1 //===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of HWAddressSanitizer, an address sanity checker
11 /// based on tagged addressing.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Instrumentation.h"
48 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/ModuleUtils.h"
51 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 #include <sstream>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "hwasan"
57 
58 static const char *const kHwasanModuleCtorName = "hwasan.module_ctor";
59 static const char *const kHwasanNoteName = "hwasan.note";
60 static const char *const kHwasanInitName = "__hwasan_init";
61 static const char *const kHwasanPersonalityThunkName =
62     "__hwasan_personality_thunk";
63 
64 static const char *const kHwasanShadowMemoryDynamicAddress =
65     "__hwasan_shadow_memory_dynamic_address";
66 
67 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
68 static const size_t kNumberOfAccessSizes = 5;
69 
70 static const size_t kDefaultShadowScale = 4;
71 static const uint64_t kDynamicShadowSentinel =
72     std::numeric_limits<uint64_t>::max();
73 static const unsigned kPointerTagShift = 56;
74 
75 static const unsigned kShadowBaseAlignment = 32;
76 
77 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
78     "hwasan-memory-access-callback-prefix",
79     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
80     cl::init("__hwasan_"));
81 
82 static cl::opt<bool>
83     ClInstrumentWithCalls("hwasan-instrument-with-calls",
84                 cl::desc("instrument reads and writes with callbacks"),
85                 cl::Hidden, cl::init(false));
86 
87 static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
88                                        cl::desc("instrument read instructions"),
89                                        cl::Hidden, cl::init(true));
90 
91 static cl::opt<bool> ClInstrumentWrites(
92     "hwasan-instrument-writes", cl::desc("instrument write instructions"),
93     cl::Hidden, cl::init(true));
94 
95 static cl::opt<bool> ClInstrumentAtomics(
96     "hwasan-instrument-atomics",
97     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
98     cl::init(true));
99 
100 static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval",
101                                        cl::desc("instrument byval arguments"),
102                                        cl::Hidden, cl::init(true));
103 
104 static cl::opt<bool> ClRecover(
105     "hwasan-recover",
106     cl::desc("Enable recovery mode (continue-after-error)."),
107     cl::Hidden, cl::init(false));
108 
109 static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
110                                        cl::desc("instrument stack (allocas)"),
111                                        cl::Hidden, cl::init(true));
112 
113 static cl::opt<bool> ClUARRetagToZero(
114     "hwasan-uar-retag-to-zero",
115     cl::desc("Clear alloca tags before returning from the function to allow "
116              "non-instrumented and instrumented function calls mix. When set "
117              "to false, allocas are retagged before returning from the "
118              "function to detect use after return."),
119     cl::Hidden, cl::init(true));
120 
121 static cl::opt<bool> ClGenerateTagsWithCalls(
122     "hwasan-generate-tags-with-calls",
123     cl::desc("generate new tags with runtime library calls"), cl::Hidden,
124     cl::init(false));
125 
126 static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"),
127                                cl::Hidden, cl::init(false), cl::ZeroOrMore);
128 
129 static cl::opt<int> ClMatchAllTag(
130     "hwasan-match-all-tag",
131     cl::desc("don't report bad accesses via pointers with this tag"),
132     cl::Hidden, cl::init(-1));
133 
134 static cl::opt<bool> ClEnableKhwasan(
135     "hwasan-kernel",
136     cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
137     cl::Hidden, cl::init(false));
138 
139 // These flags allow to change the shadow mapping and control how shadow memory
140 // is accessed. The shadow mapping looks like:
141 //    Shadow = (Mem >> scale) + offset
142 
143 static cl::opt<uint64_t>
144     ClMappingOffset("hwasan-mapping-offset",
145                     cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"),
146                     cl::Hidden, cl::init(0));
147 
148 static cl::opt<bool>
149     ClWithIfunc("hwasan-with-ifunc",
150                 cl::desc("Access dynamic shadow through an ifunc global on "
151                          "platforms that support this"),
152                 cl::Hidden, cl::init(false));
153 
154 static cl::opt<bool> ClWithTls(
155     "hwasan-with-tls",
156     cl::desc("Access dynamic shadow through an thread-local pointer on "
157              "platforms that support this"),
158     cl::Hidden, cl::init(true));
159 
160 static cl::opt<bool>
161     ClRecordStackHistory("hwasan-record-stack-history",
162                          cl::desc("Record stack frames with tagged allocations "
163                                   "in a thread-local ring buffer"),
164                          cl::Hidden, cl::init(true));
165 static cl::opt<bool>
166     ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics",
167                               cl::desc("instrument memory intrinsics"),
168                               cl::Hidden, cl::init(true));
169 
170 static cl::opt<bool>
171     ClInstrumentLandingPads("hwasan-instrument-landing-pads",
172                             cl::desc("instrument landing pads"), cl::Hidden,
173                             cl::init(false), cl::ZeroOrMore);
174 
175 static cl::opt<bool> ClUseShortGranules(
176     "hwasan-use-short-granules",
177     cl::desc("use short granules in allocas and outlined checks"), cl::Hidden,
178     cl::init(false), cl::ZeroOrMore);
179 
180 static cl::opt<bool> ClInstrumentPersonalityFunctions(
181     "hwasan-instrument-personality-functions",
182     cl::desc("instrument personality functions"), cl::Hidden, cl::init(false),
183     cl::ZeroOrMore);
184 
185 static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks",
186                                        cl::desc("inline all checks"),
187                                        cl::Hidden, cl::init(false));
188 
189 namespace {
190 
191 /// An instrumentation pass implementing detection of addressability bugs
192 /// using tagged pointers.
193 class HWAddressSanitizer {
194 public:
195   explicit HWAddressSanitizer(Module &M, bool CompileKernel = false,
196                               bool Recover = false) : M(M) {
197     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
198     this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ?
199         ClEnableKhwasan : CompileKernel;
200 
201     initializeModule();
202   }
203 
204   bool sanitizeFunction(Function &F);
205   void initializeModule();
206 
207   void initializeCallbacks(Module &M);
208 
209   Value *getDynamicShadowIfunc(IRBuilder<> &IRB);
210   Value *getDynamicShadowNonTls(IRBuilder<> &IRB);
211 
212   void untagPointerOperand(Instruction *I, Value *Addr);
213   Value *shadowBase();
214   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
215   void instrumentMemAccessInline(Value *Ptr, bool IsWrite,
216                                  unsigned AccessSizeIndex,
217                                  Instruction *InsertBefore);
218   void instrumentMemIntrinsic(MemIntrinsic *MI);
219   bool instrumentMemAccess(InterestingMemoryOperand &O);
220   bool ignoreAccess(Value *Ptr);
221   void getInterestingMemoryOperands(
222       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
223 
224   bool isInterestingAlloca(const AllocaInst &AI);
225   bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size);
226   Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
227   Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
228   bool instrumentStack(
229       SmallVectorImpl<AllocaInst *> &Allocas,
230       DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
231       SmallVectorImpl<Instruction *> &RetVec, Value *StackTag);
232   Value *readRegister(IRBuilder<> &IRB, StringRef Name);
233   bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec);
234   Value *getNextTagWithCall(IRBuilder<> &IRB);
235   Value *getStackBaseTag(IRBuilder<> &IRB);
236   Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
237                      unsigned AllocaNo);
238   Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);
239 
240   Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty);
241   void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord);
242 
243   void instrumentGlobal(GlobalVariable *GV, uint8_t Tag);
244   void instrumentGlobals();
245 
246   void instrumentPersonalityFunctions();
247 
248 private:
249   LLVMContext *C;
250   Module &M;
251   Triple TargetTriple;
252   FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset;
253   FunctionCallee HWAsanHandleVfork;
254 
255   /// This struct defines the shadow mapping using the rule:
256   ///   shadow = (mem >> Scale) + Offset.
