1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/ProfileData/InstrProf.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 #include "llvm/Transforms/Utils/SSAUpdater.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstdint> 54 #include <string> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "instrprof" 59 60 namespace { 61 62 cl::opt<bool> DoHashBasedCounterSplit( 63 "hash-based-counter-split", 64 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 65 cl::init(true)); 66 67 cl::opt<bool> RuntimeCounterRelocation( 68 "runtime-counter-relocation", 69 cl::desc("Enable relocating counters at runtime."), 70 cl::init(false)); 71 72 cl::opt<bool> ValueProfileStaticAlloc( 73 "vp-static-alloc", 74 cl::desc("Do static counter allocation for value profiler"), 75 cl::init(true)); 76 77 cl::opt<double> NumCountersPerValueSite( 78 "vp-counters-per-site", 79 cl::desc("The average number of profile counters allocated " 80 "per value profiling site."), 81 // This is set to a very small value because in real programs, only 82 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 83 // For those sites with non-zero profile, the average number of targets 84 // is usually smaller than 2. 85 cl::init(1.0)); 86 87 cl::opt<bool> AtomicCounterUpdateAll( 88 "instrprof-atomic-counter-update-all", cl::ZeroOrMore, 89 cl::desc("Make all profile counter updates atomic (for testing only)"), 90 cl::init(false)); 91 92 cl::opt<bool> AtomicCounterUpdatePromoted( 93 "atomic-counter-update-promoted", cl::ZeroOrMore, 94 cl::desc("Do counter update using atomic fetch add " 95 " for promoted counters only"), 96 cl::init(false)); 97 98 cl::opt<bool> AtomicFirstCounter( 99 "atomic-first-counter", cl::ZeroOrMore, 100 cl::desc("Use atomic fetch add for first counter in a function (usually " 101 "the entry counter)"), 102 cl::init(false)); 103 104 // If the option is not specified, the default behavior about whether 105 // counter promotion is done depends on how instrumentaiton lowering 106 // pipeline is setup, i.e., the default value of true of this option 107 // does not mean the promotion will be done by default. Explicitly 108 // setting this option can override the default behavior. 109 cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore, 110 cl::desc("Do counter register promotion"), 111 cl::init(false)); 112 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 113 cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20), 114 cl::desc("Max number counter promotions per loop to avoid" 115 " increasing register pressure too much")); 116 117 // A debug option 118 cl::opt<int> 119 MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1), 120 cl::desc("Max number of allowed counter promotions")); 121 122 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 123 cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3), 124 cl::desc("The max number of exiting blocks of a loop to allow " 125 " speculative counter promotion")); 126 127 cl::opt<bool> SpeculativeCounterPromotionToLoop( 128 cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false), 129 cl::desc("When the option is false, if the target block is in a loop, " 130 "the promotion will be disallowed unless the promoted counter " 131 " update can be further/iteratively promoted into an acyclic " 132 " region.")); 133 134 cl::opt<bool> IterativeCounterPromotion( 135 cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true), 136 cl::desc("Allow counter promotion across the whole loop nest.")); 137 138 cl::opt<bool> SkipRetExitBlock( 139 cl::ZeroOrMore, "skip-ret-exit-block", cl::init(true), 140 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 141 142 class InstrProfilingLegacyPass : public ModulePass { 143 InstrProfiling InstrProf; 144 145 public: 146 static char ID; 147 148 InstrProfilingLegacyPass() : ModulePass(ID) {} 149 InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false) 150 : ModulePass(ID), InstrProf(Options, IsCS) { 151 initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry()); 152 } 153 154 StringRef getPassName() const override { 155 return "Frontend instrumentation-based coverage lowering"; 156 } 157 158 bool runOnModule(Module &M) override { 159 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 160 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 161 }; 162 return InstrProf.run(M, GetTLI); 163 } 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 AU.addRequired<TargetLibraryInfoWrapperPass>(); 168 } 169 }; 170 171 /// 172 /// A helper class to promote one counter RMW operation in the loop 173 /// into register update. 174 /// 175 /// RWM update for the counter will be sinked out of the loop after 176 /// the transformation. 177 /// 178 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 179 public: 180 PGOCounterPromoterHelper( 181 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 182 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 183 ArrayRef<Instruction *> InsertPts, 184 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 185 LoopInfo &LI) 186 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 187 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 188 assert(isa<LoadInst>(L)); 189 assert(isa<StoreInst>(S)); 190 SSA.AddAvailableValue(PH, Init); 191 } 192 193 void doExtraRewritesBeforeFinalDeletion() override { 194 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 195 BasicBlock *ExitBlock = ExitBlocks[i]; 196 Instruction *InsertPos = InsertPts[i]; 197 // Get LiveIn value into the ExitBlock. If there are multiple 198 // predecessors, the value is defined by a PHI node in this 199 // block. 