1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Each byte of application memory is backed by a shadow memory byte. The 22 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 23 /// laid out as follows: 24 /// 25 /// +--------------------+ 0x800000000000 (top of memory) 26 /// | application memory | 27 /// +--------------------+ 0x700000008000 (kAppAddr) 28 /// | | 29 /// | unused | 30 /// | | 31 /// +--------------------+ 0x300000000000 (kUnusedAddr) 32 /// | origin | 33 /// +--------------------+ 0x200000008000 (kOriginAddr) 34 /// | unused | 35 /// +--------------------+ 0x200000000000 36 /// | shadow memory | 37 /// +--------------------+ 0x100000008000 (kShadowAddr) 38 /// | unused | 39 /// +--------------------+ 0x000000010000 40 /// | reserved by kernel | 41 /// +--------------------+ 0x000000000000 42 /// 43 /// 44 /// To derive a shadow memory address from an application memory address, bits 45 /// 45-46 are cleared to bring the address into the range 46 /// [0x100000008000,0x200000000000). See the function 47 /// DataFlowSanitizer::getShadowAddress below. 48 /// 49 /// For more information, please refer to the design document: 50 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseSet.h" 57 #include "llvm/ADT/DepthFirstIterator.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/SmallPtrSet.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringRef.h" 63 #include "llvm/ADT/Triple.h" 64 #include "llvm/ADT/iterator.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalValue.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/IRBuilder.h" 79 #include "llvm/IR/InlineAsm.h" 80 #include "llvm/IR/InstVisitor.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/MDBuilder.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PassManager.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/Alignment.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/CommandLine.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/SpecialCaseList.h" 99 #include "llvm/Support/VirtualFileSystem.h" 100 #include "llvm/Transforms/Instrumentation.h" 101 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstddef> 106 #include <cstdint> 107 #include <iterator> 108 #include <memory> 109 #include <set> 110 #include <string> 111 #include <utility> 112 #include <vector> 113 114 using namespace llvm; 115 116 // This must be consistent with ShadowWidthBits. 117 static const Align ShadowTLSAlignment = Align(2); 118 119 static const Align MinOriginAlignment = Align(4); 120 121 // The size of TLS variables. These constants must be kept in sync with the ones 122 // in dfsan.cpp. 123 static const unsigned ArgTLSSize = 800; 124 static const unsigned RetvalTLSSize = 800; 125 126 // External symbol to be used when generating the shadow address for 127 // architectures with multiple VMAs. Instead of using a constant integer 128 // the runtime will set the external mask based on the VMA range. 129 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 130 131 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 132 // alignment requirements provided by the input IR are correct. For example, 133 // if the input IR contains a load with alignment 8, this flag will cause 134 // the shadow load to have alignment 16. This flag is disabled by default as 135 // we have unfortunately encountered too much code (including Clang itself; 136 // see PR14291) which performs misaligned access. 137 static cl::opt<bool> ClPreserveAlignment( 138 "dfsan-preserve-alignment", 139 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 140 cl::init(false)); 141 142 // The ABI list files control how shadow parameters are passed. The pass treats 143 // every function labelled "uninstrumented" in the ABI list file as conforming 144 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 145 // additional annotations for those functions, a call to one of those functions 146 // will produce a warning message, as the labelling behaviour of the function is 147 // unknown. The other supported annotations are "functional" and "discard", 148 // which are described below under DataFlowSanitizer::WrapperKind. 149 static cl::list<std::string> ClABIListFiles( 150 "dfsan-abilist", 151 cl::desc("File listing native ABI functions and how the pass treats them"), 152 cl::Hidden); 153 154 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 155 // functions (see DataFlowSanitizer::InstrumentedABI below). 156 static cl::opt<bool> 157 ClArgsABI("dfsan-args-abi", 158 cl::desc("Use the argument ABI rather than the TLS ABI"), 159 cl::Hidden); 160 161 // Controls whether the pass includes or ignores the labels of pointers in load 162 // instructions. 163 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 164 "dfsan-combine-pointer-labels-on-load", 165 cl::desc("Combine the label of the pointer with the label of the data when " 166 "loading from memory."), 167 cl::Hidden, cl::init(true)); 168 169 // Controls whether the pass includes or ignores the labels of pointers in 170 // stores instructions. 171 static cl::opt<bool> ClCombinePointerLabelsOnStore( 172 "dfsan-combine-pointer-labels-on-store", 173 cl::desc("Combine the label of the pointer with the label of the data when " 174 "storing in memory."), 175 cl::Hidden, cl::init(false)); 176 177 // Controls whether the pass propagates labels of offsets in GEP instructions. 178 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 179 "dfsan-combine-offset-labels-on-gep", 180 cl::desc( 181 "Combine the label of the offset with the label of the pointer when " 182 "doing pointer arithmetic."), 183 cl::Hidden, cl::init(true)); 184 185 static cl::opt<bool> ClDebugNonzeroLabels( 186 "dfsan-debug-nonzero-labels", 187 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 188 "load or return with a nonzero label"), 189 cl::Hidden); 190 191 // Experimental feature that inserts callbacks for certain data events. 192 // Currently callbacks are only inserted for loads, stores, memory transfers 193 // (i.e. memcpy and memmove), and comparisons. 194 // 195 // If this flag is set to true, the user must provide definitions for the 196 // following callback functions: 197 // void __dfsan_load_callback(dfsan_label Label, void* addr); 198 // void __dfsan_store_callback(dfsan_label Label, void* addr); 199 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 200 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 201 static cl::opt<bool> ClEventCallbacks( 202 "dfsan-event-callbacks", 203 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 204 cl::Hidden, cl::init(false)); 205 206 // Controls whether the pass tracks the control flow of select instructions. 