1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/ADT/DepthFirstIterator.h" 95 #include "llvm/ADT/SmallString.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/ADT/StringExtras.h" 98 #include "llvm/ADT/Triple.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/Function.h" 101 #include "llvm/IR/IRBuilder.h" 102 #include "llvm/IR/InlineAsm.h" 103 #include "llvm/IR/InstVisitor.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/MDBuilder.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Instrumentation.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ModuleUtils.h" 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "msan" 121 122 static const unsigned kOriginSize = 4; 123 static const unsigned kMinOriginAlignment = 4; 124 static const unsigned kShadowTLSAlignment = 8; 125 126 // These constants must be kept in sync with the ones in msan.h. 127 static const unsigned kParamTLSSize = 800; 128 static const unsigned kRetvalTLSSize = 800; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8. 131 static const size_t kNumberOfAccessSizes = 4; 132 133 /// \brief Track origins of uninitialized values. 134 /// 135 /// Adds a section to MemorySanitizer report that points to the allocation 136 /// (stack or heap) the uninitialized bits came from originally. 137 static cl::opt<int> ClTrackOrigins("msan-track-origins", 138 cl::desc("Track origins (allocation sites) of poisoned memory"), 139 cl::Hidden, cl::init(0)); 140 static cl::opt<bool> ClKeepGoing("msan-keep-going", 141 cl::desc("keep going after reporting a UMR"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 144 cl::desc("poison uninitialized stack variables"), 145 cl::Hidden, cl::init(true)); 146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 147 cl::desc("poison uninitialized stack variables with a call"), 148 cl::Hidden, cl::init(false)); 149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 150 cl::desc("poison uninitialized stack variables with the given pattern"), 151 cl::Hidden, cl::init(0xff)); 152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 153 cl::desc("poison undef temps"), 154 cl::Hidden, cl::init(true)); 155 156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 158 cl::Hidden, cl::init(true)); 159 160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 161 cl::desc("exact handling of relational integer ICmp"), 162 cl::Hidden, cl::init(false)); 163 164 // This flag controls whether we check the shadow of the address 165 // operand of load or store. Such bugs are very rare, since load from 166 // a garbage address typically results in SEGV, but still happen 167 // (e.g. only lower bits of address are garbage, or the access happens 168 // early at program startup where malloc-ed memory is more likely to 169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 171 cl::desc("report accesses through a pointer which has poisoned shadow"), 172 cl::Hidden, cl::init(true)); 173 174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 175 cl::desc("print out instructions with default strict semantics"), 176 cl::Hidden, cl::init(false)); 177 178 static cl::opt<int> ClInstrumentationWithCallThreshold( 179 "msan-instrumentation-with-call-threshold", 180 cl::desc( 181 "If the function being instrumented requires more than " 182 "this number of checks and origin stores, use callbacks instead of " 183 "inline checks (-1 means never use callbacks)."), 184 cl::Hidden, cl::init(3500)); 185 186 // This is an experiment to enable handling of cases where shadow is a non-zero 187 // compile-time constant. For some unexplainable reason they were silently 188 // ignored in the instrumentation. 189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 190 cl::desc("Insert checks for constant shadow values"), 191 cl::Hidden, cl::init(false)); 192 193 // This is off by default because of a bug in gold: 194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 195 static cl::opt<bool> ClWithComdat("msan-with-comdat", 196 cl::desc("Place MSan constructors in comdat sections"), 197 cl::Hidden, cl::init(false)); 198 199 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 200 static const char *const kMsanInitName = "__msan_init"; 201 202 namespace { 203 204 // Memory map parameters used in application-to-shadow address calculation. 205 // Offset = (Addr & ~AndMask) ^ XorMask 206 // Shadow = ShadowBase + Offset 207 // Origin = OriginBase + Offset 208 struct MemoryMapParams { 209 uint64_t AndMask; 210 uint64_t XorMask; 211 uint64_t ShadowBase; 212 uint64_t OriginBase; 213 }; 214 215 struct PlatformMemoryMapParams { 216 const MemoryMapParams *bits32; 217 const MemoryMapParams *bits64; 218 }; 219 220 // i386 Linux 221 static const MemoryMapParams Linux_I386_MemoryMapParams = { 222 0x000080000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x000040000000, // OriginBase 226 }; 227 228 // x86_64 Linux 229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 231 0x400000000000, // AndMask 232 0, // XorMask (not used) 233 0, // ShadowBase (not used) 234 0x200000000000, // OriginBase 235 #else 236 0, // AndMask (not used) 237 0x500000000000, // XorMask 238 0, // ShadowBase (not used) 239 0x100000000000, // OriginBase 240 #endif 241 }; 242 243 // mips64 Linux 244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 245 0, // AndMask (not used) 246 0x008000000000, // XorMask 247 0, // ShadowBase (not used) 248 0x002000000000, // OriginBase 249 }; 250 251 // ppc64 Linux 252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 253 0x200000000000, // AndMask 254 0x100000000000, // XorMask 255 0x080000000000, // ShadowBase 256 0x1C0000000000, // OriginBase 257 }; 258 259 // aarch64 Linux 260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 261 0, // AndMask (not used) 262 0x06000000000, // XorMask 263 0, // ShadowBase (not used) 264 0x01000000000, // OriginBase 265 }; 266 267 // i386 FreeBSD 268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 269 0x000180000000, // AndMask 270 0x000040000000, // XorMask 271 0x000020000000, // ShadowBase 272 0x000700000000, // OriginBase 273 }; 274 275 // x86_64 FreeBSD 276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 277 0xc00000000000, // AndMask 278 0x200000000000, // XorMask 279 0x100000000000, // ShadowBase 280 0x380000000000, // OriginBase 281 }; 282 283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 284 &Linux_I386_MemoryMapParams, 285 &Linux_X86_64_MemoryMapParams, 286 }; 287 288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 289 nullptr, 290 &Linux_MIPS64_MemoryMapParams, 291 }; 292 293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 294 nullptr, 295 &Linux_PowerPC64_MemoryMapParams, 296 }; 297 298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 299 nullptr, 300 &Linux_AArch64_MemoryMapParams, 301 }; 302 303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 304 &FreeBSD_I386_MemoryMapParams, 305 &FreeBSD_X86_64_MemoryMapParams, 306 }; 307 308 /// \brief An instrumentation pass implementing detection of uninitialized 309 /// reads. 310 /// 311 /// MemorySanitizer: instrument the code in module to find 312 /// uninitialized reads. 313 class MemorySanitizer : public FunctionPass { 314 public: 315 MemorySanitizer(int TrackOrigins = 0, bool Recover = false) 316 : FunctionPass(ID), 317 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 318 Recover(Recover || ClKeepGoing), 319 WarningFn(nullptr) {} 320 StringRef getPassName() const override { return "MemorySanitizer"; } 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 AU.addRequired<TargetLibraryInfoWrapperPass>(); 323 } 324 bool runOnFunction(Function &F) override; 325 bool doInitialization(Module &M) override; 326 static char ID; // Pass identification, replacement for typeid. 327 328 private: 329 void initializeCallbacks(Module &M); 330 331 /// \brief Track origins (allocation points) of uninitialized values. 332 int TrackOrigins; 333 bool Recover; 334 335 LLVMContext *C; 336 Type *IntptrTy; 337 Type *OriginTy; 338 /// \brief Thread-local shadow storage for function parameters. 339 GlobalVariable *ParamTLS; 340 /// \brief Thread-local origin storage for function parameters. 341 GlobalVariable *ParamOriginTLS; 342 /// \brief Thread-local shadow storage for function return value. 343 GlobalVariable *RetvalTLS; 344 /// \brief Thread-local origin storage for function return value. 345 GlobalVariable *RetvalOriginTLS; 346 /// \brief Thread-local shadow storage for in-register va_arg function 347 /// parameters (x86_64-specific). 348 GlobalVariable *VAArgTLS; 349 /// \brief Thread-local shadow storage for va_arg overflow area 350 /// (x86_64-specific). 351 GlobalVariable *VAArgOverflowSizeTLS; 352 /// \brief Thread-local space used to pass origin value to the UMR reporting 353 /// function. 354 GlobalVariable *OriginTLS; 355 356 /// \brief The run-time callback to print a warning. 357 Value *WarningFn; 358 // These arrays are indexed by log2(AccessSize). 359 Value *MaybeWarningFn[kNumberOfAccessSizes]; 360 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 361 362 /// \brief Run-time helper that generates a new origin value for a stack 363 /// allocation. 364 Value *MsanSetAllocaOrigin4Fn; 365 /// \brief Run-time helper that poisons stack on function entry. 366 Value *MsanPoisonStackFn; 367 /// \brief Run-time helper that records a store (or any event) of an 368 /// uninitialized value and returns an updated origin id encoding this info. 369 Value *MsanChainOriginFn; 370 /// \brief MSan runtime replacements for memmove, memcpy and memset. 371 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 372 373 /// \brief Memory map parameters used in application-to-shadow calculation. 374 const MemoryMapParams *MapParams; 375 376 MDNode *ColdCallWeights; 377 /// \brief Branch weights for origin store. 378 MDNode *OriginStoreWeights; 379 /// \brief An empty volatile inline asm that prevents callback merge. 380 InlineAsm *EmptyAsm; 381 Function *MsanCtorFunction; 382 383 friend struct MemorySanitizerVisitor; 384 friend struct VarArgAMD64Helper; 385 friend struct VarArgMIPS64Helper; 386 friend struct VarArgAArch64Helper; 387 friend struct VarArgPowerPC64Helper; 388 }; 389 } // anonymous namespace 390 391 char MemorySanitizer::ID = 0; 392 INITIALIZE_PASS_BEGIN( 393 MemorySanitizer, "msan", 394 "MemorySanitizer: detects uninitialized reads.", false, false) 395 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 396 INITIALIZE_PASS_END( 397 MemorySanitizer, "msan", 398 "MemorySanitizer: detects uninitialized reads.", false, false) 399 400 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins, bool Recover) { 401 return new MemorySanitizer(TrackOrigins, Recover); 402 } 403 404 /// \brief Create a non-const global initialized with the given string. 405 /// 406 /// Creates a writable global for Str so that we can pass it to the 407 /// run-time lib. Runtime uses first 4 bytes of the string to store the 408 /// frame ID, so the string needs to be mutable. 409 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 410 StringRef Str) { 411 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 412 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 413 GlobalValue::PrivateLinkage, StrConst, ""); 414 } 415 416 /// \brief Insert extern declaration of runtime-provided functions and globals. 417 void MemorySanitizer::initializeCallbacks(Module &M) { 418 // Only do this once. 419 if (WarningFn) 420 return; 421 422 IRBuilder<> IRB(*C); 423 // Create the callback. 424 // FIXME: this function should have "Cold" calling conv, 425 // which is not yet implemented. 426 StringRef WarningFnName = Recover ? "__msan_warning" 427 : "__msan_warning_noreturn"; 428 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 429 430 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 431 AccessSizeIndex++) { 432 unsigned AccessSize = 1 << AccessSizeIndex; 433 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 434 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 435 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 436 IRB.getInt32Ty(), nullptr); 437 438 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 439 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 440 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 441 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 442 } 443 444 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 445 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 446 IRB.getInt8PtrTy(), IntptrTy, nullptr); 447 MsanPoisonStackFn = 448 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 449 IRB.getInt8PtrTy(), IntptrTy, nullptr); 450 MsanChainOriginFn = M.getOrInsertFunction( 451 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 452 MemmoveFn = M.getOrInsertFunction( 453 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 454 IRB.getInt8PtrTy(), IntptrTy, nullptr); 455 MemcpyFn = M.getOrInsertFunction( 456 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 457 IntptrTy, nullptr); 458 MemsetFn = M.getOrInsertFunction( 459 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 460 IntptrTy, nullptr); 461 462 // Create globals. 463 RetvalTLS = new GlobalVariable( 464 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 465 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 466 GlobalVariable::InitialExecTLSModel); 467 RetvalOriginTLS = new GlobalVariable( 468 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 469 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 470 471 ParamTLS = new GlobalVariable( 472 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 473 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 474 GlobalVariable::InitialExecTLSModel); 475 ParamOriginTLS = new GlobalVariable( 476 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 477 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 478 nullptr, GlobalVariable::InitialExecTLSModel); 479 480 VAArgTLS = new GlobalVariable( 481 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 482 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 483 GlobalVariable::InitialExecTLSModel); 484 VAArgOverflowSizeTLS = new GlobalVariable( 485 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 486 "__msan_va_arg_overflow_size_tls", nullptr, 487 GlobalVariable::InitialExecTLSModel); 488 OriginTLS = new GlobalVariable( 489 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 490 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 491 492 // We insert an empty inline asm after __msan_report* to avoid callback merge. 493 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 494 StringRef(""), StringRef(""), 495 /*hasSideEffects=*/true); 496 } 497 498 /// \brief Module-level initialization. 499 /// 500 /// inserts a call to __msan_init to the module's constructor list. 501 bool MemorySanitizer::doInitialization(Module &M) { 502 auto &DL = M.getDataLayout(); 503 504 Triple TargetTriple(M.getTargetTriple()); 505 switch (TargetTriple.getOS()) { 506 case Triple::FreeBSD: 507 switch (TargetTriple.getArch()) { 508 case Triple::x86_64: 509 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 510 break; 511 case Triple::x86: 512 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 513 break; 514 default: 515 report_fatal_error("unsupported architecture"); 516 } 517 break; 518 case Triple::Linux: 519 switch (TargetTriple.getArch()) { 520 case Triple::x86_64: 521 MapParams = Linux_X86_MemoryMapParams.bits64; 522 break; 523 case Triple::x86: 524 MapParams = Linux_X86_MemoryMapParams.bits32; 525 break; 526 case Triple::mips64: 527 case Triple::mips64el: 528 MapParams = Linux_MIPS_MemoryMapParams.bits64; 529 break; 530 case Triple::ppc64: 531 case Triple::ppc64le: 532 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 533 break; 534 case Triple::aarch64: 535 case Triple::aarch64_be: 536 MapParams = Linux_ARM_MemoryMapParams.bits64; 537 break; 538 default: 539 report_fatal_error("unsupported architecture"); 540 } 541 break; 542 default: 543 report_fatal_error("unsupported operating system"); 544 } 545 546 C = &(M.getContext()); 547 IRBuilder<> IRB(*C); 548 IntptrTy = IRB.getIntPtrTy(DL); 549 OriginTy = IRB.getInt32Ty(); 550 551 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 552 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 553 554 std::tie(MsanCtorFunction, std::ignore) = 555 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 556 /*InitArgTypes=*/{}, 557 /*InitArgs=*/{}); 558 if (ClWithComdat) { 559 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 560 MsanCtorFunction->setComdat(MsanCtorComdat); 561 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 562 } else { 563 appendToGlobalCtors(M, MsanCtorFunction, 0); 564 } 565 566 567 if (TrackOrigins) 568 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 569 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 570 571 if (Recover) 572 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 573 IRB.getInt32(Recover), "__msan_keep_going"); 574 575 return true; 576 } 577 578 namespace { 579 580 /// \brief A helper class that handles instrumentation of VarArg 581 /// functions on a particular platform. 