1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file is a part of MemorySanitizer, a detector of uninitialized
12 /// reads.
13 ///
14 /// The algorithm of the tool is similar to Memcheck
15 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
16 /// byte of the application memory, poison the shadow of the malloc-ed
17 /// or alloca-ed memory, load the shadow bits on every memory read,
18 /// propagate the shadow bits through some of the arithmetic
19 /// instruction (including MOV), store the shadow bits on every memory
20 /// write, report a bug on some other instructions (e.g. JMP) if the
21 /// associated shadow is poisoned.
22 ///
23 /// But there are differences too. The first and the major one:
24 /// compiler instrumentation instead of binary instrumentation. This
25 /// gives us much better register allocation, possible compiler
26 /// optimizations and a fast start-up. But this brings the major issue
27 /// as well: msan needs to see all program events, including system
28 /// calls and reads/writes in system libraries, so we either need to
29 /// compile *everything* with msan or use a binary translation
30 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
31 /// Another difference from Memcheck is that we use 8 shadow bits per
32 /// byte of application memory and use a direct shadow mapping. This
33 /// greatly simplifies the instrumentation code and avoids races on
34 /// shadow updates (Memcheck is single-threaded so races are not a
35 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
36 /// path storage that uses 8 bits per byte).
37 ///
38 /// The default value of shadow is 0, which means "clean" (not poisoned).
39 ///
40 /// Every module initializer should call __msan_init to ensure that the
41 /// shadow memory is ready. On error, __msan_warning is called. Since
42 /// parameters and return values may be passed via registers, we have a
43 /// specialized thread-local shadow for return values
44 /// (__msan_retval_tls) and parameters (__msan_param_tls).
45 ///
46 ///                           Origin tracking.
47 ///
48 /// MemorySanitizer can track origins (allocation points) of all uninitialized
49 /// values. This behavior is controlled with a flag (msan-track-origins) and is
50 /// disabled by default.
51 ///
52 /// Origins are 4-byte values created and interpreted by the runtime library.
53 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
54 /// of application memory. Propagation of origins is basically a bunch of
55 /// "select" instructions that pick the origin of a dirty argument, if an
56 /// instruction has one.
57 ///
58 /// Every 4 aligned, consecutive bytes of application memory have one origin
59 /// value associated with them. If these bytes contain uninitialized data
60 /// coming from 2 different allocations, the last store wins. Because of this,
61 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
62 /// practice.
63 ///
64 /// Origins are meaningless for fully initialized values, so MemorySanitizer
65 /// avoids storing origin to memory when a fully initialized value is stored.
66 /// This way it avoids needless overwritting origin of the 4-byte region on
67 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
68 ///
69 ///                            Atomic handling.
70 ///
71 /// Ideally, every atomic store of application value should update the
72 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
73 /// of two disjoint locations can not be done without severe slowdown.
74 ///
75 /// Therefore, we implement an approximation that may err on the safe side.
76 /// In this implementation, every atomically accessed location in the program
77 /// may only change from (partially) uninitialized to fully initialized, but
78 /// not the other way around. We load the shadow _after_ the application load,
79 /// and we store the shadow _before_ the app store. Also, we always store clean
80 /// shadow (if the application store is atomic). This way, if the store-load
81 /// pair constitutes a happens-before arc, shadow store and load are correctly
82 /// ordered such that the load will get either the value that was stored, or
83 /// some later value (which is always clean).
84 ///
85 /// This does not work very well with Compare-And-Swap (CAS) and
86 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
87 /// must store the new shadow before the app operation, and load the shadow
88 /// after the app operation. Computers don't work this way. Current
89 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
90 /// value. It implements the store part as a simple atomic store by storing a
91 /// clean shadow.
92 //
93 //===----------------------------------------------------------------------===//
94 
95 #include "llvm/ADT/APInt.h"
96 #include "llvm/ADT/ArrayRef.h"
97 #include "llvm/ADT/DepthFirstIterator.h"
98 #include "llvm/ADT/SmallString.h"
99 #include "llvm/ADT/SmallVector.h"
100 #include "llvm/ADT/StringExtras.h"
101 #include "llvm/ADT/StringRef.h"
102 #include "llvm/ADT/Triple.h"
103 #include "llvm/Analysis/TargetLibraryInfo.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include "llvm/IR/Argument.h"
106 #include "llvm/IR/Attributes.h"
107 #include "llvm/IR/BasicBlock.h"
108 #include "llvm/IR/CallSite.h"
109 #include "llvm/IR/CallingConv.h"
110 #include "llvm/IR/Constant.h"
111 #include "llvm/IR/Constants.h"
112 #include "llvm/IR/DataLayout.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/Function.h"
115 #include "llvm/IR/GlobalValue.h"
116 #include "llvm/IR/GlobalVariable.h"
117 #include "llvm/IR/IRBuilder.h"
118 #include "llvm/IR/InlineAsm.h"
119 #include "llvm/IR/InstVisitor.h"
120 #include "llvm/IR/InstrTypes.h"
121 #include "llvm/IR/Instruction.h"
122 #include "llvm/IR/Instructions.h"
123 #include "llvm/IR/IntrinsicInst.h"
124 #include "llvm/IR/Intrinsics.h"
125 #include "llvm/IR/LLVMContext.h"
126 #include "llvm/IR/MDBuilder.h"
127 #include "llvm/IR/Module.h"
128 #include "llvm/IR/Type.h"
129 #include "llvm/IR/Value.h"
130 #include "llvm/IR/ValueMap.h"
131 #include "llvm/Pass.h"
132 #include "llvm/Support/AtomicOrdering.h"
133 #include "llvm/Support/Casting.h"
134 #include "llvm/Support/CommandLine.h"
135 #include "llvm/Support/Compiler.h"
136 #include "llvm/Support/Debug.h"
137 #include "llvm/Support/ErrorHandling.h"
138 #include "llvm/Support/MathExtras.h"
139 #include "llvm/Support/raw_ostream.h"
140 #include "llvm/Transforms/Instrumentation.h"
141 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
142 #include "llvm/Transforms/Utils/ModuleUtils.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstddef>
146 #include <cstdint>
147 #include <memory>
148 #include <string>
149 #include <tuple>
150 
151 using namespace llvm;
152 
153 #define DEBUG_TYPE "msan"
154 
155 static const unsigned kOriginSize = 4;
156 static const unsigned kMinOriginAlignment = 4;
157 static const unsigned kShadowTLSAlignment = 8;
158 
159 // These constants must be kept in sync with the ones in msan.h.
160 static const unsigned kParamTLSSize = 800;
161 static const unsigned kRetvalTLSSize = 800;
162 
163 // Accesses sizes are powers of two: 1, 2, 4, 8.
164 static const size_t kNumberOfAccessSizes = 4;
165 
166 /// Track origins of uninitialized values.
167 ///
168 /// Adds a section to MemorySanitizer report that points to the allocation
169 /// (stack or heap) the uninitialized bits came from originally.
170 static cl::opt<int> ClTrackOrigins("msan-track-origins",
171        cl::desc("Track origins (allocation sites) of poisoned memory"),
172        cl::Hidden, cl::init(0));
173 
174 static cl::opt<bool> ClKeepGoing("msan-keep-going",
175        cl::desc("keep going after reporting a UMR"),
176        cl::Hidden, cl::init(false));
177 
178 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
179        cl::desc("poison uninitialized stack variables"),
180        cl::Hidden, cl::init(true));
181 
182 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
183        cl::desc("poison uninitialized stack variables with a call"),
184        cl::Hidden, cl::init(false));
185 
186 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
187        cl::desc("poison uninitialized stack variables with the given pattern"),
188        cl::Hidden, cl::init(0xff));
189 
190 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
191        cl::desc("poison undef temps"),
192        cl::Hidden, cl::init(true));
193 
194 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
195        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
196        cl::Hidden, cl::init(true));
197 
198 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
199        cl::desc("exact handling of relational integer ICmp"),
200        cl::Hidden, cl::init(false));
201 
202 // When compiling the Linux kernel, we sometimes see false positives related to
203 // MSan being unable to understand that inline assembly calls may initialize
204 // local variables.
205 // This flag makes the compiler conservatively unpoison every memory location
206 // passed into an assembly call. Note that this may cause false positives.
207 // Because it's impossible to figure out the array sizes, we can only unpoison
208 // the first sizeof(type) bytes for each type* pointer.
209 static cl::opt<bool> ClHandleAsmConservative(
210     "msan-handle-asm-conservative",
211     cl::desc("conservative handling of inline assembly"), cl::Hidden,
212     cl::init(false));
213 
214 // This flag controls whether we check the shadow of the address
215 // operand of load or store. Such bugs are very rare, since load from
216 // a garbage address typically results in SEGV, but still happen
217 // (e.g. only lower bits of address are garbage, or the access happens
218 // early at program startup where malloc-ed memory is more likely to
219 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
220 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
221        cl::desc("report accesses through a pointer which has poisoned shadow"),
222        cl::Hidden, cl::init(true));
223 
224 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
225        cl::desc("print out instructions with default strict semantics"),
226        cl::Hidden, cl::init(false));
227 
228 static cl::opt<int> ClInstrumentationWithCallThreshold(
229     "msan-instrumentation-with-call-threshold",
230     cl::desc(
231         "If the function being instrumented requires more than "
232         "this number of checks and origin stores, use callbacks instead of "
233         "inline checks (-1 means never use callbacks)."),
234     cl::Hidden, cl::init(3500));
235 
236 // This is an experiment to enable handling of cases where shadow is a non-zero
237 // compile-time constant. For some unexplainable reason they were silently
238 // ignored in the instrumentation.
239 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
240        cl::desc("Insert checks for constant shadow values"),
241        cl::Hidden, cl::init(false));
242 
243 // This is off by default because of a bug in gold:
244 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
245 static cl::opt<bool> ClWithComdat("msan-with-comdat",
246        cl::desc("Place MSan constructors in comdat sections"),
247        cl::Hidden, cl::init(false));
248 
249 // These options allow to specify custom memory map parameters
250 // See MemoryMapParams for details.
251 static cl::opt<unsigned long long> ClAndMask("msan-and-mask",
252        cl::desc("Define custom MSan AndMask"),
253        cl::Hidden, cl::init(0));
254 
255 static cl::opt<unsigned long long> ClXorMask("msan-xor-mask",
256        cl::desc("Define custom MSan XorMask"),
257        cl::Hidden, cl::init(0));
258 
259 static cl::opt<unsigned long long> ClShadowBase("msan-shadow-base",
260        cl::desc("Define custom MSan ShadowBase"),
261        cl::Hidden, cl::init(0));
262 
263 static cl::opt<unsigned long long> ClOriginBase("msan-origin-base",
264        cl::desc("Define custom MSan OriginBase"),
265        cl::Hidden, cl::init(0));
266 
267 static const char *const kMsanModuleCtorName = "msan.module_ctor";
268 static const char *const kMsanInitName = "__msan_init";
269 
270 namespace {
271 
272 // Memory map parameters used in application-to-shadow address calculation.
273 // Offset = (Addr & ~AndMask) ^ XorMask
274 // Shadow = ShadowBase + Offset
275 // Origin = OriginBase + Offset
276 struct MemoryMapParams {
277   uint64_t AndMask;
278   uint64_t XorMask;
279   uint64_t ShadowBase;
280   uint64_t OriginBase;
281 };
282 
283 struct PlatformMemoryMapParams {
284   const MemoryMapParams *bits32;
285   const MemoryMapParams *bits64;
286 };
287 
288 } // end anonymous namespace
289 
290 // i386 Linux
291 static const MemoryMapParams Linux_I386_MemoryMapParams = {
292   0x000080000000,  // AndMask
293   0,               // XorMask (not used)
294   0,               // ShadowBase (not used)
295   0x000040000000,  // OriginBase
296 };
297 
298 // x86_64 Linux
299 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
300 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
301   0x400000000000,  // AndMask
302   0,               // XorMask (not used)
303   0,               // ShadowBase (not used)
304   0x200000000000,  // OriginBase
305 #else
306   0,               // AndMask (not used)
307   0x500000000000,  // XorMask
308   0,               // ShadowBase (not used)
309   0x100000000000,  // OriginBase
310 #endif
311 };
312 
313 // mips64 Linux
314 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
315   0,               // AndMask (not used)
316   0x008000000000,  // XorMask
317   0,               // ShadowBase (not used)
318   0x002000000000,  // OriginBase
319 };
320 
321 // ppc64 Linux
322 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
323   0xE00000000000,  // AndMask
324   0x100000000000,  // XorMask
325   0x080000000000,  // ShadowBase
326   0x1C0000000000,  // OriginBase
327 };
328 
329 // aarch64 Linux
330 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
331   0,               // AndMask (not used)
332   0x06000000000,   // XorMask
333   0,               // ShadowBase (not used)
334   0x01000000000,   // OriginBase
335 };
336 
337 // i386 FreeBSD
338 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
339   0x000180000000,  // AndMask
340   0x000040000000,  // XorMask
341   0x000020000000,  // ShadowBase
342   0x000700000000,  // OriginBase
343 };
344 
345 // x86_64 FreeBSD
346 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
347   0xc00000000000,  // AndMask
348   0x200000000000,  // XorMask
349   0x100000000000,  // ShadowBase
350   0x380000000000,  // OriginBase
351 };
352 
353 // x86_64 NetBSD
354 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
355   0,               // AndMask
356   0x500000000000,  // XorMask
357   0,               // ShadowBase
358   0x100000000000,  // OriginBase
359 };
360 
361 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
362   &Linux_I386_MemoryMapParams,
363   &Linux_X86_64_MemoryMapParams,
364 };
365 
366 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
367   nullptr,
368   &Linux_MIPS64_MemoryMapParams,
369 };
370 
371 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
372   nullptr,
373   &Linux_PowerPC64_MemoryMapParams,
374 };
375 
376 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
377   nullptr,
378   &Linux_AArch64_MemoryMapParams,
379 };
380 
381 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
382   &FreeBSD_I386_MemoryMapParams,
383   &FreeBSD_X86_64_MemoryMapParams,
384 };
385 
386 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
387   nullptr,
388   &NetBSD_X86_64_MemoryMapParams,
389 };
390 
391 namespace {
392 
393 /// An instrumentation pass implementing detection of uninitialized
394 /// reads.
395 ///
396 /// MemorySanitizer: instrument the code in module to find
397 /// uninitialized reads.
398 class MemorySanitizer : public FunctionPass {
399 public:
400   // Pass identification, replacement for typeid.
401   static char ID;
402 
403   MemorySanitizer(int TrackOrigins = 0, bool Recover = false)
404       : FunctionPass(ID),
405         TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
406         Recover(Recover || ClKeepGoing) {}
407 
408   StringRef getPassName() const override { return "MemorySanitizer"; }
409 
410   void getAnalysisUsage(AnalysisUsage &AU) const override {
411     AU.addRequired<TargetLibraryInfoWrapperPass>();
412   }
413 
414   bool runOnFunction(Function &F) override;
415   bool doInitialization(Module &M) override;
416 
417 private:
418   friend struct MemorySanitizerVisitor;
419   friend struct VarArgAMD64Helper;
420   friend struct VarArgMIPS64Helper;
421   friend struct VarArgAArch64Helper;
422   friend struct VarArgPowerPC64Helper;
423 
424   void initializeCallbacks(Module &M);
425 
426   /// Track origins (allocation points) of uninitialized values.
427   int TrackOrigins;
428   bool Recover;
429 
430   LLVMContext *C;
431   Type *IntptrTy;
432   Type *OriginTy;
433 
434   /// Thread-local shadow storage for function parameters.
435   GlobalVariable *ParamTLS;
436 
437   /// Thread-local origin storage for function parameters.
438   GlobalVariable *ParamOriginTLS;
439 
440   /// Thread-local shadow storage for function return value.
441   GlobalVariable *RetvalTLS;
442 
443   /// Thread-local origin storage for function return value.
444   GlobalVariable *RetvalOriginTLS;
445 
446   /// Thread-local shadow storage for in-register va_arg function
447   /// parameters (x86_64-specific).
448   GlobalVariable *VAArgTLS;
449 
450   /// Thread-local shadow storage for va_arg overflow area
451   /// (x86_64-specific).
452   GlobalVariable *VAArgOverflowSizeTLS;
453 
454   /// Thread-local space used to pass origin value to the UMR reporting
455   /// function.
456   GlobalVariable *OriginTLS;
457 
458   /// The run-time callback to print a warning.
459   Value *WarningFn = nullptr;
460 
461   // These arrays are indexed by log2(AccessSize).
462   Value *MaybeWarningFn[kNumberOfAccessSizes];
463   Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
464 
465   /// Run-time helper that generates a new origin value for a stack
466   /// allocation.
467   Value *MsanSetAllocaOrigin4Fn;
468 
469   /// Run-time helper that poisons stack on function entry.
470   Value *MsanPoisonStackFn;
471 
472   /// Run-time helper that records a store (or any event) of an
473   /// uninitialized value and returns an updated origin id encoding this info.
474   Value *MsanChainOriginFn;
475 
476   /// MSan runtime replacements for memmove, memcpy and memset.
477   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
478 
479   /// Memory map parameters used in application-to-shadow calculation.
480   const MemoryMapParams *MapParams;
481 
482   /// Custom memory map parameters used when -msan-shadow-base or
483   // -msan-origin-base is provided.
