1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/ProfileData/InstrProf.h" 45 #include "llvm/ProfileData/InstrProfCorrelator.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Error.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/ModuleUtils.h" 52 #include "llvm/Transforms/Utils/SSAUpdater.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstddef> 56 #include <cstdint> 57 #include <string> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "instrprof" 62 63 namespace llvm { 64 cl::opt<bool> 65 DebugInfoCorrelate("debug-info-correlate", cl::ZeroOrMore, 66 cl::desc("Use debug info to correlate profiles."), 67 cl::init(false)); 68 } // namespace llvm 69 70 namespace { 71 72 cl::opt<bool> DoHashBasedCounterSplit( 73 "hash-based-counter-split", 74 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 75 cl::init(true)); 76 77 cl::opt<bool> 78 RuntimeCounterRelocation("runtime-counter-relocation", 79 cl::desc("Enable relocating counters at runtime."), 80 cl::init(false)); 81 82 cl::opt<bool> ValueProfileStaticAlloc( 83 "vp-static-alloc", 84 cl::desc("Do static counter allocation for value profiler"), 85 cl::init(true)); 86 87 cl::opt<double> NumCountersPerValueSite( 88 "vp-counters-per-site", 89 cl::desc("The average number of profile counters allocated " 90 "per value profiling site."), 91 // This is set to a very small value because in real programs, only 92 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 93 // For those sites with non-zero profile, the average number of targets 94 // is usually smaller than 2. 95 cl::init(1.0)); 96 97 cl::opt<bool> AtomicCounterUpdateAll( 98 "instrprof-atomic-counter-update-all", cl::ZeroOrMore, 99 cl::desc("Make all profile counter updates atomic (for testing only)"), 100 cl::init(false)); 101 102 cl::opt<bool> AtomicCounterUpdatePromoted( 103 "atomic-counter-update-promoted", cl::ZeroOrMore, 104 cl::desc("Do counter update using atomic fetch add " 105 " for promoted counters only"), 106 cl::init(false)); 107 108 cl::opt<bool> AtomicFirstCounter( 109 "atomic-first-counter", cl::ZeroOrMore, 110 cl::desc("Use atomic fetch add for first counter in a function (usually " 111 "the entry counter)"), 112 cl::init(false)); 113 114 // If the option is not specified, the default behavior about whether 115 // counter promotion is done depends on how instrumentaiton lowering 116 // pipeline is setup, i.e., the default value of true of this option 117 // does not mean the promotion will be done by default. Explicitly 118 // setting this option can override the default behavior. 119 cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore, 120 cl::desc("Do counter register promotion"), 121 cl::init(false)); 122 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 123 cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20), 124 cl::desc("Max number counter promotions per loop to avoid" 125 " increasing register pressure too much")); 126 127 // A debug option 128 cl::opt<int> 129 MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1), 130 cl::desc("Max number of allowed counter promotions")); 131 132 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 133 cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3), 134 cl::desc("The max number of exiting blocks of a loop to allow " 135 " speculative counter promotion")); 136 137 cl::opt<bool> SpeculativeCounterPromotionToLoop( 138 cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false), 139 cl::desc("When the option is false, if the target block is in a loop, " 140 "the promotion will be disallowed unless the promoted counter " 141 " update can be further/iteratively promoted into an acyclic " 142 " region.")); 143 144 cl::opt<bool> IterativeCounterPromotion( 145 cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true), 146 cl::desc("Allow counter promotion across the whole loop nest.")); 147 148 cl::opt<bool> SkipRetExitBlock( 149 cl::ZeroOrMore, "skip-ret-exit-block", cl::init(true), 150 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 151 152 class InstrProfilingLegacyPass : public ModulePass { 153 InstrProfiling InstrProf; 154 155 public: 156 static char ID; 157 158 InstrProfilingLegacyPass() : ModulePass(ID) {} 159 InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false) 160 : ModulePass(ID), InstrProf(Options, IsCS) { 161 initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry()); 162 } 163 164 StringRef getPassName() const override { 165 return "Frontend instrumentation-based coverage lowering"; 166 } 167 168 bool runOnModule(Module &M) override { 169 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 170 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 171 }; 172 return InstrProf.run(M, GetTLI); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.setPreservesCFG(); 177 AU.addRequired<TargetLibraryInfoWrapperPass>(); 178 } 179 }; 180 181 /// 182 /// A helper class to promote one counter RMW operation in the loop 183 /// into register update. 184 /// 185 /// RWM update for the counter will be sinked out of the loop after 186 /// the transformation. 187 /// 188 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 189 public: 190 PGOCounterPromoterHelper( 191 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 192 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 193 ArrayRef<Instruction *> InsertPts, 194 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 195 LoopInfo &LI) 196 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 197 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 198 assert(isa<LoadInst>(L)); 199 assert(isa<StoreInst>(S)); 200 SSA.AddAvailableValue(PH, Init); 201 } 202 203 void doExtraRewritesBeforeFinalDeletion() override { 204 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 205 BasicBlock *ExitBlock = ExitBlocks[i]; 206 Instruction *InsertPos = InsertPts[i]; 207 // Get LiveIn value into the ExitBlock. If there are multiple 208 // predecessors, the value is defined by a PHI node in this 209 // block. 