582 /// 583 /// Implementations are expected to insert the instrumentation 584 /// necessary to propagate argument shadow through VarArg function 585 /// calls. Visit* methods are called during an InstVisitor pass over 586 /// the function, and should avoid creating new basic blocks. A new 587 /// instance of this class is created for each instrumented function. 588 struct VarArgHelper { 589 /// \brief Visit a CallSite. 590 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 591 592 /// \brief Visit a va_start call. 593 virtual void visitVAStartInst(VAStartInst &I) = 0; 594 595 /// \brief Visit a va_copy call. 596 virtual void visitVACopyInst(VACopyInst &I) = 0; 597 598 /// \brief Finalize function instrumentation. 599 /// 600 /// This method is called after visiting all interesting (see above) 601 /// instructions in a function. 602 virtual void finalizeInstrumentation() = 0; 603 604 virtual ~VarArgHelper() {} 605 }; 606 607 struct MemorySanitizerVisitor; 608 609 VarArgHelper* 610 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 611 MemorySanitizerVisitor &Visitor); 612 613 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 614 if (TypeSize <= 8) return 0; 615 return Log2_32_Ceil((TypeSize + 7) / 8); 616 } 617 618 /// This class does all the work for a given function. Store and Load 619 /// instructions store and load corresponding shadow and origin 620 /// values. Most instructions propagate shadow from arguments to their 621 /// return values. Certain instructions (most importantly, BranchInst) 622 /// test their argument shadow and print reports (with a runtime call) if it's 623 /// non-zero. 624 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 625 Function &F; 626 MemorySanitizer &MS; 627 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 628 ValueMap<Value*, Value*> ShadowMap, OriginMap; 629 std::unique_ptr<VarArgHelper> VAHelper; 630 const TargetLibraryInfo *TLI; 631 632 // The following flags disable parts of MSan instrumentation based on 633 // blacklist contents and command-line options. 634 bool InsertChecks; 635 bool PropagateShadow; 636 bool PoisonStack; 637 bool PoisonUndef; 638 bool CheckReturnValue; 639 640 struct ShadowOriginAndInsertPoint { 641 Value *Shadow; 642 Value *Origin; 643 Instruction *OrigIns; 644 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 645 : Shadow(S), Origin(O), OrigIns(I) { } 646 }; 647 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 648 SmallVector<StoreInst *, 16> StoreList; 649 650 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 651 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 652 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 653 InsertChecks = SanitizeFunction; 654 PropagateShadow = SanitizeFunction; 655 PoisonStack = SanitizeFunction && ClPoisonStack; 656 PoisonUndef = SanitizeFunction && ClPoisonUndef; 657 // FIXME: Consider using SpecialCaseList to specify a list of functions that 658 // must always return fully initialized values. For now, we hardcode "main". 659 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 660 TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 661 662 DEBUG(if (!InsertChecks) 663 dbgs() << "MemorySanitizer is not inserting checks into '" 664 << F.getName() << "'\n"); 665 } 666 667 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 668 if (MS.TrackOrigins <= 1) return V; 669 return IRB.CreateCall(MS.MsanChainOriginFn, V); 670 } 671 672 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 673 const DataLayout &DL = F.getParent()->getDataLayout(); 674 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 675 if (IntptrSize == kOriginSize) return Origin; 676 assert(IntptrSize == kOriginSize * 2); 677 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 678 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 679 } 680 681 /// \brief Fill memory range with the given origin value. 682 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 683 unsigned Size, unsigned Alignment) { 684 const DataLayout &DL = F.getParent()->getDataLayout(); 685 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 686 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 687 assert(IntptrAlignment >= kMinOriginAlignment); 688 assert(IntptrSize >= kOriginSize); 689 690 unsigned Ofs = 0; 691 unsigned CurrentAlignment = Alignment; 692 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 693 Value *IntptrOrigin = originToIntptr(IRB, Origin); 694 Value *IntptrOriginPtr = 695 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 696 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 697 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 698 : IntptrOriginPtr; 699 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 700 Ofs += IntptrSize / kOriginSize; 701 CurrentAlignment = IntptrAlignment; 702 } 703 } 704 705 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 706 Value *GEP = 707 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 708 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 709 CurrentAlignment = kMinOriginAlignment; 710 } 711 } 712 713 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 714 unsigned Alignment, bool AsCall) { 715 const DataLayout &DL = F.getParent()->getDataLayout(); 716 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 717 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 718 if (Shadow->getType()->isAggregateType()) { 719 paintOrigin(IRB, updateOrigin(Origin, IRB), 720 getOriginPtr(Addr, IRB, Alignment), StoreSize, 721 OriginAlignment); 722 } else { 723 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 724 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 725 if (ConstantShadow) { 726 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 727 paintOrigin(IRB, updateOrigin(Origin, IRB), 728 getOriginPtr(Addr, IRB, Alignment), StoreSize, 729 OriginAlignment); 730 return; 731 } 732 733 unsigned TypeSizeInBits = 734 DL.getTypeSizeInBits(ConvertedShadow->getType()); 735 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 736 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 737 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 738 Value *ConvertedShadow2 = IRB.CreateZExt( 739 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 740 IRB.CreateCall(Fn, {ConvertedShadow2, 741 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 742 Origin}); 743 } else { 744 Value *Cmp = IRB.CreateICmpNE( 745 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 746 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 747 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 748 IRBuilder<> IRBNew(CheckTerm); 749 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 750 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 751 OriginAlignment); 752 } 753 } 754 } 755 756 void materializeStores(bool InstrumentWithCalls) { 757 for (StoreInst *SI : StoreList) { 758 IRBuilder<> IRB(SI); 759 Value *Val = SI->getValueOperand(); 760 Value *Addr = SI->getPointerOperand(); 761 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 762 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 763 764 StoreInst *NewSI = 765 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI->getAlignment()); 766 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 767 (void)NewSI; 768 769 if (ClCheckAccessAddress) 770 insertShadowCheck(Addr, SI); 771 772 if (SI->isAtomic()) 773 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 774 775 if (MS.TrackOrigins && !SI->isAtomic()) 776 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI->getAlignment(), 777 InstrumentWithCalls); 778 } 779 } 780 781 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 782 bool AsCall) { 783 IRBuilder<> IRB(OrigIns); 784 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 785 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 786 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 787 788 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 789 if (ConstantShadow) { 790 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 791 if (MS.TrackOrigins) { 792 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 793 MS.OriginTLS); 794 } 795 IRB.CreateCall(MS.WarningFn, {}); 796 IRB.CreateCall(MS.EmptyAsm, {}); 797 // FIXME: Insert UnreachableInst if !MS.Recover? 798 // This may invalidate some of the following checks and needs to be done 799 // at the very end. 800 } 801 return; 802 } 803 804 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 805 806 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 807 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 808 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 809 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 810 Value *ConvertedShadow2 = 811 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 812 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 813 ? Origin 814 : (Value *)IRB.getInt32(0)}); 815 } else { 816 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 817 getCleanShadow(ConvertedShadow), "_mscmp"); 818 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 819 Cmp, OrigIns, 820 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 821 822 IRB.SetInsertPoint(CheckTerm); 823 if (MS.TrackOrigins) { 824 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 825 MS.OriginTLS); 826 } 827 IRB.CreateCall(MS.WarningFn, {}); 828 IRB.CreateCall(MS.EmptyAsm, {}); 829 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 830 } 831 } 832 833 void materializeChecks(bool InstrumentWithCalls) { 834 for (const auto &ShadowData : InstrumentationList) { 835 Instruction *OrigIns = ShadowData.OrigIns; 836 Value *Shadow = ShadowData.Shadow; 837 Value *Origin = ShadowData.Origin; 838 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 839 } 840 DEBUG(dbgs() << "DONE:\n" << F); 841 } 842 843 /// \brief Add MemorySanitizer instrumentation to a function. 844 bool runOnFunction() { 845 MS.initializeCallbacks(*F.getParent()); 846 847 // In the presence of unreachable blocks, we may see Phi nodes with 848 // incoming nodes from such blocks. Since InstVisitor skips unreachable 849 // blocks, such nodes will not have any shadow value associated with them. 850 // It's easier to remove unreachable blocks than deal with missing shadow. 851 removeUnreachableBlocks(F); 852 853 // Iterate all BBs in depth-first order and create shadow instructions 854 // for all instructions (where applicable). 855 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 856 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 857 visit(*BB); 858 859 860 // Finalize PHI nodes. 861 for (PHINode *PN : ShadowPHINodes) { 862 PHINode *PNS = cast<PHINode>(getShadow(PN)); 863 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 864 size_t NumValues = PN->getNumIncomingValues(); 865 for (size_t v = 0; v < NumValues; v++) { 866 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 867 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 868 } 869 } 870 871 VAHelper->finalizeInstrumentation(); 872 873 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 874 InstrumentationList.size() + StoreList.size() > 875 (unsigned)ClInstrumentationWithCallThreshold; 876 877 // Delayed instrumentation of StoreInst. 878 // This may add new checks to be inserted later. 879 materializeStores(InstrumentWithCalls); 880 881 // Insert shadow value checks. 882 materializeChecks(InstrumentWithCalls); 883 884 return true; 885 } 886 887 /// \brief Compute the shadow type that corresponds to a given Value. 888 Type *getShadowTy(Value *V) { 889 return getShadowTy(V->getType()); 890 } 891 892 /// \brief Compute the shadow type that corresponds to a given Type. 893 Type *getShadowTy(Type *OrigTy) { 894 if (!OrigTy->isSized()) { 895 return nullptr; 896 } 897 // For integer type, shadow is the same as the original type. 898 // This may return weird-sized types like i1. 899 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 900 return IT; 901 const DataLayout &DL = F.getParent()->getDataLayout(); 902 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 903 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 904 return VectorType::get(IntegerType::get(*MS.C, EltSize), 905 VT->getNumElements()); 906 } 907 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 908 return ArrayType::get(getShadowTy(AT->getElementType()), 909 AT->getNumElements()); 910 } 911 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 912 SmallVector<Type*, 4> Elements; 913 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 914 Elements.push_back(getShadowTy(ST->getElementType(i))); 915 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 916 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 917 return Res; 918 } 919 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 920 return IntegerType::get(*MS.C, TypeSize); 921 } 922 923 /// \brief Flatten a vector type. 924 Type *getShadowTyNoVec(Type *ty) { 925 if (VectorType *vt = dyn_cast<VectorType>(ty)) 926 return IntegerType::get(*MS.C, vt->getBitWidth()); 927 return ty; 928 } 929 930 /// \brief Convert a shadow value to it's flattened variant. 931 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 932 Type *Ty = V->getType(); 933 Type *NoVecTy = getShadowTyNoVec(Ty); 934 if (Ty == NoVecTy) return V; 935 return IRB.CreateBitCast(V, NoVecTy); 936 } 937 938 /// \brief Compute the integer shadow offset that corresponds to a given 939 /// application address. 940 /// 941 /// Offset = (Addr & ~AndMask) ^ XorMask 942 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 943 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 944 945 uint64_t AndMask = MS.MapParams->AndMask; 946 if (AndMask) 947 OffsetLong = 948 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 949 950 uint64_t XorMask = MS.MapParams->XorMask; 951 if (XorMask) 952 OffsetLong = 953 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 954 return OffsetLong; 955 } 956 957 /// \brief Compute the shadow address that corresponds to a given application 958 /// address. 959 /// 960 /// Shadow = ShadowBase + Offset 961 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 962 IRBuilder<> &IRB) { 963 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 964 uint64_t ShadowBase = MS.MapParams->ShadowBase; 965 if (ShadowBase != 0) 966 ShadowLong = 967 IRB.CreateAdd(ShadowLong, 968 ConstantInt::get(MS.IntptrTy, ShadowBase)); 969 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 970 } 971 972 /// \brief Compute the origin address that corresponds to a given application 973 /// address. 974 /// 975 /// OriginAddr = (OriginBase + Offset) & ~3ULL 976 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 977 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 978 uint64_t OriginBase = MS.MapParams->OriginBase; 979 if (OriginBase != 0) 980 OriginLong = 981 IRB.CreateAdd(OriginLong, 982 ConstantInt::get(MS.IntptrTy, OriginBase)); 983 if (Alignment < kMinOriginAlignment) { 984 uint64_t Mask = kMinOriginAlignment - 1; 985 OriginLong = IRB.CreateAnd(OriginLong, 986 ConstantInt::get(MS.IntptrTy, ~Mask)); 987 } 988 return IRB.CreateIntToPtr(OriginLong, 989 PointerType::get(IRB.getInt32Ty(), 0)); 990 } 991 992 /// \brief Compute the shadow address for a given function argument. 993 /// 994 /// Shadow = ParamTLS+ArgOffset. 995 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 996 int ArgOffset) { 997 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 998 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 999 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1000 "_msarg"); 1001 } 1002 1003 /// \brief Compute the origin address for a given function argument. 1004 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1005 int ArgOffset) { 1006 if (!MS.TrackOrigins) return nullptr; 1007 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1008 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1009 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1010 "_msarg_o"); 1011 } 1012 1013 /// \brief Compute the shadow address for a retval. 1014 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1015 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1016 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1017 "_msret"); 1018 } 1019 1020 /// \brief Compute the origin address for a retval. 