484   MemoryMapParams CustomMapParams;
485 
486   MDNode *ColdCallWeights;
487 
488   /// Branch weights for origin store.
489   MDNode *OriginStoreWeights;
490 
491   /// An empty volatile inline asm that prevents callback merge.
492   InlineAsm *EmptyAsm;
493 
494   Function *MsanCtorFunction;
495 };
496 
497 } // end anonymous namespace
498 
499 char MemorySanitizer::ID = 0;
500 
501 INITIALIZE_PASS_BEGIN(
502     MemorySanitizer, "msan",
503     "MemorySanitizer: detects uninitialized reads.", false, false)
504 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
505 INITIALIZE_PASS_END(
506     MemorySanitizer, "msan",
507     "MemorySanitizer: detects uninitialized reads.", false, false)
508 
509 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins, bool Recover) {
510   return new MemorySanitizer(TrackOrigins, Recover);
511 }
512 
513 /// Create a non-const global initialized with the given string.
514 ///
515 /// Creates a writable global for Str so that we can pass it to the
516 /// run-time lib. Runtime uses first 4 bytes of the string to store the
517 /// frame ID, so the string needs to be mutable.
518 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
519                                                             StringRef Str) {
520   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
521   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
522                             GlobalValue::PrivateLinkage, StrConst, "");
523 }
524 
525 /// Insert extern declaration of runtime-provided functions and globals.
526 void MemorySanitizer::initializeCallbacks(Module &M) {
527   // Only do this once.
528   if (WarningFn)
529     return;
530 
531   IRBuilder<> IRB(*C);
532   // Create the callback.
533   // FIXME: this function should have "Cold" calling conv,
534   // which is not yet implemented.
535   StringRef WarningFnName = Recover ? "__msan_warning"
536                                     : "__msan_warning_noreturn";
537   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
538 
539   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
540        AccessSizeIndex++) {
541     unsigned AccessSize = 1 << AccessSizeIndex;
542     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
543     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
544         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
545         IRB.getInt32Ty());
546 
547     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
548     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
549         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
550         IRB.getInt8PtrTy(), IRB.getInt32Ty());
551   }
552 
553   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
554     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
555     IRB.getInt8PtrTy(), IntptrTy);
556   MsanPoisonStackFn =
557       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
558                             IRB.getInt8PtrTy(), IntptrTy);
559   MsanChainOriginFn = M.getOrInsertFunction(
560     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
561   MemmoveFn = M.getOrInsertFunction(
562     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
563     IRB.getInt8PtrTy(), IntptrTy);
564   MemcpyFn = M.getOrInsertFunction(
565     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
566     IntptrTy);
567   MemsetFn = M.getOrInsertFunction(
568     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
569     IntptrTy);
570 
571   // Create globals.
572   RetvalTLS = new GlobalVariable(
573     M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
574     GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
575     GlobalVariable::InitialExecTLSModel);
576   RetvalOriginTLS = new GlobalVariable(
577     M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
578     "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
579 
580   ParamTLS = new GlobalVariable(
581     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
582     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
583     GlobalVariable::InitialExecTLSModel);
584   ParamOriginTLS = new GlobalVariable(
585     M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
586     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
587     nullptr, GlobalVariable::InitialExecTLSModel);
588 
589   VAArgTLS = new GlobalVariable(
590     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
591     GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
592     GlobalVariable::InitialExecTLSModel);
593   VAArgOverflowSizeTLS = new GlobalVariable(
594     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
595     "__msan_va_arg_overflow_size_tls", nullptr,
596     GlobalVariable::InitialExecTLSModel);
597   OriginTLS = new GlobalVariable(
598     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
599     "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
600 
601   // We insert an empty inline asm after __msan_report* to avoid callback merge.
602   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
603                             StringRef(""), StringRef(""),
604                             /*hasSideEffects=*/true);
605 }
606 
607 /// Module-level initialization.
608 ///
609 /// inserts a call to __msan_init to the module's constructor list.
610 bool MemorySanitizer::doInitialization(Module &M) {
611   auto &DL = M.getDataLayout();
612 
613   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
614   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
615   // Check the overrides first
616   if (ShadowPassed || OriginPassed) {
617     CustomMapParams.AndMask = ClAndMask;
618     CustomMapParams.XorMask = ClXorMask;
619     CustomMapParams.ShadowBase = ClShadowBase;
620     CustomMapParams.OriginBase = ClOriginBase;
621     MapParams = &CustomMapParams;
622   } else {
623     Triple TargetTriple(M.getTargetTriple());
624     switch (TargetTriple.getOS()) {
625       case Triple::FreeBSD:
626         switch (TargetTriple.getArch()) {
627           case Triple::x86_64:
628             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
629             break;
630           case Triple::x86:
631             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
632             break;
633           default:
634             report_fatal_error("unsupported architecture");
635         }
636         break;
637       case Triple::NetBSD:
638         switch (TargetTriple.getArch()) {
639           case Triple::x86_64:
640             MapParams = NetBSD_X86_MemoryMapParams.bits64;
641             break;
642           default:
643             report_fatal_error("unsupported architecture");
644         }
645         break;
646       case Triple::Linux:
647         switch (TargetTriple.getArch()) {
648           case Triple::x86_64:
649             MapParams = Linux_X86_MemoryMapParams.bits64;
650             break;
651           case Triple::x86:
652             MapParams = Linux_X86_MemoryMapParams.bits32;
653             break;
654           case Triple::mips64:
655           case Triple::mips64el:
656             MapParams = Linux_MIPS_MemoryMapParams.bits64;
657             break;
658           case Triple::ppc64:
659           case Triple::ppc64le:
660             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
661             break;
662           case Triple::aarch64:
663           case Triple::aarch64_be:
664             MapParams = Linux_ARM_MemoryMapParams.bits64;
665             break;
666           default:
667             report_fatal_error("unsupported architecture");
668         }
669         break;
670       default:
671         report_fatal_error("unsupported operating system");
672     }
673   }
674 
675   C = &(M.getContext());
676   IRBuilder<> IRB(*C);
677   IntptrTy = IRB.getIntPtrTy(DL);
678   OriginTy = IRB.getInt32Ty();
679 
680   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
681   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
682 
683   std::tie(MsanCtorFunction, std::ignore) =
684       createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
685                                           /*InitArgTypes=*/{},
686                                           /*InitArgs=*/{});
687   if (ClWithComdat) {
688     Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
689     MsanCtorFunction->setComdat(MsanCtorComdat);
690     appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction);
691   } else {
692     appendToGlobalCtors(M, MsanCtorFunction, 0);
693   }
694 
695 
696   if (TrackOrigins)
697     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
698                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
699 
700   if (Recover)
701     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
702                        IRB.getInt32(Recover), "__msan_keep_going");
703 
704   return true;
705 }
706 
707 namespace {
708 
709 /// A helper class that handles instrumentation of VarArg
710 /// functions on a particular platform.
711 ///
712 /// Implementations are expected to insert the instrumentation
713 /// necessary to propagate argument shadow through VarArg function
714 /// calls. Visit* methods are called during an InstVisitor pass over
715 /// the function, and should avoid creating new basic blocks. A new
716 /// instance of this class is created for each instrumented function.
717 struct VarArgHelper {
718   virtual ~VarArgHelper() = default;
719 
720   /// Visit a CallSite.
721   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
722 
723   /// Visit a va_start call.
724   virtual void visitVAStartInst(VAStartInst &I) = 0;
725 
726   /// Visit a va_copy call.
727   virtual void visitVACopyInst(VACopyInst &I) = 0;
728 
729   /// Finalize function instrumentation.
730   ///
731   /// This method is called after visiting all interesting (see above)
732   /// instructions in a function.
733   virtual void finalizeInstrumentation() = 0;
734 };
735 
736 struct MemorySanitizerVisitor;
737 
738 } // end anonymous namespace
739 
740 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
741                                         MemorySanitizerVisitor &Visitor);
742 
743 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
744   if (TypeSize <= 8) return 0;
745   return Log2_32_Ceil((TypeSize + 7) / 8);
746 }
747 
748 namespace {
749 
750 /// This class does all the work for a given function. Store and Load
751 /// instructions store and load corresponding shadow and origin
752 /// values. Most instructions propagate shadow from arguments to their
753 /// return values. Certain instructions (most importantly, BranchInst)
754 /// test their argument shadow and print reports (with a runtime call) if it's
755 /// non-zero.
756 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
757   Function &F;
758   MemorySanitizer &MS;
759   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
760   ValueMap<Value*, Value*> ShadowMap, OriginMap;
761   std::unique_ptr<VarArgHelper> VAHelper;
762   const TargetLibraryInfo *TLI;
763   BasicBlock *ActualFnStart;
764 
765   // The following flags disable parts of MSan instrumentation based on
766   // blacklist contents and command-line options.
767   bool InsertChecks;
768   bool PropagateShadow;
769   bool PoisonStack;
770   bool PoisonUndef;
771   bool CheckReturnValue;
772 
773   struct ShadowOriginAndInsertPoint {
774     Value *Shadow;
775     Value *Origin;
776     Instruction *OrigIns;
777 
778     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
779       : Shadow(S), Origin(O), OrigIns(I) {}
780   };
781   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
782   SmallVector<StoreInst *, 16> StoreList;
783 
784   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
785       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
786     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
787     InsertChecks = SanitizeFunction;
788     PropagateShadow = SanitizeFunction;
789     PoisonStack = SanitizeFunction && ClPoisonStack;
790     PoisonUndef = SanitizeFunction && ClPoisonUndef;
791     // FIXME: Consider using SpecialCaseList to specify a list of functions that
792     // must always return fully initialized values. For now, we hardcode "main".
793     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
794     TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
795 
796     MS.initializeCallbacks(*F.getParent());
797     ActualFnStart = &F.getEntryBlock();
798 
799     LLVM_DEBUG(if (!InsertChecks) dbgs()
800                << "MemorySanitizer is not inserting checks into '"
801                << F.getName() << "'\n");
802   }
803 
804   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
805     if (MS.TrackOrigins <= 1) return V;
806     return IRB.CreateCall(MS.MsanChainOriginFn, V);
807   }
808 
809   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
810     const DataLayout &DL = F.getParent()->getDataLayout();
811     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
812     if (IntptrSize == kOriginSize) return Origin;
813     assert(IntptrSize == kOriginSize * 2);
814     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
815     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
816   }
817 
818   /// Fill memory range with the given origin value.
819   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
820                    unsigned Size, unsigned Alignment) {
821     const DataLayout &DL = F.getParent()->getDataLayout();
822     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
823     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
824     assert(IntptrAlignment >= kMinOriginAlignment);
825     assert(IntptrSize >= kOriginSize);
826 
827     unsigned Ofs = 0;
828     unsigned CurrentAlignment = Alignment;
829     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
830       Value *IntptrOrigin = originToIntptr(IRB, Origin);
831       Value *IntptrOriginPtr =
832           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
833       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
834         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
835                        : IntptrOriginPtr;
836         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
837         Ofs += IntptrSize / kOriginSize;
838         CurrentAlignment = IntptrAlignment;
839       }
840     }
841 
842     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
843       Value *GEP =
844           i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
845       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
846       CurrentAlignment = kMinOriginAlignment;
847     }
848   }
849 
850   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
851                    Value *OriginPtr, unsigned Alignment, bool AsCall) {
852     const DataLayout &DL = F.getParent()->getDataLayout();
853     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
854     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
855     if (Shadow->getType()->isAggregateType()) {
856       paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
857                   OriginAlignment);
858     } else {
859       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
860       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
861       if (ConstantShadow) {
862         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
863           paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
864                       OriginAlignment);
865         return;
866       }
867 
868       unsigned TypeSizeInBits =
869           DL.getTypeSizeInBits(ConvertedShadow->getType());
870       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
871       if (AsCall && SizeIndex < kNumberOfAccessSizes) {
872         Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
873         Value *ConvertedShadow2 = IRB.CreateZExt(
874             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
875         IRB.CreateCall(Fn, {ConvertedShadow2,
876                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
877                             Origin});
878       } else {
879         Value *Cmp = IRB.CreateICmpNE(
880             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
881         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
882             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
883         IRBuilder<> IRBNew(CheckTerm);
884         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
885                     OriginAlignment);
886       }
887     }
888   }
889 
890   void materializeStores(bool InstrumentWithCalls) {
891     for (StoreInst *SI : StoreList) {
892       IRBuilder<> IRB(SI);
893       Value *Val = SI->getValueOperand();
894       Value *Addr = SI->getPointerOperand();
895       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
896       Value *ShadowPtr, *OriginPtr;
897       Type *ShadowTy = Shadow->getType();
898       unsigned Alignment = SI->getAlignment();
899       unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
900       std::tie(ShadowPtr, OriginPtr) =
901           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
902 
903       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
904       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
905 
906       if (ClCheckAccessAddress)
907         insertShadowCheck(Addr, NewSI);
908 
909       if (SI->isAtomic())
910         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
911 
912       if (MS.TrackOrigins && !SI->isAtomic())
913         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
914                     OriginAlignment, InstrumentWithCalls);
915     }
916   }
917 
918   /// Helper function to insert a warning at IRB's current insert point.
919   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
920     if (!Origin)
921       Origin = (Value *)IRB.getInt32(0);
922     if (MS.TrackOrigins) {
923       IRB.CreateStore(Origin, MS.OriginTLS);
924     }
925     IRB.CreateCall(MS.WarningFn, {});
926     IRB.CreateCall(MS.EmptyAsm, {});
927     // FIXME: Insert UnreachableInst if !MS.Recover?
928     // This may invalidate some of the following checks and needs to be done
929     // at the very end.
930   }
931 
932   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
933                            bool AsCall) {
934     IRBuilder<> IRB(OrigIns);
935     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
936     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
937     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
938 
939     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
940     if (ConstantShadow) {
941       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
942         insertWarningFn(IRB, Origin);
943       }
944       return;
945     }
946 
947     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
948 
949     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
950     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
951     if (AsCall && SizeIndex < kNumberOfAccessSizes) {
952       Value *Fn = MS.MaybeWarningFn[SizeIndex];
953       Value *ConvertedShadow2 =
954           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
955       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
956                                                 ? Origin
957                                                 : (Value *)IRB.getInt32(0)});
958     } else {
959       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
960                                     getCleanShadow(ConvertedShadow), "_mscmp");
961       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
962           Cmp, OrigIns,
963           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
964 
965       IRB.SetInsertPoint(CheckTerm);
966       insertWarningFn(IRB, Origin);
967       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
968     }
969   }
970 
971   void materializeChecks(bool InstrumentWithCalls) {
972     for (const auto &ShadowData : InstrumentationList) {
973       Instruction *OrigIns = ShadowData.OrigIns;
974       Value *Shadow = ShadowData.Shadow;
975       Value *Origin = ShadowData.Origin;
976       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
977     }
978     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
979   }
980 
981   /// Add MemorySanitizer instrumentation to a function.
982   bool runOnFunction() {
983     // In the presence of unreachable blocks, we may see Phi nodes with
984     // incoming nodes from such blocks. Since InstVisitor skips unreachable
985     // blocks, such nodes will not have any shadow value associated with them.
986     // It's easier to remove unreachable blocks than deal with missing shadow.
987     removeUnreachableBlocks(F);
988 
989     // Iterate all BBs in depth-first order and create shadow instructions
990     // for all instructions (where applicable).
991     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
992     for (BasicBlock *BB : depth_first(ActualFnStart))
993       visit(*BB);
994 
995     // Finalize PHI nodes.
996     for (PHINode *PN : ShadowPHINodes) {
997       PHINode *PNS = cast<PHINode>(getShadow(PN));
998       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
999       size_t NumValues = PN->getNumIncomingValues();
1000       for (size_t v = 0; v < NumValues; v++) {
1001         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1002         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1003       }
1004     }
1005 
1006     VAHelper->finalizeInstrumentation();
1007 
1008     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1009                                InstrumentationList.size() + StoreList.size() >
1010                                    (unsigned)ClInstrumentationWithCallThreshold;
1011 
1012     // Delayed instrumentation of StoreInst.
1013     // This may add new checks to be inserted later.
1014     materializeStores(InstrumentWithCalls);
1015 
1016     // Insert shadow value checks.
1017     materializeChecks(InstrumentWithCalls);
1018 
1019     return true;
1020   }
1021 
1022   /// Compute the shadow type that corresponds to a given Value.
1023   Type *getShadowTy(Value *V) {
1024     return getShadowTy(V->getType());
1025   }
1026 
1027   /// Compute the shadow type that corresponds to a given Type.
1028   Type *getShadowTy(Type *OrigTy) {
1029     if (!OrigTy->isSized()) {
1030       return nullptr;
1031     }
1032     // For integer type, shadow is the same as the original type.
1033     // This may return weird-sized types like i1.
1034     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1035       return IT;
1036     const DataLayout &DL = F.getParent()->getDataLayout();
1037     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1038       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1039       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1040                              VT->getNumElements());
1041     }
1042     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1043       return ArrayType::get(getShadowTy(AT->getElementType()),
1044                             AT->getNumElements());
1045     }
1046     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1047       SmallVector<Type*, 4> Elements;
1048       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1049         Elements.push_back(getShadowTy(ST->getElementType(i)));
1050       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1051       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1052       return Res;
1053     }
1054     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1055     return IntegerType::get(*MS.C, TypeSize);
1056   }
1057 
1058   /// Flatten a vector type.