210 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 211 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 212 Type *Ty = LiveInValue->getType(); 213 IRBuilder<> Builder(InsertPos); 214 if (AtomicCounterUpdatePromoted) 215 // automic update currently can only be promoted across the current 216 // loop, not the whole loop nest. 217 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 218 MaybeAlign(), 219 AtomicOrdering::SequentiallyConsistent); 220 else { 221 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 222 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 223 auto *NewStore = Builder.CreateStore(NewVal, Addr); 224 225 // Now update the parent loop's candidate list: 226 if (IterativeCounterPromotion) { 227 auto *TargetLoop = LI.getLoopFor(ExitBlock); 228 if (TargetLoop) 229 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 230 } 231 } 232 } 233 } 234 235 private: 236 Instruction *Store; 237 ArrayRef<BasicBlock *> ExitBlocks; 238 ArrayRef<Instruction *> InsertPts; 239 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 240 LoopInfo &LI; 241 }; 242 243 /// A helper class to do register promotion for all profile counter 244 /// updates in a loop. 245 /// 246 class PGOCounterPromoter { 247 public: 248 PGOCounterPromoter( 249 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 250 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 251 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) { 252 253 // Skip collection of ExitBlocks and InsertPts for loops that will not be 254 // able to have counters promoted. 255 SmallVector<BasicBlock *, 8> LoopExitBlocks; 256 SmallPtrSet<BasicBlock *, 8> BlockSet; 257 258 L.getExitBlocks(LoopExitBlocks); 259 if (!isPromotionPossible(&L, LoopExitBlocks)) 260 return; 261 262 for (BasicBlock *ExitBlock : LoopExitBlocks) { 263 if (BlockSet.insert(ExitBlock).second) { 264 ExitBlocks.push_back(ExitBlock); 265 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 266 } 267 } 268 } 269 270 bool run(int64_t *NumPromoted) { 271 // Skip 'infinite' loops: 272 if (ExitBlocks.size() == 0) 273 return false; 274 275 // Skip if any of the ExitBlocks contains a ret instruction. 276 // This is to prevent dumping of incomplete profile -- if the 277 // the loop is a long running loop and dump is called in the middle 278 // of the loop, the result profile is incomplete. 279 // FIXME: add other heuristics to detect long running loops. 280 if (SkipRetExitBlock) { 281 for (auto BB : ExitBlocks) 282 if (isa<ReturnInst>(BB->getTerminator())) 283 return false; 284 } 285 286 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 287 if (MaxProm == 0) 288 return false; 289 290 unsigned Promoted = 0; 291 for (auto &Cand : LoopToCandidates[&L]) { 292 293 SmallVector<PHINode *, 4> NewPHIs; 294 SSAUpdater SSA(&NewPHIs); 295 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 296 297 // If BFI is set, we will use it to guide the promotions. 298 if (BFI) { 299 auto *BB = Cand.first->getParent(); 300 auto InstrCount = BFI->getBlockProfileCount(BB); 301 if (!InstrCount) 302 continue; 303 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 304 // If the average loop trip count is not greater than 1.5, we skip 305 // promotion. 306 if (PreheaderCount && 307 (PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2)) 308 continue; 309 } 310 311 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 312 L.getLoopPreheader(), ExitBlocks, 313 InsertPts, LoopToCandidates, LI); 314 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 315 Promoted++; 316 if (Promoted >= MaxProm) 317 break; 318 319 (*NumPromoted)++; 320 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 321 break; 322 } 323 324 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 325 << L.getLoopDepth() << ")\n"); 326 return Promoted != 0; 327 } 328 329 private: 330 bool allowSpeculativeCounterPromotion(Loop *LP) { 331 SmallVector<BasicBlock *, 8> ExitingBlocks; 332 L.getExitingBlocks(ExitingBlocks); 333 // Not considierered speculative. 334 if (ExitingBlocks.size() == 1) 335 return true; 336 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 337 return false; 338 return true; 339 } 340 341 // Check whether the loop satisfies the basic conditions needed to perform 342 // Counter Promotions. 343 bool 344 isPromotionPossible(Loop *LP, 345 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 346 // We can't insert into a catchswitch. 347 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 348 return isa<CatchSwitchInst>(Exit->getTerminator()); 349 })) 350 return false; 351 352 if (!LP->hasDedicatedExits()) 353 return false; 354 355 BasicBlock *PH = LP->getLoopPreheader(); 356 if (!PH) 357 return false; 358 359 return true; 360 } 361 362 // Returns the max number of Counter Promotions for LP. 363 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 364 SmallVector<BasicBlock *, 8> LoopExitBlocks; 365 LP->getExitBlocks(LoopExitBlocks); 366 if (!isPromotionPossible(LP, LoopExitBlocks)) 367 return 0; 368 369 SmallVector<BasicBlock *, 8> ExitingBlocks; 370 LP->getExitingBlocks(ExitingBlocks); 371 372 // If BFI is set, we do more aggressive promotions based on BFI. 373 if (BFI) 374 return (unsigned)-1; 375 376 // Not considierered speculative. 