1 //===-- IndirectCallPromotion.cpp - Optimizations based on value profiling ===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the transformation that promotes indirect calls to 11 // conditional direct calls when the indirect-call value profile metadata is 12 // available. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 23 #include "llvm/Analysis/IndirectCallSiteVisitor.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/Pass.h" 38 #include "llvm/PassRegistry.h" 39 #include "llvm/PassSupport.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Transforms/Instrumentation.h" 47 #include "llvm/Transforms/PGOInstrumentation.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "pgo-icall-prom" 56 57 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); 58 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); 59 STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized."); 60 STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated."); 61 62 // Command line option to disable indirect-call promotion with the default as 63 // false. This is for debug purpose. 64 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden, 65 cl::desc("Disable indirect call promotion")); 66 67 // Set the cutoff value for the promotion. If the value is other than 0, we 68 // stop the transformation once the total number of promotions equals the cutoff 69 // value. 70 // For debug use only. 71 static cl::opt<unsigned> 72 ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, cl::ZeroOrMore, 73 cl::desc("Max number of promotions for this compilation")); 74 75 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. 76 // For debug use only. 77 static cl::opt<unsigned> 78 ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, cl::ZeroOrMore, 79 cl::desc("Skip Callsite up to this number for this compilation")); 80 81 // Set if the pass is called in LTO optimization. The difference for LTO mode 82 // is the pass won't prefix the source module name to the internal linkage 83 // symbols. 84 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, 85 cl::desc("Run indirect-call promotion in LTO " 86 "mode")); 87 88 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO 89 // mode is it will add prof metadatato the created direct call. 90 static cl::opt<bool> 91 ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, 92 cl::desc("Run indirect-call promotion in SamplePGO mode")); 93 94 // If the option is set to true, only call instructions will be considered for 95 // transformation -- invoke instructions will be ignored. 96 static cl::opt<bool> 97 ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, 98 cl::desc("Run indirect-call promotion for call instructions " 99 "only")); 100 101 // If the option is set to true, only invoke instructions will be considered for 102 // transformation -- call instructions will be ignored. 103 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false), 104 cl::Hidden, 105 cl::desc("Run indirect-call promotion for " 106 "invoke instruction only")); 107 108 // Dump the function level IR if the transformation happened in this 109 // function. For debug use only. 110 static cl::opt<bool> 111 ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, 112 cl::desc("Dump IR after transformation happens")); 113 114 // The minimum call count to optimize memory intrinsic calls. 115 static cl::opt<unsigned> 116 MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore, 117 cl::init(1000), 118 cl::desc("The minimum count to optimize memory " 119 "intrinsic calls")); 120 121 // Command line option to disable memory intrinsic optimization. The default is 122 // false. This is for debug purpose. 123 static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false), 124 cl::Hidden, cl::desc("Disable optimize")); 125 126 // The percent threshold to optimize memory intrinsic calls. 127 static cl::opt<unsigned> 128 MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40), 129 cl::Hidden, cl::ZeroOrMore, 130 cl::desc("The percentage threshold for the " 131 "memory intrinsic calls optimization")); 132 133 // Maximum number of versions for optimizing memory intrinsic call. 134 static cl::opt<unsigned> 135 MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden, 136 cl::ZeroOrMore, 137 cl::desc("The max version for the optimized memory " 138 " intrinsic calls")); 139 140 // Scale the counts from the annotation using the BB count value. 