200 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 201 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 202 Type *Ty = LiveInValue->getType(); 203 IRBuilder<> Builder(InsertPos); 204 if (AtomicCounterUpdatePromoted) 205 // automic update currently can only be promoted across the current 206 // loop, not the whole loop nest. 207 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 208 MaybeAlign(), 209 AtomicOrdering::SequentiallyConsistent); 210 else { 211 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 212 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 213 auto *NewStore = Builder.CreateStore(NewVal, Addr); 214 215 // Now update the parent loop's candidate list: 216 if (IterativeCounterPromotion) { 217 auto *TargetLoop = LI.getLoopFor(ExitBlock); 218 if (TargetLoop) 219 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 220 } 221 } 222 } 223 } 224 225 private: 226 Instruction *Store; 227 ArrayRef<BasicBlock *> ExitBlocks; 228 ArrayRef<Instruction *> InsertPts; 229 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 230 LoopInfo &LI; 231 }; 232 233 /// A helper class to do register promotion for all profile counter 234 /// updates in a loop. 235 /// 236 class PGOCounterPromoter { 237 public: 238 PGOCounterPromoter( 239 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 240 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 241 : LoopToCandidates(LoopToCands), ExitBlocks(), InsertPts(), L(CurLoop), 242 LI(LI), BFI(BFI) { 243 244 // Skip collection of ExitBlocks and InsertPts for loops that will not be 245 // able to have counters promoted. 246 SmallVector<BasicBlock *, 8> LoopExitBlocks; 247 SmallPtrSet<BasicBlock *, 8> BlockSet; 248 249 L.getExitBlocks(LoopExitBlocks); 250 if (!isPromotionPossible(&L, LoopExitBlocks)) 251 return; 252 253 for (BasicBlock *ExitBlock : LoopExitBlocks) { 254 if (BlockSet.insert(ExitBlock).second) { 255 ExitBlocks.push_back(ExitBlock); 256 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 257 } 258 } 259 } 260 261 bool run(int64_t *NumPromoted) { 262 // Skip 'infinite' loops: 263 if (ExitBlocks.size() == 0) 264 return false; 265 266 // Skip if any of the ExitBlocks contains a ret instruction. 267 // This is to prevent dumping of incomplete profile -- if the 268 // the loop is a long running loop and dump is called in the middle 269 // of the loop, the result profile is incomplete. 270 // FIXME: add other heuristics to detect long running loops. 271 if (SkipRetExitBlock) { 272 for (auto BB : ExitBlocks) 273 if (isa<ReturnInst>(BB->getTerminator())) 274 return false; 275 } 276 277 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 278 if (MaxProm == 0) 279 return false; 280 281 unsigned Promoted = 0; 282 for (auto &Cand : LoopToCandidates[&L]) { 283 284 SmallVector<PHINode *, 4> NewPHIs; 285 SSAUpdater SSA(&NewPHIs); 286 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 287 288 // If BFI is set, we will use it to guide the promotions. 289 if (BFI) { 290 auto *BB = Cand.first->getParent(); 291 auto InstrCount = BFI->getBlockProfileCount(BB); 292 if (!InstrCount) 293 continue; 294 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 295 // If the average loop trip count is not greater than 1.5, we skip 296 // promotion. 297 if (PreheaderCount && 298 (PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2)) 299 continue; 300 } 301 302 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 303 L.getLoopPreheader(), ExitBlocks, 304 InsertPts, LoopToCandidates, LI); 305 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 306 Promoted++; 307 if (Promoted >= MaxProm) 308 break; 309 310 (*NumPromoted)++; 311 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 312 break; 313 } 314 315 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 316 << L.getLoopDepth() << ")\n"); 317 return Promoted != 0; 318 } 319 320 private: 321 bool allowSpeculativeCounterPromotion(Loop *LP) { 322 SmallVector<BasicBlock *, 8> ExitingBlocks; 323 L.getExitingBlocks(ExitingBlocks); 324 // Not considierered speculative. 325 if (ExitingBlocks.size() == 1) 326 return true; 327 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 328 return false; 329 return true; 330 } 331 332 // Check whether the loop satisfies the basic conditions needed to perform 333 // Counter Promotions. 334 bool isPromotionPossible(Loop *LP, 335 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 336 // We can't insert into a catchswitch. 337 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 338 return isa<CatchSwitchInst>(Exit->getTerminator()); 339 })) 340 return false; 341 342 if (!LP->hasDedicatedExits()) 343 return false; 344 345 BasicBlock *PH = LP->getLoopPreheader(); 346 if (!PH) 347 return false; 348 349 return true; 350 } 351 352 // Returns the max number of Counter Promotions for LP. 353 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 354 SmallVector<BasicBlock *, 8> LoopExitBlocks; 355 LP->getExitBlocks(LoopExitBlocks); 356 if (!isPromotionPossible(LP, LoopExitBlocks)) 357 return 0; 358 359 SmallVector<BasicBlock *, 8> ExitingBlocks; 360 LP->getExitingBlocks(ExitingBlocks); 361 362 // If BFI is set, we do more aggressive promotions based on BFI. 363 if (BFI) 364 return (unsigned)-1; 365 366 // Not considierered speculative. 