Value *Si = IRB.CreateXor(S1, S2); 1776 setShadow(&I, Si); 1777 setOriginForNaryOp(I); 1778 } 1779 1780 /// \brief Instrument signed relational comparisons. 1781 /// 1782 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1783 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1784 void handleSignedRelationalComparison(ICmpInst &I) { 1785 Constant *constOp; 1786 Value *op = nullptr; 1787 CmpInst::Predicate pre; 1788 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1789 op = I.getOperand(0); 1790 pre = I.getPredicate(); 1791 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1792 op = I.getOperand(1); 1793 pre = I.getSwappedPredicate(); 1794 } else { 1795 handleShadowOr(I); 1796 return; 1797 } 1798 1799 if ((constOp->isNullValue() && 1800 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1801 (constOp->isAllOnesValue() && 1802 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1803 IRBuilder<> IRB(&I); 1804 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1805 "_msprop_icmp_s"); 1806 setShadow(&I, Shadow); 1807 setOrigin(&I, getOrigin(op)); 1808 } else { 1809 handleShadowOr(I); 1810 } 1811 } 1812 1813 void visitICmpInst(ICmpInst &I) { 1814 if (!ClHandleICmp) { 1815 handleShadowOr(I); 1816 return; 1817 } 1818 if (I.isEquality()) { 1819 handleEqualityComparison(I); 1820 return; 1821 } 1822 1823 assert(I.isRelational()); 1824 if (ClHandleICmpExact) { 1825 handleRelationalComparisonExact(I); 1826 return; 1827 } 1828 if (I.isSigned()) { 1829 handleSignedRelationalComparison(I); 1830 return; 1831 } 1832 1833 assert(I.isUnsigned()); 1834 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1835 handleRelationalComparisonExact(I); 1836 return; 1837 } 1838 1839 handleShadowOr(I); 1840 } 1841 1842 void visitFCmpInst(FCmpInst &I) { 1843 handleShadowOr(I); 1844 } 1845 1846 void handleShift(BinaryOperator &I) { 1847 IRBuilder<> IRB(&I); 1848 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1849 // Otherwise perform the same shift on S1. 1850 Value *S1 = getShadow(&I, 0); 1851 Value *S2 = getShadow(&I, 1); 1852 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1853 S2->getType()); 1854 Value *V2 = I.getOperand(1); 1855 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1856 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1857 setOriginForNaryOp(I); 1858 } 1859 1860 void visitShl(BinaryOperator &I) { handleShift(I); } 1861 void visitAShr(BinaryOperator &I) { handleShift(I); } 1862 void visitLShr(BinaryOperator &I) { handleShift(I); } 1863 1864 /// \brief Instrument llvm.memmove 1865 /// 1866 /// At this point we don't know if llvm.memmove will be inlined or not. 1867 /// If we don't instrument it and it gets inlined, 1868 /// our interceptor will not kick in and we will lose the memmove. 1869 /// If we instrument the call here, but it does not get inlined, 1870 /// we will memove the shadow twice: which is bad in case 1871 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1872 /// 1873 /// Similar situation exists for memcpy and memset. 1874 void visitMemMoveInst(MemMoveInst &I) { 1875 IRBuilder<> IRB(&I); 1876 IRB.CreateCall( 1877 MS.MemmoveFn, 1878 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1879 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1880 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1881 I.eraseFromParent(); 1882 } 1883 1884 // Similar to memmove: avoid copying shadow twice. 1885 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1886 // FIXME: consider doing manual inline for small constant sizes and proper 1887 // alignment. 1888 void visitMemCpyInst(MemCpyInst &I) { 1889 IRBuilder<> IRB(&I); 1890 IRB.CreateCall( 1891 MS.MemcpyFn, 1892 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1893 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1894 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1895 I.eraseFromParent(); 1896 } 1897 1898 // Same as memcpy. 1899 void visitMemSetInst(MemSetInst &I) { 1900 IRBuilder<> IRB(&I); 1901 IRB.CreateCall( 1902 MS.MemsetFn, 1903 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1904 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1905 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1906 I.eraseFromParent(); 1907 } 1908 1909 void visitVAStartInst(VAStartInst &I) { 1910 VAHelper->visitVAStartInst(I); 1911 } 1912 1913 void visitVACopyInst(VACopyInst &I) { 1914 VAHelper->visitVACopyInst(I); 1915 } 1916 1917 /// \brief Handle vector store-like intrinsics. 1918 /// 1919 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1920 /// has 1 pointer argument and 1 vector argument, returns void. 1921 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1922 IRBuilder<> IRB(&I); 1923 Value* Addr = I.getArgOperand(0); 1924 Value *Shadow = getShadow(&I, 1); 1925 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1926 1927 // We don't know the pointer alignment (could be unaligned SSE store!). 1928 // Have to assume to worst case. 1929 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1930 1931 if (ClCheckAccessAddress) 1932 insertShadowCheck(Addr, &I); 1933 1934 // FIXME: use ClStoreCleanOrigin 1935 // FIXME: factor out common code from materializeStores 1936 if (MS.TrackOrigins) 1937 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1938 return true; 1939 } 1940 1941 /// \brief Handle vector load-like intrinsics. 1942 /// 1943 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1944 /// has 1 pointer argument, returns a vector. 1945 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1946 IRBuilder<> IRB(&I); 1947 Value *Addr = I.getArgOperand(0); 1948 1949 Type *ShadowTy = getShadowTy(&I); 1950 if (PropagateShadow) { 1951 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1952 // We don't know the pointer alignment (could be unaligned SSE load!). 1953 // Have to assume to worst case. 1954 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1955 } else { 1956 setShadow(&I, getCleanShadow(&I)); 1957 } 1958 1959 if (ClCheckAccessAddress) 1960 insertShadowCheck(Addr, &I); 1961 1962 if (MS.TrackOrigins) { 1963 if (PropagateShadow) 1964 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1965 else 1966 setOrigin(&I, getCleanOrigin()); 1967 } 1968 return true; 1969 } 1970 1971 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1972 /// 1973 /// Instrument intrinsics with any number of arguments of the same type, 1974 /// equal to the return type. The type should be simple (no aggregates or 1975 /// pointers; vectors are fine). 1976 /// Caller guarantees that this intrinsic does not access memory. 1977 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1978 Type *RetTy = I.getType(); 1979 if (!(RetTy->isIntOrIntVectorTy() || 1980 RetTy->isFPOrFPVectorTy() || 1981 RetTy->isX86_MMXTy())) 1982 return false; 1983 1984 unsigned NumArgOperands = I.getNumArgOperands(); 1985 1986 for (unsigned i = 0; i < NumArgOperands; ++i) { 1987 Type *Ty = I.getArgOperand(i)->getType(); 1988 if (Ty != RetTy) 1989 return false; 1990 } 1991 1992 IRBuilder<> IRB(&I); 1993 ShadowAndOriginCombiner SC(this, IRB); 1994 for (unsigned i = 0; i < NumArgOperands; ++i) 1995 SC.Add(I.getArgOperand(i)); 1996 SC.Done(&I); 1997 1998 return true; 1999 } 2000 2001 /// \brief Heuristically instrument unknown intrinsics. 2002 /// 2003 /// The main purpose of this code is to do something reasonable with all 2004 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2005 /// We recognize several classes of intrinsics by their argument types and 2006 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2007 /// sure that we know what the intrinsic does. 2008 /// 2009 /// We special-case intrinsics where this approach fails. See llvm.bswap 2010 /// handling as an example of that. 2011 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2012 unsigned NumArgOperands = I.getNumArgOperands(); 2013 if (NumArgOperands == 0) 2014 return false; 2015 2016 if (NumArgOperands == 2 && 2017 I.getArgOperand(0)->getType()->isPointerTy() && 2018 I.getArgOperand(1)->getType()->isVectorTy() && 2019 I.getType()->isVoidTy() && 2020 !I.onlyReadsMemory()) { 2021 // This looks like a vector store. 2022 return handleVectorStoreIntrinsic(I); 2023 } 2024 2025 if (NumArgOperands == 1 && 2026 I.getArgOperand(0)->getType()->isPointerTy() && 2027 I.getType()->isVectorTy() && 2028 I.onlyReadsMemory()) { 2029 // This looks like a vector load. 2030 return handleVectorLoadIntrinsic(I); 2031 } 2032 2033 if (I.doesNotAccessMemory()) 2034 if (maybeHandleSimpleNomemIntrinsic(I)) 2035 return true; 2036 2037 // FIXME: detect and handle SSE maskstore/maskload 2038 return false; 2039 } 2040 2041 void handleBswap(IntrinsicInst &I) { 2042 IRBuilder<> IRB(&I); 2043 Value *Op = I.getArgOperand(0); 2044 Type *OpType = Op->getType(); 2045 Function *BswapFunc = Intrinsic::getDeclaration( 2046 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2047 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2048 setOrigin(&I, getOrigin(Op)); 2049 } 2050 2051 // \brief Instrument vector convert instrinsic. 