141 static cl::opt<bool> 142 MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden, 143 cl::desc("Scale the memop size counts using the basic " 144 " block count value")); 145 146 // This option sets the rangge of precise profile memop sizes. 147 extern cl::opt<std::string> MemOPSizeRange; 148 149 // This option sets the value that groups large memop sizes 150 extern cl::opt<unsigned> MemOPSizeLarge; 151 152 namespace { 153 class PGOIndirectCallPromotionLegacyPass : public ModulePass { 154 public: 155 static char ID; 156 157 PGOIndirectCallPromotionLegacyPass(bool InLTO = false, bool SamplePGO = false) 158 : ModulePass(ID), InLTO(InLTO), SamplePGO(SamplePGO) { 159 initializePGOIndirectCallPromotionLegacyPassPass( 160 *PassRegistry::getPassRegistry()); 161 } 162 163 StringRef getPassName() const override { return "PGOIndirectCallPromotion"; } 164 165 private: 166 bool runOnModule(Module &M) override; 167 168 // If this pass is called in LTO. We need to special handling the PGOFuncName 169 // for the static variables due to LTO's internalization. 170 bool InLTO; 171 172 // If this pass is called in SamplePGO. We need to add the prof metadata to 173 // the promoted direct call. 174 bool SamplePGO; 175 }; 176 177 class PGOMemOPSizeOptLegacyPass : public FunctionPass { 178 public: 179 static char ID; 180 181 PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) { 182 initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry()); 183 } 184 185 StringRef getPassName() const override { return "PGOMemOPSize"; } 186 187 private: 188 bool runOnFunction(Function &F) override; 189 void getAnalysisUsage(AnalysisUsage &AU) const override { 190 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 191 AU.addPreserved<GlobalsAAWrapperPass>(); 192 } 193 }; 194 } // end anonymous namespace 195 196 char PGOIndirectCallPromotionLegacyPass::ID = 0; 197 INITIALIZE_PASS(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom", 198 "Use PGO instrumentation profile to promote indirect calls to " 199 "direct calls.", 200 false, false) 201 202 ModulePass *llvm::createPGOIndirectCallPromotionLegacyPass(bool InLTO, 203 bool SamplePGO) { 204 return new PGOIndirectCallPromotionLegacyPass(InLTO, SamplePGO); 205 } 206 207 char PGOMemOPSizeOptLegacyPass::ID = 0; 208 INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", 209 "Optimize memory intrinsic using its size value profile", 210 false, false) 211 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 212 INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", 213 "Optimize memory intrinsic using its size value profile", 214 false, false) 215 216 FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() { 217 return new PGOMemOPSizeOptLegacyPass(); 218 } 219 220 namespace { 221 // The class for main data structure to promote indirect calls to conditional 222 // direct calls. 223 class ICallPromotionFunc { 224 private: 225 Function &F; 226 Module *M; 227 228 // Symtab that maps indirect call profile values to function names and 229 // defines. 230 InstrProfSymtab *Symtab; 231 232 bool SamplePGO; 233 234 // Test if we can legally promote this direct-call of Target. 235 bool isPromotionLegal(Instruction *Inst, uint64_t Target, Function *&F, 236 const char **Reason = nullptr); 237 238 // A struct that records the direct target and it's call count. 239 struct PromotionCandidate { 240 Function *TargetFunction; 241 uint64_t Count; 242 PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} 243 }; 244 245 // Check if the indirect-call call site should be promoted. Return the number 246 // of promotions. Inst is the candidate indirect call, ValueDataRef 247 // contains the array of value profile data for profiled targets, 248 // TotalCount is the total profiled count of call executions, and 249 // NumCandidates is the number of candidate entries in ValueDataRef. 250 std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( 251 Instruction *Inst, const ArrayRef<InstrProfValueData> &ValueDataRef, 252 uint64_t TotalCount, uint32_t NumCandidates); 253 254 // Promote a list of targets for one indirect-call callsite. Return 255 // the number of promotions. 