367 if (ExitingBlocks.size() == 1) 368 return MaxNumOfPromotionsPerLoop; 369 370 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 371 return 0; 372 373 // Whether the target block is in a loop does not matter: 374 if (SpeculativeCounterPromotionToLoop) 375 return MaxNumOfPromotionsPerLoop; 376 377 // Now check the target block: 378 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 379 for (auto *TargetBlock : LoopExitBlocks) { 380 auto *TargetLoop = LI.getLoopFor(TargetBlock); 381 if (!TargetLoop) 382 continue; 383 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 384 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 385 MaxProm = 386 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 387 PendingCandsInTarget); 388 } 389 return MaxProm; 390 } 391 392 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 393 SmallVector<BasicBlock *, 8> ExitBlocks; 394 SmallVector<Instruction *, 8> InsertPts; 395 Loop &L; 396 LoopInfo &LI; 397 BlockFrequencyInfo *BFI; 398 }; 399 400 enum class ValueProfilingCallType { 401 // Individual values are tracked. Currently used for indiret call target 402 // profiling. 403 Default, 404 405 // MemOp: the memop size value profiling. 406 MemOp 407 }; 408 409 } // end anonymous namespace 410 411 PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { 412 FunctionAnalysisManager &FAM = 413 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 414 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 415 return FAM.getResult<TargetLibraryAnalysis>(F); 416 }; 417 if (!run(M, GetTLI)) 418 return PreservedAnalyses::all(); 419 420 return PreservedAnalyses::none(); 421 } 422 423 char InstrProfilingLegacyPass::ID = 0; 424 INITIALIZE_PASS_BEGIN( 425 InstrProfilingLegacyPass, "instrprof", 426 "Frontend instrumentation-based coverage lowering.", false, false) 427 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 428 INITIALIZE_PASS_END( 429 InstrProfilingLegacyPass, "instrprof", 430 "Frontend instrumentation-based coverage lowering.", false, false) 431 432 ModulePass * 433 llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options, 434 bool IsCS) { 435 return new InstrProfilingLegacyPass(Options, IsCS); 436 } 437 438 static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) { 439 InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr); 440 if (Inc) 441 return Inc; 442 return dyn_cast<InstrProfIncrementInst>(Instr); 443 } 444 445 bool InstrProfiling::lowerIntrinsics(Function *F) { 446 bool MadeChange = false; 447 PromotionCandidates.clear(); 448 for (BasicBlock &BB : *F) { 449 for (auto I = BB.begin(), E = BB.end(); I != E;) { 450 auto Instr = I++; 451 InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr); 452 if (Inc) { 453 lowerIncrement(Inc); 454 MadeChange = true; 455 } else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) { 456 lowerValueProfileInst(Ind); 457 MadeChange = true; 458 } 459 } 460 } 461 462 if (!MadeChange) 463 return false; 464 465 promoteCounterLoadStores(F); 466 return true; 467 } 468 469 bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { 470 // Mach-O don't support weak external references. 471 if (TT.isOSBinFormatMachO()) 472 return false; 473 474 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 475 return RuntimeCounterRelocation; 476 477 // Fuchsia uses runtime counter relocation by default. 478 return TT.isOSFuchsia(); 479 } 480 481 bool InstrProfiling::isCounterPromotionEnabled() const { 482 if (DoCounterPromotion.getNumOccurrences() > 0) 483 return DoCounterPromotion; 484 485 return Options.DoCounterPromotion; 486 } 487 488 void InstrProfiling::promoteCounterLoadStores(Function *F) { 489 if (!isCounterPromotionEnabled()) 490 return; 491 492 DominatorTree DT(*F); 493 LoopInfo LI(DT); 494 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 495 496 std::unique_ptr<BlockFrequencyInfo> BFI; 497 if (Options.UseBFIInPromotion) { 498 std::unique_ptr<BranchProbabilityInfo> BPI; 499 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 500 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 501 } 502 503 for (const auto &LoadStore : PromotionCandidates) { 504 auto *CounterLoad = LoadStore.first; 505 auto *CounterStore = LoadStore.second; 506 BasicBlock *BB = CounterLoad->getParent(); 507 Loop *ParentLoop = LI.getLoopFor(BB); 508 if (!ParentLoop) 509 continue; 510 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 511 } 512 513 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 514 515 // Do a post-order traversal of the loops so that counter updates can be 516 // iteratively hoisted outside the loop nest. 517 for (auto *Loop : llvm::reverse(Loops)) { 518 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 519 Promoter.run(&TotalCountersPromoted); 520 } 521 } 522 523 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 524 // On Fuchsia, we only need runtime hook if any counters are present. 525 if (TT.isOSFuchsia()) 526 return false; 527 528 return true; 529 } 530 531 /// Check if the module contains uses of any profiling intrinsics. 