257   /// If InGlobal is true, then
258   ///   extern char __hwasan_shadow[];
259   ///   shadow = (mem >> Scale) + &__hwasan_shadow
260   /// If InTls is true, then
261   ///   extern char *__hwasan_tls;
262   ///   shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment)
263   struct ShadowMapping {
264     int Scale;
265     uint64_t Offset;
266     bool InGlobal;
267     bool InTls;
268 
269     void init(Triple &TargetTriple);
270     unsigned getObjectAlignment() const { return 1U << Scale; }
271   };
272   ShadowMapping Mapping;
273 
274   Type *VoidTy = Type::getVoidTy(M.getContext());
275   Type *IntptrTy;
276   Type *Int8PtrTy;
277   Type *Int8Ty;
278   Type *Int32Ty;
279   Type *Int64Ty = Type::getInt64Ty(M.getContext());
280 
281   bool CompileKernel;
282   bool Recover;
283   bool UseShortGranules;
284   bool InstrumentLandingPads;
285 
286   Function *HwasanCtorFunction;
287 
288   FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
289   FunctionCallee HwasanMemoryAccessCallbackSized[2];
290 
291   FunctionCallee HwasanTagMemoryFunc;
292   FunctionCallee HwasanGenerateTagFunc;
293 
294   Constant *ShadowGlobal;
295 
296   Value *LocalDynamicShadow = nullptr;
297   Value *StackBaseTag = nullptr;
298   GlobalValue *ThreadPtrGlobal = nullptr;
299 };
300 
301 class HWAddressSanitizerLegacyPass : public FunctionPass {
302 public:
303   // Pass identification, replacement for typeid.
304   static char ID;
305 
306   explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false,
307                                         bool Recover = false)
308       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) {
309     initializeHWAddressSanitizerLegacyPassPass(
310         *PassRegistry::getPassRegistry());
311   }
312 
313   StringRef getPassName() const override { return "HWAddressSanitizer"; }
314 
315   bool doInitialization(Module &M) override {
316     HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover);
317     return true;
318   }
319 
320   bool runOnFunction(Function &F) override {
321     return HWASan->sanitizeFunction(F);
322   }
323 
324   bool doFinalization(Module &M) override {
325     HWASan.reset();
326     return false;
327   }
328 
329 private:
330   std::unique_ptr<HWAddressSanitizer> HWASan;
331   bool CompileKernel;
332   bool Recover;
333 };
334 
335 } // end anonymous namespace
336 
337 char HWAddressSanitizerLegacyPass::ID = 0;
338 
339 INITIALIZE_PASS_BEGIN(
340     HWAddressSanitizerLegacyPass, "hwasan",
341     "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
342     false)
343 INITIALIZE_PASS_END(
344     HWAddressSanitizerLegacyPass, "hwasan",
345     "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
346     false)
347 
348 FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel,
349                                                            bool Recover) {
350   assert(!CompileKernel || Recover);
351   return new HWAddressSanitizerLegacyPass(CompileKernel, Recover);
352 }
353 
354 HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover)
355     : CompileKernel(CompileKernel), Recover(Recover) {}
356 
357 PreservedAnalyses HWAddressSanitizerPass::run(Module &M,
358                                               ModuleAnalysisManager &MAM) {
359   HWAddressSanitizer HWASan(M, CompileKernel, Recover);
360   bool Modified = false;
361   for (Function &F : M)
362     Modified |= HWASan.sanitizeFunction(F);
363   if (Modified)
364     return PreservedAnalyses::none();
365   return PreservedAnalyses::all();
366 }
367 
368 /// Module-level initialization.
369 ///
370 /// inserts a call to __hwasan_init to the module's constructor list.
371 void HWAddressSanitizer::initializeModule() {
372   LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n");
373   auto &DL = M.getDataLayout();
374 
375   TargetTriple = Triple(M.getTargetTriple());
376 
377   Mapping.init(TargetTriple);
378 
379   C = &(M.getContext());
380   IRBuilder<> IRB(*C);
381   IntptrTy = IRB.getIntPtrTy(DL);
382   Int8PtrTy = IRB.getInt8PtrTy();
383   Int8Ty = IRB.getInt8Ty();
384   Int32Ty = IRB.getInt32Ty();
385 
386   HwasanCtorFunction = nullptr;
387 
388   // Older versions of Android do not have the required runtime support for
389   // short granules, global or personality function instrumentation. On other
390   // platforms we currently require using the latest version of the runtime.
391   bool NewRuntime =
392       !TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30);
393 
394   UseShortGranules =
395       ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime;
396 
397   // If we don't have personality function support, fall back to landing pads.
