1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallingConv.h" 157 #include "llvm/IR/Constant.h" 158 #include "llvm/IR/Constants.h" 159 #include "llvm/IR/DataLayout.h" 160 #include "llvm/IR/DerivedTypes.h" 161 #include "llvm/IR/Function.h" 162 #include "llvm/IR/GlobalValue.h" 163 #include "llvm/IR/GlobalVariable.h" 164 #include "llvm/IR/IRBuilder.h" 165 #include "llvm/IR/InlineAsm.h" 166 #include "llvm/IR/InstVisitor.h" 167 #include "llvm/IR/InstrTypes.h" 168 #include "llvm/IR/Instruction.h" 169 #include "llvm/IR/Instructions.h" 170 #include "llvm/IR/IntrinsicInst.h" 171 #include "llvm/IR/Intrinsics.h" 172 #include "llvm/IR/IntrinsicsX86.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/Pass.h" 181 #include "llvm/Support/AtomicOrdering.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/CommandLine.h" 184 #include "llvm/Support/Compiler.h" 185 #include "llvm/Support/Debug.h" 186 #include "llvm/Support/ErrorHandling.h" 187 #include "llvm/Support/MathExtras.h" 188 #include "llvm/Support/raw_ostream.h" 189 #include "llvm/Transforms/Instrumentation.h" 190 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 191 #include "llvm/Transforms/Utils/Local.h" 192 #include "llvm/Transforms/Utils/ModuleUtils.h" 193 #include <algorithm> 194 #include <cassert> 195 #include <cstddef> 196 #include <cstdint> 197 #include <memory> 198 #include <string> 199 #include <tuple> 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "msan" 204 205 static const unsigned kOriginSize = 4; 206 static const Align kMinOriginAlignment = Align(4); 207 static const Align kShadowTLSAlignment = Align(8); 208 209 // These constants must be kept in sync with the ones in msan.h. 210 static const unsigned kParamTLSSize = 800; 211 static const unsigned kRetvalTLSSize = 800; 212 213 // Accesses sizes are powers of two: 1, 2, 4, 8. 214 static const size_t kNumberOfAccessSizes = 4; 215 216 /// Track origins of uninitialized values. 217 /// 218 /// Adds a section to MemorySanitizer report that points to the allocation 219 /// (stack or heap) the uninitialized bits came from originally. 220 static cl::opt<int> ClTrackOrigins("msan-track-origins", 221 cl::desc("Track origins (allocation sites) of poisoned memory"), 222 cl::Hidden, cl::init(0)); 223 224 static cl::opt<bool> ClKeepGoing("msan-keep-going", 225 cl::desc("keep going after reporting a UMR"), 226 cl::Hidden, cl::init(false)); 227 228 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 229 cl::desc("poison uninitialized stack variables"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 233 cl::desc("poison uninitialized stack variables with a call"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 237 cl::desc("poison uninitialized stack variables with the given pattern"), 238 cl::Hidden, cl::init(0xff)); 239 240 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 241 cl::desc("poison undef temps"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 245 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 249 cl::desc("exact handling of relational integer ICmp"), 250 cl::Hidden, cl::init(false)); 251 252 static cl::opt<bool> ClHandleLifetimeIntrinsics( 253 "msan-handle-lifetime-intrinsics", 254 cl::desc( 255 "when possible, poison scoped variables at the beginning of the scope " 256 "(slower, but more precise)"), 257 cl::Hidden, cl::init(true)); 258 259 // When compiling the Linux kernel, we sometimes see false positives related to 260 // MSan being unable to understand that inline assembly calls may initialize 261 // local variables. 262 // This flag makes the compiler conservatively unpoison every memory location 263 // passed into an assembly call. Note that this may cause false positives. 264 // Because it's impossible to figure out the array sizes, we can only unpoison 265 // the first sizeof(type) bytes for each type* pointer. 266 // The instrumentation is only enabled in KMSAN builds, and only if 267 // -msan-handle-asm-conservative is on. This is done because we may want to 268 // quickly disable assembly instrumentation when it breaks. 269 static cl::opt<bool> ClHandleAsmConservative( 270 "msan-handle-asm-conservative", 271 cl::desc("conservative handling of inline assembly"), cl::Hidden, 272 cl::init(true)); 273 274 // This flag controls whether we check the shadow of the address 275 // operand of load or store. Such bugs are very rare, since load from 276 // a garbage address typically results in SEGV, but still happen 277 // (e.g. only lower bits of address are garbage, or the access happens 278 // early at program startup where malloc-ed memory is more likely to 279 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 280 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 281 cl::desc("report accesses through a pointer which has poisoned shadow"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 285 cl::desc("print out instructions with default strict semantics"), 286 cl::Hidden, cl::init(false)); 287 288 static cl::opt<int> ClInstrumentationWithCallThreshold( 289 "msan-instrumentation-with-call-threshold", 290 cl::desc( 291 "If the function being instrumented requires more than " 292 "this number of checks and origin stores, use callbacks instead of " 293 "inline checks (-1 means never use callbacks)."), 294 cl::Hidden, cl::init(3500)); 295 296 static cl::opt<bool> 297 ClEnableKmsan("msan-kernel", 298 cl::desc("Enable KernelMemorySanitizer instrumentation"), 299 cl::Hidden, cl::init(false)); 300 301 // This is an experiment to enable handling of cases where shadow is a non-zero 302 // compile-time constant. For some unexplainable reason they were silently 303 // ignored in the instrumentation. 304 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 305 cl::desc("Insert checks for constant shadow values"), 306 cl::Hidden, cl::init(false)); 307 308 // This is off by default because of a bug in gold: 309 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 310 static cl::opt<bool> ClWithComdat("msan-with-comdat", 311 cl::desc("Place MSan constructors in comdat sections"), 312 cl::Hidden, cl::init(false)); 313 314 // These options allow to specify custom memory map parameters 315 // See MemoryMapParams for details. 316 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 317 cl::desc("Define custom MSan AndMask"), 318 cl::Hidden, cl::init(0)); 319 320 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 321 cl::desc("Define custom MSan XorMask"), 322 cl::Hidden, cl::init(0)); 323 324 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 325 cl::desc("Define custom MSan ShadowBase"), 326 cl::Hidden, cl::init(0)); 327 328 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 329 cl::desc("Define custom MSan OriginBase"), 330 cl::Hidden, cl::init(0)); 331 332 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 333 static const char *const kMsanInitName = "__msan_init"; 334 335 namespace { 336 337 // Memory map parameters used in application-to-shadow address calculation. 338 // Offset = (Addr & ~AndMask) ^ XorMask 339 // Shadow = ShadowBase + Offset 340 // Origin = OriginBase + Offset 341 struct MemoryMapParams { 342 uint64_t AndMask; 343 uint64_t XorMask; 344 uint64_t ShadowBase; 345 uint64_t OriginBase; 346 }; 347 348 struct PlatformMemoryMapParams { 349 const MemoryMapParams *bits32; 350 const MemoryMapParams *bits64; 351 }; 352 353 } // end anonymous namespace 354 355 // i386 Linux 356 static const MemoryMapParams Linux_I386_MemoryMapParams = { 357 0x000080000000, // AndMask 358 0, // XorMask (not used) 359 0, // ShadowBase (not used) 360 0x000040000000, // OriginBase 361 }; 362 363 // x86_64 Linux 364 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 365 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 366 0x400000000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x200000000000, // OriginBase 370 #else 371 0, // AndMask (not used) 372 0x500000000000, // XorMask 373 0, // ShadowBase (not used) 374 0x100000000000, // OriginBase 375 #endif 376 }; 377 378 // mips64 Linux 379 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 380 0, // AndMask (not used) 381 0x008000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x002000000000, // OriginBase 384 }; 385 386 // ppc64 Linux 387 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 388 0xE00000000000, // AndMask 389 0x100000000000, // XorMask 390 0x080000000000, // ShadowBase 391 0x1C0000000000, // OriginBase 392 }; 393 394 // s390x Linux 395 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 396 0xC00000000000, // AndMask 397 0, // XorMask (not used) 398 0x080000000000, // ShadowBase 399 0x1C0000000000, // OriginBase 400 }; 401 402 // aarch64 Linux 403 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 404 0, // AndMask (not used) 405 0x06000000000, // XorMask 406 0, // ShadowBase (not used) 407 0x01000000000, // OriginBase 408 }; 409 410 // i386 FreeBSD 411 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 412 0x000180000000, // AndMask 413 0x000040000000, // XorMask 414 0x000020000000, // ShadowBase 415 0x000700000000, // OriginBase 416 }; 417 418 // x86_64 FreeBSD 419 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 420 0xc00000000000, // AndMask 421 0x200000000000, // XorMask 422 0x100000000000, // ShadowBase 423 0x380000000000, // OriginBase 424 }; 425 426 // x86_64 NetBSD 427 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 428 0, // AndMask 429 0x500000000000, // XorMask 430 0, // ShadowBase 431 0x100000000000, // OriginBase 432 }; 433 434 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 435 &Linux_I386_MemoryMapParams, 436 &Linux_X86_64_MemoryMapParams, 437 }; 438 439 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 440 nullptr, 441 &Linux_MIPS64_MemoryMapParams, 442 }; 443 444 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 445 nullptr, 446 &Linux_PowerPC64_MemoryMapParams, 447 }; 448 449 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 450 nullptr, 451 &Linux_S390X_MemoryMapParams, 452 }; 453 454 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 455 nullptr, 456 &Linux_AArch64_MemoryMapParams, 457 }; 458 459 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 460 &FreeBSD_I386_MemoryMapParams, 461 &FreeBSD_X86_64_MemoryMapParams, 462 }; 463 464 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 465 nullptr, 466 &NetBSD_X86_64_MemoryMapParams, 467 }; 468 469 namespace { 470 471 /// Instrument functions of a module to detect uninitialized reads. 472 /// 473 /// Instantiating MemorySanitizer inserts the msan runtime library API function 474 /// declarations into the module if they don't exist already. Instantiating 475 /// ensures the __msan_init function is in the list of global constructors for 476 /// the module. 477 class MemorySanitizer { 478 public: 479 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 480 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 481 Recover(Options.Recover) { 482 initializeModule(M); 483 } 484 485 // MSan cannot be moved or copied because of MapParams. 486 MemorySanitizer(MemorySanitizer &&) = delete; 487 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 488 MemorySanitizer(const MemorySanitizer &) = delete; 489 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 490 491 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 492 493 private: 494 friend struct MemorySanitizerVisitor; 495 friend struct VarArgAMD64Helper; 496 friend struct VarArgMIPS64Helper; 497 friend struct VarArgAArch64Helper; 498 friend struct VarArgPowerPC64Helper; 499 friend struct VarArgSystemZHelper; 500 501 void initializeModule(Module &M); 502 void initializeCallbacks(Module &M); 503 void createKernelApi(Module &M); 504 void createUserspaceApi(Module &M); 505 506 /// True if we're compiling the Linux kernel. 507 bool CompileKernel; 508 /// Track origins (allocation points) of uninitialized values. 509 int TrackOrigins; 510 bool Recover; 511 512 LLVMContext *C; 513 Type *IntptrTy; 514 Type *OriginTy; 515 516 // XxxTLS variables represent the per-thread state in MSan and per-task state 517 // in KMSAN. 518 // For the userspace these point to thread-local globals. In the kernel land 519 // they point to the members of a per-task struct obtained via a call to 520 // __msan_get_context_state(). 521 522 /// Thread-local shadow storage for function parameters. 523 Value *ParamTLS; 524 525 /// Thread-local origin storage for function parameters. 526 Value *ParamOriginTLS; 527 528 /// Thread-local shadow storage for function return value. 529 Value *RetvalTLS; 530 531 /// Thread-local origin storage for function return value. 532 Value *RetvalOriginTLS; 533 534 /// Thread-local shadow storage for in-register va_arg function 535 /// parameters (x86_64-specific). 536 Value *VAArgTLS; 537 538 /// Thread-local shadow storage for in-register va_arg function 539 /// parameters (x86_64-specific). 540 Value *VAArgOriginTLS; 541 542 /// Thread-local shadow storage for va_arg overflow area 543 /// (x86_64-specific). 544 Value *VAArgOverflowSizeTLS; 545 546 /// Thread-local space used to pass origin value to the UMR reporting 547 /// function. 548 Value *OriginTLS; 549 550 /// Are the instrumentation callbacks set up? 551 bool CallbacksInitialized = false; 552 553 /// The run-time callback to print a warning. 554 FunctionCallee WarningFn; 555 556 // These arrays are indexed by log2(AccessSize). 557 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 558 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 559 560 /// Run-time helper that generates a new origin value for a stack 561 /// allocation. 562 FunctionCallee MsanSetAllocaOrigin4Fn; 563 564 /// Run-time helper that poisons stack on function entry. 565 FunctionCallee MsanPoisonStackFn; 566 567 /// Run-time helper that records a store (or any event) of an 568 /// uninitialized value and returns an updated origin id encoding this info. 569 FunctionCallee MsanChainOriginFn; 570 571 /// MSan runtime replacements for memmove, memcpy and memset. 572 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 573 574 /// KMSAN callback for task-local function argument shadow. 575 StructType *MsanContextStateTy; 576 FunctionCallee MsanGetContextStateFn; 577 578 /// Functions for poisoning/unpoisoning local variables 579 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 580 581 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 582 /// pointers. 583 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 584 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 585 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 586 FunctionCallee MsanInstrumentAsmStoreFn; 587 588 /// Helper to choose between different MsanMetadataPtrXxx(). 589 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 590 591 /// Memory map parameters used in application-to-shadow calculation. 592 const MemoryMapParams *MapParams; 593 594 /// Custom memory map parameters used when -msan-shadow-base or 595 // -msan-origin-base is provided. 596 MemoryMapParams CustomMapParams; 597 598 MDNode *ColdCallWeights; 599 600 /// Branch weights for origin store. 601 MDNode *OriginStoreWeights; 602 603 /// An empty volatile inline asm that prevents callback merge. 604 InlineAsm *EmptyAsm; 605 }; 606 607 void insertModuleCtor(Module &M) { 608 getOrCreateSanitizerCtorAndInitFunctions( 609 M, kMsanModuleCtorName, kMsanInitName, 610 /*InitArgTypes=*/{}, 611 /*InitArgs=*/{}, 612 // This callback is invoked when the functions are created the first 613 // time. Hook them into the global ctors list in that case: 614 [&](Function *Ctor, FunctionCallee) { 615 if (!ClWithComdat) { 616 appendToGlobalCtors(M, Ctor, 0); 617 return; 618 } 619 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 620 Ctor->setComdat(MsanCtorComdat); 621 appendToGlobalCtors(M, Ctor, 0, Ctor); 622 }); 623 } 624 625 /// A legacy function pass for msan instrumentation. 626 /// 627 /// Instruments functions to detect uninitialized reads. 628 struct MemorySanitizerLegacyPass : public FunctionPass { 629 // Pass identification, replacement for typeid. 630 static char ID; 631 632 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 633 : FunctionPass(ID), Options(Options) { 634 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 635 } 636 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 637 638 void getAnalysisUsage(AnalysisUsage &AU) const override { 639 AU.addRequired<TargetLibraryInfoWrapperPass>(); 640 } 641 642 bool runOnFunction(Function &F) override { 643 return MSan->sanitizeFunction( 644 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 645 } 646 bool doInitialization(Module &M) override; 647 648 Optional<MemorySanitizer> MSan; 649 MemorySanitizerOptions Options; 650 }; 651 652 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 653 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 654 } 655 656 } // end anonymous namespace 657 658 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 659 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 660 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 661 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 662 663 PreservedAnalyses MemorySanitizerPass::run(Function &F, 664 FunctionAnalysisManager &FAM) { 665 MemorySanitizer Msan(*F.getParent(), Options); 666 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 667 return PreservedAnalyses::none(); 668 return PreservedAnalyses::all(); 669 } 670 671 PreservedAnalyses MemorySanitizerPass::run(Module &M, 672 ModuleAnalysisManager &AM) { 673 if (Options.Kernel) 674 return PreservedAnalyses::all(); 675 insertModuleCtor(M); 676 return PreservedAnalyses::none(); 677 } 678 679 char MemorySanitizerLegacyPass::ID = 0; 680 681 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 682 "MemorySanitizer: detects uninitialized reads.", false, 683 false) 684 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 685 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 686 "MemorySanitizer: detects uninitialized reads.", false, 687 false) 688 689 FunctionPass * 690 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 691 return new MemorySanitizerLegacyPass(Options); 692 } 693 694 /// Create a non-const global initialized with the given string. 695 /// 696 /// Creates a writable global for Str so that we can pass it to the 697 /// run-time lib. Runtime uses first 4 bytes of the string to store the 698 /// frame ID, so the string needs to be mutable. 699 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 700 StringRef Str) { 701 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 702 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 703 GlobalValue::PrivateLinkage, StrConst, ""); 704 } 705 706 /// Create KMSAN API callbacks. 707 void MemorySanitizer::createKernelApi(Module &M) { 708 IRBuilder<> IRB(*C); 709 710 // These will be initialized in insertKmsanPrologue(). 711 RetvalTLS = nullptr; 712 RetvalOriginTLS = nullptr; 713 ParamTLS = nullptr; 714 ParamOriginTLS = nullptr; 715 VAArgTLS = nullptr; 716 VAArgOriginTLS = nullptr; 717 VAArgOverflowSizeTLS = nullptr; 718 // OriginTLS is unused in the kernel. 719 OriginTLS = nullptr; 720 721 // __msan_warning() in the kernel takes an origin. 722 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 723 IRB.getInt32Ty()); 724 // Requests the per-task context state (kmsan_context_state*) from the 725 // runtime library. 726 MsanContextStateTy = StructType::get( 727 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 728 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 731 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 732 OriginTy); 733 MsanGetContextStateFn = M.getOrInsertFunction( 734 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 735 736 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 737 PointerType::get(IRB.getInt32Ty(), 0)); 738 739 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 740 std::string name_load = 741 "__msan_metadata_ptr_for_load_" + std::to_string(size); 742 std::string name_store = 743 "__msan_metadata_ptr_for_store_" + std::to_string(size); 744 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 745 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 746 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 747 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 748 } 749 750 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 751 "__msan_metadata_ptr_for_load_n", RetTy, 752 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 753 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 754 "__msan_metadata_ptr_for_store_n", RetTy, 755 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 756 757 // Functions for poisoning and unpoisoning memory. 758 MsanPoisonAllocaFn = 759 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 760 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 761 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 762 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 763 } 764 765 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 766 return M.getOrInsertGlobal(Name, Ty, [&] { 767 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 768 nullptr, Name, nullptr, 769 GlobalVariable::InitialExecTLSModel); 770 }); 771 } 772 773 /// Insert declarations for userspace-specific functions and globals. 774 void MemorySanitizer::createUserspaceApi(Module &M) { 775 IRBuilder<> IRB(*C); 776 // Create the callback. 777 // FIXME: this function should have "Cold" calling conv, 778 // which is not yet implemented. 779 StringRef WarningFnName = Recover ? "__msan_warning" 780 : "__msan_warning_noreturn"; 781 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 782 783 // Create the global TLS variables. 