532 static bool containsProfilingIntrinsics(Module &M) { 533 if (auto *F = M.getFunction( 534 Intrinsic::getName(llvm::Intrinsic::instrprof_increment))) 535 if (!F->use_empty()) 536 return true; 537 if (auto *F = M.getFunction( 538 Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step))) 539 if (!F->use_empty()) 540 return true; 541 if (auto *F = M.getFunction( 542 Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile))) 543 if (!F->use_empty()) 544 return true; 545 return false; 546 } 547 548 bool InstrProfiling::run( 549 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { 550 this->M = &M; 551 this->GetTLI = std::move(GetTLI); 552 NamesVar = nullptr; 553 NamesSize = 0; 554 ProfileDataMap.clear(); 555 CompilerUsedVars.clear(); 556 UsedVars.clear(); 557 TT = Triple(M.getTargetTriple()); 558 559 bool MadeChange; 560 561 // Emit the runtime hook even if no counters are present. 562 if (needsRuntimeHookUnconditionally(TT)) 563 MadeChange = emitRuntimeHook(); 564 565 // Improve compile time by avoiding linear scans when there is no work. 566 GlobalVariable *CoverageNamesVar = 567 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 568 if (!containsProfilingIntrinsics(M) && !CoverageNamesVar) 569 return MadeChange; 570 571 // We did not know how many value sites there would be inside 572 // the instrumented function. This is counting the number of instrumented 573 // target value sites to enter it as field in the profile data variable. 574 for (Function &F : M) { 575 InstrProfIncrementInst *FirstProfIncInst = nullptr; 576 for (BasicBlock &BB : F) 577 for (auto I = BB.begin(), E = BB.end(); I != E; I++) 578 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 579 computeNumValueSiteCounts(Ind); 580 else if (FirstProfIncInst == nullptr) 581 FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I); 582 583 // Value profiling intrinsic lowering requires per-function profile data 584 // variable to be created first. 585 if (FirstProfIncInst != nullptr) 586 static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst)); 587 } 588 589 for (Function &F : M) 590 MadeChange |= lowerIntrinsics(&F); 591 592 if (CoverageNamesVar) { 593 lowerCoverageData(CoverageNamesVar); 594 MadeChange = true; 595 } 596 597 if (!MadeChange) 598 return false; 599 600 emitVNodes(); 601 emitNameData(); 602 emitRuntimeHook(); 603 emitRegistration(); 604 emitUses(); 605 emitInitialization(); 606 return true; 607 } 608 609 static FunctionCallee getOrInsertValueProfilingCall( 610 Module &M, const TargetLibraryInfo &TLI, 611 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 612 LLVMContext &Ctx = M.getContext(); 613 auto *ReturnTy = Type::getVoidTy(M.getContext()); 614 615 AttributeList AL; 616 if (auto AK = TLI.getExtAttrForI32Param(false)) 617 AL = AL.addParamAttribute(M.getContext(), 2, AK); 618 619 assert((CallType == ValueProfilingCallType::Default || 620 CallType == ValueProfilingCallType::MemOp) && 621 "Must be Default or MemOp"); 622 Type *ParamTypes[] = { 623 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 624 #include "llvm/ProfileData/InstrProfData.inc" 625 }; 626 auto *ValueProfilingCallTy = 627 FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false); 628 StringRef FuncName = CallType == ValueProfilingCallType::Default 629 ? getInstrProfValueProfFuncName() 630 : getInstrProfValueProfMemOpFuncName(); 631 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 632 } 633 634 void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 635 GlobalVariable *Name = Ind->getName(); 636 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 637 uint64_t Index = Ind->getIndex()->getZExtValue(); 638 auto It = ProfileDataMap.find(Name); 639 if (It == ProfileDataMap.end()) { 640 PerFunctionProfileData PD; 641 PD.NumValueSites[ValueKind] = Index + 1; 642 ProfileDataMap[Name] = PD; 643 } else if (It->second.NumValueSites[ValueKind] <= Index) 644 It->second.NumValueSites[ValueKind] = Index + 1; 645 } 646 647 void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 648 GlobalVariable *Name = Ind->getName(); 649 auto It = ProfileDataMap.find(Name); 650 assert(It != ProfileDataMap.end() && It->second.DataVar && 651 "value profiling detected in function with no counter incerement"); 652 653 GlobalVariable *DataVar = It->second.DataVar; 654 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 655 uint64_t Index = Ind->getIndex()->getZExtValue(); 656 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 657 Index += It->second.NumValueSites[Kind]; 658 659 IRBuilder<> Builder(Ind); 660 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 661 llvm::InstrProfValueKind::IPVK_MemOPSize); 662 CallInst *Call = nullptr; 663 auto *TLI = &GetTLI(*Ind->getFunction()); 664 665 // To support value profiling calls within Windows exception handlers, funclet 666 // information contained within operand bundles needs to be copied over to 667 // the library call. This is required for the IR to be processed by the 668 // WinEHPrepare pass. 669 SmallVector<OperandBundleDef, 1> OpBundles; 670 Ind->getOperandBundlesAsDefs(OpBundles); 671 if (!IsMemOpSize) { 672 Value *Args[3] = {Ind->getTargetValue(), 673 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 674 Builder.getInt32(Index)}; 675 Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, 676 OpBundles); 677 } else { 678 Value *Args[3] = {Ind->getTargetValue(), 679 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 680 Builder.getInt32(Index)}; 681 Call = Builder.CreateCall( 682 getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp), 683 Args, OpBundles); 684 } 685 if (auto AK = TLI->getExtAttrForI32Param(false)) 686 Call->addParamAttr(2, AK); 687 Ind->replaceAllUsesWith(Call); 688 Ind->eraseFromParent(); 689 } 690 691 void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { 692 GlobalVariable *Counters = getOrCreateRegionCounters(Inc); 693 694 IRBuilder<> Builder(Inc); 695 uint64_t Index = Inc->getIndex()->getZExtValue(); 696 Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters->getValueType(), 697 Counters, 0, Index); 698 699 if (isRuntimeCounterRelocationEnabled()) { 700 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 701 Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext()); 702 Function *Fn = Inc->getParent()->getParent(); 703 Instruction &I = Fn->getEntryBlock().front(); 704 LoadInst *LI = dyn_cast<LoadInst>(&I); 705 if (!LI) { 706 IRBuilder<> Builder(&I); 707 GlobalVariable *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName()); 708 if (!Bias) { 709 // Compiler must define this variable when runtime counter relocation 710 // is being used. Runtime has a weak external reference that is used 711 // to check whether that's the case or not. 712 Bias = new GlobalVariable(*M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 713 Constant::getNullValue(Int64Ty), 714 getInstrProfCounterBiasVarName()); 715 Bias->setVisibility(GlobalVariable::HiddenVisibility); 716 // A definition that's weak (linkonce_odr) without being in a COMDAT 717 // section wouldn't lead to link errors, but it would lead to a dead 718 // data word from every TU but one. Putting it in COMDAT ensures there 719 // will be exactly one data slot in the link. 720 if (TT.supportsCOMDAT()) 721 Bias->setComdat(M->getOrInsertComdat(Bias->getName())); 722 } 723 LI = Builder.CreateLoad(Int64Ty, Bias); 724 } 725 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI); 726 Addr = Builder.CreateIntToPtr(Add, Int64PtrTy); 727 } 728 729 if (Options.Atomic || AtomicCounterUpdateAll || 730 (Index == 0 && AtomicFirstCounter)) { 731 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 732 MaybeAlign(), AtomicOrdering::Monotonic); 733 } else { 734 Value *IncStep = Inc->getStep(); 735 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 736 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 737 auto *Store = Builder.CreateStore(Count, Addr); 738 if (isCounterPromotionEnabled()) 739 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 740 } 741 Inc->eraseFromParent(); 742 } 743 744 void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 745 ConstantArray *Names = 746 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 747 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 748 Constant *NC = Names->getOperand(I); 749 Value *V = NC->stripPointerCasts(); 750 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 751 GlobalVariable *Name = cast<GlobalVariable>(V); 752 753 Name->setLinkage(GlobalValue::PrivateLinkage); 754 ReferencedNames.push_back(Name); 755 NC->dropAllReferences(); 756 } 757 CoverageNamesVar->eraseFromParent(); 758 } 759 760 /// Get the name of a profiling variable for a particular function. 761 static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) { 762 StringRef NamePrefix = getInstrProfNameVarPrefix(); 763 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 764 Function *F = Inc->getParent()->getParent(); 765 Module *M = F->getParent(); 766 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 767 !canRenameComdatFunc(*F)) 768 return (Prefix + Name).str(); 769 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 770 SmallVector<char, 24> HashPostfix; 771 if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 772 return (Prefix + Name).str(); 773 return (Prefix + Name + "." + Twine(FuncHash)).str(); 774 } 775 776 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 777 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 778 if (!MD) 779 return 0; 780 781 // If the flag is a ConstantAsMetadata, it should be an integer representable 782 // in 64-bits. 783 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 784 } 785 786 static bool enablesValueProfiling(const Module &M) { 787 return isIRPGOFlagSet(&M) || 788 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 789 } 790 791 // Conservatively returns true if data variables may be referenced by code. 792 static bool profDataReferencedByCode(const Module &M) { 793 return enablesValueProfiling(M); 794 } 795 796 static inline bool shouldRecordFunctionAddr(Function *F) { 797 // Only record function addresses if IR PGO is enabled or if clang value 798 // profiling is enabled. Recording function addresses greatly increases object 799 // file size, because it prevents the inliner from deleting functions that 800 // have been inlined everywhere. 801 if (!profDataReferencedByCode(*F->getParent())) 802 return false; 803 804 // Check the linkage 805 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 806 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 807 !HasAvailableExternallyLinkage) 808 return true; 809 810 // A function marked 'alwaysinline' with available_externally linkage can't 811 // have its address taken. Doing so would create an undefined external ref to 812 // the function, which would fail to link. 813 if (HasAvailableExternallyLinkage && 814 F->hasFnAttribute(Attribute::AlwaysInline)) 815 return false; 816 817 // Prohibit function address recording if the function is both internal and 818 // COMDAT. This avoids the profile data variable referencing internal symbols 819 // in COMDAT. 