377 if (ExitingBlocks.size() == 1) 378 return MaxNumOfPromotionsPerLoop; 379 380 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 381 return 0; 382 383 // Whether the target block is in a loop does not matter: 384 if (SpeculativeCounterPromotionToLoop) 385 return MaxNumOfPromotionsPerLoop; 386 387 // Now check the target block: 388 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 389 for (auto *TargetBlock : LoopExitBlocks) { 390 auto *TargetLoop = LI.getLoopFor(TargetBlock); 391 if (!TargetLoop) 392 continue; 393 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 394 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 395 MaxProm = 396 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 397 PendingCandsInTarget); 398 } 399 return MaxProm; 400 } 401 402 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 403 SmallVector<BasicBlock *, 8> ExitBlocks; 404 SmallVector<Instruction *, 8> InsertPts; 405 Loop &L; 406 LoopInfo &LI; 407 BlockFrequencyInfo *BFI; 408 }; 409 410 enum class ValueProfilingCallType { 411 // Individual values are tracked. Currently used for indiret call target 412 // profiling. 413 Default, 414 415 // MemOp: the memop size value profiling. 416 MemOp 417 }; 418 419 } // end anonymous namespace 420 421 PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { 422 FunctionAnalysisManager &FAM = 423 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 424 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 425 return FAM.getResult<TargetLibraryAnalysis>(F); 426 }; 427 if (!run(M, GetTLI)) 428 return PreservedAnalyses::all(); 429 430 return PreservedAnalyses::none(); 431 } 432 433 char InstrProfilingLegacyPass::ID = 0; 434 INITIALIZE_PASS_BEGIN(InstrProfilingLegacyPass, "instrprof", 435 "Frontend instrumentation-based coverage lowering.", 436 false, false) 437 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 438 INITIALIZE_PASS_END(InstrProfilingLegacyPass, "instrprof", 439 "Frontend instrumentation-based coverage lowering.", false, 440 false) 441 442 ModulePass * 443 llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options, 444 bool IsCS) { 445 return new InstrProfilingLegacyPass(Options, IsCS); 446 } 447 448 static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) { 449 InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr); 450 if (Inc) 451 return Inc; 452 return dyn_cast<InstrProfIncrementInst>(Instr); 453 } 454 455 bool InstrProfiling::lowerIntrinsics(Function *F) { 456 bool MadeChange = false; 457 PromotionCandidates.clear(); 458 for (BasicBlock &BB : *F) { 459 for (Instruction &Instr : llvm::make_early_inc_range(BB)) { 460 InstrProfIncrementInst *Inc = castToIncrementInst(&Instr); 461 if (Inc) { 462 lowerIncrement(Inc); 463 MadeChange = true; 464 } else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(&Instr)) { 465 lowerValueProfileInst(Ind); 466 MadeChange = true; 467 } 468 } 469 } 470 471 if (!MadeChange) 472 return false; 473 474 promoteCounterLoadStores(F); 475 return true; 476 } 477 478 bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { 479 // Mach-O don't support weak external references. 480 if (TT.isOSBinFormatMachO()) 481 return false; 482 483 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 484 return RuntimeCounterRelocation; 485 486 // Fuchsia uses runtime counter relocation by default. 487 return TT.isOSFuchsia(); 488 } 489 490 bool InstrProfiling::isCounterPromotionEnabled() const { 491 if (DoCounterPromotion.getNumOccurrences() > 0) 492 return DoCounterPromotion; 493 494 return Options.DoCounterPromotion; 495 } 496 497 void InstrProfiling::promoteCounterLoadStores(Function *F) { 498 if (!isCounterPromotionEnabled()) 499 return; 500 501 DominatorTree DT(*F); 502 LoopInfo LI(DT); 503 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 504 505 std::unique_ptr<BlockFrequencyInfo> BFI; 506 if (Options.UseBFIInPromotion) { 507 std::unique_ptr<BranchProbabilityInfo> BPI; 508 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 509 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 510 } 511 512 for (const auto &LoadStore : PromotionCandidates) { 513 auto *CounterLoad = LoadStore.first; 514 auto *CounterStore = LoadStore.second; 515 BasicBlock *BB = CounterLoad->getParent(); 516 Loop *ParentLoop = LI.getLoopFor(BB); 517 if (!ParentLoop) 518 continue; 519 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 520 } 521 522 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 523 524 // Do a post-order traversal of the loops so that counter updates can be 525 // iteratively hoisted outside the loop nest. 526 for (auto *Loop : llvm::reverse(Loops)) { 527 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 528 Promoter.run(&TotalCountersPromoted); 529 } 530 } 531 532 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 533 // On Fuchsia, we only need runtime hook if any counters are present. 534 if (TT.isOSFuchsia()) 535 return false; 536 537 return true; 538 } 539 540 /// Check if the module contains uses of any profiling intrinsics. 541 static bool containsProfilingIntrinsics(Module &M) { 542 if (auto *F = M.getFunction( 543 Intrinsic::getName(llvm::Intrinsic::instrprof_increment))) 544 if (!F->use_empty()) 545 return true; 546 if (auto *F = M.getFunction( 547 Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step))) 548 if (!F->use_empty()) 549 return true; 550 if (auto *F = M.getFunction( 551 Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile))) 552 if (!F->use_empty()) 553 return true; 554 return false; 555 } 556 557 bool InstrProfiling::run( 558 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { 559 this->M = &M; 560 this->GetTLI = std::move(GetTLI); 561 NamesVar = nullptr; 562 NamesSize = 0; 563 ProfileDataMap.clear(); 564 CompilerUsedVars.clear(); 565 UsedVars.clear(); 566 TT = Triple(M.getTargetTriple()); 567 568 bool MadeChange = false; 569 570 // Emit the runtime hook even if no counters are present. 