1021 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1022 // We keep a single origin for the entire retval. Might be too optimistic. 1023 return MS.RetvalOriginTLS; 1024 } 1025 1026 /// \brief Set SV to be the shadow value for V. 1027 void setShadow(Value *V, Value *SV) { 1028 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1029 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1030 } 1031 1032 /// \brief Set Origin to be the origin value for V. 1033 void setOrigin(Value *V, Value *Origin) { 1034 if (!MS.TrackOrigins) return; 1035 assert(!OriginMap.count(V) && "Values may only have one origin"); 1036 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1037 OriginMap[V] = Origin; 1038 } 1039 1040 Constant *getCleanShadow(Type *OrigTy) { 1041 Type *ShadowTy = getShadowTy(OrigTy); 1042 if (!ShadowTy) 1043 return nullptr; 1044 return Constant::getNullValue(ShadowTy); 1045 } 1046 1047 /// \brief Create a clean shadow value for a given value. 1048 /// 1049 /// Clean shadow (all zeroes) means all bits of the value are defined 1050 /// (initialized). 1051 Constant *getCleanShadow(Value *V) { 1052 return getCleanShadow(V->getType()); 1053 } 1054 1055 /// \brief Create a dirty shadow of a given shadow type. 1056 Constant *getPoisonedShadow(Type *ShadowTy) { 1057 assert(ShadowTy); 1058 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1059 return Constant::getAllOnesValue(ShadowTy); 1060 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1061 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1062 getPoisonedShadow(AT->getElementType())); 1063 return ConstantArray::get(AT, Vals); 1064 } 1065 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1066 SmallVector<Constant *, 4> Vals; 1067 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1068 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1069 return ConstantStruct::get(ST, Vals); 1070 } 1071 llvm_unreachable("Unexpected shadow type"); 1072 } 1073 1074 /// \brief Create a dirty shadow for a given value. 1075 Constant *getPoisonedShadow(Value *V) { 1076 Type *ShadowTy = getShadowTy(V); 1077 if (!ShadowTy) 1078 return nullptr; 1079 return getPoisonedShadow(ShadowTy); 1080 } 1081 1082 /// \brief Create a clean (zero) origin. 1083 Value *getCleanOrigin() { 1084 return Constant::getNullValue(MS.OriginTy); 1085 } 1086 1087 /// \brief Get the shadow value for a given Value. 1088 /// 1089 /// This function either returns the value set earlier with setShadow, 1090 /// or extracts if from ParamTLS (for function arguments). 1091 Value *getShadow(Value *V) { 1092 if (!PropagateShadow) return getCleanShadow(V); 1093 if (Instruction *I = dyn_cast<Instruction>(V)) { 1094 // For instructions the shadow is already stored in the map. 1095 Value *Shadow = ShadowMap[V]; 1096 if (!Shadow) { 1097 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1098 (void)I; 1099 assert(Shadow && "No shadow for a value"); 1100 } 1101 return Shadow; 1102 } 1103 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1104 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1105 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1106 (void)U; 1107 return AllOnes; 1108 } 1109 if (Argument *A = dyn_cast<Argument>(V)) { 1110 // For arguments we compute the shadow on demand and store it in the map. 1111 Value **ShadowPtr = &ShadowMap[V]; 1112 if (*ShadowPtr) 1113 return *ShadowPtr; 1114 Function *F = A->getParent(); 1115 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1116 unsigned ArgOffset = 0; 1117 const DataLayout &DL = F->getParent()->getDataLayout(); 1118 for (auto &FArg : F->args()) { 1119 if (!FArg.getType()->isSized()) { 1120 DEBUG(dbgs() << "Arg is not sized\n"); 1121 continue; 1122 } 1123 unsigned Size = 1124 FArg.hasByValAttr() 1125 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1126 : DL.getTypeAllocSize(FArg.getType()); 1127 if (A == &FArg) { 1128 bool Overflow = ArgOffset + Size > kParamTLSSize; 1129 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1130 if (FArg.hasByValAttr()) { 1131 // ByVal pointer itself has clean shadow. We copy the actual 1132 // argument shadow to the underlying memory. 1133 // Figure out maximal valid memcpy alignment. 1134 unsigned ArgAlign = FArg.getParamAlignment(); 1135 if (ArgAlign == 0) { 1136 Type *EltType = A->getType()->getPointerElementType(); 1137 ArgAlign = DL.getABITypeAlignment(EltType); 1138 } 1139 if (Overflow) { 1140 // ParamTLS overflow. 1141 EntryIRB.CreateMemSet( 1142 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1143 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1144 } else { 1145 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1146 Value *Cpy = EntryIRB.CreateMemCpy( 1147 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1148 CopyAlign); 1149 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1150 (void)Cpy; 1151 } 1152 *ShadowPtr = getCleanShadow(V); 1153 } else { 1154 if (Overflow) { 1155 // ParamTLS overflow. 1156 *ShadowPtr = getCleanShadow(V); 1157 } else { 1158 *ShadowPtr = 1159 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1160 } 1161 } 1162 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1163 **ShadowPtr << "\n"); 1164 if (MS.TrackOrigins && !Overflow) { 1165 Value *OriginPtr = 1166 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1167 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1168 } else { 1169 setOrigin(A, getCleanOrigin()); 1170 } 1171 } 1172 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1173 } 1174 assert(*ShadowPtr && "Could not find shadow for an argument"); 1175 return *ShadowPtr; 1176 } 1177 // For everything else the shadow is zero. 1178 return getCleanShadow(V); 1179 } 1180 1181 /// \brief Get the shadow for i-th argument of the instruction I. 1182 Value *getShadow(Instruction *I, int i) { 1183 return getShadow(I->getOperand(i)); 1184 } 1185 1186 /// \brief Get the origin for a value. 1187 Value *getOrigin(Value *V) { 1188 if (!MS.TrackOrigins) return nullptr; 1189 if (!PropagateShadow) return getCleanOrigin(); 1190 if (isa<Constant>(V)) return getCleanOrigin(); 1191 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1192 "Unexpected value type in getOrigin()"); 1193 Value *Origin = OriginMap[V]; 1194 assert(Origin && "Missing origin"); 1195 return Origin; 1196 } 1197 1198 /// \brief Get the origin for i-th argument of the instruction I. 1199 Value *getOrigin(Instruction *I, int i) { 1200 return getOrigin(I->getOperand(i)); 1201 } 1202 1203 /// \brief Remember the place where a shadow check should be inserted. 1204 /// 1205 /// This location will be later instrumented with a check that will print a 1206 /// UMR warning in runtime if the shadow value is not 0. 1207 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1208 assert(Shadow); 1209 if (!InsertChecks) return; 1210 #ifndef NDEBUG 1211 Type *ShadowTy = Shadow->getType(); 1212 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1213 "Can only insert checks for integer and vector shadow types"); 1214 #endif 1215 InstrumentationList.push_back( 1216 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1217 } 1218 1219 /// \brief Remember the place where a shadow check should be inserted. 1220 /// 1221 /// This location will be later instrumented with a check that will print a 1222 /// UMR warning in runtime if the value is not fully defined. 1223 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1224 assert(Val); 1225 Value *Shadow, *Origin; 1226 if (ClCheckConstantShadow) { 1227 Shadow = getShadow(Val); 1228 if (!Shadow) return; 1229 Origin = getOrigin(Val); 1230 } else { 1231 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1232 if (!Shadow) return; 1233 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1234 } 1235 insertShadowCheck(Shadow, Origin, OrigIns); 1236 } 1237 1238 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1239 switch (a) { 1240 case AtomicOrdering::NotAtomic: 1241 return AtomicOrdering::NotAtomic; 1242 case AtomicOrdering::Unordered: 1243 case AtomicOrdering::Monotonic: 1244 case AtomicOrdering::Release: 1245 return AtomicOrdering::Release; 1246 case AtomicOrdering::Acquire: 1247 case AtomicOrdering::AcquireRelease: 1248 return AtomicOrdering::AcquireRelease; 1249 case AtomicOrdering::SequentiallyConsistent: 1250 return AtomicOrdering::SequentiallyConsistent; 1251 } 1252 llvm_unreachable("Unknown ordering"); 1253 } 1254 1255 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1256 switch (a) { 1257 case AtomicOrdering::NotAtomic: 1258 return AtomicOrdering::NotAtomic; 1259 case AtomicOrdering::Unordered: 1260 case AtomicOrdering::Monotonic: 1261 case AtomicOrdering::Acquire: 1262 return AtomicOrdering::Acquire; 1263 case AtomicOrdering::Release: 1264 case AtomicOrdering::AcquireRelease: 1265 return AtomicOrdering::AcquireRelease; 1266 case AtomicOrdering::SequentiallyConsistent: 1267 return AtomicOrdering::SequentiallyConsistent; 1268 } 1269 llvm_unreachable("Unknown ordering"); 1270 } 1271 1272 // ------------------- Visitors. 1273 1274 /// \brief Instrument LoadInst 1275 /// 1276 /// Loads the corresponding shadow and (optionally) origin. 1277 /// Optionally, checks that the load address is fully defined. 1278 void visitLoadInst(LoadInst &I) { 1279 assert(I.getType()->isSized() && "Load type must have size"); 1280 IRBuilder<> IRB(I.getNextNode()); 1281 Type *ShadowTy = getShadowTy(&I); 1282 Value *Addr = I.getPointerOperand(); 1283 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1284 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1285 setShadow(&I, 1286 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1287 } else { 1288 setShadow(&I, getCleanShadow(&I)); 1289 } 1290 1291 if (ClCheckAccessAddress) 1292 insertShadowCheck(I.getPointerOperand(), &I); 1293 1294 if (I.isAtomic()) 1295 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1296 1297 if (MS.TrackOrigins) { 1298 if (PropagateShadow) { 1299 unsigned Alignment = I.getAlignment(); 1300 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1301 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1302 OriginAlignment)); 1303 } else { 1304 setOrigin(&I, getCleanOrigin()); 1305 } 1306 } 1307 } 1308 1309 /// \brief Instrument StoreInst 1310 /// 1311 /// Stores the corresponding shadow and (optionally) origin. 1312 /// Optionally, checks that the store address is fully defined. 1313 void visitStoreInst(StoreInst &I) { 1314 StoreList.push_back(&I); 1315 } 1316 1317 void handleCASOrRMW(Instruction &I) { 1318 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1319 1320 IRBuilder<> IRB(&I); 1321 Value *Addr = I.getOperand(0); 1322 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1323 1324 if (ClCheckAccessAddress) 1325 insertShadowCheck(Addr, &I); 1326 1327 // Only test the conditional argument of cmpxchg instruction. 1328 // The other argument can potentially be uninitialized, but we can not 1329 // detect this situation reliably without possible false positives. 1330 if (isa<AtomicCmpXchgInst>(I)) 1331 insertShadowCheck(I.getOperand(1), &I); 1332 1333 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1334 1335 setShadow(&I, getCleanShadow(&I)); 1336 setOrigin(&I, getCleanOrigin()); 1337 } 1338 1339 void visitAtomicRMWInst(AtomicRMWInst &I) { 1340 handleCASOrRMW(I); 1341 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1342 } 1343 1344 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1345 handleCASOrRMW(I); 1346 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1347 } 1348 1349 // Vector manipulation. 1350 void visitExtractElementInst(ExtractElementInst &I) { 1351 insertShadowCheck(I.getOperand(1), &I); 1352 IRBuilder<> IRB(&I); 1353 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1354 "_msprop")); 1355 setOrigin(&I, getOrigin(&I, 0)); 1356 } 1357 1358 void visitInsertElementInst(InsertElementInst &I) { 1359 insertShadowCheck(I.getOperand(2), &I); 1360 IRBuilder<> IRB(&I); 1361 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1362 I.getOperand(2), "_msprop")); 1363 setOriginForNaryOp(I); 1364 } 1365 1366 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1367 insertShadowCheck(I.getOperand(2), &I); 1368 IRBuilder<> IRB(&I); 1369 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1370 I.getOperand(2), "_msprop")); 1371 setOriginForNaryOp(I); 1372 } 1373 1374 // Casts. 1375 void visitSExtInst(SExtInst &I) { 1376 IRBuilder<> IRB(&I); 1377 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1378 setOrigin(&I, getOrigin(&I, 0)); 1379 } 1380 1381 void visitZExtInst(ZExtInst &I) { 1382 IRBuilder<> IRB(&I); 1383 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1384 setOrigin(&I, getOrigin(&I, 0)); 1385 } 1386 1387 void visitTruncInst(TruncInst &I) { 1388 IRBuilder<> IRB(&I); 1389 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1390 setOrigin(&I, getOrigin(&I, 0)); 1391 } 1392 1393 void visitBitCastInst(BitCastInst &I) { 1394 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1395 // a musttail call and a ret, don't instrument. New instructions are not 1396 // allowed after a musttail call. 1397 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1398 if (CI->isMustTailCall()) 1399 return; 1400 IRBuilder<> IRB(&I); 1401 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1402 setOrigin(&I, getOrigin(&I, 0)); 1403 } 1404 1405 void visitPtrToIntInst(PtrToIntInst &I) { 1406 IRBuilder<> IRB(&I); 1407 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1408 "_msprop_ptrtoint")); 1409 setOrigin(&I, getOrigin(&I, 0)); 1410 } 1411 1412 void visitIntToPtrInst(IntToPtrInst &I) { 1413 IRBuilder<> IRB(&I); 1414 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1415 "_msprop_inttoptr")); 1416 setOrigin(&I, getOrigin(&I, 0)); 1417 } 1418 1419 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1420 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1421 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1422 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1423 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1424 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1425 1426 /// \brief Propagate shadow for bitwise AND. 1427 /// 1428 /// This code is exact, i.e. if, for example, a bit in the left argument 1429 /// is defined and 0, then neither the value not definedness of the 1430 /// corresponding bit in B don't affect the resulting shadow. 1431 void visitAnd(BinaryOperator &I) { 1432 IRBuilder<> IRB(&I); 1433 // "And" of 0 and a poisoned value results in unpoisoned value. 1434 // 1&1 => 1; 0&1 => 0; p&1 => p; 1435 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1436 // 1&p => p; 0&p => 0; p&p => p; 1437 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1438 Value *S1 = getShadow(&I, 0); 1439 Value *S2 = getShadow(&I, 1); 1440 Value *V1 = I.getOperand(0); 1441 Value *V2 = I.getOperand(1); 1442 if (V1->getType() != S1->getType()) { 1443 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1444 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1445 } 1446 Value *S1S2 = IRB.CreateAnd(S1, S2); 1447 Value *V1S2 = IRB.CreateAnd(V1, S2); 1448 Value *S1V2 = IRB.CreateAnd(S1, V2); 1449 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1450 setOriginForNaryOp(I); 1451 } 1452 1453 void visitOr(BinaryOperator &I) { 1454 IRBuilder<> IRB(&I); 1455 // "Or" of 1 and a poisoned value results in unpoisoned value. 1456 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1457 // 1|0 => 1; 0|0 => 0; p|0 => p; 1458 // 1|p => 1; 0|p => p; p|p => p; 1459 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1460 Value *S1 = getShadow(&I, 0); 1461 Value *S2 = getShadow(&I, 1); 1462 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1463 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1464 if (V1->getType() != S1->getType()) { 1465 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1466 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1467 } 1468 Value *S1S2 = IRB.CreateAnd(S1, S2); 1469 Value *V1S2 = IRB.CreateAnd(V1, S2); 1470 Value *S1V2 = IRB.CreateAnd(S1, V2); 1471 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1472 setOriginForNaryOp(I); 1473 } 1474 1475 /// \brief Default propagation of shadow and/or origin. 1476 /// 1477 /// This class implements the general case of shadow propagation, used in all 1478 /// cases where we don't know and/or don't care about what the operation 1479 /// actually does. It converts all input shadow values to a common type 1480 /// (extending or truncating as necessary), and bitwise OR's them. 1481 /// 1482 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1483 /// fully initialized), and less prone to false positives. 