398   InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences()
399                               ? ClInstrumentLandingPads
400                               : !NewRuntime;
401 
402   if (!CompileKernel) {
403     std::tie(HwasanCtorFunction, std::ignore) =
404         getOrCreateSanitizerCtorAndInitFunctions(
405             M, kHwasanModuleCtorName, kHwasanInitName,
406             /*InitArgTypes=*/{},
407             /*InitArgs=*/{},
408             // This callback is invoked when the functions are created the first
409             // time. Hook them into the global ctors list in that case:
410             [&](Function *Ctor, FunctionCallee) {
411               Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
412               Ctor->setComdat(CtorComdat);
413               appendToGlobalCtors(M, Ctor, 0, Ctor);
414             });
415 
416     bool InstrumentGlobals =
417         ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime;
418     if (InstrumentGlobals)
419       instrumentGlobals();
420 
421     bool InstrumentPersonalityFunctions =
422         ClInstrumentPersonalityFunctions.getNumOccurrences()
423             ? ClInstrumentPersonalityFunctions
424             : NewRuntime;
425     if (InstrumentPersonalityFunctions)
426       instrumentPersonalityFunctions();
427   }
428 
429   if (!TargetTriple.isAndroid()) {
430     Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] {
431       auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false,
432                                     GlobalValue::ExternalLinkage, nullptr,
433                                     "__hwasan_tls", nullptr,
434                                     GlobalVariable::InitialExecTLSModel);
435       appendToCompilerUsed(M, GV);
436       return GV;
437     });
438     ThreadPtrGlobal = cast<GlobalVariable>(C);
439   }
440 }
441 
442 void HWAddressSanitizer::initializeCallbacks(Module &M) {
443   IRBuilder<> IRB(*C);
444   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
445     const std::string TypeStr = AccessIsWrite ? "store" : "load";
446     const std::string EndingStr = Recover ? "_noabort" : "";
447 
448     HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction(
449         ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
450         FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false));
451 
452     for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
453          AccessSizeIndex++) {
454       HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
455           M.getOrInsertFunction(
456               ClMemoryAccessCallbackPrefix + TypeStr +
457                   itostr(1ULL << AccessSizeIndex) + EndingStr,
458               FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false));
459     }
460   }
461 
462   HwasanTagMemoryFunc = M.getOrInsertFunction(
463       "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy);
464   HwasanGenerateTagFunc =
465       M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty);
466 
467   ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow",
468                                      ArrayType::get(IRB.getInt8Ty(), 0));
469 
470   const std::string MemIntrinCallbackPrefix =
471       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
472   HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
473                                         IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
474                                         IRB.getInt8PtrTy(), IntptrTy);
475   HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
476                                        IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
477                                        IRB.getInt8PtrTy(), IntptrTy);
478   HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
479                                        IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
480                                        IRB.getInt32Ty(), IntptrTy);
481 
482   HWAsanHandleVfork =
483       M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy);
484 }
485 
486 Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) {
487   // An empty inline asm with input reg == output reg.
488   // An opaque no-op cast, basically.
489   InlineAsm *Asm = InlineAsm::get(
490       FunctionType::get(Int8PtrTy, {ShadowGlobal->getType()}, false),
491       StringRef(""), StringRef("=r,0"),
492       /*hasSideEffects=*/false);
493   return IRB.CreateCall(Asm, {ShadowGlobal}, ".hwasan.shadow");
494 }
495 
496 Value *HWAddressSanitizer::getDynamicShadowNonTls(IRBuilder<> &IRB) {
497   // Generate code only when dynamic addressing is needed.
498   if (Mapping.Offset != kDynamicShadowSentinel)
499     return nullptr;
500 
501   if (Mapping.InGlobal) {
502     return getDynamicShadowIfunc(IRB);
503   } else {
504     Value *GlobalDynamicAddress =
505         IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal(
506             kHwasanShadowMemoryDynamicAddress, Int8PtrTy);
507     return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress);
508   }
509 }
510 
511 bool HWAddressSanitizer::ignoreAccess(Value *Ptr) {
512   // Do not instrument acesses from different address spaces; we cannot deal
513   // with them.
514   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
515   if (PtrTy->getPointerAddressSpace() != 0)
516     return true;
517 
518   // Ignore swifterror addresses.
519   // swifterror memory addresses are mem2reg promoted by instruction
520   // selection. As such they cannot have regular uses like an instrumentation
521   // function and it makes no sense to track them as memory.
522   if (Ptr->isSwiftError())
523     return true;
524 
525   return false;
526 }
527 
528 void HWAddressSanitizer::getInterestingMemoryOperands(
529     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
530   // Skip memory accesses inserted by another instrumentation.
531   if (I->hasMetadata("nosanitize"))
532     return;
533 
534   // Do not instrument the load fetching the dynamic shadow address.
535   if (LocalDynamicShadow == I)
536     return;
537 
538   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
539     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
540       return;
541     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
542                              LI->getType(), LI->getAlignment());
543   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
544     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
545       return;
546     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
547                              SI->getValueOperand()->getType(),
548                              SI->getAlignment());
549   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
550     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
551       return;
552     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
553                              RMW->getValOperand()->getType(), 0);
554   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
555     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
556       return;
557     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
558                              XCHG->getCompareOperand()->getType(), 0);
559   } else if (auto CI = dyn_cast<CallInst>(I)) {
560     for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
561       if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
562           ignoreAccess(CI->getArgOperand(ArgNo)))
563         continue;
564       Type *Ty = CI->getParamByValType(ArgNo);
565       Interesting.emplace_back(I, ArgNo, false, Ty, 1);
566     }
567   }
568 }
569 
570 static unsigned getPointerOperandIndex(Instruction *I) {
571   if (LoadInst *LI = dyn_cast<LoadInst>(I))
572     return LI->getPointerOperandIndex();
573   if (StoreInst *SI = dyn_cast<StoreInst>(I))
574     return SI->getPointerOperandIndex();
575   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I))
576     return RMW->getPointerOperandIndex();
577   if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I))
578     return XCHG->getPointerOperandIndex();
579   report_fatal_error("Unexpected instruction");
580   return -1;
581 }
582 
583 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
584   size_t Res = countTrailingZeros(TypeSize / 8);
585   assert(Res < kNumberOfAccessSizes);
586   return Res;
587 }
588 
589 void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) {
590   if (TargetTriple.isAArch64())
591     return;
592 
593   IRBuilder<> IRB(I);
594   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
595   Value *UntaggedPtr =
596       IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType());
597   I->setOperand(getPointerOperandIndex(I), UntaggedPtr);
598 }
599 
600 Value *HWAddressSanitizer::shadowBase() {
601   if (LocalDynamicShadow)
602     return LocalDynamicShadow;
603   return ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, Mapping.Offset),
604                                    Int8PtrTy);
605 }
606 
607 Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) {
608   // Mem >> Scale
609   Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale);
610   if (Mapping.Offset == 0)
611     return IRB.CreateIntToPtr(Shadow, Int8PtrTy);
612   // (Mem >> Scale) + Offset
613   return IRB.CreateGEP(Int8Ty, shadowBase(), Shadow);
614 }
615 
616 void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite,
617                                                    unsigned AccessSizeIndex,
618                                                    Instruction *InsertBefore) {
619   const int64_t AccessInfo = Recover * 0x20 + IsWrite * 0x10 + AccessSizeIndex;
620   IRBuilder<> IRB(InsertBefore);
621 
622   if (!ClInlineAllChecks && TargetTriple.isAArch64() &&
623       TargetTriple.isOSBinFormatELF() && !Recover) {
624     Module *M = IRB.GetInsertBlock()->getParent()->getParent();
625     Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy);
626     IRB.CreateCall(Intrinsic::getDeclaration(
627                        M, UseShortGranules
628                               ? Intrinsic::hwasan_check_memaccess_shortgranules
629                               : Intrinsic::hwasan_check_memaccess),
630                    {shadowBase(), Ptr, ConstantInt::get(Int32Ty, AccessInfo)});
631     return;
632   }
633 
634   Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy);
635   Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift),
636                                   IRB.getInt8Ty());
637   Value *AddrLong = untagPointer(IRB, PtrLong);
638   Value *Shadow = memToShadow(AddrLong, IRB);
639   Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow);
640   Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);
641 
642   int matchAllTag = ClMatchAllTag.getNumOccurrences() > 0 ?