571 if (needsRuntimeHookUnconditionally(TT)) 572 MadeChange = emitRuntimeHook(); 573 574 // Improve compile time by avoiding linear scans when there is no work. 575 GlobalVariable *CoverageNamesVar = 576 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 577 if (!containsProfilingIntrinsics(M) && !CoverageNamesVar) 578 return MadeChange; 579 580 // We did not know how many value sites there would be inside 581 // the instrumented function. This is counting the number of instrumented 582 // target value sites to enter it as field in the profile data variable. 583 for (Function &F : M) { 584 InstrProfIncrementInst *FirstProfIncInst = nullptr; 585 for (BasicBlock &BB : F) 586 for (auto I = BB.begin(), E = BB.end(); I != E; I++) 587 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 588 computeNumValueSiteCounts(Ind); 589 else if (FirstProfIncInst == nullptr) 590 FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I); 591 592 // Value profiling intrinsic lowering requires per-function profile data 593 // variable to be created first. 594 if (FirstProfIncInst != nullptr) 595 static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst)); 596 } 597 598 for (Function &F : M) 599 MadeChange |= lowerIntrinsics(&F); 600 601 if (CoverageNamesVar) { 602 lowerCoverageData(CoverageNamesVar); 603 MadeChange = true; 604 } 605 606 if (!MadeChange) 607 return false; 608 609 emitVNodes(); 610 emitNameData(); 611 emitRuntimeHook(); 612 emitRegistration(); 613 emitUses(); 614 emitInitialization(); 615 return true; 616 } 617 618 static FunctionCallee getOrInsertValueProfilingCall( 619 Module &M, const TargetLibraryInfo &TLI, 620 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 621 LLVMContext &Ctx = M.getContext(); 622 auto *ReturnTy = Type::getVoidTy(M.getContext()); 623 624 AttributeList AL; 625 if (auto AK = TLI.getExtAttrForI32Param(false)) 626 AL = AL.addParamAttribute(M.getContext(), 2, AK); 627 628 assert((CallType == ValueProfilingCallType::Default || 629 CallType == ValueProfilingCallType::MemOp) && 630 "Must be Default or MemOp"); 631 Type *ParamTypes[] = { 632 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 633 #include "llvm/ProfileData/InstrProfData.inc" 634 }; 635 auto *ValueProfilingCallTy = 636 FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false); 637 StringRef FuncName = CallType == ValueProfilingCallType::Default 638 ? getInstrProfValueProfFuncName() 639 : getInstrProfValueProfMemOpFuncName(); 640 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 641 } 642 643 void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 644 GlobalVariable *Name = Ind->getName(); 645 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 646 uint64_t Index = Ind->getIndex()->getZExtValue(); 647 auto &PD = ProfileDataMap[Name]; 648 PD.NumValueSites[ValueKind] = 649 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1)); 650 } 651 652 void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 653 // TODO: Value profiling heavily depends on the data section which is omitted 654 // in lightweight mode. We need to move the value profile pointer to the 655 // Counter struct to get this working. 656 assert( 657 !DebugInfoCorrelate && 658 "Value profiling is not yet supported with lightweight instrumentation"); 659 GlobalVariable *Name = Ind->getName(); 660 auto It = ProfileDataMap.find(Name); 661 assert(It != ProfileDataMap.end() && It->second.DataVar && 662 "value profiling detected in function with no counter incerement"); 663 664 GlobalVariable *DataVar = It->second.DataVar; 665 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 666 uint64_t Index = Ind->getIndex()->getZExtValue(); 667 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 668 Index += It->second.NumValueSites[Kind]; 669 670 IRBuilder<> Builder(Ind); 671 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 672 llvm::InstrProfValueKind::IPVK_MemOPSize); 673 CallInst *Call = nullptr; 674 auto *TLI = &GetTLI(*Ind->getFunction()); 675 676 // To support value profiling calls within Windows exception handlers, funclet 677 // information contained within operand bundles needs to be copied over to 678 // the library call. This is required for the IR to be processed by the 679 // WinEHPrepare pass. 680 SmallVector<OperandBundleDef, 1> OpBundles; 681 Ind->getOperandBundlesAsDefs(OpBundles); 682 if (!IsMemOpSize) { 683 Value *Args[3] = {Ind->getTargetValue(), 684 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 685 Builder.getInt32(Index)}; 686 Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, 687 OpBundles); 688 } else { 689 Value *Args[3] = {Ind->getTargetValue(), 690 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 691 Builder.getInt32(Index)}; 692 Call = Builder.CreateCall( 693 getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp), 694 Args, OpBundles); 695 } 696 if (auto AK = TLI->getExtAttrForI32Param(false)) 697 Call->addParamAttr(2, AK); 698 Ind->replaceAllUsesWith(Call); 699 Ind->eraseFromParent(); 700 } 701 702 void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { 703 GlobalVariable *Counters = getOrCreateRegionCounters(Inc); 704 705 IRBuilder<> Builder(Inc); 706 uint64_t Index = Inc->getIndex()->getZExtValue(); 707 Value *Addr = Builder.CreateConstInBoundsGEP2_32(Counters->getValueType(), 708 Counters, 0, Index); 709 710 if (isRuntimeCounterRelocationEnabled()) { 711 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 712 Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext()); 713 Function *Fn = Inc->getParent()->getParent(); 714 Instruction &I = Fn->getEntryBlock().front(); 715 LoadInst *LI = dyn_cast<LoadInst>(&I); 716 if (!LI) { 717 IRBuilder<> Builder(&I); 718 GlobalVariable *Bias = 719 M->getGlobalVariable(getInstrProfCounterBiasVarName()); 720 if (!Bias) { 721 // Compiler must define this variable when runtime counter relocation 722 // is being used. Runtime has a weak external reference that is used 723 // to check whether that's the case or not. 724 Bias = new