207 static cl::opt<bool> ClTrackSelectControlFlow( 208 "dfsan-track-select-control-flow", 209 cl::desc("Propagate labels from condition values of select instructions " 210 "to results."), 211 cl::Hidden, cl::init(true)); 212 213 // TODO: This default value follows MSan. DFSan may use a different value. 214 static cl::opt<int> ClInstrumentWithCallThreshold( 215 "dfsan-instrument-with-call-threshold", 216 cl::desc("If the function being instrumented requires more than " 217 "this number of origin stores, use callbacks instead of " 218 "inline checks (-1 means never use callbacks)."), 219 cl::Hidden, cl::init(3500)); 220 221 // Controls how to track origins. 222 // * 0: do not track origins. 223 // * 1: track origins at memory store operations. 224 // * 2: track origins at memory load and store operations. 225 // TODO: track callsites. 226 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 227 cl::desc("Track origins of labels"), 228 cl::Hidden, cl::init(0)); 229 230 static StringRef getGlobalTypeString(const GlobalValue &G) { 231 // Types of GlobalVariables are always pointer types. 232 Type *GType = G.getValueType(); 233 // For now we support excluding struct types only. 234 if (StructType *SGType = dyn_cast<StructType>(GType)) { 235 if (!SGType->isLiteral()) 236 return SGType->getName(); 237 } 238 return "<unknown type>"; 239 } 240 241 namespace { 242 243 class DFSanABIList { 244 std::unique_ptr<SpecialCaseList> SCL; 245 246 public: 247 DFSanABIList() = default; 248 249 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 250 251 /// Returns whether either this function or its source file are listed in the 252 /// given category. 253 bool isIn(const Function &F, StringRef Category) const { 254 return isIn(*F.getParent(), Category) || 255 SCL->inSection("dataflow", "fun", F.getName(), Category); 256 } 257 258 /// Returns whether this global alias is listed in the given category. 259 /// 260 /// If GA aliases a function, the alias's name is matched as a function name 261 /// would be. Similarly, aliases of globals are matched like globals. 262 bool isIn(const GlobalAlias &GA, StringRef Category) const { 263 if (isIn(*GA.getParent(), Category)) 264 return true; 265 266 if (isa<FunctionType>(GA.getValueType())) 267 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 268 269 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 270 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 271 Category); 272 } 273 274 /// Returns whether this module is listed in the given category. 275 bool isIn(const Module &M, StringRef Category) const { 276 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 277 } 278 }; 279 280 /// TransformedFunction is used to express the result of transforming one 281 /// function type into another. This struct is immutable. It holds metadata 282 /// useful for updating calls of the old function to the new type. 283 struct TransformedFunction { 284 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 285 std::vector<unsigned> ArgumentIndexMapping) 286 : OriginalType(OriginalType), TransformedType(TransformedType), 287 ArgumentIndexMapping(ArgumentIndexMapping) {} 288 289 // Disallow copies. 290 TransformedFunction(const TransformedFunction &) = delete; 291 TransformedFunction &operator=(const TransformedFunction &) = delete; 292 293 // Allow moves. 294 TransformedFunction(TransformedFunction &&) = default; 295 TransformedFunction &operator=(TransformedFunction &&) = default; 296 297 /// Type of the function before the transformation. 298 FunctionType *OriginalType; 299 300 /// Type of the function after the transformation. 301 FunctionType *TransformedType; 302 303 /// Transforming a function may change the position of arguments. This 304 /// member records the mapping from each argument's old position to its new 305 /// position. Argument positions are zero-indexed. If the transformation 306 /// from F to F' made the first argument of F into the third argument of F', 307 /// then ArgumentIndexMapping[0] will equal 2. 308 std::vector<unsigned> ArgumentIndexMapping; 309 }; 310 311 /// Given function attributes from a call site for the original function, 312 /// return function attributes appropriate for a call to the transformed 313 /// function. 314 AttributeList 315 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 316 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 317 318 // Construct a vector of AttributeSet for each function argument. 319 std::vector<llvm::AttributeSet> ArgumentAttributes( 320 TransformedFunction.TransformedType->getNumParams()); 321 322 // Copy attributes from the parameter of the original function to the 323 // transformed version. 'ArgumentIndexMapping' holds the mapping from 324 // old argument position to new. 325 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 326 I < IE; ++I) { 327 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 328 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 329 } 330 331 // Copy annotations on varargs arguments. 332 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 333 IE = CallSiteAttrs.getNumAttrSets(); 334 I < IE; ++I) { 335 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 336 } 337 338 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 339 CallSiteAttrs.getRetAttributes(), 340 llvm::makeArrayRef(ArgumentAttributes)); 341 } 342 343 class DataFlowSanitizer { 344 friend struct DFSanFunction; 345 friend class DFSanVisitor; 346 347 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 348 349 enum { 350 OriginWidthBits = 32, 351 OriginWidthBytes = OriginWidthBits / 8 352 }; 353 354 /// Which ABI should be used for instrumented functions? 355 enum InstrumentedABI { 356 /// Argument and return value labels are passed through additional 357 /// arguments and by modifying the return type. 358 IA_Args, 359 360 /// Argument and return value labels are passed through TLS variables 361 /// __dfsan_arg_tls and __dfsan_retval_tls. 362 IA_TLS 363 }; 364 365 /// How should calls to uninstrumented functions be handled? 366 enum WrapperKind { 367 /// This function is present in an uninstrumented form but we don't know 368 /// how it should be handled. Print a warning and call the function anyway. 369 /// Don't label the return value. 370 WK_Warning, 371 372 /// This function does not write to (user-accessible) memory, and its return 373 /// value is unlabelled. 374 WK_Discard, 375 376 /// This function does not write to (user-accessible) memory, and the label 377 /// of its return value is the union of the label of its arguments. 