643       ClMatchAllTag : (CompileKernel ? 0xFF : -1);
644   if (matchAllTag != -1) {
645     Value *TagNotIgnored = IRB.CreateICmpNE(PtrTag,
646         ConstantInt::get(PtrTag->getType(), matchAllTag));
647     TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored);
648   }
649 
650   Instruction *CheckTerm =
651       SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false,
652                                 MDBuilder(*C).createBranchWeights(1, 100000));
653 
654   IRB.SetInsertPoint(CheckTerm);
655   Value *OutOfShortGranuleTagRange =
656       IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15));
657   Instruction *CheckFailTerm =
658       SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover,
659                                 MDBuilder(*C).createBranchWeights(1, 100000));
660 
661   IRB.SetInsertPoint(CheckTerm);
662   Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty);
663   PtrLowBits = IRB.CreateAdd(
664       PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1));
665   Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag);
666   SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false,
667                             MDBuilder(*C).createBranchWeights(1, 100000),
668                             nullptr, nullptr, CheckFailTerm->getParent());
669 
670   IRB.SetInsertPoint(CheckTerm);
671   Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15);
672   InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy);
673   Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr);
674   Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag);
675   SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false,
676                             MDBuilder(*C).createBranchWeights(1, 100000),
677                             nullptr, nullptr, CheckFailTerm->getParent());
678 
679   IRB.SetInsertPoint(CheckFailTerm);
680   InlineAsm *Asm;
681   switch (TargetTriple.getArch()) {
682     case Triple::x86_64:
683       // The signal handler will find the data address in rdi.
684       Asm = InlineAsm::get(
685           FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
686           "int3\nnopl " + itostr(0x40 + AccessInfo) + "(%rax)",
687           "{rdi}",
688           /*hasSideEffects=*/true);
689       break;
690     case Triple::aarch64:
691     case Triple::aarch64_be:
692       // The signal handler will find the data address in x0.
693       Asm = InlineAsm::get(
694           FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
695           "brk #" + itostr(0x900 + AccessInfo),
696           "{x0}",
697           /*hasSideEffects=*/true);
698       break;
699     default:
700       report_fatal_error("unsupported architecture");
701   }
702   IRB.CreateCall(Asm, PtrLong);
703   if (Recover)
704     cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent());
705 }
706 
707 void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
708   IRBuilder<> IRB(MI);
709   if (isa<MemTransferInst>(MI)) {
710     IRB.CreateCall(
711         isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy,
712         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
713          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
714          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
715   } else if (isa<MemSetInst>(MI)) {
716     IRB.CreateCall(
717         HWAsanMemset,
718         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
719          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
720          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
721   }
722   MI->eraseFromParent();
723 }
724 
725 bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) {
726   Value *Addr = O.getPtr();
727 
728   LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n");
729 
730   if (O.MaybeMask)
731     return false; //FIXME
732 
733   IRBuilder<> IRB(O.getInsn());
734   if (isPowerOf2_64(O.TypeSize) &&
735       (O.TypeSize / 8 <= (1UL << (kNumberOfAccessSizes - 1))) &&
736       (O.Alignment >= (1UL << Mapping.Scale) || O.Alignment == 0 ||
737        O.Alignment >= O.TypeSize / 8)) {
738     size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize);
739     if (ClInstrumentWithCalls) {
740       IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex],
741                      IRB.CreatePointerCast(Addr, IntptrTy));
742     } else {
743       instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn());
744     }
745   } else {
746     IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite],
747                    {IRB.CreatePointerCast(Addr, IntptrTy),
748                     ConstantInt::get(IntptrTy, O.TypeSize / 8)});
749   }
750   untagPointerOperand(O.getInsn(), Addr);
751 
752   return true;
753 }
754 
755 static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) {
756   uint64_t ArraySize = 1;
757   if (AI.isArrayAllocation()) {
758     const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
759     assert(CI && "non-constant array size");
760     ArraySize = CI->getZExtValue();
761   }
762   Type *Ty = AI.getAllocatedType();
763   uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
764   return SizeInBytes * ArraySize;
765 }
766 
767 bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI,
768                                    Value *Tag, size_t Size) {
769   size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
770   if (!UseShortGranules)
771     Size = AlignedSize;
772 
773   Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
774   if (ClInstrumentWithCalls) {
775     IRB.CreateCall(HwasanTagMemoryFunc,
776                    {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag,
777                     ConstantInt::get(IntptrTy, AlignedSize)});
778   } else {
779     size_t ShadowSize = Size >> Mapping.Scale;
780     Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB);
781     // If this memset is not inlined, it will be intercepted in the hwasan
782     // runtime library. That's OK, because the interceptor skips the checks if
783     // the address is in the shadow region.
784     // FIXME: the interceptor is not as fast as real memset. Consider lowering
785     // llvm.memset right here into either a sequence of stores, or a call to
786     // hwasan_tag_memory.
787     if (ShadowSize)
788       IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1));
789     if (Size != AlignedSize) {
790       IRB.CreateStore(
791           ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()),
792           IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize));
793       IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32(
794                                    Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy),
795                                    AlignedSize - 1));
796     }
797   }
798   return true;
799 }
800 
801 static unsigned RetagMask(unsigned AllocaNo) {
802   // A list of 8-bit numbers that have at most one run of non-zero bits.
803   // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
804   // masks.
805   // The list does not include the value 255, which is used for UAR.
806   //
807   // Because we are more likely to use earlier elements of this list than later
808   // ones, it is sorted in increasing order of probability of collision with a
809   // mask allocated (temporally) nearby. The program that generated this list
810   // can be found at:
811   // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py
812   static unsigned FastMasks[] = {0,  128, 64,  192, 32,  96,  224, 112, 240,
813                                  48, 16,  120, 248, 56,  24,  8,   124, 252,
814                                  60, 28,  12,  4,   126, 254, 62,  30,  14,
815                                  6,  2,   127, 63,  31,  15,  7,   3,   1};
816   return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))];
817 }
818 
819 Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
820   return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
821 }
822 
823 Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
824   if (ClGenerateTagsWithCalls)
825     return getNextTagWithCall(IRB);
826   if (StackBaseTag)
827     return StackBaseTag;
828   // FIXME: use addressofreturnaddress (but implement it in aarch64 backend
829   // first).
830   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
831   auto GetStackPointerFn = Intrinsic::getDeclaration(
832       M, Intrinsic::frameaddress,
833       IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
834   Value *StackPointer = IRB.CreateCall(
835       GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())});
836 
837   // Extract some entropy from the stack pointer for the tags.