GlobalVariable( 725 *M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 726 Constant::getNullValue(Int64Ty), getInstrProfCounterBiasVarName()); 727 Bias->setVisibility(GlobalVariable::HiddenVisibility); 728 // A definition that's weak (linkonce_odr) without being in a COMDAT 729 // section wouldn't lead to link errors, but it would lead to a dead 730 // data word from every TU but one. Putting it in COMDAT ensures there 731 // will be exactly one data slot in the link. 732 if (TT.supportsCOMDAT()) 733 Bias->setComdat(M->getOrInsertComdat(Bias->getName())); 734 } 735 LI = Builder.CreateLoad(Int64Ty, Bias); 736 } 737 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI); 738 Addr = Builder.CreateIntToPtr(Add, Int64PtrTy); 739 } 740 741 if (Options.Atomic || AtomicCounterUpdateAll || 742 (Index == 0 && AtomicFirstCounter)) { 743 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 744 MaybeAlign(), AtomicOrdering::Monotonic); 745 } else { 746 Value *IncStep = Inc->getStep(); 747 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 748 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 749 auto *Store = Builder.CreateStore(Count, Addr); 750 if (isCounterPromotionEnabled()) 751 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 752 } 753 Inc->eraseFromParent(); 754 } 755 756 void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 757 ConstantArray *Names = 758 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 759 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 760 Constant *NC = Names->getOperand(I); 761 Value *V = NC->stripPointerCasts(); 762 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 763 GlobalVariable *Name = cast<GlobalVariable>(V); 764 765 Name->setLinkage(GlobalValue::PrivateLinkage); 766 ReferencedNames.push_back(Name); 767 NC->dropAllReferences(); 768 } 769 CoverageNamesVar->eraseFromParent(); 770 } 771 772 /// Get the name of a profiling variable for a particular function. 773 static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix, 774 bool &Renamed) { 775 StringRef NamePrefix = getInstrProfNameVarPrefix(); 776 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 777 Function *F = Inc->getParent()->getParent(); 778 Module *M = F->getParent(); 779 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 780 !canRenameComdatFunc(*F)) { 781 Renamed = false; 782 return (Prefix + Name).str(); 783 } 784 Renamed = true; 785 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 786 SmallVector<char, 24> HashPostfix; 787 if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 788 return (Prefix + Name).str(); 789 return (Prefix + Name + "." + Twine(FuncHash)).str(); 790 } 791 792 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 793 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 794 if (!MD) 795 return 0; 796 797 // If the flag is a ConstantAsMetadata, it should be an integer representable 798 // in 64-bits. 799 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 800 } 801 802 static bool enablesValueProfiling(const Module &M) { 803 return isIRPGOFlagSet(&M) || 804 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 805 } 806 807 // Conservatively returns true if data variables may be referenced by code. 808 static bool profDataReferencedByCode(const Module &M) { 809 return enablesValueProfiling(M); 810 } 811 812 static inline bool shouldRecordFunctionAddr(Function *F) { 813 // Only record function addresses if IR PGO is enabled or if clang value 814 // profiling is enabled. Recording function addresses greatly increases object 815 // file size, because it prevents the inliner from deleting functions that 816 // have been inlined everywhere. 817 if (!profDataReferencedByCode(*F->getParent())) 818 return false; 819 820 // Check the linkage 821 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 822 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 823 !HasAvailableExternallyLinkage) 824 return true; 825 826 // A function marked 'alwaysinline' with available_externally linkage can't 827 // have its address taken. Doing so would create an undefined external ref to 828 // the function, which would fail to link. 829 if (HasAvailableExternallyLinkage && 830 F->hasFnAttribute(Attribute::AlwaysInline)) 831 return false; 832 833 // Prohibit function address recording if the function is both internal and 834 // COMDAT. This avoids the profile data variable referencing internal symbols 835 // in COMDAT. 836 if (F->hasLocalLinkage() && F->hasComdat()) 837 return false; 838 839 // Check uses of this function for other than direct calls or invokes to it. 840 // Inline virtual functions have linkeOnceODR linkage. When a key method 841 // exists, the vtable will only be emitted in the TU where the key method 842 // is defined. In a TU where vtable is not available, the function won't 843 // be 'addresstaken'. If its address is not recorded here, the profile data 844 // with missing address may be picked by the linker leading to missing 845 // indirect call target info. 846 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 847 } 848 849 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 850 // Don't do this for Darwin. compiler-rt uses linker magic. 851 if (TT.isOSDarwin()) 852 return false; 853 // Use linker script magic to get data/cnts/name start/end. 854 if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || 855 TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() || TT.isOSWindows()) 856 return false; 857 858 return true; 859 } 860 861 GlobalVariable * 862 InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) { 863 GlobalVariable *NamePtr = Inc->getName(); 864 auto &PD = ProfileDataMap[NamePtr]; 865 if (PD.RegionCounters) 866 return PD.RegionCounters; 867 868 // Match the linkage and visibility of the name global. 