1059   Type *getShadowTyNoVec(Type *ty) {
1060     if (VectorType *vt = dyn_cast<VectorType>(ty))
1061       return IntegerType::get(*MS.C, vt->getBitWidth());
1062     return ty;
1063   }
1064 
1065   /// Convert a shadow value to it's flattened variant.
1066   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
1067     Type *Ty = V->getType();
1068     Type *NoVecTy = getShadowTyNoVec(Ty);
1069     if (Ty == NoVecTy) return V;
1070     return IRB.CreateBitCast(V, NoVecTy);
1071   }
1072 
1073   /// Compute the integer shadow offset that corresponds to a given
1074   /// application address.
1075   ///
1076   /// Offset = (Addr & ~AndMask) ^ XorMask
1077   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1078     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1079 
1080     uint64_t AndMask = MS.MapParams->AndMask;
1081     if (AndMask)
1082       OffsetLong =
1083           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1084 
1085     uint64_t XorMask = MS.MapParams->XorMask;
1086     if (XorMask)
1087       OffsetLong =
1088           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1089     return OffsetLong;
1090   }
1091 
1092   /// Compute the shadow and origin addresses corresponding to a given
1093   /// application address.
1094   ///
1095   /// Shadow = ShadowBase + Offset
1096   /// Origin = (OriginBase + Offset) & ~3ULL
1097   std::pair<Value *, Value *> getShadowOriginPtrUserspace(
1098       Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, unsigned Alignment,
1099       Instruction **FirstInsn) {
1100     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1101     Value *ShadowLong = ShadowOffset;
1102     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1103     *FirstInsn = dyn_cast<Instruction>(ShadowLong);
1104     if (ShadowBase != 0) {
1105       ShadowLong =
1106         IRB.CreateAdd(ShadowLong,
1107                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1108     }
1109     Value *ShadowPtr =
1110         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1111     Value *OriginPtr = nullptr;
1112     if (MS.TrackOrigins) {
1113       Value *OriginLong = ShadowOffset;
1114       uint64_t OriginBase = MS.MapParams->OriginBase;
1115       if (OriginBase != 0)
1116         OriginLong = IRB.CreateAdd(OriginLong,
1117                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1118       if (Alignment < kMinOriginAlignment) {
1119         uint64_t Mask = kMinOriginAlignment - 1;
1120         OriginLong =
1121             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1122       }
1123       OriginPtr =
1124           IRB.CreateIntToPtr(OriginLong, PointerType::get(IRB.getInt32Ty(), 0));
1125     }
1126     return std::make_pair(ShadowPtr, OriginPtr);
1127   }
1128 
1129   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1130                                                  Type *ShadowTy,
1131                                                  unsigned Alignment,
1132                                                  bool isStore) {
1133     Instruction *FirstInsn = nullptr;
1134     std::pair<Value *, Value *> ret =
1135         getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment, &FirstInsn);
1136     return ret;
1137   }
1138 
1139   /// Compute the shadow address for a given function argument.
1140   ///
1141   /// Shadow = ParamTLS+ArgOffset.
1142   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1143                                  int ArgOffset) {
1144     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1145     if (ArgOffset)
1146       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1147     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1148                               "_msarg");
1149   }
1150 
1151   /// Compute the origin address for a given function argument.
1152   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1153                                  int ArgOffset) {
1154     if (!MS.TrackOrigins) return nullptr;
1155     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1156     if (ArgOffset)
1157       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1158     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1159                               "_msarg_o");
1160   }
1161 
1162   /// Compute the shadow address for a retval.
1163   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1164     return IRB.CreatePointerCast(MS.RetvalTLS,
1165                                  PointerType::get(getShadowTy(A), 0),
1166                                  "_msret");
1167   }
1168 
1169   /// Compute the origin address for a retval.
1170   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1171     // We keep a single origin for the entire retval. Might be too optimistic.
1172     return MS.RetvalOriginTLS;
1173   }
1174 
1175   /// Set SV to be the shadow value for V.
1176   void setShadow(Value *V, Value *SV) {
1177     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1178     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1179   }
1180 
1181   /// Set Origin to be the origin value for V.
1182   void setOrigin(Value *V, Value *Origin) {
1183     if (!MS.TrackOrigins) return;
1184     assert(!OriginMap.count(V) && "Values may only have one origin");
1185     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1186     OriginMap[V] = Origin;
1187   }
1188 
1189   Constant *getCleanShadow(Type *OrigTy) {
1190     Type *ShadowTy = getShadowTy(OrigTy);
1191     if (!ShadowTy)
1192       return nullptr;
1193     return Constant::getNullValue(ShadowTy);
1194   }
1195 
1196   /// Create a clean shadow value for a given value.
1197   ///
1198   /// Clean shadow (all zeroes) means all bits of the value are defined
1199   /// (initialized).
1200   Constant *getCleanShadow(Value *V) {
1201     return getCleanShadow(V->getType());
1202   }
1203 
1204   /// Create a dirty shadow of a given shadow type.
1205   Constant *getPoisonedShadow(Type *ShadowTy) {
1206     assert(ShadowTy);
1207     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1208       return Constant::getAllOnesValue(ShadowTy);
1209     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1210       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1211                                       getPoisonedShadow(AT->getElementType()));
1212       return ConstantArray::get(AT, Vals);
1213     }
1214     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1215       SmallVector<Constant *, 4> Vals;
1216       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1217         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1218       return ConstantStruct::get(ST, Vals);
1219     }
1220     llvm_unreachable("Unexpected shadow type");
1221   }
1222 
1223   /// Create a dirty shadow for a given value.
1224   Constant *getPoisonedShadow(Value *V) {
1225     Type *ShadowTy = getShadowTy(V);
1226     if (!ShadowTy)
1227       return nullptr;
1228     return getPoisonedShadow(ShadowTy);
1229   }
1230 
1231   /// Create a clean (zero) origin.
1232   Value *getCleanOrigin() {
1233     return Constant::getNullValue(MS.OriginTy);
1234   }
1235 
1236   /// Get the shadow value for a given Value.
1237   ///
1238   /// This function either returns the value set earlier with setShadow,
1239   /// or extracts if from ParamTLS (for function arguments).
1240   Value *getShadow(Value *V) {
1241     if (!PropagateShadow) return getCleanShadow(V);
1242     if (Instruction *I = dyn_cast<Instruction>(V)) {
1243       if (I->getMetadata("nosanitize"))
1244         return getCleanShadow(V);
1245       // For instructions the shadow is already stored in the map.
1246       Value *Shadow = ShadowMap[V];
1247       if (!Shadow) {
1248         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1249         (void)I;
1250         assert(Shadow && "No shadow for a value");
1251       }
1252       return Shadow;
1253     }
1254     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1255       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1256       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1257       (void)U;
1258       return AllOnes;
1259     }
1260     if (Argument *A = dyn_cast<Argument>(V)) {
1261       // For arguments we compute the shadow on demand and store it in the map.
1262       Value **ShadowPtr = &ShadowMap[V];
1263       if (*ShadowPtr)
1264         return *ShadowPtr;
1265       Function *F = A->getParent();
1266       IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
1267       unsigned ArgOffset = 0;
1268       const DataLayout &DL = F->getParent()->getDataLayout();
1269       for (auto &FArg : F->args()) {
1270         if (!FArg.getType()->isSized()) {
1271           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1272           continue;
1273         }
1274         unsigned Size =
1275             FArg.hasByValAttr()
1276                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1277                 : DL.getTypeAllocSize(FArg.getType());
1278         if (A == &FArg) {
1279           bool Overflow = ArgOffset + Size > kParamTLSSize;
1280           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1281           if (FArg.hasByValAttr()) {
1282             // ByVal pointer itself has clean shadow. We copy the actual
1283             // argument shadow to the underlying memory.
1284             // Figure out maximal valid memcpy alignment.
1285             unsigned ArgAlign = FArg.getParamAlignment();
1286             if (ArgAlign == 0) {
1287               Type *EltType = A->getType()->getPointerElementType();
1288               ArgAlign = DL.getABITypeAlignment(EltType);
1289             }
1290             Value *CpShadowPtr =
1291                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1292                                    /*isStore*/ true)
1293                     .first;
1294             if (Overflow) {
1295               // ParamTLS overflow.
1296               EntryIRB.CreateMemSet(
1297                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1298                   Size, ArgAlign);
1299             } else {
1300               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1301               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1302                                                  CopyAlign, Size);
1303               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1304               (void)Cpy;
1305             }
1306             *ShadowPtr = getCleanShadow(V);
1307           } else {
1308             if (Overflow) {
1309               // ParamTLS overflow.
1310               *ShadowPtr = getCleanShadow(V);
1311             } else {
1312               *ShadowPtr =
1313                   EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1314             }
1315           }
1316           LLVM_DEBUG(dbgs()
1317                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1318           if (MS.TrackOrigins && !Overflow) {
1319             Value *OriginPtr =
1320                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1321             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
1322           } else {
1323             setOrigin(A, getCleanOrigin());
1324           }
1325         }
1326         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1327       }
1328       assert(*ShadowPtr && "Could not find shadow for an argument");
1329       return *ShadowPtr;
1330     }
1331     // For everything else the shadow is zero.
1332     return getCleanShadow(V);
1333   }
1334 
1335   /// Get the shadow for i-th argument of the instruction I.
1336   Value *getShadow(Instruction *I, int i) {
1337     return getShadow(I->getOperand(i));
1338   }
1339 
1340   /// Get the origin for a value.
1341   Value *getOrigin(Value *V) {
1342     if (!MS.TrackOrigins) return nullptr;
1343     if (!PropagateShadow) return getCleanOrigin();
1344     if (isa<Constant>(V)) return getCleanOrigin();
1345     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1346            "Unexpected value type in getOrigin()");
1347     if (Instruction *I = dyn_cast<Instruction>(V)) {
1348       if (I->getMetadata("nosanitize"))
1349         return getCleanOrigin();
1350     }
1351     Value *Origin = OriginMap[V];
1352     assert(Origin && "Missing origin");
1353     return Origin;
1354   }
1355 
1356   /// Get the origin for i-th argument of the instruction I.
1357   Value *getOrigin(Instruction *I, int i) {
1358     return getOrigin(I->getOperand(i));
1359   }
1360 
1361   /// Remember the place where a shadow check should be inserted.
1362   ///
1363   /// This location will be later instrumented with a check that will print a
1364   /// UMR warning in runtime if the shadow value is not 0.
1365   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1366     assert(Shadow);
1367     if (!InsertChecks) return;
1368 #ifndef NDEBUG
1369     Type *ShadowTy = Shadow->getType();
1370     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1371            "Can only insert checks for integer and vector shadow types");
1372 #endif
1373     InstrumentationList.push_back(
1374         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1375   }
1376 
1377   /// Remember the place where a shadow check should be inserted.
1378   ///
1379   /// This location will be later instrumented with a check that will print a
1380   /// UMR warning in runtime if the value is not fully defined.
1381   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1382     assert(Val);
1383     Value *Shadow, *Origin;
1384     if (ClCheckConstantShadow) {
1385       Shadow = getShadow(Val);
1386       if (!Shadow) return;
1387       Origin = getOrigin(Val);
1388     } else {
1389       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1390       if (!Shadow) return;
1391       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1392     }
1393     insertShadowCheck(Shadow, Origin, OrigIns);
1394   }
1395 
1396   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1397     switch (a) {
1398       case AtomicOrdering::NotAtomic:
1399         return AtomicOrdering::NotAtomic;
1400       case AtomicOrdering::Unordered:
1401       case AtomicOrdering::Monotonic:
1402       case AtomicOrdering::Release:
1403         return AtomicOrdering::Release;
1404       case AtomicOrdering::Acquire:
1405       case AtomicOrdering::AcquireRelease:
1406         return AtomicOrdering::AcquireRelease;
1407       case AtomicOrdering::SequentiallyConsistent:
1408         return AtomicOrdering::SequentiallyConsistent;
1409     }
1410     llvm_unreachable("Unknown ordering");
1411   }
1412 
1413   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1414     switch (a) {
1415       case AtomicOrdering::NotAtomic:
1416         return AtomicOrdering::NotAtomic;
1417       case AtomicOrdering::Unordered:
1418       case AtomicOrdering::Monotonic:
1419       case AtomicOrdering::Acquire:
1420         return AtomicOrdering::Acquire;
1421       case AtomicOrdering::Release:
1422       case AtomicOrdering::AcquireRelease:
1423         return AtomicOrdering::AcquireRelease;
1424       case AtomicOrdering::SequentiallyConsistent:
1425         return AtomicOrdering::SequentiallyConsistent;
1426     }
1427     llvm_unreachable("Unknown ordering");
1428   }
1429 
1430   // ------------------- Visitors.
1431   using InstVisitor<MemorySanitizerVisitor>::visit;
1432   void visit(Instruction &I) {
1433     if (!I.getMetadata("nosanitize"))
1434       InstVisitor<MemorySanitizerVisitor>::visit(I);
1435   }
1436 
1437   /// Instrument LoadInst
1438   ///
1439   /// Loads the corresponding shadow and (optionally) origin.
1440   /// Optionally, checks that the load address is fully defined.
1441   void visitLoadInst(LoadInst &I) {
1442     assert(I.getType()->isSized() && "Load type must have size");
1443     assert(!I.getMetadata("nosanitize"));
1444     IRBuilder<> IRB(I.getNextNode());
1445     Type *ShadowTy = getShadowTy(&I);
1446     Value *Addr = I.getPointerOperand();
1447     Value *ShadowPtr, *OriginPtr;
1448     unsigned Alignment = I.getAlignment();
1449     if (PropagateShadow) {
1450       std::tie(ShadowPtr, OriginPtr) =
1451           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1452       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld"));
1453     } else {
1454       setShadow(&I, getCleanShadow(&I));
1455     }
1456 
1457     if (ClCheckAccessAddress)
1458       insertShadowCheck(I.getPointerOperand(), &I);
1459 
1460     if (I.isAtomic())
1461       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1462 
1463     if (MS.TrackOrigins) {
1464       if (PropagateShadow) {
1465         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1466         setOrigin(&I, IRB.CreateAlignedLoad(OriginPtr, OriginAlignment));
1467       } else {
1468         setOrigin(&I, getCleanOrigin());
1469       }
1470     }
1471   }
1472 
1473   /// Instrument StoreInst
1474   ///
1475   /// Stores the corresponding shadow and (optionally) origin.
1476   /// Optionally, checks that the store address is fully defined.
1477   void visitStoreInst(StoreInst &I) {
1478     StoreList.push_back(&I);
1479   }
1480 
1481   void handleCASOrRMW(Instruction &I) {
1482     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1483 
1484     IRBuilder<> IRB(&I);
1485     Value *Addr = I.getOperand(0);
1486     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
1487                                           /*Alignment*/ 1, /*isStore*/ true)
1488                            .first;
1489 
1490     if (ClCheckAccessAddress)
1491       insertShadowCheck(Addr, &I);
1492 
1493     // Only test the conditional argument of cmpxchg instruction.
1494     // The other argument can potentially be uninitialized, but we can not
1495     // detect this situation reliably without possible false positives.
1496     if (isa<AtomicCmpXchgInst>(I))
1497       insertShadowCheck(I.getOperand(1), &I);
1498 
1499     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1500 
1501     setShadow(&I, getCleanShadow(&I));
1502     setOrigin(&I, getCleanOrigin());
1503   }
1504 
1505   void visitAtomicRMWInst(AtomicRMWInst &I) {
1506     handleCASOrRMW(I);
1507     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1508   }
1509 
1510   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1511     handleCASOrRMW(I);
1512     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1513   }
1514 
1515   // Vector manipulation.
1516   void visitExtractElementInst(ExtractElementInst &I) {
1517     insertShadowCheck(I.getOperand(1), &I);
1518     IRBuilder<> IRB(&I);
1519     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1520               "_msprop"));
1521     setOrigin(&I, getOrigin(&I, 0));
1522   }
1523 
1524   void visitInsertElementInst(InsertElementInst &I) {
1525     insertShadowCheck(I.getOperand(2), &I);
1526     IRBuilder<> IRB(&I);
1527     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1528               I.getOperand(2), "_msprop"));
1529     setOriginForNaryOp(I);
1530   }
1531 
1532   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1533     insertShadowCheck(I.getOperand(2), &I);
1534     IRBuilder<> IRB(&I);
1535     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1536               I.getOperand(2), "_msprop"));
1537     setOriginForNaryOp(I);
1538   }
1539 
1540   // Casts.
1541   void visitSExtInst(SExtInst &I) {
1542     IRBuilder<> IRB(&I);
1543     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1544     setOrigin(&I, getOrigin(&I, 0));
1545   }
1546 
1547   void visitZExtInst(ZExtInst &I) {
1548     IRBuilder<> IRB(&I);
1549     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1550     setOrigin(&I, getOrigin(&I, 0));
1551   }
1552 
1553   void visitTruncInst(TruncInst &I) {
1554     IRBuilder<> IRB(&I);
1555     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1556     setOrigin(&I, getOrigin(&I, 0));
1557   }
1558 
1559   void visitBitCastInst(BitCastInst &I) {
1560     // Special case: if this is the bitcast (there is exactly 1 allowed) between
1561     // a musttail call and a ret, don't instrument. New instructions are not
1562     // allowed after a musttail call.