256 uint32_t tryToPromote(Instruction *Inst, 257 const std::vector<PromotionCandidate> &Candidates, 258 uint64_t &TotalCount); 259 260 // Noncopyable 261 ICallPromotionFunc(const ICallPromotionFunc &other) = delete; 262 ICallPromotionFunc &operator=(const ICallPromotionFunc &other) = delete; 263 264 public: 265 ICallPromotionFunc(Function &Func, Module *Modu, InstrProfSymtab *Symtab, 266 bool SamplePGO) 267 : F(Func), M(Modu), Symtab(Symtab), SamplePGO(SamplePGO) {} 268 269 bool processFunction(); 270 }; 271 } // end anonymous namespace 272 273 bool llvm::isLegalToPromote(Instruction *Inst, Function *F, 274 const char **Reason) { 275 // Check the return type. 276 Type *CallRetType = Inst->getType(); 277 if (!CallRetType->isVoidTy()) { 278 Type *FuncRetType = F->getReturnType(); 279 if (FuncRetType != CallRetType && 280 !CastInst::isBitCastable(FuncRetType, CallRetType)) { 281 if (Reason) 282 *Reason = "Return type mismatch"; 283 return false; 284 } 285 } 286 287 // Check if the arguments are compatible with the parameters 288 FunctionType *DirectCalleeType = F->getFunctionType(); 289 unsigned ParamNum = DirectCalleeType->getFunctionNumParams(); 290 CallSite CS(Inst); 291 unsigned ArgNum = CS.arg_size(); 292 293 if (ParamNum != ArgNum && !DirectCalleeType->isVarArg()) { 294 if (Reason) 295 *Reason = "The number of arguments mismatch"; 296 return false; 297 } 298 299 for (unsigned I = 0; I < ParamNum; ++I) { 300 Type *PTy = DirectCalleeType->getFunctionParamType(I); 301 Type *ATy = CS.getArgument(I)->getType(); 302 if (PTy == ATy) 303 continue; 304 if (!CastInst::castIsValid(Instruction::BitCast, CS.getArgument(I), PTy)) { 305 if (Reason) 306 *Reason = "Argument type mismatch"; 307 return false; 308 } 309 } 310 311 DEBUG(dbgs() << " #" << NumOfPGOICallPromotion << " Promote the icall to " 312 << F->getName() << "\n"); 313 return true; 314 } 315 316 bool ICallPromotionFunc::isPromotionLegal(Instruction *Inst, uint64_t Target, 317 Function *&TargetFunction, 318 const char **Reason) { 319 TargetFunction = Symtab->getFunction(Target); 320 if (TargetFunction == nullptr) { 321 *Reason = "Cannot find the target"; 322 return false; 323 } 324 return isLegalToPromote(Inst, TargetFunction, Reason); 325 } 326 327 // Indirect-call promotion heuristic. The direct targets are sorted based on 328 // the count. Stop at the first target that is not promoted. 329 std::vector<ICallPromotionFunc::PromotionCandidate> 330 ICallPromotionFunc::getPromotionCandidatesForCallSite( 331 Instruction *Inst, const ArrayRef<InstrProfValueData> &ValueDataRef, 332 uint64_t TotalCount, uint32_t NumCandidates) { 333 std::vector<PromotionCandidate> Ret; 334 335 DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << *Inst 336 << " Num_targets: " << ValueDataRef.size() 337 << " Num_candidates: " << NumCandidates << "\n"); 338 NumOfPGOICallsites++; 339 if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { 340 DEBUG(dbgs() << " Skip: User options.\n"); 341 return Ret; 342 } 343 344 for (uint32_t I = 0; I < NumCandidates; I++) { 345 uint64_t Count = ValueDataRef[I].Count; 346 assert(Count <= TotalCount); 347 uint64_t Target = ValueDataRef[I].Value; 348 DEBUG(dbgs() << " Candidate " << I << " Count=" << Count 349 << " Target_func: " << Target << "\n"); 350 351 if (ICPInvokeOnly && dyn_cast<CallInst>(Inst)) { 352 DEBUG(dbgs() << " Not promote: User options.\n"); 353 break; 354 } 355 if (ICPCallOnly && dyn_cast<InvokeInst>(Inst)) { 356 DEBUG(dbgs() << " Not promote: User option.\n"); 357 break; 358 } 359 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { 360 DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); 361 break; 362 } 363 Function *TargetFunction = nullptr; 364 const char *Reason = nullptr; 365 if (!isPromotionLegal(Inst, Target, TargetFunction, &Reason)) { 366 StringRef TargetFuncName = Symtab->getFuncName(Target); 367 DEBUG(dbgs() << " Not promote: " << Reason << "\n"); 368 emitOptimizationRemarkMissed( 369 F.getContext(), "pgo-icall-prom", F, Inst->getDebugLoc(), 370 Twine("Cannot promote indirect call to ") + 371 (TargetFuncName.empty() ? Twine(Target) : Twine(TargetFuncName)) + 372 Twine(" with count of ") + Twine(Count) + ": " + Reason); 373 break; 374 } 375 Ret.push_back(PromotionCandidate(TargetFunction, Count)); 376 TotalCount -= Count; 377 } 378 return Ret; 379 } 380 381 // Create a diamond structure for If_Then_Else. Also update the profile 382 // count. Do the fix-up for the invoke instruction. 