869 Function *Fn = Inc->getParent()->getParent(); 870 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 871 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 872 873 // Use internal rather than private linkage so the counter variable shows up 874 // in the symbol table when using debug info for correlation. 875 if (DebugInfoCorrelate && TT.isOSBinFormatMachO() && 876 Linkage == GlobalValue::PrivateLinkage) 877 Linkage = GlobalValue::InternalLinkage; 878 879 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 880 // symbols in the same csect won't be discarded. When there are duplicate weak 881 // symbols, we can NOT guarantee that the relocations get resolved to the 882 // intended weak symbol, so we can not ensure the correctness of the relative 883 // CounterPtr, so we have to use private linkage for counter and data symbols. 884 if (TT.isOSBinFormatXCOFF()) { 885 Linkage = GlobalValue::PrivateLinkage; 886 Visibility = GlobalValue::DefaultVisibility; 887 } 888 // Move the name variable to the right section. Place them in a COMDAT group 889 // if the associated function is a COMDAT. This will make sure that only one 890 // copy of counters of the COMDAT function will be emitted after linking. Keep 891 // in mind that this pass may run before the inliner, so we need to create a 892 // new comdat group for the counters and profiling data. If we use the comdat 893 // of the parent function, that will result in relocations against discarded 894 // sections. 895 // 896 // If the data variable is referenced by code, counters and data have to be 897 // in different comdats for COFF because the Visual C++ linker will report 898 // duplicate symbol errors if there are multiple external symbols with the 899 // same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. 900 // 901 // For ELF, when not using COMDAT, put counters, data and values into a 902 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 903 // allows -z start-stop-gc to discard the entire group when the function is 904 // discarded. 905 bool DataReferencedByCode = profDataReferencedByCode(*M); 906 bool NeedComdat = needsComdatForCounter(*Fn, *M); 907 bool Renamed; 908 std::string CntsVarName = 909 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed); 910 std::string DataVarName = 911 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed); 912 auto MaybeSetComdat = [&](GlobalVariable *GV) { 913 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 914 if (UseComdat) { 915 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 916 ? GV->getName() 917 : CntsVarName; 918 Comdat *C = M->getOrInsertComdat(GroupName); 919 if (!NeedComdat) 920 C->setSelectionKind(Comdat::NoDeduplicate); 921 GV->setComdat(C); 922 } 923 }; 924 925 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 926 LLVMContext &Ctx = M->getContext(); 927 ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 928 929 // Create the counters variable. 930 auto *CounterPtr = 931 new GlobalVariable(*M, CounterTy, false, Linkage, 932 Constant::getNullValue(CounterTy), CntsVarName); 933 CounterPtr->setVisibility(Visibility); 934 CounterPtr->setSection( 935 getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); 936 CounterPtr->setAlignment(Align(8)); 937 MaybeSetComdat(CounterPtr); 938 CounterPtr->setLinkage(Linkage); 939 PD.RegionCounters = CounterPtr; 940 if (DebugInfoCorrelate) { 941 if (auto *SP = Fn->getSubprogram()) { 942 DIBuilder DB(*M, true, SP->getUnit()); 943 Metadata *FunctionNameAnnotation[] = { 944 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName), 945 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)), 946 }; 947 Metadata *CFGHashAnnotation[] = { 948 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName), 949 ConstantAsMetadata::get(Inc->getHash()), 950 }; 951 Metadata *NumCountersAnnotation[] = { 952 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName), 953 ConstantAsMetadata::get(Inc->getNumCounters()), 954 }; 955 auto Annotations = DB.getOrCreateArray({ 956 MDNode::get(Ctx, FunctionNameAnnotation), 957 MDNode::get(Ctx, CFGHashAnnotation), 958 MDNode::get(Ctx, NumCountersAnnotation), 959 }); 960 auto *DICounter = DB.createGlobalVariableExpression( 961 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(), 962 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"), 963 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr, 964 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0, 965 Annotations); 966 CounterPtr->addDebugInfo(DICounter); 967 DB.finalize(); 968 } else { 969 std::string Msg = ("Missing debug info for function " + Fn->getName() + 970 "; required for profile correlation.") 971 .str(); 972 Ctx.diagnose( 973 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 974 } 975 } 976 977 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 978 // Allocate statically the array of pointers to value profile nodes for 979 // the current function. 980 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 981 uint64_t NS = 0; 982 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 983 NS += PD.NumValueSites[Kind]; 984 if (NS > 0 && ValueProfileStaticAlloc && 985 !needsRuntimeRegistrationOfSectionRange(TT)) { 986 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 987 auto *ValuesVar = new GlobalVariable( 988 *M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 989 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed)); 990 ValuesVar->setVisibility(Visibility); 991 ValuesVar->setSection( 992 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 993 ValuesVar->setAlignment(Align(8)); 994 MaybeSetComdat(ValuesVar); 995 ValuesPtrExpr = 996 ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); 997 } 998 999 if (DebugInfoCorrelate) { 1000 // Mark the counter variable as used so that it isn't optimized out. 1001 CompilerUsedVars.push_back(PD.RegionCounters); 1002 return PD.RegionCounters; 1003 } 1004 1005 // Create data variable. 