1563     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1564       if (CI->isMustTailCall())
1565         return;
1566     IRBuilder<> IRB(&I);
1567     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1568     setOrigin(&I, getOrigin(&I, 0));
1569   }
1570 
1571   void visitPtrToIntInst(PtrToIntInst &I) {
1572     IRBuilder<> IRB(&I);
1573     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1574              "_msprop_ptrtoint"));
1575     setOrigin(&I, getOrigin(&I, 0));
1576   }
1577 
1578   void visitIntToPtrInst(IntToPtrInst &I) {
1579     IRBuilder<> IRB(&I);
1580     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1581              "_msprop_inttoptr"));
1582     setOrigin(&I, getOrigin(&I, 0));
1583   }
1584 
1585   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1586   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1587   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1588   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1589   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1590   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1591 
1592   /// Propagate shadow for bitwise AND.
1593   ///
1594   /// This code is exact, i.e. if, for example, a bit in the left argument
1595   /// is defined and 0, then neither the value not definedness of the
1596   /// corresponding bit in B don't affect the resulting shadow.
1597   void visitAnd(BinaryOperator &I) {
1598     IRBuilder<> IRB(&I);
1599     //  "And" of 0 and a poisoned value results in unpoisoned value.
1600     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1601     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1602     //  1&p => p;     0&p => 0;     p&p => p;
1603     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1604     Value *S1 = getShadow(&I, 0);
1605     Value *S2 = getShadow(&I, 1);
1606     Value *V1 = I.getOperand(0);
1607     Value *V2 = I.getOperand(1);
1608     if (V1->getType() != S1->getType()) {
1609       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1610       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1611     }
1612     Value *S1S2 = IRB.CreateAnd(S1, S2);
1613     Value *V1S2 = IRB.CreateAnd(V1, S2);
1614     Value *S1V2 = IRB.CreateAnd(S1, V2);
1615     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1616     setOriginForNaryOp(I);
1617   }
1618 
1619   void visitOr(BinaryOperator &I) {
1620     IRBuilder<> IRB(&I);
1621     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1622     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1623     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1624     //  1|p => 1;     0|p => p;     p|p => p;
1625     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1626     Value *S1 = getShadow(&I, 0);
1627     Value *S2 = getShadow(&I, 1);
1628     Value *V1 = IRB.CreateNot(I.getOperand(0));
1629     Value *V2 = IRB.CreateNot(I.getOperand(1));
1630     if (V1->getType() != S1->getType()) {
1631       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1632       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1633     }
1634     Value *S1S2 = IRB.CreateAnd(S1, S2);
1635     Value *V1S2 = IRB.CreateAnd(V1, S2);
1636     Value *S1V2 = IRB.CreateAnd(S1, V2);
1637     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1638     setOriginForNaryOp(I);
1639   }
1640 
1641   /// Default propagation of shadow and/or origin.
1642   ///
1643   /// This class implements the general case of shadow propagation, used in all
1644   /// cases where we don't know and/or don't care about what the operation
1645   /// actually does. It converts all input shadow values to a common type
1646   /// (extending or truncating as necessary), and bitwise OR's them.
1647   ///
1648   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1649   /// fully initialized), and less prone to false positives.
1650   ///
1651   /// This class also implements the general case of origin propagation. For a
1652   /// Nary operation, result origin is set to the origin of an argument that is
1653   /// not entirely initialized. If there is more than one such arguments, the
1654   /// rightmost of them is picked. It does not matter which one is picked if all
1655   /// arguments are initialized.
1656   template <bool CombineShadow>
1657   class Combiner {
1658     Value *Shadow = nullptr;
1659     Value *Origin = nullptr;
1660     IRBuilder<> &IRB;
1661     MemorySanitizerVisitor *MSV;
1662 
1663   public:
1664     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
1665         : IRB(IRB), MSV(MSV) {}
1666 
1667     /// Add a pair of shadow and origin values to the mix.
1668     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1669       if (CombineShadow) {
1670         assert(OpShadow);
1671         if (!Shadow)
1672           Shadow = OpShadow;
1673         else {
1674           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1675           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1676         }
1677       }
1678 
1679       if (MSV->MS.TrackOrigins) {
1680         assert(OpOrigin);
1681         if (!Origin) {
1682           Origin = OpOrigin;
1683         } else {
1684           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1685           // No point in adding something that might result in 0 origin value.
1686           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1687             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1688             Value *Cond =
1689                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1690             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1691           }
1692         }
1693       }
1694       return *this;
1695     }
1696 
1697     /// Add an application value to the mix.
1698     Combiner &Add(Value *V) {
1699       Value *OpShadow = MSV->getShadow(V);
1700       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1701       return Add(OpShadow, OpOrigin);
1702     }
1703 
1704     /// Set the current combined values as the given instruction's shadow
1705     /// and origin.
1706     void Done(Instruction *I) {
1707       if (CombineShadow) {
1708         assert(Shadow);
1709         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1710         MSV->setShadow(I, Shadow);
1711       }
1712       if (MSV->MS.TrackOrigins) {
1713         assert(Origin);
1714         MSV->setOrigin(I, Origin);
1715       }
1716     }
1717   };
1718 
1719   using ShadowAndOriginCombiner = Combiner<true>;
1720   using OriginCombiner = Combiner<false>;
1721 
1722   /// Propagate origin for arbitrary operation.
1723   void setOriginForNaryOp(Instruction &I) {
1724     if (!MS.TrackOrigins) return;
1725     IRBuilder<> IRB(&I);
1726     OriginCombiner OC(this, IRB);
1727     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1728       OC.Add(OI->get());
1729     OC.Done(&I);
1730   }
1731 
1732   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1733     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1734            "Vector of pointers is not a valid shadow type");
1735     return Ty->isVectorTy() ?
1736       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1737       Ty->getPrimitiveSizeInBits();
1738   }
1739 
1740   /// Cast between two shadow types, extending or truncating as
1741   /// necessary.
1742   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1743                           bool Signed = false) {
1744     Type *srcTy = V->getType();
1745     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1746     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1747     if (srcSizeInBits > 1 && dstSizeInBits == 1)
1748       return IRB.CreateICmpNE(V, getCleanShadow(V));
1749 
1750     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1751       return IRB.CreateIntCast(V, dstTy, Signed);
1752     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1753         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1754       return IRB.CreateIntCast(V, dstTy, Signed);
1755     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1756     Value *V2 =
1757       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1758     return IRB.CreateBitCast(V2, dstTy);
1759     // TODO: handle struct types.
1760   }
1761 
1762   /// Cast an application value to the type of its own shadow.
1763   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1764     Type *ShadowTy = getShadowTy(V);
1765     if (V->getType() == ShadowTy)
1766       return V;
1767     if (V->getType()->isPtrOrPtrVectorTy())
1768       return IRB.CreatePtrToInt(V, ShadowTy);
1769     else
1770       return IRB.CreateBitCast(V, ShadowTy);
1771   }
1772 
1773   /// Propagate shadow for arbitrary operation.
1774   void handleShadowOr(Instruction &I) {
1775     IRBuilder<> IRB(&I);
1776     ShadowAndOriginCombiner SC(this, IRB);
1777     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1778       SC.Add(OI->get());
1779     SC.Done(&I);
1780   }
1781 
1782   // Handle multiplication by constant.
1783   //
1784   // Handle a special case of multiplication by constant that may have one or
1785   // more zeros in the lower bits. This makes corresponding number of lower bits
1786   // of the result zero as well. We model it by shifting the other operand
1787   // shadow left by the required number of bits. Effectively, we transform
1788   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1789   // We use multiplication by 2**N instead of shift to cover the case of
1790   // multiplication by 0, which may occur in some elements of a vector operand.
1791   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1792                            Value *OtherArg) {
1793     Constant *ShadowMul;
1794     Type *Ty = ConstArg->getType();
1795     if (Ty->isVectorTy()) {
1796       unsigned NumElements = Ty->getVectorNumElements();
1797       Type *EltTy = Ty->getSequentialElementType();
1798       SmallVector<Constant *, 16> Elements;
1799       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1800         if (ConstantInt *Elt =
1801                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
1802           const APInt &V = Elt->getValue();
1803           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1804           Elements.push_back(ConstantInt::get(EltTy, V2));
1805         } else {
1806           Elements.push_back(ConstantInt::get(EltTy, 1));
1807         }
1808       }
1809       ShadowMul = ConstantVector::get(Elements);
1810     } else {
1811       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
1812         const APInt &V = Elt->getValue();
1813         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1814         ShadowMul = ConstantInt::get(Ty, V2);
1815       } else {
1816         ShadowMul = ConstantInt::get(Ty, 1);
1817       }
1818     }
1819 
1820     IRBuilder<> IRB(&I);
1821     setShadow(&I,
1822               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1823     setOrigin(&I, getOrigin(OtherArg));
1824   }
1825 
1826   void visitMul(BinaryOperator &I) {
1827     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1828     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1829     if (constOp0 && !constOp1)
1830       handleMulByConstant(I, constOp0, I.getOperand(1));
1831     else if (constOp1 && !constOp0)
1832       handleMulByConstant(I, constOp1, I.getOperand(0));
1833     else
1834       handleShadowOr(I);
1835   }
1836 
1837   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1838   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1839   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1840   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1841   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1842   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1843 
1844   void handleIntegerDiv(Instruction &I) {
1845     IRBuilder<> IRB(&I);
1846     // Strict on the second argument.
1847     insertShadowCheck(I.getOperand(1), &I);
1848     setShadow(&I, getShadow(&I, 0));
1849     setOrigin(&I, getOrigin(&I, 0));
1850   }
1851 
1852   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
1853   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
1854   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
1855   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
1856 
1857   // Floating point division is side-effect free. We can not require that the
1858   // divisor is fully initialized and must propagate shadow. See PR37523.
1859   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
1860   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
1861 
1862   /// Instrument == and != comparisons.
1863   ///
1864   /// Sometimes the comparison result is known even if some of the bits of the
1865   /// arguments are not.
1866   void handleEqualityComparison(ICmpInst &I) {
1867     IRBuilder<> IRB(&I);
1868     Value *A = I.getOperand(0);
1869     Value *B = I.getOperand(1);
1870     Value *Sa = getShadow(A);
1871     Value *Sb = getShadow(B);
1872 
1873     // Get rid of pointers and vectors of pointers.
1874     // For ints (and vectors of ints), types of A and Sa match,
1875     // and this is a no-op.
1876     A = IRB.CreatePointerCast(A, Sa->getType());
1877     B = IRB.CreatePointerCast(B, Sb->getType());
1878 
1879     // A == B  <==>  (C = A^B) == 0
1880     // A != B  <==>  (C = A^B) != 0
1881     // Sc = Sa | Sb
1882     Value *C = IRB.CreateXor(A, B);
1883     Value *Sc = IRB.CreateOr(Sa, Sb);
1884     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1885     // Result is defined if one of the following is true
1886     // * there is a defined 1 bit in C
1887     // * C is fully defined
1888     // Si = !(C & ~Sc) && Sc
1889     Value *Zero = Constant::getNullValue(Sc->getType());
1890     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1891     Value *Si =
1892       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1893                     IRB.CreateICmpEQ(
1894                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1895     Si->setName("_msprop_icmp");
1896     setShadow(&I, Si);
1897     setOriginForNaryOp(I);
1898   }
1899 
1900   /// Build the lowest possible value of V, taking into account V's
1901   ///        uninitialized bits.
1902   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1903                                 bool isSigned) {
1904     if (isSigned) {
1905       // Split shadow into sign bit and other bits.
1906       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1907       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1908       // Maximise the undefined shadow bit, minimize other undefined bits.
1909       return
1910         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1911     } else {
1912       // Minimize undefined bits.
1913       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1914     }
1915   }
1916 
1917   /// Build the highest possible value of V, taking into account V's
1918   ///        uninitialized bits.
1919   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1920                                 bool isSigned) {
1921     if (isSigned) {
1922       // Split shadow into sign bit and other bits.
1923       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1924       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1925       // Minimise the undefined shadow bit, maximise other undefined bits.
1926       return
1927         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1928     } else {
1929       // Maximize undefined bits.
1930       return IRB.CreateOr(A, Sa);
1931     }
1932   }
1933 
1934   /// Instrument relational comparisons.
1935   ///
1936   /// This function does exact shadow propagation for all relational
1937   /// comparisons of integers, pointers and vectors of those.
1938   /// FIXME: output seems suboptimal when one of the operands is a constant
1939   void handleRelationalComparisonExact(ICmpInst &I) {
1940     IRBuilder<> IRB(&I);
1941     Value *A = I.getOperand(0);
1942     Value *B = I.getOperand(1);
1943     Value *Sa = getShadow(A);
1944     Value *Sb = getShadow(B);
1945 
1946     // Get rid of pointers and vectors of pointers.
1947     // For ints (and vectors of ints), types of A and Sa match,
1948     // and this is a no-op.
1949     A = IRB.CreatePointerCast(A, Sa->getType());
1950     B = IRB.CreatePointerCast(B, Sb->getType());
1951 
1952     // Let [a0, a1] be the interval of possible values of A, taking into account
1953     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1954     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1955     bool IsSigned = I.isSigned();
1956     Value *S1 = IRB.CreateICmp(I.getPredicate(),
1957                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
1958                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
1959     Value *S2 = IRB.CreateICmp(I.getPredicate(),
1960                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
1961                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
1962     Value *Si = IRB.CreateXor(S1, S2);
1963     setShadow(&I, Si);
1964     setOriginForNaryOp(I);
1965   }
1966 
1967   /// Instrument signed relational comparisons.
1968   ///
1969   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
1970   /// bit of the shadow. Everything else is delegated to handleShadowOr().
1971   void handleSignedRelationalComparison(ICmpInst &I) {
1972     Constant *constOp;
1973     Value *op = nullptr;
1974     CmpInst::Predicate pre;
1975     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
1976       op = I.getOperand(0);
1977       pre = I.getPredicate();
1978     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
1979       op = I.getOperand(1);
1980       pre = I.getSwappedPredicate();
1981     } else {
1982       handleShadowOr(I);
1983       return;
1984     }
1985 
1986     if ((constOp->isNullValue() &&
1987          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
1988         (constOp->isAllOnesValue() &&
1989          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
1990       IRBuilder<> IRB(&I);
1991       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
1992                                         "_msprop_icmp_s");
1993       setShadow(&I, Shadow);
1994       setOrigin(&I, getOrigin(op));
1995     } else {
1996       handleShadowOr(I);
1997     }
1998   }
1999 
2000   void visitICmpInst(ICmpInst &I) {
2001     if (!ClHandleICmp) {
2002       handleShadowOr(I);
2003       return;
2004     }
2005     if (I.isEquality()) {
2006       handleEqualityComparison(I);
2007       return;
2008     }
2009 
2010     assert(I.isRelational());
2011     if (ClHandleICmpExact) {
2012       handleRelationalComparisonExact(I);
2013       return;
2014     }
2015     if (I.isSigned()) {
2016       handleSignedRelationalComparison(I);
2017       return;
2018     }
2019 
2020     assert(I.isUnsigned());
2021     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2022       handleRelationalComparisonExact(I);
2023       return;
2024     }
2025 
2026     handleShadowOr(I);
2027   }
2028 
2029   void visitFCmpInst(FCmpInst &I) {
2030     handleShadowOr(I);
2031   }
2032 
2033   void handleShift(BinaryOperator &I) {
2034     IRBuilder<> IRB(&I);
2035     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2036     // Otherwise perform the same shift on S1.
2037     Value *S1 = getShadow(&I, 0);
2038     Value *S2 = getShadow(&I, 1);
2039     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2040                                    S2->getType());
2041     Value *V2 = I.getOperand(1);
2042     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2043     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2044     setOriginForNaryOp(I);
2045   }
2046 
2047   void visitShl(BinaryOperator &I) { handleShift(I); }
2048   void visitAShr(BinaryOperator &I) { handleShift(I); }
2049   void visitLShr(BinaryOperator &I) { handleShift(I); }
2050 
2051   /// Instrument llvm.memmove
2052   ///
2053   /// At this point we don't know if llvm.memmove will be inlined or not.
2054   /// If we don't instrument it and it gets inlined,
2055   /// our interceptor will not kick in and we will lose the memmove.
2056   /// If we instrument the call here, but it does not get inlined,
2057   /// we will memove the shadow twice: which is bad in case
2058   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2059   ///
2060   /// Similar situation exists for memcpy and memset.
2061   void visitMemMoveInst(MemMoveInst &I) {
2062     IRBuilder<> IRB(&I);
2063     IRB.CreateCall(
2064         MS.MemmoveFn,
2065         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2066          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2067          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2068     I.eraseFromParent();
2069   }
2070 
2071   // Similar to memmove: avoid copying shadow twice.
2072   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2073   // FIXME: consider doing manual inline for small constant sizes and proper
2074   // alignment.
2075   void visitMemCpyInst(MemCpyInst &I) {
2076     IRBuilder<> IRB(&I);
2077     IRB.CreateCall(
2078         MS.MemcpyFn,
2079         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2080          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2081          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2082     I.eraseFromParent();
2083   }
2084 
2085   // Same as memcpy.
2086   void visitMemSetInst(MemSetInst &I) {
2087     IRBuilder<> IRB(&I);
2088     IRB.CreateCall(
2089         MS.MemsetFn,
2090         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2091          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2092          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2093     I.eraseFromParent();
2094   }
2095 
2096   void visitVAStartInst(VAStartInst &I) {
2097     VAHelper->visitVAStartInst(I);
2098   }
2099 
2100   void visitVACopyInst(VACopyInst &I) {
2101     VAHelper->visitVACopyInst(I);
2102   }
2103 
2104   /// Handle vector store-like intrinsics.