383 static void createIfThenElse(Instruction *Inst, Function *DirectCallee, 384 uint64_t Count, uint64_t TotalCount, 385 BasicBlock **DirectCallBB, 386 BasicBlock **IndirectCallBB, 387 BasicBlock **MergeBB) { 388 CallSite CS(Inst); 389 Value *OrigCallee = CS.getCalledValue(); 390 391 IRBuilder<> BBBuilder(Inst); 392 LLVMContext &Ctx = Inst->getContext(); 393 Value *BCI1 = 394 BBBuilder.CreateBitCast(OrigCallee, Type::getInt8PtrTy(Ctx), ""); 395 Value *BCI2 = 396 BBBuilder.CreateBitCast(DirectCallee, Type::getInt8PtrTy(Ctx), ""); 397 Value *PtrCmp = BBBuilder.CreateICmpEQ(BCI1, BCI2, ""); 398 399 uint64_t ElseCount = TotalCount - Count; 400 uint64_t MaxCount = (Count >= ElseCount ? Count : ElseCount); 401 uint64_t Scale = calculateCountScale(MaxCount); 402 MDBuilder MDB(Inst->getContext()); 403 MDNode *BranchWeights = MDB.createBranchWeights( 404 scaleBranchCount(Count, Scale), scaleBranchCount(ElseCount, Scale)); 405 TerminatorInst *ThenTerm, *ElseTerm; 406 SplitBlockAndInsertIfThenElse(PtrCmp, Inst, &ThenTerm, &ElseTerm, 407 BranchWeights); 408 *DirectCallBB = ThenTerm->getParent(); 409 (*DirectCallBB)->setName("if.true.direct_targ"); 410 *IndirectCallBB = ElseTerm->getParent(); 411 (*IndirectCallBB)->setName("if.false.orig_indirect"); 412 *MergeBB = Inst->getParent(); 413 (*MergeBB)->setName("if.end.icp"); 414 415 // Special handing of Invoke instructions. 416 InvokeInst *II = dyn_cast<InvokeInst>(Inst); 417 if (!II) 418 return; 419 420 // We don't need branch instructions for invoke. 421 ThenTerm->eraseFromParent(); 422 ElseTerm->eraseFromParent(); 423 424 // Add jump from Merge BB to the NormalDest. This is needed for the newly 425 // created direct invoke stmt -- as its NormalDst will be fixed up to MergeBB. 426 BranchInst::Create(II->getNormalDest(), *MergeBB); 427 } 428 429 // Find the PHI in BB that have the CallResult as the operand. 430 static bool getCallRetPHINode(BasicBlock *BB, Instruction *Inst) { 431 BasicBlock *From = Inst->getParent(); 432 for (auto &I : *BB) { 433 PHINode *PHI = dyn_cast<PHINode>(&I); 434 if (!PHI) 435 continue; 436 int IX = PHI->getBasicBlockIndex(From); 437 if (IX == -1) 438 continue; 439 Value *V = PHI->getIncomingValue(IX); 440 if (dyn_cast<Instruction>(V) == Inst) 441 return true; 442 } 443 return false; 444 } 445 446 // This method fixes up PHI nodes in BB where BB is the UnwindDest of an 447 // invoke instruction. In BB, there may be PHIs with incoming block being 448 // OrigBB (the MergeBB after if-then-else splitting). After moving the invoke 449 // instructions to its own BB, OrigBB is no longer the predecessor block of BB. 450 // Instead two new predecessors are added: IndirectCallBB and DirectCallBB, 451 // so the PHI node's incoming BBs need to be fixed up accordingly. 452 static void fixupPHINodeForUnwind(Instruction *Inst, BasicBlock *BB, 453 BasicBlock *OrigBB, 454 BasicBlock *IndirectCallBB, 455 BasicBlock *DirectCallBB) { 456 for (auto &I : *BB) { 457 PHINode *PHI = dyn_cast<PHINode>(&I); 458 if (!PHI) 459 continue; 460 int IX = PHI->getBasicBlockIndex(OrigBB); 461 if (IX == -1) 462 continue; 463 Value *V = PHI->getIncomingValue(IX); 464 PHI->addIncoming(V, IndirectCallBB); 465 PHI->setIncomingBlock(IX, DirectCallBB); 466 } 467 } 468 469 // This method fixes up PHI nodes in BB where BB is the NormalDest of an 470 // invoke instruction. In BB, there may be PHIs with incoming block being 471 // OrigBB (the MergeBB after if-then-else splitting). After moving the invoke 472 // instructions to its own BB, a new incoming edge will be added to the original 473 // NormalDstBB from the IndirectCallBB. 474 static void fixupPHINodeForNormalDest(Instruction *Inst, BasicBlock *BB, 475 BasicBlock *OrigBB, 476 BasicBlock *IndirectCallBB, 477 Instruction *NewInst) { 478 for (auto &I : *BB) { 479 PHINode *PHI = dyn_cast<PHINode>(&I); 480 if (!PHI) 481 continue; 482 int IX = PHI->getBasicBlockIndex(OrigBB); 483 if (IX == -1) 484 continue; 485 Value *V = PHI->getIncomingValue(IX); 486 if (dyn_cast<Instruction>(V) == Inst) { 487 PHI->setIncomingBlock(IX, IndirectCallBB); 488 PHI->addIncoming(NewInst, OrigBB); 489 continue; 490 } 491 PHI->addIncoming(V, IndirectCallBB); 492 } 493 } 494 495 // Add a bitcast instruction to the direct-call return value if needed. 496 static Instruction *insertCallRetCast(const Instruction *Inst, 497 Instruction *DirectCallInst, 498 Function *DirectCallee) { 499 if (Inst->getType()->isVoidTy()) 500 return DirectCallInst; 501 502 Type *CallRetType = Inst->getType(); 503 Type *FuncRetType = DirectCallee->getReturnType(); 504 if (FuncRetType == CallRetType) 505 return DirectCallInst; 506 507 BasicBlock *InsertionBB; 508 if (CallInst *CI = dyn_cast<CallInst>(DirectCallInst)) 509 InsertionBB = CI->getParent(); 510 else 511 InsertionBB = (dyn_cast<InvokeInst>(DirectCallInst))->getNormalDest(); 512 513 return (new BitCastInst(DirectCallInst, CallRetType, "", 514 InsertionBB->getTerminator())); 515 } 516 517 // Create a DirectCall instruction in the DirectCallBB. 