1006 auto *IntPtrTy = M->getDataLayout().getIntPtrType(M->getContext()); 1007 auto *Int16Ty = Type::getInt16Ty(Ctx); 1008 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 1009 Type *DataTypes[] = { 1010 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 1011 #include "llvm/ProfileData/InstrProfData.inc" 1012 }; 1013 auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes)); 1014 1015 Constant *FunctionAddr = shouldRecordFunctionAddr(Fn) 1016 ? ConstantExpr::getBitCast(Fn, Int8PtrTy) 1017 : ConstantPointerNull::get(Int8PtrTy); 1018 1019 Constant *Int16ArrayVals[IPVK_Last + 1]; 1020 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1021 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 1022 1023 // If the data variable is not referenced by code (if we don't emit 1024 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 1025 // data variable live under linker GC, the data variable can be private. This 1026 // optimization applies to ELF. 1027 // 1028 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 1029 // to be false. 1030 // 1031 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees 1032 // that other copies must have the same CFG and cannot have value profiling. 1033 // If no hash suffix, other profd copies may be referenced by code. 1034 if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) && 1035 (TT.isOSBinFormatELF() || 1036 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 1037 Linkage = GlobalValue::PrivateLinkage; 1038 Visibility = GlobalValue::DefaultVisibility; 1039 } 1040 auto *Data = 1041 new GlobalVariable(*M, DataTy, false, Linkage, nullptr, DataVarName); 1042 // Reference the counter variable with a label difference (link-time 1043 // constant). 1044 auto *RelativeCounterPtr = 1045 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 1046 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1047 1048 Constant *DataVals[] = { 1049 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 1050 #include "llvm/ProfileData/InstrProfData.inc" 1051 }; 1052 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 1053 1054 Data->setVisibility(Visibility); 1055 Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); 1056 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 1057 MaybeSetComdat(Data); 1058 Data->setLinkage(Linkage); 1059 1060 PD.DataVar = Data; 1061 1062 // Mark the data variable as used so that it isn't stripped out. 1063 CompilerUsedVars.push_back(Data); 1064 // Now that the linkage set by the FE has been passed to the data and counter 1065 // variables, reset Name variable's linkage and visibility to private so that 1066 // it can be removed later by the compiler. 1067 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 1068 // Collect the referenced names to be used by emitNameData. 1069 ReferencedNames.push_back(NamePtr); 1070 1071 return PD.RegionCounters; 1072 } 1073 1074 void InstrProfiling::emitVNodes() { 1075 if (!ValueProfileStaticAlloc) 1076 return; 1077 1078 // For now only support this on platforms that do 1079 // not require runtime registration to discover 1080 // named section start/end. 1081 if (needsRuntimeRegistrationOfSectionRange(TT)) 1082 return; 1083 1084 size_t TotalNS = 0; 1085 for (auto &PD : ProfileDataMap) { 1086 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1087 TotalNS += PD.second.NumValueSites[Kind]; 1088 } 1089 1090 if (!TotalNS) 1091 return; 1092 1093 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1094 // Heuristic for small programs with very few total value sites. 1095 // The default value of vp-counters-per-site is chosen based on 1096 // the observation that large apps usually have a low percentage 1097 // of value sites that actually have any profile data, and thus 1098 // the average number of counters per site is low. For small 1099 // apps with very few sites, this may not be true. Bump up the 1100 // number of counters in this case. 1101 #define INSTR_PROF_MIN_VAL_COUNTS 10 1102 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1103 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1104 1105 auto &Ctx = M->getContext(); 1106 Type *VNodeTypes[] = { 1107 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1108 #include "llvm/ProfileData/InstrProfData.inc" 1109 }; 1110 auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes)); 1111 1112 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1113 auto *VNodesVar = new GlobalVariable( 1114 *M, VNodesTy, false, GlobalValue::PrivateLinkage, 1115 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1116 VNodesVar->setSection( 1117 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1118 // VNodesVar is used by runtime but not referenced via relocation by other 1119 // sections. Conservatively make it linker retained. 1120 UsedVars.push_back(VNodesVar); 1121 } 1122 1123 void InstrProfiling::emitNameData() { 1124 std::string UncompressedData; 1125 1126 if (ReferencedNames.empty()) 1127 return; 1128 1129 std::string CompressedNameStr; 1130 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1131 DoInstrProfNameCompression)) { 1132 report_fatal_error(Twine(toString(std::move(E))), false); 1133 } 1134 1135 auto &Ctx = M->getContext(); 1136 auto *NamesVal = 1137 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false); 1138 NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, 1139 GlobalValue::PrivateLinkage, NamesVal, 1140 getInstrProfNamesVarName()); 1141 NamesSize = CompressedNameStr.size(); 1142 NamesVar->setSection( 1143 getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1144 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1145 // linker from inserting padding before the start of the names section or 1146 // between names entries. 