2052 // 2053 // This function instruments intrinsics like cvtsi2ss: 2054 // %Out = int_xxx_cvtyyy(%ConvertOp) 2055 // or 2056 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2057 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2058 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2059 // elements from \p CopyOp. 2060 // In most cases conversion involves floating-point value which may trigger a 2061 // hardware exception when not fully initialized. For this reason we require 2062 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2063 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2064 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2065 // return a fully initialized value. 2066 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2067 IRBuilder<> IRB(&I); 2068 Value *CopyOp, *ConvertOp; 2069 2070 switch (I.getNumArgOperands()) { 2071 case 3: 2072 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2073 case 2: 2074 CopyOp = I.getArgOperand(0); 2075 ConvertOp = I.getArgOperand(1); 2076 break; 2077 case 1: 2078 ConvertOp = I.getArgOperand(0); 2079 CopyOp = nullptr; 2080 break; 2081 default: 2082 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2083 } 2084 2085 // The first *NumUsedElements* elements of ConvertOp are converted to the 2086 // same number of output elements. The rest of the output is copied from 2087 // CopyOp, or (if not available) filled with zeroes. 2088 // Combine shadow for elements of ConvertOp that are used in this operation, 2089 // and insert a check. 2090 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2091 // int->any conversion. 2092 Value *ConvertShadow = getShadow(ConvertOp); 2093 Value *AggShadow = nullptr; 2094 if (ConvertOp->getType()->isVectorTy()) { 2095 AggShadow = IRB.CreateExtractElement( 2096 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2097 for (int i = 1; i < NumUsedElements; ++i) { 2098 Value *MoreShadow = IRB.CreateExtractElement( 2099 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2100 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2101 } 2102 } else { 2103 AggShadow = ConvertShadow; 2104 } 2105 assert(AggShadow->getType()->isIntegerTy()); 2106 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2107 2108 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2109 // ConvertOp. 2110 if (CopyOp) { 2111 assert(CopyOp->getType() == I.getType()); 2112 assert(CopyOp->getType()->isVectorTy()); 2113 Value *ResultShadow = getShadow(CopyOp); 2114 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2115 for (int i = 0; i < NumUsedElements; ++i) { 2116 ResultShadow = IRB.CreateInsertElement( 2117 ResultShadow, ConstantInt::getNullValue(EltTy), 2118 ConstantInt::get(IRB.getInt32Ty(), i)); 2119 } 2120 setShadow(&I, ResultShadow); 2121 setOrigin(&I, getOrigin(CopyOp)); 2122 } else { 2123 setShadow(&I, getCleanShadow(&I)); 2124 setOrigin(&I, getCleanOrigin()); 2125 } 2126 } 2127 2128 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2129 // zeroes if it is zero, and all ones otherwise. 2130 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2131 if (S->getType()->isVectorTy()) 2132 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2133 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2134 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2135 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2136 } 2137 2138 // Given a vector, extract its first element, and return all 2139 // zeroes if it is zero, and all ones otherwise. 2140 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2141 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2142 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2143 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2144 } 2145 2146 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2147 Type *T = S->getType(); 2148 assert(T->isVectorTy()); 2149 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2150 return IRB.CreateSExt(S2, T); 2151 } 2152 2153 // \brief Instrument vector shift instrinsic. 2154 // 2155 // This function instruments intrinsics like int_x86_avx2_psll_w. 2156 // Intrinsic shifts %In by %ShiftSize bits. 2157 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2158 // size, and the rest is ignored. Behavior is defined even if shift size is 2159 // greater than register (or field) width. 2160 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2161 assert(I.getNumArgOperands() == 2); 2162 IRBuilder<> IRB(&I); 2163 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2164 // Otherwise perform the same shift on S1. 2165 Value *S1 = getShadow(&I, 0); 2166 Value *S2 = getShadow(&I, 1); 2167 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2168 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2169 Value *V1 = I.getOperand(0); 2170 Value *V2 = I.getOperand(1); 2171 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2172 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2173 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2174 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2175 setOriginForNaryOp(I); 2176 } 2177 2178 // \brief Get an X86_MMX-sized vector type. 2179 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2180 const unsigned X86_MMXSizeInBits = 64; 2181 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2182 X86_MMXSizeInBits / EltSizeInBits); 2183 } 2184 2185 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2186 // intrinsic. 2187 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2188 switch (id) { 2189 case llvm::Intrinsic::x86_sse2_packsswb_128: 2190 case llvm::Intrinsic::x86_sse2_packuswb_128: 2191 return llvm::Intrinsic::x86_sse2_packsswb_128; 2192 2193 case llvm::Intrinsic::x86_sse2_packssdw_128: 2194 case llvm::Intrinsic::x86_sse41_packusdw: 2195 return llvm::Intrinsic::x86_sse2_packssdw_128; 2196 2197 case llvm::Intrinsic::x86_avx2_packsswb: 2198 case llvm::Intrinsic::x86_avx2_packuswb: 2199 return llvm::Intrinsic::x86_avx2_packsswb; 2200 2201 case llvm::Intrinsic::x86_avx2_packssdw: 2202 case llvm::Intrinsic::x86_avx2_packusdw: 2203 return llvm::Intrinsic::x86_avx2_packssdw; 2204 2205 case llvm::Intrinsic::x86_mmx_packsswb: 2206 case llvm::Intrinsic::x86_mmx_packuswb: 2207 return llvm::Intrinsic::x86_mmx_packsswb; 2208 2209 case llvm::Intrinsic::x86_mmx_packssdw: 2210 return llvm::Intrinsic::x86_mmx_packssdw; 2211 default: 2212 llvm_unreachable("unexpected intrinsic id"); 2213 } 2214 } 2215 2216 // \brief Instrument vector pack instrinsic. 2217 // 2218 // This function instruments intrinsics like x86_mmx_packsswb, that 2219 // packs elements of 2 input vectors into half as many bits with saturation. 2220 // Shadow is propagated with the signed variant of the same intrinsic applied 2221 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2222 // EltSizeInBits is used only for x86mmx arguments. 2223 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2224 assert(I.getNumArgOperands() == 2); 2225 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2226 IRBuilder<> IRB(&I); 2227 Value *S1 = getShadow(&I, 0); 2228 Value *S2 = getShadow(&I, 1); 2229 assert(isX86_MMX || S1->getType()->isVectorTy()); 2230 2231 // SExt and ICmpNE below must apply to individual elements of input vectors. 2232 // In case of x86mmx arguments, cast them to appropriate vector types and 2233 // back. 2234 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2235 if (isX86_MMX) { 2236 S1 = IRB.CreateBitCast(S1, T); 2237 S2 = IRB.CreateBitCast(S2, T); 2238 } 2239 Value *S1_ext = IRB.CreateSExt( 2240 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2241 Value *S2_ext = IRB.CreateSExt( 2242 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2243 if (isX86_MMX) { 2244 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2245 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2246 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2247 } 2248 2249 Function *ShadowFn = Intrinsic::getDeclaration( 2250 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2251 2252 Value *S = 2253 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2254 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2255 setShadow(&I, S); 2256 setOriginForNaryOp(I); 2257 } 2258 2259 // \brief Instrument sum-of-absolute-differencies intrinsic. 