518 // Parameter Inst is the indirect-call (invoke) instruction. 519 // DirectCallee is the decl of the direct-call (invoke) target. 520 // DirecallBB is the BB that the direct-call (invoke) instruction is inserted. 521 // MergeBB is the bottom BB of the if-then-else-diamond after the 522 // transformation. For invoke instruction, the edges from DirectCallBB and 523 // IndirectCallBB to MergeBB are removed before this call (during 524 // createIfThenElse). 525 static Instruction *createDirectCallInst(const Instruction *Inst, 526 Function *DirectCallee, 527 BasicBlock *DirectCallBB, 528 BasicBlock *MergeBB) { 529 Instruction *NewInst = Inst->clone(); 530 if (CallInst *CI = dyn_cast<CallInst>(NewInst)) { 531 CI->setCalledFunction(DirectCallee); 532 CI->mutateFunctionType(DirectCallee->getFunctionType()); 533 } else { 534 // Must be an invoke instruction. Direct invoke's normal destination is 535 // fixed up to MergeBB. MergeBB is the place where return cast is inserted. 536 // Also since IndirectCallBB does not have an edge to MergeBB, there is no 537 // need to insert new PHIs into MergeBB. 538 InvokeInst *II = dyn_cast<InvokeInst>(NewInst); 539 assert(II); 540 II->setCalledFunction(DirectCallee); 541 II->mutateFunctionType(DirectCallee->getFunctionType()); 542 II->setNormalDest(MergeBB); 543 } 544 545 DirectCallBB->getInstList().insert(DirectCallBB->getFirstInsertionPt(), 546 NewInst); 547 548 // Clear the value profile data. 549 NewInst->setMetadata(LLVMContext::MD_prof, nullptr); 550 CallSite NewCS(NewInst); 551 FunctionType *DirectCalleeType = DirectCallee->getFunctionType(); 552 unsigned ParamNum = DirectCalleeType->getFunctionNumParams(); 553 for (unsigned I = 0; I < ParamNum; ++I) { 554 Type *ATy = NewCS.getArgument(I)->getType(); 555 Type *PTy = DirectCalleeType->getParamType(I); 556 if (ATy != PTy) { 557 BitCastInst *BI = new BitCastInst(NewCS.getArgument(I), PTy, "", NewInst); 558 NewCS.setArgument(I, BI); 559 } 560 } 561 562 return insertCallRetCast(Inst, NewInst, DirectCallee); 563 } 564 565 // Create a PHI to unify the return values of calls. 566 static void insertCallRetPHI(Instruction *Inst, Instruction *CallResult, 567 Function *DirectCallee) { 568 if (Inst->getType()->isVoidTy()) 569 return; 570 571 BasicBlock *RetValBB = CallResult->getParent(); 572 573 BasicBlock *PHIBB; 574 if (InvokeInst *II = dyn_cast<InvokeInst>(CallResult)) 575 RetValBB = II->getNormalDest(); 576 577 PHIBB = RetValBB->getSingleSuccessor(); 578 if (getCallRetPHINode(PHIBB, Inst)) 579 return; 580 581 PHINode *CallRetPHI = PHINode::Create(Inst->getType(), 0); 582 PHIBB->getInstList().push_front(CallRetPHI); 583 Inst->replaceAllUsesWith(CallRetPHI); 584 CallRetPHI->addIncoming(Inst, Inst->getParent()); 585 CallRetPHI->addIncoming(CallResult, RetValBB); 586 } 587 588 // This function does the actual indirect-call promotion transformation: 589 // For an indirect-call like: 590 // Ret = (*Foo)(Args); 591 // It transforms to: 592 // if (Foo == DirectCallee) 593 // Ret1 = DirectCallee(Args); 594 // else 595 // Ret2 = (*Foo)(Args); 596 // Ret = phi(Ret1, Ret2); 597 // It adds type casts for the args do not match the parameters and the return 598 // value. Branch weights metadata also updated. 599 // If \p AttachProfToDirectCall is true, a prof metadata is attached to the 600 // new direct call to contain \p Count. This is used by SamplePGO inliner to 601 // check callsite hotness. 602 // Returns the promoted direct call instruction. 603 Instruction *llvm::promoteIndirectCall(Instruction *Inst, 604 Function *DirectCallee, uint64_t Count, 605 uint64_t TotalCount, 606 bool AttachProfToDirectCall) { 607 assert(DirectCallee != nullptr); 608 BasicBlock *BB = Inst->getParent(); 609 // Just to suppress the non-debug build warning. 610 (void)BB; 611 DEBUG(dbgs() << "\n\n== Basic Block Before ==\n"); 612 DEBUG(dbgs() << *BB << "\n"); 613 614 BasicBlock *DirectCallBB, *IndirectCallBB, *MergeBB; 615 createIfThenElse(Inst, DirectCallee, Count, TotalCount, &DirectCallBB, 616 &IndirectCallBB, &MergeBB); 617 618 Instruction *NewInst = 619 createDirectCallInst(Inst, DirectCallee, DirectCallBB, MergeBB); 620 621 if (AttachProfToDirectCall) { 622 SmallVector<uint32_t, 1> Weights; 623 Weights.push_back(Count); 624 MDBuilder MDB(NewInst->getContext()); 625 dyn_cast<Instruction>(NewInst->stripPointerCasts()) 626 ->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 627 } 628 629 // Move Inst from MergeBB to IndirectCallBB. 