378 WK_Functional, 379 380 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 381 /// where F is the name of the function. This function may wrap the 382 /// original function or provide its own implementation. This is similar to 383 /// the IA_Args ABI, except that IA_Args uses a struct return type to 384 /// pass the return value shadow in a register, while WK_Custom uses an 385 /// extra pointer argument to return the shadow. This allows the wrapped 386 /// form of the function type to be expressed in C. 387 WK_Custom 388 }; 389 390 Module *Mod; 391 LLVMContext *Ctx; 392 Type *Int8Ptr; 393 IntegerType *OriginTy; 394 PointerType *OriginPtrTy; 395 ConstantInt *ZeroOrigin; 396 /// The shadow type for all primitive types and vector types. 397 IntegerType *PrimitiveShadowTy; 398 PointerType *PrimitiveShadowPtrTy; 399 IntegerType *IntptrTy; 400 ConstantInt *ZeroPrimitiveShadow; 401 ConstantInt *ShadowPtrMask; 402 ConstantInt *ShadowBase; 403 ConstantInt *OriginBase; 404 Constant *ArgTLS; 405 ArrayType *ArgOriginTLSTy; 406 Constant *ArgOriginTLS; 407 Constant *RetvalTLS; 408 Constant *RetvalOriginTLS; 409 Constant *ExternalShadowMask; 410 FunctionType *DFSanUnionLoadFnTy; 411 FunctionType *DFSanLoadLabelAndOriginFnTy; 412 FunctionType *DFSanUnimplementedFnTy; 413 FunctionType *DFSanSetLabelFnTy; 414 FunctionType *DFSanNonzeroLabelFnTy; 415 FunctionType *DFSanVarargWrapperFnTy; 416 FunctionType *DFSanCmpCallbackFnTy; 417 FunctionType *DFSanLoadStoreCallbackFnTy; 418 FunctionType *DFSanMemTransferCallbackFnTy; 419 FunctionType *DFSanChainOriginFnTy; 420 FunctionType *DFSanChainOriginIfTaintedFnTy; 421 FunctionType *DFSanMemOriginTransferFnTy; 422 FunctionType *DFSanMaybeStoreOriginFnTy; 423 FunctionCallee DFSanUnionLoadFn; 424 FunctionCallee DFSanLoadLabelAndOriginFn; 425 FunctionCallee DFSanUnimplementedFn; 426 FunctionCallee DFSanSetLabelFn; 427 FunctionCallee DFSanNonzeroLabelFn; 428 FunctionCallee DFSanVarargWrapperFn; 429 FunctionCallee DFSanLoadCallbackFn; 430 FunctionCallee DFSanStoreCallbackFn; 431 FunctionCallee DFSanMemTransferCallbackFn; 432 FunctionCallee DFSanCmpCallbackFn; 433 FunctionCallee DFSanChainOriginFn; 434 FunctionCallee DFSanChainOriginIfTaintedFn; 435 FunctionCallee DFSanMemOriginTransferFn; 436 FunctionCallee DFSanMaybeStoreOriginFn; 437 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 438 MDNode *ColdCallWeights; 439 MDNode *OriginStoreWeights; 440 DFSanABIList ABIList; 441 DenseMap<Value *, Function *> UnwrappedFnMap; 442 AttrBuilder ReadOnlyNoneAttrs; 443 bool DFSanRuntimeShadowMask = false; 444 445 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 446 Value *getShadowAddress(Value *Addr, Instruction *Pos); 447 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 448 std::pair<Value *, Value *> 449 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 450 bool isInstrumented(const Function *F); 451 bool isInstrumented(const GlobalAlias *GA); 452 FunctionType *getArgsFunctionType(FunctionType *T); 453 FunctionType *getTrampolineFunctionType(FunctionType *T); 454 TransformedFunction getCustomFunctionType(FunctionType *T); 455 InstrumentedABI getInstrumentedABI(); 456 WrapperKind getWrapperKind(Function *F); 457 void addGlobalNamePrefix(GlobalValue *GV); 458 Function *buildWrapperFunction(Function *F, StringRef NewFName, 459 GlobalValue::LinkageTypes NewFLink, 460 FunctionType *NewFT); 461 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 462 void initializeCallbackFunctions(Module &M); 463 void initializeRuntimeFunctions(Module &M); 464 void injectMetadataGlobals(Module &M); 465 bool init(Module &M); 466 467 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 468 /// from it. Returns the origin's loaded value. 469 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 470 Value **OriginAddr); 471 472 /// Returns whether the given load byte size is amenable to inlined 473 /// optimization patterns. 474 bool hasLoadSizeForFastPath(uint64_t Size); 475 476 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 477 bool shouldTrackOrigins(); 478 479 /// Returns whether the pass tracks labels for struct fields and array 480 /// indices. Supports only TLS ABI mode. 481 bool shouldTrackFieldsAndIndices(); 482 483 /// Returns a zero constant with the shadow type of OrigTy. 484 /// 485 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 486 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 487 /// getZeroShadow(other type) = i16(0) 488 /// 489 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 490 /// returns false. 491 Constant *getZeroShadow(Type *OrigTy); 492 /// Returns a zero constant with the shadow type of V's type. 493 Constant *getZeroShadow(Value *V); 494 495 /// Checks if V is a zero shadow. 496 bool isZeroShadow(Value *V); 497 498 /// Returns the shadow type of OrigTy. 499 /// 500 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 501 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 502 /// getShadowTy(other type) = i16 503 /// 504 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 505 /// returns false. 506 Type *getShadowTy(Type *OrigTy); 507 /// Returns the shadow type of of V's type. 508 Type *getShadowTy(Value *V); 509 510 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 511 512 public: 513 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 514 515 bool runImpl(Module &M); 516 }; 517 518 struct DFSanFunction { 519 DataFlowSanitizer &DFS; 520 Function *F; 521 DominatorTree DT; 522 DataFlowSanitizer::InstrumentedABI IA; 523 bool IsNativeABI; 524 AllocaInst *LabelReturnAlloca = nullptr; 525 AllocaInst *OriginReturnAlloca = nullptr; 526 DenseMap<Value *, Value *> ValShadowMap; 527 DenseMap<Value *, Value *> ValOriginMap; 528 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 529 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 530 531 struct PHIFixupElement { 532 PHINode *Phi; 533 PHINode *ShadowPhi; 534 PHINode *OriginPhi; 535 }; 536 std::vector<PHIFixupElement> PHIFixups; 537 538 DenseSet<Instruction *> SkipInsts; 539 std::vector<Value *> NonZeroChecks; 540 541 struct CachedShadow { 542 BasicBlock *Block; // The block where Shadow is defined. 543 Value *Shadow; 544 }; 545 /// Maps a value to its latest shadow value in terms of domination tree. 546 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 547 /// Maps a value to its latest collapsed shadow value it was converted to in 548 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 549 /// used at a post process where CFG blocks are split. So it does not cache 550 /// BasicBlock like CachedShadows, but uses domination between values. 