2260 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2261 const unsigned SignificantBitsPerResultElement = 16; 2262 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2263 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2264 unsigned ZeroBitsPerResultElement = 2265 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2266 2267 IRBuilder<> IRB(&I); 2268 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2269 S = IRB.CreateBitCast(S, ResTy); 2270 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2271 ResTy); 2272 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2273 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2274 setShadow(&I, S); 2275 setOriginForNaryOp(I); 2276 } 2277 2278 // \brief Instrument multiply-add intrinsic. 2279 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2280 unsigned EltSizeInBits = 0) { 2281 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2282 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2283 IRBuilder<> IRB(&I); 2284 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2285 S = IRB.CreateBitCast(S, ResTy); 2286 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2287 ResTy); 2288 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2289 setShadow(&I, S); 2290 setOriginForNaryOp(I); 2291 } 2292 2293 // \brief Instrument compare-packed intrinsic. 2294 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2295 // all-ones shadow. 2296 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2297 IRBuilder<> IRB(&I); 2298 Type *ResTy = getShadowTy(&I); 2299 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2300 Value *S = IRB.CreateSExt( 2301 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2302 setShadow(&I, S); 2303 setOriginForNaryOp(I); 2304 } 2305 2306 // \brief Instrument compare-scalar intrinsic. 2307 // This handles both cmp* intrinsics which return the result in the first 2308 // element of a vector, and comi* which return the result as i32. 2309 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2310 IRBuilder<> IRB(&I); 2311 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2312 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2313 setShadow(&I, S); 2314 setOriginForNaryOp(I); 2315 } 2316 2317 void visitIntrinsicInst(IntrinsicInst &I) { 2318 switch (I.getIntrinsicID()) { 2319 case llvm::Intrinsic::bswap: 2320 handleBswap(I); 2321 break; 2322 case llvm::Intrinsic::x86_avx512_vcvtsd2usi64: 2323 case llvm::Intrinsic::x86_avx512_vcvtsd2usi32: 2324 case llvm::Intrinsic::x86_avx512_vcvtss2usi64: 2325 case llvm::Intrinsic::x86_avx512_vcvtss2usi32: 2326 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2327 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2328 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2329 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2330 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2331 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2332 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2333 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2334 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2335 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2336 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2337 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2338 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2339 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2340 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2341 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2342 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2343 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2344 case llvm::Intrinsic::x86_sse_cvtss2si64: 2345 case llvm::Intrinsic::x86_sse_cvtss2si: 2346 case llvm::Intrinsic::x86_sse_cvttss2si64: 2347 case llvm::Intrinsic::x86_sse_cvttss2si: 2348 handleVectorConvertIntrinsic(I, 1); 2349 break; 2350 case llvm::Intrinsic::x86_sse_cvtps2pi: 2351 case llvm::Intrinsic::x86_sse_cvttps2pi: 2352 handleVectorConvertIntrinsic(I, 2); 2353 break; 2354 case llvm::Intrinsic::x86_avx2_psll_w: 2355 case llvm::Intrinsic::x86_avx2_psll_d: 2356 case llvm::Intrinsic::x86_avx2_psll_q: 2357 case llvm::Intrinsic::x86_avx2_pslli_w: 2358 case llvm::Intrinsic::x86_avx2_pslli_d: 2359 case llvm::Intrinsic::x86_avx2_pslli_q: 2360 case llvm::Intrinsic::x86_avx2_psrl_w: 2361 case llvm::Intrinsic::x86_avx2_psrl_d: 2362 case llvm::Intrinsic::x86_avx2_psrl_q: 2363 case llvm::Intrinsic::x86_avx2_psra_w: 2364 case llvm::Intrinsic::x86_avx2_psra_d: 2365 case llvm::Intrinsic::x86_avx2_psrli_w: 2366 case llvm::Intrinsic::x86_avx2_psrli_d: 2367 case llvm::Intrinsic::x86_avx2_psrli_q: 2368 case llvm::Intrinsic::x86_avx2_psrai_w: 2369 case llvm::Intrinsic::x86_avx2_psrai_d: 2370 case llvm::Intrinsic::x86_sse2_psll_w: 2371 case llvm::Intrinsic::x86_sse2_psll_d: 2372 case llvm::Intrinsic::x86_sse2_psll_q: 2373 case llvm::Intrinsic::x86_sse2_pslli_w: 2374 case llvm::Intrinsic::x86_sse2_pslli_d: 2375 case llvm::Intrinsic::x86_sse2_pslli_q: 2376 case llvm::Intrinsic::x86_sse2_psrl_w: 2377 case llvm::Intrinsic::x86_sse2_psrl_d: 2378 case llvm::Intrinsic::x86_sse2_psrl_q: 2379 case llvm::Intrinsic::x86_sse2_psra_w: 2380 case llvm::Intrinsic::x86_sse2_psra_d: 2381 case llvm::Intrinsic::x86_sse2_psrli_w: 2382 case llvm::Intrinsic::x86_sse2_psrli_d: 2383 case llvm::Intrinsic::x86_sse2_psrli_q: 2384 case llvm::Intrinsic::x86_sse2_psrai_w: 2385 case llvm::Intrinsic::x86_sse2_psrai_d: 2386 case llvm::Intrinsic::x86_mmx_psll_w: 2387 case llvm::Intrinsic::x86_mmx_psll_d: 2388 case llvm::Intrinsic::x86_mmx_psll_q: 2389 case llvm::Intrinsic::x86_mmx_pslli_w: 2390 case llvm::Intrinsic::x86_mmx_pslli_d: 2391 case llvm::Intrinsic::x86_mmx_pslli_q: 2392 case llvm::Intrinsic::x86_mmx_psrl_w: 2393 case llvm::Intrinsic::x86_mmx_psrl_d: 2394 case llvm::Intrinsic::x86_mmx_psrl_q: 2395 case llvm::Intrinsic::x86_mmx_psra_w: 2396 case llvm::Intrinsic::x86_mmx_psra_d: 2397 case llvm::Intrinsic::x86_mmx_psrli_w: 2398 case llvm::Intrinsic::x86_mmx_psrli_d: 2399 case llvm::Intrinsic::x86_mmx_psrli_q: 2400 case llvm::Intrinsic::x86_mmx_psrai_w: 2401 case llvm::Intrinsic::x86_mmx_psrai_d: 2402 handleVectorShiftIntrinsic(I, /* Variable */ false); 2403 break; 2404 case llvm::Intrinsic::x86_avx2_psllv_d: 2405 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2406 case llvm::Intrinsic::x86_avx2_psllv_q: 2407 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2408 case llvm::Intrinsic::x86_avx2_psrlv_d: 2409 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2410 case llvm::Intrinsic::x86_avx2_psrlv_q: 2411 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2412 case llvm::Intrinsic::x86_avx2_psrav_d: 2413 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2414 handleVectorShiftIntrinsic(I, /* Variable */ true); 2415 break; 2416 2417 case llvm::Intrinsic::x86_sse2_packsswb_128: 2418 case llvm::Intrinsic::x86_sse2_packssdw_128: 2419 case llvm::Intrinsic::x86_sse2_packuswb_128: 2420 case llvm::Intrinsic::x86_sse41_packusdw: 2421 case llvm::Intrinsic::x86_avx2_packsswb: 2422 case llvm::Intrinsic::x86_avx2_packssdw: 2423 case llvm::Intrinsic::x86_avx2_packuswb: 2424 case llvm::Intrinsic::x86_avx2_packusdw: 2425 handleVectorPackIntrinsic(I); 2426 break; 2427 2428 case llvm::Intrinsic::x86_mmx_packsswb: 2429 case llvm::Intrinsic::x86_mmx_packuswb: 2430 handleVectorPackIntrinsic(I, 16); 2431 break; 2432 2433 case llvm::Intrinsic::x86_mmx_packssdw: 2434 handleVectorPackIntrinsic(I, 32); 2435 break; 2436 2437 case llvm::Intrinsic::x86_mmx_psad_bw: 2438 case llvm::Intrinsic::x86_sse2_psad_bw: 2439 case llvm::Intrinsic::x86_avx2_psad_bw: 2440 handleVectorSadIntrinsic(I); 2441 break; 2442 2443 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2444 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2445 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2446 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2447 handleVectorPmaddIntrinsic(I); 2448 break; 2449 2450 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2451 handleVectorPmaddIntrinsic(I, 8); 2452 break; 2453 2454 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2455 handleVectorPmaddIntrinsic(I, 16); 2456 break; 2457 2458 case llvm::Intrinsic::x86_sse_cmp_ss: 2459 case llvm::Intrinsic::x86_sse2_cmp_sd: 2460 case llvm::Intrinsic::x86_sse_comieq_ss: 2461 case llvm::Intrinsic::x86_sse_comilt_ss: 2462 case llvm::Intrinsic::x86_sse_comile_ss: 2463 case llvm::Intrinsic::x86_sse_comigt_ss: 2464 case llvm::Intrinsic::x86_sse_comige_ss: 2465 case llvm::Intrinsic::x86_sse_comineq_ss: 2466 case llvm::Intrinsic::x86_sse_ucomieq_ss: 2467 case llvm::Intrinsic::x86_sse_ucomilt_ss: 2468 case llvm::Intrinsic::x86_sse_ucomile_ss: 2469 case llvm::Intrinsic::x86_sse_ucomigt_ss: 2470 case llvm::Intrinsic::x86_sse_ucomige_ss: 2471 case llvm::Intrinsic::x86_sse_ucomineq_ss: 2472 case llvm::Intrinsic::x86_sse2_comieq_sd: 2473 case llvm::Intrinsic::x86_sse2_comilt_sd: 2474 case llvm::Intrinsic::x86_sse2_comile_sd: 2475 case llvm::Intrinsic::x86_sse2_comigt_sd: 2476 case llvm::Intrinsic::x86_sse2_comige_sd: 2477 case llvm::Intrinsic::x86_sse2_comineq_sd: 2478 case llvm::Intrinsic::x86_sse2_ucomieq_sd: 2479 case llvm::Intrinsic::x86_sse2_ucomilt_sd: 2480 case llvm::Intrinsic::x86_sse2_ucomile_sd: 2481 case llvm::Intrinsic::x86_sse2_ucomigt_sd: 2482 case llvm::Intrinsic::x86_sse2_ucomige_sd: 2483 case llvm::Intrinsic::x86_sse2_ucomineq_sd: 2484 handleVectorCompareScalarIntrinsic(I); 2485 break; 2486 2487 case llvm::Intrinsic::x86_sse_cmp_ps: 2488 case llvm::Intrinsic::x86_sse2_cmp_pd: 2489 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 2490 // generates reasonably looking IR that fails in the backend with "Do not 2491 // know how to split the result of this operator!". 