784 RetvalTLS = 785 getOrInsertGlobal(M, "__msan_retval_tls", 786 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 787 788 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 789 790 ParamTLS = 791 getOrInsertGlobal(M, "__msan_param_tls", 792 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 793 794 ParamOriginTLS = 795 getOrInsertGlobal(M, "__msan_param_origin_tls", 796 ArrayType::get(OriginTy, kParamTLSSize / 4)); 797 798 VAArgTLS = 799 getOrInsertGlobal(M, "__msan_va_arg_tls", 800 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 801 802 VAArgOriginTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 804 ArrayType::get(OriginTy, kParamTLSSize / 4)); 805 806 VAArgOverflowSizeTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 808 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 809 810 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 811 AccessSizeIndex++) { 812 unsigned AccessSize = 1 << AccessSizeIndex; 813 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 814 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 815 MaybeWarningFnAttrs.push_back(std::make_pair( 816 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 817 MaybeWarningFnAttrs.push_back(std::make_pair( 818 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 819 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 820 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 821 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 822 823 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 824 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 825 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 826 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 827 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 828 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 829 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 830 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 831 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 832 IRB.getInt32Ty()); 833 } 834 835 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 836 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 837 IRB.getInt8PtrTy(), IntptrTy); 838 MsanPoisonStackFn = 839 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 840 IRB.getInt8PtrTy(), IntptrTy); 841 } 842 843 /// Insert extern declaration of runtime-provided functions and globals. 844 void MemorySanitizer::initializeCallbacks(Module &M) { 845 // Only do this once. 846 if (CallbacksInitialized) 847 return; 848 849 IRBuilder<> IRB(*C); 850 // Initialize callbacks that are common for kernel and userspace 851 // instrumentation. 852 MsanChainOriginFn = M.getOrInsertFunction( 853 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 854 MemmoveFn = M.getOrInsertFunction( 855 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 856 IRB.getInt8PtrTy(), IntptrTy); 857 MemcpyFn = M.getOrInsertFunction( 858 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 859 IntptrTy); 860 MemsetFn = M.getOrInsertFunction( 861 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 862 IntptrTy); 863 // We insert an empty inline asm after __msan_report* to avoid callback merge. 864 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 865 StringRef(""), StringRef(""), 866 /*hasSideEffects=*/true); 867 868 MsanInstrumentAsmStoreFn = 869 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 870 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 871 872 if (CompileKernel) { 873 createKernelApi(M); 874 } else { 875 createUserspaceApi(M); 876 } 877 CallbacksInitialized = true; 878 } 879 880 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 881 int size) { 882 FunctionCallee *Fns = 883 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 884 switch (size) { 885 case 1: 886 return Fns[0]; 887 case 2: 888 return Fns[1]; 889 case 4: 890 return Fns[2]; 891 case 8: 892 return Fns[3]; 893 default: 894 return nullptr; 895 } 896 } 897 898 /// Module-level initialization. 899 /// 900 /// inserts a call to __msan_init to the module's constructor list. 901 void MemorySanitizer::initializeModule(Module &M) { 902 auto &DL = M.getDataLayout(); 903 904 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 905 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 906 // Check the overrides first 907 if (ShadowPassed || OriginPassed) { 908 CustomMapParams.AndMask = ClAndMask; 909 CustomMapParams.XorMask = ClXorMask; 910 CustomMapParams.ShadowBase = ClShadowBase; 911 CustomMapParams.OriginBase = ClOriginBase; 912 MapParams = &CustomMapParams; 913 } else { 914 Triple TargetTriple(M.getTargetTriple()); 915 switch (TargetTriple.getOS()) { 916 case Triple::FreeBSD: 917 switch (TargetTriple.getArch()) { 918 case Triple::x86_64: 919 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 920 break; 921 case Triple::x86: 922 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 923 break; 924 default: 925 report_fatal_error("unsupported architecture"); 926 } 927 break; 928 case Triple::NetBSD: 929 switch (TargetTriple.getArch()) { 930 case Triple::x86_64: 931 MapParams = NetBSD_X86_MemoryMapParams.bits64; 932 break; 933 default: 934 report_fatal_error("unsupported architecture"); 935 } 936 break; 937 case Triple::Linux: 938 switch (TargetTriple.getArch()) { 939 case Triple::x86_64: 940 MapParams = Linux_X86_MemoryMapParams.bits64; 941 break; 942 case Triple::x86: 943 MapParams = Linux_X86_MemoryMapParams.bits32; 944 break; 945 case Triple::mips64: 946 case Triple::mips64el: 947 MapParams = Linux_MIPS_MemoryMapParams.bits64; 948 break; 949 case Triple::ppc64: 950 case Triple::ppc64le: 951 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 952 break; 953 case Triple::systemz: 954 MapParams = Linux_S390_MemoryMapParams.bits64; 955 break; 956 case Triple::aarch64: 957 case Triple::aarch64_be: 958 MapParams = Linux_ARM_MemoryMapParams.bits64; 959 break; 960 default: 961 report_fatal_error("unsupported architecture"); 962 } 963 break; 964 default: 965 report_fatal_error("unsupported operating system"); 966 } 967 } 968 969 C = &(M.getContext()); 970 IRBuilder<> IRB(*C); 971 IntptrTy = IRB.getIntPtrTy(DL); 972 OriginTy = IRB.getInt32Ty(); 973 974 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 975 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 976 977 if (!CompileKernel) { 978 if (TrackOrigins) 979 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 980 return new GlobalVariable( 981 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 982 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 983 }); 984 985 if (Recover) 986 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 987 return new GlobalVariable(M, IRB.getInt32Ty(), true, 988 GlobalValue::WeakODRLinkage, 989 IRB.getInt32(Recover), "__msan_keep_going"); 990 }); 991 } 992 } 993 994 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 995 if (!Options.Kernel) 996 insertModuleCtor(M); 997 MSan.emplace(M, Options); 998 return true; 999 } 1000 1001 namespace { 1002 1003 /// A helper class that handles instrumentation of VarArg 1004 /// functions on a particular platform. 1005 /// 1006 /// Implementations are expected to insert the instrumentation 1007 /// necessary to propagate argument shadow through VarArg function 1008 /// calls. Visit* methods are called during an InstVisitor pass over 1009 /// the function, and should avoid creating new basic blocks. A new 1010 /// instance of this class is created for each instrumented function. 1011 struct VarArgHelper { 1012 virtual ~VarArgHelper() = default; 1013 1014 /// Visit a CallBase. 1015 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1016 1017 /// Visit a va_start call. 1018 virtual void visitVAStartInst(VAStartInst &I) = 0; 1019 1020 /// Visit a va_copy call. 1021 virtual void visitVACopyInst(VACopyInst &I) = 0; 1022 1023 /// Finalize function instrumentation. 1024 /// 1025 /// This method is called after visiting all interesting (see above) 1026 /// instructions in a function. 1027 virtual void finalizeInstrumentation() = 0; 1028 }; 1029 1030 struct MemorySanitizerVisitor; 1031 1032 } // end anonymous namespace 1033 1034 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1035 MemorySanitizerVisitor &Visitor); 1036 1037 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1038 if (TypeSize <= 8) return 0; 1039 return Log2_32_Ceil((TypeSize + 7) / 8); 1040 } 1041 1042 namespace { 1043 1044 /// This class does all the work for a given function. Store and Load 1045 /// instructions store and load corresponding shadow and origin 1046 /// values. Most instructions propagate shadow from arguments to their 1047 /// return values. Certain instructions (most importantly, BranchInst) 1048 /// test their argument shadow and print reports (with a runtime call) if it's 1049 /// non-zero. 1050 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1051 Function &F; 1052 MemorySanitizer &MS; 1053 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1054 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1055 std::unique_ptr<VarArgHelper> VAHelper; 1056 const TargetLibraryInfo *TLI; 1057 BasicBlock *ActualFnStart; 1058 1059 // The following flags disable parts of MSan instrumentation based on 1060 // blacklist contents and command-line options. 1061 bool InsertChecks; 1062 bool PropagateShadow; 1063 bool PoisonStack; 1064 bool PoisonUndef; 1065 bool CheckReturnValue; 1066 1067 struct ShadowOriginAndInsertPoint { 1068 Value *Shadow; 1069 Value *Origin; 1070 Instruction *OrigIns; 1071 1072 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1073 : Shadow(S), Origin(O), OrigIns(I) {} 1074 }; 1075 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1076 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1077 SmallSet<AllocaInst *, 16> AllocaSet; 1078 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1079 SmallVector<StoreInst *, 16> StoreList; 1080 1081 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1082 const TargetLibraryInfo &TLI) 1083 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1084 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1085 InsertChecks = SanitizeFunction; 1086 PropagateShadow = SanitizeFunction; 1087 PoisonStack = SanitizeFunction && ClPoisonStack; 1088 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1089 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1090 // must always return fully initialized values. For now, we hardcode "main". 1091 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1092 1093 MS.initializeCallbacks(*F.getParent()); 1094 if (MS.CompileKernel) 1095 ActualFnStart = insertKmsanPrologue(F); 1096 else 1097 ActualFnStart = &F.getEntryBlock(); 1098 1099 LLVM_DEBUG(if (!InsertChecks) dbgs() 1100 << "MemorySanitizer is not inserting checks into '" 1101 << F.getName() << "'\n"); 1102 } 1103 1104 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1105 if (MS.TrackOrigins <= 1) return V; 1106 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1107 } 1108 1109 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1110 const DataLayout &DL = F.getParent()->getDataLayout(); 1111 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1112 if (IntptrSize == kOriginSize) return Origin; 1113 assert(IntptrSize == kOriginSize * 2); 1114 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1115 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1116 } 1117 1118 /// Fill memory range with the given origin value. 1119 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1120 unsigned Size, Align Alignment) { 1121 const DataLayout &DL = F.getParent()->getDataLayout(); 1122 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1123 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1124 assert(IntptrAlignment >= kMinOriginAlignment); 1125 assert(IntptrSize >= kOriginSize); 1126 1127 unsigned Ofs = 0; 1128 Align CurrentAlignment = Alignment; 1129 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1130 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1131 Value *IntptrOriginPtr = 1132 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1133 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1134 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1135 : IntptrOriginPtr; 1136 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1137 Ofs += IntptrSize / kOriginSize; 1138 CurrentAlignment = IntptrAlignment; 1139 } 1140 } 1141 1142 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1143 Value *GEP = 1144 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1145 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1146 CurrentAlignment = kMinOriginAlignment; 1147 } 1148 } 1149 1150 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1151 Value *OriginPtr, Align Alignment, bool AsCall) { 1152 const DataLayout &DL = F.getParent()->getDataLayout(); 1153 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1154 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1155 if (Shadow->getType()->isAggregateType()) { 1156 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1157 OriginAlignment); 1158 } else { 1159 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1160 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1161 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1162 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1163 OriginAlignment); 1164 return; 1165 } 1166 1167 unsigned TypeSizeInBits = 1168 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1169 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1170 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1171 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1172 Value *ConvertedShadow2 = IRB.CreateZExt( 1173 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1174 IRB.CreateCall(Fn, {ConvertedShadow2, 1175 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1176 Origin}); 1177 } else { 1178 Value *Cmp = IRB.CreateICmpNE( 1179 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1180 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1181 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1182 IRBuilder<> IRBNew(CheckTerm); 1183 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1184 OriginAlignment); 1185 } 1186 } 1187 } 1188 1189 void materializeStores(bool InstrumentWithCalls) { 1190 for (StoreInst *SI : StoreList) { 1191 IRBuilder<> IRB(SI); 1192 Value *Val = SI->getValueOperand(); 1193 Value *Addr = SI->getPointerOperand(); 1194 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1195 Value *ShadowPtr, *OriginPtr; 1196 Type *ShadowTy = Shadow->getType(); 1197 const Align Alignment = assumeAligned(SI->getAlignment()); 1198 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1199 std::tie(ShadowPtr, OriginPtr) = 1200 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1201 1202 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1203 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1204 (void)NewSI; 1205 1206 if (SI->isAtomic()) 1207 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1208 1209 if (MS.TrackOrigins && !SI->isAtomic()) 1210 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1211 OriginAlignment, InstrumentWithCalls); 1212 } 1213 } 1214 1215 /// Helper function to insert a warning at IRB's current insert point. 1216 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1217 if (!Origin) 1218 Origin = (Value *)IRB.getInt32(0); 1219 if (MS.CompileKernel) { 1220 IRB.CreateCall(MS.WarningFn, Origin); 1221 } else { 1222 if (MS.TrackOrigins) { 1223 IRB.CreateStore(Origin, MS.OriginTLS); 1224 } 1225 IRB.CreateCall(MS.WarningFn, {}); 1226 } 1227 IRB.CreateCall(MS.EmptyAsm, {}); 1228 // FIXME: Insert UnreachableInst if !MS.Recover? 1229 // This may invalidate some of the following checks and needs to be done 1230 // at the very end. 1231 } 1232 1233 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1234 bool AsCall) { 1235 IRBuilder<> IRB(OrigIns); 1236 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1237 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1238 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1239 1240 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1241 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1242 insertWarningFn(IRB, Origin); 1243 } 1244 return; 1245 } 1246 1247 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1248 1249 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1250 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1251 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1252 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1253 Value *ConvertedShadow2 = 1254 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1255 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1256 ? Origin 1257 : (Value *)IRB.getInt32(0)}); 1258 } else { 1259 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1260 getCleanShadow(ConvertedShadow), "_mscmp"); 1261 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1262 Cmp, OrigIns, 1263 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1264 1265 IRB.SetInsertPoint(CheckTerm); 1266 insertWarningFn(IRB, Origin); 1267 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1268 } 1269 } 1270 1271 void materializeChecks(bool InstrumentWithCalls) { 1272 for (const auto &ShadowData : InstrumentationList) { 1273 Instruction *OrigIns = ShadowData.OrigIns; 1274 Value *Shadow = ShadowData.Shadow; 1275 Value *Origin = ShadowData.Origin; 1276 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1277 } 1278 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1279 } 1280 1281 BasicBlock *insertKmsanPrologue(Function &F) { 1282 BasicBlock *ret = 1283 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1284 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1285 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1286 Constant *Zero = IRB.getInt32(0); 1287 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1288 {Zero, IRB.getInt32(0)}, "param_shadow"); 1289 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1290 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1291 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1292 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1293 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1294 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1295 MS.VAArgOverflowSizeTLS = 1296 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1297 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1298 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1299 {Zero, IRB.getInt32(5)}, "param_origin"); 1300 MS.RetvalOriginTLS = 1301 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1302 {Zero, IRB.getInt32(6)}, "retval_origin"); 1303 return ret; 1304 } 1305 1306 /// Add MemorySanitizer instrumentation to a function. 1307 bool runOnFunction() { 1308 // In the presence of unreachable blocks, we may see Phi nodes with 1309 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1310 // blocks, such nodes will not have any shadow value associated with them. 1311 // It's easier to remove unreachable blocks than deal with missing shadow. 1312 removeUnreachableBlocks(F); 1313 1314 // Iterate all BBs in depth-first order and create shadow instructions 1315 // for all instructions (where applicable). 1316 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1317 for (BasicBlock *BB : depth_first(ActualFnStart)) 1318 visit(*BB); 1319 1320 // Finalize PHI nodes. 1321 for (PHINode *PN : ShadowPHINodes) { 1322 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1323 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1324 size_t NumValues = PN->getNumIncomingValues(); 1325 for (size_t v = 0; v < NumValues; v++) { 1326 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1327 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1328 } 1329 } 1330 1331 VAHelper->finalizeInstrumentation(); 1332 1333 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1334 // instrumenting only allocas. 1335 if (InstrumentLifetimeStart) { 1336 for (auto Item : LifetimeStartList) { 1337 instrumentAlloca(*Item.second, Item.first); 1338 AllocaSet.erase(Item.second); 1339 } 1340 } 1341 // Poison the allocas for which we didn't instrument the corresponding 1342 // lifetime intrinsics. 1343 for (AllocaInst *AI : AllocaSet) 1344 instrumentAlloca(*AI); 1345 1346 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1347 InstrumentationList.size() + StoreList.size() > 1348 (unsigned)ClInstrumentationWithCallThreshold; 1349 1350 // Insert shadow value checks. 1351 materializeChecks(InstrumentWithCalls); 1352 1353 // Delayed instrumentation of StoreInst. 1354 // This may not add new address checks. 1355 materializeStores(InstrumentWithCalls); 1356 1357 return true; 1358 } 1359 1360 /// Compute the shadow type that corresponds to a given Value. 1361 Type *getShadowTy(Value *V) { 1362 return getShadowTy(V->getType()); 1363 } 1364 1365 /// Compute the shadow type that corresponds to a given Type. 1366 Type *getShadowTy(Type *OrigTy) { 1367 if (!OrigTy->isSized()) { 1368 return nullptr; 1369 } 1370 // For integer type, shadow is the same as the original type. 1371 // This may return weird-sized types like i1. 1372 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1373 return IT; 1374 const DataLayout &DL = F.getParent()->getDataLayout(); 1375 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1376 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1377 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1378 VT->getNumElements()); 1379 } 1380 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1381 return ArrayType::get(getShadowTy(AT->getElementType()), 1382 AT->getNumElements()); 1383 } 1384 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1385 SmallVector<Type*, 4> Elements; 1386 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1387 Elements.push_back(getShadowTy(ST->getElementType(i))); 1388 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1389 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1390 return Res; 1391 } 1392 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1393 return IntegerType::get(*MS.C, TypeSize); 1394 } 1395 1396 /// Flatten a vector type. 1397 Type *getShadowTyNoVec(Type *ty) { 1398 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1399 return IntegerType::get(*MS.C, 1400 vt->getPrimitiveSizeInBits().getFixedSize()); 1401 return ty; 1402 } 1403 1404 /// Convert a shadow value to it's flattened variant. 1405 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1406 Type *Ty = V->getType(); 1407 Type *NoVecTy = getShadowTyNoVec(Ty); 1408 if (Ty == NoVecTy) return V; 1409 return IRB.CreateBitCast(V, NoVecTy); 1410 } 1411 1412 /// Compute the integer shadow offset that corresponds to a given 1413 /// application address. 