551 DenseMap<Value *, Value *> CachedCollapsedShadows; 552 DenseMap<Value *, std::set<Value *>> ShadowElements; 553 554 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 555 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 556 DT.recalculate(*F); 557 } 558 559 /// Computes the shadow address for a given function argument. 560 /// 561 /// Shadow = ArgTLS+ArgOffset. 562 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 563 564 /// Computes the shadow address for a return value. 565 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 566 567 /// Computes the origin address for a given function argument. 568 /// 569 /// Origin = ArgOriginTLS[ArgNo]. 570 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 571 572 /// Computes the origin address for a return value. 573 Value *getRetvalOriginTLS(); 574 575 Value *getOrigin(Value *V); 576 void setOrigin(Instruction *I, Value *Origin); 577 /// Generates IR to compute the origin of the last operand with a taint label. 578 Value *combineOperandOrigins(Instruction *Inst); 579 /// Before the instruction Pos, generates IR to compute the last origin with a 580 /// taint label. Labels and origins are from vectors Shadows and Origins 581 /// correspondingly. The generated IR is like 582 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 583 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 584 /// zeros with other bitwidths. 585 Value *combineOrigins(const std::vector<Value *> &Shadows, 586 const std::vector<Value *> &Origins, Instruction *Pos, 587 ConstantInt *Zero = nullptr); 588 589 Value *getShadow(Value *V); 590 void setShadow(Instruction *I, Value *Shadow); 591 /// Generates IR to compute the union of the two given shadows, inserting it 592 /// before Pos. The combined value is with primitive type. 593 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 594 /// Combines the shadow values of V1 and V2, then converts the combined value 595 /// with primitive type into a shadow value with the original type T. 596 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 597 Instruction *Pos); 598 Value *combineOperandShadows(Instruction *Inst); 599 600 /// Generates IR to load shadow and origin corresponding to bytes [\p 601 /// Addr, \p Addr + \p Size), where addr has alignment \p 602 /// InstAlignment, and take the union of each of those shadows. The returned 603 /// shadow always has primitive type. 604 /// 605 /// When tracking loads is enabled, the returned origin is a chain at the 606 /// current stack if the returned shadow is tainted. 607 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 608 Align InstAlignment, 609 Instruction *Pos); 610 611 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 612 Align InstAlignment, Value *PrimitiveShadow, 613 Value *Origin, Instruction *Pos); 614 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 615 /// the expanded shadow value. 616 /// 617 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 618 /// EFP([n x T], PS) = [n x EFP(T,PS)] 619 /// EFP(other types, PS) = PS 620 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 621 Instruction *Pos); 622 /// Collapses Shadow into a single primitive shadow value, unioning all 623 /// primitive shadow values in the process. Returns the final primitive 624 /// shadow value. 625 /// 626 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 627 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 628 /// CTP(other types, PS) = PS 629 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 630 631 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 632 Instruction *Pos); 633 634 Align getShadowAlign(Align InstAlignment); 635 636 private: 637 /// Collapses the shadow with aggregate type into a single primitive shadow 638 /// value. 639 template <class AggregateType> 640 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 641 IRBuilder<> &IRB); 642 643 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 644 645 /// Returns the shadow value of an argument A. 646 Value *getShadowForTLSArgument(Argument *A); 647 648 /// The fast path of loading shadows. 649 std::pair<Value *, Value *> 650 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 651 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 652 Instruction *Pos); 653 654 Align getOriginAlign(Align InstAlignment); 655 656 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 657 /// is __dfsan_load_label_and_origin. This function returns the union of all 658 /// labels and the origin of the first taint label. However this is an 659 /// additional call with many instructions. To ensure common cases are fast, 660 /// checks if it is possible to load labels and origins without using the 661 /// callback function. 662 /// 663 /// When enabling tracking load instructions, we always use 664 /// __dfsan_load_label_and_origin to reduce code size. 665 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 666 667 /// Returns a chain at the current stack with previous origin V. 668 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 669 670 /// Returns a chain at the current stack with previous origin V if Shadow is 671 /// tainted. 672 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 673 674 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 675 /// Origin otherwise. 676 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 677 678 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 679 /// Size). 680 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 681 uint64_t StoreOriginSize, Align Alignment); 682 683 /// Stores Origin in terms of its Shadow value. 684 /// * Do not write origins for zero shadows because we do not trace origins 685 /// for untainted sinks. 686 /// * Use __dfsan_maybe_store_origin if there are too many origin store 687 /// instrumentations. 688 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 689 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 690 691 /// Convert a scalar value to an i1 by comparing with 0. 692 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 693 694 bool shouldInstrumentWithCall(); 695 696 /// Generates IR to load shadow and origin corresponding to bytes [\p 697 /// Addr, \p Addr + \p Size), where addr has alignment \p 698 /// InstAlignment, and take the union of each of those shadows. The returned 699 /// shadow always has primitive type. 700 std::pair<Value *, Value *> 701 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 702 Align InstAlignment, Instruction *Pos); 703 int NumOriginStores = 0; 704 }; 705 706 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 707 public: 708 DFSanFunction &DFSF; 709 710 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 711 712 const DataLayout &getDataLayout() const { 713 return DFSF.F->getParent()->getDataLayout(); 714 } 715 716 // Combines shadow values and origins for all of I's operands. 