2105   ///
2106   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2107   /// has 1 pointer argument and 1 vector argument, returns void.
2108   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2109     IRBuilder<> IRB(&I);
2110     Value* Addr = I.getArgOperand(0);
2111     Value *Shadow = getShadow(&I, 1);
2112     Value *ShadowPtr, *OriginPtr;
2113 
2114     // We don't know the pointer alignment (could be unaligned SSE store!).
2115     // Have to assume to worst case.
2116     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2117         Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
2118     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
2119 
2120     if (ClCheckAccessAddress)
2121       insertShadowCheck(Addr, &I);
2122 
2123     // FIXME: factor out common code from materializeStores
2124     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2125     return true;
2126   }
2127 
2128   /// Handle vector load-like intrinsics.
2129   ///
2130   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2131   /// has 1 pointer argument, returns a vector.
2132   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2133     IRBuilder<> IRB(&I);
2134     Value *Addr = I.getArgOperand(0);
2135 
2136     Type *ShadowTy = getShadowTy(&I);
2137     Value *ShadowPtr, *OriginPtr;
2138     if (PropagateShadow) {
2139       // We don't know the pointer alignment (could be unaligned SSE load!).
2140       // Have to assume to worst case.
2141       unsigned Alignment = 1;
2142       std::tie(ShadowPtr, OriginPtr) =
2143           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2144       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld"));
2145     } else {
2146       setShadow(&I, getCleanShadow(&I));
2147     }
2148 
2149     if (ClCheckAccessAddress)
2150       insertShadowCheck(Addr, &I);
2151 
2152     if (MS.TrackOrigins) {
2153       if (PropagateShadow)
2154         setOrigin(&I, IRB.CreateLoad(OriginPtr));
2155       else
2156         setOrigin(&I, getCleanOrigin());
2157     }
2158     return true;
2159   }
2160 
2161   /// Handle (SIMD arithmetic)-like intrinsics.
2162   ///
2163   /// Instrument intrinsics with any number of arguments of the same type,
2164   /// equal to the return type. The type should be simple (no aggregates or
2165   /// pointers; vectors are fine).
2166   /// Caller guarantees that this intrinsic does not access memory.
2167   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2168     Type *RetTy = I.getType();
2169     if (!(RetTy->isIntOrIntVectorTy() ||
2170           RetTy->isFPOrFPVectorTy() ||
2171           RetTy->isX86_MMXTy()))
2172       return false;
2173 
2174     unsigned NumArgOperands = I.getNumArgOperands();
2175 
2176     for (unsigned i = 0; i < NumArgOperands; ++i) {
2177       Type *Ty = I.getArgOperand(i)->getType();
2178       if (Ty != RetTy)
2179         return false;
2180     }
2181 
2182     IRBuilder<> IRB(&I);
2183     ShadowAndOriginCombiner SC(this, IRB);
2184     for (unsigned i = 0; i < NumArgOperands; ++i)
2185       SC.Add(I.getArgOperand(i));
2186     SC.Done(&I);
2187 
2188     return true;
2189   }
2190 
2191   /// Heuristically instrument unknown intrinsics.
2192   ///
2193   /// The main purpose of this code is to do something reasonable with all
2194   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2195   /// We recognize several classes of intrinsics by their argument types and
2196   /// ModRefBehaviour and apply special intrumentation when we are reasonably
2197   /// sure that we know what the intrinsic does.
2198   ///
2199   /// We special-case intrinsics where this approach fails. See llvm.bswap
2200   /// handling as an example of that.
2201   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2202     unsigned NumArgOperands = I.getNumArgOperands();
2203     if (NumArgOperands == 0)
2204       return false;
2205 
2206     if (NumArgOperands == 2 &&
2207         I.getArgOperand(0)->getType()->isPointerTy() &&
2208         I.getArgOperand(1)->getType()->isVectorTy() &&
2209         I.getType()->isVoidTy() &&
2210         !I.onlyReadsMemory()) {
2211       // This looks like a vector store.
2212       return handleVectorStoreIntrinsic(I);
2213     }
2214 
2215     if (NumArgOperands == 1 &&
2216         I.getArgOperand(0)->getType()->isPointerTy() &&
2217         I.getType()->isVectorTy() &&
2218         I.onlyReadsMemory()) {
2219       // This looks like a vector load.
2220       return handleVectorLoadIntrinsic(I);
2221     }
2222 
2223     if (I.doesNotAccessMemory())
2224       if (maybeHandleSimpleNomemIntrinsic(I))
2225         return true;
2226 
2227     // FIXME: detect and handle SSE maskstore/maskload
2228     return false;
2229   }
2230 
2231   void handleBswap(IntrinsicInst &I) {
2232     IRBuilder<> IRB(&I);
2233     Value *Op = I.getArgOperand(0);
2234     Type *OpType = Op->getType();
2235     Function *BswapFunc = Intrinsic::getDeclaration(
2236       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2237     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2238     setOrigin(&I, getOrigin(Op));
2239   }
2240 
2241   // Instrument vector convert instrinsic.
2242   //
2243   // This function instruments intrinsics like cvtsi2ss:
2244   // %Out = int_xxx_cvtyyy(%ConvertOp)
2245   // or
2246   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2247   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2248   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2249   // elements from \p CopyOp.
2250   // In most cases conversion involves floating-point value which may trigger a
2251   // hardware exception when not fully initialized. For this reason we require
2252   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2253   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2254   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2255   // return a fully initialized value.
2256   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2257     IRBuilder<> IRB(&I);
2258     Value *CopyOp, *ConvertOp;
2259 
2260     switch (I.getNumArgOperands()) {
2261     case 3:
2262       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2263       LLVM_FALLTHROUGH;
2264     case 2:
2265       CopyOp = I.getArgOperand(0);
2266       ConvertOp = I.getArgOperand(1);
2267       break;
2268     case 1:
2269       ConvertOp = I.getArgOperand(0);
2270       CopyOp = nullptr;
2271       break;
2272     default:
2273       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2274     }
2275 
2276     // The first *NumUsedElements* elements of ConvertOp are converted to the
2277     // same number of output elements. The rest of the output is copied from
2278     // CopyOp, or (if not available) filled with zeroes.
2279     // Combine shadow for elements of ConvertOp that are used in this operation,
2280     // and insert a check.
2281     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2282     // int->any conversion.
2283     Value *ConvertShadow = getShadow(ConvertOp);
2284     Value *AggShadow = nullptr;
2285     if (ConvertOp->getType()->isVectorTy()) {
2286       AggShadow = IRB.CreateExtractElement(
2287           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2288       for (int i = 1; i < NumUsedElements; ++i) {
2289         Value *MoreShadow = IRB.CreateExtractElement(
2290             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2291         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2292       }
2293     } else {
2294       AggShadow = ConvertShadow;
2295     }
2296     assert(AggShadow->getType()->isIntegerTy());
2297     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2298 
2299     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2300     // ConvertOp.
2301     if (CopyOp) {
2302       assert(CopyOp->getType() == I.getType());
2303       assert(CopyOp->getType()->isVectorTy());
2304       Value *ResultShadow = getShadow(CopyOp);
2305       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2306       for (int i = 0; i < NumUsedElements; ++i) {
2307         ResultShadow = IRB.CreateInsertElement(
2308             ResultShadow, ConstantInt::getNullValue(EltTy),
2309             ConstantInt::get(IRB.getInt32Ty(), i));
2310       }
2311       setShadow(&I, ResultShadow);
2312       setOrigin(&I, getOrigin(CopyOp));
2313     } else {
2314       setShadow(&I, getCleanShadow(&I));
2315       setOrigin(&I, getCleanOrigin());
2316     }
2317   }
2318 
2319   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2320   // zeroes if it is zero, and all ones otherwise.
2321   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2322     if (S->getType()->isVectorTy())
2323       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2324     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2325     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2326     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2327   }
2328 
2329   // Given a vector, extract its first element, and return all
2330   // zeroes if it is zero, and all ones otherwise.
2331   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2332     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2333     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2334     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2335   }
2336 
2337   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2338     Type *T = S->getType();
2339     assert(T->isVectorTy());
2340     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2341     return IRB.CreateSExt(S2, T);
2342   }
2343 
2344   // Instrument vector shift instrinsic.
2345   //
2346   // This function instruments intrinsics like int_x86_avx2_psll_w.
2347   // Intrinsic shifts %In by %ShiftSize bits.
2348   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2349   // size, and the rest is ignored. Behavior is defined even if shift size is
2350   // greater than register (or field) width.
2351   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2352     assert(I.getNumArgOperands() == 2);
2353     IRBuilder<> IRB(&I);
2354     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2355     // Otherwise perform the same shift on S1.
2356     Value *S1 = getShadow(&I, 0);
2357     Value *S2 = getShadow(&I, 1);
2358     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2359                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2360     Value *V1 = I.getOperand(0);
2361     Value *V2 = I.getOperand(1);
2362     Value *Shift = IRB.CreateCall(I.getCalledValue(),
2363                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2364     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2365     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2366     setOriginForNaryOp(I);
2367   }
2368 
2369   // Get an X86_MMX-sized vector type.
2370   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2371     const unsigned X86_MMXSizeInBits = 64;
2372     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2373                            X86_MMXSizeInBits / EltSizeInBits);
2374   }
2375 
2376   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2377   // intrinsic.
2378   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2379     switch (id) {
2380       case Intrinsic::x86_sse2_packsswb_128:
2381       case Intrinsic::x86_sse2_packuswb_128:
2382         return Intrinsic::x86_sse2_packsswb_128;
2383 
2384       case Intrinsic::x86_sse2_packssdw_128:
2385       case Intrinsic::x86_sse41_packusdw:
2386         return Intrinsic::x86_sse2_packssdw_128;
2387 
2388       case Intrinsic::x86_avx2_packsswb:
2389       case Intrinsic::x86_avx2_packuswb:
2390         return Intrinsic::x86_avx2_packsswb;
2391 
2392       case Intrinsic::x86_avx2_packssdw:
2393       case Intrinsic::x86_avx2_packusdw:
2394         return Intrinsic::x86_avx2_packssdw;
2395 
2396       case Intrinsic::x86_mmx_packsswb:
2397       case Intrinsic::x86_mmx_packuswb:
2398         return Intrinsic::x86_mmx_packsswb;
2399 
2400       case Intrinsic::x86_mmx_packssdw:
2401         return Intrinsic::x86_mmx_packssdw;
2402       default:
2403         llvm_unreachable("unexpected intrinsic id");
2404     }
2405   }
2406 
2407   // Instrument vector pack instrinsic.
2408   //
2409   // This function instruments intrinsics like x86_mmx_packsswb, that
2410   // packs elements of 2 input vectors into half as many bits with saturation.
2411   // Shadow is propagated with the signed variant of the same intrinsic applied
2412   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2413   // EltSizeInBits is used only for x86mmx arguments.
2414   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2415     assert(I.getNumArgOperands() == 2);
2416     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2417     IRBuilder<> IRB(&I);
2418     Value *S1 = getShadow(&I, 0);
2419     Value *S2 = getShadow(&I, 1);
2420     assert(isX86_MMX || S1->getType()->isVectorTy());
2421 
2422     // SExt and ICmpNE below must apply to individual elements of input vectors.
2423     // In case of x86mmx arguments, cast them to appropriate vector types and
2424     // back.
2425     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2426     if (isX86_MMX) {
2427       S1 = IRB.CreateBitCast(S1, T);
2428       S2 = IRB.CreateBitCast(S2, T);
2429     }
2430     Value *S1_ext = IRB.CreateSExt(
2431         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2432     Value *S2_ext = IRB.CreateSExt(
2433         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2434     if (isX86_MMX) {
2435       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2436       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2437       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2438     }
2439 
2440     Function *ShadowFn = Intrinsic::getDeclaration(
2441         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2442 
2443     Value *S =
2444         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2445     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2446     setShadow(&I, S);
2447     setOriginForNaryOp(I);
2448   }
2449 
2450   // Instrument sum-of-absolute-differencies intrinsic.
2451   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2452     const unsigned SignificantBitsPerResultElement = 16;
2453     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2454     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2455     unsigned ZeroBitsPerResultElement =
2456         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2457 
2458     IRBuilder<> IRB(&I);
2459     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2460     S = IRB.CreateBitCast(S, ResTy);
2461     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2462                        ResTy);
2463     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2464     S = IRB.CreateBitCast(S, getShadowTy(&I));
2465     setShadow(&I, S);
2466     setOriginForNaryOp(I);
2467   }
2468 
2469   // Instrument multiply-add intrinsic.
2470   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2471                                   unsigned EltSizeInBits = 0) {
2472     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2473     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2474     IRBuilder<> IRB(&I);
2475     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2476     S = IRB.CreateBitCast(S, ResTy);
2477     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2478                        ResTy);
2479     S = IRB.CreateBitCast(S, getShadowTy(&I));
2480     setShadow(&I, S);
2481     setOriginForNaryOp(I);
2482   }
2483 
2484   // Instrument compare-packed intrinsic.
2485   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2486   // all-ones shadow.
2487   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2488     IRBuilder<> IRB(&I);
2489     Type *ResTy = getShadowTy(&I);
2490     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2491     Value *S = IRB.CreateSExt(
2492         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2493     setShadow(&I, S);
2494     setOriginForNaryOp(I);
2495   }
2496 
2497   // Instrument compare-scalar intrinsic.
2498   // This handles both cmp* intrinsics which return the result in the first
2499   // element of a vector, and comi* which return the result as i32.
2500   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2501     IRBuilder<> IRB(&I);
2502     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2503     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2504     setShadow(&I, S);
2505     setOriginForNaryOp(I);
2506   }
2507 
2508   void handleStmxcsr(IntrinsicInst &I) {
2509     IRBuilder<> IRB(&I);
2510     Value* Addr = I.getArgOperand(0);
2511     Type *Ty = IRB.getInt32Ty();
2512     Value *ShadowPtr =
2513         getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
2514             .first;
2515 
2516     IRB.CreateStore(getCleanShadow(Ty),
2517                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
2518 
2519     if (ClCheckAccessAddress)
2520       insertShadowCheck(Addr, &I);
2521   }
2522 
2523   void handleLdmxcsr(IntrinsicInst &I) {
2524     if (!InsertChecks) return;
2525 
2526     IRBuilder<> IRB(&I);
2527     Value *Addr = I.getArgOperand(0);
2528     Type *Ty = IRB.getInt32Ty();
2529     unsigned Alignment = 1;
2530     Value *ShadowPtr, *OriginPtr;
2531     std::tie(ShadowPtr, OriginPtr) =
2532         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
2533 
2534     if (ClCheckAccessAddress)
2535       insertShadowCheck(Addr, &I);
2536 
2537     Value *Shadow = IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_ldmxcsr");
2538     Value *Origin =
2539         MS.TrackOrigins ? IRB.CreateLoad(OriginPtr) : getCleanOrigin();
2540     insertShadowCheck(Shadow, Origin, &I);
2541   }
2542 
2543   void handleMaskedStore(IntrinsicInst &I) {
2544     IRBuilder<> IRB(&I);
2545     Value *V = I.getArgOperand(0);
2546     Value *Addr = I.getArgOperand(1);
2547     unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
2548     Value *Mask = I.getArgOperand(3);
2549     Value *Shadow = getShadow(V);
2550 
2551     Value *ShadowPtr;
2552     Value *OriginPtr;
2553     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2554         Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
2555 
2556     if (ClCheckAccessAddress) {
2557       insertShadowCheck(Addr, &I);
2558       // Uninitialized mask is kind of like uninitialized address, but not as
2559       // scary.
2560       insertShadowCheck(Mask, &I);
2561     }
2562 
2563     IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
2564 
2565     if (MS.TrackOrigins) {
2566       auto &DL = F.getParent()->getDataLayout();
2567       paintOrigin(IRB, getOrigin(V), OriginPtr,
2568                   DL.getTypeStoreSize(Shadow->getType()),
2569                   std::max(Align, kMinOriginAlignment));
2570     }
2571   }
2572 
2573   bool handleMaskedLoad(IntrinsicInst &I) {
2574     IRBuilder<> IRB(&I);
2575     Value *Addr = I.getArgOperand(0);
2576     unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
2577     Value *Mask = I.getArgOperand(2);
2578     Value *PassThru = I.getArgOperand(3);
2579 
2580     Type *ShadowTy = getShadowTy(&I);
2581     Value *ShadowPtr, *OriginPtr;
2582     if (PropagateShadow) {
2583       std::tie(ShadowPtr, OriginPtr) =
2584           getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
2585       setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
2586                                          getShadow(PassThru), "_msmaskedld"));
2587     } else {
2588       setShadow(&I, getCleanShadow(&I));
2589     }
2590 
2591     if (ClCheckAccessAddress) {
2592       insertShadowCheck(Addr, &I);
2593       insertShadowCheck(Mask, &I);
2594     }
2595 
2596     if (MS.TrackOrigins) {
2597       if (PropagateShadow) {
2598         // Choose between PassThru's and the loaded value's origins.