630 Inst->removeFromParent(); 631 IndirectCallBB->getInstList().insert(IndirectCallBB->getFirstInsertionPt(), 632 Inst); 633 634 if (InvokeInst *II = dyn_cast<InvokeInst>(Inst)) { 635 // At this point, the original indirect invoke instruction has the original 636 // UnwindDest and NormalDest. For the direct invoke instruction, the 637 // NormalDest points to MergeBB, and MergeBB jumps to the original 638 // NormalDest. MergeBB might have a new bitcast instruction for the return 639 // value. The PHIs are with the original NormalDest. Since we now have two 640 // incoming edges to NormalDest and UnwindDest, we have to do some fixups. 641 // 642 // UnwindDest will not use the return value. So pass nullptr here. 643 fixupPHINodeForUnwind(Inst, II->getUnwindDest(), MergeBB, IndirectCallBB, 644 DirectCallBB); 645 // We don't need to update the operand from NormalDest for DirectCallBB. 646 // Pass nullptr here. 647 fixupPHINodeForNormalDest(Inst, II->getNormalDest(), MergeBB, 648 IndirectCallBB, NewInst); 649 } 650 651 insertCallRetPHI(Inst, NewInst, DirectCallee); 652 653 DEBUG(dbgs() << "\n== Basic Blocks After ==\n"); 654 DEBUG(dbgs() << *BB << *DirectCallBB << *IndirectCallBB << *MergeBB << "\n"); 655 656 emitOptimizationRemark( 657 BB->getContext(), "pgo-icall-prom", *BB->getParent(), Inst->getDebugLoc(), 658 Twine("Promote indirect call to ") + DirectCallee->getName() + 659 " with count " + Twine(Count) + " out of " + Twine(TotalCount)); 660 return NewInst; 661 } 662 663 // Promote indirect-call to conditional direct-call for one callsite. 664 uint32_t ICallPromotionFunc::tryToPromote( 665 Instruction *Inst, const std::vector<PromotionCandidate> &Candidates, 666 uint64_t &TotalCount) { 667 uint32_t NumPromoted = 0; 668 669 for (auto &C : Candidates) { 670 uint64_t Count = C.Count; 671 promoteIndirectCall(Inst, C.TargetFunction, Count, TotalCount, SamplePGO); 672 assert(TotalCount >= Count); 673 TotalCount -= Count; 674 NumOfPGOICallPromotion++; 675 NumPromoted++; 676 } 677 return NumPromoted; 678 } 679 680 // Traverse all the indirect-call callsite and get the value profile 681 // annotation to perform indirect-call promotion. 682 bool ICallPromotionFunc::processFunction() { 683 bool Changed = false; 684 ICallPromotionAnalysis ICallAnalysis; 685 for (auto &I : findIndirectCallSites(F)) { 686 uint32_t NumVals, NumCandidates; 687 uint64_t TotalCount; 688 auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( 689 I, NumVals, TotalCount, NumCandidates); 690 if (!NumCandidates) 691 continue; 692 auto PromotionCandidates = getPromotionCandidatesForCallSite( 693 I, ICallProfDataRef, TotalCount, NumCandidates); 694 uint32_t NumPromoted = tryToPromote(I, PromotionCandidates, TotalCount); 695 if (NumPromoted == 0) 696 continue; 697 698 Changed = true; 699 // Adjust the MD.prof metadata. First delete the old one. 700 I->setMetadata(LLVMContext::MD_prof, nullptr); 701 // If all promoted, we don't need the MD.prof metadata. 702 if (TotalCount == 0 || NumPromoted == NumVals) 703 continue; 704 // Otherwise we need update with the un-promoted records back. 705 annotateValueSite(*M, *I, ICallProfDataRef.slice(NumPromoted), TotalCount, 706 IPVK_IndirectCallTarget, NumCandidates); 707 } 708 return Changed; 709 } 710 711 // A wrapper function that does the actual work. 712 static bool promoteIndirectCalls(Module &M, bool InLTO, bool SamplePGO) { 713 if (DisableICP) 714 return false; 715 InstrProfSymtab Symtab; 716 Symtab.create(M, InLTO); 717 bool Changed = false; 718 for (auto &F : M) { 719 if (F.isDeclaration()) 720 continue; 721 if (F.hasFnAttribute(Attribute::OptimizeNone)) 722 continue; 723 ICallPromotionFunc ICallPromotion(F, &M, &Symtab, SamplePGO); 724 bool FuncChanged = ICallPromotion.processFunction(); 725 if (ICPDUMPAFTER && FuncChanged) { 726 DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); 727 DEBUG(dbgs() << "\n"); 728 } 729 Changed |= FuncChanged; 730 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { 731 DEBUG(dbgs() << " Stop: Cutoff reached.\n"); 732 break; 733 } 734 } 735 return Changed; 736 } 737 738 bool PGOIndirectCallPromotionLegacyPass::runOnModule(Module &M) { 739 // Command-line option has the priority for InLTO. 