717 void visitInstOperands(Instruction &I); 718 719 void visitUnaryOperator(UnaryOperator &UO); 720 void visitBinaryOperator(BinaryOperator &BO); 721 void visitBitCastInst(BitCastInst &BCI); 722 void visitCastInst(CastInst &CI); 723 void visitCmpInst(CmpInst &CI); 724 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 725 void visitLoadInst(LoadInst &LI); 726 void visitStoreInst(StoreInst &SI); 727 void visitAtomicRMWInst(AtomicRMWInst &I); 728 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 729 void visitReturnInst(ReturnInst &RI); 730 void visitCallBase(CallBase &CB); 731 void visitPHINode(PHINode &PN); 732 void visitExtractElementInst(ExtractElementInst &I); 733 void visitInsertElementInst(InsertElementInst &I); 734 void visitShuffleVectorInst(ShuffleVectorInst &I); 735 void visitExtractValueInst(ExtractValueInst &I); 736 void visitInsertValueInst(InsertValueInst &I); 737 void visitAllocaInst(AllocaInst &I); 738 void visitSelectInst(SelectInst &I); 739 void visitMemSetInst(MemSetInst &I); 740 void visitMemTransferInst(MemTransferInst &I); 741 742 private: 743 void visitCASOrRMW(Align InstAlignment, Instruction &I); 744 745 // Returns false when this is an invoke of a custom function. 746 bool visitWrappedCallBase(Function &F, CallBase &CB); 747 748 // Combines origins for all of I's operands. 749 void visitInstOperandOrigins(Instruction &I); 750 751 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 752 IRBuilder<> &IRB); 753 754 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 755 IRBuilder<> &IRB); 756 }; 757 758 } // end anonymous namespace 759 760 DataFlowSanitizer::DataFlowSanitizer( 761 const std::vector<std::string> &ABIListFiles) { 762 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 763 llvm::append_range(AllABIListFiles, ClABIListFiles); 764 // FIXME: should we propagate vfs::FileSystem to this constructor? 765 ABIList.set( 766 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 767 } 768 769 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 770 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 771 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 772 if (T->isVarArg()) 773 ArgTypes.push_back(PrimitiveShadowPtrTy); 774 Type *RetType = T->getReturnType(); 775 if (!RetType->isVoidTy()) 776 RetType = StructType::get(RetType, PrimitiveShadowTy); 777 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 778 } 779 780 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 781 assert(!T->isVarArg()); 782 SmallVector<Type *, 4> ArgTypes; 783 ArgTypes.push_back(T->getPointerTo()); 784 ArgTypes.append(T->param_begin(), T->param_end()); 785 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 786 Type *RetType = T->getReturnType(); 787 if (!RetType->isVoidTy()) 788 ArgTypes.push_back(PrimitiveShadowPtrTy); 789 790 if (shouldTrackOrigins()) { 791 ArgTypes.append(T->getNumParams(), OriginTy); 792 if (!RetType->isVoidTy()) 793 ArgTypes.push_back(OriginPtrTy); 794 } 795 796 return FunctionType::get(T->getReturnType(), ArgTypes, false); 797 } 798 799 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 800 SmallVector<Type *, 4> ArgTypes; 801 802 // Some parameters of the custom function being constructed are 803 // parameters of T. Record the mapping from parameters of T to 804 // parameters of the custom function, so that parameter attributes 805 // at call sites can be updated. 806 std::vector<unsigned> ArgumentIndexMapping; 807 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 808 Type *ParamType = T->getParamType(I); 809 FunctionType *FT; 810 if (isa<PointerType>(ParamType) && 811 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 812 ArgumentIndexMapping.push_back(ArgTypes.size()); 813 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 814 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 815 } else { 816 ArgumentIndexMapping.push_back(ArgTypes.size()); 817 ArgTypes.push_back(ParamType); 818 } 819 } 820 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 821 ArgTypes.push_back(PrimitiveShadowTy); 822 if (T->isVarArg()) 823 ArgTypes.push_back(PrimitiveShadowPtrTy); 824 Type *RetType = T->getReturnType(); 825 if (!RetType->isVoidTy()) 826 ArgTypes.push_back(PrimitiveShadowPtrTy); 827 828 if (shouldTrackOrigins()) { 829 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 830 ArgTypes.push_back(OriginTy); 831 if (T->isVarArg()) 832 ArgTypes.push_back(OriginPtrTy); 833 if (!RetType->isVoidTy()) 834 ArgTypes.push_back(OriginPtrTy); 835 } 836 837 return TransformedFunction( 838 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 839 ArgumentIndexMapping); 840 } 841 842 bool DataFlowSanitizer::isZeroShadow(Value *V) { 843 if (!shouldTrackFieldsAndIndices()) 844 return ZeroPrimitiveShadow == V; 845 846 Type *T = V->getType(); 847 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 848 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 849 return CI->isZero(); 850 return false; 851 } 852 853 return isa<ConstantAggregateZero>(V); 854 } 855 856 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 857 uint64_t ShadowSize = Size * ShadowWidthBytes; 858 return ShadowSize % 8 == 0 || ShadowSize == 4; 859 } 860 861 bool DataFlowSanitizer::shouldTrackOrigins() { 862 static const bool ShouldTrackOrigins = 863 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 864 return ShouldTrackOrigins; 865 } 866 867 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 868 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 869 } 870 871 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 872 if (!shouldTrackFieldsAndIndices()) 873 return ZeroPrimitiveShadow; 874 875 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 876 return ZeroPrimitiveShadow; 877 Type *ShadowTy = getShadowTy(OrigTy); 878 return ConstantAggregateZero::get(ShadowTy); 879 } 880 881 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 882 return getZeroShadow(V->getType()); 883 } 884 885 static Value *expandFromPrimitiveShadowRecursive( 886 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 887 Value *PrimitiveShadow, IRBuilder<> &IRB) { 888 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 889 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 890 891 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 892 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 893 Indices.push_back(Idx); 894 Shadow = expandFromPrimitiveShadowRecursive( 895 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 896 Indices.pop_back(); 897 } 898 return Shadow; 899 } 900 