2492 handleVectorComparePackedIntrinsic(I); 2493 break; 2494 2495 default: 2496 if (!handleUnknownIntrinsic(I)) 2497 visitInstruction(I); 2498 break; 2499 } 2500 } 2501 2502 void visitCallSite(CallSite CS) { 2503 Instruction &I = *CS.getInstruction(); 2504 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2505 if (CS.isCall()) { 2506 CallInst *Call = cast<CallInst>(&I); 2507 2508 // For inline asm, do the usual thing: check argument shadow and mark all 2509 // outputs as clean. Note that any side effects of the inline asm that are 2510 // not immediately visible in its constraints are not handled. 2511 if (Call->isInlineAsm()) { 2512 visitInstruction(I); 2513 return; 2514 } 2515 2516 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2517 2518 // We are going to insert code that relies on the fact that the callee 2519 // will become a non-readonly function after it is instrumented by us. To 2520 // prevent this code from being optimized out, mark that function 2521 // non-readonly in advance. 2522 if (Function *Func = Call->getCalledFunction()) { 2523 // Clear out readonly/readnone attributes. 2524 AttrBuilder B; 2525 B.addAttribute(Attribute::ReadOnly) 2526 .addAttribute(Attribute::ReadNone); 2527 Func->removeAttributes(AttributeSet::FunctionIndex, 2528 AttributeSet::get(Func->getContext(), 2529 AttributeSet::FunctionIndex, 2530 B)); 2531 } 2532 } 2533 IRBuilder<> IRB(&I); 2534 2535 unsigned ArgOffset = 0; 2536 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2537 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2538 ArgIt != End; ++ArgIt) { 2539 Value *A = *ArgIt; 2540 unsigned i = ArgIt - CS.arg_begin(); 2541 if (!A->getType()->isSized()) { 2542 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2543 continue; 2544 } 2545 unsigned Size = 0; 2546 Value *Store = nullptr; 2547 // Compute the Shadow for arg even if it is ByVal, because 2548 // in that case getShadow() will copy the actual arg shadow to 2549 // __msan_param_tls. 2550 Value *ArgShadow = getShadow(A); 2551 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2552 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2553 " Shadow: " << *ArgShadow << "\n"); 2554 bool ArgIsInitialized = false; 2555 const DataLayout &DL = F.getParent()->getDataLayout(); 2556 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2557 assert(A->getType()->isPointerTy() && 2558 "ByVal argument is not a pointer!"); 2559 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2560 if (ArgOffset + Size > kParamTLSSize) break; 2561 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2562 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2563 Store = IRB.CreateMemCpy(ArgShadowBase, 2564 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2565 Size, Alignment); 2566 } else { 2567 Size = DL.getTypeAllocSize(A->getType()); 2568 if (ArgOffset + Size > kParamTLSSize) break; 2569 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2570 kShadowTLSAlignment); 2571 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2572 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2573 } 2574 if (MS.TrackOrigins && !ArgIsInitialized) 2575 IRB.CreateStore(getOrigin(A), 2576 getOriginPtrForArgument(A, IRB, ArgOffset)); 2577 (void)Store; 2578 assert(Size != 0 && Store != nullptr); 2579 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2580 ArgOffset += alignTo(Size, 8); 2581 } 2582 DEBUG(dbgs() << " done with call args\n"); 2583 2584 FunctionType *FT = 2585 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2586 if (FT->isVarArg()) { 2587 VAHelper->visitCallSite(CS, IRB); 2588 } 2589 2590 // Now, get the shadow for the RetVal. 2591 if (!I.getType()->isSized()) return; 2592 // Don't emit the epilogue for musttail call returns. 2593 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2594 IRBuilder<> IRBBefore(&I); 2595 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2596 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2597 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2598 BasicBlock::iterator NextInsn; 2599 if (CS.isCall()) { 2600 NextInsn = ++I.getIterator(); 2601 assert(NextInsn != I.getParent()->end()); 2602 } else { 2603 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2604 if (!NormalDest->getSinglePredecessor()) { 2605 // FIXME: this case is tricky, so we are just conservative here. 2606 // Perhaps we need to split the edge between this BB and NormalDest, 2607 // but a naive attempt to use SplitEdge leads to a crash. 2608 setShadow(&I, getCleanShadow(&I)); 2609 setOrigin(&I, getCleanOrigin()); 2610 return; 2611 } 2612 NextInsn = NormalDest->getFirstInsertionPt(); 2613 assert(NextInsn != NormalDest->end() && 2614 "Could not find insertion point for retval shadow load"); 2615 } 2616 IRBuilder<> IRBAfter(&*NextInsn); 2617 Value *RetvalShadow = 2618 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2619 kShadowTLSAlignment, "_msret"); 2620 setShadow(&I, RetvalShadow); 2621 if (MS.TrackOrigins) 2622 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2623 } 2624 2625 bool isAMustTailRetVal(Value *RetVal) { 2626 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2627 RetVal = I->getOperand(0); 2628 } 2629 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2630 return I->isMustTailCall(); 2631 } 2632 return false; 2633 } 2634 2635 void visitReturnInst(ReturnInst &I) { 2636 IRBuilder<> IRB(&I); 2637 Value *RetVal = I.getReturnValue(); 2638 if (!RetVal) return; 2639 // Don't emit the epilogue for musttail call returns. 2640 if (isAMustTailRetVal(RetVal)) return; 2641 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2642 if (CheckReturnValue) { 2643 insertShadowCheck(RetVal, &I); 2644 Value *Shadow = getCleanShadow(RetVal); 2645 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2646 } else { 2647 Value *Shadow = getShadow(RetVal); 2648 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2649 // FIXME: make it conditional if ClStoreCleanOrigin==0 2650 if (MS.TrackOrigins) 2651 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2652 } 2653 } 2654 2655 void visitPHINode(PHINode &I) { 2656 IRBuilder<> IRB(&I); 2657 if (!PropagateShadow) { 2658 setShadow(&I, getCleanShadow(&I)); 2659 setOrigin(&I, getCleanOrigin()); 2660 return; 2661 } 2662 2663 ShadowPHINodes.push_back(&I); 2664 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2665 "_msphi_s")); 2666 if (MS.TrackOrigins) 2667 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2668 "_msphi_o")); 2669 } 2670 2671 void visitAllocaInst(AllocaInst &I) { 2672 setShadow(&I, getCleanShadow(&I)); 2673 setOrigin(&I, getCleanOrigin()); 2674 IRBuilder<> IRB(I.getNextNode()); 2675 const DataLayout &DL = F.getParent()->getDataLayout(); 2676 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2677 if (PoisonStack && ClPoisonStackWithCall) { 2678 IRB.CreateCall(MS.MsanPoisonStackFn, 2679 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2680 ConstantInt::get(MS.IntptrTy, Size)}); 2681 } else { 2682 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2683 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2684 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2685 } 2686 2687 if (PoisonStack && MS.TrackOrigins) { 2688 SmallString<2048> StackDescriptionStorage; 2689 raw_svector_ostream StackDescription(StackDescriptionStorage); 2690 // We create a string with a description of the stack allocation and 2691 // pass it into __msan_set_alloca_origin. 2692 // It will be printed by the run-time if stack-originated UMR is found. 