2599         Value *MaskedPassThruShadow = IRB.CreateAnd(
2600             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
2601 
2602         Value *Acc = IRB.CreateExtractElement(
2603             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2604         for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
2605              ++i) {
2606           Value *More = IRB.CreateExtractElement(
2607               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2608           Acc = IRB.CreateOr(Acc, More);
2609         }
2610 
2611         Value *Origin = IRB.CreateSelect(
2612             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
2613             getOrigin(PassThru), IRB.CreateLoad(OriginPtr));
2614 
2615         setOrigin(&I, Origin);
2616       } else {
2617         setOrigin(&I, getCleanOrigin());
2618       }
2619     }
2620     return true;
2621   }
2622 
2623 
2624   void visitIntrinsicInst(IntrinsicInst &I) {
2625     switch (I.getIntrinsicID()) {
2626     case Intrinsic::bswap:
2627       handleBswap(I);
2628       break;
2629     case Intrinsic::masked_store:
2630       handleMaskedStore(I);
2631       break;
2632     case Intrinsic::masked_load:
2633       handleMaskedLoad(I);
2634       break;
2635     case Intrinsic::x86_sse_stmxcsr:
2636       handleStmxcsr(I);
2637       break;
2638     case Intrinsic::x86_sse_ldmxcsr:
2639       handleLdmxcsr(I);
2640       break;
2641     case Intrinsic::x86_avx512_vcvtsd2usi64:
2642     case Intrinsic::x86_avx512_vcvtsd2usi32:
2643     case Intrinsic::x86_avx512_vcvtss2usi64:
2644     case Intrinsic::x86_avx512_vcvtss2usi32:
2645     case Intrinsic::x86_avx512_cvttss2usi64:
2646     case Intrinsic::x86_avx512_cvttss2usi:
2647     case Intrinsic::x86_avx512_cvttsd2usi64:
2648     case Intrinsic::x86_avx512_cvttsd2usi:
2649     case Intrinsic::x86_avx512_cvtusi2ss:
2650     case Intrinsic::x86_avx512_cvtusi642sd:
2651     case Intrinsic::x86_avx512_cvtusi642ss:
2652     case Intrinsic::x86_sse2_cvtsd2si64:
2653     case Intrinsic::x86_sse2_cvtsd2si:
2654     case Intrinsic::x86_sse2_cvtsd2ss:
2655     case Intrinsic::x86_sse2_cvttsd2si64:
2656     case Intrinsic::x86_sse2_cvttsd2si:
2657     case Intrinsic::x86_sse_cvtss2si64:
2658     case Intrinsic::x86_sse_cvtss2si:
2659     case Intrinsic::x86_sse_cvttss2si64:
2660     case Intrinsic::x86_sse_cvttss2si:
2661       handleVectorConvertIntrinsic(I, 1);
2662       break;
2663     case Intrinsic::x86_sse_cvtps2pi:
2664     case Intrinsic::x86_sse_cvttps2pi:
2665       handleVectorConvertIntrinsic(I, 2);
2666       break;
2667 
2668     case Intrinsic::x86_avx512_psll_w_512:
2669     case Intrinsic::x86_avx512_psll_d_512:
2670     case Intrinsic::x86_avx512_psll_q_512:
2671     case Intrinsic::x86_avx512_pslli_w_512:
2672     case Intrinsic::x86_avx512_pslli_d_512:
2673     case Intrinsic::x86_avx512_pslli_q_512:
2674     case Intrinsic::x86_avx512_psrl_w_512:
2675     case Intrinsic::x86_avx512_psrl_d_512:
2676     case Intrinsic::x86_avx512_psrl_q_512:
2677     case Intrinsic::x86_avx512_psra_w_512:
2678     case Intrinsic::x86_avx512_psra_d_512:
2679     case Intrinsic::x86_avx512_psra_q_512:
2680     case Intrinsic::x86_avx512_psrli_w_512:
2681     case Intrinsic::x86_avx512_psrli_d_512:
2682     case Intrinsic::x86_avx512_psrli_q_512:
2683     case Intrinsic::x86_avx512_psrai_w_512:
2684     case Intrinsic::x86_avx512_psrai_d_512:
2685     case Intrinsic::x86_avx512_psrai_q_512:
2686     case Intrinsic::x86_avx512_psra_q_256:
2687     case Intrinsic::x86_avx512_psra_q_128:
2688     case Intrinsic::x86_avx512_psrai_q_256:
2689     case Intrinsic::x86_avx512_psrai_q_128:
2690     case Intrinsic::x86_avx2_psll_w:
2691     case Intrinsic::x86_avx2_psll_d:
2692     case Intrinsic::x86_avx2_psll_q:
2693     case Intrinsic::x86_avx2_pslli_w:
2694     case Intrinsic::x86_avx2_pslli_d:
2695     case Intrinsic::x86_avx2_pslli_q:
2696     case Intrinsic::x86_avx2_psrl_w:
2697     case Intrinsic::x86_avx2_psrl_d:
2698     case Intrinsic::x86_avx2_psrl_q:
2699     case Intrinsic::x86_avx2_psra_w:
2700     case Intrinsic::x86_avx2_psra_d:
2701     case Intrinsic::x86_avx2_psrli_w:
2702     case Intrinsic::x86_avx2_psrli_d:
2703     case Intrinsic::x86_avx2_psrli_q:
2704     case Intrinsic::x86_avx2_psrai_w:
2705     case Intrinsic::x86_avx2_psrai_d:
2706     case Intrinsic::x86_sse2_psll_w:
2707     case Intrinsic::x86_sse2_psll_d:
2708     case Intrinsic::x86_sse2_psll_q:
2709     case Intrinsic::x86_sse2_pslli_w:
2710     case Intrinsic::x86_sse2_pslli_d:
2711     case Intrinsic::x86_sse2_pslli_q:
2712     case Intrinsic::x86_sse2_psrl_w:
2713     case Intrinsic::x86_sse2_psrl_d:
2714     case Intrinsic::x86_sse2_psrl_q:
2715     case Intrinsic::x86_sse2_psra_w:
2716     case Intrinsic::x86_sse2_psra_d:
2717     case Intrinsic::x86_sse2_psrli_w:
2718     case Intrinsic::x86_sse2_psrli_d:
2719     case Intrinsic::x86_sse2_psrli_q:
2720     case Intrinsic::x86_sse2_psrai_w:
2721     case Intrinsic::x86_sse2_psrai_d:
2722     case Intrinsic::x86_mmx_psll_w:
2723     case Intrinsic::x86_mmx_psll_d:
2724     case Intrinsic::x86_mmx_psll_q:
2725     case Intrinsic::x86_mmx_pslli_w:
2726     case Intrinsic::x86_mmx_pslli_d:
2727     case Intrinsic::x86_mmx_pslli_q:
2728     case Intrinsic::x86_mmx_psrl_w:
2729     case Intrinsic::x86_mmx_psrl_d:
2730     case Intrinsic::x86_mmx_psrl_q:
2731     case Intrinsic::x86_mmx_psra_w:
2732     case Intrinsic::x86_mmx_psra_d:
2733     case Intrinsic::x86_mmx_psrli_w:
2734     case Intrinsic::x86_mmx_psrli_d:
2735     case Intrinsic::x86_mmx_psrli_q:
2736     case Intrinsic::x86_mmx_psrai_w:
2737     case Intrinsic::x86_mmx_psrai_d:
2738       handleVectorShiftIntrinsic(I, /* Variable */ false);
2739       break;
2740     case Intrinsic::x86_avx2_psllv_d:
2741     case Intrinsic::x86_avx2_psllv_d_256:
2742     case Intrinsic::x86_avx512_psllv_d_512:
2743     case Intrinsic::x86_avx2_psllv_q:
2744     case Intrinsic::x86_avx2_psllv_q_256:
2745     case Intrinsic::x86_avx512_psllv_q_512:
2746     case Intrinsic::x86_avx2_psrlv_d:
2747     case Intrinsic::x86_avx2_psrlv_d_256:
2748     case Intrinsic::x86_avx512_psrlv_d_512:
2749     case Intrinsic::x86_avx2_psrlv_q:
2750     case Intrinsic::x86_avx2_psrlv_q_256:
2751     case Intrinsic::x86_avx512_psrlv_q_512:
2752     case Intrinsic::x86_avx2_psrav_d:
2753     case Intrinsic::x86_avx2_psrav_d_256:
2754     case Intrinsic::x86_avx512_psrav_d_512:
2755     case Intrinsic::x86_avx512_psrav_q_128:
2756     case Intrinsic::x86_avx512_psrav_q_256:
2757     case Intrinsic::x86_avx512_psrav_q_512:
2758       handleVectorShiftIntrinsic(I, /* Variable */ true);
2759       break;
2760 
2761     case Intrinsic::x86_sse2_packsswb_128:
2762     case Intrinsic::x86_sse2_packssdw_128:
2763     case Intrinsic::x86_sse2_packuswb_128:
2764     case Intrinsic::x86_sse41_packusdw:
2765     case Intrinsic::x86_avx2_packsswb:
2766     case Intrinsic::x86_avx2_packssdw:
2767     case Intrinsic::x86_avx2_packuswb:
2768     case Intrinsic::x86_avx2_packusdw:
2769       handleVectorPackIntrinsic(I);
2770       break;
2771 
2772     case Intrinsic::x86_mmx_packsswb:
2773     case Intrinsic::x86_mmx_packuswb:
2774       handleVectorPackIntrinsic(I, 16);
2775       break;
2776 
2777     case Intrinsic::x86_mmx_packssdw:
2778       handleVectorPackIntrinsic(I, 32);
2779       break;
2780 
2781     case Intrinsic::x86_mmx_psad_bw:
2782     case Intrinsic::x86_sse2_psad_bw:
2783     case Intrinsic::x86_avx2_psad_bw:
2784       handleVectorSadIntrinsic(I);
2785       break;
2786 
2787     case Intrinsic::x86_sse2_pmadd_wd:
2788     case Intrinsic::x86_avx2_pmadd_wd:
2789     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2790     case Intrinsic::x86_avx2_pmadd_ub_sw:
2791       handleVectorPmaddIntrinsic(I);
2792       break;
2793 
2794     case Intrinsic::x86_ssse3_pmadd_ub_sw:
2795       handleVectorPmaddIntrinsic(I, 8);
2796       break;
2797 
2798     case Intrinsic::x86_mmx_pmadd_wd:
2799       handleVectorPmaddIntrinsic(I, 16);
2800       break;
2801 
2802     case Intrinsic::x86_sse_cmp_ss:
2803     case Intrinsic::x86_sse2_cmp_sd:
2804     case Intrinsic::x86_sse_comieq_ss:
2805     case Intrinsic::x86_sse_comilt_ss:
2806     case Intrinsic::x86_sse_comile_ss:
2807     case Intrinsic::x86_sse_comigt_ss:
2808     case Intrinsic::x86_sse_comige_ss:
2809     case Intrinsic::x86_sse_comineq_ss:
2810     case Intrinsic::x86_sse_ucomieq_ss:
2811     case Intrinsic::x86_sse_ucomilt_ss:
2812     case Intrinsic::x86_sse_ucomile_ss:
2813     case Intrinsic::x86_sse_ucomigt_ss:
2814     case Intrinsic::x86_sse_ucomige_ss:
2815     case Intrinsic::x86_sse_ucomineq_ss:
2816     case Intrinsic::x86_sse2_comieq_sd:
2817     case Intrinsic::x86_sse2_comilt_sd:
2818     case Intrinsic::x86_sse2_comile_sd:
2819     case Intrinsic::x86_sse2_comigt_sd:
2820     case Intrinsic::x86_sse2_comige_sd:
2821     case Intrinsic::x86_sse2_comineq_sd:
2822     case Intrinsic::x86_sse2_ucomieq_sd:
2823     case Intrinsic::x86_sse2_ucomilt_sd:
2824     case Intrinsic::x86_sse2_ucomile_sd:
2825     case Intrinsic::x86_sse2_ucomigt_sd:
2826     case Intrinsic::x86_sse2_ucomige_sd:
2827     case Intrinsic::x86_sse2_ucomineq_sd:
2828       handleVectorCompareScalarIntrinsic(I);
2829       break;
2830 
2831     case Intrinsic::x86_sse_cmp_ps:
2832     case Intrinsic::x86_sse2_cmp_pd:
2833       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
2834       // generates reasonably looking IR that fails in the backend with "Do not
2835       // know how to split the result of this operator!".
2836       handleVectorComparePackedIntrinsic(I);
2837       break;
2838 
2839     default:
2840       if (!handleUnknownIntrinsic(I))
2841         visitInstruction(I);
2842       break;
2843     }
2844   }
2845 
2846   void visitCallSite(CallSite CS) {
2847     Instruction &I = *CS.getInstruction();
2848     assert(!I.getMetadata("nosanitize"));
2849     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2850     if (CS.isCall()) {
2851       CallInst *Call = cast<CallInst>(&I);
2852 
2853       // For inline asm, do the usual thing: check argument shadow and mark all
2854       // outputs as clean. Note that any side effects of the inline asm that are
2855       // not immediately visible in its constraints are not handled.
2856       if (Call->isInlineAsm()) {
2857         if (ClHandleAsmConservative)
2858           visitAsmInstruction(I);
2859         else
2860           visitInstruction(I);
2861         return;
2862       }
2863 
2864       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2865 
2866       // We are going to insert code that relies on the fact that the callee
2867       // will become a non-readonly function after it is instrumented by us. To
2868       // prevent this code from being optimized out, mark that function
2869       // non-readonly in advance.
2870       if (Function *Func = Call->getCalledFunction()) {
2871         // Clear out readonly/readnone attributes.
2872         AttrBuilder B;
2873         B.addAttribute(Attribute::ReadOnly)
2874           .addAttribute(Attribute::ReadNone);
2875         Func->removeAttributes(AttributeList::FunctionIndex, B);
2876       }
2877 
2878       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
2879     }
2880     IRBuilder<> IRB(&I);
2881 
2882     unsigned ArgOffset = 0;
2883     LLVM_DEBUG(dbgs() << "  CallSite: " << I << "\n");
2884     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2885          ArgIt != End; ++ArgIt) {
2886       Value *A = *ArgIt;
2887       unsigned i = ArgIt - CS.arg_begin();
2888       if (!A->getType()->isSized()) {
2889         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2890         continue;
2891       }
2892       unsigned Size = 0;
2893       Value *Store = nullptr;
2894       // Compute the Shadow for arg even if it is ByVal, because
2895       // in that case getShadow() will copy the actual arg shadow to
2896       // __msan_param_tls.
2897       Value *ArgShadow = getShadow(A);
2898       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2899       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
2900                         << " Shadow: " << *ArgShadow << "\n");
2901       bool ArgIsInitialized = false;
2902       const DataLayout &DL = F.getParent()->getDataLayout();
2903       if (CS.paramHasAttr(i, Attribute::ByVal)) {
2904         assert(A->getType()->isPointerTy() &&
2905                "ByVal argument is not a pointer!");
2906         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
2907         if (ArgOffset + Size > kParamTLSSize) break;
2908         unsigned ParamAlignment = CS.getParamAlignment(i);
2909         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
2910         Value *AShadowPtr = getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
2911                                                Alignment, /*isStore*/ false)
2912                                 .first;
2913 
2914         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
2915                                  Alignment, Size);
2916       } else {
2917         Size = DL.getTypeAllocSize(A->getType());
2918         if (ArgOffset + Size > kParamTLSSize) break;
2919         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2920                                        kShadowTLSAlignment);
2921         Constant *Cst = dyn_cast<Constant>(ArgShadow);
2922         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
2923       }
2924       if (MS.TrackOrigins && !ArgIsInitialized)
2925         IRB.CreateStore(getOrigin(A),
2926                         getOriginPtrForArgument(A, IRB, ArgOffset));
2927       (void)Store;
2928       assert(Size != 0 && Store != nullptr);
2929       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
2930       ArgOffset += alignTo(Size, 8);
2931     }
2932     LLVM_DEBUG(dbgs() << "  done with call args\n");
2933 
2934     FunctionType *FT =
2935       cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2936     if (FT->isVarArg()) {
2937       VAHelper->visitCallSite(CS, IRB);
2938     }
2939 
2940     // Now, get the shadow for the RetVal.
2941     if (!I.getType()->isSized()) return;
2942     // Don't emit the epilogue for musttail call returns.
2943     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
2944     IRBuilder<> IRBBefore(&I);
2945     // Until we have full dynamic coverage, make sure the retval shadow is 0.
2946     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2947     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2948     BasicBlock::iterator NextInsn;
2949     if (CS.isCall()) {
2950       NextInsn = ++I.getIterator();
2951       assert(NextInsn != I.getParent()->end());
2952     } else {
2953       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2954       if (!NormalDest->getSinglePredecessor()) {
2955         // FIXME: this case is tricky, so we are just conservative here.
2956         // Perhaps we need to split the edge between this BB and NormalDest,
2957         // but a naive attempt to use SplitEdge leads to a crash.
2958         setShadow(&I, getCleanShadow(&I));
2959         setOrigin(&I, getCleanOrigin());
2960         return;
2961       }
2962       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
2963       // Anything inserted there will be instrumented by MSan later!