1147 NamesVar->setAlignment(Align(1)); 1148 // NamesVar is used by runtime but not referenced via relocation by other 1149 // sections. Conservatively make it linker retained. 1150 UsedVars.push_back(NamesVar); 1151 1152 for (auto *NamePtr : ReferencedNames) 1153 NamePtr->eraseFromParent(); 1154 } 1155 1156 void InstrProfiling::emitRegistration() { 1157 if (!needsRuntimeRegistrationOfSectionRange(TT)) 1158 return; 1159 1160 // Construct the function. 1161 auto *VoidTy = Type::getVoidTy(M->getContext()); 1162 auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); 1163 auto *Int64Ty = Type::getInt64Ty(M->getContext()); 1164 auto *RegisterFTy = FunctionType::get(VoidTy, false); 1165 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 1166 getInstrProfRegFuncsName(), M); 1167 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1168 if (Options.NoRedZone) 1169 RegisterF->addFnAttr(Attribute::NoRedZone); 1170 1171 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 1172 auto *RuntimeRegisterF = 1173 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 1174 getInstrProfRegFuncName(), M); 1175 1176 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); 1177 for (Value *Data : CompilerUsedVars) 1178 if (!isa<Function>(Data)) 1179 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1180 for (Value *Data : UsedVars) 1181 if (Data != NamesVar && !isa<Function>(Data)) 1182 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1183 1184 if (NamesVar) { 1185 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 1186 auto *NamesRegisterTy = 1187 FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false); 1188 auto *NamesRegisterF = 1189 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 1190 getInstrProfNamesRegFuncName(), M); 1191 IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), 1192 IRB.getInt64(NamesSize)}); 1193 } 1194 1195 IRB.CreateRetVoid(); 1196 } 1197 1198 bool InstrProfiling::emitRuntimeHook() { 1199 // We expect the linker to be invoked with -u<hook_var> flag for Linux 1200 // in which case there is no need to emit the external variable. 1201 if (TT.isOSLinux()) 1202 return false; 1203 1204 // If the module's provided its own runtime, we don't need to do anything. 1205 if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) 1206 return false; 1207 1208 // Declare an external variable that will pull in the runtime initialization. 1209 auto *Int32Ty = Type::getInt32Ty(M->getContext()); 1210 auto *Var = 1211 new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, 1212 nullptr, getInstrProfRuntimeHookVarName()); 1213 1214 if (TT.isOSBinFormatELF()) { 1215 // Mark the user variable as used so that it isn't stripped out. 1216 CompilerUsedVars.push_back(Var); 1217 } else { 1218 // Make a function that uses it. 1219 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 1220 GlobalValue::LinkOnceODRLinkage, 1221 getInstrProfRuntimeHookVarUseFuncName(), M); 1222 User->addFnAttr(Attribute::NoInline); 1223 if (Options.NoRedZone) 1224 User->addFnAttr(Attribute::NoRedZone); 1225 User->setVisibility(GlobalValue::HiddenVisibility); 1226 if (TT.supportsCOMDAT()) 1227 User->setComdat(M->getOrInsertComdat(User->getName())); 1228 1229 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); 1230 auto *Load = IRB.CreateLoad(Int32Ty, Var); 1231 IRB.CreateRet(Load); 1232 1233 // Mark the function as used so that it isn't stripped out. 1234 CompilerUsedVars.push_back(User); 1235 } 1236 return true; 1237 } 1238 1239 void InstrProfiling::emitUses() { 1240 // The metadata sections are parallel arrays. Optimizers (e.g. 1241 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 1242 // we conservatively retain all unconditionally in the compiler. 1243 // 1244 // On ELF and Mach-O, the linker can guarantee the associated sections will be 1245 // retained or discarded as a unit, so llvm.compiler.used is sufficient. 1246 // Similarly on COFF, if prof data is not referenced by code we use one comdat 1247 // and ensure this GC property as well. Otherwise, we have to conservatively 1248 // make all of the sections retained by the linker. 1249 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() || 1250 (TT.isOSBinFormatCOFF() && !profDataReferencedByCode(*M))) 1251 appendToCompilerUsed(*M, CompilerUsedVars); 1252 else 1253 appendToUsed(*M, CompilerUsedVars); 1254 1255 // We do not add proper references from used metadata sections to NamesVar and 1256 // VNodesVar, so we have to be conservative and place them in llvm.used 1257 // regardless of the target, 1258 appendToUsed(*M, UsedVars); 1259 } 1260 1261 void InstrProfiling::emitInitialization() { 1262 // Create ProfileFileName variable. Don't don't this for the 1263 // context-sensitive instrumentation lowering: This lowering is after 1264 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 1265 // have already create the variable before LTO/ThinLTO linking. 1266 if (!IsCS) 1267 createProfileFileNameVar(*M, Options.InstrProfileOutput); 1268 Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); 1269 if (!RegisterF) 1270 return; 1271 1272 // Create the initialization function. 1273 auto *VoidTy = Type::getVoidTy(M->getContext()); 1274 auto *F = Function::Create(FunctionType::get(VoidTy, false), 1275 GlobalValue::InternalLinkage, 1276 getInstrProfInitFuncName(), M); 1277 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1278 F->addFnAttr(Attribute::NoInline); 1279 if (Options.NoRedZone) 1280 F->addFnAttr(Attribute::NoRedZone); 1281 1282 // Add the basic block and the necessary calls. 1283 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); 1284 IRB.CreateCall(RegisterF, {}); 1285 IRB.CreateRetVoid(); 1286 1287 appendToGlobalCtors(*M, F, 0); 1288 } 1289