838   // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
839   // between functions).
840   Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy);
841   Value *StackTag =
842       IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20),
843                     "hwasan.stack.base.tag");
844   return StackTag;
845 }
846 
847 Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
848                                         AllocaInst *AI, unsigned AllocaNo) {
849   if (ClGenerateTagsWithCalls)
850     return getNextTagWithCall(IRB);
851   return IRB.CreateXor(StackTag,
852                        ConstantInt::get(IntptrTy, RetagMask(AllocaNo)));
853 }
854 
855 Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
856   if (ClUARRetagToZero)
857     return ConstantInt::get(IntptrTy, 0);
858   if (ClGenerateTagsWithCalls)
859     return getNextTagWithCall(IRB);
860   return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU));
861 }
862 
863 // Add a tag to an address.
864 Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty,
865                                       Value *PtrLong, Value *Tag) {
866   Value *TaggedPtrLong;
867   if (CompileKernel) {
868     // Kernel addresses have 0xFF in the most significant byte.
869     Value *ShiftedTag = IRB.CreateOr(
870         IRB.CreateShl(Tag, kPointerTagShift),
871         ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1));
872     TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
873   } else {
874     // Userspace can simply do OR (tag << 56);
875     Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift);
876     TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
877   }
878   return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
879 }
880 
881 // Remove tag from an address.
882 Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
883   Value *UntaggedPtrLong;
884   if (CompileKernel) {
885     // Kernel addresses have 0xFF in the most significant byte.
886     UntaggedPtrLong = IRB.CreateOr(PtrLong,
887         ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift));
888   } else {
889     // Userspace addresses have 0x00.
890     UntaggedPtrLong = IRB.CreateAnd(PtrLong,
891         ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift)));
892   }
893   return UntaggedPtrLong;
894 }
895 
896 Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) {
897   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
898   if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) {
899     // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER
900     // in Bionic's libc/private/bionic_tls.h.
901     Function *ThreadPointerFunc =
902         Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
903     Value *SlotPtr = IRB.CreatePointerCast(
904         IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
905                                IRB.CreateCall(ThreadPointerFunc), 0x30),
906         Ty->getPointerTo(0));
907     return SlotPtr;
908   }
909   if (ThreadPtrGlobal)
910     return ThreadPtrGlobal;
911 
912 
913   return nullptr;
914 }
915 
916 void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) {
917   if (!Mapping.InTls) {
918     LocalDynamicShadow = getDynamicShadowNonTls(IRB);
919     return;
920   }
921 
922   if (!WithFrameRecord && TargetTriple.isAndroid()) {
923     LocalDynamicShadow = getDynamicShadowIfunc(IRB);
924     return;
925   }
926 
927   Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy);
928   assert(SlotPtr);
929 
930   Value *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
931   // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI.
932   Value *ThreadLongMaybeUntagged =
933       TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong);
934 
935   if (WithFrameRecord) {
936     Function *F = IRB.GetInsertBlock()->getParent();
937     StackBaseTag = IRB.CreateAShr(ThreadLong, 3);
938 
939     // Prepare ring buffer data.
940     Value *PC;
941     if (TargetTriple.getArch() == Triple::aarch64)
942       PC = readRegister(IRB, "pc");
943     else
944       PC = IRB.CreatePtrToInt(F, IntptrTy);
945     Module *M = F->getParent();
946     auto GetStackPointerFn = Intrinsic::getDeclaration(
947         M, Intrinsic::frameaddress,
948         IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
949     Value *SP = IRB.CreatePtrToInt(
950         IRB.CreateCall(GetStackPointerFn,
951                        {Constant::getNullValue(IRB.getInt32Ty())}),
952         IntptrTy);
953     // Mix SP and PC.
954     // Assumptions:
955     // PC is 0x0000PPPPPPPPPPPP  (48 bits are meaningful, others are zero)
956     // SP is 0xsssssssssssSSSS0  (4 lower bits are zero)
957     // We only really need ~20 lower non-zero bits (SSSS), so we mix like this:
958     //       0xSSSSPPPPPPPPPPPP
959     SP = IRB.CreateShl(SP, 44);
960 
961     // Store data to ring buffer.
962     Value *RecordPtr =
963         IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0));
964     IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr);
965 
966     // Update the ring buffer. Top byte of ThreadLong defines the size of the
967     // buffer in pages, it must be a power of two, and the start of the buffer
968     // must be aligned by twice that much. Therefore wrap around of the ring
969     // buffer is simply Addr &= ~((ThreadLong >> 56) << 12).
970     // The use of AShr instead of LShr is due to
971     //   https://bugs.llvm.org/show_bug.cgi?id=39030
972     // Runtime library makes sure not to use the highest bit.
973     Value *WrapMask = IRB.CreateXor(
974         IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true),
975         ConstantInt::get(IntptrTy, (uint64_t)-1));
976     Value *ThreadLongNew = IRB.CreateAnd(
977         IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask);
978     IRB.CreateStore(ThreadLongNew, SlotPtr);
979   }
980 
981   // Get shadow base address by aligning RecordPtr up.
982   // Note: this is not correct if the pointer is already aligned.
983   // Runtime library will make sure this never happens.
984   LocalDynamicShadow = IRB.CreateAdd(
985       IRB.CreateOr(
986           ThreadLongMaybeUntagged,
987           ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)),
988       ConstantInt::get(IntptrTy, 1), "hwasan.shadow");
989   LocalDynamicShadow = IRB.CreateIntToPtr(LocalDynamicShadow, Int8PtrTy);
990 }
991 
992 Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) {
993   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
994   Function *ReadRegister =
995       Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy);
996   MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)});
997   Value *Args[] = {MetadataAsValue::get(*C, MD)};
998   return IRB.CreateCall(ReadRegister, Args);
999 }
1000 
1001 bool HWAddressSanitizer::instrumentLandingPads(
1002     SmallVectorImpl<Instruction *> &LandingPadVec) {
1003   for (auto *LP : LandingPadVec) {
1004     IRBuilder<> IRB(LP->getNextNode());
1005     IRB.CreateCall(
1006         HWAsanHandleVfork,
1007         {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp"
1008                                                                       : "sp")});
1009   }
1010   return true;
1011 }
1012 
1013 bool HWAddressSanitizer::instrumentStack(
1014     SmallVectorImpl<AllocaInst *> &Allocas,
1015     DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap,
1016     SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) {
1017   // Ideally, we want to calculate tagged stack base pointer, and rewrite all
1018   // alloca addresses using that. Unfortunately, offsets are not known yet
1019   // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
1020   // temp, shift-OR it into each alloca address and xor with the retag mask.
1021   // This generates one extra instruction per alloca use.