1414 /// 1415 /// Offset = (Addr & ~AndMask) ^ XorMask 1416 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1417 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1418 1419 uint64_t AndMask = MS.MapParams->AndMask; 1420 if (AndMask) 1421 OffsetLong = 1422 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1423 1424 uint64_t XorMask = MS.MapParams->XorMask; 1425 if (XorMask) 1426 OffsetLong = 1427 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1428 return OffsetLong; 1429 } 1430 1431 /// Compute the shadow and origin addresses corresponding to a given 1432 /// application address. 1433 /// 1434 /// Shadow = ShadowBase + Offset 1435 /// Origin = (OriginBase + Offset) & ~3ULL 1436 std::pair<Value *, Value *> 1437 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1438 MaybeAlign Alignment) { 1439 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1440 Value *ShadowLong = ShadowOffset; 1441 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1442 if (ShadowBase != 0) { 1443 ShadowLong = 1444 IRB.CreateAdd(ShadowLong, 1445 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1446 } 1447 Value *ShadowPtr = 1448 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1449 Value *OriginPtr = nullptr; 1450 if (MS.TrackOrigins) { 1451 Value *OriginLong = ShadowOffset; 1452 uint64_t OriginBase = MS.MapParams->OriginBase; 1453 if (OriginBase != 0) 1454 OriginLong = IRB.CreateAdd(OriginLong, 1455 ConstantInt::get(MS.IntptrTy, OriginBase)); 1456 if (!Alignment || *Alignment < kMinOriginAlignment) { 1457 uint64_t Mask = kMinOriginAlignment.value() - 1; 1458 OriginLong = 1459 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1460 } 1461 OriginPtr = 1462 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1463 } 1464 return std::make_pair(ShadowPtr, OriginPtr); 1465 } 1466 1467 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1468 IRBuilder<> &IRB, 1469 Type *ShadowTy, 1470 bool isStore) { 1471 Value *ShadowOriginPtrs; 1472 const DataLayout &DL = F.getParent()->getDataLayout(); 1473 int Size = DL.getTypeStoreSize(ShadowTy); 1474 1475 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1476 Value *AddrCast = 1477 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1478 if (Getter) { 1479 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1480 } else { 1481 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1482 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1483 : MS.MsanMetadataPtrForLoadN, 1484 {AddrCast, SizeVal}); 1485 } 1486 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1487 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1488 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1489 1490 return std::make_pair(ShadowPtr, OriginPtr); 1491 } 1492 1493 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1494 Type *ShadowTy, 1495 MaybeAlign Alignment, 1496 bool isStore) { 1497 if (MS.CompileKernel) 1498 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1499 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1500 } 1501 1502 /// Compute the shadow address for a given function argument. 1503 /// 1504 /// Shadow = ParamTLS+ArgOffset. 1505 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1506 int ArgOffset) { 1507 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1508 if (ArgOffset) 1509 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1510 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1511 "_msarg"); 1512 } 1513 1514 /// Compute the origin address for a given function argument. 1515 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1516 int ArgOffset) { 1517 if (!MS.TrackOrigins) 1518 return nullptr; 1519 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1520 if (ArgOffset) 1521 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1522 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1523 "_msarg_o"); 1524 } 1525 1526 /// Compute the shadow address for a retval. 1527 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1528 return IRB.CreatePointerCast(MS.RetvalTLS, 1529 PointerType::get(getShadowTy(A), 0), 1530 "_msret"); 1531 } 1532 1533 /// Compute the origin address for a retval. 1534 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1535 // We keep a single origin for the entire retval. Might be too optimistic. 1536 return MS.RetvalOriginTLS; 1537 } 1538 1539 /// Set SV to be the shadow value for V. 1540 void setShadow(Value *V, Value *SV) { 1541 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1542 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1543 } 1544 1545 /// Set Origin to be the origin value for V. 1546 void setOrigin(Value *V, Value *Origin) { 1547 if (!MS.TrackOrigins) return; 1548 assert(!OriginMap.count(V) && "Values may only have one origin"); 1549 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1550 OriginMap[V] = Origin; 1551 } 1552 1553 Constant *getCleanShadow(Type *OrigTy) { 1554 Type *ShadowTy = getShadowTy(OrigTy); 1555 if (!ShadowTy) 1556 return nullptr; 1557 return Constant::getNullValue(ShadowTy); 1558 } 1559 1560 /// Create a clean shadow value for a given value. 1561 /// 1562 /// Clean shadow (all zeroes) means all bits of the value are defined 1563 /// (initialized). 1564 Constant *getCleanShadow(Value *V) { 1565 return getCleanShadow(V->getType()); 1566 } 1567 1568 /// Create a dirty shadow of a given shadow type. 1569 Constant *getPoisonedShadow(Type *ShadowTy) { 1570 assert(ShadowTy); 1571 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1572 return Constant::getAllOnesValue(ShadowTy); 1573 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1574 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1575 getPoisonedShadow(AT->getElementType())); 1576 return ConstantArray::get(AT, Vals); 1577 } 1578 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1579 SmallVector<Constant *, 4> Vals; 1580 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1581 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1582 return ConstantStruct::get(ST, Vals); 1583 } 1584 llvm_unreachable("Unexpected shadow type"); 1585 } 1586 1587 /// Create a dirty shadow for a given value. 1588 Constant *getPoisonedShadow(Value *V) { 1589 Type *ShadowTy = getShadowTy(V); 1590 if (!ShadowTy) 1591 return nullptr; 1592 return getPoisonedShadow(ShadowTy); 1593 } 1594 1595 /// Create a clean (zero) origin. 1596 Value *getCleanOrigin() { 1597 return Constant::getNullValue(MS.OriginTy); 1598 } 1599 1600 /// Get the shadow value for a given Value. 1601 /// 1602 /// This function either returns the value set earlier with setShadow, 1603 /// or extracts if from ParamTLS (for function arguments). 1604 Value *getShadow(Value *V) { 1605 if (!PropagateShadow) return getCleanShadow(V); 1606 if (Instruction *I = dyn_cast<Instruction>(V)) { 1607 if (I->getMetadata("nosanitize")) 1608 return getCleanShadow(V); 1609 // For instructions the shadow is already stored in the map. 1610 Value *Shadow = ShadowMap[V]; 1611 if (!Shadow) { 1612 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1613 (void)I; 1614 assert(Shadow && "No shadow for a value"); 1615 } 1616 return Shadow; 1617 } 1618 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1619 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1620 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1621 (void)U; 1622 return AllOnes; 1623 } 1624 if (Argument *A = dyn_cast<Argument>(V)) { 1625 // For arguments we compute the shadow on demand and store it in the map. 1626 Value **ShadowPtr = &ShadowMap[V]; 1627 if (*ShadowPtr) 1628 return *ShadowPtr; 1629 Function *F = A->getParent(); 1630 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1631 unsigned ArgOffset = 0; 1632 const DataLayout &DL = F->getParent()->getDataLayout(); 1633 for (auto &FArg : F->args()) { 1634 if (!FArg.getType()->isSized()) { 1635 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1636 continue; 1637 } 1638 unsigned Size = 1639 FArg.hasByValAttr() 1640 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1641 : DL.getTypeAllocSize(FArg.getType()); 1642 if (A == &FArg) { 1643 bool Overflow = ArgOffset + Size > kParamTLSSize; 1644 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1645 if (FArg.hasByValAttr()) { 1646 // ByVal pointer itself has clean shadow. We copy the actual 1647 // argument shadow to the underlying memory. 1648 // Figure out maximal valid memcpy alignment. 1649 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1650 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1651 Value *CpShadowPtr = 1652 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1653 /*isStore*/ true) 1654 .first; 1655 // TODO(glider): need to copy origins. 1656 if (Overflow) { 1657 // ParamTLS overflow. 1658 EntryIRB.CreateMemSet( 1659 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1660 Size, ArgAlign); 1661 } else { 1662 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1663 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1664 CopyAlign, Size); 1665 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1666 (void)Cpy; 1667 } 1668 *ShadowPtr = getCleanShadow(V); 1669 } else { 1670 if (Overflow) { 1671 // ParamTLS overflow. 1672 *ShadowPtr = getCleanShadow(V); 1673 } else { 1674 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1675 kShadowTLSAlignment); 1676 } 1677 } 1678 LLVM_DEBUG(dbgs() 1679 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1680 if (MS.TrackOrigins && !Overflow) { 1681 Value *OriginPtr = 1682 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1683 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1684 } else { 1685 setOrigin(A, getCleanOrigin()); 1686 } 1687 } 1688 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1689 } 1690 assert(*ShadowPtr && "Could not find shadow for an argument"); 1691 return *ShadowPtr; 1692 } 1693 // For everything else the shadow is zero. 1694 return getCleanShadow(V); 1695 } 1696 1697 /// Get the shadow for i-th argument of the instruction I. 1698 Value *getShadow(Instruction *I, int i) { 1699 return getShadow(I->getOperand(i)); 1700 } 1701 1702 /// Get the origin for a value. 1703 Value *getOrigin(Value *V) { 1704 if (!MS.TrackOrigins) return nullptr; 1705 if (!PropagateShadow) return getCleanOrigin(); 1706 if (isa<Constant>(V)) return getCleanOrigin(); 1707 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1708 "Unexpected value type in getOrigin()"); 1709 if (Instruction *I = dyn_cast<Instruction>(V)) { 1710 if (I->getMetadata("nosanitize")) 1711 return getCleanOrigin(); 1712 } 1713 Value *Origin = OriginMap[V]; 1714 assert(Origin && "Missing origin"); 1715 return Origin; 1716 } 1717 1718 /// Get the origin for i-th argument of the instruction I. 1719 Value *getOrigin(Instruction *I, int i) { 1720 return getOrigin(I->getOperand(i)); 1721 } 1722 1723 /// Remember the place where a shadow check should be inserted. 1724 /// 1725 /// This location will be later instrumented with a check that will print a 1726 /// UMR warning in runtime if the shadow value is not 0. 1727 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1728 assert(Shadow); 1729 if (!InsertChecks) return; 1730 #ifndef NDEBUG 1731 Type *ShadowTy = Shadow->getType(); 1732 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1733 "Can only insert checks for integer and vector shadow types"); 1734 #endif 1735 InstrumentationList.push_back( 1736 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1737 } 1738 1739 /// Remember the place where a shadow check should be inserted. 1740 /// 1741 /// This location will be later instrumented with a check that will print a 1742 /// UMR warning in runtime if the value is not fully defined. 1743 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1744 assert(Val); 1745 Value *Shadow, *Origin; 1746 if (ClCheckConstantShadow) { 1747 Shadow = getShadow(Val); 1748 if (!Shadow) return; 1749 Origin = getOrigin(Val); 1750 } else { 1751 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1752 if (!Shadow) return; 1753 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1754 } 1755 insertShadowCheck(Shadow, Origin, OrigIns); 1756 } 1757 1758 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1759 switch (a) { 1760 case AtomicOrdering::NotAtomic: 1761 return AtomicOrdering::NotAtomic; 1762 case AtomicOrdering::Unordered: 1763 case AtomicOrdering::Monotonic: 1764 case AtomicOrdering::Release: 1765 return AtomicOrdering::Release; 1766 case AtomicOrdering::Acquire: 1767 case AtomicOrdering::AcquireRelease: 1768 return AtomicOrdering::AcquireRelease; 1769 case AtomicOrdering::SequentiallyConsistent: 1770 return AtomicOrdering::SequentiallyConsistent; 1771 } 1772 llvm_unreachable("Unknown ordering"); 1773 } 1774 1775 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1776 switch (a) { 1777 case AtomicOrdering::NotAtomic: 1778 return AtomicOrdering::NotAtomic; 1779 case AtomicOrdering::Unordered: 1780 case AtomicOrdering::Monotonic: 1781 case AtomicOrdering::Acquire: 1782 return AtomicOrdering::Acquire; 1783 case AtomicOrdering::Release: 1784 case AtomicOrdering::AcquireRelease: 1785 return AtomicOrdering::AcquireRelease; 1786 case AtomicOrdering::SequentiallyConsistent: 1787 return AtomicOrdering::SequentiallyConsistent; 1788 } 1789 llvm_unreachable("Unknown ordering"); 1790 } 1791 1792 // ------------------- Visitors. 1793 using InstVisitor<MemorySanitizerVisitor>::visit; 1794 void visit(Instruction &I) { 1795 if (!I.getMetadata("nosanitize")) 1796 InstVisitor<MemorySanitizerVisitor>::visit(I); 1797 } 1798 1799 /// Instrument LoadInst 1800 /// 1801 /// Loads the corresponding shadow and (optionally) origin. 1802 /// Optionally, checks that the load address is fully defined. 1803 void visitLoadInst(LoadInst &I) { 1804 assert(I.getType()->isSized() && "Load type must have size"); 1805 assert(!I.getMetadata("nosanitize")); 1806 IRBuilder<> IRB(I.getNextNode()); 1807 Type *ShadowTy = getShadowTy(&I); 1808 Value *Addr = I.getPointerOperand(); 1809 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1810 const Align Alignment = assumeAligned(I.getAlignment()); 1811 if (PropagateShadow) { 1812 std::tie(ShadowPtr, OriginPtr) = 1813 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1814 setShadow(&I, 1815 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1816 } else { 1817 setShadow(&I, getCleanShadow(&I)); 1818 } 1819 1820 if (ClCheckAccessAddress) 1821 insertShadowCheck(I.getPointerOperand(), &I); 1822 1823 if (I.isAtomic()) 1824 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1825 1826 if (MS.TrackOrigins) { 1827 if (PropagateShadow) { 1828 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1829 setOrigin( 1830 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1831 } else { 1832 setOrigin(&I, getCleanOrigin()); 1833 } 1834 } 1835 } 1836 1837 /// Instrument StoreInst 1838 /// 1839 /// Stores the corresponding shadow and (optionally) origin. 1840 /// Optionally, checks that the store address is fully defined. 1841 void visitStoreInst(StoreInst &I) { 1842 StoreList.push_back(&I); 1843 if (ClCheckAccessAddress) 1844 insertShadowCheck(I.getPointerOperand(), &I); 1845 } 1846 1847 void handleCASOrRMW(Instruction &I) { 1848 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1849 1850 IRBuilder<> IRB(&I); 1851 Value *Addr = I.getOperand(0); 1852 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1853 /*isStore*/ true) 1854 .first; 1855 1856 if (ClCheckAccessAddress) 1857 insertShadowCheck(Addr, &I); 1858 1859 // Only test the conditional argument of cmpxchg instruction. 1860 // The other argument can potentially be uninitialized, but we can not 1861 // detect this situation reliably without possible false positives. 1862 if (isa<AtomicCmpXchgInst>(I)) 1863 insertShadowCheck(I.getOperand(1), &I); 1864 1865 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1866 1867 setShadow(&I, getCleanShadow(&I)); 1868 setOrigin(&I, getCleanOrigin()); 1869 } 1870 1871 void visitAtomicRMWInst(AtomicRMWInst &I) { 1872 handleCASOrRMW(I); 1873 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1874 } 1875 1876 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1877 handleCASOrRMW(I); 1878 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1879 } 1880 1881 // Vector manipulation. 1882 void visitExtractElementInst(ExtractElementInst &I) { 1883 insertShadowCheck(I.getOperand(1), &I); 1884 IRBuilder<> IRB(&I); 1885 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1886 "_msprop")); 1887 setOrigin(&I, getOrigin(&I, 0)); 1888 } 1889 1890 void visitInsertElementInst(InsertElementInst &I) { 1891 insertShadowCheck(I.getOperand(2), &I); 1892 IRBuilder<> IRB(&I); 1893 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1894 I.getOperand(2), "_msprop")); 1895 setOriginForNaryOp(I); 1896 } 1897 1898 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1899 IRBuilder<> IRB(&I); 1900 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1901 I.getShuffleMask(), "_msprop")); 1902 setOriginForNaryOp(I); 1903 } 1904 1905 // Casts. 1906 void visitSExtInst(SExtInst &I) { 1907 IRBuilder<> IRB(&I); 1908 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1909 setOrigin(&I, getOrigin(&I, 0)); 1910 } 1911 1912 void visitZExtInst(ZExtInst &I) { 1913 IRBuilder<> IRB(&I); 1914 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1915 setOrigin(&I, getOrigin(&I, 0)); 1916 } 1917 1918 void visitTruncInst(TruncInst &I) { 1919 IRBuilder<> IRB(&I); 1920 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1921 setOrigin(&I, getOrigin(&I, 0)); 1922 } 1923 1924 void visitBitCastInst(BitCastInst &I) { 1925 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1926 // a musttail call and a ret, don't instrument. New instructions are not 1927 // allowed after a musttail call. 1928 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1929 if (CI->isMustTailCall()) 1930 return; 1931 IRBuilder<> IRB(&I); 1932 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1933 setOrigin(&I, getOrigin(&I, 0)); 1934 } 1935 1936 void visitPtrToIntInst(PtrToIntInst &I) { 1937 IRBuilder<> IRB(&I); 1938 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1939 "_msprop_ptrtoint")); 1940 setOrigin(&I, getOrigin(&I, 0)); 1941 } 1942 1943 void visitIntToPtrInst(IntToPtrInst &I) { 1944 IRBuilder<> IRB(&I); 1945 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1946 "_msprop_inttoptr")); 1947 setOrigin(&I, getOrigin(&I, 0)); 1948 } 1949 1950 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1951 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1952 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1953 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1954 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1955 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1956 1957 /// Propagate shadow for bitwise AND. 1958 /// 1959 /// This code is exact, i.e. if, for example, a bit in the left argument 1960 /// is defined and 0, then neither the value not definedness of the 1961 /// corresponding bit in B don't affect the resulting shadow. 1962 void visitAnd(BinaryOperator &I) { 1963 IRBuilder<> IRB(&I); 1964 // "And" of 0 and a poisoned value results in unpoisoned value. 1965 // 1&1 => 1; 0&1 => 0; p&1 => p; 1966 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1967 // 1&p => p; 0&p => 0; p&p => p; 1968 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1969 Value *S1 = getShadow(&I, 0); 1970 Value *S2 = getShadow(&I, 1); 1971 Value *V1 = I.getOperand(0); 1972 Value *V2 = I.getOperand(1); 1973 if (V1->getType() != S1->getType()) { 1974 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1975 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1976 } 1977 Value *S1S2 = IRB.CreateAnd(S1, S2); 1978 Value *V1S2 = IRB.CreateAnd(V1, S2); 1979 Value *S1V2 = IRB.CreateAnd(S1, V2); 1980 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1981 setOriginForNaryOp(I); 1982 } 1983 1984 void visitOr(BinaryOperator &I) { 1985 IRBuilder<> IRB(&I); 1986 // "Or" of 1 and a poisoned value results in unpoisoned value. 1987 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1988 // 1|0 => 1; 0|0 => 0; p|0 => p; 1989 // 1|p => 1; 0|p => p; p|p => p; 1990 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1991 Value *S1 = getShadow(&I, 0); 1992 Value *S2 = getShadow(&I, 1); 1993 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1994 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1995 if (V1->getType() != S1->getType()) { 1996 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1997 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1998 } 1999 Value *S1S2 = IRB.CreateAnd(S1, S2); 2000 Value *V1S2 = IRB.CreateAnd(V1, S2); 2001 Value *S1V2 = IRB.CreateAnd(S1, V2); 2002 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2003 setOriginForNaryOp(I); 2004 } 2005 2006 /// Default propagation of shadow and/or origin. 2007 /// 2008 /// This class implements the general case of shadow propagation, used in all 2009 /// cases where we don't know and/or don't care about what the operation 2010 /// actually does. It converts all input shadow values to a common type 2011 /// (extending or truncating as necessary), and bitwise OR's them. 2012 /// 2013 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2014 /// fully initialized), and less prone to false positives. 2015 /// 2016 /// This class also implements the general case of origin propagation. For a 2017 /// Nary operation, result origin is set to the origin of an argument that is 2018 /// not entirely initialized. If there is more than one such arguments, the 2019 /// rightmost of them is picked. It does not matter which one is picked if all 2020 /// arguments are initialized. 