901 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 902 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 903 Indices.push_back(Idx); 904 Shadow = expandFromPrimitiveShadowRecursive( 905 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 906 Indices.pop_back(); 907 } 908 return Shadow; 909 } 910 llvm_unreachable("Unexpected shadow type"); 911 } 912 913 bool DFSanFunction::shouldInstrumentWithCall() { 914 return ClInstrumentWithCallThreshold >= 0 && 915 NumOriginStores >= ClInstrumentWithCallThreshold; 916 } 917 918 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 919 Instruction *Pos) { 920 Type *ShadowTy = DFS.getShadowTy(T); 921 922 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 923 return PrimitiveShadow; 924 925 if (DFS.isZeroShadow(PrimitiveShadow)) 926 return DFS.getZeroShadow(ShadowTy); 927 928 IRBuilder<> IRB(Pos); 929 SmallVector<unsigned, 4> Indices; 930 Value *Shadow = UndefValue::get(ShadowTy); 931 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 932 PrimitiveShadow, IRB); 933 934 // Caches the primitive shadow value that built the shadow value. 935 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 936 return Shadow; 937 } 938 939 template <class AggregateType> 940 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 941 IRBuilder<> &IRB) { 942 if (!AT->getNumElements()) 943 return DFS.ZeroPrimitiveShadow; 944 945 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 946 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 947 948 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 949 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 950 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 951 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 952 } 953 return Aggregator; 954 } 955 956 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 957 IRBuilder<> &IRB) { 958 Type *ShadowTy = Shadow->getType(); 959 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 960 return Shadow; 961 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 962 return collapseAggregateShadow<>(AT, Shadow, IRB); 963 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 964 return collapseAggregateShadow<>(ST, Shadow, IRB); 965 llvm_unreachable("Unexpected shadow type"); 966 } 967 968 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 969 Instruction *Pos) { 970 Type *ShadowTy = Shadow->getType(); 971 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 972 return Shadow; 973 974 assert(DFS.shouldTrackFieldsAndIndices()); 975 976 // Checks if the cached collapsed shadow value dominates Pos. 977 Value *&CS = CachedCollapsedShadows[Shadow]; 978 if (CS && DT.dominates(CS, Pos)) 979 return CS; 980 981 IRBuilder<> IRB(Pos); 982 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 983 // Caches the converted primitive shadow value. 984 CS = PrimitiveShadow; 985 return PrimitiveShadow; 986 } 987 988 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 989 if (!shouldTrackFieldsAndIndices()) 990 return PrimitiveShadowTy; 991 992 if (!OrigTy->isSized()) 993 return PrimitiveShadowTy; 994 if (isa<IntegerType>(OrigTy)) 995 return PrimitiveShadowTy; 996 if (isa<VectorType>(OrigTy)) 997 return PrimitiveShadowTy; 998 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 999 return ArrayType::get(getShadowTy(AT->getElementType()), 1000 AT->getNumElements()); 1001 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1002 SmallVector<Type *, 4> Elements; 1003 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1004 Elements.push_back(getShadowTy(ST->getElementType(I))); 1005 return StructType::get(*Ctx, Elements); 1006 } 1007 return PrimitiveShadowTy; 1008 } 1009 1010 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1011 return getShadowTy(V->getType()); 1012 } 1013 1014 bool DataFlowSanitizer::init(Module &M) { 1015 Triple TargetTriple(M.getTargetTriple()); 1016 const DataLayout &DL = M.getDataLayout(); 1017 1018 Mod = &M; 1019 Ctx = &M.getContext(); 1020 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1021 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1022 OriginPtrTy = PointerType::getUnqual(OriginTy); 1023 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1024 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1025 IntptrTy = DL.getIntPtrType(*Ctx); 1026 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1027 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1028 1029 // TODO: these should be platform-specific and set in the switch-stmt below. 1030 ShadowBase = ConstantInt::get(IntptrTy, 0x100000008000LL); 1031 OriginBase = ConstantInt::get(IntptrTy, 0x200000008000LL); 1032 1033 switch (TargetTriple.getArch()) { 1034 case Triple::x86_64: 1035 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x600000000000LL); 1036 break; 1037 case Triple::mips64: 1038 case Triple::mips64el: 1039 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xE000000000LL); 1040 break; 1041 case Triple::aarch64: 1042 case Triple::aarch64_be: 1043 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 1044 DFSanRuntimeShadowMask = true; 1045 break; 1046 default: 1047 report_fatal_error("unsupported triple"); 1048 } 1049 1050 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1051 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1052 /*isVarArg=*/false); 1053 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1054 DFSanLoadLabelAndOriginFnTy = 1055 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1056 /*isVarArg=*/false); 1057 DFSanUnimplementedFnTy = FunctionType::get( 1058 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1059 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1060 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1061 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1062 DFSanSetLabelArgs, /*isVarArg=*/false); 1063 DFSanNonzeroLabelFnTy = 1064 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1065 DFSanVarargWrapperFnTy = FunctionType::get( 1066 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1067 DFSanCmpCallbackFnTy = 1068 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1069 /*isVarArg=*/false); 1070 DFSanChainOriginFnTy = 1071 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1072 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1073 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1074 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1075 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1076 Int8Ptr, IntptrTy, OriginTy}; 1077 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1078 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1079 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1080 