2693 // The first 4 bytes of the string are set to '----' and will be replaced 2694 // by __msan_va_arg_overflow_size_tls at the first call. 2695 StackDescription << "----" << I.getName() << "@" << F.getName(); 2696 Value *Descr = 2697 createPrivateNonConstGlobalForString(*F.getParent(), 2698 StackDescription.str()); 2699 2700 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2701 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2702 ConstantInt::get(MS.IntptrTy, Size), 2703 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2704 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2705 } 2706 } 2707 2708 void visitSelectInst(SelectInst& I) { 2709 IRBuilder<> IRB(&I); 2710 // a = select b, c, d 2711 Value *B = I.getCondition(); 2712 Value *C = I.getTrueValue(); 2713 Value *D = I.getFalseValue(); 2714 Value *Sb = getShadow(B); 2715 Value *Sc = getShadow(C); 2716 Value *Sd = getShadow(D); 2717 2718 // Result shadow if condition shadow is 0. 2719 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2720 Value *Sa1; 2721 if (I.getType()->isAggregateType()) { 2722 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2723 // an extra "select". This results in much more compact IR. 2724 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2725 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2726 } else { 2727 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2728 // If Sb (condition is poisoned), look for bits in c and d that are equal 2729 // and both unpoisoned. 2730 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2731 2732 // Cast arguments to shadow-compatible type. 2733 C = CreateAppToShadowCast(IRB, C); 2734 D = CreateAppToShadowCast(IRB, D); 2735 2736 // Result shadow if condition shadow is 1. 2737 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2738 } 2739 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2740 setShadow(&I, Sa); 2741 if (MS.TrackOrigins) { 2742 // Origins are always i32, so any vector conditions must be flattened. 2743 // FIXME: consider tracking vector origins for app vectors? 2744 if (B->getType()->isVectorTy()) { 2745 Type *FlatTy = getShadowTyNoVec(B->getType()); 2746 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2747 ConstantInt::getNullValue(FlatTy)); 2748 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2749 ConstantInt::getNullValue(FlatTy)); 2750 } 2751 // a = select b, c, d 2752 // Oa = Sb ? Ob : (b ? Oc : Od) 2753 setOrigin( 2754 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2755 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2756 getOrigin(I.getFalseValue())))); 2757 } 2758 } 2759 2760 void visitLandingPadInst(LandingPadInst &I) { 2761 // Do nothing. 2762 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2763 setShadow(&I, getCleanShadow(&I)); 2764 setOrigin(&I, getCleanOrigin()); 2765 } 2766 2767 void visitCatchSwitchInst(CatchSwitchInst &I) { 2768 setShadow(&I, getCleanShadow(&I)); 2769 setOrigin(&I, getCleanOrigin()); 2770 } 2771 2772 void visitFuncletPadInst(FuncletPadInst &I) { 2773 setShadow(&I, getCleanShadow(&I)); 2774 setOrigin(&I, getCleanOrigin()); 2775 } 2776 2777 void visitGetElementPtrInst(GetElementPtrInst &I) { 2778 handleShadowOr(I); 2779 } 2780 2781 void visitExtractValueInst(ExtractValueInst &I) { 2782 IRBuilder<> IRB(&I); 2783 Value *Agg = I.getAggregateOperand(); 2784 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2785 Value *AggShadow = getShadow(Agg); 2786 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2787 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2788 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2789 setShadow(&I, ResShadow); 2790 setOriginForNaryOp(I); 2791 } 2792 2793 void visitInsertValueInst(InsertValueInst &I) { 2794 IRBuilder<> IRB(&I); 2795 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2796 Value *AggShadow = getShadow(I.getAggregateOperand()); 2797 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2798 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2799 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2800 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2801 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2802 setShadow(&I, Res); 2803 setOriginForNaryOp(I); 2804 } 2805 2806 void dumpInst(Instruction &I) { 2807 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2808 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2809 } else { 2810 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2811 } 2812 errs() << "QQQ " << I << "\n"; 2813 } 2814 2815 void visitResumeInst(ResumeInst &I) { 2816 DEBUG(dbgs() << "Resume: " << I << "\n"); 2817 // Nothing to do here. 2818 } 2819 2820 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2821 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2822 // Nothing to do here. 2823 } 2824 2825 void visitCatchReturnInst(CatchReturnInst &CRI) { 2826 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2827 // Nothing to do here. 2828 } 2829 2830 void visitInstruction(Instruction &I) { 2831 // Everything else: stop propagating and check for poisoned shadow. 2832 if (ClDumpStrictInstructions) 2833 dumpInst(I); 2834 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2835 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2836 insertShadowCheck(I.getOperand(i), &I); 2837 setShadow(&I, getCleanShadow(&I)); 2838 setOrigin(&I, getCleanOrigin()); 2839 } 2840 }; 2841 2842 /// \brief AMD64-specific implementation of VarArgHelper. 2843 struct VarArgAMD64Helper : public VarArgHelper { 2844 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2845 // See a comment in visitCallSite for more details. 2846 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2847 static const unsigned AMD64FpEndOffset = 176; 2848 2849 Function &F; 2850 MemorySanitizer &MS; 2851 MemorySanitizerVisitor &MSV; 2852 Value *VAArgTLSCopy; 2853 Value *VAArgOverflowSize; 2854 2855 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2856 2857 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2858 MemorySanitizerVisitor &MSV) 2859 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2860 VAArgOverflowSize(nullptr) {} 2861 2862 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2863 2864 ArgKind classifyArgument(Value* arg) { 2865 // A very rough approximation of X86_64 argument classification rules. 2866 Type *T = arg->getType(); 2867 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2868 return AK_FloatingPoint; 2869 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2870 return AK_GeneralPurpose; 2871 if (T->isPointerTy()) 2872 return AK_GeneralPurpose; 2873 return AK_Memory; 2874 } 2875 2876 // For VarArg functions, store the argument shadow in an ABI-specific format 2877 // that corresponds to va_list layout. 2878 // We do this because Clang lowers va_arg in the frontend, and this pass 2879 // only sees the low level code that deals with va_list internals. 2880 // A much easier alternative (provided that Clang emits va_arg instructions) 2881 // would have been to associate each live instance of va_list with a copy of 2882 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2883 // order. 2884 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2885 unsigned GpOffset = 0; 2886 unsigned FpOffset = AMD64GpEndOffset; 2887 unsigned OverflowOffset = AMD64FpEndOffset; 2888 const DataLayout &DL = F.getParent()->getDataLayout(); 2889 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2890 ArgIt != End; ++ArgIt) { 2891 Value *A = *ArgIt; 2892 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2893 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 2894 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2895 if (IsByVal) { 2896 // ByVal arguments always go to the overflow area. 2897 // Fixed arguments passed through the overflow area will be stepped 2898 // over by va_start, so don't count them towards the offset. 