820 if (F->hasLocalLinkage() && F->hasComdat()) 821 return false; 822 823 // Check uses of this function for other than direct calls or invokes to it. 824 // Inline virtual functions have linkeOnceODR linkage. When a key method 825 // exists, the vtable will only be emitted in the TU where the key method 826 // is defined. In a TU where vtable is not available, the function won't 827 // be 'addresstaken'. If its address is not recorded here, the profile data 828 // with missing address may be picked by the linker leading to missing 829 // indirect call target info. 830 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 831 } 832 833 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 834 // Don't do this for Darwin. compiler-rt uses linker magic. 835 if (TT.isOSDarwin()) 836 return false; 837 // Use linker script magic to get data/cnts/name start/end. 838 if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || 839 TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() || 840 TT.isOSWindows()) 841 return false; 842 843 return true; 844 } 845 846 GlobalVariable * 847 InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) { 848 GlobalVariable *NamePtr = Inc->getName(); 849 auto It = ProfileDataMap.find(NamePtr); 850 PerFunctionProfileData PD; 851 if (It != ProfileDataMap.end()) { 852 if (It->second.RegionCounters) 853 return It->second.RegionCounters; 854 PD = It->second; 855 } 856 857 // Match the linkage and visibility of the name global. 858 Function *Fn = Inc->getParent()->getParent(); 859 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 860 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 861 862 // Move the name variable to the right section. Place them in a COMDAT group 863 // if the associated function is a COMDAT. This will make sure that only one 864 // copy of counters of the COMDAT function will be emitted after linking. Keep 865 // in mind that this pass may run before the inliner, so we need to create a 866 // new comdat group for the counters and profiling data. If we use the comdat 867 // of the parent function, that will result in relocations against discarded 868 // sections. 869 // 870 // If the data variable is referenced by code, counters and data have to be 871 // in different comdats for COFF because the Visual C++ linker will report 872 // duplicate symbol errors if there are multiple external symbols with the 873 // same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. 874 // 875 // For ELF, when not using COMDAT, put counters, data and values into a 876 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 877 // allows -z start-stop-gc to discard the entire group when the function is 878 // discarded. 879 bool DataReferencedByCode = profDataReferencedByCode(*M); 880 bool NeedComdat = needsComdatForCounter(*Fn, *M); 881 std::string CntsVarName = getVarName(Inc, getInstrProfCountersVarPrefix()); 882 std::string DataVarName = getVarName(Inc, getInstrProfDataVarPrefix()); 883 auto MaybeSetComdat = [&](GlobalVariable *GV) { 884 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 885 if (UseComdat) { 886 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 887 ? GV->getName() 888 : CntsVarName; 889 Comdat *C = M->getOrInsertComdat(GroupName); 890 if (!NeedComdat) 891 C->setSelectionKind(Comdat::NoDeduplicate); 892 GV->setComdat(C); 893 } 894 }; 895 896 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 897 LLVMContext &Ctx = M->getContext(); 898 ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 899 900 // Create the counters variable. 901 auto *CounterPtr = 902 new GlobalVariable(*M, CounterTy, false, Linkage, 903 Constant::getNullValue(CounterTy), CntsVarName); 904 CounterPtr->setVisibility(Visibility); 905 CounterPtr->setSection( 906 getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); 907 CounterPtr->setAlignment(Align(8)); 908 MaybeSetComdat(CounterPtr); 909 CounterPtr->setLinkage(Linkage); 910 911 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 912 // Allocate statically the array of pointers to value profile nodes for 913 // the current function. 914 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 915 uint64_t NS = 0; 916 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 917 NS += PD.NumValueSites[Kind]; 918 if (NS > 0 && ValueProfileStaticAlloc && 919 !needsRuntimeRegistrationOfSectionRange(TT)) { 920 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 921 auto *ValuesVar = new GlobalVariable( 922 *M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 923 getVarName(Inc, getInstrProfValuesVarPrefix())); 924 ValuesVar->setVisibility(Visibility); 925 ValuesVar->setSection( 926 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 927 ValuesVar->setAlignment(Align(8)); 928 MaybeSetComdat(ValuesVar); 929 ValuesPtrExpr = 930 ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); 931 } 932 933 // Create data variable. 