DFSanMemOriginTransferFnTy = FunctionType::get( 1081 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1082 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1083 DFSanLoadStoreCallbackFnTy = 1084 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1085 /*isVarArg=*/false); 1086 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1087 DFSanMemTransferCallbackFnTy = 1088 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1089 /*isVarArg=*/false); 1090 1091 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1092 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1093 return true; 1094 } 1095 1096 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1097 return !ABIList.isIn(*F, "uninstrumented"); 1098 } 1099 1100 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1101 return !ABIList.isIn(*GA, "uninstrumented"); 1102 } 1103 1104 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1105 return ClArgsABI ? IA_Args : IA_TLS; 1106 } 1107 1108 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1109 if (ABIList.isIn(*F, "functional")) 1110 return WK_Functional; 1111 if (ABIList.isIn(*F, "discard")) 1112 return WK_Discard; 1113 if (ABIList.isIn(*F, "custom")) 1114 return WK_Custom; 1115 1116 return WK_Warning; 1117 } 1118 1119 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 1120 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 1121 GV->setName(Prefix + GVName); 1122 1123 // Try to change the name of the function in module inline asm. We only do 1124 // this for specific asm directives, currently only ".symver", to try to avoid 1125 // corrupting asm which happens to contain the symbol name as a substring. 1126 // Note that the substitution for .symver assumes that the versioned symbol 1127 // also has an instrumented name. 1128 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1129 std::string SearchStr = ".symver " + GVName + ","; 1130 size_t Pos = Asm.find(SearchStr); 1131 if (Pos != std::string::npos) { 1132 Asm.replace(Pos, SearchStr.size(), 1133 ".symver " + Prefix + GVName + "," + Prefix); 1134 GV->getParent()->setModuleInlineAsm(Asm); 1135 } 1136 } 1137 1138 Function * 1139 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1140 GlobalValue::LinkageTypes NewFLink, 1141 FunctionType *NewFT) { 1142 FunctionType *FT = F->getFunctionType(); 1143 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1144 NewFName, F->getParent()); 1145 NewF->copyAttributesFrom(F); 1146 NewF->removeAttributes( 1147 AttributeList::ReturnIndex, 1148 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1149 1150 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1151 if (F->isVarArg()) { 1152 NewF->removeAttributes(AttributeList::FunctionIndex, 1153 AttrBuilder().addAttribute("split-stack")); 1154 CallInst::Create(DFSanVarargWrapperFn, 1155 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1156 BB); 1157 new UnreachableInst(*Ctx, BB); 1158 } else { 1159 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1160 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1161 1162 CallInst *CI = CallInst::Create(F, Args, "", BB); 1163 if (FT->getReturnType()->isVoidTy()) 1164 ReturnInst::Create(*Ctx, BB); 1165 else 1166 ReturnInst::Create(*Ctx, CI, BB); 1167 } 1168 1169 return NewF; 1170 } 1171 1172 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1173 StringRef FName) { 1174 FunctionType *FTT = getTrampolineFunctionType(FT); 1175 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1176 Function *F = dyn_cast<Function>(C.getCallee()); 1177 if (F && F->isDeclaration()) { 1178 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1179 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1180 std::vector<Value *> Args; 1181 Function::arg_iterator AI = F->arg_begin() + 1; 1182 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1183 Args.push_back(&*AI); 1184 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1185 Type *RetType = FT->getReturnType(); 1186 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1187 : ReturnInst::Create(*Ctx, CI, BB); 1188 1189 // F is called by a wrapped custom function with primitive shadows. So 1190 // its arguments and return value need conversion. 1191 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1192 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1193 ++ValAI; 1194 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1195 Value *Shadow = 1196 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1197 DFSF.ValShadowMap[&*ValAI] = Shadow; 1198 } 1199 Function::arg_iterator RetShadowAI = ShadowAI; 1200 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1201 if (ShouldTrackOrigins) { 1202 ValAI = F->arg_begin(); 1203 ++ValAI; 1204 Function::arg_iterator OriginAI = ShadowAI; 1205 if (!RetType->isVoidTy()) 1206 ++OriginAI; 1207 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1208 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1209 } 1210 } 1211 DFSanVisitor(DFSF).visitCallInst(*CI); 1212 if (!RetType->isVoidTy()) { 1213 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1214 DFSF.getShadow(RI->getReturnValue()), RI); 1215 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1216 if (ShouldTrackOrigins) { 1217 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1218 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1219 } 1220 } 1221 } 1222 1223 return cast<Constant>(C.getCallee()); 1224 } 1225 1226 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1227 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1228 { 1229 AttributeList AL; 1230 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1231 Attribute::NoUnwind); 1232 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1233 Attribute::ReadOnly); 1234 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1235 Attribute::ZExt); 1236 DFSanUnionLoadFn = 1237 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1238 } 1239 { 1240 AttributeList AL; 1241 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1242 Attribute::NoUnwind); 1243 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1244 Attribute::ReadOnly); 1245 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1246 Attribute::ZExt); 1247 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1248 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1249 } 1250 DFSanUnimplementedFn = 1251 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1252 { 1253 AttributeList AL; 1254 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1255 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1256 DFSanSetLabelFn = 1257 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1258 } 1259 DFSanNonzeroLabelFn = 1260 