2964       NextInsn = NormalDest->getFirstInsertionPt();
2965       assert(NextInsn != NormalDest->end() &&
2966              "Could not find insertion point for retval shadow load");
2967     }
2968     IRBuilder<> IRBAfter(&*NextInsn);
2969     Value *RetvalShadow =
2970       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2971                                  kShadowTLSAlignment, "_msret");
2972     setShadow(&I, RetvalShadow);
2973     if (MS.TrackOrigins)
2974       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2975   }
2976 
2977   bool isAMustTailRetVal(Value *RetVal) {
2978     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2979       RetVal = I->getOperand(0);
2980     }
2981     if (auto *I = dyn_cast<CallInst>(RetVal)) {
2982       return I->isMustTailCall();
2983     }
2984     return false;
2985   }
2986 
2987   void visitReturnInst(ReturnInst &I) {
2988     IRBuilder<> IRB(&I);
2989     Value *RetVal = I.getReturnValue();
2990     if (!RetVal) return;
2991     // Don't emit the epilogue for musttail call returns.
2992     if (isAMustTailRetVal(RetVal)) return;
2993     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2994     if (CheckReturnValue) {
2995       insertShadowCheck(RetVal, &I);
2996       Value *Shadow = getCleanShadow(RetVal);
2997       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2998     } else {
2999       Value *Shadow = getShadow(RetVal);
3000       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3001       if (MS.TrackOrigins)
3002         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3003     }
3004   }
3005 
3006   void visitPHINode(PHINode &I) {
3007     IRBuilder<> IRB(&I);
3008     if (!PropagateShadow) {
3009       setShadow(&I, getCleanShadow(&I));
3010       setOrigin(&I, getCleanOrigin());
3011       return;
3012     }
3013 
3014     ShadowPHINodes.push_back(&I);
3015     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3016                                 "_msphi_s"));
3017     if (MS.TrackOrigins)
3018       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3019                                   "_msphi_o"));
3020   }
3021 
3022   void visitAllocaInst(AllocaInst &I) {
3023     setShadow(&I, getCleanShadow(&I));
3024     setOrigin(&I, getCleanOrigin());
3025     IRBuilder<> IRB(I.getNextNode());
3026     const DataLayout &DL = F.getParent()->getDataLayout();
3027     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3028     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3029     if (I.isArrayAllocation())
3030       Len = IRB.CreateMul(Len, I.getArraySize());
3031     if (PoisonStack && ClPoisonStackWithCall) {
3032       IRB.CreateCall(MS.MsanPoisonStackFn,
3033                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3034     } else {
3035       Value *ShadowBase = getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(),
3036                                              I.getAlignment(), /*isStore*/ true)
3037                               .first;
3038 
3039       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3040       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
3041     }
3042 
3043     if (PoisonStack && MS.TrackOrigins) {
3044       SmallString<2048> StackDescriptionStorage;
3045       raw_svector_ostream StackDescription(StackDescriptionStorage);
3046       // We create a string with a description of the stack allocation and
3047       // pass it into __msan_set_alloca_origin.
3048       // It will be printed by the run-time if stack-originated UMR is found.
3049       // The first 4 bytes of the string are set to '----' and will be replaced
3050       // by __msan_va_arg_overflow_size_tls at the first call.
3051       StackDescription << "----" << I.getName() << "@" << F.getName();
3052       Value *Descr =
3053           createPrivateNonConstGlobalForString(*F.getParent(),
3054                                                StackDescription.str());
3055 
3056       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3057                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3058                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3059                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3060     }
3061   }
3062 
3063   void visitSelectInst(SelectInst& I) {
3064     IRBuilder<> IRB(&I);
3065     // a = select b, c, d
3066     Value *B = I.getCondition();
3067     Value *C = I.getTrueValue();
3068     Value *D = I.getFalseValue();
3069     Value *Sb = getShadow(B);
3070     Value *Sc = getShadow(C);
3071     Value *Sd = getShadow(D);
3072 
3073     // Result shadow if condition shadow is 0.
3074     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3075     Value *Sa1;
3076     if (I.getType()->isAggregateType()) {
3077       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3078       // an extra "select". This results in much more compact IR.
3079       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3080       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3081     } else {
3082       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3083       // If Sb (condition is poisoned), look for bits in c and d that are equal
3084       // and both unpoisoned.
3085       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3086 
3087       // Cast arguments to shadow-compatible type.
3088       C = CreateAppToShadowCast(IRB, C);
3089       D = CreateAppToShadowCast(IRB, D);
3090 
3091       // Result shadow if condition shadow is 1.
3092       Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
3093     }
3094     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3095     setShadow(&I, Sa);
3096     if (MS.TrackOrigins) {
3097       // Origins are always i32, so any vector conditions must be flattened.
3098       // FIXME: consider tracking vector origins for app vectors?
3099       if (B->getType()->isVectorTy()) {
3100         Type *FlatTy = getShadowTyNoVec(B->getType());
3101         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3102                                 ConstantInt::getNullValue(FlatTy));
3103         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3104                                       ConstantInt::getNullValue(FlatTy));
3105       }
3106       // a = select b, c, d
3107       // Oa = Sb ? Ob : (b ? Oc : Od)
3108       setOrigin(
3109           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3110                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3111                                                 getOrigin(I.getFalseValue()))));
3112     }
3113   }
3114 
3115   void visitLandingPadInst(LandingPadInst &I) {
3116     // Do nothing.
3117     // See https://github.com/google/sanitizers/issues/504
3118     setShadow(&I, getCleanShadow(&I));
3119     setOrigin(&I, getCleanOrigin());
3120   }
3121 
3122   void visitCatchSwitchInst(CatchSwitchInst &I) {
3123     setShadow(&I, getCleanShadow(&I));
3124     setOrigin(&I, getCleanOrigin());
3125   }
3126 
3127   void visitFuncletPadInst(FuncletPadInst &I) {
3128     setShadow(&I, getCleanShadow(&I));
3129     setOrigin(&I, getCleanOrigin());
3130   }
3131 
3132   void visitGetElementPtrInst(GetElementPtrInst &I) {
3133     handleShadowOr(I);
3134   }
3135 
3136   void visitExtractValueInst(ExtractValueInst &I) {
3137     IRBuilder<> IRB(&I);
3138     Value *Agg = I.getAggregateOperand();
3139     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3140     Value *AggShadow = getShadow(Agg);
3141     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3142     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3143     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3144     setShadow(&I, ResShadow);
3145     setOriginForNaryOp(I);
3146   }
3147 
3148   void visitInsertValueInst(InsertValueInst &I) {
3149     IRBuilder<> IRB(&I);
3150     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3151     Value *AggShadow = getShadow(I.getAggregateOperand());
3152     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3153     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3154     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3155     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3156     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3157     setShadow(&I, Res);
3158     setOriginForNaryOp(I);
3159   }
3160 
3161   void dumpInst(Instruction &I) {
3162     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3163       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3164     } else {
3165       errs() << "ZZZ " << I.getOpcodeName() << "\n";
3166     }
3167     errs() << "QQQ " << I << "\n";
3168   }
3169 
3170   void visitResumeInst(ResumeInst &I) {
3171     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
3172     // Nothing to do here.
3173   }
3174 
3175   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
3176     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
3177     // Nothing to do here.
3178   }
3179 
3180   void visitCatchReturnInst(CatchReturnInst &CRI) {
3181     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
3182     // Nothing to do here.
3183   }
3184 
3185   void visitAsmInstruction(Instruction &I) {
3186     // Conservative inline assembly handling: check for poisoned shadow of
3187     // asm() arguments, then unpoison the result and all the memory locations
3188     // pointed to by those arguments.
3189     CallInst *CI = dyn_cast<CallInst>(&I);
3190 
3191     for (size_t i = 0, n = CI->getNumOperands(); i < n; i++) {
3192       Value *Operand = CI->getOperand(i);
3193       if (Operand->getType()->isSized())
3194         insertShadowCheck(Operand, &I);
3195     }
3196     setShadow(&I, getCleanShadow(&I));
3197     setOrigin(&I, getCleanOrigin());
3198     IRBuilder<> IRB(&I);
3199     IRB.SetInsertPoint(I.getNextNode());
3200     for (size_t i = 0, n = CI->getNumOperands(); i < n; i++) {
3201       Value *Operand = CI->getOperand(i);
3202       Type *OpType = Operand->getType();
3203       if (!OpType->isPointerTy())
3204         continue;
3205       Type *ElType = OpType->getPointerElementType();
3206       if (!ElType->isSized())
3207         continue;
3208       Value *ShadowPtr, *OriginPtr;
3209       std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3210           Operand, IRB, ElType, /*Alignment*/ 1, /*isStore*/ true);
3211       Value *CShadow = getCleanShadow(ElType);
3212       IRB.CreateStore(
3213           CShadow,
3214           IRB.CreatePointerCast(ShadowPtr, CShadow->getType()->getPointerTo()));
3215     }
3216   }
3217 
3218   void visitInstruction(Instruction &I) {
3219     // Everything else: stop propagating and check for poisoned shadow.
3220     if (ClDumpStrictInstructions)
3221       dumpInst(I);
3222     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
3223     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
3224       Value *Operand = I.getOperand(i);
3225       if (Operand->getType()->isSized())
3226         insertShadowCheck(Operand, &I);
3227     }
3228     setShadow(&I, getCleanShadow(&I));
3229     setOrigin(&I, getCleanOrigin());
3230   }
3231 };
3232 
3233 /// AMD64-specific implementation of VarArgHelper.
3234 struct VarArgAMD64Helper : public VarArgHelper {
3235   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
3236   // See a comment in visitCallSite for more details.
3237   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
3238   static const unsigned AMD64FpEndOffset = 176;
3239 
3240   Function &F;
3241   MemorySanitizer &MS;
3242   MemorySanitizerVisitor &MSV;
3243   Value *VAArgTLSCopy = nullptr;
3244   Value *VAArgOverflowSize = nullptr;
3245 
3246   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3247 
3248   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3249 
3250   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
3251                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3252 
3253   ArgKind classifyArgument(Value* arg) {
3254     // A very rough approximation of X86_64 argument classification rules.
3255     Type *T = arg->getType();
3256     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
3257       return AK_FloatingPoint;
3258     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3259       return AK_GeneralPurpose;
3260     if (T->isPointerTy())
3261       return AK_GeneralPurpose;
3262     return AK_Memory;
3263   }
3264 
3265   // For VarArg functions, store the argument shadow in an ABI-specific format
3266   // that corresponds to va_list layout.
3267   // We do this because Clang lowers va_arg in the frontend, and this pass
3268   // only sees the low level code that deals with va_list internals.
3269   // A much easier alternative (provided that Clang emits va_arg instructions)
3270   // would have been to associate each live instance of va_list with a copy of
3271   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
3272   // order.
3273   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3274     unsigned GpOffset = 0;
3275     unsigned FpOffset = AMD64GpEndOffset;
3276     unsigned OverflowOffset = AMD64FpEndOffset;
3277     const DataLayout &DL = F.getParent()->getDataLayout();
3278     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3279          ArgIt != End; ++ArgIt) {
3280       Value *A = *ArgIt;
3281       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3282       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3283       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3284       if (IsByVal) {
3285         // ByVal arguments always go to the overflow area.
3286         // Fixed arguments passed through the overflow area will be stepped
3287         // over by va_start, so don't count them towards the offset.
3288         if (IsFixed)
3289           continue;
3290         assert(A->getType()->isPointerTy());
3291         Type *RealTy = A->getType()->getPointerElementType();
3292         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3293         Value *ShadowBase =
3294             getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
3295         OverflowOffset += alignTo(ArgSize, 8);
3296         Value *ShadowPtr, *OriginPtr;
3297         std::tie(ShadowPtr, OriginPtr) =
3298             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
3299                                    /*isStore*/ false);
3300 
3301         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
3302                          kShadowTLSAlignment, ArgSize);
3303       } else {
3304         ArgKind AK = classifyArgument(A);
3305         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
3306           AK = AK_Memory;
3307         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
3308           AK = AK_Memory;
3309         Value *ShadowBase;
3310         switch (AK) {
3311           case AK_GeneralPurpose:
3312             ShadowBase = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
3313             GpOffset += 8;
3314             break;
3315           case AK_FloatingPoint:
3316             ShadowBase = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
3317             FpOffset += 16;
3318             break;
3319           case AK_Memory:
3320             if (IsFixed)
3321               continue;
3322             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3323             ShadowBase =
3324                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3325             OverflowOffset += alignTo(ArgSize, 8);
3326         }
3327         // Take fixed arguments into account for GpOffset and FpOffset,
3328         // but don't actually store shadows for them.
3329         if (IsFixed)
3330           continue;
3331         IRB.CreateAlignedStore(MSV.getShadow(A), ShadowBase,
3332                                kShadowTLSAlignment);
3333       }
3334     }
3335     Constant *OverflowSize =
3336       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
3337     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3338   }
3339 
3340   /// Compute the shadow address for a given va_arg.
3341   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3342                                    int ArgOffset) {
3343     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3344     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3345     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3346                               "_msarg");
3347   }
3348 
3349   void unpoisonVAListTagForInst(IntrinsicInst &I) {
3350     IRBuilder<> IRB(&I);
3351     Value *VAListTag = I.getArgOperand(0);
3352     Value *ShadowPtr, *OriginPtr;
3353     unsigned Alignment = 8;
3354     std::tie(ShadowPtr, OriginPtr) =
3355         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
3356                                /*isStore*/ true);
3357 
3358     // Unpoison the whole __va_list_tag.
3359     // FIXME: magic ABI constants.
3360     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3361                      /* size */ 24, Alignment, false);
3362     // We shouldn't need to zero out the origins, as they're only checked for
3363     // nonzero shadow.
3364   }
3365 
3366   void visitVAStartInst(VAStartInst &I) override {
3367     if (F.getCallingConv() == CallingConv::Win64)
3368       return;
3369     VAStartInstrumentationList.push_back(&I);
3370     unpoisonVAListTagForInst(I);
3371   }
3372 
3373   void visitVACopyInst(VACopyInst &I) override {
3374     if (F.getCallingConv() == CallingConv::Win64) return;
3375     unpoisonVAListTagForInst(I);
3376   }
3377 
3378   void finalizeInstrumentation() override {
3379     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3380            "finalizeInstrumentation called twice");
3381     if (!VAStartInstrumentationList.empty()) {
3382       // If there is a va_start in this function, make a backup copy of
3383       // va_arg_tls somewhere in the function entry block.
3384       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3385       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3386       Value *CopySize =
3387         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3388                       VAArgOverflowSize);
3389       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3390       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3391     }
3392 
3393     // Instrument va_start.
3394     // Copy va_list shadow from the backup copy of the TLS contents.
3395     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3396       CallInst *OrigInst = VAStartInstrumentationList[i];
3397       IRBuilder<> IRB(OrigInst->getNextNode());
3398       Value *VAListTag = OrigInst->getArgOperand(0);
3399 
3400       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
3401           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3402                         ConstantInt::get(MS.IntptrTy, 16)),
3403           PointerType::get(Type::getInt64PtrTy(*MS.C), 0));
3404       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3405       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3406       unsigned Alignment = 16;
3407       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3408           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3409                                  Alignment, /*isStore*/ true);
3410       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3411                        AMD64FpEndOffset);
3412       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
3413           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3414                         ConstantInt::get(MS.IntptrTy, 8)),
3415           PointerType::get(Type::getInt64PtrTy(*MS.C), 0));
3416       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
3417       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
3418       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
3419           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
3420                                  Alignment, /*isStore*/ true);
3421       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3422                                              AMD64FpEndOffset);
3423       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
3424                        VAArgOverflowSize);
3425     }
3426   }
3427 };
3428 
3429 /// MIPS64-specific implementation of VarArgHelper.
3430 struct VarArgMIPS64Helper : public VarArgHelper {
3431   Function &F;
3432   MemorySanitizer &MS;
3433   MemorySanitizerVisitor &MSV;
3434   Value *VAArgTLSCopy = nullptr;
3435   Value *VAArgSize = nullptr;
3436 
3437   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3438 
3439   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
3440                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3441 
3442   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3443     unsigned VAArgOffset = 0;
3444     const DataLayout &DL = F.getParent()->getDataLayout();
3445     for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
3446          CS.getFunctionType()->getNumParams(), End = CS.arg_end();
3447          ArgIt != End; ++ArgIt) {
3448       Triple TargetTriple(F.getParent()->getTargetTriple());
3449       Value *A = *ArgIt;
3450       Value *Base;
3451       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3452       if (TargetTriple.getArch() == Triple::mips64) {
3453         // Adjusting the shadow for argument with size < 8 to match the placement
3454         // of bits in big endian system
3455         if (ArgSize < 8)
3456           VAArgOffset += (8 - ArgSize);
3457       }
3458       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
3459       VAArgOffset += ArgSize;
3460       VAArgOffset = alignTo(VAArgOffset, 8);
3461       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3462     }
3463 
3464     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
3465     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3466     // a new class member i.e. it is the total size of all VarArgs.
3467     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3468   }
3469 
3470   /// Compute the shadow address for a given va_arg.