740 return promoteIndirectCalls(M, InLTO | ICPLTOMode, 741 SamplePGO | ICPSamplePGOMode); 742 } 743 744 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, 745 ModuleAnalysisManager &AM) { 746 if (!promoteIndirectCalls(M, InLTO | ICPLTOMode, 747 SamplePGO | ICPSamplePGOMode)) 748 return PreservedAnalyses::all(); 749 750 return PreservedAnalyses::none(); 751 } 752 753 namespace { 754 class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> { 755 public: 756 MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI) 757 : Func(Func), BFI(BFI), Changed(false) { 758 ValueDataArray = 759 llvm::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2); 760 // Get the MemOPSize range information from option MemOPSizeRange, 761 getMemOPSizeRangeFromOption(MemOPSizeRange, PreciseRangeStart, 762 PreciseRangeLast); 763 } 764 bool isChanged() const { return Changed; } 765 void perform() { 766 WorkList.clear(); 767 visit(Func); 768 769 for (auto &MI : WorkList) { 770 ++NumOfPGOMemOPAnnotate; 771 if (perform(MI)) { 772 Changed = true; 773 ++NumOfPGOMemOPOpt; 774 DEBUG(dbgs() << "MemOP call: " << MI->getCalledFunction()->getName() 775 << "is Transformed.\n"); 776 } 777 } 778 } 779 780 void visitMemIntrinsic(MemIntrinsic &MI) { 781 Value *Length = MI.getLength(); 782 // Not perform on constant length calls. 783 if (dyn_cast<ConstantInt>(Length)) 784 return; 785 WorkList.push_back(&MI); 786 } 787 788 private: 789 Function &Func; 790 BlockFrequencyInfo &BFI; 791 bool Changed; 792 std::vector<MemIntrinsic *> WorkList; 793 // Start of the previse range. 794 int64_t PreciseRangeStart; 795 // Last value of the previse range. 796 int64_t PreciseRangeLast; 797 // The space to read the profile annotation. 798 std::unique_ptr<InstrProfValueData[]> ValueDataArray; 799 bool perform(MemIntrinsic *MI); 800 801 // This kind shows which group the value falls in. For PreciseValue, we have 802 // the profile count for that value. LargeGroup groups the values that are in 803 // range [LargeValue, +inf). NonLargeGroup groups the rest of values. 804 enum MemOPSizeKind { PreciseValue, NonLargeGroup, LargeGroup }; 805 806 MemOPSizeKind getMemOPSizeKind(int64_t Value) const { 807 if (Value == MemOPSizeLarge && MemOPSizeLarge != 0) 808 return LargeGroup; 809 if (Value == PreciseRangeLast + 1) 810 return NonLargeGroup; 811 return PreciseValue; 812 } 813 }; 814 815 static const char *getMIName(const MemIntrinsic *MI) { 816 switch (MI->getIntrinsicID()) { 817 case Intrinsic::memcpy: 818 return "memcpy"; 819 case Intrinsic::memmove: 820 return "memmove"; 821 case Intrinsic::memset: 822 return "memset"; 823 default: 824 return "unknown"; 825 } 826 } 827 828 static bool isProfitable(uint64_t Count, uint64_t TotalCount) { 829 assert(Count <= TotalCount); 830 if (Count < MemOPCountThreshold) 831 return false; 832 if (Count < TotalCount * MemOPPercentThreshold / 100) 833 return false; 834 return true; 835 } 836 837 static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num, 838 uint64_t Denom) { 839 if (!MemOPScaleCount) 840 return Count; 841 bool Overflowed; 842 uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed); 843 return ScaleCount / Denom; 844 } 845 846 bool MemOPSizeOpt::perform(MemIntrinsic *MI) { 847 assert(MI); 848 if (MI->getIntrinsicID() == Intrinsic::memmove) 849 return false; 850 851 uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2; 852 uint64_t TotalCount; 853 if (!getValueProfDataFromInst(*MI, IPVK_MemOPSize, MaxNumPromotions, 854 ValueDataArray.get(), NumVals, TotalCount)) 855 return false; 856 857 uint64_t ActualCount = TotalCount; 858 uint64_t SavedTotalCount = TotalCount; 859 if (MemOPScaleCount) { 860 auto BBEdgeCount = BFI.getBlockProfileCount(MI->getParent()); 861 if (!BBEdgeCount) 862 return false; 863 ActualCount = *BBEdgeCount; 864 } 865 866 ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals); 867 DEBUG(dbgs() << "Read one memory intrinsic profile with count " << ActualCount 868 << "\n"); 869 DEBUG( 870 for (auto &VD 871 : VDs) { dbgs() << " (" << VD.Value << "," << VD.Count << ")\n"; }); 872 873 if (ActualCount < MemOPCountThreshold) 874 return false; 875 // Skip if the total value profiled count is 0, in which case we can't 876 // scale up the counts properly (and there is no profitable transformation). 