934 auto *IntPtrTy = M->getDataLayout().getIntPtrType(M->getContext()); 935 auto *Int16Ty = Type::getInt16Ty(Ctx); 936 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 937 Type *DataTypes[] = { 938 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 939 #include "llvm/ProfileData/InstrProfData.inc" 940 }; 941 auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes)); 942 943 Constant *FunctionAddr = shouldRecordFunctionAddr(Fn) 944 ? ConstantExpr::getBitCast(Fn, Int8PtrTy) 945 : ConstantPointerNull::get(Int8PtrTy); 946 947 Constant *Int16ArrayVals[IPVK_Last + 1]; 948 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 949 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 950 951 // If the data variable is not referenced by code (if we don't emit 952 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 953 // data variable live under linker GC, the data variable can be private. This 954 // optimization applies to ELF. 955 // 956 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 957 // to be false. 958 if (NS == 0 && (TT.isOSBinFormatELF() || 959 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 960 Linkage = GlobalValue::PrivateLinkage; 961 Visibility = GlobalValue::DefaultVisibility; 962 } 963 auto *Data = 964 new GlobalVariable(*M, DataTy, false, Linkage, nullptr, DataVarName); 965 // Reference the counter variable with a label difference (link-time 966 // constant). 967 auto *RelativeCounterPtr = 968 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 969 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 970 971 Constant *DataVals[] = { 972 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 973 #include "llvm/ProfileData/InstrProfData.inc" 974 }; 975 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 976 977 Data->setVisibility(Visibility); 978 Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); 979 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 980 MaybeSetComdat(Data); 981 Data->setLinkage(Linkage); 982 983 PD.RegionCounters = CounterPtr; 984 PD.DataVar = Data; 985 ProfileDataMap[NamePtr] = PD; 986 987 // Mark the data variable as used so that it isn't stripped out. 988 CompilerUsedVars.push_back(Data); 989 // Now that the linkage set by the FE has been passed to the data and counter 990 // variables, reset Name variable's linkage and visibility to private so that 991 // it can be removed later by the compiler. 992 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 993 // Collect the referenced names to be used by emitNameData. 994 ReferencedNames.push_back(NamePtr); 995 996 return CounterPtr; 997 } 998 999 void InstrProfiling::emitVNodes() { 1000 if (!ValueProfileStaticAlloc) 1001 return; 1002 1003 // For now only support this on platforms that do 1004 // not require runtime registration to discover 1005 // named section start/end. 1006 if (needsRuntimeRegistrationOfSectionRange(TT)) 1007 return; 1008 1009 size_t TotalNS = 0; 1010 for (auto &PD : ProfileDataMap) { 1011 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1012 TotalNS += PD.second.NumValueSites[Kind]; 1013 } 1014 1015 if (!TotalNS) 1016 return; 1017 1018 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1019 // Heuristic for small programs with very few total value sites. 1020 // The default value of vp-counters-per-site is chosen based on 1021 // the observation that large apps usually have a low percentage 1022 // of value sites that actually have any profile data, and thus 1023 // the average number of counters per site is low. For small 1024 // apps with very few sites, this may not be true. Bump up the 1025 // number of counters in this case. 1026 #define INSTR_PROF_MIN_VAL_COUNTS 10 1027 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1028 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1029 1030 auto &Ctx = M->getContext(); 1031 Type *VNodeTypes[] = { 1032 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1033 #include "llvm/ProfileData/InstrProfData.inc" 1034 }; 1035 auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes)); 1036 1037 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1038 auto *VNodesVar = new GlobalVariable( 1039 *M, VNodesTy, false, GlobalValue::PrivateLinkage, 1040 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1041 VNodesVar->setSection( 1042 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1043 // VNodesVar is used by runtime but not referenced via relocation by other 1044 // sections. Conservatively make it linker retained. 1045 UsedVars.push_back(VNodesVar); 1046 } 1047 1048 void InstrProfiling::emitNameData() { 1049 std::string UncompressedData; 1050 1051 if (ReferencedNames.empty()) 1052 return; 1053 1054 std::string CompressedNameStr; 1055 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1056 DoInstrProfNameCompression)) { 1057 report_fatal_error(toString(std::move(E)), false); 1058 } 1059 1060 auto &Ctx = M->getContext(); 1061 auto *NamesVal = ConstantDataArray::getString( 1062 Ctx, StringRef(CompressedNameStr), false); 1063 NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, 1064 GlobalValue::PrivateLinkage, NamesVal, 1065 getInstrProfNamesVarName()); 1066 NamesSize = CompressedNameStr.size(); 1067 NamesVar->setSection( 1068 getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1069 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1070 // linker from inserting padding before the start of the names section or 1071 // between names entries. 1072 NamesVar->setAlignment(Align(1)); 1073 // NamesVar is used by runtime but not referenced via relocation by other 1074 // sections. Conservatively make it linker retained. 