1022   for (unsigned N = 0; N < Allocas.size(); ++N) {
1023     auto *AI = Allocas[N];
1024     IRBuilder<> IRB(AI->getNextNode());
1025 
1026     // Replace uses of the alloca with tagged address.
1027     Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
1028     Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
1029     Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
1030     std::string Name =
1031         AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
1032     Replacement->setName(Name + ".hwasan");
1033 
1034     AI->replaceUsesWithIf(Replacement,
1035                           [AILong](Use &U) { return U.getUser() != AILong; });
1036 
1037     for (auto *DDI : AllocaDbgMap.lookup(AI)) {
1038       // Prepend "tag_offset, N" to the dwarf expression.
1039       // Tag offset logically applies to the alloca pointer, and it makes sense
1040       // to put it at the beginning of the expression.
1041       SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset,
1042                                          RetagMask(N)};
1043       DDI->setArgOperand(
1044           2, MetadataAsValue::get(*C, DIExpression::prependOpcodes(
1045                                           DDI->getExpression(), NewOps)));
1046     }
1047 
1048     size_t Size = getAllocaSizeInBytes(*AI);
1049     tagAlloca(IRB, AI, Tag, Size);
1050 
1051     for (auto RI : RetVec) {
1052       IRB.SetInsertPoint(RI);
1053 
1054       // Re-tag alloca memory with the special UAR tag.
1055       Value *Tag = getUARTag(IRB, StackTag);
1056       tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment()));
1057     }
1058   }
1059 
1060   return true;
1061 }
1062 
1063 bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1064   return (AI.getAllocatedType()->isSized() &&
1065           // FIXME: instrument dynamic allocas, too
1066           AI.isStaticAlloca() &&
1067           // alloca() may be called with 0 size, ignore it.
1068           getAllocaSizeInBytes(AI) > 0 &&
1069           // We are only interested in allocas not promotable to registers.
1070           // Promotable allocas are common under -O0.
1071           !isAllocaPromotable(&AI) &&
1072           // inalloca allocas are not treated as static, and we don't want
1073           // dynamic alloca instrumentation for them as well.
1074           !AI.isUsedWithInAlloca() &&
1075           // swifterror allocas are register promoted by ISel
1076           !AI.isSwiftError());
1077 }
1078 
1079 bool HWAddressSanitizer::sanitizeFunction(Function &F) {
1080   if (&F == HwasanCtorFunction)
1081     return false;
1082 
1083   if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
1084     return false;
1085 
1086   LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n");
1087 
1088   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
1089   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
1090   SmallVector<AllocaInst*, 8> AllocasToInstrument;
1091   SmallVector<Instruction*, 8> RetVec;
1092   SmallVector<Instruction*, 8> LandingPadVec;
1093   DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> AllocaDbgMap;
1094   for (auto &BB : F) {
1095     for (auto &Inst : BB) {
1096       if (ClInstrumentStack)
1097         if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
1098           if (isInterestingAlloca(*AI))
1099             AllocasToInstrument.push_back(AI);
1100           continue;
1101         }
1102 
1103       if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) ||
1104           isa<CleanupReturnInst>(Inst))
1105         RetVec.push_back(&Inst);
1106 
1107       if (auto *DDI = dyn_cast<DbgVariableIntrinsic>(&Inst))
1108         if (auto *Alloca =
1109                 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocation()))
1110           AllocaDbgMap[Alloca].push_back(DDI);
1111 
1112       if (InstrumentLandingPads && isa<LandingPadInst>(Inst))
1113         LandingPadVec.push_back(&Inst);
1114 
1115       getInterestingMemoryOperands(&Inst, OperandsToInstrument);
1116 
1117       if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst))
1118         IntrinToInstrument.push_back(MI);
1119     }
1120   }
1121 
1122   initializeCallbacks(*F.getParent());
1123 
1124   if (!LandingPadVec.empty())
1125     instrumentLandingPads(LandingPadVec);
1126 
1127   if (AllocasToInstrument.empty() && F.hasPersonalityFn() &&
1128       F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) {
1129     // __hwasan_personality_thunk is a no-op for functions without an
1130     // instrumented stack, so we can drop it.
1131     F.setPersonalityFn(nullptr);
1132   }
1133 
1134   if (AllocasToInstrument.empty() && OperandsToInstrument.empty() &&
1135       IntrinToInstrument.empty())
1136     return false;
1137 
1138   assert(!LocalDynamicShadow);
1139 
1140   Instruction *InsertPt = &*F.getEntryBlock().begin();
1141   IRBuilder<> EntryIRB(InsertPt);
1142   emitPrologue(EntryIRB,
1143                /*WithFrameRecord*/ ClRecordStackHistory &&
1144                    !AllocasToInstrument.empty());
1145 
1146   bool Changed = false;
1147   if (!AllocasToInstrument.empty()) {
1148     Value *StackTag =
1149         ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB);
1150     Changed |= instrumentStack(AllocasToInstrument, AllocaDbgMap, RetVec,
1151                                StackTag);
1152   }
1153 
1154   // Pad and align each of the allocas that we instrumented to stop small
1155   // uninteresting allocas from hiding in instrumented alloca's padding and so
1156   // that we have enough space to store real tags for short granules.
1157   DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap;
1158   for (AllocaInst *AI : AllocasToInstrument) {
1159     uint64_t Size = getAllocaSizeInBytes(*AI);
1160     uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
1161     AI->setAlignment(
1162         Align(std::max(AI->getAlignment(), Mapping.getObjectAlignment())));
1163     if (Size != AlignedSize) {
1164       Type *AllocatedType = AI->getAllocatedType();
1165       if (AI->isArrayAllocation()) {
1166         uint64_t ArraySize =
1167             cast<ConstantInt>(AI->getArraySize())->getZExtValue();
1168         AllocatedType = ArrayType::get(AllocatedType, ArraySize);
1169       }
1170       Type *TypeWithPadding = StructType::get(
1171           AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size));
1172       auto *NewAI = new AllocaInst(
1173           TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI);
1174       NewAI->takeName(AI);
1175       NewAI->setAlignment(AI->getAlign());
1176       NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca());
1177       NewAI->setSwiftError(AI->isSwiftError());
1178       NewAI->copyMetadata(*AI);
1179       auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI);
1180       AI->replaceAllUsesWith(Bitcast);
1181       AllocaToPaddedAllocaMap[AI] = NewAI;
1182     }
1183   }
1184 
1185   if (!AllocaToPaddedAllocaMap.empty()) {
1186     for (auto &BB : F)
1187       for (auto &Inst : BB)
1188         if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst))
1189           if (auto *AI =
1190                   dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation()))
1191             if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI))
1192               DVI->setArgOperand(
1193                   0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI)));
1194     for (auto &P : AllocaToPaddedAllocaMap)
1195       P.first->eraseFromParent();
1196   }
1197 
1198   // If we split the entry block, move any allocas that were originally in the
1199   // entry block back into the entry block so that they aren't treated as
1200   // dynamic allocas.