2899 if (IsFixed) 2900 continue; 2901 assert(A->getType()->isPointerTy()); 2902 Type *RealTy = A->getType()->getPointerElementType(); 2903 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2904 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2905 OverflowOffset += alignTo(ArgSize, 8); 2906 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2907 ArgSize, kShadowTLSAlignment); 2908 } else { 2909 ArgKind AK = classifyArgument(A); 2910 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2911 AK = AK_Memory; 2912 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2913 AK = AK_Memory; 2914 Value *Base; 2915 switch (AK) { 2916 case AK_GeneralPurpose: 2917 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2918 GpOffset += 8; 2919 break; 2920 case AK_FloatingPoint: 2921 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2922 FpOffset += 16; 2923 break; 2924 case AK_Memory: 2925 if (IsFixed) 2926 continue; 2927 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2928 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2929 OverflowOffset += alignTo(ArgSize, 8); 2930 } 2931 // Take fixed arguments into account for GpOffset and FpOffset, 2932 // but don't actually store shadows for them. 2933 if (IsFixed) 2934 continue; 2935 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2936 } 2937 } 2938 Constant *OverflowSize = 2939 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2940 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2941 } 2942 2943 /// \brief Compute the shadow address for a given va_arg. 2944 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2945 int ArgOffset) { 2946 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2947 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2948 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2949 "_msarg"); 2950 } 2951 2952 void visitVAStartInst(VAStartInst &I) override { 2953 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2954 return; 2955 IRBuilder<> IRB(&I); 2956 VAStartInstrumentationList.push_back(&I); 2957 Value *VAListTag = I.getArgOperand(0); 2958 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2959 2960 // Unpoison the whole __va_list_tag. 2961 // FIXME: magic ABI constants. 2962 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2963 /* size */24, /* alignment */8, false); 2964 } 2965 2966 void visitVACopyInst(VACopyInst &I) override { 2967 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2968 return; 2969 IRBuilder<> IRB(&I); 2970 Value *VAListTag = I.getArgOperand(0); 2971 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2972 2973 // Unpoison the whole __va_list_tag. 2974 // FIXME: magic ABI constants. 2975 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2976 /* size */24, /* alignment */8, false); 2977 } 2978 2979 void finalizeInstrumentation() override { 2980 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2981 "finalizeInstrumentation called twice"); 2982 if (!VAStartInstrumentationList.empty()) { 2983 // If there is a va_start in this function, make a backup copy of 2984 // va_arg_tls somewhere in the function entry block. 2985 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2986 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2987 Value *CopySize = 2988 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2989 VAArgOverflowSize); 2990 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2991 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2992 } 2993 2994 // Instrument va_start. 2995 // Copy va_list shadow from the backup copy of the TLS contents. 2996 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2997 CallInst *OrigInst = VAStartInstrumentationList[i]; 2998 IRBuilder<> IRB(OrigInst->getNextNode()); 2999 Value *VAListTag = OrigInst->getArgOperand(0); 3000 3001 Value *RegSaveAreaPtrPtr = 3002 IRB.CreateIntToPtr( 3003 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3004 ConstantInt::get(MS.IntptrTy, 16)), 3005 Type::getInt64PtrTy(*MS.C)); 3006 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3007 Value *RegSaveAreaShadowPtr = 3008 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3009 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 3010 AMD64FpEndOffset, 16); 3011 3012 Value *OverflowArgAreaPtrPtr = 3013 IRB.CreateIntToPtr( 3014 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3015 ConstantInt::get(MS.IntptrTy, 8)), 3016 Type::getInt64PtrTy(*MS.C)); 3017 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3018 Value *OverflowArgAreaShadowPtr = 3019 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 3020 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3021 AMD64FpEndOffset); 3022 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 3023 } 3024 } 3025 }; 3026 3027 /// \brief MIPS64-specific implementation of VarArgHelper. 3028 struct VarArgMIPS64Helper : public VarArgHelper { 3029 Function &F; 3030 MemorySanitizer &MS; 3031 MemorySanitizerVisitor &MSV; 3032 Value *VAArgTLSCopy; 3033 Value *VAArgSize; 3034 3035 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3036 3037 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3038 MemorySanitizerVisitor &MSV) 3039 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3040 VAArgSize(nullptr) {} 3041 3042 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3043 unsigned VAArgOffset = 0; 3044 const DataLayout &DL = F.getParent()->getDataLayout(); 3045 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3046 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3047 ArgIt != End; ++ArgIt) { 3048 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3049 Value *A = *ArgIt; 3050 Value *Base; 3051 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3052 if (TargetTriple.getArch() == llvm::Triple::mips64) { 3053 // Adjusting the shadow for argument with size < 8 to match the placement 3054 // of bits in big endian system 3055 if (ArgSize < 8) 3056 VAArgOffset += (8 - ArgSize); 3057 } 3058 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 3059 VAArgOffset += ArgSize; 3060 VAArgOffset = alignTo(VAArgOffset, 8); 3061 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3062 } 3063 3064 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3065 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3066 // a new class member i.e. it is the total size of all VarArgs. 3067 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3068 } 3069 3070 /// \brief Compute the shadow address for a given va_arg. 3071 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3072 int ArgOffset) { 3073 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3074 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3075 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3076 "_msarg"); 3077 } 3078 3079 void visitVAStartInst(VAStartInst &I) override { 3080 IRBuilder<> IRB(&I); 3081 VAStartInstrumentationList.push_back(&I); 3082 Value *VAListTag = I.getArgOperand(0); 3083 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3084 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3085 /* size */8, /* alignment */8, false); 3086 } 3087 3088 void visitVACopyInst(VACopyInst &I) override { 3089 IRBuilder<> IRB(&I); 3090 Value *VAListTag = I.getArgOperand(0); 3091 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3092 // Unpoison the whole __va_list_tag. 3093 // FIXME: magic ABI constants. 3094 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3095 /* size */8, /* alignment */8, false); 3096 } 3097 3098 void finalizeInstrumentation() override { 3099 assert(!VAArgSize && !VAArgTLSCopy && 3100 "finalizeInstrumentation called twice"); 3101 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3102 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3103 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3104 VAArgSize); 3105 3106 if (!VAStartInstrumentationList.empty()) { 3107 // If there is a va_start in this function, make a backup copy of 3108 // va_arg_tls somewhere in the function entry block. 3109 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3110 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3111 } 3112 3113 // Instrument va_start. 3114 // Copy va_list shadow from the backup copy of the TLS contents. 3115 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3116 CallInst *OrigInst = VAStartInstrumentationList[i]; 3117 IRBuilder<> IRB(OrigInst->getNextNode()); 3118 Value *VAListTag = OrigInst->getArgOperand(0); 3119 Value *RegSaveAreaPtrPtr = 3120 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3121 Type::getInt64PtrTy(*MS.C)); 3122 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3123 Value *RegSaveAreaShadowPtr = 3124 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3125 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3126 } 3127 } 3128 }; 3129 3130 3131 /// \brief AArch64-specific implementation of VarArgHelper. 3132 struct VarArgAArch64Helper : public VarArgHelper { 3133 static const unsigned kAArch64GrArgSize = 64; 3134 static const unsigned kAArch64VrArgSize = 128; 3135 3136 static const unsigned AArch64GrBegOffset = 0; 3137 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3138 // Make VR space aligned to 16 bytes. 