3471   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3472                                    int ArgOffset) {
3473     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3474     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3475     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3476                               "_msarg");
3477   }
3478 
3479   void visitVAStartInst(VAStartInst &I) override {
3480     IRBuilder<> IRB(&I);
3481     VAStartInstrumentationList.push_back(&I);
3482     Value *VAListTag = I.getArgOperand(0);
3483     Value *ShadowPtr, *OriginPtr;
3484     unsigned Alignment = 8;
3485     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3486         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3487     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3488                      /* size */ 8, Alignment, false);
3489   }
3490 
3491   void visitVACopyInst(VACopyInst &I) override {
3492     IRBuilder<> IRB(&I);
3493     VAStartInstrumentationList.push_back(&I);
3494     Value *VAListTag = I.getArgOperand(0);
3495     Value *ShadowPtr, *OriginPtr;
3496     unsigned Alignment = 8;
3497     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3498         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3499     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3500                      /* size */ 8, Alignment, false);
3501   }
3502 
3503   void finalizeInstrumentation() override {
3504     assert(!VAArgSize && !VAArgTLSCopy &&
3505            "finalizeInstrumentation called twice");
3506     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3507     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3508     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3509                                     VAArgSize);
3510 
3511     if (!VAStartInstrumentationList.empty()) {
3512       // If there is a va_start in this function, make a backup copy of
3513       // va_arg_tls somewhere in the function entry block.
3514       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3515       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3516     }
3517 
3518     // Instrument va_start.
3519     // Copy va_list shadow from the backup copy of the TLS contents.
3520     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3521       CallInst *OrigInst = VAStartInstrumentationList[i];
3522       IRBuilder<> IRB(OrigInst->getNextNode());
3523       Value *VAListTag = OrigInst->getArgOperand(0);
3524       Value *RegSaveAreaPtrPtr =
3525           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3526                              PointerType::get(Type::getInt64PtrTy(*MS.C), 0));
3527       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3528       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3529       unsigned Alignment = 8;
3530       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3531           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3532                                  Alignment, /*isStore*/ true);
3533       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3534                        CopySize);
3535     }
3536   }
3537 };
3538 
3539 /// AArch64-specific implementation of VarArgHelper.
3540 struct VarArgAArch64Helper : public VarArgHelper {
3541   static const unsigned kAArch64GrArgSize = 64;
3542   static const unsigned kAArch64VrArgSize = 128;
3543 
3544   static const unsigned AArch64GrBegOffset = 0;
3545   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
3546   // Make VR space aligned to 16 bytes.
3547   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
3548   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
3549                                              + kAArch64VrArgSize;
3550   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
3551 
3552   Function &F;
3553   MemorySanitizer &MS;
3554   MemorySanitizerVisitor &MSV;
3555   Value *VAArgTLSCopy = nullptr;
3556   Value *VAArgOverflowSize = nullptr;
3557 
3558   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3559 
3560   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3561 
3562   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
3563                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3564 
3565   ArgKind classifyArgument(Value* arg) {
3566     Type *T = arg->getType();
3567     if (T->isFPOrFPVectorTy())
3568       return AK_FloatingPoint;
3569     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3570         || (T->isPointerTy()))
3571       return AK_GeneralPurpose;
3572     return AK_Memory;
3573   }
3574 
3575   // The instrumentation stores the argument shadow in a non ABI-specific
3576   // format because it does not know which argument is named (since Clang,
3577   // like x86_64 case, lowers the va_args in the frontend and this pass only
3578   // sees the low level code that deals with va_list internals).
3579   // The first seven GR registers are saved in the first 56 bytes of the
3580   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
3581   // the remaining arguments.
3582   // Using constant offset within the va_arg TLS array allows fast copy
3583   // in the finalize instrumentation.
3584   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3585     unsigned GrOffset = AArch64GrBegOffset;
3586     unsigned VrOffset = AArch64VrBegOffset;
3587     unsigned OverflowOffset = AArch64VAEndOffset;
3588 
3589     const DataLayout &DL = F.getParent()->getDataLayout();
3590     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3591          ArgIt != End; ++ArgIt) {
3592       Value *A = *ArgIt;
3593       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3594       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3595       ArgKind AK = classifyArgument(A);
3596       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
3597         AK = AK_Memory;
3598       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
3599         AK = AK_Memory;
3600       Value *Base;
3601       switch (AK) {
3602         case AK_GeneralPurpose:
3603           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset);
3604           GrOffset += 8;
3605           break;
3606         case AK_FloatingPoint:
3607           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset);
3608           VrOffset += 16;
3609           break;
3610         case AK_Memory:
3611           // Don't count fixed arguments in the overflow area - va_start will
3612           // skip right over them.
3613           if (IsFixed)
3614             continue;
3615           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3616           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3617           OverflowOffset += alignTo(ArgSize, 8);
3618           break;
3619       }
3620       // Count Gp/Vr fixed arguments to their respective offsets, but don't
3621       // bother to actually store a shadow.
3622       if (IsFixed)
3623         continue;
3624       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3625     }
3626     Constant *OverflowSize =
3627       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
3628     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3629   }
3630 
3631   /// Compute the shadow address for a given va_arg.
3632   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3633                                    int ArgOffset) {
3634     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3635     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3636     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3637                               "_msarg");
3638   }
3639 
3640   void visitVAStartInst(VAStartInst &I) override {
3641     IRBuilder<> IRB(&I);
3642     VAStartInstrumentationList.push_back(&I);
3643     Value *VAListTag = I.getArgOperand(0);
3644     Value *ShadowPtr, *OriginPtr;
3645     unsigned Alignment = 8;
3646     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3647         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3648     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3649                      /* size */ 32, Alignment, false);
3650   }
3651 
3652   void visitVACopyInst(VACopyInst &I) override {
3653     IRBuilder<> IRB(&I);
3654     VAStartInstrumentationList.push_back(&I);
3655     Value *VAListTag = I.getArgOperand(0);
3656     Value *ShadowPtr, *OriginPtr;
3657     unsigned Alignment = 8;
3658     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3659         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3660     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3661                      /* size */ 32, Alignment, false);
3662   }
3663 
3664   // Retrieve a va_list field of 'void*' size.
3665   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3666     Value *SaveAreaPtrPtr =
3667       IRB.CreateIntToPtr(
3668         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3669                       ConstantInt::get(MS.IntptrTy, offset)),
3670         Type::getInt64PtrTy(*MS.C));
3671     return IRB.CreateLoad(SaveAreaPtrPtr);
3672   }
3673 
3674   // Retrieve a va_list field of 'int' size.
3675   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3676     Value *SaveAreaPtr =
3677       IRB.CreateIntToPtr(
3678         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3679                       ConstantInt::get(MS.IntptrTy, offset)),
3680         Type::getInt32PtrTy(*MS.C));
3681     Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr);
3682     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
3683   }
3684 
3685   void finalizeInstrumentation() override {
3686     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3687            "finalizeInstrumentation called twice");
3688     if (!VAStartInstrumentationList.empty()) {
3689       // If there is a va_start in this function, make a backup copy of
3690       // va_arg_tls somewhere in the function entry block.
3691       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3692       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3693       Value *CopySize =
3694         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
3695                       VAArgOverflowSize);
3696       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3697       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3698     }
3699 
3700     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
3701     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
3702 
3703     // Instrument va_start, copy va_list shadow from the backup copy of
3704     // the TLS contents.
3705     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3706       CallInst *OrigInst = VAStartInstrumentationList[i];
3707       IRBuilder<> IRB(OrigInst->getNextNode());
3708 
3709       Value *VAListTag = OrigInst->getArgOperand(0);
3710 
3711       // The variadic ABI for AArch64 creates two areas to save the incoming
3712       // argument registers (one for 64-bit general register xn-x7 and another
3713       // for 128-bit FP/SIMD vn-v7).
3714       // We need then to propagate the shadow arguments on both regions
3715       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
3716       // The remaning arguments are saved on shadow for 'va::stack'.
3717       // One caveat is it requires only to propagate the non-named arguments,
3718       // however on the call site instrumentation 'all' the arguments are
3719       // saved. So to copy the shadow values from the va_arg TLS array
3720       // we need to adjust the offset for both GR and VR fields based on
3721       // the __{gr,vr}_offs value (since they are stores based on incoming
3722       // named arguments).
3723 
3724       // Read the stack pointer from the va_list.
3725       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
3726 
3727       // Read both the __gr_top and __gr_off and add them up.
3728       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
3729       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
3730 
3731       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
3732 
3733       // Read both the __vr_top and __vr_off and add them up.
3734       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
3735       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
3736 
3737       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
3738 
3739       // It does not know how many named arguments is being used and, on the
3740       // callsite all the arguments were saved.  Since __gr_off is defined as
3741       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
3742       // argument by ignoring the bytes of shadow from named arguments.
3743       Value *GrRegSaveAreaShadowPtrOff =
3744         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
3745 
3746       Value *GrRegSaveAreaShadowPtr =
3747           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3748                                  /*Alignment*/ 8, /*isStore*/ true)
3749               .first;
3750 
3751       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3752                                               GrRegSaveAreaShadowPtrOff);
3753       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
3754 
3755       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
3756 
3757       // Again, but for FP/SIMD values.
3758       Value *VrRegSaveAreaShadowPtrOff =
3759           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
3760 
3761       Value *VrRegSaveAreaShadowPtr =
3762           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3763                                  /*Alignment*/ 8, /*isStore*/ true)
3764               .first;
3765 
3766       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
3767         IRB.getInt8Ty(),
3768         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3769                               IRB.getInt32(AArch64VrBegOffset)),
3770         VrRegSaveAreaShadowPtrOff);
3771       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
3772 
3773       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
3774 
3775       // And finally for remaining arguments.
3776       Value *StackSaveAreaShadowPtr =
3777           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
3778                                  /*Alignment*/ 16, /*isStore*/ true)
3779               .first;
3780 
3781       Value *StackSrcPtr =
3782         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3783                               IRB.getInt32(AArch64VAEndOffset));
3784 
3785       IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
3786                        VAArgOverflowSize);
3787     }
3788   }
3789 };
3790 
3791 /// PowerPC64-specific implementation of VarArgHelper.
3792 struct VarArgPowerPC64Helper : public VarArgHelper {
3793   Function &F;
3794   MemorySanitizer &MS;
3795   MemorySanitizerVisitor &MSV;
3796   Value *VAArgTLSCopy = nullptr;
3797   Value *VAArgSize = nullptr;
3798 
3799   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3800 
3801   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
3802                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3803 
3804   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3805     // For PowerPC, we need to deal with alignment of stack arguments -
3806     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
3807     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
3808     // and QPX vectors are aligned to 32 bytes.  For that reason, we
3809     // compute current offset from stack pointer (which is always properly
3810     // aligned), and offset for the first vararg, then subtract them.
3811     unsigned VAArgBase;
3812     Triple TargetTriple(F.getParent()->getTargetTriple());
3813     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
3814     // and 32 bytes for ABIv2.  This is usually determined by target
3815     // endianness, but in theory could be overriden by function attribute.
3816     // For simplicity, we ignore it here (it'd only matter for QPX vectors).
3817     if (TargetTriple.getArch() == Triple::ppc64)
3818       VAArgBase = 48;
3819     else
3820       VAArgBase = 32;
3821     unsigned VAArgOffset = VAArgBase;
3822     const DataLayout &DL = F.getParent()->getDataLayout();
3823     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3824          ArgIt != End; ++ArgIt) {
3825       Value *A = *ArgIt;
3826       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3827       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3828       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3829       if (IsByVal) {
3830         assert(A->getType()->isPointerTy());
3831         Type *RealTy = A->getType()->getPointerElementType();
3832         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3833         uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
3834         if (ArgAlign < 8)
3835           ArgAlign = 8;
3836         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3837         if (!IsFixed) {
3838           Value *Base = getShadowPtrForVAArgument(RealTy, IRB,
3839                                                   VAArgOffset - VAArgBase);
3840           Value *AShadowPtr, *AOriginPtr;
3841           std::tie(AShadowPtr, AOriginPtr) = MSV.getShadowOriginPtr(
3842               A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, /*isStore*/ false);
3843 
3844           IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
3845                            kShadowTLSAlignment, ArgSize);
3846         }
3847         VAArgOffset += alignTo(ArgSize, 8);
3848       } else {
3849         Value *Base;
3850         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3851         uint64_t ArgAlign = 8;
3852         if (A->getType()->isArrayTy()) {
3853           // Arrays are aligned to element size, except for long double
3854           // arrays, which are aligned to 8 bytes.
3855           Type *ElementTy = A->getType()->getArrayElementType();
3856           if (!ElementTy->isPPC_FP128Ty())
3857             ArgAlign = DL.getTypeAllocSize(ElementTy);
3858         } else if (A->getType()->isVectorTy()) {
3859           // Vectors are naturally aligned.
3860           ArgAlign = DL.getTypeAllocSize(A->getType());
3861         }
3862         if (ArgAlign < 8)
3863           ArgAlign = 8;
3864         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3865         if (DL.isBigEndian()) {
3866           // Adjusting the shadow for argument with size < 8 to match the placement
3867           // of bits in big endian system
3868           if (ArgSize < 8)
3869             VAArgOffset += (8 - ArgSize);
3870         }
3871         if (!IsFixed) {
3872           Base = getShadowPtrForVAArgument(A->getType(), IRB,
3873                                            VAArgOffset - VAArgBase);
3874           IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3875         }
3876         VAArgOffset += ArgSize;
3877         VAArgOffset = alignTo(VAArgOffset, 8);
3878       }
3879       if (IsFixed)
3880         VAArgBase = VAArgOffset;
3881     }
3882 
3883     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
3884                                                 VAArgOffset - VAArgBase);
3885     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3886     // a new class member i.e. it is the total size of all VarArgs.
3887     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3888   }
3889 
3890   /// Compute the shadow address for a given va_arg.
3891   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3892                                    int ArgOffset) {
3893     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3894     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3895     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3896                               "_msarg");
3897   }
3898 
3899   void visitVAStartInst(VAStartInst &I) override {
3900     IRBuilder<> IRB(&I);
3901     VAStartInstrumentationList.push_back(&I);
3902     Value *VAListTag = I.getArgOperand(0);
3903     Value *ShadowPtr, *OriginPtr;
3904     unsigned Alignment = 8;
3905     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3906         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3907     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3908                      /* size */ 8, Alignment, false);
3909   }
3910 
3911   void visitVACopyInst(VACopyInst &I) override {
3912     IRBuilder<> IRB(&I);
3913     Value *VAListTag = I.getArgOperand(0);
3914     Value *ShadowPtr, *OriginPtr;
3915     unsigned Alignment = 8;
3916     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
3917         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
3918     // Unpoison the whole __va_list_tag.
3919     // FIXME: magic ABI constants.
3920     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3921                      /* size */ 8, Alignment, false);
3922   }
3923 
3924   void finalizeInstrumentation() override {
3925     assert(!VAArgSize && !VAArgTLSCopy &&
3926            "finalizeInstrumentation called twice");
3927     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3928     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3929     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3930                                     VAArgSize);
3931 
3932     if (!VAStartInstrumentationList.empty()) {
3933       // If there is a va_start in this function, make a backup copy of
3934       // va_arg_tls somewhere in the function entry block.
3935       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3936       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3937     }
3938 
3939     // Instrument va_start.
3940     // Copy va_list shadow from the backup copy of the TLS contents.
3941     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3942       CallInst *OrigInst = VAStartInstrumentationList[i];
3943       IRBuilder<> IRB(OrigInst->getNextNode());
3944       Value *VAListTag = OrigInst->getArgOperand(0);
3945       Value *RegSaveAreaPtrPtr =
3946           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3947                              PointerType::get(Type::getInt64PtrTy(*MS.C), 0));
3948       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3949       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3950       unsigned Alignment = 8;
3951       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3952           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3953                                  Alignment, /*isStore*/ true);
3954       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3955                        CopySize);
3956     }
3957   }
3958 };
3959 
3960 /// A no-op implementation of VarArgHelper.
3961 struct VarArgNoOpHelper : public VarArgHelper {
3962   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
3963                    MemorySanitizerVisitor &MSV) {}
3964 
3965   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
3966 
3967   void visitVAStartInst(VAStartInst &I) override {}
3968 
3969   void visitVACopyInst(VACopyInst &I) override {}
3970 
3971   void finalizeInstrumentation() override {}
3972 };
3973 
3974 } // end anonymous namespace
3975 
3976 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
3977                                         MemorySanitizerVisitor &Visitor) {
3978   // VarArg handling is only implemented on AMD64. False positives are possible
3979   // on other platforms.
3980   Triple TargetTriple(Func.getParent()->getTargetTriple());
3981   if (TargetTriple.getArch() == Triple::x86_64)
3982     return new VarArgAMD64Helper(Func, Msan, Visitor);
3983   else if (TargetTriple.getArch() == Triple::mips64 ||
3984            TargetTriple.getArch() == Triple::mips64el)
3985     return new VarArgMIPS64Helper(Func, Msan, Visitor);
3986   else if (TargetTriple.getArch() == Triple::aarch64)
3987     return new VarArgAArch64Helper(Func, Msan, Visitor);
3988   else if (TargetTriple.getArch() == Triple::ppc64 ||
3989            TargetTriple.getArch() == Triple::ppc64le)
3990     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
3991   else
3992     return new VarArgNoOpHelper(Func, Msan, Visitor);
3993 }
3994 
3995 bool MemorySanitizer::runOnFunction(Function &F) {
3996   if (&F == MsanCtorFunction)
3997     return false;
3998   MemorySanitizerVisitor Visitor(F, *this);
3999 
4000   // Clear out readonly/readnone attributes.
4001   AttrBuilder B;
4002   B.addAttribute(Attribute::ReadOnly)
4003     .addAttribute(Attribute::ReadNone);
4004   F.removeAttributes(AttributeList::FunctionIndex, B);
4005 
4006   return Visitor.runOnFunction();
4007 }
4008