1201   if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) {
1202     InsertPt = &*F.getEntryBlock().begin();
1203     for (auto II = EntryIRB.GetInsertBlock()->begin(),
1204               IE = EntryIRB.GetInsertBlock()->end();
1205          II != IE;) {
1206       Instruction *I = &*II++;
1207       if (auto *AI = dyn_cast<AllocaInst>(I))
1208         if (isa<ConstantInt>(AI->getArraySize()))
1209           I->moveBefore(InsertPt);
1210     }
1211   }
1212 
1213   for (auto &Operand : OperandsToInstrument)
1214     Changed |= instrumentMemAccess(Operand);
1215 
1216   if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) {
1217     for (auto Inst : IntrinToInstrument)
1218       instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1219     Changed = true;
1220   }
1221 
1222   LocalDynamicShadow = nullptr;
1223   StackBaseTag = nullptr;
1224 
1225   return Changed;
1226 }
1227 
1228 void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) {
1229   Constant *Initializer = GV->getInitializer();
1230   uint64_t SizeInBytes =
1231       M.getDataLayout().getTypeAllocSize(Initializer->getType());
1232   uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment());
1233   if (SizeInBytes != NewSize) {
1234     // Pad the initializer out to the next multiple of 16 bytes and add the
1235     // required short granule tag.
1236     std::vector<uint8_t> Init(NewSize - SizeInBytes, 0);
1237     Init.back() = Tag;
1238     Constant *Padding = ConstantDataArray::get(*C, Init);
1239     Initializer = ConstantStruct::getAnon({Initializer, Padding});
1240   }
1241 
1242   auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(),
1243                                    GlobalValue::ExternalLinkage, Initializer,
1244                                    GV->getName() + ".hwasan");
1245   NewGV->copyAttributesFrom(GV);
1246   NewGV->setLinkage(GlobalValue::PrivateLinkage);
1247   NewGV->copyMetadata(GV, 0);
1248   NewGV->setAlignment(
1249       MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment())));
1250 
1251   // It is invalid to ICF two globals that have different tags. In the case
1252   // where the size of the global is a multiple of the tag granularity the
1253   // contents of the globals may be the same but the tags (i.e. symbol values)
1254   // may be different, and the symbols are not considered during ICF. In the
1255   // case where the size is not a multiple of the granularity, the short granule
1256   // tags would discriminate two globals with different tags, but there would
1257   // otherwise be nothing stopping such a global from being incorrectly ICF'd
1258   // with an uninstrumented (i.e. tag 0) global that happened to have the short
1259   // granule tag in the last byte.
1260   NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
1261 
1262   // Descriptor format (assuming little-endian):
1263   // bytes 0-3: relative address of global
1264   // bytes 4-6: size of global (16MB ought to be enough for anyone, but in case
1265   // it isn't, we create multiple descriptors)
1266   // byte 7: tag
1267   auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty);
1268   const uint64_t MaxDescriptorSize = 0xfffff0;
1269   for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes;
1270        DescriptorPos += MaxDescriptorSize) {
1271     auto *Descriptor =
1272         new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage,
1273                            nullptr, GV->getName() + ".hwasan.descriptor");
1274     auto *GVRelPtr = ConstantExpr::getTrunc(
1275         ConstantExpr::getAdd(
1276             ConstantExpr::getSub(
1277                 ConstantExpr::getPtrToInt(NewGV, Int64Ty),
1278                 ConstantExpr::getPtrToInt(Descriptor, Int64Ty)),
1279             ConstantInt::get(Int64Ty, DescriptorPos)),
1280         Int32Ty);
1281     uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize);
1282     auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24));
1283     Descriptor->setComdat(NewGV->getComdat());
1284     Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag}));
1285     Descriptor->setSection("hwasan_globals");
1286     Descriptor->setMetadata(LLVMContext::MD_associated,
1287                             MDNode::get(*C, ValueAsMetadata::get(NewGV)));
1288     appendToCompilerUsed(M, Descriptor);
1289   }
1290 
1291   Constant *Aliasee = ConstantExpr::getIntToPtr(
1292       ConstantExpr::getAdd(
1293           ConstantExpr::getPtrToInt(NewGV, Int64Ty),
1294           ConstantInt::get(Int64Ty, uint64_t(Tag) << kPointerTagShift)),
1295       GV->getType());
1296   auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(),
1297                                     GV->getLinkage(), "", Aliasee, &M);
1298   Alias->setVisibility(GV->getVisibility());
1299   Alias->takeName(GV);
1300   GV->replaceAllUsesWith(Alias);
1301   GV->eraseFromParent();
1302 }
1303 
1304 void HWAddressSanitizer::instrumentGlobals() {
1305   // Start by creating a note that contains pointers to the list of global
1306   // descriptors. Adding a note to the output file will cause the linker to
1307   // create a PT_NOTE program header pointing to the note that we can use to
1308   // find the descriptor list starting from the program headers. A function
1309   // provided by the runtime initializes the shadow memory for the globals by
1310   // accessing the descriptor list via the note. The dynamic loader needs to
1311   // call this function whenever a library is loaded.
1312   //
1313   // The reason why we use a note for this instead of a more conventional
1314   // approach of having a global constructor pass a descriptor list pointer to
1315   // the runtime is because of an order of initialization problem. With
1316   // constructors we can encounter the following problematic scenario:
1317   //
1318   // 1) library A depends on library B and also interposes one of B's symbols
1319   // 2) B's constructors are called before A's (as required for correctness)
1320   // 3) during construction, B accesses one of its "own" globals (actually
1321   //    interposed by A) and triggers a HWASAN failure due to the initialization
1322   //    for A not having happened yet
1323   //
1324   // Even without interposition it is possible to run into similar situations in
1325   // cases where two libraries mutually depend on each other.
1326   //
1327   // We only need one note per binary, so put everything for the note in a
1328   // comdat. This need to be a comdat with an .init_array section to prevent
1329   // newer versions of lld from discarding the note.
1330   Comdat *NoteComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
1331 
1332   Type *Int8Arr0Ty = ArrayType::get(Int8Ty, 0);
1333   auto Start =
1334       new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
1335                          nullptr, "__start_hwasan_globals");
1336   Start->setVisibility(GlobalValue::HiddenVisibility);
1337   Start->setDSOLocal(true);
1338   auto Stop =
1339       new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
1340                          nullptr, "__stop_hwasan_globals");
1341   Stop->setVisibility(GlobalValue::HiddenVisibility);
1342   Stop->setDSOLocal(true);
1343 
1344   // Null-terminated so actually 8 bytes, which are required in order to align
1345   // the note properly.