3139 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 3140 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3141 + kAArch64VrArgSize; 3142 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3143 3144 Function &F; 3145 MemorySanitizer &MS; 3146 MemorySanitizerVisitor &MSV; 3147 Value *VAArgTLSCopy; 3148 Value *VAArgOverflowSize; 3149 3150 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3151 3152 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3153 MemorySanitizerVisitor &MSV) 3154 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3155 VAArgOverflowSize(nullptr) {} 3156 3157 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3158 3159 ArgKind classifyArgument(Value* arg) { 3160 Type *T = arg->getType(); 3161 if (T->isFPOrFPVectorTy()) 3162 return AK_FloatingPoint; 3163 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3164 || (T->isPointerTy())) 3165 return AK_GeneralPurpose; 3166 return AK_Memory; 3167 } 3168 3169 // The instrumentation stores the argument shadow in a non ABI-specific 3170 // format because it does not know which argument is named (since Clang, 3171 // like x86_64 case, lowers the va_args in the frontend and this pass only 3172 // sees the low level code that deals with va_list internals). 3173 // The first seven GR registers are saved in the first 56 bytes of the 3174 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3175 // the remaining arguments. 3176 // Using constant offset within the va_arg TLS array allows fast copy 3177 // in the finalize instrumentation. 3178 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3179 unsigned GrOffset = AArch64GrBegOffset; 3180 unsigned VrOffset = AArch64VrBegOffset; 3181 unsigned OverflowOffset = AArch64VAEndOffset; 3182 3183 const DataLayout &DL = F.getParent()->getDataLayout(); 3184 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3185 ArgIt != End; ++ArgIt) { 3186 Value *A = *ArgIt; 3187 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3188 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3189 ArgKind AK = classifyArgument(A); 3190 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3191 AK = AK_Memory; 3192 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3193 AK = AK_Memory; 3194 Value *Base; 3195 switch (AK) { 3196 case AK_GeneralPurpose: 3197 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3198 GrOffset += 8; 3199 break; 3200 case AK_FloatingPoint: 3201 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3202 VrOffset += 16; 3203 break; 3204 case AK_Memory: 3205 // Don't count fixed arguments in the overflow area - va_start will 3206 // skip right over them. 3207 if (IsFixed) 3208 continue; 3209 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3210 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3211 OverflowOffset += alignTo(ArgSize, 8); 3212 break; 3213 } 3214 // Count Gp/Vr fixed arguments to their respective offsets, but don't 3215 // bother to actually store a shadow. 3216 if (IsFixed) 3217 continue; 3218 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3219 } 3220 Constant *OverflowSize = 3221 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3222 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3223 } 3224 3225 /// Compute the shadow address for a given va_arg. 3226 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3227 int ArgOffset) { 3228 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3229 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3230 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3231 "_msarg"); 3232 } 3233 3234 void visitVAStartInst(VAStartInst &I) override { 3235 IRBuilder<> IRB(&I); 3236 VAStartInstrumentationList.push_back(&I); 3237 Value *VAListTag = I.getArgOperand(0); 3238 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3239 // Unpoison the whole __va_list_tag. 3240 // FIXME: magic ABI constants (size of va_list). 3241 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3242 /* size */32, /* alignment */8, false); 3243 } 3244 3245 void visitVACopyInst(VACopyInst &I) override { 3246 IRBuilder<> IRB(&I); 3247 Value *VAListTag = I.getArgOperand(0); 3248 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3249 // Unpoison the whole __va_list_tag. 3250 // FIXME: magic ABI constants (size of va_list). 3251 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3252 /* size */32, /* alignment */8, false); 3253 } 3254 3255 // Retrieve a va_list field of 'void*' size. 3256 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3257 Value *SaveAreaPtrPtr = 3258 IRB.CreateIntToPtr( 3259 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3260 ConstantInt::get(MS.IntptrTy, offset)), 3261 Type::getInt64PtrTy(*MS.C)); 3262 return IRB.CreateLoad(SaveAreaPtrPtr); 3263 } 3264 3265 // Retrieve a va_list field of 'int' size. 3266 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3267 Value *SaveAreaPtr = 3268 IRB.CreateIntToPtr( 3269 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3270 ConstantInt::get(MS.IntptrTy, offset)), 3271 Type::getInt32PtrTy(*MS.C)); 3272 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3273 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3274 } 3275 3276 void finalizeInstrumentation() override { 3277 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3278 "finalizeInstrumentation called twice"); 3279 if (!VAStartInstrumentationList.empty()) { 3280 // If there is a va_start in this function, make a backup copy of 3281 // va_arg_tls somewhere in the function entry block. 3282 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3283 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3284 Value *CopySize = 3285 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3286 VAArgOverflowSize); 3287 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3288 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3289 } 3290 3291 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3292 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3293 3294 // Instrument va_start, copy va_list shadow from the backup copy of 3295 // the TLS contents. 3296 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3297 CallInst *OrigInst = VAStartInstrumentationList[i]; 3298 IRBuilder<> IRB(OrigInst->getNextNode()); 3299 3300 Value *VAListTag = OrigInst->getArgOperand(0); 3301 3302 // The variadic ABI for AArch64 creates two areas to save the incoming 3303 // argument registers (one for 64-bit general register xn-x7 and another 3304 // for 128-bit FP/SIMD vn-v7). 3305 // We need then to propagate the shadow arguments on both regions 3306 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3307 // The remaning arguments are saved on shadow for 'va::stack'. 3308 // One caveat is it requires only to propagate the non-named arguments, 3309 // however on the call site instrumentation 'all' the arguments are 3310 // saved. So to copy the shadow values from the va_arg TLS array 3311 // we need to adjust the offset for both GR and VR fields based on 3312 // the __{gr,vr}_offs value (since they are stores based on incoming 3313 // named arguments). 3314 3315 // Read the stack pointer from the va_list. 3316 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3317 3318 // Read both the __gr_top and __gr_off and add them up. 3319 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3320 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3321 3322 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3323 3324 // Read both the __vr_top and __vr_off and add them up. 3325 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3326 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3327 3328 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3329 3330 // It does not know how many named arguments is being used and, on the 3331 // callsite all the arguments were saved. Since __gr_off is defined as 3332 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3333 // argument by ignoring the bytes of shadow from named arguments. 3334 Value *GrRegSaveAreaShadowPtrOff = 3335 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3336 3337 Value *GrRegSaveAreaShadowPtr = 3338 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3339 3340 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3341 GrRegSaveAreaShadowPtrOff); 3342 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3343 3344 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3345 3346 // Again, but for FP/SIMD values. 3347 Value *VrRegSaveAreaShadowPtrOff = 3348 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3349 3350 Value *VrRegSaveAreaShadowPtr = 3351 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3352 3353 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3354 IRB.getInt8Ty(), 3355 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3356 IRB.getInt32(AArch64VrBegOffset)), 3357 VrRegSaveAreaShadowPtrOff); 3358 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3359 3360 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3361 3362 // And finally for remaining arguments. 