1075 UsedVars.push_back(NamesVar); 1076 1077 for (auto *NamePtr : ReferencedNames) 1078 NamePtr->eraseFromParent(); 1079 } 1080 1081 void InstrProfiling::emitRegistration() { 1082 if (!needsRuntimeRegistrationOfSectionRange(TT)) 1083 return; 1084 1085 // Construct the function. 1086 auto *VoidTy = Type::getVoidTy(M->getContext()); 1087 auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); 1088 auto *Int64Ty = Type::getInt64Ty(M->getContext()); 1089 auto *RegisterFTy = FunctionType::get(VoidTy, false); 1090 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 1091 getInstrProfRegFuncsName(), M); 1092 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1093 if (Options.NoRedZone) 1094 RegisterF->addFnAttr(Attribute::NoRedZone); 1095 1096 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 1097 auto *RuntimeRegisterF = 1098 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 1099 getInstrProfRegFuncName(), M); 1100 1101 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); 1102 for (Value *Data : CompilerUsedVars) 1103 if (!isa<Function>(Data)) 1104 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1105 for (Value *Data : UsedVars) 1106 if (Data != NamesVar && !isa<Function>(Data)) 1107 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1108 1109 if (NamesVar) { 1110 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 1111 auto *NamesRegisterTy = 1112 FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false); 1113 auto *NamesRegisterF = 1114 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 1115 getInstrProfNamesRegFuncName(), M); 1116 IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), 1117 IRB.getInt64(NamesSize)}); 1118 } 1119 1120 IRB.CreateRetVoid(); 1121 } 1122 1123 bool InstrProfiling::emitRuntimeHook() { 1124 // We expect the linker to be invoked with -u<hook_var> flag for Linux 1125 // in which case there is no need to emit the external variable. 1126 if (TT.isOSLinux()) 1127 return false; 1128 1129 // If the module's provided its own runtime, we don't need to do anything. 1130 if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) 1131 return false; 1132 1133 // Declare an external variable that will pull in the runtime initialization. 1134 auto *Int32Ty = Type::getInt32Ty(M->getContext()); 1135 auto *Var = 1136 new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, 1137 nullptr, getInstrProfRuntimeHookVarName()); 1138 1139 if (TT.isOSBinFormatELF()) { 1140 // Mark the user variable as used so that it isn't stripped out. 1141 CompilerUsedVars.push_back(Var); 1142 } else { 1143 // Make a function that uses it. 1144 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 1145 GlobalValue::LinkOnceODRLinkage, 1146 getInstrProfRuntimeHookVarUseFuncName(), M); 1147 User->addFnAttr(Attribute::NoInline); 1148 if (Options.NoRedZone) 1149 User->addFnAttr(Attribute::NoRedZone); 1150 User->setVisibility(GlobalValue::HiddenVisibility); 1151 if (TT.supportsCOMDAT()) 1152 User->setComdat(M->getOrInsertComdat(User->getName())); 1153 1154 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); 1155 auto *Load = IRB.CreateLoad(Int32Ty, Var); 1156 IRB.CreateRet(Load); 1157 1158 // Mark the function as used so that it isn't stripped out. 1159 CompilerUsedVars.push_back(User); 1160 } 1161 return true; 1162 } 1163 1164 void InstrProfiling::emitUses() { 1165 // The metadata sections are parallel arrays. Optimizers (e.g. 1166 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 1167 // we conservatively retain all unconditionally in the compiler. 1168 // 1169 // On ELF, the linker can guarantee the associated sections will be retained 1170 // or discarded as a unit, so llvm.compiler.used is sufficient. Similarly on 1171 // COFF, if prof data is not referenced by code we use one comdat and ensure 1172 // this GC property as well. Otherwise, we have to conservatively make all of 1173 // the sections retained by the linker. 1174 if (TT.isOSBinFormatELF() || 1175 (TT.isOSBinFormatCOFF() && !profDataReferencedByCode(*M))) 1176 appendToCompilerUsed(*M, CompilerUsedVars); 1177 else 1178 appendToUsed(*M, CompilerUsedVars); 1179 1180 // We do not add proper references from used metadata sections to NamesVar and 1181 // VNodesVar, so we have to be conservative and place them in llvm.used 1182 // regardless of the target, 1183 appendToUsed(*M, UsedVars); 1184 } 1185 1186 void InstrProfiling::emitInitialization() { 1187 // Create ProfileFileName variable. Don't don't this for the 1188 // context-sensitive instrumentation lowering: This lowering is after 1189 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 1190 // have already create the variable before LTO/ThinLTO linking. 1191 if (!IsCS) 1192 createProfileFileNameVar(*M, Options.InstrProfileOutput); 1193 Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); 1194 if (!RegisterF) 1195 return; 1196 1197 // Create the initialization function. 1198 auto *VoidTy = Type::getVoidTy(M->getContext()); 1199 auto *F = Function::Create(FunctionType::get(VoidTy, false), 1200 GlobalValue::InternalLinkage, 1201 getInstrProfInitFuncName(), M); 1202 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1203 F->addFnAttr(Attribute::NoInline); 1204 if (Options.NoRedZone) 1205 F->addFnAttr(Attribute::NoRedZone); 1206 1207 // Add the basic block and the necessary calls. 1208 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); 1209 IRB.CreateCall(RegisterF, {}); 1210 IRB.CreateRetVoid(); 1211 1212 appendToGlobalCtors(*M, F, 0); 1213 } 1214