1346   auto *Name = ConstantDataArray::get(*C, "LLVM\0\0\0");
1347 
1348   auto *NoteTy = StructType::get(Int32Ty, Int32Ty, Int32Ty, Name->getType(),
1349                                  Int32Ty, Int32Ty);
1350   auto *Note =
1351       new GlobalVariable(M, NoteTy, /*isConstantGlobal=*/true,
1352                          GlobalValue::PrivateLinkage, nullptr, kHwasanNoteName);
1353   Note->setSection(".note.hwasan.globals");
1354   Note->setComdat(NoteComdat);
1355   Note->setAlignment(Align(4));
1356   Note->setDSOLocal(true);
1357 
1358   // The pointers in the note need to be relative so that the note ends up being
1359   // placed in rodata, which is the standard location for notes.
1360   auto CreateRelPtr = [&](Constant *Ptr) {
1361     return ConstantExpr::getTrunc(
1362         ConstantExpr::getSub(ConstantExpr::getPtrToInt(Ptr, Int64Ty),
1363                              ConstantExpr::getPtrToInt(Note, Int64Ty)),
1364         Int32Ty);
1365   };
1366   Note->setInitializer(ConstantStruct::getAnon(
1367       {ConstantInt::get(Int32Ty, 8),                           // n_namesz
1368        ConstantInt::get(Int32Ty, 8),                           // n_descsz
1369        ConstantInt::get(Int32Ty, ELF::NT_LLVM_HWASAN_GLOBALS), // n_type
1370        Name, CreateRelPtr(Start), CreateRelPtr(Stop)}));
1371   appendToCompilerUsed(M, Note);
1372 
1373   // Create a zero-length global in hwasan_globals so that the linker will
1374   // always create start and stop symbols.
1375   auto Dummy = new GlobalVariable(
1376       M, Int8Arr0Ty, /*isConstantGlobal*/ true, GlobalVariable::PrivateLinkage,
1377       Constant::getNullValue(Int8Arr0Ty), "hwasan.dummy.global");
1378   Dummy->setSection("hwasan_globals");
1379   Dummy->setComdat(NoteComdat);
1380   Dummy->setMetadata(LLVMContext::MD_associated,
1381                      MDNode::get(*C, ValueAsMetadata::get(Note)));
1382   appendToCompilerUsed(M, Dummy);
1383 
1384   std::vector<GlobalVariable *> Globals;
1385   for (GlobalVariable &GV : M.globals()) {
1386     if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") ||
1387         GV.isThreadLocal())
1388       continue;
1389 
1390     // Common symbols can't have aliases point to them, so they can't be tagged.
1391     if (GV.hasCommonLinkage())
1392       continue;
1393 
1394     // Globals with custom sections may be used in __start_/__stop_ enumeration,
1395     // which would be broken both by adding tags and potentially by the extra
1396     // padding/alignment that we insert.
1397     if (GV.hasSection())
1398       continue;
1399 
1400     Globals.push_back(&GV);
1401   }
1402 
1403   MD5 Hasher;
1404   Hasher.update(M.getSourceFileName());
1405   MD5::MD5Result Hash;
1406   Hasher.final(Hash);
1407   uint8_t Tag = Hash[0];
1408 
1409   for (GlobalVariable *GV : Globals) {
1410     // Skip tag 0 in order to avoid collisions with untagged memory.
1411     if (Tag == 0)
1412       Tag = 1;
1413     instrumentGlobal(GV, Tag++);
1414   }
1415 }
1416 
1417 void HWAddressSanitizer::instrumentPersonalityFunctions() {
1418   // We need to untag stack frames as we unwind past them. That is the job of
1419   // the personality function wrapper, which either wraps an existing
1420   // personality function or acts as a personality function on its own. Each
1421   // function that has a personality function or that can be unwound past has
1422   // its personality function changed to a thunk that calls the personality
1423   // function wrapper in the runtime.
1424   MapVector<Constant *, std::vector<Function *>> PersonalityFns;
1425   for (Function &F : M) {
1426     if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress))
1427       continue;
1428 
1429     if (F.hasPersonalityFn()) {
1430       PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F);
1431     } else if (!F.hasFnAttribute(Attribute::NoUnwind)) {
1432       PersonalityFns[nullptr].push_back(&F);
1433     }
1434   }
1435 
1436   if (PersonalityFns.empty())
1437     return;
1438 
1439   FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction(
1440       "__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty,
1441       Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy);
1442   FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy);
1443   FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy);
1444 
1445   for (auto &P : PersonalityFns) {
1446     std::string ThunkName = kHwasanPersonalityThunkName;
1447     if (P.first)
1448       ThunkName += ("." + P.first->getName()).str();
1449     FunctionType *ThunkFnTy = FunctionType::get(
1450         Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false);
1451     bool IsLocal = P.first && (!isa<GlobalValue>(P.first) ||
1452                                cast<GlobalValue>(P.first)->hasLocalLinkage());
1453     auto *ThunkFn = Function::Create(ThunkFnTy,
1454                                      IsLocal ? GlobalValue::InternalLinkage
1455                                              : GlobalValue::LinkOnceODRLinkage,
1456                                      ThunkName, &M);
1457     if (!IsLocal) {
1458       ThunkFn->setVisibility(GlobalValue::HiddenVisibility);
1459       ThunkFn->setComdat(M.getOrInsertComdat(ThunkName));
1460     }
1461 
1462     auto *BB = BasicBlock::Create(*C, "entry", ThunkFn);
1463     IRBuilder<> IRB(BB);
1464     CallInst *WrapperCall = IRB.CreateCall(
1465         HwasanPersonalityWrapper,
1466         {ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2),
1467          ThunkFn->getArg(3), ThunkFn->getArg(4),
1468          P.first ? IRB.CreateBitCast(P.first, Int8PtrTy)
1469                  : Constant::getNullValue(Int8PtrTy),
1470          IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy),
1471          IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)});
1472     WrapperCall->setTailCall();
1473     IRB.CreateRet(WrapperCall);
1474 
1475     for (Function *F : P.second)
1476       F->setPersonalityFn(ThunkFn);
1477   }
1478 }
1479 
1480 void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) {
1481   Scale = kDefaultShadowScale;
1482   if (ClMappingOffset.getNumOccurrences() > 0) {
1483     InGlobal = false;
1484     InTls = false;
1485     Offset = ClMappingOffset;
1486   } else if (ClEnableKhwasan || ClInstrumentWithCalls) {
1487     InGlobal = false;
1488     InTls = false;
1489     Offset = 0;
1490   } else if (ClWithIfunc) {
1491     InGlobal = true;
1492     InTls = false;
1493     Offset = kDynamicShadowSentinel;
1494   } else if (ClWithTls) {
1495     InGlobal = false;
1496     InTls = true;
1497     Offset = kDynamicShadowSentinel;
1498   } else {
1499     InGlobal = false;
1500     InTls = false;
1501     Offset = kDynamicShadowSentinel;
1502   }
1503 }
1504