1484 /// 1485 /// This class also implements the general case of origin propagation. For a 1486 /// Nary operation, result origin is set to the origin of an argument that is 1487 /// not entirely initialized. If there is more than one such arguments, the 1488 /// rightmost of them is picked. It does not matter which one is picked if all 1489 /// arguments are initialized. 1490 template <bool CombineShadow> 1491 class Combiner { 1492 Value *Shadow; 1493 Value *Origin; 1494 IRBuilder<> &IRB; 1495 MemorySanitizerVisitor *MSV; 1496 1497 public: 1498 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1499 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1500 1501 /// \brief Add a pair of shadow and origin values to the mix. 1502 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1503 if (CombineShadow) { 1504 assert(OpShadow); 1505 if (!Shadow) 1506 Shadow = OpShadow; 1507 else { 1508 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1509 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1510 } 1511 } 1512 1513 if (MSV->MS.TrackOrigins) { 1514 assert(OpOrigin); 1515 if (!Origin) { 1516 Origin = OpOrigin; 1517 } else { 1518 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1519 // No point in adding something that might result in 0 origin value. 1520 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1521 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1522 Value *Cond = 1523 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1524 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1525 } 1526 } 1527 } 1528 return *this; 1529 } 1530 1531 /// \brief Add an application value to the mix. 1532 Combiner &Add(Value *V) { 1533 Value *OpShadow = MSV->getShadow(V); 1534 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1535 return Add(OpShadow, OpOrigin); 1536 } 1537 1538 /// \brief Set the current combined values as the given instruction's shadow 1539 /// and origin. 1540 void Done(Instruction *I) { 1541 if (CombineShadow) { 1542 assert(Shadow); 1543 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1544 MSV->setShadow(I, Shadow); 1545 } 1546 if (MSV->MS.TrackOrigins) { 1547 assert(Origin); 1548 MSV->setOrigin(I, Origin); 1549 } 1550 } 1551 }; 1552 1553 typedef Combiner<true> ShadowAndOriginCombiner; 1554 typedef Combiner<false> OriginCombiner; 1555 1556 /// \brief Propagate origin for arbitrary operation. 1557 void setOriginForNaryOp(Instruction &I) { 1558 if (!MS.TrackOrigins) return; 1559 IRBuilder<> IRB(&I); 1560 OriginCombiner OC(this, IRB); 1561 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1562 OC.Add(OI->get()); 1563 OC.Done(&I); 1564 } 1565 1566 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1567 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1568 "Vector of pointers is not a valid shadow type"); 1569 return Ty->isVectorTy() ? 1570 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1571 Ty->getPrimitiveSizeInBits(); 1572 } 1573 1574 /// \brief Cast between two shadow types, extending or truncating as 1575 /// necessary. 1576 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1577 bool Signed = false) { 1578 Type *srcTy = V->getType(); 1579 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1580 return IRB.CreateIntCast(V, dstTy, Signed); 1581 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1582 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1583 return IRB.CreateIntCast(V, dstTy, Signed); 1584 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1585 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1586 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1587 Value *V2 = 1588 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1589 return IRB.CreateBitCast(V2, dstTy); 1590 // TODO: handle struct types. 1591 } 1592 1593 /// \brief Cast an application value to the type of its own shadow. 1594 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1595 Type *ShadowTy = getShadowTy(V); 1596 if (V->getType() == ShadowTy) 1597 return V; 1598 if (V->getType()->isPtrOrPtrVectorTy()) 1599 return IRB.CreatePtrToInt(V, ShadowTy); 1600 else 1601 return IRB.CreateBitCast(V, ShadowTy); 1602 } 1603 1604 /// \brief Propagate shadow for arbitrary operation. 1605 void handleShadowOr(Instruction &I) { 1606 IRBuilder<> IRB(&I); 1607 ShadowAndOriginCombiner SC(this, IRB); 1608 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1609 SC.Add(OI->get()); 1610 SC.Done(&I); 1611 } 1612 1613 // \brief Handle multiplication by constant. 1614 // 1615 // Handle a special case of multiplication by constant that may have one or 1616 // more zeros in the lower bits. This makes corresponding number of lower bits 1617 // of the result zero as well. We model it by shifting the other operand 1618 // shadow left by the required number of bits. Effectively, we transform 1619 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1620 // We use multiplication by 2**N instead of shift to cover the case of 1621 // multiplication by 0, which may occur in some elements of a vector operand. 1622 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1623 Value *OtherArg) { 1624 Constant *ShadowMul; 1625 Type *Ty = ConstArg->getType(); 1626 if (Ty->isVectorTy()) { 1627 unsigned NumElements = Ty->getVectorNumElements(); 1628 Type *EltTy = Ty->getSequentialElementType(); 1629 SmallVector<Constant *, 16> Elements; 1630 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1631 if (ConstantInt *Elt = 1632 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1633 const APInt &V = Elt->getValue(); 1634 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1635 Elements.push_back(ConstantInt::get(EltTy, V2)); 1636 } else { 1637 Elements.push_back(ConstantInt::get(EltTy, 1)); 1638 } 1639 } 1640 ShadowMul = ConstantVector::get(Elements); 1641 } else { 1642 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1643 const APInt &V = Elt->getValue(); 1644 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1645 ShadowMul = ConstantInt::get(Ty, V2); 1646 } else { 1647 ShadowMul = ConstantInt::get(Ty, 1); 1648 } 1649 } 1650 1651 IRBuilder<> IRB(&I); 1652 setShadow(&I, 1653 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1654 setOrigin(&I, getOrigin(OtherArg)); 1655 } 1656 1657 void visitMul(BinaryOperator &I) { 1658 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1659 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1660 if (constOp0 && !constOp1) 1661 handleMulByConstant(I, constOp0, I.getOperand(1)); 1662 else if (constOp1 && !constOp0) 1663 handleMulByConstant(I, constOp1, I.getOperand(0)); 1664 else 1665 handleShadowOr(I); 1666 } 1667 1668 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1669 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1670 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1671 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1672 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1673 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1674 1675 void handleDiv(Instruction &I) { 1676 IRBuilder<> IRB(&I); 1677 // Strict on the second argument. 1678 insertShadowCheck(I.getOperand(1), &I); 1679 setShadow(&I, getShadow(&I, 0)); 1680 setOrigin(&I, getOrigin(&I, 0)); 1681 } 1682 1683 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1684 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1685 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1686 void visitURem(BinaryOperator &I) { handleDiv(I); } 1687 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1688 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1689 1690 /// \brief Instrument == and != comparisons. 1691 /// 1692 /// Sometimes the comparison result is known even if some of the bits of the 1693 /// arguments are not. 1694 void handleEqualityComparison(ICmpInst &I) { 1695 IRBuilder<> IRB(&I); 1696 Value *A = I.getOperand(0); 1697 Value *B = I.getOperand(1); 1698 Value *Sa = getShadow(A); 1699 Value *Sb = getShadow(B); 1700 1701 // Get rid of pointers and vectors of pointers. 1702 // For ints (and vectors of ints), types of A and Sa match, 1703 // and this is a no-op. 1704 A = IRB.CreatePointerCast(A, Sa->getType()); 1705 B = IRB.CreatePointerCast(B, Sb->getType()); 1706 1707 // A == B <==> (C = A^B) == 0 1708 // A != B <==> (C = A^B) != 0 1709 // Sc = Sa | Sb 1710 Value *C = IRB.CreateXor(A, B); 1711 Value *Sc = IRB.CreateOr(Sa, Sb); 1712 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1713 // Result is defined if one of the following is true 1714 // * there is a defined 1 bit in C 1715 // * C is fully defined 1716 // Si = !(C & ~Sc) && Sc 1717 Value *Zero = Constant::getNullValue(Sc->getType()); 1718 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1719 Value *Si = 1720 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1721 IRB.CreateICmpEQ( 1722 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1723 Si->setName("_msprop_icmp"); 1724 setShadow(&I, Si); 1725 setOriginForNaryOp(I); 1726 } 1727 1728 /// \brief Build the lowest possible value of V, taking into account V's 1729 /// uninitialized bits. 1730 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1731 bool isSigned) { 1732 if (isSigned) { 1733 // Split shadow into sign bit and other bits. 1734 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1735 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1736 // Maximise the undefined shadow bit, minimize other undefined bits. 1737 return 1738 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1739 } else { 1740 // Minimize undefined bits. 1741 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1742 } 1743 } 1744 1745 /// \brief Build the highest possible value of V, taking into account V's 1746 /// uninitialized bits. 1747 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1748 bool isSigned) { 1749 if (isSigned) { 1750 // Split shadow into sign bit and other bits. 1751 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1752 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1753 // Minimise the undefined shadow bit, maximise other undefined bits. 1754 return 1755 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1756 } else { 1757 // Maximize undefined bits. 1758 return IRB.CreateOr(A, Sa); 1759 } 1760 } 1761 1762 /// \brief Instrument relational comparisons. 1763 /// 1764 /// This function does exact shadow propagation for all relational 1765 /// comparisons of integers, pointers and vectors of those. 1766 /// FIXME: output seems suboptimal when one of the operands is a constant 1767 void handleRelationalComparisonExact(ICmpInst &I) { 1768 IRBuilder<> IRB(&I); 1769 Value *A = I.getOperand(0); 1770 Value *B = I.getOperand(1); 1771 Value *Sa = getShadow(A); 1772 Value *Sb = getShadow(B); 1773 1774 // Get rid of pointers and vectors of pointers. 1775 // For ints (and vectors of ints), types of A and Sa match, 1776 // and this is a no-op. 1777 A = IRB.CreatePointerCast(A, Sa->getType()); 1778 B = IRB.CreatePointerCast(B, Sb->getType()); 1779 1780 // Let [a0, a1] be the interval of possible values of A, taking into account 1781 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1782 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1783 bool IsSigned = I.isSigned(); 1784 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1785 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1786 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1787 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1788 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1789 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1790 Value *Si = IRB.CreateXor(S1, S2); 1791 setShadow(&I, Si); 1792 setOriginForNaryOp(I); 1793 } 1794 1795 /// \brief Instrument signed relational comparisons. 1796 /// 1797 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1798 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1799 void handleSignedRelationalComparison(ICmpInst &I) { 1800 Constant *constOp; 1801 Value *op = nullptr; 1802 CmpInst::Predicate pre; 1803 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1804 op = I.getOperand(0); 1805 pre = I.getPredicate(); 1806 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1807 op = I.getOperand(1); 1808 pre = I.getSwappedPredicate(); 1809 } else { 1810 handleShadowOr(I); 1811 return; 1812 } 1813 1814 if ((constOp->isNullValue() && 1815 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1816 (constOp->isAllOnesValue() && 1817 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1818 IRBuilder<> IRB(&I); 1819 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1820 "_msprop_icmp_s"); 1821 setShadow(&I, Shadow); 1822 setOrigin(&I, getOrigin(op)); 1823 } else { 1824 handleShadowOr(I); 1825 } 1826 } 1827 1828 void visitICmpInst(ICmpInst &I) { 1829 if (!ClHandleICmp) { 1830 handleShadowOr(I); 1831 return; 1832 } 1833 if (I.isEquality()) { 1834 handleEqualityComparison(I); 1835 return; 1836 } 1837 1838 assert(I.isRelational()); 1839 if (ClHandleICmpExact) { 1840 handleRelationalComparisonExact(I); 1841 return; 1842 } 1843 if (I.isSigned()) { 1844 handleSignedRelationalComparison(I); 1845 return; 1846 } 1847 1848 assert(I.isUnsigned()); 1849 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1850 handleRelationalComparisonExact(I); 1851 return; 1852 } 1853 1854 handleShadowOr(I); 1855 } 1856 1857 void visitFCmpInst(FCmpInst &I) { 1858 handleShadowOr(I); 1859 } 1860 1861 void handleShift(BinaryOperator &I) { 1862 IRBuilder<> IRB(&I); 1863 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1864 // Otherwise perform the same shift on S1. 1865 Value *S1 = getShadow(&I, 0); 1866 Value *S2 = getShadow(&I, 1); 1867 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1868 S2->getType()); 1869 Value *V2 = I.getOperand(1); 1870 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1871 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1872 setOriginForNaryOp(I); 1873 } 1874 1875 void visitShl(BinaryOperator &I) { handleShift(I); } 1876 void visitAShr(BinaryOperator &I) { handleShift(I); } 1877 void visitLShr(BinaryOperator &I) { handleShift(I); } 1878 1879 /// \brief Instrument llvm.memmove 1880 /// 1881 /// At this point we don't know if llvm.memmove will be inlined or not. 1882 /// If we don't instrument it and it gets inlined, 1883 /// our interceptor will not kick in and we will lose the memmove. 1884 /// If we instrument the call here, but it does not get inlined, 1885 /// we will memove the shadow twice: which is bad in case 1886 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1887 /// 1888 /// Similar situation exists for memcpy and memset. 1889 void visitMemMoveInst(MemMoveInst &I) { 1890 IRBuilder<> IRB(&I); 1891 IRB.CreateCall( 1892 MS.MemmoveFn, 1893 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1894 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1895 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1896 I.eraseFromParent(); 1897 } 1898 1899 // Similar to memmove: avoid copying shadow twice. 1900 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1901 // FIXME: consider doing manual inline for small constant sizes and proper 1902 // alignment. 1903 void visitMemCpyInst(MemCpyInst &I) { 1904 IRBuilder<> IRB(&I); 1905 IRB.CreateCall( 1906 MS.MemcpyFn, 1907 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1908 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1909 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1910 I.eraseFromParent(); 1911 } 1912 1913 // Same as memcpy. 1914 void visitMemSetInst(MemSetInst &I) { 1915 IRBuilder<> IRB(&I); 1916 IRB.CreateCall( 1917 MS.MemsetFn, 1918 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1919 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1920 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1921 I.eraseFromParent(); 1922 } 1923 1924 void visitVAStartInst(VAStartInst &I) { 1925 VAHelper->visitVAStartInst(I); 1926 } 1927 1928 void visitVACopyInst(VACopyInst &I) { 1929 VAHelper->visitVACopyInst(I); 1930 } 1931 1932 /// \brief Handle vector store-like intrinsics. 1933 /// 1934 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1935 /// has 1 pointer argument and 1 vector argument, returns void. 1936 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1937 IRBuilder<> IRB(&I); 1938 Value* Addr = I.getArgOperand(0); 1939 Value *Shadow = getShadow(&I, 1); 1940 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1941 1942 // We don't know the pointer alignment (could be unaligned SSE store!). 1943 // Have to assume to worst case. 1944 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1945 1946 if (ClCheckAccessAddress) 1947 insertShadowCheck(Addr, &I); 1948 1949 // FIXME: factor out common code from materializeStores 1950 if (MS.TrackOrigins) 1951 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1952 return true; 1953 } 1954 1955 /// \brief Handle vector load-like intrinsics. 