2021 template <bool CombineShadow> 2022 class Combiner { 2023 Value *Shadow = nullptr; 2024 Value *Origin = nullptr; 2025 IRBuilder<> &IRB; 2026 MemorySanitizerVisitor *MSV; 2027 2028 public: 2029 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2030 : IRB(IRB), MSV(MSV) {} 2031 2032 /// Add a pair of shadow and origin values to the mix. 2033 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2034 if (CombineShadow) { 2035 assert(OpShadow); 2036 if (!Shadow) 2037 Shadow = OpShadow; 2038 else { 2039 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2040 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2041 } 2042 } 2043 2044 if (MSV->MS.TrackOrigins) { 2045 assert(OpOrigin); 2046 if (!Origin) { 2047 Origin = OpOrigin; 2048 } else { 2049 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2050 // No point in adding something that might result in 0 origin value. 2051 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2052 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2053 Value *Cond = 2054 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2055 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2056 } 2057 } 2058 } 2059 return *this; 2060 } 2061 2062 /// Add an application value to the mix. 2063 Combiner &Add(Value *V) { 2064 Value *OpShadow = MSV->getShadow(V); 2065 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2066 return Add(OpShadow, OpOrigin); 2067 } 2068 2069 /// Set the current combined values as the given instruction's shadow 2070 /// and origin. 2071 void Done(Instruction *I) { 2072 if (CombineShadow) { 2073 assert(Shadow); 2074 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2075 MSV->setShadow(I, Shadow); 2076 } 2077 if (MSV->MS.TrackOrigins) { 2078 assert(Origin); 2079 MSV->setOrigin(I, Origin); 2080 } 2081 } 2082 }; 2083 2084 using ShadowAndOriginCombiner = Combiner<true>; 2085 using OriginCombiner = Combiner<false>; 2086 2087 /// Propagate origin for arbitrary operation. 2088 void setOriginForNaryOp(Instruction &I) { 2089 if (!MS.TrackOrigins) return; 2090 IRBuilder<> IRB(&I); 2091 OriginCombiner OC(this, IRB); 2092 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2093 OC.Add(OI->get()); 2094 OC.Done(&I); 2095 } 2096 2097 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2098 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2099 "Vector of pointers is not a valid shadow type"); 2100 return Ty->isVectorTy() ? cast<VectorType>(Ty)->getNumElements() * 2101 Ty->getScalarSizeInBits() 2102 : Ty->getPrimitiveSizeInBits(); 2103 } 2104 2105 /// Cast between two shadow types, extending or truncating as 2106 /// necessary. 2107 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2108 bool Signed = false) { 2109 Type *srcTy = V->getType(); 2110 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2111 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2112 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2113 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2114 2115 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2116 return IRB.CreateIntCast(V, dstTy, Signed); 2117 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2118 cast<VectorType>(dstTy)->getNumElements() == 2119 cast<VectorType>(srcTy)->getNumElements()) 2120 return IRB.CreateIntCast(V, dstTy, Signed); 2121 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2122 Value *V2 = 2123 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2124 return IRB.CreateBitCast(V2, dstTy); 2125 // TODO: handle struct types. 2126 } 2127 2128 /// Cast an application value to the type of its own shadow. 2129 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2130 Type *ShadowTy = getShadowTy(V); 2131 if (V->getType() == ShadowTy) 2132 return V; 2133 if (V->getType()->isPtrOrPtrVectorTy()) 2134 return IRB.CreatePtrToInt(V, ShadowTy); 2135 else 2136 return IRB.CreateBitCast(V, ShadowTy); 2137 } 2138 2139 /// Propagate shadow for arbitrary operation. 2140 void handleShadowOr(Instruction &I) { 2141 IRBuilder<> IRB(&I); 2142 ShadowAndOriginCombiner SC(this, IRB); 2143 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2144 SC.Add(OI->get()); 2145 SC.Done(&I); 2146 } 2147 2148 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2149 2150 // Handle multiplication by constant. 2151 // 2152 // Handle a special case of multiplication by constant that may have one or 2153 // more zeros in the lower bits. This makes corresponding number of lower bits 2154 // of the result zero as well. We model it by shifting the other operand 2155 // shadow left by the required number of bits. Effectively, we transform 2156 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2157 // We use multiplication by 2**N instead of shift to cover the case of 2158 // multiplication by 0, which may occur in some elements of a vector operand. 2159 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2160 Value *OtherArg) { 2161 Constant *ShadowMul; 2162 Type *Ty = ConstArg->getType(); 2163 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2164 unsigned NumElements = VTy->getNumElements(); 2165 Type *EltTy = VTy->getElementType(); 2166 SmallVector<Constant *, 16> Elements; 2167 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2168 if (ConstantInt *Elt = 2169 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2170 const APInt &V = Elt->getValue(); 2171 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2172 Elements.push_back(ConstantInt::get(EltTy, V2)); 2173 } else { 2174 Elements.push_back(ConstantInt::get(EltTy, 1)); 2175 } 2176 } 2177 ShadowMul = ConstantVector::get(Elements); 2178 } else { 2179 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2180 const APInt &V = Elt->getValue(); 2181 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2182 ShadowMul = ConstantInt::get(Ty, V2); 2183 } else { 2184 ShadowMul = ConstantInt::get(Ty, 1); 2185 } 2186 } 2187 2188 IRBuilder<> IRB(&I); 2189 setShadow(&I, 2190 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2191 setOrigin(&I, getOrigin(OtherArg)); 2192 } 2193 2194 void visitMul(BinaryOperator &I) { 2195 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2196 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2197 if (constOp0 && !constOp1) 2198 handleMulByConstant(I, constOp0, I.getOperand(1)); 2199 else if (constOp1 && !constOp0) 2200 handleMulByConstant(I, constOp1, I.getOperand(0)); 2201 else 2202 handleShadowOr(I); 2203 } 2204 2205 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2206 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2207 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2208 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2209 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2210 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2211 2212 void handleIntegerDiv(Instruction &I) { 2213 IRBuilder<> IRB(&I); 2214 // Strict on the second argument. 2215 insertShadowCheck(I.getOperand(1), &I); 2216 setShadow(&I, getShadow(&I, 0)); 2217 setOrigin(&I, getOrigin(&I, 0)); 2218 } 2219 2220 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2221 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2222 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2223 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2224 2225 // Floating point division is side-effect free. We can not require that the 2226 // divisor is fully initialized and must propagate shadow. See PR37523. 2227 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2228 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2229 2230 /// Instrument == and != comparisons. 2231 /// 2232 /// Sometimes the comparison result is known even if some of the bits of the 2233 /// arguments are not. 2234 void handleEqualityComparison(ICmpInst &I) { 2235 IRBuilder<> IRB(&I); 2236 Value *A = I.getOperand(0); 2237 Value *B = I.getOperand(1); 2238 Value *Sa = getShadow(A); 2239 Value *Sb = getShadow(B); 2240 2241 // Get rid of pointers and vectors of pointers. 2242 // For ints (and vectors of ints), types of A and Sa match, 2243 // and this is a no-op. 2244 A = IRB.CreatePointerCast(A, Sa->getType()); 2245 B = IRB.CreatePointerCast(B, Sb->getType()); 2246 2247 // A == B <==> (C = A^B) == 0 2248 // A != B <==> (C = A^B) != 0 2249 // Sc = Sa | Sb 2250 Value *C = IRB.CreateXor(A, B); 2251 Value *Sc = IRB.CreateOr(Sa, Sb); 2252 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2253 // Result is defined if one of the following is true 2254 // * there is a defined 1 bit in C 2255 // * C is fully defined 2256 // Si = !(C & ~Sc) && Sc 2257 Value *Zero = Constant::getNullValue(Sc->getType()); 2258 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2259 Value *Si = 2260 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2261 IRB.CreateICmpEQ( 2262 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2263 Si->setName("_msprop_icmp"); 2264 setShadow(&I, Si); 2265 setOriginForNaryOp(I); 2266 } 2267 2268 /// Build the lowest possible value of V, taking into account V's 2269 /// uninitialized bits. 2270 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2271 bool isSigned) { 2272 if (isSigned) { 2273 // Split shadow into sign bit and other bits. 2274 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2275 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2276 // Maximise the undefined shadow bit, minimize other undefined bits. 2277 return 2278 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2279 } else { 2280 // Minimize undefined bits. 2281 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2282 } 2283 } 2284 2285 /// Build the highest possible value of V, taking into account V's 2286 /// uninitialized bits. 2287 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2288 bool isSigned) { 2289 if (isSigned) { 2290 // Split shadow into sign bit and other bits. 2291 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2292 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2293 // Minimise the undefined shadow bit, maximise other undefined bits. 2294 return 2295 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2296 } else { 2297 // Maximize undefined bits. 2298 return IRB.CreateOr(A, Sa); 2299 } 2300 } 2301 2302 /// Instrument relational comparisons. 2303 /// 2304 /// This function does exact shadow propagation for all relational 2305 /// comparisons of integers, pointers and vectors of those. 2306 /// FIXME: output seems suboptimal when one of the operands is a constant 2307 void handleRelationalComparisonExact(ICmpInst &I) { 2308 IRBuilder<> IRB(&I); 2309 Value *A = I.getOperand(0); 2310 Value *B = I.getOperand(1); 2311 Value *Sa = getShadow(A); 2312 Value *Sb = getShadow(B); 2313 2314 // Get rid of pointers and vectors of pointers. 2315 // For ints (and vectors of ints), types of A and Sa match, 2316 // and this is a no-op. 2317 A = IRB.CreatePointerCast(A, Sa->getType()); 2318 B = IRB.CreatePointerCast(B, Sb->getType()); 2319 2320 // Let [a0, a1] be the interval of possible values of A, taking into account 2321 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2322 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2323 bool IsSigned = I.isSigned(); 2324 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2325 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2326 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2327 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2328 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2329 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2330 Value *Si = IRB.CreateXor(S1, S2); 2331 setShadow(&I, Si); 2332 setOriginForNaryOp(I); 2333 } 2334 2335 /// Instrument signed relational comparisons. 2336 /// 2337 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2338 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2339 void handleSignedRelationalComparison(ICmpInst &I) { 2340 Constant *constOp; 2341 Value *op = nullptr; 2342 CmpInst::Predicate pre; 2343 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2344 op = I.getOperand(0); 2345 pre = I.getPredicate(); 2346 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2347 op = I.getOperand(1); 2348 pre = I.getSwappedPredicate(); 2349 } else { 2350 handleShadowOr(I); 2351 return; 2352 } 2353 2354 if ((constOp->isNullValue() && 2355 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2356 (constOp->isAllOnesValue() && 2357 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2358 IRBuilder<> IRB(&I); 2359 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2360 "_msprop_icmp_s"); 2361 setShadow(&I, Shadow); 2362 setOrigin(&I, getOrigin(op)); 2363 } else { 2364 handleShadowOr(I); 2365 } 2366 } 2367 2368 void visitICmpInst(ICmpInst &I) { 2369 if (!ClHandleICmp) { 2370 handleShadowOr(I); 2371 return; 2372 } 2373 if (I.isEquality()) { 2374 handleEqualityComparison(I); 2375 return; 2376 } 2377 2378 assert(I.isRelational()); 2379 if (ClHandleICmpExact) { 2380 handleRelationalComparisonExact(I); 2381 return; 2382 } 2383 if (I.isSigned()) { 2384 handleSignedRelationalComparison(I); 2385 return; 2386 } 2387 2388 assert(I.isUnsigned()); 2389 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2390 handleRelationalComparisonExact(I); 2391 return; 2392 } 2393 2394 handleShadowOr(I); 2395 } 2396 2397 void visitFCmpInst(FCmpInst &I) { 2398 handleShadowOr(I); 2399 } 2400 2401 void handleShift(BinaryOperator &I) { 2402 IRBuilder<> IRB(&I); 2403 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2404 // Otherwise perform the same shift on S1. 2405 Value *S1 = getShadow(&I, 0); 2406 Value *S2 = getShadow(&I, 1); 2407 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2408 S2->getType()); 2409 Value *V2 = I.getOperand(1); 2410 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2411 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2412 setOriginForNaryOp(I); 2413 } 2414 2415 void visitShl(BinaryOperator &I) { handleShift(I); } 2416 void visitAShr(BinaryOperator &I) { handleShift(I); } 2417 void visitLShr(BinaryOperator &I) { handleShift(I); } 2418 2419 /// Instrument llvm.memmove 2420 /// 2421 /// At this point we don't know if llvm.memmove will be inlined or not. 2422 /// If we don't instrument it and it gets inlined, 2423 /// our interceptor will not kick in and we will lose the memmove. 2424 /// If we instrument the call here, but it does not get inlined, 2425 /// we will memove the shadow twice: which is bad in case 2426 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2427 /// 2428 /// Similar situation exists for memcpy and memset. 2429 void visitMemMoveInst(MemMoveInst &I) { 2430 IRBuilder<> IRB(&I); 2431 IRB.CreateCall( 2432 MS.MemmoveFn, 2433 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2434 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2435 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2436 I.eraseFromParent(); 2437 } 2438 2439 // Similar to memmove: avoid copying shadow twice. 2440 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2441 // FIXME: consider doing manual inline for small constant sizes and proper 2442 // alignment. 2443 void visitMemCpyInst(MemCpyInst &I) { 2444 IRBuilder<> IRB(&I); 2445 IRB.CreateCall( 2446 MS.MemcpyFn, 2447 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2448 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2449 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2450 I.eraseFromParent(); 2451 } 2452 2453 // Same as memcpy. 2454 void visitMemSetInst(MemSetInst &I) { 2455 IRBuilder<> IRB(&I); 2456 IRB.CreateCall( 2457 MS.MemsetFn, 2458 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2459 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2460 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2461 I.eraseFromParent(); 2462 } 2463 2464 void visitVAStartInst(VAStartInst &I) { 2465 VAHelper->visitVAStartInst(I); 2466 } 2467 2468 void visitVACopyInst(VACopyInst &I) { 2469 VAHelper->visitVACopyInst(I); 2470 } 2471 2472 /// Handle vector store-like intrinsics. 2473 /// 2474 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2475 /// has 1 pointer argument and 1 vector argument, returns void. 2476 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2477 IRBuilder<> IRB(&I); 2478 Value* Addr = I.getArgOperand(0); 2479 Value *Shadow = getShadow(&I, 1); 2480 Value *ShadowPtr, *OriginPtr; 2481 2482 // We don't know the pointer alignment (could be unaligned SSE store!). 2483 // Have to assume to worst case. 2484 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2485 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2486 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2487 2488 if (ClCheckAccessAddress) 2489 insertShadowCheck(Addr, &I); 2490 2491 // FIXME: factor out common code from materializeStores 2492 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2493 return true; 2494 } 2495 2496 /// Handle vector load-like intrinsics. 2497 /// 2498 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2499 /// has 1 pointer argument, returns a vector. 2500 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2501 IRBuilder<> IRB(&I); 2502 Value *Addr = I.getArgOperand(0); 2503 2504 Type *ShadowTy = getShadowTy(&I); 2505 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2506 if (PropagateShadow) { 2507 // We don't know the pointer alignment (could be unaligned SSE load!). 2508 // Have to assume to worst case. 2509 const Align Alignment = Align(1); 2510 std::tie(ShadowPtr, OriginPtr) = 2511 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2512 setShadow(&I, 2513 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2514 } else { 2515 setShadow(&I, getCleanShadow(&I)); 2516 } 2517 2518 if (ClCheckAccessAddress) 2519 insertShadowCheck(Addr, &I); 2520 2521 if (MS.TrackOrigins) { 2522 if (PropagateShadow) 2523 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2524 else 2525 setOrigin(&I, getCleanOrigin()); 2526 } 2527 return true; 2528 } 2529 2530 /// Handle (SIMD arithmetic)-like intrinsics. 2531 /// 2532 /// Instrument intrinsics with any number of arguments of the same type, 2533 /// equal to the return type. The type should be simple (no aggregates or 2534 /// pointers; vectors are fine). 2535 /// Caller guarantees that this intrinsic does not access memory. 2536 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2537 Type *RetTy = I.getType(); 2538 if (!(RetTy->isIntOrIntVectorTy() || 2539 RetTy->isFPOrFPVectorTy() || 2540 RetTy->isX86_MMXTy())) 2541 return false; 2542 2543 unsigned NumArgOperands = I.getNumArgOperands(); 2544 2545 for (unsigned i = 0; i < NumArgOperands; ++i) { 2546 Type *Ty = I.getArgOperand(i)->getType(); 2547 if (Ty != RetTy) 2548 return false; 2549 } 2550 2551 IRBuilder<> IRB(&I); 2552 ShadowAndOriginCombiner SC(this, IRB); 2553 for (unsigned i = 0; i < NumArgOperands; ++i) 2554 SC.Add(I.getArgOperand(i)); 2555 SC.Done(&I); 2556 2557 return true; 2558 } 2559 2560 /// Heuristically instrument unknown intrinsics. 2561 /// 2562 /// The main purpose of this code is to do something reasonable with all 2563 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2564 /// We recognize several classes of intrinsics by their argument types and 2565 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2566 /// sure that we know what the intrinsic does. 2567 /// 2568 /// We special-case intrinsics where this approach fails. See llvm.bswap 2569 /// handling as an example of that. 2570 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2571 unsigned NumArgOperands = I.getNumArgOperands(); 2572 if (NumArgOperands == 0) 2573 return false; 2574 2575 if (NumArgOperands == 2 && 2576 I.getArgOperand(0)->getType()->isPointerTy() && 2577 I.getArgOperand(1)->getType()->isVectorTy() && 2578 I.getType()->isVoidTy() && 2579 !I.onlyReadsMemory()) { 2580 // This looks like a vector store. 2581 return handleVectorStoreIntrinsic(I); 2582 } 2583 2584 if (NumArgOperands == 1 && 2585 I.getArgOperand(0)->getType()->isPointerTy() && 2586 I.getType()->isVectorTy() && 2587 I.onlyReadsMemory()) { 2588 // This looks like a vector load. 2589 return handleVectorLoadIntrinsic(I); 2590 } 2591 2592 if (I.doesNotAccessMemory()) 2593 if (maybeHandleSimpleNomemIntrinsic(I)) 2594 return true; 2595 2596 // FIXME: detect and handle SSE maskstore/maskload 2597 return false; 2598 } 2599 2600 void handleInvariantGroup(IntrinsicInst &I) { 2601 setShadow(&I, getShadow(&I, 0)); 2602 setOrigin(&I, getOrigin(&I, 0)); 2603 } 2604 2605 void handleLifetimeStart(IntrinsicInst &I) { 2606 if (!PoisonStack) 2607 return; 2608 DenseMap<Value *, AllocaInst *> AllocaForValue; 2609 AllocaInst *AI = 2610 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2611 if (!AI) 2612 InstrumentLifetimeStart = false; 2613 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2614 } 2615 2616 void handleBswap(IntrinsicInst &I) { 2617 IRBuilder<> IRB(&I); 2618 Value *Op = I.getArgOperand(0); 2619 Type *OpType = Op->getType(); 2620 Function *BswapFunc = Intrinsic::getDeclaration( 2621 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2622 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2623 setOrigin(&I, getOrigin(Op)); 2624 } 2625 2626 // Instrument vector convert intrinsic. 2627 // 2628 // This function instruments intrinsics like cvtsi2ss: 2629 // %Out = int_xxx_cvtyyy(%ConvertOp) 2630 // or 2631 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2632 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2633 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2634 // elements from \p CopyOp. 2635 // In most cases conversion involves floating-point value which may trigger a 2636 // hardware exception when not fully initialized. For this reason we require 2637 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2638 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2639 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2640 // return a fully initialized value. 2641 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2642 IRBuilder<> IRB(&I); 2643 Value *CopyOp, *ConvertOp; 2644 2645 switch (I.getNumArgOperands()) { 2646 case 3: 2647 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2648 LLVM_FALLTHROUGH; 2649 case 2: 2650 CopyOp = I.getArgOperand(0); 2651 ConvertOp = I.getArgOperand(1); 2652 break; 2653 case 1: 2654 ConvertOp = I.getArgOperand(0); 2655 CopyOp = nullptr; 2656 break; 2657 default: 2658 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2659 } 2660 2661 // The first *NumUsedElements* elements of ConvertOp are converted to the 2662 // same number of output elements. The rest of the output is copied from 2663 // CopyOp, or (if not available) filled with zeroes. 