3363 Value *StackSaveAreaShadowPtr = 3364 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3365 3366 Value *StackSrcPtr = 3367 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3368 IRB.getInt32(AArch64VAEndOffset)); 3369 3370 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3371 VAArgOverflowSize, 16); 3372 } 3373 } 3374 }; 3375 3376 /// \brief PowerPC64-specific implementation of VarArgHelper. 3377 struct VarArgPowerPC64Helper : public VarArgHelper { 3378 Function &F; 3379 MemorySanitizer &MS; 3380 MemorySanitizerVisitor &MSV; 3381 Value *VAArgTLSCopy; 3382 Value *VAArgSize; 3383 3384 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3385 3386 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 3387 MemorySanitizerVisitor &MSV) 3388 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3389 VAArgSize(nullptr) {} 3390 3391 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3392 // For PowerPC, we need to deal with alignment of stack arguments - 3393 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 3394 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 3395 // and QPX vectors are aligned to 32 bytes. For that reason, we 3396 // compute current offset from stack pointer (which is always properly 3397 // aligned), and offset for the first vararg, then subtract them. 3398 unsigned VAArgBase; 3399 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3400 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 3401 // and 32 bytes for ABIv2. This is usually determined by target 3402 // endianness, but in theory could be overriden by function attribute. 3403 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 3404 if (TargetTriple.getArch() == llvm::Triple::ppc64) 3405 VAArgBase = 48; 3406 else 3407 VAArgBase = 32; 3408 unsigned VAArgOffset = VAArgBase; 3409 const DataLayout &DL = F.getParent()->getDataLayout(); 3410 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3411 ArgIt != End; ++ArgIt) { 3412 Value *A = *ArgIt; 3413 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3414 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3415 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 3416 if (IsByVal) { 3417 assert(A->getType()->isPointerTy()); 3418 Type *RealTy = A->getType()->getPointerElementType(); 3419 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3420 uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1); 3421 if (ArgAlign < 8) 3422 ArgAlign = 8; 3423 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3424 if (!IsFixed) { 3425 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, 3426 VAArgOffset - VAArgBase); 3427 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 3428 ArgSize, kShadowTLSAlignment); 3429 } 3430 VAArgOffset += alignTo(ArgSize, 8); 3431 } else { 3432 Value *Base; 3433 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3434 uint64_t ArgAlign = 8; 3435 if (A->getType()->isArrayTy()) { 3436 // Arrays are aligned to element size, except for long double 3437 // arrays, which are aligned to 8 bytes. 3438 Type *ElementTy = A->getType()->getArrayElementType(); 3439 if (!ElementTy->isPPC_FP128Ty()) 3440 ArgAlign = DL.getTypeAllocSize(ElementTy); 3441 } else if (A->getType()->isVectorTy()) { 3442 // Vectors are naturally aligned. 3443 ArgAlign = DL.getTypeAllocSize(A->getType()); 3444 } 3445 if (ArgAlign < 8) 3446 ArgAlign = 8; 3447 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3448 if (DL.isBigEndian()) { 3449 // Adjusting the shadow for argument with size < 8 to match the placement 3450 // of bits in big endian system 3451 if (ArgSize < 8) 3452 VAArgOffset += (8 - ArgSize); 3453 } 3454 if (!IsFixed) { 3455 Base = getShadowPtrForVAArgument(A->getType(), IRB, 3456 VAArgOffset - VAArgBase); 3457 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3458 } 3459 VAArgOffset += ArgSize; 3460 VAArgOffset = alignTo(VAArgOffset, 8); 3461 } 3462 if (IsFixed) 3463 VAArgBase = VAArgOffset; 3464 } 3465 3466 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 3467 VAArgOffset - VAArgBase); 3468 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3469 // a new class member i.e. it is the total size of all VarArgs. 3470 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3471 } 3472 3473 /// \brief Compute the shadow address for a given va_arg. 3474 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3475 int ArgOffset) { 3476 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3477 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3478 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3479 "_msarg"); 3480 } 3481 3482 void visitVAStartInst(VAStartInst &I) override { 3483 IRBuilder<> IRB(&I); 3484 VAStartInstrumentationList.push_back(&I); 3485 Value *VAListTag = I.getArgOperand(0); 3486 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3487 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3488 /* size */8, /* alignment */8, false); 3489 } 3490 3491 void visitVACopyInst(VACopyInst &I) override { 3492 IRBuilder<> IRB(&I); 3493 Value *VAListTag = I.getArgOperand(0); 3494 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3495 // Unpoison the whole __va_list_tag. 3496 // FIXME: magic ABI constants. 3497 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3498 /* size */8, /* alignment */8, false); 3499 } 3500 3501 void finalizeInstrumentation() override { 3502 assert(!VAArgSize && !VAArgTLSCopy && 3503 "finalizeInstrumentation called twice"); 3504 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3505 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3506 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3507 VAArgSize); 3508 3509 if (!VAStartInstrumentationList.empty()) { 3510 // If there is a va_start in this function, make a backup copy of 3511 // va_arg_tls somewhere in the function entry block. 3512 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3513 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3514 } 3515 3516 // Instrument va_start. 3517 // Copy va_list shadow from the backup copy of the TLS contents. 3518 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3519 CallInst *OrigInst = VAStartInstrumentationList[i]; 3520 IRBuilder<> IRB(OrigInst->getNextNode()); 3521 Value *VAListTag = OrigInst->getArgOperand(0); 3522 Value *RegSaveAreaPtrPtr = 3523 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3524 Type::getInt64PtrTy(*MS.C)); 3525 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3526 Value *RegSaveAreaShadowPtr = 3527 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3528 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3529 } 3530 } 3531 }; 3532 3533 /// \brief A no-op implementation of VarArgHelper. 3534 struct VarArgNoOpHelper : public VarArgHelper { 3535 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3536 MemorySanitizerVisitor &MSV) {} 3537 3538 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3539 3540 void visitVAStartInst(VAStartInst &I) override {} 3541 3542 void visitVACopyInst(VACopyInst &I) override {} 3543 3544 void finalizeInstrumentation() override {} 3545 }; 3546 3547 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3548 MemorySanitizerVisitor &Visitor) { 3549 // VarArg handling is only implemented on AMD64. False positives are possible 3550 // on other platforms. 3551 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3552 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3553 return new VarArgAMD64Helper(Func, Msan, Visitor); 3554 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3555 TargetTriple.getArch() == llvm::Triple::mips64el) 3556 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3557 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3558 return new VarArgAArch64Helper(Func, Msan, Visitor); 3559 else if (TargetTriple.getArch() == llvm::Triple::ppc64 || 3560 TargetTriple.getArch() == llvm::Triple::ppc64le) 3561 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 3562 else 3563 return new VarArgNoOpHelper(Func, Msan, Visitor); 3564 } 3565 3566 } // anonymous namespace 3567 3568 bool MemorySanitizer::runOnFunction(Function &F) { 3569 if (&F == MsanCtorFunction) 3570 return false; 3571 MemorySanitizerVisitor Visitor(F, *this); 3572 3573 // Clear out readonly/readnone attributes. 3574 AttrBuilder B; 3575 B.addAttribute(Attribute::ReadOnly) 3576 .addAttribute(Attribute::ReadNone); 3577 F.removeAttributes(AttributeSet::FunctionIndex, 3578 AttributeSet::get(F.getContext(), 3579 AttributeSet::FunctionIndex, B)); 3580 3581 return Visitor.runOnFunction(); 3582 } 3583