1956 /// 1957 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1958 /// has 1 pointer argument, returns a vector. 1959 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1960 IRBuilder<> IRB(&I); 1961 Value *Addr = I.getArgOperand(0); 1962 1963 Type *ShadowTy = getShadowTy(&I); 1964 if (PropagateShadow) { 1965 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1966 // We don't know the pointer alignment (could be unaligned SSE load!). 1967 // Have to assume to worst case. 1968 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1969 } else { 1970 setShadow(&I, getCleanShadow(&I)); 1971 } 1972 1973 if (ClCheckAccessAddress) 1974 insertShadowCheck(Addr, &I); 1975 1976 if (MS.TrackOrigins) { 1977 if (PropagateShadow) 1978 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1979 else 1980 setOrigin(&I, getCleanOrigin()); 1981 } 1982 return true; 1983 } 1984 1985 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1986 /// 1987 /// Instrument intrinsics with any number of arguments of the same type, 1988 /// equal to the return type. The type should be simple (no aggregates or 1989 /// pointers; vectors are fine). 1990 /// Caller guarantees that this intrinsic does not access memory. 1991 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1992 Type *RetTy = I.getType(); 1993 if (!(RetTy->isIntOrIntVectorTy() || 1994 RetTy->isFPOrFPVectorTy() || 1995 RetTy->isX86_MMXTy())) 1996 return false; 1997 1998 unsigned NumArgOperands = I.getNumArgOperands(); 1999 2000 for (unsigned i = 0; i < NumArgOperands; ++i) { 2001 Type *Ty = I.getArgOperand(i)->getType(); 2002 if (Ty != RetTy) 2003 return false; 2004 } 2005 2006 IRBuilder<> IRB(&I); 2007 ShadowAndOriginCombiner SC(this, IRB); 2008 for (unsigned i = 0; i < NumArgOperands; ++i) 2009 SC.Add(I.getArgOperand(i)); 2010 SC.Done(&I); 2011 2012 return true; 2013 } 2014 2015 /// \brief Heuristically instrument unknown intrinsics. 2016 /// 2017 /// The main purpose of this code is to do something reasonable with all 2018 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2019 /// We recognize several classes of intrinsics by their argument types and 2020 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2021 /// sure that we know what the intrinsic does. 2022 /// 2023 /// We special-case intrinsics where this approach fails. See llvm.bswap 2024 /// handling as an example of that. 2025 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2026 unsigned NumArgOperands = I.getNumArgOperands(); 2027 if (NumArgOperands == 0) 2028 return false; 2029 2030 if (NumArgOperands == 2 && 2031 I.getArgOperand(0)->getType()->isPointerTy() && 2032 I.getArgOperand(1)->getType()->isVectorTy() && 2033 I.getType()->isVoidTy() && 2034 !I.onlyReadsMemory()) { 2035 // This looks like a vector store. 2036 return handleVectorStoreIntrinsic(I); 2037 } 2038 2039 if (NumArgOperands == 1 && 2040 I.getArgOperand(0)->getType()->isPointerTy() && 2041 I.getType()->isVectorTy() && 2042 I.onlyReadsMemory()) { 2043 // This looks like a vector load. 2044 return handleVectorLoadIntrinsic(I); 2045 } 2046 2047 if (I.doesNotAccessMemory()) 2048 if (maybeHandleSimpleNomemIntrinsic(I)) 2049 return true; 2050 2051 // FIXME: detect and handle SSE maskstore/maskload 2052 return false; 2053 } 2054 2055 void handleBswap(IntrinsicInst &I) { 2056 IRBuilder<> IRB(&I); 2057 Value *Op = I.getArgOperand(0); 2058 Type *OpType = Op->getType(); 2059 Function *BswapFunc = Intrinsic::getDeclaration( 2060 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2061 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2062 setOrigin(&I, getOrigin(Op)); 2063 } 2064 2065 // \brief Instrument vector convert instrinsic. 2066 // 2067 // This function instruments intrinsics like cvtsi2ss: 2068 // %Out = int_xxx_cvtyyy(%ConvertOp) 2069 // or 2070 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2071 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2072 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2073 // elements from \p CopyOp. 2074 // In most cases conversion involves floating-point value which may trigger a 2075 // hardware exception when not fully initialized. For this reason we require 2076 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2077 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2078 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2079 // return a fully initialized value. 2080 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2081 IRBuilder<> IRB(&I); 2082 Value *CopyOp, *ConvertOp; 2083 2084 switch (I.getNumArgOperands()) { 2085 case 3: 2086 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2087 case 2: 2088 CopyOp = I.getArgOperand(0); 2089 ConvertOp = I.getArgOperand(1); 2090 break; 2091 case 1: 2092 ConvertOp = I.getArgOperand(0); 2093 CopyOp = nullptr; 2094 break; 2095 default: 2096 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2097 } 2098 2099 // The first *NumUsedElements* elements of ConvertOp are converted to the 2100 // same number of output elements. The rest of the output is copied from 2101 // CopyOp, or (if not available) filled with zeroes. 2102 // Combine shadow for elements of ConvertOp that are used in this operation, 2103 // and insert a check. 2104 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2105 // int->any conversion. 2106 Value *ConvertShadow = getShadow(ConvertOp); 2107 Value *AggShadow = nullptr; 2108 if (ConvertOp->getType()->isVectorTy()) { 2109 AggShadow = IRB.CreateExtractElement( 2110 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2111 for (int i = 1; i < NumUsedElements; ++i) { 2112 Value *MoreShadow = IRB.CreateExtractElement( 2113 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2114 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2115 } 2116 } else { 2117 AggShadow = ConvertShadow; 2118 } 2119 assert(AggShadow->getType()->isIntegerTy()); 2120 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2121 2122 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2123 // ConvertOp. 2124 if (CopyOp) { 2125 assert(CopyOp->getType() == I.getType()); 2126 assert(CopyOp->getType()->isVectorTy()); 2127 Value *ResultShadow = getShadow(CopyOp); 2128 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2129 for (int i = 0; i < NumUsedElements; ++i) { 2130 ResultShadow = IRB.CreateInsertElement( 2131 ResultShadow, ConstantInt::getNullValue(EltTy), 2132 ConstantInt::get(IRB.getInt32Ty(), i)); 2133 } 2134 setShadow(&I, ResultShadow); 2135 setOrigin(&I, getOrigin(CopyOp)); 2136 } else { 2137 setShadow(&I, getCleanShadow(&I)); 2138 setOrigin(&I, getCleanOrigin()); 2139 } 2140 } 2141 2142 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2143 // zeroes if it is zero, and all ones otherwise. 2144 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2145 if (S->getType()->isVectorTy()) 2146 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2147 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2148 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2149 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2150 } 2151 2152 // Given a vector, extract its first element, and return all 2153 // zeroes if it is zero, and all ones otherwise. 2154 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2155 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2156 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2157 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2158 } 2159 2160 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2161 Type *T = S->getType(); 2162 assert(T->isVectorTy()); 2163 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2164 return IRB.CreateSExt(S2, T); 2165 } 2166 2167 // \brief Instrument vector shift instrinsic. 2168 // 2169 // This function instruments intrinsics like int_x86_avx2_psll_w. 2170 // Intrinsic shifts %In by %ShiftSize bits. 2171 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2172 // size, and the rest is ignored. Behavior is defined even if shift size is 2173 // greater than register (or field) width. 2174 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2175 assert(I.getNumArgOperands() == 2); 2176 IRBuilder<> IRB(&I); 2177 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2178 // Otherwise perform the same shift on S1. 2179 Value *S1 = getShadow(&I, 0); 2180 Value *S2 = getShadow(&I, 1); 2181 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2182 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2183 Value *V1 = I.getOperand(0); 2184 Value *V2 = I.getOperand(1); 2185 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2186 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2187 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2188 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2189 setOriginForNaryOp(I); 2190 } 2191 2192 // \brief Get an X86_MMX-sized vector type. 2193 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2194 const unsigned X86_MMXSizeInBits = 64; 2195 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2196 X86_MMXSizeInBits / EltSizeInBits); 2197 } 2198 2199 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2200 // intrinsic. 2201 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2202 switch (id) { 2203 case llvm::Intrinsic::x86_sse2_packsswb_128: 2204 case llvm::Intrinsic::x86_sse2_packuswb_128: 2205 return llvm::Intrinsic::x86_sse2_packsswb_128; 2206 2207 case llvm::Intrinsic::x86_sse2_packssdw_128: 2208 case llvm::Intrinsic::x86_sse41_packusdw: 2209 return llvm::Intrinsic::x86_sse2_packssdw_128; 2210 2211 case llvm::Intrinsic::x86_avx2_packsswb: 2212 case llvm::Intrinsic::x86_avx2_packuswb: 2213 return llvm::Intrinsic::x86_avx2_packsswb; 2214 2215 case llvm::Intrinsic::x86_avx2_packssdw: 2216 case llvm::Intrinsic::x86_avx2_packusdw: 2217 return llvm::Intrinsic::x86_avx2_packssdw; 2218 2219 case llvm::Intrinsic::x86_mmx_packsswb: 2220 case llvm::Intrinsic::x86_mmx_packuswb: 2221 return llvm::Intrinsic::x86_mmx_packsswb; 2222 2223 case llvm::Intrinsic::x86_mmx_packssdw: 2224 return llvm::Intrinsic::x86_mmx_packssdw; 2225 default: 2226 llvm_unreachable("unexpected intrinsic id"); 2227 } 2228 } 2229 2230 // \brief Instrument vector pack instrinsic. 2231 // 2232 // This function instruments intrinsics like x86_mmx_packsswb, that 2233 // packs elements of 2 input vectors into half as many bits with saturation. 2234 // Shadow is propagated with the signed variant of the same intrinsic applied 2235 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2236 // EltSizeInBits is used only for x86mmx arguments. 2237 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2238 assert(I.getNumArgOperands() == 2); 2239 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2240 IRBuilder<> IRB(&I); 2241 Value *S1 = getShadow(&I, 0); 2242 Value *S2 = getShadow(&I, 1); 2243 assert(isX86_MMX || S1->getType()->isVectorTy()); 2244 2245 // SExt and ICmpNE below must apply to individual elements of input vectors. 2246 // In case of x86mmx arguments, cast them to appropriate vector types and 2247 // back. 2248 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2249 if (isX86_MMX) { 2250 S1 = IRB.CreateBitCast(S1, T); 2251 S2 = IRB.CreateBitCast(S2, T); 2252 } 2253 Value *S1_ext = IRB.CreateSExt( 2254 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2255 Value *S2_ext = IRB.CreateSExt( 2256 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2257 if (isX86_MMX) { 2258 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2259 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2260 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2261 } 2262 2263 Function *ShadowFn = Intrinsic::getDeclaration( 2264 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2265 2266 Value *S = 2267 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2268 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2269 setShadow(&I, S); 2270 setOriginForNaryOp(I); 2271 } 2272 2273 // \brief Instrument sum-of-absolute-differencies intrinsic. 2274 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2275 const unsigned SignificantBitsPerResultElement = 16; 2276 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2277 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2278 unsigned ZeroBitsPerResultElement = 2279 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2280 2281 IRBuilder<> IRB(&I); 2282 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2283 S = IRB.CreateBitCast(S, ResTy); 2284 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2285 ResTy); 2286 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2287 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2288 setShadow(&I, S); 2289 setOriginForNaryOp(I); 2290 } 2291 2292 // \brief Instrument multiply-add intrinsic. 2293 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2294 unsigned EltSizeInBits = 0) { 2295 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2296 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2297 IRBuilder<> IRB(&I); 2298 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2299 S = IRB.CreateBitCast(S, ResTy); 2300 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2301 ResTy); 2302 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2303 setShadow(&I, S); 2304 setOriginForNaryOp(I); 2305 } 2306 2307 // \brief Instrument compare-packed intrinsic. 2308 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2309 // all-ones shadow. 2310 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2311 IRBuilder<> IRB(&I); 2312 Type *ResTy = getShadowTy(&I); 2313 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2314 Value *S = IRB.CreateSExt( 2315 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2316 setShadow(&I, S); 2317 setOriginForNaryOp(I); 2318 } 2319 2320 // \brief Instrument compare-scalar intrinsic. 2321 // This handles both cmp* intrinsics which return the result in the first 2322 // element of a vector, and comi* which return the result as i32. 2323 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2324 IRBuilder<> IRB(&I); 2325 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2326 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2327 setShadow(&I, S); 2328 setOriginForNaryOp(I); 2329 } 2330 2331 void handleStmxcsr(IntrinsicInst &I) { 2332 IRBuilder<> IRB(&I); 2333 Value* Addr = I.getArgOperand(0); 2334 Type *Ty = IRB.getInt32Ty(); 2335 Value *ShadowPtr = getShadowPtr(Addr, Ty, IRB); 2336 2337 IRB.CreateStore(getCleanShadow(Ty), 2338 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2339 2340 if (ClCheckAccessAddress) 2341 insertShadowCheck(Addr, &I); 2342 } 2343 2344 void handleLdmxcsr(IntrinsicInst &I) { 2345 if (!InsertChecks) return; 2346 2347 IRBuilder<> IRB(&I); 2348 Value *Addr = I.getArgOperand(0); 2349 Type *Ty = IRB.getInt32Ty(); 2350 unsigned Alignment = 1; 2351 2352 if (ClCheckAccessAddress) 2353 insertShadowCheck(Addr, &I); 2354 2355 Value *Shadow = IRB.CreateAlignedLoad(getShadowPtr(Addr, Ty, IRB), 2356 Alignment, "_ldmxcsr"); 2357 Value *Origin = MS.TrackOrigins 2358 ? IRB.CreateLoad(getOriginPtr(Addr, IRB, Alignment)) 2359 : getCleanOrigin(); 2360 insertShadowCheck(Shadow, Origin, &I); 2361 } 2362 2363 void visitIntrinsicInst(IntrinsicInst &I) { 2364 switch (I.getIntrinsicID()) { 2365 case llvm::Intrinsic::bswap: 2366 handleBswap(I); 2367 break; 2368 case llvm::Intrinsic::x86_sse_stmxcsr: 2369 handleStmxcsr(I); 2370 break; 2371 case llvm::Intrinsic::x86_sse_ldmxcsr: 2372 handleLdmxcsr(I); 2373 break; 2374 case llvm::Intrinsic::x86_avx512_vcvtsd2usi64: 2375 case llvm::Intrinsic::x86_avx512_vcvtsd2usi32: 2376 case llvm::Intrinsic::x86_avx512_vcvtss2usi64: 2377 case llvm::Intrinsic::x86_avx512_vcvtss2usi32: 2378 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2379 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2380 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2381 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2382 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2383 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2384 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2385 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2386 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2387 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2388 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2389 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2390 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2391 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2392 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2393 