2664 // Combine shadow for elements of ConvertOp that are used in this operation, 2665 // and insert a check. 2666 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2667 // int->any conversion. 2668 Value *ConvertShadow = getShadow(ConvertOp); 2669 Value *AggShadow = nullptr; 2670 if (ConvertOp->getType()->isVectorTy()) { 2671 AggShadow = IRB.CreateExtractElement( 2672 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2673 for (int i = 1; i < NumUsedElements; ++i) { 2674 Value *MoreShadow = IRB.CreateExtractElement( 2675 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2676 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2677 } 2678 } else { 2679 AggShadow = ConvertShadow; 2680 } 2681 assert(AggShadow->getType()->isIntegerTy()); 2682 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2683 2684 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2685 // ConvertOp. 2686 if (CopyOp) { 2687 assert(CopyOp->getType() == I.getType()); 2688 assert(CopyOp->getType()->isVectorTy()); 2689 Value *ResultShadow = getShadow(CopyOp); 2690 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2691 for (int i = 0; i < NumUsedElements; ++i) { 2692 ResultShadow = IRB.CreateInsertElement( 2693 ResultShadow, ConstantInt::getNullValue(EltTy), 2694 ConstantInt::get(IRB.getInt32Ty(), i)); 2695 } 2696 setShadow(&I, ResultShadow); 2697 setOrigin(&I, getOrigin(CopyOp)); 2698 } else { 2699 setShadow(&I, getCleanShadow(&I)); 2700 setOrigin(&I, getCleanOrigin()); 2701 } 2702 } 2703 2704 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2705 // zeroes if it is zero, and all ones otherwise. 2706 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2707 if (S->getType()->isVectorTy()) 2708 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2709 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2710 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2711 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2712 } 2713 2714 // Given a vector, extract its first element, and return all 2715 // zeroes if it is zero, and all ones otherwise. 2716 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2717 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2718 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2719 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2720 } 2721 2722 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2723 Type *T = S->getType(); 2724 assert(T->isVectorTy()); 2725 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2726 return IRB.CreateSExt(S2, T); 2727 } 2728 2729 // Instrument vector shift intrinsic. 2730 // 2731 // This function instruments intrinsics like int_x86_avx2_psll_w. 2732 // Intrinsic shifts %In by %ShiftSize bits. 2733 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2734 // size, and the rest is ignored. Behavior is defined even if shift size is 2735 // greater than register (or field) width. 2736 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2737 assert(I.getNumArgOperands() == 2); 2738 IRBuilder<> IRB(&I); 2739 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2740 // Otherwise perform the same shift on S1. 2741 Value *S1 = getShadow(&I, 0); 2742 Value *S2 = getShadow(&I, 1); 2743 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2744 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2745 Value *V1 = I.getOperand(0); 2746 Value *V2 = I.getOperand(1); 2747 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2748 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2749 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2750 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2751 setOriginForNaryOp(I); 2752 } 2753 2754 // Get an X86_MMX-sized vector type. 2755 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2756 const unsigned X86_MMXSizeInBits = 64; 2757 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2758 "Illegal MMX vector element size"); 2759 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2760 X86_MMXSizeInBits / EltSizeInBits); 2761 } 2762 2763 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2764 // intrinsic. 2765 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2766 switch (id) { 2767 case Intrinsic::x86_sse2_packsswb_128: 2768 case Intrinsic::x86_sse2_packuswb_128: 2769 return Intrinsic::x86_sse2_packsswb_128; 2770 2771 case Intrinsic::x86_sse2_packssdw_128: 2772 case Intrinsic::x86_sse41_packusdw: 2773 return Intrinsic::x86_sse2_packssdw_128; 2774 2775 case Intrinsic::x86_avx2_packsswb: 2776 case Intrinsic::x86_avx2_packuswb: 2777 return Intrinsic::x86_avx2_packsswb; 2778 2779 case Intrinsic::x86_avx2_packssdw: 2780 case Intrinsic::x86_avx2_packusdw: 2781 return Intrinsic::x86_avx2_packssdw; 2782 2783 case Intrinsic::x86_mmx_packsswb: 2784 case Intrinsic::x86_mmx_packuswb: 2785 return Intrinsic::x86_mmx_packsswb; 2786 2787 case Intrinsic::x86_mmx_packssdw: 2788 return Intrinsic::x86_mmx_packssdw; 2789 default: 2790 llvm_unreachable("unexpected intrinsic id"); 2791 } 2792 } 2793 2794 // Instrument vector pack intrinsic. 2795 // 2796 // This function instruments intrinsics like x86_mmx_packsswb, that 2797 // packs elements of 2 input vectors into half as many bits with saturation. 2798 // Shadow is propagated with the signed variant of the same intrinsic applied 2799 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2800 // EltSizeInBits is used only for x86mmx arguments. 2801 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2802 assert(I.getNumArgOperands() == 2); 2803 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2804 IRBuilder<> IRB(&I); 2805 Value *S1 = getShadow(&I, 0); 2806 Value *S2 = getShadow(&I, 1); 2807 assert(isX86_MMX || S1->getType()->isVectorTy()); 2808 2809 // SExt and ICmpNE below must apply to individual elements of input vectors. 2810 // In case of x86mmx arguments, cast them to appropriate vector types and 2811 // back. 2812 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2813 if (isX86_MMX) { 2814 S1 = IRB.CreateBitCast(S1, T); 2815 S2 = IRB.CreateBitCast(S2, T); 2816 } 2817 Value *S1_ext = IRB.CreateSExt( 2818 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2819 Value *S2_ext = IRB.CreateSExt( 2820 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2821 if (isX86_MMX) { 2822 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2823 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2824 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2825 } 2826 2827 Function *ShadowFn = Intrinsic::getDeclaration( 2828 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2829 2830 Value *S = 2831 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2832 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2833 setShadow(&I, S); 2834 setOriginForNaryOp(I); 2835 } 2836 2837 // Instrument sum-of-absolute-differences intrinsic. 2838 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2839 const unsigned SignificantBitsPerResultElement = 16; 2840 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2841 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2842 unsigned ZeroBitsPerResultElement = 2843 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2844 2845 IRBuilder<> IRB(&I); 2846 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2847 S = IRB.CreateBitCast(S, ResTy); 2848 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2849 ResTy); 2850 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2851 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2852 setShadow(&I, S); 2853 setOriginForNaryOp(I); 2854 } 2855 2856 // Instrument multiply-add intrinsic. 2857 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2858 unsigned EltSizeInBits = 0) { 2859 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2860 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2861 IRBuilder<> IRB(&I); 2862 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2863 S = IRB.CreateBitCast(S, ResTy); 2864 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2865 ResTy); 2866 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2867 setShadow(&I, S); 2868 setOriginForNaryOp(I); 2869 } 2870 2871 // Instrument compare-packed intrinsic. 2872 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2873 // all-ones shadow. 2874 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2875 IRBuilder<> IRB(&I); 2876 Type *ResTy = getShadowTy(&I); 2877 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2878 Value *S = IRB.CreateSExt( 2879 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2880 setShadow(&I, S); 2881 setOriginForNaryOp(I); 2882 } 2883 2884 // Instrument compare-scalar intrinsic. 2885 // This handles both cmp* intrinsics which return the result in the first 2886 // element of a vector, and comi* which return the result as i32. 2887 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2888 IRBuilder<> IRB(&I); 2889 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2890 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2891 setShadow(&I, S); 2892 setOriginForNaryOp(I); 2893 } 2894 2895 void handleStmxcsr(IntrinsicInst &I) { 2896 IRBuilder<> IRB(&I); 2897 Value* Addr = I.getArgOperand(0); 2898 Type *Ty = IRB.getInt32Ty(); 2899 Value *ShadowPtr = 2900 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2901 2902 IRB.CreateStore(getCleanShadow(Ty), 2903 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2904 2905 if (ClCheckAccessAddress) 2906 insertShadowCheck(Addr, &I); 2907 } 2908 2909 void handleLdmxcsr(IntrinsicInst &I) { 2910 if (!InsertChecks) return; 2911 2912 IRBuilder<> IRB(&I); 2913 Value *Addr = I.getArgOperand(0); 2914 Type *Ty = IRB.getInt32Ty(); 2915 const Align Alignment = Align(1); 2916 Value *ShadowPtr, *OriginPtr; 2917 std::tie(ShadowPtr, OriginPtr) = 2918 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2919 2920 if (ClCheckAccessAddress) 2921 insertShadowCheck(Addr, &I); 2922 2923 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2924 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2925 : getCleanOrigin(); 2926 insertShadowCheck(Shadow, Origin, &I); 2927 } 2928 2929 void handleMaskedStore(IntrinsicInst &I) { 2930 IRBuilder<> IRB(&I); 2931 Value *V = I.getArgOperand(0); 2932 Value *Addr = I.getArgOperand(1); 2933 const Align Alignment( 2934 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2935 Value *Mask = I.getArgOperand(3); 2936 Value *Shadow = getShadow(V); 2937 2938 Value *ShadowPtr; 2939 Value *OriginPtr; 2940 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2941 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2942 2943 if (ClCheckAccessAddress) { 2944 insertShadowCheck(Addr, &I); 2945 // Uninitialized mask is kind of like uninitialized address, but not as 2946 // scary. 2947 insertShadowCheck(Mask, &I); 2948 } 2949 2950 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 2951 2952 if (MS.TrackOrigins) { 2953 auto &DL = F.getParent()->getDataLayout(); 2954 paintOrigin(IRB, getOrigin(V), OriginPtr, 2955 DL.getTypeStoreSize(Shadow->getType()), 2956 std::max(Alignment, kMinOriginAlignment)); 2957 } 2958 } 2959 2960 bool handleMaskedLoad(IntrinsicInst &I) { 2961 IRBuilder<> IRB(&I); 2962 Value *Addr = I.getArgOperand(0); 2963 const Align Alignment( 2964 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2965 Value *Mask = I.getArgOperand(2); 2966 Value *PassThru = I.getArgOperand(3); 2967 2968 Type *ShadowTy = getShadowTy(&I); 2969 Value *ShadowPtr, *OriginPtr; 2970 if (PropagateShadow) { 2971 std::tie(ShadowPtr, OriginPtr) = 2972 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2973 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 2974 getShadow(PassThru), "_msmaskedld")); 2975 } else { 2976 setShadow(&I, getCleanShadow(&I)); 2977 } 2978 2979 if (ClCheckAccessAddress) { 2980 insertShadowCheck(Addr, &I); 2981 insertShadowCheck(Mask, &I); 2982 } 2983 2984 if (MS.TrackOrigins) { 2985 if (PropagateShadow) { 2986 // Choose between PassThru's and the loaded value's origins. 2987 Value *MaskedPassThruShadow = IRB.CreateAnd( 2988 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2989 2990 Value *Acc = IRB.CreateExtractElement( 2991 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2992 for (int i = 1, 2993 N = cast<VectorType>(PassThru->getType())->getNumElements(); 2994 i < N; ++i) { 2995 Value *More = IRB.CreateExtractElement( 2996 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2997 Acc = IRB.CreateOr(Acc, More); 2998 } 2999 3000 Value *Origin = IRB.CreateSelect( 3001 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3002 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3003 3004 setOrigin(&I, Origin); 3005 } else { 3006 setOrigin(&I, getCleanOrigin()); 3007 } 3008 } 3009 return true; 3010 } 3011 3012 // Instrument BMI / BMI2 intrinsics. 3013 // All of these intrinsics are Z = I(X, Y) 3014 // where the types of all operands and the result match, and are either i32 or i64. 3015 // The following instrumentation happens to work for all of them: 3016 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3017 void handleBmiIntrinsic(IntrinsicInst &I) { 3018 IRBuilder<> IRB(&I); 3019 Type *ShadowTy = getShadowTy(&I); 3020 3021 // If any bit of the mask operand is poisoned, then the whole thing is. 3022 Value *SMask = getShadow(&I, 1); 3023 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3024 ShadowTy); 3025 // Apply the same intrinsic to the shadow of the first operand. 3026 Value *S = IRB.CreateCall(I.getCalledFunction(), 3027 {getShadow(&I, 0), I.getOperand(1)}); 3028 S = IRB.CreateOr(SMask, S); 3029 setShadow(&I, S); 3030 setOriginForNaryOp(I); 3031 } 3032 3033 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3034 SmallVector<int, 8> Mask; 3035 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3036 Mask.append(2, X); 3037 } 3038 return Mask; 3039 } 3040 3041 // Instrument pclmul intrinsics. 3042 // These intrinsics operate either on odd or on even elements of the input 3043 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3044 // Replace the unused elements with copies of the used ones, ex: 3045 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3046 // or 3047 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3048 // and then apply the usual shadow combining logic. 3049 void handlePclmulIntrinsic(IntrinsicInst &I) { 3050 IRBuilder<> IRB(&I); 3051 Type *ShadowTy = getShadowTy(&I); 3052 unsigned Width = 3053 cast<VectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3054 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3055 "pclmul 3rd operand must be a constant"); 3056 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3057 Value *Shuf0 = 3058 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3059 getPclmulMask(Width, Imm & 0x01)); 3060 Value *Shuf1 = 3061 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3062 getPclmulMask(Width, Imm & 0x10)); 3063 ShadowAndOriginCombiner SOC(this, IRB); 3064 SOC.Add(Shuf0, getOrigin(&I, 0)); 3065 SOC.Add(Shuf1, getOrigin(&I, 1)); 3066 SOC.Done(&I); 3067 } 3068 3069 void visitIntrinsicInst(IntrinsicInst &I) { 3070 switch (I.getIntrinsicID()) { 3071 case Intrinsic::lifetime_start: 3072 handleLifetimeStart(I); 3073 break; 3074 case Intrinsic::launder_invariant_group: 3075 case Intrinsic::strip_invariant_group: 3076 handleInvariantGroup(I); 3077 break; 3078 case Intrinsic::bswap: 3079 handleBswap(I); 3080 break; 3081 case Intrinsic::masked_store: 3082 handleMaskedStore(I); 3083 break; 3084 case Intrinsic::masked_load: 3085 handleMaskedLoad(I); 3086 break; 3087 case Intrinsic::x86_sse_stmxcsr: 3088 handleStmxcsr(I); 3089 break; 3090 case Intrinsic::x86_sse_ldmxcsr: 3091 handleLdmxcsr(I); 3092 break; 3093 case Intrinsic::x86_avx512_vcvtsd2usi64: 3094 case Intrinsic::x86_avx512_vcvtsd2usi32: 3095 case Intrinsic::x86_avx512_vcvtss2usi64: 3096 case Intrinsic::x86_avx512_vcvtss2usi32: 3097 case Intrinsic::x86_avx512_cvttss2usi64: 3098 case Intrinsic::x86_avx512_cvttss2usi: 3099 case Intrinsic::x86_avx512_cvttsd2usi64: 3100 case Intrinsic::x86_avx512_cvttsd2usi: 3101 case Intrinsic::x86_avx512_cvtusi2ss: 3102 case Intrinsic::x86_avx512_cvtusi642sd: 3103 case Intrinsic::x86_avx512_cvtusi642ss: 3104 case Intrinsic::x86_sse2_cvtsd2si64: 3105 case Intrinsic::x86_sse2_cvtsd2si: 3106 case Intrinsic::x86_sse2_cvtsd2ss: 3107 case Intrinsic::x86_sse2_cvttsd2si64: 3108 case Intrinsic::x86_sse2_cvttsd2si: 3109 case Intrinsic::x86_sse_cvtss2si64: 3110 case Intrinsic::x86_sse_cvtss2si: 3111 case Intrinsic::x86_sse_cvttss2si64: 3112 case Intrinsic::x86_sse_cvttss2si: 3113 handleVectorConvertIntrinsic(I, 1); 3114 break; 3115 case Intrinsic::x86_sse_cvtps2pi: 3116 case Intrinsic::x86_sse_cvttps2pi: 3117 handleVectorConvertIntrinsic(I, 2); 3118 break; 3119 3120 case Intrinsic::x86_avx512_psll_w_512: 3121 case Intrinsic::x86_avx512_psll_d_512: 3122 case Intrinsic::x86_avx512_psll_q_512: 3123 case Intrinsic::x86_avx512_pslli_w_512: 3124 case Intrinsic::x86_avx512_pslli_d_512: 3125 case Intrinsic::x86_avx512_pslli_q_512: 3126 case Intrinsic::x86_avx512_psrl_w_512: 3127 case Intrinsic::x86_avx512_psrl_d_512: 3128 case Intrinsic::x86_avx512_psrl_q_512: 3129 case Intrinsic::x86_avx512_psra_w_512: 3130 case Intrinsic::x86_avx512_psra_d_512: 3131 case Intrinsic::x86_avx512_psra_q_512: 3132 case Intrinsic::x86_avx512_psrli_w_512: 3133 case Intrinsic::x86_avx512_psrli_d_512: 3134 case Intrinsic::x86_avx512_psrli_q_512: 3135 case Intrinsic::x86_avx512_psrai_w_512: 3136 case Intrinsic::x86_avx512_psrai_d_512: 3137 case Intrinsic::x86_avx512_psrai_q_512: 3138 case Intrinsic::x86_avx512_psra_q_256: 3139 case Intrinsic::x86_avx512_psra_q_128: 3140 case Intrinsic::x86_avx512_psrai_q_256: 3141 case Intrinsic::x86_avx512_psrai_q_128: 3142 case Intrinsic::x86_avx2_psll_w: 3143 case Intrinsic::x86_avx2_psll_d: 3144 case Intrinsic::x86_avx2_psll_q: 3145 case Intrinsic::x86_avx2_pslli_w: 3146 case Intrinsic::x86_avx2_pslli_d: 3147 case Intrinsic::x86_avx2_pslli_q: 3148 case Intrinsic::x86_avx2_psrl_w: 3149 case Intrinsic::x86_avx2_psrl_d: 3150 case Intrinsic::x86_avx2_psrl_q: 3151 case Intrinsic::x86_avx2_psra_w: 3152 case Intrinsic::x86_avx2_psra_d: 3153 case Intrinsic::x86_avx2_psrli_w: 3154 case Intrinsic::x86_avx2_psrli_d: 3155 case Intrinsic::x86_avx2_psrli_q: 3156 case Intrinsic::x86_avx2_psrai_w: 3157 case Intrinsic::x86_avx2_psrai_d: 3158 case Intrinsic::x86_sse2_psll_w: 3159 case Intrinsic::x86_sse2_psll_d: 3160 case Intrinsic::x86_sse2_psll_q: 3161 case Intrinsic::x86_sse2_pslli_w: 3162 case Intrinsic::x86_sse2_pslli_d: 3163 case Intrinsic::x86_sse2_pslli_q: 3164 case Intrinsic::x86_sse2_psrl_w: 3165 case Intrinsic::x86_sse2_psrl_d: 3166 case Intrinsic::x86_sse2_psrl_q: 3167 case Intrinsic::x86_sse2_psra_w: 3168 case Intrinsic::x86_sse2_psra_d: 3169 case Intrinsic::x86_sse2_psrli_w: 3170 case Intrinsic::x86_sse2_psrli_d: 3171 case Intrinsic::x86_sse2_psrli_q: 3172 case Intrinsic::x86_sse2_psrai_w: 3173 case Intrinsic::x86_sse2_psrai_d: 3174 case Intrinsic::x86_mmx_psll_w: 3175 case Intrinsic::x86_mmx_psll_d: 3176 case Intrinsic::x86_mmx_psll_q: 3177 case Intrinsic::x86_mmx_pslli_w: 3178 case Intrinsic::x86_mmx_pslli_d: 3179 case Intrinsic::x86_mmx_pslli_q: 3180 case Intrinsic::x86_mmx_psrl_w: 3181 case Intrinsic::x86_mmx_psrl_d: 3182 case Intrinsic::x86_mmx_psrl_q: 3183 case Intrinsic::x86_mmx_psra_w: 3184 case Intrinsic::x86_mmx_psra_d: 3185 case Intrinsic::x86_mmx_psrli_w: 3186 case Intrinsic::x86_mmx_psrli_d: 3187 case Intrinsic::x86_mmx_psrli_q: 3188 case Intrinsic::x86_mmx_psrai_w: 3189 case Intrinsic::x86_mmx_psrai_d: 3190 handleVectorShiftIntrinsic(I, /* Variable */ false); 3191 break; 3192 case Intrinsic::x86_avx2_psllv_d: 3193 case Intrinsic::x86_avx2_psllv_d_256: 3194 case Intrinsic::x86_avx512_psllv_d_512: 3195 case Intrinsic::x86_avx2_psllv_q: 3196 case Intrinsic::x86_avx2_psllv_q_256: 3197 case Intrinsic::x86_avx512_psllv_q_512: 3198 case Intrinsic::x86_avx2_psrlv_d: 3199 case Intrinsic::x86_avx2_psrlv_d_256: 3200 case Intrinsic::x86_avx512_psrlv_d_512: 3201 case Intrinsic::x86_avx2_psrlv_q: 3202 case Intrinsic::x86_avx2_psrlv_q_256: 3203 case Intrinsic::x86_avx512_psrlv_q_512: 3204 case Intrinsic::x86_avx2_psrav_d: 3205 case Intrinsic::x86_avx2_psrav_d_256: 3206 case Intrinsic::x86_avx512_psrav_d_512: 3207 case Intrinsic::x86_avx512_psrav_q_128: 3208 case Intrinsic::x86_avx512_psrav_q_256: 3209 case Intrinsic::x86_avx512_psrav_q_512: 3210 handleVectorShiftIntrinsic(I, /* Variable */ true); 3211 break; 3212 3213 case Intrinsic::x86_sse2_packsswb_128: 3214 case Intrinsic::x86_sse2_packssdw_128: 3215 case Intrinsic::x86_sse2_packuswb_128: 3216 case Intrinsic::x86_sse41_packusdw: 3217 case Intrinsic::x86_avx2_packsswb: 3218 case Intrinsic::x86_avx2_packssdw: 3219 case Intrinsic::x86_avx2_packuswb: 3220 case Intrinsic::x86_avx2_packusdw: 3221 handleVectorPackIntrinsic(I); 3222 break; 3223 3224 case Intrinsic::x86_mmx_packsswb: 3225 case Intrinsic::x86_mmx_packuswb: 3226 handleVectorPackIntrinsic(I, 16); 3227 break; 3228 3229 case Intrinsic::x86_mmx_packssdw: 3230 handleVectorPackIntrinsic(I, 32); 3231 break; 3232 3233 case Intrinsic::x86_mmx_psad_bw: 3234 case Intrinsic::x86_sse2_psad_bw: 3235 case Intrinsic::x86_avx2_psad_bw: 3236 handleVectorSadIntrinsic(I); 3237 break; 3238 3239 case Intrinsic::x86_sse2_pmadd_wd: 3240 case Intrinsic::x86_avx2_pmadd_wd: 3241 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3242 case Intrinsic::x86_avx2_pmadd_ub_sw: 3243 handleVectorPmaddIntrinsic(I); 3244 break; 3245 3246 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3247 handleVectorPmaddIntrinsic(I, 8); 3248 break; 3249 3250 case Intrinsic::x86_mmx_pmadd_wd: 3251 handleVectorPmaddIntrinsic(I, 16); 3252 break; 3253 3254 case Intrinsic::x86_sse_cmp_ss: 3255 case Intrinsic::x86_sse2_cmp_sd: 3256 case Intrinsic::x86_sse_comieq_ss: 3257 case Intrinsic::x86_sse_comilt_ss: 3258 case Intrinsic::x86_sse_comile_ss: 3259 case Intrinsic::x86_sse_comigt_ss: 3260 case Intrinsic::x86_sse_comige_ss: 3261 case Intrinsic::x86_sse_comineq_ss: 3262 case Intrinsic::x86_sse_ucomieq_ss: 3263 case Intrinsic::x86_sse_ucomilt_ss: 3264 case Intrinsic::x86_sse_ucomile_ss: 3265 case Intrinsic::x86_sse_ucomigt_ss: 3266 case Intrinsic::x86_sse_ucomige_ss: 3267 case Intrinsic::x86_sse_ucomineq_ss: 3268 case Intrinsic::x86_sse2_comieq_sd: 3269 case Intrinsic::x86_sse2_comilt_sd: 3270 case Intrinsic::x86_sse2_comile_sd: 3271 case Intrinsic::x86_sse2_comigt_sd: 3272 case Intrinsic::x86_sse2_comige_sd: 3273 case Intrinsic::x86_sse2_comineq_sd: 3274 case Intrinsic::x86_sse2_ucomieq_sd: 3275 case Intrinsic::x86_sse2_ucomilt_sd: 3276 case Intrinsic::x86_sse2_ucomile_sd: 3277 case Intrinsic::x86_sse2_ucomigt_sd: 3278 case Intrinsic::x86_sse2_ucomige_sd: 3279 case Intrinsic::x86_sse2_ucomineq_sd: 3280 handleVectorCompareScalarIntrinsic(I); 3281 break; 3282 3283 case Intrinsic::x86_sse_cmp_ps: 3284 case Intrinsic::x86_sse2_cmp_pd: 3285 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3286 // generates reasonably looking IR that fails in the backend with "Do not 3287 // know how to split the result of this operator!". 