877 if (TotalCount == 0) 878 return false; 879 880 TotalCount = ActualCount; 881 if (MemOPScaleCount) 882 DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount 883 << " denominator = " << SavedTotalCount << "\n"); 884 885 // Keeping track of the count of the default case: 886 uint64_t RemainCount = TotalCount; 887 SmallVector<uint64_t, 16> SizeIds; 888 SmallVector<uint64_t, 16> CaseCounts; 889 uint64_t MaxCount = 0; 890 unsigned Version = 0; 891 // Default case is in the front -- save the slot here. 892 CaseCounts.push_back(0); 893 for (auto &VD : VDs) { 894 int64_t V = VD.Value; 895 uint64_t C = VD.Count; 896 if (MemOPScaleCount) 897 C = getScaledCount(C, ActualCount, SavedTotalCount); 898 899 // Only care precise value here. 900 if (getMemOPSizeKind(V) != PreciseValue) 901 continue; 902 903 // ValueCounts are sorted on the count. Break at the first un-profitable 904 // value. 905 if (!isProfitable(C, RemainCount)) 906 break; 907 908 SizeIds.push_back(V); 909 CaseCounts.push_back(C); 910 if (C > MaxCount) 911 MaxCount = C; 912 913 assert(RemainCount >= C); 914 RemainCount -= C; 915 916 if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0) 917 break; 918 } 919 920 if (Version == 0) 921 return false; 922 923 CaseCounts[0] = RemainCount; 924 if (RemainCount > MaxCount) 925 MaxCount = RemainCount; 926 927 uint64_t SumForOpt = TotalCount - RemainCount; 928 929 DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version 930 << " Versions (covering " << SumForOpt << " out of " 931 << TotalCount << ")\n"); 932 933 // mem_op(..., size) 934 // ==> 935 // switch (size) { 936 // case s1: 937 // mem_op(..., s1); 938 // goto merge_bb; 939 // case s2: 940 // mem_op(..., s2); 941 // goto merge_bb; 942 // ... 943 // default: 944 // mem_op(..., size); 945 // goto merge_bb; 946 // } 947 // merge_bb: 948 949 BasicBlock *BB = MI->getParent(); 950 DEBUG(dbgs() << "\n\n== Basic Block Before ==\n"); 951 DEBUG(dbgs() << *BB << "\n"); 952 auto OrigBBFreq = BFI.getBlockFreq(BB); 953 954 BasicBlock *DefaultBB = SplitBlock(BB, MI); 955 BasicBlock::iterator It(*MI); 956 ++It; 957 assert(It != DefaultBB->end()); 958 BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It)); 959 MergeBB->setName("MemOP.Merge"); 960 BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency()); 961 DefaultBB->setName("MemOP.Default"); 962 963 auto &Ctx = Func.getContext(); 964 IRBuilder<> IRB(BB); 965 BB->getTerminator()->eraseFromParent(); 966 Value *SizeVar = MI->getLength(); 967 SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size()); 968 969 // Clear the value profile data. 970 MI->setMetadata(LLVMContext::MD_prof, nullptr); 971 972 DEBUG(dbgs() << "\n\n== Basic Block After==\n"); 973 974 for (uint64_t SizeId : SizeIds) { 975 ConstantInt *CaseSizeId = ConstantInt::get(Type::getInt64Ty(Ctx), SizeId); 976 BasicBlock *CaseBB = BasicBlock::Create( 977 Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB); 978 Instruction *NewInst = MI->clone(); 979 // Fix the argument. 980 dyn_cast<MemIntrinsic>(NewInst)->setLength(CaseSizeId); 981 CaseBB->getInstList().push_back(NewInst); 982 IRBuilder<> IRBCase(CaseBB); 983 IRBCase.CreateBr(MergeBB); 984 SI->addCase(CaseSizeId, CaseBB); 985 DEBUG(dbgs() << *CaseBB << "\n"); 986 } 987 setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount); 988 989 DEBUG(dbgs() << *BB << "\n"); 990 DEBUG(dbgs() << *DefaultBB << "\n"); 991 DEBUG(dbgs() << *MergeBB << "\n"); 992 993 emitOptimizationRemark(Func.getContext(), "memop-opt", Func, 994 MI->getDebugLoc(), 995 Twine("optimize ") + getMIName(MI) + " with count " + 996 Twine(SumForOpt) + " out of " + Twine(TotalCount) + 997 " for " + Twine(Version) + " versions"); 998 999 return true; 1000 } 1001 } // namespace 1002 1003 static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI) { 1004 if (DisableMemOPOPT) 1005 return false; 1006 1007 if (F.hasFnAttribute(Attribute::OptimizeForSize)) 1008 return false; 1009 MemOPSizeOpt MemOPSizeOpt(F, BFI); 1010 MemOPSizeOpt.perform(); 1011 return MemOPSizeOpt.isChanged(); 1012 } 1013 1014 bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) { 1015 BlockFrequencyInfo &BFI = 1016 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1017 return PGOMemOPSizeOptImpl(F, BFI); 1018 } 1019 1020 namespace llvm { 1021 char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID; 1022 1023 PreservedAnalyses PGOMemOPSizeOpt::run(Function &F, 1024 FunctionAnalysisManager &FAM) { 1025 auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 1026 bool Changed = PGOMemOPSizeOptImpl(F, BFI); 1027 if (!Changed) 1028 return PreservedAnalyses::all(); 1029 auto PA = PreservedAnalyses(); 1030 PA.preserve<GlobalsAA>(); 1031 return PA; 1032 } 1033 } // namespace llvm 1034