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2394 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2395 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2396 case llvm::Intrinsic::x86_sse_cvtss2si64: 2397 case llvm::Intrinsic::x86_sse_cvtss2si: 2398 case llvm::Intrinsic::x86_sse_cvttss2si64: 2399 case llvm::Intrinsic::x86_sse_cvttss2si: 2400 handleVectorConvertIntrinsic(I, 1); 2401 break; 2402 case llvm::Intrinsic::x86_sse_cvtps2pi: 2403 case llvm::Intrinsic::x86_sse_cvttps2pi: 2404 handleVectorConvertIntrinsic(I, 2); 2405 break; 2406 2407 case llvm::Intrinsic::x86_avx512_psll_w_512: 2408 case llvm::Intrinsic::x86_avx512_psll_d_512: 2409 case llvm::Intrinsic::x86_avx512_psll_q_512: 2410 case llvm::Intrinsic::x86_avx512_pslli_w_512: 2411 case llvm::Intrinsic::x86_avx512_pslli_d_512: 2412 case llvm::Intrinsic::x86_avx512_pslli_q_512: 2413 case llvm::Intrinsic::x86_avx512_psrl_w_512: 2414 case llvm::Intrinsic::x86_avx512_psrl_d_512: 2415 case llvm::Intrinsic::x86_avx512_psrl_q_512: 2416 case llvm::Intrinsic::x86_avx512_psra_w_512: 2417 case llvm::Intrinsic::x86_avx512_psra_d_512: 2418 case llvm::Intrinsic::x86_avx512_psra_q_512: 2419 case llvm::Intrinsic::x86_avx512_psrli_w_512: 2420 case llvm::Intrinsic::x86_avx512_psrli_d_512: 2421 case llvm::Intrinsic::x86_avx512_psrli_q_512: 2422 case llvm::Intrinsic::x86_avx512_psrai_w_512: 2423 case llvm::Intrinsic::x86_avx512_psrai_d_512: 2424 case llvm::Intrinsic::x86_avx512_psrai_q_512: 2425 case llvm::Intrinsic::x86_avx512_psra_q_256: 2426 case llvm::Intrinsic::x86_avx512_psra_q_128: 2427 case llvm::Intrinsic::x86_avx512_psrai_q_256: 2428 case llvm::Intrinsic::x86_avx512_psrai_q_128: 2429 case llvm::Intrinsic::x86_avx2_psll_w: 2430 case llvm::Intrinsic::x86_avx2_psll_d: 2431 case llvm::Intrinsic::x86_avx2_psll_q: 2432 case llvm::Intrinsic::x86_avx2_pslli_w: 2433 case llvm::Intrinsic::x86_avx2_pslli_d: 2434 case llvm::Intrinsic::x86_avx2_pslli_q: 2435 case llvm::Intrinsic::x86_avx2_psrl_w: 2436 case llvm::Intrinsic::x86_avx2_psrl_d: 2437 case llvm::Intrinsic::x86_avx2_psrl_q: 2438 case llvm::Intrinsic::x86_avx2_psra_w: 2439 case llvm::Intrinsic::x86_avx2_psra_d: 2440 case llvm::Intrinsic::x86_avx2_psrli_w: 2441 case llvm::Intrinsic::x86_avx2_psrli_d: 2442 case llvm::Intrinsic::x86_avx2_psrli_q: 2443 case llvm::Intrinsic::x86_avx2_psrai_w: 2444 case llvm::Intrinsic::x86_avx2_psrai_d: 2445 case llvm::Intrinsic::x86_sse2_psll_w: 2446 case llvm::Intrinsic::x86_sse2_psll_d: 2447 case llvm::Intrinsic::x86_sse2_psll_q: 2448 case llvm::Intrinsic::x86_sse2_pslli_w: 2449 case llvm::Intrinsic::x86_sse2_pslli_d: 2450 case llvm::Intrinsic::x86_sse2_pslli_q: 2451 case llvm::Intrinsic::x86_sse2_psrl_w: 2452 case llvm::Intrinsic::x86_sse2_psrl_d: 2453 case llvm::Intrinsic::x86_sse2_psrl_q: 2454 case llvm::Intrinsic::x86_sse2_psra_w: 2455 case llvm::Intrinsic::x86_sse2_psra_d: 2456 case llvm::Intrinsic::x86_sse2_psrli_w: 2457 case llvm::Intrinsic::x86_sse2_psrli_d: 2458 case llvm::Intrinsic::x86_sse2_psrli_q: 2459 case llvm::Intrinsic::x86_sse2_psrai_w: 2460 case llvm::Intrinsic::x86_sse2_psrai_d: 2461 case llvm::Intrinsic::x86_mmx_psll_w: 2462 case llvm::Intrinsic::x86_mmx_psll_d: 2463 case llvm::Intrinsic::x86_mmx_psll_q: 2464 case llvm::Intrinsic::x86_mmx_pslli_w: 2465 case llvm::Intrinsic::x86_mmx_pslli_d: 2466 case llvm::Intrinsic::x86_mmx_pslli_q: 2467 case llvm::Intrinsic::x86_mmx_psrl_w: 2468 case llvm::Intrinsic::x86_mmx_psrl_d: 2469 case llvm::Intrinsic::x86_mmx_psrl_q: 2470 case llvm::Intrinsic::x86_mmx_psra_w: 2471 case llvm::Intrinsic::x86_mmx_psra_d: 2472 case llvm::Intrinsic::x86_mmx_psrli_w: 2473 case llvm::Intrinsic::x86_mmx_psrli_d: 2474 case llvm::Intrinsic::x86_mmx_psrli_q: 2475 case llvm::Intrinsic::x86_mmx_psrai_w: 2476 case llvm::Intrinsic::x86_mmx_psrai_d: 2477 handleVectorShiftIntrinsic(I, /* Variable */ false); 2478 break; 2479 case llvm::Intrinsic::x86_avx2_psllv_d: 2480 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2481 case llvm::Intrinsic::x86_avx512_psllv_d_512: 2482 case llvm::Intrinsic::x86_avx2_psllv_q: 2483 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2484 case llvm::Intrinsic::x86_avx512_psllv_q_512: 2485 case llvm::Intrinsic::x86_avx2_psrlv_d: 2486 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2487 case llvm::Intrinsic::x86_avx512_psrlv_d_512: 2488 case llvm::Intrinsic::x86_avx2_psrlv_q: 2489 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2490 case llvm::Intrinsic::x86_avx512_psrlv_q_512: 2491 case llvm::Intrinsic::x86_avx2_psrav_d: 2492 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2493 case llvm::Intrinsic::x86_avx512_psrav_d_512: 2494 case llvm::Intrinsic::x86_avx512_psrav_q_128: 2495 case llvm::Intrinsic::x86_avx512_psrav_q_256: 2496 case llvm::Intrinsic::x86_avx512_psrav_q_512: 2497 handleVectorShiftIntrinsic(I, /* Variable */ true); 2498 break; 2499 2500 case llvm::Intrinsic::x86_sse2_packsswb_128: 2501 case llvm::Intrinsic::x86_sse2_packssdw_128: 2502 case llvm::Intrinsic::x86_sse2_packuswb_128: 2503 case llvm::Intrinsic::x86_sse41_packusdw: 2504 case llvm::Intrinsic::x86_avx2_packsswb: 2505 case llvm::Intrinsic::x86_avx2_packssdw: 2506 case llvm::Intrinsic::x86_avx2_packuswb: 2507 case llvm::Intrinsic::x86_avx2_packusdw: 2508 handleVectorPackIntrinsic(I); 2509 break; 2510 2511 case llvm::Intrinsic::x86_mmx_packsswb: 2512 case llvm::Intrinsic::x86_mmx_packuswb: 2513 handleVectorPackIntrinsic(I, 16); 2514 break; 2515 2516 case llvm::Intrinsic::x86_mmx_packssdw: 2517 handleVectorPackIntrinsic(I, 32); 2518 break; 2519 2520 case llvm::Intrinsic::x86_mmx_psad_bw: 2521 case llvm::Intrinsic::x86_sse2_psad_bw: 2522 case llvm::Intrinsic::x86_avx2_psad_bw: 2523 handleVectorSadIntrinsic(I); 2524 break; 2525 2526 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2527 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2528 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2529 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2530 handleVectorPmaddIntrinsic(I); 2531 break; 2532 2533 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2534 handleVectorPmaddIntrinsic(I, 8); 2535 break; 2536 2537 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2538 handleVectorPmaddIntrinsic(I, 16); 2539 break; 2540 2541 case llvm::Intrinsic::x86_sse_cmp_ss: 2542 case llvm::Intrinsic::x86_sse2_cmp_sd: 2543 case llvm::Intrinsic::x86_sse_comieq_ss: 2544 case llvm::Intrinsic::x86_sse_comilt_ss: 2545 case llvm::Intrinsic::x86_sse_comile_ss: 2546 case llvm::Intrinsic::x86_sse_comigt_ss: 2547 case llvm::Intrinsic::x86_sse_comige_ss: 2548 case llvm::Intrinsic::x86_sse_comineq_ss: 2549 case llvm::Intrinsic::x86_sse_ucomieq_ss: 2550 case llvm::Intrinsic::x86_sse_ucomilt_ss: 2551 case llvm::Intrinsic::x86_sse_ucomile_ss: 2552 case llvm::Intrinsic::x86_sse_ucomigt_ss: 2553 case llvm::Intrinsic::x86_sse_ucomige_ss: 2554 case llvm::Intrinsic::x86_sse_ucomineq_ss: 2555 case llvm::Intrinsic::x86_sse2_comieq_sd: 2556 case llvm::Intrinsic::x86_sse2_comilt_sd: 2557 case llvm::Intrinsic::x86_sse2_comile_sd: 2558 case llvm::Intrinsic::x86_sse2_comigt_sd: 2559 case llvm::Intrinsic::x86_sse2_comige_sd: 2560 case llvm::Intrinsic::x86_sse2_comineq_sd: 2561 case llvm::Intrinsic::x86_sse2_ucomieq_sd: 2562 case llvm::Intrinsic::x86_sse2_ucomilt_sd: 2563 case llvm::Intrinsic::x86_sse2_ucomile_sd: 2564 case llvm::Intrinsic::x86_sse2_ucomigt_sd: 2565 case llvm::Intrinsic::x86_sse2_ucomige_sd: 2566 case llvm::Intrinsic::x86_sse2_ucomineq_sd: 2567 handleVectorCompareScalarIntrinsic(I); 2568 break; 2569 2570 case llvm::Intrinsic::x86_sse_cmp_ps: 2571 case llvm::Intrinsic::x86_sse2_cmp_pd: 2572 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 2573 // generates reasonably looking IR that fails in the backend with "Do not 2574 // know how to split the result of this operator!". 2575 handleVectorComparePackedIntrinsic(I); 2576 break; 2577 2578 default: 2579 if (!handleUnknownIntrinsic(I)) 2580 visitInstruction(I); 2581 break; 2582 } 2583 } 2584 2585 void visitCallSite(CallSite CS) { 2586 Instruction &I = *CS.getInstruction(); 2587 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2588 if (CS.isCall()) { 2589 CallInst *Call = cast<CallInst>(&I); 2590 2591 // For inline asm, do the usual thing: check argument shadow and mark all 2592 // outputs as clean. Note that any side effects of the inline asm that are 2593 // not immediately visible in its constraints are not handled. 2594 if (Call->isInlineAsm()) { 2595 visitInstruction(I); 2596 return; 2597 } 2598 2599 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2600 2601 // We are going to insert code that relies on the fact that the callee 2602 // will become a non-readonly function after it is instrumented by us. To 2603 // prevent this code from being optimized out, mark that function 2604 // non-readonly in advance. 2605 if (Function *Func = Call->getCalledFunction()) { 2606 // Clear out readonly/readnone attributes. 2607 AttrBuilder B; 2608 B.addAttribute(Attribute::ReadOnly) 2609 .addAttribute(Attribute::ReadNone); 2610 Func->removeAttributes(AttributeSet::FunctionIndex, 2611 AttributeSet::get(Func->getContext(), 2612 AttributeSet::FunctionIndex, 2613 B)); 2614 } 2615 2616 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 2617 } 2618 IRBuilder<> IRB(&I); 2619 2620 unsigned ArgOffset = 0; 2621 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2622 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2623 ArgIt != End; ++ArgIt) { 2624 Value *A = *ArgIt; 2625 unsigned i = ArgIt - CS.arg_begin(); 2626 if (!A->getType()->isSized()) { 2627 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2628 continue; 2629 } 2630 unsigned Size = 0; 2631 Value *Store = nullptr; 2632 // Compute the Shadow for arg even if it is ByVal, because 2633 // in that case getShadow() will copy the actual arg shadow to 2634 // __msan_param_tls. 2635 Value *ArgShadow = getShadow(A); 2636 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2637 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2638 " Shadow: " << *ArgShadow << "\n"); 2639 bool ArgIsInitialized = false; 2640 const DataLayout &DL = F.getParent()->getDataLayout(); 2641 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2642 assert(A->getType()->isPointerTy() && 2643 "ByVal argument is not a pointer!"); 2644 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2645 if (ArgOffset + Size > kParamTLSSize) break; 2646 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2647 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2648 Store = IRB.CreateMemCpy(ArgShadowBase, 2649 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2650 Size, Alignment); 2651 } else { 2652 Size = DL.getTypeAllocSize(A->getType()); 2653 if (ArgOffset + Size > kParamTLSSize) break; 2654 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2655 kShadowTLSAlignment); 2656 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2657 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2658 } 2659 if (MS.TrackOrigins && !ArgIsInitialized) 2660 IRB.CreateStore(getOrigin(A), 2661 getOriginPtrForArgument(A, IRB, ArgOffset)); 2662 (void)Store; 2663 assert(Size != 0 && Store != nullptr); 2664 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2665 ArgOffset += alignTo(Size, 8); 2666 } 2667 DEBUG(dbgs() << " done with call args\n"); 2668 2669 FunctionType *FT = 2670 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2671 if (FT->isVarArg()) { 2672 VAHelper->visitCallSite(CS, IRB); 2673 } 2674 2675 // Now, get the shadow for the RetVal. 2676 if (!I.getType()->isSized()) return; 2677 // Don't emit the epilogue for musttail call returns. 2678 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2679 IRBuilder<> IRBBefore(&I); 2680 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2681 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2682 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2683 BasicBlock::iterator NextInsn; 2684 if (CS.isCall()) { 2685 NextInsn = ++I.getIterator(); 2686 assert(NextInsn != I.getParent()->end()); 2687 } else { 2688 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2689 if (!NormalDest->getSinglePredecessor()) { 2690 // FIXME: this case is tricky, so we are just conservative here. 2691 // Perhaps we need to split the edge between this BB and NormalDest, 2692 // but a naive attempt to use SplitEdge leads to a crash. 2693 setShadow(&I, getCleanShadow(&I)); 2694 setOrigin(&I, getCleanOrigin()); 2695 return; 2696 } 2697 NextInsn = NormalDest->getFirstInsertionPt(); 2698 assert(NextInsn != NormalDest->end() && 2699 "Could not find insertion point for retval shadow load"); 2700 } 2701 IRBuilder<> IRBAfter(&*NextInsn); 2702 Value *RetvalShadow = 2703 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2704 kShadowTLSAlignment, "_msret"); 2705 setShadow(&I, RetvalShadow); 2706 if (MS.TrackOrigins) 2707 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2708 } 2709 2710 bool isAMustTailRetVal(Value *RetVal) { 2711 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2712 RetVal = I->getOperand(0); 2713 } 2714 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2715 return I->isMustTailCall(); 2716 } 2717 return false; 2718 } 2719 2720 void visitReturnInst(ReturnInst &I) { 2721 IRBuilder<> IRB(&I); 2722 Value *RetVal = I.getReturnValue(); 2723 if (!RetVal) return; 2724 // Don't emit the epilogue for musttail call returns. 2725 if (isAMustTailRetVal(RetVal)) return; 2726 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2727 if (CheckReturnValue) { 2728 insertShadowCheck(RetVal, &I); 2729 Value *Shadow = getCleanShadow(RetVal); 2730 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2731 } else { 2732 Value *Shadow = getShadow(RetVal); 2733 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2734 if (MS.TrackOrigins) 2735 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2736 } 2737 } 2738 2739 void visitPHINode(PHINode &I) { 2740 IRBuilder<> IRB(&I); 2741 if (!PropagateShadow) { 2742 setShadow(&I, getCleanShadow(&I)); 2743 setOrigin(&I, getCleanOrigin()); 2744 return; 2745 } 2746 2747 ShadowPHINodes.push_back(&I); 2748 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2749 "_msphi_s")); 2750 if (MS.TrackOrigins) 2751 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2752 "_msphi_o")); 2753 } 2754 2755 void visitAllocaInst(AllocaInst &I) { 2756 setShadow(&I, getCleanShadow(&I)); 2757 setOrigin(&I, getCleanOrigin()); 2758 IRBuilder<> IRB(I.getNextNode()); 2759 const DataLayout &DL = F.getParent()->getDataLayout(); 2760 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 2761 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 2762 if (I.isArrayAllocation()) 2763 Len = IRB.CreateMul(Len, I.getArraySize()); 2764 if (PoisonStack && ClPoisonStackWithCall) { 2765 IRB.CreateCall(MS.MsanPoisonStackFn, 2766 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 2767 } else { 2768 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2769 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2770 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); 2771 } 2772 2773 if (PoisonStack && MS.TrackOrigins) { 2774 SmallString<2048> StackDescriptionStorage; 2775 raw_svector_ostream StackDescription(StackDescriptionStorage); 2776 // We create a string with a description of the stack allocation and 2777 // pass it into __msan_set_alloca_origin. 2778 // It will be printed by the run-time if stack-originated UMR is found. 2779 // The first 4 bytes of the string are set to '----' and will be replaced 2780 // by __msan_va_arg_overflow_size_tls at the first call. 2781 StackDescription << "----" << I.getName() << "@" << F.getName(); 2782 Value *Descr = 2783 createPrivateNonConstGlobalForString(*F.getParent(), 2784 StackDescription.str()); 2785 2786 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2787 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 2788 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2789 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2790 } 2791 } 2792 2793 void visitSelectInst(SelectInst& I) { 2794 IRBuilder<> IRB(&I); 2795 // a = select b, c, d 2796 Value *B = I.getCondition(); 2797 Value *C = I.getTrueValue(); 2798 Value *D = I.getFalseValue(); 2799 Value *Sb = getShadow(B); 2800 Value *Sc = getShadow(C); 2801 Value *Sd = getShadow(D); 2802 2803 // Result shadow if condition shadow is 0. 2804 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2805 Value *Sa1; 2806 if (I.getType()->isAggregateType()) { 2807 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2808 // an extra "select". This results in much more compact IR. 2809 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2810 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2811 } else { 2812 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2813 // If Sb (condition is poisoned), look for bits in c and d that are equal 2814 // and both unpoisoned. 