3288 handleVectorComparePackedIntrinsic(I); 3289 break; 3290 3291 case Intrinsic::x86_bmi_bextr_32: 3292 case Intrinsic::x86_bmi_bextr_64: 3293 case Intrinsic::x86_bmi_bzhi_32: 3294 case Intrinsic::x86_bmi_bzhi_64: 3295 case Intrinsic::x86_bmi_pdep_32: 3296 case Intrinsic::x86_bmi_pdep_64: 3297 case Intrinsic::x86_bmi_pext_32: 3298 case Intrinsic::x86_bmi_pext_64: 3299 handleBmiIntrinsic(I); 3300 break; 3301 3302 case Intrinsic::x86_pclmulqdq: 3303 case Intrinsic::x86_pclmulqdq_256: 3304 case Intrinsic::x86_pclmulqdq_512: 3305 handlePclmulIntrinsic(I); 3306 break; 3307 3308 case Intrinsic::is_constant: 3309 // The result of llvm.is.constant() is always defined. 3310 setShadow(&I, getCleanShadow(&I)); 3311 setOrigin(&I, getCleanOrigin()); 3312 break; 3313 3314 default: 3315 if (!handleUnknownIntrinsic(I)) 3316 visitInstruction(I); 3317 break; 3318 } 3319 } 3320 3321 void visitCallBase(CallBase &CB) { 3322 assert(!CB.getMetadata("nosanitize")); 3323 if (CB.isInlineAsm()) { 3324 // For inline asm (either a call to asm function, or callbr instruction), 3325 // do the usual thing: check argument shadow and mark all outputs as 3326 // clean. Note that any side effects of the inline asm that are not 3327 // immediately visible in its constraints are not handled. 3328 if (ClHandleAsmConservative && MS.CompileKernel) 3329 visitAsmInstruction(CB); 3330 else 3331 visitInstruction(CB); 3332 return; 3333 } 3334 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3335 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3336 3337 // We are going to insert code that relies on the fact that the callee 3338 // will become a non-readonly function after it is instrumented by us. To 3339 // prevent this code from being optimized out, mark that function 3340 // non-readonly in advance. 3341 if (Function *Func = Call->getCalledFunction()) { 3342 // Clear out readonly/readnone attributes. 3343 AttrBuilder B; 3344 B.addAttribute(Attribute::ReadOnly) 3345 .addAttribute(Attribute::ReadNone) 3346 .addAttribute(Attribute::WriteOnly) 3347 .addAttribute(Attribute::ArgMemOnly) 3348 .addAttribute(Attribute::Speculatable); 3349 Func->removeAttributes(AttributeList::FunctionIndex, B); 3350 } 3351 3352 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3353 } 3354 IRBuilder<> IRB(&CB); 3355 3356 unsigned ArgOffset = 0; 3357 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3358 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3359 ++ArgIt) { 3360 Value *A = *ArgIt; 3361 unsigned i = ArgIt - CB.arg_begin(); 3362 if (!A->getType()->isSized()) { 3363 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3364 continue; 3365 } 3366 unsigned Size = 0; 3367 Value *Store = nullptr; 3368 // Compute the Shadow for arg even if it is ByVal, because 3369 // in that case getShadow() will copy the actual arg shadow to 3370 // __msan_param_tls. 3371 Value *ArgShadow = getShadow(A); 3372 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3373 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3374 << " Shadow: " << *ArgShadow << "\n"); 3375 bool ArgIsInitialized = false; 3376 const DataLayout &DL = F.getParent()->getDataLayout(); 3377 if (CB.paramHasAttr(i, Attribute::ByVal)) { 3378 assert(A->getType()->isPointerTy() && 3379 "ByVal argument is not a pointer!"); 3380 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3381 if (ArgOffset + Size > kParamTLSSize) break; 3382 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3383 MaybeAlign Alignment = llvm::None; 3384 if (ParamAlignment) 3385 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3386 Value *AShadowPtr = 3387 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3388 /*isStore*/ false) 3389 .first; 3390 3391 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3392 Alignment, Size); 3393 // TODO(glider): need to copy origins. 3394 } else { 3395 Size = DL.getTypeAllocSize(A->getType()); 3396 if (ArgOffset + Size > kParamTLSSize) break; 3397 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3398 kShadowTLSAlignment); 3399 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3400 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3401 } 3402 if (MS.TrackOrigins && !ArgIsInitialized) 3403 IRB.CreateStore(getOrigin(A), 3404 getOriginPtrForArgument(A, IRB, ArgOffset)); 3405 (void)Store; 3406 assert(Size != 0 && Store != nullptr); 3407 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3408 ArgOffset += alignTo(Size, 8); 3409 } 3410 LLVM_DEBUG(dbgs() << " done with call args\n"); 3411 3412 FunctionType *FT = CB.getFunctionType(); 3413 if (FT->isVarArg()) { 3414 VAHelper->visitCallBase(CB, IRB); 3415 } 3416 3417 // Now, get the shadow for the RetVal. 3418 if (!CB.getType()->isSized()) 3419 return; 3420 // Don't emit the epilogue for musttail call returns. 3421 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3422 return; 3423 IRBuilder<> IRBBefore(&CB); 3424 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3425 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3426 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3427 kShadowTLSAlignment); 3428 BasicBlock::iterator NextInsn; 3429 if (isa<CallInst>(CB)) { 3430 NextInsn = ++CB.getIterator(); 3431 assert(NextInsn != CB.getParent()->end()); 3432 } else { 3433 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3434 if (!NormalDest->getSinglePredecessor()) { 3435 // FIXME: this case is tricky, so we are just conservative here. 3436 // Perhaps we need to split the edge between this BB and NormalDest, 3437 // but a naive attempt to use SplitEdge leads to a crash. 3438 setShadow(&CB, getCleanShadow(&CB)); 3439 setOrigin(&CB, getCleanOrigin()); 3440 return; 3441 } 3442 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3443 // Anything inserted there will be instrumented by MSan later! 3444 NextInsn = NormalDest->getFirstInsertionPt(); 3445 assert(NextInsn != NormalDest->end() && 3446 "Could not find insertion point for retval shadow load"); 3447 } 3448 IRBuilder<> IRBAfter(&*NextInsn); 3449 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3450 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3451 kShadowTLSAlignment, "_msret"); 3452 setShadow(&CB, RetvalShadow); 3453 if (MS.TrackOrigins) 3454 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3455 getOriginPtrForRetval(IRBAfter))); 3456 } 3457 3458 bool isAMustTailRetVal(Value *RetVal) { 3459 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3460 RetVal = I->getOperand(0); 3461 } 3462 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3463 return I->isMustTailCall(); 3464 } 3465 return false; 3466 } 3467 3468 void visitReturnInst(ReturnInst &I) { 3469 IRBuilder<> IRB(&I); 3470 Value *RetVal = I.getReturnValue(); 3471 if (!RetVal) return; 3472 // Don't emit the epilogue for musttail call returns. 3473 if (isAMustTailRetVal(RetVal)) return; 3474 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3475 if (CheckReturnValue) { 3476 insertShadowCheck(RetVal, &I); 3477 Value *Shadow = getCleanShadow(RetVal); 3478 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3479 } else { 3480 Value *Shadow = getShadow(RetVal); 3481 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3482 if (MS.TrackOrigins) 3483 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3484 } 3485 } 3486 3487 void visitPHINode(PHINode &I) { 3488 IRBuilder<> IRB(&I); 3489 if (!PropagateShadow) { 3490 setShadow(&I, getCleanShadow(&I)); 3491 setOrigin(&I, getCleanOrigin()); 3492 return; 3493 } 3494 3495 ShadowPHINodes.push_back(&I); 3496 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3497 "_msphi_s")); 3498 if (MS.TrackOrigins) 3499 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3500 "_msphi_o")); 3501 } 3502 3503 Value *getLocalVarDescription(AllocaInst &I) { 3504 SmallString<2048> StackDescriptionStorage; 3505 raw_svector_ostream StackDescription(StackDescriptionStorage); 3506 // We create a string with a description of the stack allocation and 3507 // pass it into __msan_set_alloca_origin. 3508 // It will be printed by the run-time if stack-originated UMR is found. 3509 // The first 4 bytes of the string are set to '----' and will be replaced 3510 // by __msan_va_arg_overflow_size_tls at the first call. 3511 StackDescription << "----" << I.getName() << "@" << F.getName(); 3512 return createPrivateNonConstGlobalForString(*F.getParent(), 3513 StackDescription.str()); 3514 } 3515 3516 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3517 if (PoisonStack && ClPoisonStackWithCall) { 3518 IRB.CreateCall(MS.MsanPoisonStackFn, 3519 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3520 } else { 3521 Value *ShadowBase, *OriginBase; 3522 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3523 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3524 3525 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3526 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3527 MaybeAlign(I.getAlignment())); 3528 } 3529 3530 if (PoisonStack && MS.TrackOrigins) { 3531 Value *Descr = getLocalVarDescription(I); 3532 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3533 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3534 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3535 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3536 } 3537 } 3538 3539 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3540 Value *Descr = getLocalVarDescription(I); 3541 if (PoisonStack) { 3542 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3543 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3544 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3545 } else { 3546 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3547 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3548 } 3549 } 3550 3551 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3552 if (!InsPoint) 3553 InsPoint = &I; 3554 IRBuilder<> IRB(InsPoint->getNextNode()); 3555 const DataLayout &DL = F.getParent()->getDataLayout(); 3556 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3557 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3558 if (I.isArrayAllocation()) 3559 Len = IRB.CreateMul(Len, I.getArraySize()); 3560 3561 if (MS.CompileKernel) 3562 poisonAllocaKmsan(I, IRB, Len); 3563 else 3564 poisonAllocaUserspace(I, IRB, Len); 3565 } 3566 3567 void visitAllocaInst(AllocaInst &I) { 3568 setShadow(&I, getCleanShadow(&I)); 3569 setOrigin(&I, getCleanOrigin()); 3570 // We'll get to this alloca later unless it's poisoned at the corresponding 3571 // llvm.lifetime.start. 3572 AllocaSet.insert(&I); 3573 } 3574 3575 void visitSelectInst(SelectInst& I) { 3576 IRBuilder<> IRB(&I); 3577 // a = select b, c, d 3578 Value *B = I.getCondition(); 3579 Value *C = I.getTrueValue(); 3580 Value *D = I.getFalseValue(); 3581 Value *Sb = getShadow(B); 3582 Value *Sc = getShadow(C); 3583 Value *Sd = getShadow(D); 3584 3585 // Result shadow if condition shadow is 0. 3586 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3587 Value *Sa1; 3588 if (I.getType()->isAggregateType()) { 3589 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3590 // an extra "select". This results in much more compact IR. 3591 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3592 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3593 } else { 3594 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3595 // If Sb (condition is poisoned), look for bits in c and d that are equal 3596 // and both unpoisoned. 3597 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3598 3599 // Cast arguments to shadow-compatible type. 3600 C = CreateAppToShadowCast(IRB, C); 3601 D = CreateAppToShadowCast(IRB, D); 3602 3603 // Result shadow if condition shadow is 1. 3604 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3605 } 3606 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3607 setShadow(&I, Sa); 3608 if (MS.TrackOrigins) { 3609 // Origins are always i32, so any vector conditions must be flattened. 3610 // FIXME: consider tracking vector origins for app vectors? 3611 if (B->getType()->isVectorTy()) { 3612 Type *FlatTy = getShadowTyNoVec(B->getType()); 3613 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3614 ConstantInt::getNullValue(FlatTy)); 3615 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3616 ConstantInt::getNullValue(FlatTy)); 3617 } 3618 // a = select b, c, d 3619 // Oa = Sb ? Ob : (b ? Oc : Od) 3620 setOrigin( 3621 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3622 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3623 getOrigin(I.getFalseValue())))); 3624 } 3625 } 3626 3627 void visitLandingPadInst(LandingPadInst &I) { 3628 // Do nothing. 3629 // See https://github.com/google/sanitizers/issues/504 3630 setShadow(&I, getCleanShadow(&I)); 3631 setOrigin(&I, getCleanOrigin()); 3632 } 3633 3634 void visitCatchSwitchInst(CatchSwitchInst &I) { 3635 setShadow(&I, getCleanShadow(&I)); 3636 setOrigin(&I, getCleanOrigin()); 3637 } 3638 3639 void visitFuncletPadInst(FuncletPadInst &I) { 3640 setShadow(&I, getCleanShadow(&I)); 3641 setOrigin(&I, getCleanOrigin()); 3642 } 3643 3644 void visitGetElementPtrInst(GetElementPtrInst &I) { 3645 handleShadowOr(I); 3646 } 3647 3648 void visitExtractValueInst(ExtractValueInst &I) { 3649 IRBuilder<> IRB(&I); 3650 Value *Agg = I.getAggregateOperand(); 3651 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3652 Value *AggShadow = getShadow(Agg); 3653 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3654 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3655 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3656 setShadow(&I, ResShadow); 3657 setOriginForNaryOp(I); 3658 } 3659 3660 void visitInsertValueInst(InsertValueInst &I) { 3661 IRBuilder<> IRB(&I); 3662 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3663 Value *AggShadow = getShadow(I.getAggregateOperand()); 3664 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3665 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3666 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3667 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3668 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3669 setShadow(&I, Res); 3670 setOriginForNaryOp(I); 3671 } 3672 3673 void dumpInst(Instruction &I) { 3674 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3675 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3676 } else { 3677 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3678 } 3679 errs() << "QQQ " << I << "\n"; 3680 } 3681 3682 void visitResumeInst(ResumeInst &I) { 3683 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3684 // Nothing to do here. 3685 } 3686 3687 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3688 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3689 // Nothing to do here. 3690 } 3691 3692 void visitCatchReturnInst(CatchReturnInst &CRI) { 3693 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3694 // Nothing to do here. 3695 } 3696 3697 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3698 const DataLayout &DL, bool isOutput) { 3699 // For each assembly argument, we check its value for being initialized. 3700 // If the argument is a pointer, we assume it points to a single element 3701 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3702 // Each such pointer is instrumented with a call to the runtime library. 3703 Type *OpType = Operand->getType(); 3704 // Check the operand value itself. 3705 insertShadowCheck(Operand, &I); 3706 if (!OpType->isPointerTy() || !isOutput) { 3707 assert(!isOutput); 3708 return; 3709 } 3710 Type *ElType = OpType->getPointerElementType(); 3711 if (!ElType->isSized()) 3712 return; 3713 int Size = DL.getTypeStoreSize(ElType); 3714 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3715 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3716 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3717 } 3718 3719 /// Get the number of output arguments returned by pointers. 3720 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3721 int NumRetOutputs = 0; 3722 int NumOutputs = 0; 3723 Type *RetTy = cast<Value>(CB)->getType(); 3724 if (!RetTy->isVoidTy()) { 3725 // Register outputs are returned via the CallInst return value. 3726 auto *ST = dyn_cast<StructType>(RetTy); 3727 if (ST) 3728 NumRetOutputs = ST->getNumElements(); 3729 else 3730 NumRetOutputs = 1; 3731 } 3732 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3733 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3734 InlineAsm::ConstraintInfo Info = Constraints[i]; 3735 switch (Info.Type) { 3736 case InlineAsm::isOutput: 3737 NumOutputs++; 3738 break; 3739 default: 3740 break; 3741 } 3742 } 3743 return NumOutputs - NumRetOutputs; 3744 } 3745 3746 void visitAsmInstruction(Instruction &I) { 3747 // Conservative inline assembly handling: check for poisoned shadow of 3748 // asm() arguments, then unpoison the result and all the memory locations 3749 // pointed to by those arguments. 3750 // An inline asm() statement in C++ contains lists of input and output 3751 // arguments used by the assembly code. These are mapped to operands of the 3752 // CallInst as follows: 3753 // - nR register outputs ("=r) are returned by value in a single structure 3754 // (SSA value of the CallInst); 3755 // - nO other outputs ("=m" and others) are returned by pointer as first 3756 // nO operands of the CallInst; 3757 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3758 // remaining nI operands. 3759 // The total number of asm() arguments in the source is nR+nO+nI, and the 3760 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3761 // function to be called). 3762 const DataLayout &DL = F.getParent()->getDataLayout(); 3763 CallBase *CB = cast<CallBase>(&I); 3764 IRBuilder<> IRB(&I); 3765 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3766 int OutputArgs = getNumOutputArgs(IA, CB); 3767 // The last operand of a CallInst is the function itself. 3768 int NumOperands = CB->getNumOperands() - 1; 3769 3770 // Check input arguments. Doing so before unpoisoning output arguments, so 3771 // that we won't overwrite uninit values before checking them. 3772 for (int i = OutputArgs; i < NumOperands; i++) { 3773 Value *Operand = CB->getOperand(i); 3774 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3775 } 3776 // Unpoison output arguments. This must happen before the actual InlineAsm 3777 // call, so that the shadow for memory published in the asm() statement 3778 // remains valid. 3779 for (int i = 0; i < OutputArgs; i++) { 3780 Value *Operand = CB->getOperand(i); 3781 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3782 } 3783 3784 setShadow(&I, getCleanShadow(&I)); 3785 setOrigin(&I, getCleanOrigin()); 3786 } 3787 3788 void visitInstruction(Instruction &I) { 3789 // Everything else: stop propagating and check for poisoned shadow. 3790 if (ClDumpStrictInstructions) 3791 dumpInst(I); 3792 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3793 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3794 Value *Operand = I.getOperand(i); 3795 if (Operand->getType()->isSized()) 3796 insertShadowCheck(Operand, &I); 3797 } 3798 setShadow(&I, getCleanShadow(&I)); 3799 setOrigin(&I, getCleanOrigin()); 3800 } 3801 }; 3802 3803 /// AMD64-specific implementation of VarArgHelper. 3804 struct VarArgAMD64Helper : public VarArgHelper { 3805 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3806 // See a comment in visitCallBase for more details. 3807 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3808 static const unsigned AMD64FpEndOffsetSSE = 176; 3809 // If SSE is disabled, fp_offset in va_list is zero. 3810 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3811 3812 unsigned AMD64FpEndOffset; 3813 Function &F; 3814 MemorySanitizer &MS; 3815 MemorySanitizerVisitor &MSV; 3816 Value *VAArgTLSCopy = nullptr; 3817 Value *VAArgTLSOriginCopy = nullptr; 3818 Value *VAArgOverflowSize = nullptr; 3819 3820 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3821 3822 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3823 3824 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3825 MemorySanitizerVisitor &MSV) 3826 : F(F), MS(MS), MSV(MSV) { 3827 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3828 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3829 if (Attr.isStringAttribute() && 3830 (Attr.getKindAsString() == "target-features")) { 3831 if (Attr.getValueAsString().contains("-sse")) 3832 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3833 break; 3834 } 3835 } 3836 } 3837 3838 ArgKind classifyArgument(Value* arg) { 3839 // A very rough approximation of X86_64 argument classification rules. 3840 Type *T = arg->getType(); 3841 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3842 return AK_FloatingPoint; 3843 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3844 return AK_GeneralPurpose; 3845 if (T->isPointerTy()) 3846 return AK_GeneralPurpose; 3847 return AK_Memory; 3848 } 3849 3850 // For VarArg functions, store the argument shadow in an ABI-specific format 3851 // that corresponds to va_list layout. 3852 // We do this because Clang lowers va_arg in the frontend, and this pass 3853 // only sees the low level code that deals with va_list internals. 3854 // A much easier alternative (provided that Clang emits va_arg instructions) 3855 // would have been to associate each live instance of va_list with a copy of 3856 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3857 // order. 3858 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 3859 unsigned GpOffset = 0; 3860 unsigned FpOffset = AMD64GpEndOffset; 3861 unsigned OverflowOffset = AMD64FpEndOffset; 3862 const DataLayout &DL = F.getParent()->getDataLayout(); 3863 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3864 ++ArgIt) { 3865 Value *A = *ArgIt; 3866 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 3867 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 3868 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 3869 if (IsByVal) { 3870 // ByVal arguments always go to the overflow area. 3871 // Fixed arguments passed through the overflow area will be stepped 3872 // over by va_start, so don't count them towards the offset. 3873 if (IsFixed) 3874 continue; 3875 assert(A->getType()->isPointerTy()); 3876 Type *RealTy = CB.getParamByValType(ArgNo); 3877 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3878 Value *ShadowBase = getShadowPtrForVAArgument( 3879 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3880 Value *OriginBase = nullptr; 3881 if (MS.TrackOrigins) 3882 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3883 OverflowOffset += alignTo(ArgSize, 8); 3884 if (!ShadowBase) 3885 continue; 3886 Value *ShadowPtr, *OriginPtr; 3887 std::tie(ShadowPtr, OriginPtr) = 3888 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3889 /*isStore*/ false); 3890 3891 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3892 kShadowTLSAlignment, ArgSize); 3893 if (MS.TrackOrigins) 3894 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3895 kShadowTLSAlignment, ArgSize); 3896 } else { 3897 ArgKind AK = classifyArgument(A); 3898 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3899 AK = AK_Memory; 3900 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3901 AK = AK_Memory; 3902 Value *ShadowBase, *OriginBase = nullptr; 3903 switch (AK) { 3904 case AK_GeneralPurpose: 3905 ShadowBase = 3906 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3907 if (MS.TrackOrigins) 3908 OriginBase = 3909 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3910 GpOffset += 8; 3911 break; 3912 case AK_FloatingPoint: 3913 ShadowBase = 3914 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3915 if (MS.TrackOrigins) 3916 OriginBase = 3917 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3918 FpOffset += 16; 3919 break; 3920 case AK_Memory: 3921 if (IsFixed) 3922 continue; 3923 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3924 ShadowBase = 3925 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3926 if (MS.TrackOrigins) 3927 OriginBase = 3928 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3929 OverflowOffset += alignTo(ArgSize, 8); 3930 } 3931 // Take fixed arguments into account for GpOffset and FpOffset, 3932 // but don't actually store shadows for them. 3933 // TODO(glider): don't call get*PtrForVAArgument() for them. 3934 if (IsFixed) 3935 continue; 3936 if (!ShadowBase) 3937 continue; 3938 Value *Shadow = MSV.getShadow(A); 3939 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3940 if (MS.TrackOrigins) { 3941 Value *Origin = MSV.getOrigin(A); 3942 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3943 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3944 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3945 } 3946 } 3947 } 3948 Constant *OverflowSize = 3949 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3950 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3951 } 3952 3953 /// Compute the shadow address for a given va_arg. 3954 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3955 unsigned ArgOffset, unsigned ArgSize) { 3956 // Make sure we don't overflow __msan_va_arg_tls. 3957 if (ArgOffset + ArgSize > kParamTLSSize) 3958 return nullptr; 3959 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3960 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3961 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3962 "_msarg_va_s"); 3963 } 3964 3965 /// Compute the origin address for a given va_arg. 3966 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3967 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3968 // getOriginPtrForVAArgument() is always called after 3969 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3970 // overflow. 3971 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3972 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3973 "_msarg_va_o"); 3974 } 3975 3976 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3977 IRBuilder<> IRB(&I); 3978 Value *VAListTag = I.getArgOperand(0); 3979 Value *ShadowPtr, *OriginPtr; 3980 const Align Alignment = Align(8); 3981 std::tie(ShadowPtr, OriginPtr) = 3982 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3983 /*isStore*/ true); 3984 3985 // Unpoison the whole __va_list_tag. 3986 // FIXME: magic ABI constants. 3987 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3988 /* size */ 24, Alignment, false); 3989 // We shouldn't need to zero out the origins, as they're only checked for 3990 // nonzero shadow. 3991 } 3992 3993 void visitVAStartInst(VAStartInst &I) override { 3994 if (F.getCallingConv() == CallingConv::Win64) 3995 return; 3996 VAStartInstrumentationList.push_back(&I); 3997 unpoisonVAListTagForInst(I); 3998 } 3999 4000 void visitVACopyInst(VACopyInst &I) override { 4001 if (F.getCallingConv() == CallingConv::Win64) return; 4002 unpoisonVAListTagForInst(I); 4003 } 4004 4005 void finalizeInstrumentation() override { 4006 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4007 "finalizeInstrumentation called twice"); 4008 if (!VAStartInstrumentationList.empty()) { 4009 // If there is a va_start in this function, make a backup copy of 4010 // va_arg_tls somewhere in the function entry block. 4011 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4012 VAArgOverflowSize = 4013 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4014 Value *CopySize = 4015 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4016 VAArgOverflowSize); 4017 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4018 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4019 if (MS.TrackOrigins) { 4020 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4021 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4022 Align(8), CopySize); 4023 } 4024 } 4025 4026 // Instrument va_start. 4027 // Copy va_list shadow from the backup copy of the TLS contents. 4028 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4029 CallInst *OrigInst = VAStartInstrumentationList[i]; 4030 IRBuilder<> IRB(OrigInst->getNextNode()); 4031 Value *VAListTag = OrigInst->getArgOperand(0); 4032 4033 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4034 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4035 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4036 ConstantInt::get(MS.IntptrTy, 16)), 4037 PointerType::get(RegSaveAreaPtrTy, 0)); 4038 Value *RegSaveAreaPtr = 4039 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4040 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4041 const Align Alignment = Align(16); 4042 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4043 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4044 Alignment, /*isStore*/ true); 4045 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4046 AMD64FpEndOffset); 4047 if (MS.TrackOrigins) 4048 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4049 Alignment, AMD64FpEndOffset); 4050 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4051 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4052 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4053 ConstantInt::get(MS.IntptrTy, 8)), 4054 PointerType::get(OverflowArgAreaPtrTy, 0)); 4055 Value *OverflowArgAreaPtr = 4056 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4057 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4058 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4059 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4060 Alignment, /*isStore*/ true); 4061 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4062 AMD64FpEndOffset); 4063 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4064 VAArgOverflowSize); 4065 if (MS.TrackOrigins) { 4066 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4067 AMD64FpEndOffset); 4068 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4069 VAArgOverflowSize); 4070 } 4071 } 4072 } 4073 }; 4074 4075 /// MIPS64-specific implementation of VarArgHelper. 4076 struct VarArgMIPS64Helper : public VarArgHelper { 4077 Function &F; 4078 MemorySanitizer &MS; 4079 MemorySanitizerVisitor &MSV; 4080 Value *VAArgTLSCopy = nullptr; 4081 Value *VAArgSize = nullptr; 4082 4083 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4084 4085 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4086 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4087 4088 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4089 unsigned VAArgOffset = 0; 4090 const DataLayout &DL = F.getParent()->getDataLayout(); 4091 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4092 End = CB.arg_end(); 4093 ArgIt != End; ++ArgIt) { 4094 Triple TargetTriple(F.getParent()->getTargetTriple()); 4095 Value *A = *ArgIt; 4096 Value *Base; 4097 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4098 if (TargetTriple.getArch() == Triple::mips64) { 4099 // Adjusting the shadow for argument with size < 8 to match the placement 4100 // of bits in big endian system 4101 if (ArgSize < 8) 4102 VAArgOffset += (8 - ArgSize); 4103 } 4104 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4105 VAArgOffset += ArgSize; 4106 VAArgOffset = alignTo(VAArgOffset, 8); 4107 if (!Base) 4108 continue; 4109 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4110 } 4111 4112 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4113 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4114 // a new class member i.e. it is the total size of all VarArgs. 4115 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4116 } 4117 4118 /// Compute the shadow address for a given va_arg. 4119 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4120 unsigned ArgOffset, unsigned ArgSize) { 4121 // Make sure we don't overflow __msan_va_arg_tls. 4122 if (ArgOffset + ArgSize > kParamTLSSize) 4123 return nullptr; 4124 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4125 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4126 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4127 "_msarg"); 4128 } 4129 4130 void visitVAStartInst(VAStartInst &I) override { 4131 IRBuilder<> IRB(&I); 4132 VAStartInstrumentationList.push_back(&I); 4133 Value *VAListTag = I.getArgOperand(0); 4134 Value *ShadowPtr, *OriginPtr; 4135 const Align Alignment = Align(8); 4136 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4137 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4138 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4139 /* size */ 8, Alignment, false); 4140 } 4141 4142 void visitVACopyInst(VACopyInst &I) override { 4143 IRBuilder<> IRB(&I); 4144 VAStartInstrumentationList.push_back(&I); 4145 Value *VAListTag = I.getArgOperand(0); 4146 Value *ShadowPtr, *OriginPtr; 4147 const Align Alignment = Align(8); 4148 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4149 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4150 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4151 /* size */ 8, Alignment, false); 4152 } 4153 4154 void finalizeInstrumentation() override { 4155 assert(!VAArgSize && !VAArgTLSCopy && 4156 "finalizeInstrumentation called twice"); 4157 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4158 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4159 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4160 VAArgSize); 4161 4162 if (!VAStartInstrumentationList.empty()) { 4163 // If there is a va_start in this function, make a backup copy of 4164 // va_arg_tls somewhere in the function entry block. 4165 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4166 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4167 } 4168 4169 // Instrument va_start. 4170 // Copy va_list shadow from the backup copy of the TLS contents. 4171 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4172 CallInst *OrigInst = VAStartInstrumentationList[i]; 4173 IRBuilder<> IRB(OrigInst->getNextNode()); 4174 Value *VAListTag = OrigInst->getArgOperand(0); 4175 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4176 Value *RegSaveAreaPtrPtr = 4177 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4178 PointerType::get(RegSaveAreaPtrTy, 0)); 4179 Value *RegSaveAreaPtr = 4180 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4181 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4182 const Align Alignment = Align(8); 4183 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4184 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4185 Alignment, /*isStore*/ true); 4186 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4187 CopySize); 4188 } 4189 } 4190 }; 4191 4192 /// AArch64-specific implementation of VarArgHelper. 4193 struct VarArgAArch64Helper : public VarArgHelper { 4194 static const unsigned kAArch64GrArgSize = 64; 4195 static const unsigned kAArch64VrArgSize = 128; 4196 4197 static const unsigned AArch64GrBegOffset = 0; 4198 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4199 // Make VR space aligned to 16 bytes. 4200 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4201 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4202 + kAArch64VrArgSize; 4203 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4204 4205 Function &F; 4206 MemorySanitizer &MS; 4207 MemorySanitizerVisitor &MSV; 4208 Value *VAArgTLSCopy = nullptr; 4209 Value *VAArgOverflowSize = nullptr; 4210 4211 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4212 4213 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4214 4215 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4216 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4217 4218 ArgKind classifyArgument(Value* arg) { 4219 Type *T = arg->getType(); 4220 if (T->isFPOrFPVectorTy()) 4221 return AK_FloatingPoint; 4222 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4223 || (T->isPointerTy())) 4224 return AK_GeneralPurpose; 4225 return AK_Memory; 4226 } 4227 4228 // The instrumentation stores the argument shadow in a non ABI-specific 4229 // format because it does not know which argument is named (since Clang, 4230 // like x86_64 case, lowers the va_args in the frontend and this pass only 4231 // sees the low level code that deals with va_list internals). 4232 // The first seven GR registers are saved in the first 56 bytes of the 4233 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4234 // the remaining arguments. 4235 // Using constant offset within the va_arg TLS array allows fast copy 4236 // in the finalize instrumentation. 4237 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4238 unsigned GrOffset = AArch64GrBegOffset; 4239 unsigned VrOffset = AArch64VrBegOffset; 4240 unsigned OverflowOffset = AArch64VAEndOffset; 4241 4242 const DataLayout &DL = F.getParent()->getDataLayout(); 4243 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4244 ++ArgIt) { 4245 Value *A = *ArgIt; 4246 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4247 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4248 ArgKind AK = classifyArgument(A); 4249 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4250 AK = AK_Memory; 4251 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4252 AK = AK_Memory; 4253 Value *Base; 4254 switch (AK) { 4255 case AK_GeneralPurpose: 4256 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4257 GrOffset += 8; 4258 break; 4259 case AK_FloatingPoint: 4260 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4261 VrOffset += 16; 4262 break; 4263 case AK_Memory: 4264 // Don't count fixed arguments in the overflow area - va_start will 4265 // skip right over them. 4266 if (IsFixed) 4267 continue; 4268 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4269 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4270 alignTo(ArgSize, 8)); 4271 OverflowOffset += alignTo(ArgSize, 8); 4272 break; 4273 } 4274 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4275 // bother to actually store a shadow. 4276 if (IsFixed) 4277 continue; 4278 if (!Base) 4279 continue; 4280 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4281 } 4282 Constant *OverflowSize = 4283 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4284 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4285 } 4286 4287 /// Compute the shadow address for a given va_arg. 4288 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4289 unsigned ArgOffset, unsigned ArgSize) { 4290 // Make sure we don't overflow __msan_va_arg_tls. 4291 if (ArgOffset + ArgSize > kParamTLSSize) 4292 return nullptr; 4293 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4294 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4295 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4296 "_msarg"); 4297 } 4298 4299 void visitVAStartInst(VAStartInst &I) override { 4300 IRBuilder<> IRB(&I); 4301 VAStartInstrumentationList.push_back(&I); 4302 Value *VAListTag = I.getArgOperand(0); 4303 Value *ShadowPtr, *OriginPtr; 4304 const Align Alignment = Align(8); 4305 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4306 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4307 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4308 /* size */ 32, Alignment, false); 4309 } 4310 4311 void visitVACopyInst(VACopyInst &I) override { 4312 IRBuilder<> IRB(&I); 4313 VAStartInstrumentationList.push_back(&I); 4314 Value *VAListTag = I.getArgOperand(0); 4315 Value *ShadowPtr, *OriginPtr; 4316 const Align Alignment = Align(8); 4317 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4318 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4319 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4320 /* size */ 32, Alignment, false); 4321 } 4322 4323 // Retrieve a va_list field of 'void*' size. 4324 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4325 Value *SaveAreaPtrPtr = 4326 IRB.CreateIntToPtr( 4327 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4328 ConstantInt::get(MS.IntptrTy, offset)), 4329 Type::getInt64PtrTy(*MS.C)); 4330 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4331 } 4332 4333 // Retrieve a va_list field of 'int' size. 4334 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4335 Value *SaveAreaPtr = 4336 IRB.CreateIntToPtr( 4337 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4338 ConstantInt::get(MS.IntptrTy, offset)), 4339 Type::getInt32PtrTy(*MS.C)); 4340 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4341 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4342 } 4343 4344 void finalizeInstrumentation() override { 4345 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4346 "finalizeInstrumentation called twice"); 4347 if (!VAStartInstrumentationList.empty()) { 4348 // If there is a va_start in this function, make a backup copy of 4349 // va_arg_tls somewhere in the function entry block. 4350 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4351 VAArgOverflowSize = 4352 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4353 Value *CopySize = 4354 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4355 VAArgOverflowSize); 4356 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4357 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4358 } 4359 4360 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4361 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4362 4363 // Instrument va_start, copy va_list shadow from the backup copy of 4364 // the TLS contents. 4365 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4366 CallInst *OrigInst = VAStartInstrumentationList[i]; 4367 IRBuilder<> IRB(OrigInst->getNextNode()); 4368 4369 Value *VAListTag = OrigInst->getArgOperand(0); 4370 4371 // The variadic ABI for AArch64 creates two areas to save the incoming 4372 // argument registers (one for 64-bit general register xn-x7 and another 4373 // for 128-bit FP/SIMD vn-v7). 4374 // We need then to propagate the shadow arguments on both regions 4375 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4376 // The remaining arguments are saved on shadow for 'va::stack'. 4377 // One caveat is it requires only to propagate the non-named arguments, 4378 // however on the call site instrumentation 'all' the arguments are 4379 // saved. So to copy the shadow values from the va_arg TLS array 4380 // we need to adjust the offset for both GR and VR fields based on 4381 // the __{gr,vr}_offs value (since they are stores based on incoming 4382 // named arguments). 4383 4384 // Read the stack pointer from the va_list. 4385 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4386 4387 // Read both the __gr_top and __gr_off and add them up. 4388 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4389 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4390 4391 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4392 4393 // Read both the __vr_top and __vr_off and add them up. 4394 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4395 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4396 4397 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4398 4399 // It does not know how many named arguments is being used and, on the 4400 // callsite all the arguments were saved. Since __gr_off is defined as 4401 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4402 // argument by ignoring the bytes of shadow from named arguments. 4403 Value *GrRegSaveAreaShadowPtrOff = 4404 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4405 4406 Value *GrRegSaveAreaShadowPtr = 4407 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4408 Align(8), /*isStore*/ true) 4409 .first; 4410 4411 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4412 GrRegSaveAreaShadowPtrOff); 4413 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4414 4415 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4416 GrCopySize); 4417 4418 // Again, but for FP/SIMD values. 