2815 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2816 2817 // Cast arguments to shadow-compatible type. 2818 C = CreateAppToShadowCast(IRB, C); 2819 D = CreateAppToShadowCast(IRB, D); 2820 2821 // Result shadow if condition shadow is 1. 2822 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2823 } 2824 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2825 setShadow(&I, Sa); 2826 if (MS.TrackOrigins) { 2827 // Origins are always i32, so any vector conditions must be flattened. 2828 // FIXME: consider tracking vector origins for app vectors? 2829 if (B->getType()->isVectorTy()) { 2830 Type *FlatTy = getShadowTyNoVec(B->getType()); 2831 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2832 ConstantInt::getNullValue(FlatTy)); 2833 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2834 ConstantInt::getNullValue(FlatTy)); 2835 } 2836 // a = select b, c, d 2837 // Oa = Sb ? Ob : (b ? Oc : Od) 2838 setOrigin( 2839 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2840 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2841 getOrigin(I.getFalseValue())))); 2842 } 2843 } 2844 2845 void visitLandingPadInst(LandingPadInst &I) { 2846 // Do nothing. 2847 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2848 setShadow(&I, getCleanShadow(&I)); 2849 setOrigin(&I, getCleanOrigin()); 2850 } 2851 2852 void visitCatchSwitchInst(CatchSwitchInst &I) { 2853 setShadow(&I, getCleanShadow(&I)); 2854 setOrigin(&I, getCleanOrigin()); 2855 } 2856 2857 void visitFuncletPadInst(FuncletPadInst &I) { 2858 setShadow(&I, getCleanShadow(&I)); 2859 setOrigin(&I, getCleanOrigin()); 2860 } 2861 2862 void visitGetElementPtrInst(GetElementPtrInst &I) { 2863 handleShadowOr(I); 2864 } 2865 2866 void visitExtractValueInst(ExtractValueInst &I) { 2867 IRBuilder<> IRB(&I); 2868 Value *Agg = I.getAggregateOperand(); 2869 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2870 Value *AggShadow = getShadow(Agg); 2871 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2872 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2873 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2874 setShadow(&I, ResShadow); 2875 setOriginForNaryOp(I); 2876 } 2877 2878 void visitInsertValueInst(InsertValueInst &I) { 2879 IRBuilder<> IRB(&I); 2880 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2881 Value *AggShadow = getShadow(I.getAggregateOperand()); 2882 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2883 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2884 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2885 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2886 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2887 setShadow(&I, Res); 2888 setOriginForNaryOp(I); 2889 } 2890 2891 void dumpInst(Instruction &I) { 2892 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2893 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2894 } else { 2895 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2896 } 2897 errs() << "QQQ " << I << "\n"; 2898 } 2899 2900 void visitResumeInst(ResumeInst &I) { 2901 DEBUG(dbgs() << "Resume: " << I << "\n"); 2902 // Nothing to do here. 2903 } 2904 2905 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2906 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2907 // Nothing to do here. 2908 } 2909 2910 void visitCatchReturnInst(CatchReturnInst &CRI) { 2911 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2912 // Nothing to do here. 2913 } 2914 2915 void visitInstruction(Instruction &I) { 2916 // Everything else: stop propagating and check for poisoned shadow. 2917 if (ClDumpStrictInstructions) 2918 dumpInst(I); 2919 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2920 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2921 insertShadowCheck(I.getOperand(i), &I); 2922 setShadow(&I, getCleanShadow(&I)); 2923 setOrigin(&I, getCleanOrigin()); 2924 } 2925 }; 2926 2927 /// \brief AMD64-specific implementation of VarArgHelper. 2928 struct VarArgAMD64Helper : public VarArgHelper { 2929 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2930 // See a comment in visitCallSite for more details. 2931 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2932 static const unsigned AMD64FpEndOffset = 176; 2933 2934 Function &F; 2935 MemorySanitizer &MS; 2936 MemorySanitizerVisitor &MSV; 2937 Value *VAArgTLSCopy; 2938 Value *VAArgOverflowSize; 2939 2940 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2941 2942 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2943 MemorySanitizerVisitor &MSV) 2944 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2945 VAArgOverflowSize(nullptr) {} 2946 2947 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2948 2949 ArgKind classifyArgument(Value* arg) { 2950 // A very rough approximation of X86_64 argument classification rules. 2951 Type *T = arg->getType(); 2952 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2953 return AK_FloatingPoint; 2954 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2955 return AK_GeneralPurpose; 2956 if (T->isPointerTy()) 2957 return AK_GeneralPurpose; 2958 return AK_Memory; 2959 } 2960 2961 // For VarArg functions, store the argument shadow in an ABI-specific format 2962 // that corresponds to va_list layout. 2963 // We do this because Clang lowers va_arg in the frontend, and this pass 2964 // only sees the low level code that deals with va_list internals. 2965 // A much easier alternative (provided that Clang emits va_arg instructions) 2966 // would have been to associate each live instance of va_list with a copy of 2967 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2968 // order. 2969 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2970 unsigned GpOffset = 0; 2971 unsigned FpOffset = AMD64GpEndOffset; 2972 unsigned OverflowOffset = AMD64FpEndOffset; 2973 const DataLayout &DL = F.getParent()->getDataLayout(); 2974 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2975 ArgIt != End; ++ArgIt) { 2976 Value *A = *ArgIt; 2977 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2978 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 2979 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2980 if (IsByVal) { 2981 // ByVal arguments always go to the overflow area. 2982 // Fixed arguments passed through the overflow area will be stepped 2983 // over by va_start, so don't count them towards the offset. 2984 if (IsFixed) 2985 continue; 2986 assert(A->getType()->isPointerTy()); 2987 Type *RealTy = A->getType()->getPointerElementType(); 2988 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2989 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2990 OverflowOffset += alignTo(ArgSize, 8); 2991 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2992 ArgSize, kShadowTLSAlignment); 2993 } else { 2994 ArgKind AK = classifyArgument(A); 2995 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2996 AK = AK_Memory; 2997 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2998 AK = AK_Memory; 2999 Value *Base; 3000 switch (AK) { 3001 case AK_GeneralPurpose: 3002 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 3003 GpOffset += 8; 3004 break; 3005 case AK_FloatingPoint: 3006 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 3007 FpOffset += 16; 3008 break; 3009 case AK_Memory: 3010 if (IsFixed) 3011 continue; 3012 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3013 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3014 OverflowOffset += alignTo(ArgSize, 8); 3015 } 3016 // Take fixed arguments into account for GpOffset and FpOffset, 3017 // but don't actually store shadows for them. 3018 if (IsFixed) 3019 continue; 3020 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3021 } 3022 } 3023 Constant *OverflowSize = 3024 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3025 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3026 } 3027 3028 /// \brief Compute the shadow address for a given va_arg. 3029 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3030 int ArgOffset) { 3031 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3032 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3033 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3034 "_msarg"); 3035 } 3036 3037 void visitVAStartInst(VAStartInst &I) override { 3038 if (F.getCallingConv() == CallingConv::X86_64_Win64) 3039 return; 3040 IRBuilder<> IRB(&I); 3041 VAStartInstrumentationList.push_back(&I); 3042 Value *VAListTag = I.getArgOperand(0); 3043 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3044 3045 // Unpoison the whole __va_list_tag. 3046 // FIXME: magic ABI constants. 3047 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3048 /* size */24, /* alignment */8, false); 3049 } 3050 3051 void visitVACopyInst(VACopyInst &I) override { 3052 if (F.getCallingConv() == CallingConv::X86_64_Win64) 3053 return; 3054 IRBuilder<> IRB(&I); 3055 Value *VAListTag = I.getArgOperand(0); 3056 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3057 3058 // Unpoison the whole __va_list_tag. 3059 // FIXME: magic ABI constants. 3060 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3061 /* size */24, /* alignment */8, false); 3062 } 3063 3064 void finalizeInstrumentation() override { 3065 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3066 "finalizeInstrumentation called twice"); 3067 if (!VAStartInstrumentationList.empty()) { 3068 // If there is a va_start in this function, make a backup copy of 3069 // va_arg_tls somewhere in the function entry block. 3070 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3071 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3072 Value *CopySize = 3073 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3074 VAArgOverflowSize); 3075 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3076 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3077 } 3078 3079 // Instrument va_start. 3080 // Copy va_list shadow from the backup copy of the TLS contents. 3081 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3082 CallInst *OrigInst = VAStartInstrumentationList[i]; 3083 IRBuilder<> IRB(OrigInst->getNextNode()); 3084 Value *VAListTag = OrigInst->getArgOperand(0); 3085 3086 Value *RegSaveAreaPtrPtr = 3087 IRB.CreateIntToPtr( 3088 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3089 ConstantInt::get(MS.IntptrTy, 16)), 3090 Type::getInt64PtrTy(*MS.C)); 3091 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3092 Value *RegSaveAreaShadowPtr = 3093 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3094 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 3095 AMD64FpEndOffset, 16); 3096 3097 Value *OverflowArgAreaPtrPtr = 3098 IRB.CreateIntToPtr( 3099 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3100 ConstantInt::get(MS.IntptrTy, 8)), 3101 Type::getInt64PtrTy(*MS.C)); 3102 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3103 Value *OverflowArgAreaShadowPtr = 3104 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 3105 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3106 AMD64FpEndOffset); 3107 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 3108 } 3109 } 3110 }; 3111 3112 /// \brief MIPS64-specific implementation of VarArgHelper. 3113 struct VarArgMIPS64Helper : public VarArgHelper { 3114 Function &F; 3115 MemorySanitizer &MS; 3116 MemorySanitizerVisitor &MSV; 3117 Value *VAArgTLSCopy; 3118 Value *VAArgSize; 3119 3120 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3121 3122 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3123 MemorySanitizerVisitor &MSV) 3124 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3125 VAArgSize(nullptr) {} 3126 3127 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3128 unsigned VAArgOffset = 0; 3129 const DataLayout &DL = F.getParent()->getDataLayout(); 3130 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3131 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3132 ArgIt != End; ++ArgIt) { 3133 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3134 Value *A = *ArgIt; 3135 Value *Base; 3136 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3137 if (TargetTriple.getArch() == llvm::Triple::mips64) { 3138 // Adjusting the shadow for argument with size < 8 to match the placement 3139 // of bits in big endian system 3140 if (ArgSize < 8) 3141 VAArgOffset += (8 - ArgSize); 3142 } 3143 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 3144 VAArgOffset += ArgSize; 3145 VAArgOffset = alignTo(VAArgOffset, 8); 3146 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3147 } 3148 3149 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3150 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3151 // a new class member i.e. it is the total size of all VarArgs. 3152 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3153 } 3154 3155 /// \brief Compute the shadow address for a given va_arg. 3156 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3157 int ArgOffset) { 3158 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3159 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3160 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3161 "_msarg"); 3162 } 3163 3164 void visitVAStartInst(VAStartInst &I) override { 3165 IRBuilder<> IRB(&I); 3166 VAStartInstrumentationList.push_back(&I); 3167 Value *VAListTag = I.getArgOperand(0); 3168 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3169 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3170 /* size */8, /* alignment */8, false); 3171 } 3172 3173 void visitVACopyInst(VACopyInst &I) override { 3174 IRBuilder<> IRB(&I); 3175 Value *VAListTag = I.getArgOperand(0); 3176 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3177 // Unpoison the whole __va_list_tag. 3178 // FIXME: magic ABI constants. 3179 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3180 /* size */8, /* alignment */8, false); 3181 } 3182 3183 void finalizeInstrumentation() override { 3184 assert(!VAArgSize && !VAArgTLSCopy && 3185 "finalizeInstrumentation called twice"); 3186 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3187 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3188 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3189 VAArgSize); 3190 3191 if (!VAStartInstrumentationList.empty()) { 3192 // If there is a va_start in this function, make a backup copy of 3193 // va_arg_tls somewhere in the function entry block. 3194 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3195 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3196 } 3197 3198 // Instrument va_start. 3199 // Copy va_list shadow from the backup copy of the TLS contents. 3200 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3201 CallInst *OrigInst = VAStartInstrumentationList[i]; 3202 IRBuilder<> IRB(OrigInst->getNextNode()); 3203 Value *VAListTag = OrigInst->getArgOperand(0); 3204 Value *RegSaveAreaPtrPtr = 3205 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3206 Type::getInt64PtrTy(*MS.C)); 3207 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3208 Value *RegSaveAreaShadowPtr = 3209 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3210 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3211 } 3212 } 3213 }; 3214 3215 3216 /// \brief AArch64-specific implementation of VarArgHelper. 3217 struct VarArgAArch64Helper : public VarArgHelper { 3218 static const unsigned kAArch64GrArgSize = 64; 3219 static const unsigned kAArch64VrArgSize = 128; 3220 3221 static const unsigned AArch64GrBegOffset = 0; 3222 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3223 // Make VR space aligned to 16 bytes. 3224 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 3225 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3226 + kAArch64VrArgSize; 3227 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3228 3229 Function &F; 3230 MemorySanitizer &MS; 3231 MemorySanitizerVisitor &MSV; 3232 Value *VAArgTLSCopy; 3233 Value *VAArgOverflowSize; 3234 3235 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3236 3237 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3238 MemorySanitizerVisitor &MSV) 3239 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3240 VAArgOverflowSize(nullptr) {} 3241 3242 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3243 3244 ArgKind classifyArgument(Value* arg) { 3245 Type *T = arg->getType(); 3246 if (T->isFPOrFPVectorTy()) 3247 return AK_FloatingPoint; 3248 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3249 || (T->isPointerTy())) 3250 return AK_GeneralPurpose; 3251 return AK_Memory; 3252 } 3253 3254 // The instrumentation stores the argument shadow in a non ABI-specific 3255 // format because it does not know which argument is named (since Clang, 3256 // like x86_64 case, lowers the va_args in the frontend and this pass only 3257 // sees the low level code that deals with va_list internals). 