4419 Value *VrRegSaveAreaShadowPtrOff = 4420 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4421 4422 Value *VrRegSaveAreaShadowPtr = 4423 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4424 Align(8), /*isStore*/ true) 4425 .first; 4426 4427 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4428 IRB.getInt8Ty(), 4429 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4430 IRB.getInt32(AArch64VrBegOffset)), 4431 VrRegSaveAreaShadowPtrOff); 4432 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4433 4434 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4435 VrCopySize); 4436 4437 // And finally for remaining arguments. 4438 Value *StackSaveAreaShadowPtr = 4439 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4440 Align(16), /*isStore*/ true) 4441 .first; 4442 4443 Value *StackSrcPtr = 4444 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4445 IRB.getInt32(AArch64VAEndOffset)); 4446 4447 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4448 Align(16), VAArgOverflowSize); 4449 } 4450 } 4451 }; 4452 4453 /// PowerPC64-specific implementation of VarArgHelper. 4454 struct VarArgPowerPC64Helper : public VarArgHelper { 4455 Function &F; 4456 MemorySanitizer &MS; 4457 MemorySanitizerVisitor &MSV; 4458 Value *VAArgTLSCopy = nullptr; 4459 Value *VAArgSize = nullptr; 4460 4461 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4462 4463 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4464 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4465 4466 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4467 // For PowerPC, we need to deal with alignment of stack arguments - 4468 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4469 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4470 // and QPX vectors are aligned to 32 bytes. For that reason, we 4471 // compute current offset from stack pointer (which is always properly 4472 // aligned), and offset for the first vararg, then subtract them. 4473 unsigned VAArgBase; 4474 Triple TargetTriple(F.getParent()->getTargetTriple()); 4475 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4476 // and 32 bytes for ABIv2. This is usually determined by target 4477 // endianness, but in theory could be overridden by function attribute. 4478 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4479 if (TargetTriple.getArch() == Triple::ppc64) 4480 VAArgBase = 48; 4481 else 4482 VAArgBase = 32; 4483 unsigned VAArgOffset = VAArgBase; 4484 const DataLayout &DL = F.getParent()->getDataLayout(); 4485 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4486 ++ArgIt) { 4487 Value *A = *ArgIt; 4488 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4489 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4490 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4491 if (IsByVal) { 4492 assert(A->getType()->isPointerTy()); 4493 Type *RealTy = CB.getParamByValType(ArgNo); 4494 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4495 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4496 if (!ArgAlign || *ArgAlign < Align(8)) 4497 ArgAlign = Align(8); 4498 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4499 if (!IsFixed) { 4500 Value *Base = getShadowPtrForVAArgument( 4501 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4502 if (Base) { 4503 Value *AShadowPtr, *AOriginPtr; 4504 std::tie(AShadowPtr, AOriginPtr) = 4505 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4506 kShadowTLSAlignment, /*isStore*/ false); 4507 4508 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4509 kShadowTLSAlignment, ArgSize); 4510 } 4511 } 4512 VAArgOffset += alignTo(ArgSize, 8); 4513 } else { 4514 Value *Base; 4515 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4516 uint64_t ArgAlign = 8; 4517 if (A->getType()->isArrayTy()) { 4518 // Arrays are aligned to element size, except for long double 4519 // arrays, which are aligned to 8 bytes. 4520 Type *ElementTy = A->getType()->getArrayElementType(); 4521 if (!ElementTy->isPPC_FP128Ty()) 4522 ArgAlign = DL.getTypeAllocSize(ElementTy); 4523 } else if (A->getType()->isVectorTy()) { 4524 // Vectors are naturally aligned. 4525 ArgAlign = DL.getTypeAllocSize(A->getType()); 4526 } 4527 if (ArgAlign < 8) 4528 ArgAlign = 8; 4529 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4530 if (DL.isBigEndian()) { 4531 // Adjusting the shadow for argument with size < 8 to match the placement 4532 // of bits in big endian system 4533 if (ArgSize < 8) 4534 VAArgOffset += (8 - ArgSize); 4535 } 4536 if (!IsFixed) { 4537 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4538 VAArgOffset - VAArgBase, ArgSize); 4539 if (Base) 4540 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4541 } 4542 VAArgOffset += ArgSize; 4543 VAArgOffset = alignTo(VAArgOffset, 8); 4544 } 4545 if (IsFixed) 4546 VAArgBase = VAArgOffset; 4547 } 4548 4549 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4550 VAArgOffset - VAArgBase); 4551 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4552 // a new class member i.e. it is the total size of all VarArgs. 4553 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4554 } 4555 4556 /// Compute the shadow address for a given va_arg. 4557 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4558 unsigned ArgOffset, unsigned ArgSize) { 4559 // Make sure we don't overflow __msan_va_arg_tls. 4560 if (ArgOffset + ArgSize > kParamTLSSize) 4561 return nullptr; 4562 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4563 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4564 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4565 "_msarg"); 4566 } 4567 4568 void visitVAStartInst(VAStartInst &I) override { 4569 IRBuilder<> IRB(&I); 4570 VAStartInstrumentationList.push_back(&I); 4571 Value *VAListTag = I.getArgOperand(0); 4572 Value *ShadowPtr, *OriginPtr; 4573 const Align Alignment = Align(8); 4574 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4575 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4576 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4577 /* size */ 8, Alignment, false); 4578 } 4579 4580 void visitVACopyInst(VACopyInst &I) override { 4581 IRBuilder<> IRB(&I); 4582 Value *VAListTag = I.getArgOperand(0); 4583 Value *ShadowPtr, *OriginPtr; 4584 const Align Alignment = Align(8); 4585 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4586 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4587 // Unpoison the whole __va_list_tag. 4588 // FIXME: magic ABI constants. 4589 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4590 /* size */ 8, Alignment, false); 4591 } 4592 4593 void finalizeInstrumentation() override { 4594 assert(!VAArgSize && !VAArgTLSCopy && 4595 "finalizeInstrumentation called twice"); 4596 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4597 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4598 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4599 VAArgSize); 4600 4601 if (!VAStartInstrumentationList.empty()) { 4602 // If there is a va_start in this function, make a backup copy of 4603 // va_arg_tls somewhere in the function entry block. 4604 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4605 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4606 } 4607 4608 // Instrument va_start. 4609 // Copy va_list shadow from the backup copy of the TLS contents. 4610 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4611 CallInst *OrigInst = VAStartInstrumentationList[i]; 4612 IRBuilder<> IRB(OrigInst->getNextNode()); 4613 Value *VAListTag = OrigInst->getArgOperand(0); 4614 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4615 Value *RegSaveAreaPtrPtr = 4616 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4617 PointerType::get(RegSaveAreaPtrTy, 0)); 4618 Value *RegSaveAreaPtr = 4619 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4620 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4621 const Align Alignment = Align(8); 4622 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4623 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4624 Alignment, /*isStore*/ true); 4625 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4626 CopySize); 4627 } 4628 } 4629 }; 4630 4631 /// SystemZ-specific implementation of VarArgHelper. 4632 struct VarArgSystemZHelper : public VarArgHelper { 4633 static const unsigned SystemZGpOffset = 16; 4634 static const unsigned SystemZGpEndOffset = 56; 4635 static const unsigned SystemZFpOffset = 128; 4636 static const unsigned SystemZFpEndOffset = 160; 4637 static const unsigned SystemZMaxVrArgs = 8; 4638 static const unsigned SystemZRegSaveAreaSize = 160; 4639 static const unsigned SystemZOverflowOffset = 160; 4640 static const unsigned SystemZVAListTagSize = 32; 4641 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4642 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4643 4644 Function &F; 4645 MemorySanitizer &MS; 4646 MemorySanitizerVisitor &MSV; 4647 Value *VAArgTLSCopy = nullptr; 4648 Value *VAArgTLSOriginCopy = nullptr; 4649 Value *VAArgOverflowSize = nullptr; 4650 4651 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4652 4653 enum class ArgKind { 4654 GeneralPurpose, 4655 FloatingPoint, 4656 Vector, 4657 Memory, 4658 Indirect, 4659 }; 4660 4661 enum class ShadowExtension { None, Zero, Sign }; 4662 4663 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4664 MemorySanitizerVisitor &MSV) 4665 : F(F), MS(MS), MSV(MSV) {} 4666 4667 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4668 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4669 // only a few possibilities of what it can be. In particular, enums, single 4670 // element structs and large types have already been taken care of. 4671 4672 // Some i128 and fp128 arguments are converted to pointers only in the 4673 // back end. 4674 if (T->isIntegerTy(128) || T->isFP128Ty()) 4675 return ArgKind::Indirect; 4676 if (T->isFloatingPointTy()) 4677 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4678 if (T->isIntegerTy() || T->isPointerTy()) 4679 return ArgKind::GeneralPurpose; 4680 if (T->isVectorTy()) 4681 return ArgKind::Vector; 4682 return ArgKind::Memory; 4683 } 4684 4685 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4686 // ABI says: "One of the simple integer types no more than 64 bits wide. 4687 // ... If such an argument is shorter than 64 bits, replace it by a full 4688 // 64-bit integer representing the same number, using sign or zero 4689 // extension". Shadow for an integer argument has the same type as the 4690 // argument itself, so it can be sign or zero extended as well. 4691 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4692 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4693 if (ZExt) { 4694 assert(!SExt); 4695 return ShadowExtension::Zero; 4696 } 4697 if (SExt) { 4698 assert(!ZExt); 4699 return ShadowExtension::Sign; 4700 } 4701 return ShadowExtension::None; 4702 } 4703 4704 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4705 bool IsSoftFloatABI = CB.getCalledFunction() 4706 ->getFnAttribute("use-soft-float") 4707 .getValueAsString() == "true"; 4708 unsigned GpOffset = SystemZGpOffset; 4709 unsigned FpOffset = SystemZFpOffset; 4710 unsigned VrIndex = 0; 4711 unsigned OverflowOffset = SystemZOverflowOffset; 4712 const DataLayout &DL = F.getParent()->getDataLayout(); 4713 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4714 ++ArgIt) { 4715 Value *A = *ArgIt; 4716 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4717 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4718 // SystemZABIInfo does not produce ByVal parameters. 4719 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 4720 Type *T = A->getType(); 4721 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 4722 if (AK == ArgKind::Indirect) { 4723 T = PointerType::get(T, 0); 4724 AK = ArgKind::GeneralPurpose; 4725 } 4726 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 4727 AK = ArgKind::Memory; 4728 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 4729 AK = ArgKind::Memory; 4730 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 4731 AK = ArgKind::Memory; 4732 Value *ShadowBase = nullptr; 4733 Value *OriginBase = nullptr; 4734 ShadowExtension SE = ShadowExtension::None; 4735 switch (AK) { 4736 case ArgKind::GeneralPurpose: { 4737 // Always keep track of GpOffset, but store shadow only for varargs. 4738 uint64_t ArgSize = 8; 4739 if (GpOffset + ArgSize <= kParamTLSSize) { 4740 if (!IsFixed) { 4741 SE = getShadowExtension(CB, ArgNo); 4742 uint64_t GapSize = 0; 4743 if (SE == ShadowExtension::None) { 4744 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4745 assert(ArgAllocSize <= ArgSize); 4746 GapSize = ArgSize - ArgAllocSize; 4747 } 4748 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 4749 if (MS.TrackOrigins) 4750 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 4751 } 4752 GpOffset += ArgSize; 4753 } else { 4754 GpOffset = kParamTLSSize; 4755 } 4756 break; 4757 } 4758 case ArgKind::FloatingPoint: { 4759 // Always keep track of FpOffset, but store shadow only for varargs. 4760 uint64_t ArgSize = 8; 4761 if (FpOffset + ArgSize <= kParamTLSSize) { 4762 if (!IsFixed) { 4763 // PoP says: "A short floating-point datum requires only the 4764 // left-most 32 bit positions of a floating-point register". 4765 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 4766 // don't extend shadow and don't mind the gap. 4767 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 4768 if (MS.TrackOrigins) 4769 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4770 } 4771 FpOffset += ArgSize; 4772 } else { 4773 FpOffset = kParamTLSSize; 4774 } 4775 break; 4776 } 4777 case ArgKind::Vector: { 4778 // Keep track of VrIndex. No need to store shadow, since vector varargs 4779 // go through AK_Memory. 4780 assert(IsFixed); 4781 VrIndex++; 4782 break; 4783 } 4784 case ArgKind::Memory: { 4785 // Keep track of OverflowOffset and store shadow only for varargs. 4786 // Ignore fixed args, since we need to copy only the vararg portion of 4787 // the overflow area shadow. 4788 if (!IsFixed) { 4789 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4790 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 4791 if (OverflowOffset + ArgSize <= kParamTLSSize) { 4792 SE = getShadowExtension(CB, ArgNo); 4793 uint64_t GapSize = 4794 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 4795 ShadowBase = 4796 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 4797 if (MS.TrackOrigins) 4798 OriginBase = 4799 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 4800 OverflowOffset += ArgSize; 4801 } else { 4802 OverflowOffset = kParamTLSSize; 4803 } 4804 } 4805 break; 4806 } 4807 case ArgKind::Indirect: 4808 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 4809 } 4810 if (ShadowBase == nullptr) 4811 continue; 4812 Value *Shadow = MSV.getShadow(A); 4813 if (SE != ShadowExtension::None) 4814 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 4815 /*Signed*/ SE == ShadowExtension::Sign); 4816 ShadowBase = IRB.CreateIntToPtr( 4817 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 4818 IRB.CreateStore(Shadow, ShadowBase); 4819 if (MS.TrackOrigins) { 4820 Value *Origin = MSV.getOrigin(A); 4821 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4822 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4823 kMinOriginAlignment); 4824 } 4825 } 4826 Constant *OverflowSize = ConstantInt::get( 4827 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 4828 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4829 } 4830 4831 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 4832 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4833 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4834 } 4835 4836 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 4837 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4838 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4839 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4840 "_msarg_va_o"); 4841 } 4842 4843 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4844 IRBuilder<> IRB(&I); 4845 Value *VAListTag = I.getArgOperand(0); 4846 Value *ShadowPtr, *OriginPtr; 4847 const Align Alignment = Align(8); 4848 std::tie(ShadowPtr, OriginPtr) = 4849 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4850 /*isStore*/ true); 4851 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4852 SystemZVAListTagSize, Alignment, false); 4853 } 4854 4855 void visitVAStartInst(VAStartInst &I) override { 4856 VAStartInstrumentationList.push_back(&I); 4857 unpoisonVAListTagForInst(I); 4858 } 4859 4860 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 4861 4862 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 4863 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4864 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4865 IRB.CreateAdd( 4866 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4867 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 4868 PointerType::get(RegSaveAreaPtrTy, 0)); 4869 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4870 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4871 const Align Alignment = Align(8); 4872 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4873 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 4874 /*isStore*/ true); 4875 // TODO(iii): copy only fragments filled by visitCallBase() 4876 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4877 SystemZRegSaveAreaSize); 4878 if (MS.TrackOrigins) 4879 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4880 Alignment, SystemZRegSaveAreaSize); 4881 } 4882 4883 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 4884 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4885 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4886 IRB.CreateAdd( 4887 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4888 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 4889 PointerType::get(OverflowArgAreaPtrTy, 0)); 4890 Value *OverflowArgAreaPtr = 4891 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4892 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4893 const Align Alignment = Align(8); 4894 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4895 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4896 Alignment, /*isStore*/ true); 4897 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4898 SystemZOverflowOffset); 4899 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4900 VAArgOverflowSize); 4901 if (MS.TrackOrigins) { 4902 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4903 SystemZOverflowOffset); 4904 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4905 VAArgOverflowSize); 4906 } 4907 } 4908 4909 void finalizeInstrumentation() override { 4910 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4911 "finalizeInstrumentation called twice"); 4912 if (!VAStartInstrumentationList.empty()) { 4913 // If there is a va_start in this function, make a backup copy of 4914 // va_arg_tls somewhere in the function entry block. 4915 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4916 VAArgOverflowSize = 4917 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4918 Value *CopySize = 4919 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 4920 VAArgOverflowSize); 4921 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4922 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4923 if (MS.TrackOrigins) { 4924 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4925 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4926 Align(8), CopySize); 4927 } 4928 } 4929 4930 // Instrument va_start. 4931 // Copy va_list shadow from the backup copy of the TLS contents. 4932 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 4933 VaStartNo < VaStartNum; VaStartNo++) { 4934 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 4935 IRBuilder<> IRB(OrigInst->getNextNode()); 4936 Value *VAListTag = OrigInst->getArgOperand(0); 4937 copyRegSaveArea(IRB, VAListTag); 4938 copyOverflowArea(IRB, VAListTag); 4939 } 4940 } 4941 }; 4942 4943 /// A no-op implementation of VarArgHelper. 4944 struct VarArgNoOpHelper : public VarArgHelper { 4945 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4946 MemorySanitizerVisitor &MSV) {} 4947 4948 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 4949 4950 void visitVAStartInst(VAStartInst &I) override {} 4951 4952 void visitVACopyInst(VACopyInst &I) override {} 4953 4954 void finalizeInstrumentation() override {} 4955 }; 4956 4957 } // end anonymous namespace 4958 4959 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4960 MemorySanitizerVisitor &Visitor) { 4961 // VarArg handling is only implemented on AMD64. False positives are possible 4962 // on other platforms. 4963 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4964 if (TargetTriple.getArch() == Triple::x86_64) 4965 return new VarArgAMD64Helper(Func, Msan, Visitor); 4966 else if (TargetTriple.isMIPS64()) 4967 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4968 else if (TargetTriple.getArch() == Triple::aarch64) 4969 return new VarArgAArch64Helper(Func, Msan, Visitor); 4970 else if (TargetTriple.getArch() == Triple::ppc64 || 4971 TargetTriple.getArch() == Triple::ppc64le) 4972 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4973 else if (TargetTriple.getArch() == Triple::systemz) 4974 return new VarArgSystemZHelper(Func, Msan, Visitor); 4975 else 4976 return new VarArgNoOpHelper(Func, Msan, Visitor); 4977 } 4978 4979 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4980 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4981 return false; 4982 4983 MemorySanitizerVisitor Visitor(F, *this, TLI); 4984 4985 // Clear out readonly/readnone attributes. 4986 AttrBuilder B; 4987 B.addAttribute(Attribute::ReadOnly) 4988 .addAttribute(Attribute::ReadNone) 4989 .addAttribute(Attribute::WriteOnly) 4990 .addAttribute(Attribute::ArgMemOnly) 4991 .addAttribute(Attribute::Speculatable); 4992 F.removeAttributes(AttributeList::FunctionIndex, B); 4993 4994 return Visitor.runOnFunction(); 4995 } 4996