3258 // The first seven GR registers are saved in the first 56 bytes of the 3259 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3260 // the remaining arguments. 3261 // Using constant offset within the va_arg TLS array allows fast copy 3262 // in the finalize instrumentation. 3263 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3264 unsigned GrOffset = AArch64GrBegOffset; 3265 unsigned VrOffset = AArch64VrBegOffset; 3266 unsigned OverflowOffset = AArch64VAEndOffset; 3267 3268 const DataLayout &DL = F.getParent()->getDataLayout(); 3269 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3270 ArgIt != End; ++ArgIt) { 3271 Value *A = *ArgIt; 3272 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3273 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3274 ArgKind AK = classifyArgument(A); 3275 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3276 AK = AK_Memory; 3277 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3278 AK = AK_Memory; 3279 Value *Base; 3280 switch (AK) { 3281 case AK_GeneralPurpose: 3282 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3283 GrOffset += 8; 3284 break; 3285 case AK_FloatingPoint: 3286 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3287 VrOffset += 16; 3288 break; 3289 case AK_Memory: 3290 // Don't count fixed arguments in the overflow area - va_start will 3291 // skip right over them. 3292 if (IsFixed) 3293 continue; 3294 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3295 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3296 OverflowOffset += alignTo(ArgSize, 8); 3297 break; 3298 } 3299 // Count Gp/Vr fixed arguments to their respective offsets, but don't 3300 // bother to actually store a shadow. 3301 if (IsFixed) 3302 continue; 3303 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3304 } 3305 Constant *OverflowSize = 3306 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3307 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3308 } 3309 3310 /// Compute the shadow address for a given va_arg. 3311 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3312 int ArgOffset) { 3313 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3314 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3315 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3316 "_msarg"); 3317 } 3318 3319 void visitVAStartInst(VAStartInst &I) override { 3320 IRBuilder<> IRB(&I); 3321 VAStartInstrumentationList.push_back(&I); 3322 Value *VAListTag = I.getArgOperand(0); 3323 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3324 // Unpoison the whole __va_list_tag. 3325 // FIXME: magic ABI constants (size of va_list). 3326 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3327 /* size */32, /* alignment */8, false); 3328 } 3329 3330 void visitVACopyInst(VACopyInst &I) override { 3331 IRBuilder<> IRB(&I); 3332 Value *VAListTag = I.getArgOperand(0); 3333 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3334 // Unpoison the whole __va_list_tag. 3335 // FIXME: magic ABI constants (size of va_list). 3336 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3337 /* size */32, /* alignment */8, false); 3338 } 3339 3340 // Retrieve a va_list field of 'void*' size. 3341 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3342 Value *SaveAreaPtrPtr = 3343 IRB.CreateIntToPtr( 3344 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3345 ConstantInt::get(MS.IntptrTy, offset)), 3346 Type::getInt64PtrTy(*MS.C)); 3347 return IRB.CreateLoad(SaveAreaPtrPtr); 3348 } 3349 3350 // Retrieve a va_list field of 'int' size. 3351 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3352 Value *SaveAreaPtr = 3353 IRB.CreateIntToPtr( 3354 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3355 ConstantInt::get(MS.IntptrTy, offset)), 3356 Type::getInt32PtrTy(*MS.C)); 3357 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3358 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3359 } 3360 3361 void finalizeInstrumentation() override { 3362 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3363 "finalizeInstrumentation called twice"); 3364 if (!VAStartInstrumentationList.empty()) { 3365 // If there is a va_start in this function, make a backup copy of 3366 // va_arg_tls somewhere in the function entry block. 3367 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3368 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3369 Value *CopySize = 3370 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3371 VAArgOverflowSize); 3372 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3373 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3374 } 3375 3376 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3377 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3378 3379 // Instrument va_start, copy va_list shadow from the backup copy of 3380 // the TLS contents. 3381 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3382 CallInst *OrigInst = VAStartInstrumentationList[i]; 3383 IRBuilder<> IRB(OrigInst->getNextNode()); 3384 3385 Value *VAListTag = OrigInst->getArgOperand(0); 3386 3387 // The variadic ABI for AArch64 creates two areas to save the incoming 3388 // argument registers (one for 64-bit general register xn-x7 and another 3389 // for 128-bit FP/SIMD vn-v7). 3390 // We need then to propagate the shadow arguments on both regions 3391 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3392 // The remaning arguments are saved on shadow for 'va::stack'. 3393 // One caveat is it requires only to propagate the non-named arguments, 3394 // however on the call site instrumentation 'all' the arguments are 3395 // saved. So to copy the shadow values from the va_arg TLS array 3396 // we need to adjust the offset for both GR and VR fields based on 3397 // the __{gr,vr}_offs value (since they are stores based on incoming 3398 // named arguments). 3399 3400 // Read the stack pointer from the va_list. 3401 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3402 3403 // Read both the __gr_top and __gr_off and add them up. 3404 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3405 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3406 3407 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3408 3409 // Read both the __vr_top and __vr_off and add them up. 3410 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3411 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3412 3413 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3414 3415 // It does not know how many named arguments is being used and, on the 3416 // callsite all the arguments were saved. Since __gr_off is defined as 3417 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3418 // argument by ignoring the bytes of shadow from named arguments. 3419 Value *GrRegSaveAreaShadowPtrOff = 3420 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3421 3422 Value *GrRegSaveAreaShadowPtr = 3423 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3424 3425 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3426 GrRegSaveAreaShadowPtrOff); 3427 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3428 3429 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3430 3431 // Again, but for FP/SIMD values. 3432 Value *VrRegSaveAreaShadowPtrOff = 3433 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3434 3435 Value *VrRegSaveAreaShadowPtr = 3436 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3437 3438 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3439 IRB.getInt8Ty(), 3440 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3441 IRB.getInt32(AArch64VrBegOffset)), 3442 VrRegSaveAreaShadowPtrOff); 3443 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3444 3445 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3446 3447 // And finally for remaining arguments. 3448 Value *StackSaveAreaShadowPtr = 3449 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3450 3451 Value *StackSrcPtr = 3452 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3453 IRB.getInt32(AArch64VAEndOffset)); 3454 3455 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3456 VAArgOverflowSize, 16); 3457 } 3458 } 3459 }; 3460 3461 /// \brief PowerPC64-specific implementation of VarArgHelper. 3462 struct VarArgPowerPC64Helper : public VarArgHelper { 3463 Function &F; 3464 MemorySanitizer &MS; 3465 MemorySanitizerVisitor &MSV; 3466 Value *VAArgTLSCopy; 3467 Value *VAArgSize; 3468 3469 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3470 3471 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 3472 MemorySanitizerVisitor &MSV) 3473 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3474 VAArgSize(nullptr) {} 3475 3476 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3477 // For PowerPC, we need to deal with alignment of stack arguments - 3478 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 3479 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 3480 // and QPX vectors are aligned to 32 bytes. For that reason, we 3481 // compute current offset from stack pointer (which is always properly 3482 // aligned), and offset for the first vararg, then subtract them. 3483 unsigned VAArgBase; 3484 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3485 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 3486 // and 32 bytes for ABIv2. This is usually determined by target 3487 // endianness, but in theory could be overriden by function attribute. 3488 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 3489 if (TargetTriple.getArch() == llvm::Triple::ppc64) 3490 VAArgBase = 48; 3491 else 3492 VAArgBase = 32; 3493 unsigned VAArgOffset = VAArgBase; 3494 const DataLayout &DL = F.getParent()->getDataLayout(); 3495 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3496 ArgIt != End; ++ArgIt) { 3497 Value *A = *ArgIt; 3498 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3499 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3500 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 3501 if (IsByVal) { 3502 assert(A->getType()->isPointerTy()); 3503 Type *RealTy = A->getType()->getPointerElementType(); 3504 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3505 uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1); 3506 if (ArgAlign < 8) 3507 ArgAlign = 8; 3508 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3509 if (!IsFixed) { 3510 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, 3511 VAArgOffset - VAArgBase); 3512 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 3513 ArgSize, kShadowTLSAlignment); 3514 } 3515 VAArgOffset += alignTo(ArgSize, 8); 3516 } else { 3517 Value *Base; 3518 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3519 uint64_t ArgAlign = 8; 3520 if (A->getType()->isArrayTy()) { 3521 // Arrays are aligned to element size, except for long double 3522 // arrays, which are aligned to 8 bytes. 3523 Type *ElementTy = A->getType()->getArrayElementType(); 3524 if (!ElementTy->isPPC_FP128Ty()) 3525 ArgAlign = DL.getTypeAllocSize(ElementTy); 3526 } else if (A->getType()->isVectorTy()) { 3527 // Vectors are naturally aligned. 3528 ArgAlign = DL.getTypeAllocSize(A->getType()); 3529 } 3530 if (ArgAlign < 8) 3531 ArgAlign = 8; 3532 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3533 if (DL.isBigEndian()) { 3534 // Adjusting the shadow for argument with size < 8 to match the placement 3535 // of bits in big endian system 3536 if (ArgSize < 8) 3537 VAArgOffset += (8 - ArgSize); 3538 } 3539 if (!IsFixed) { 3540 Base = getShadowPtrForVAArgument(A->getType(), IRB, 3541 VAArgOffset - VAArgBase); 3542 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3543 } 3544 VAArgOffset += ArgSize; 3545 VAArgOffset = alignTo(VAArgOffset, 8); 3546 } 3547 if (IsFixed) 3548 VAArgBase = VAArgOffset; 3549 } 3550 3551 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 3552 VAArgOffset - VAArgBase); 3553 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3554 // a new class member i.e. it is the total size of all VarArgs. 3555 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3556 } 3557 3558 /// \brief Compute the shadow address for a given va_arg. 3559 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3560 int ArgOffset) { 3561 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3562 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3563 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3564 "_msarg"); 3565 } 3566 3567 void visitVAStartInst(VAStartInst &I) override { 3568 IRBuilder<> IRB(&I); 3569 VAStartInstrumentationList.push_back(&I); 3570 Value *VAListTag = I.getArgOperand(0); 3571 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3572 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3573 /* size */8, /* alignment */8, false); 3574 } 3575 3576 void visitVACopyInst(VACopyInst &I) override { 3577 IRBuilder<> IRB(&I); 3578 Value *VAListTag = I.getArgOperand(0); 3579 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3580 // Unpoison the whole __va_list_tag. 3581 // FIXME: magic ABI constants. 3582 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3583 /* size */8, /* alignment */8, false); 3584 } 3585 3586 void finalizeInstrumentation() override { 3587 assert(!VAArgSize && !VAArgTLSCopy && 3588 "finalizeInstrumentation called twice"); 3589 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3590 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3591 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3592 VAArgSize); 3593 3594 if (!VAStartInstrumentationList.empty()) { 3595 // If there is a va_start in this function, make a backup copy of 3596 // va_arg_tls somewhere in the function entry block. 3597 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3598 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3599 } 3600 3601 // Instrument va_start. 3602 // Copy va_list shadow from the backup copy of the TLS contents. 3603 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3604 CallInst *OrigInst = VAStartInstrumentationList[i]; 3605 IRBuilder<> IRB(OrigInst->getNextNode()); 3606 Value *VAListTag = OrigInst->getArgOperand(0); 3607 Value *RegSaveAreaPtrPtr = 3608 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3609 Type::getInt64PtrTy(*MS.C)); 3610 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3611 Value *RegSaveAreaShadowPtr = 3612 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3613 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3614 } 3615 } 3616 }; 3617 3618 /// \brief A no-op implementation of VarArgHelper. 3619 struct VarArgNoOpHelper : public VarArgHelper { 3620 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3621 MemorySanitizerVisitor &MSV) {} 3622 3623 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3624 3625 void visitVAStartInst(VAStartInst &I) override {} 3626 3627 void visitVACopyInst(VACopyInst &I) override {} 3628 3629 void finalizeInstrumentation() override {} 3630 }; 3631 3632 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3633 MemorySanitizerVisitor &Visitor) { 3634 // VarArg handling is only implemented on AMD64. False positives are possible 3635 // on other platforms. 3636 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3637 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3638 return new VarArgAMD64Helper(Func, Msan, Visitor); 3639 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3640 TargetTriple.getArch() == llvm::Triple::mips64el) 3641 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3642 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3643 return new VarArgAArch64Helper(Func, Msan, Visitor); 3644 else if (TargetTriple.getArch() == llvm::Triple::ppc64 || 3645 TargetTriple.getArch() == llvm::Triple::ppc64le) 3646 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 3647 else 3648 return new VarArgNoOpHelper(Func, Msan, Visitor); 3649 } 3650 3651 } // anonymous namespace 3652 3653 bool MemorySanitizer::runOnFunction(Function &F) { 3654 if (&F == MsanCtorFunction) 3655 return false; 3656 MemorySanitizerVisitor Visitor(F, *this); 3657 3658 // Clear out readonly/readnone attributes. 3659 AttrBuilder B; 3660 B.addAttribute(Attribute::ReadOnly) 3661 .addAttribute(Attribute::ReadNone); 3662 F.removeAttributes(AttributeSet::FunctionIndex, 3663 AttributeSet::get(F.getContext(), 3664 AttributeSet::FunctionIndex, B)); 3665 3666 return Visitor.runOnFunction(); 3667 } 3668