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1261 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1262 DFSanVarargWrapperFnTy); 1263 { 1264 AttributeList AL; 1265 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1266 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1267 Attribute::ZExt); 1268 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1269 DFSanChainOriginFnTy, AL); 1270 } 1271 { 1272 AttributeList AL; 1273 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1274 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1275 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1276 Attribute::ZExt); 1277 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1278 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1279 } 1280 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1281 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1282 1283 { 1284 AttributeList AL; 1285 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1286 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1287 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1288 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1289 } 1290 1291 DFSanRuntimeFunctions.insert( 1292 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1293 DFSanRuntimeFunctions.insert( 1294 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1295 DFSanRuntimeFunctions.insert( 1296 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1297 DFSanRuntimeFunctions.insert( 1298 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1299 DFSanRuntimeFunctions.insert( 1300 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1301 DFSanRuntimeFunctions.insert( 1302 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1303 DFSanRuntimeFunctions.insert( 1304 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1305 DFSanRuntimeFunctions.insert( 1306 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1307 DFSanRuntimeFunctions.insert( 1308 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1309 DFSanRuntimeFunctions.insert( 1310 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1311 DFSanRuntimeFunctions.insert( 1312 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1313 DFSanRuntimeFunctions.insert( 1314 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1315 DFSanRuntimeFunctions.insert( 1316 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1317 DFSanRuntimeFunctions.insert( 1318 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1319 } 1320 1321 // Initializes event callback functions and declare them in the module 1322 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1323 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1324 DFSanLoadStoreCallbackFnTy); 1325 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1326 DFSanLoadStoreCallbackFnTy); 1327 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1328 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1329 DFSanCmpCallbackFn = 1330 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1331 } 1332 1333 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1334 // These variables can be used: 1335 // - by the runtime (to discover what the shadow width was, during 1336 // compilation) 1337 // - in testing (to avoid hardcoding the shadow width and type but instead 1338 // extract them by pattern matching) 1339 Type *IntTy = Type::getInt32Ty(*Ctx); 1340 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1341 return new GlobalVariable( 1342 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1343 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1344 }); 1345 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1346 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1347 GlobalValue::WeakODRLinkage, 1348 ConstantInt::get(IntTy, ShadowWidthBytes), 1349 "__dfsan_shadow_width_bytes"); 1350 }); 1351 } 1352 1353 bool DataFlowSanitizer::runImpl(Module &M) { 1354 init(M); 1355 1356 if (ABIList.isIn(M, "skip")) 1357 return false; 1358 1359 const unsigned InitialGlobalSize = M.global_size(); 1360 const unsigned InitialModuleSize = M.size(); 1361 1362 bool Changed = false; 1363 1364 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1365 Type *Ty) -> Constant * { 1366 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1367 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1368 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1369 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1370 } 1371 return C; 1372 }; 1373 1374 // These globals must be kept in sync with the ones in dfsan.cpp. 1375 ArgTLS = 1376 GetOrInsertGlobal("__dfsan_arg_tls", 1377 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1378 RetvalTLS = GetOrInsertGlobal( 1379 "__dfsan_retval_tls", 1380 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1381 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1382 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1383 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1384 1385 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1386 Changed = true; 1387 return new GlobalVariable( 1388 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1389 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1390 "__dfsan_track_origins"); 1391 }); 1392 1393 injectMetadataGlobals(M); 1394 1395 ExternalShadowMask = 1396 Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy); 1397 1398 initializeCallbackFunctions(M); 1399 initializeRuntimeFunctions(M); 1400 1401 std::vector<Function *> FnsToInstrument; 1402 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1403 for (Function &F : M) 1404 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1405 FnsToInstrument.push_back(&F); 1406 1407 // Give function aliases prefixes when necessary, and build wrappers where the 1408 // instrumentedness is inconsistent. 1409 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1410 AI != AE;) { 1411 GlobalAlias *GA = &*AI; 1412 ++AI; 1413 // Don't stop on weak. We assume people aren't playing games with the 1414 // instrumentedness of overridden weak aliases. 1415 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1416 if (!F) 1417 continue; 1418 1419 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1420 if (GAInst && FInst) { 1421 addGlobalNamePrefix(GA); 1422 } else if (GAInst != FInst) { 1423 // Non-instrumented alias of an instrumented function, or vice versa. 1424 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1425 // below will take care of instrumenting it. 1426 Function *NewF = 1427 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1428 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1429 NewF->takeName(GA); 1430 GA->eraseFromParent(); 1431 FnsToInstrument.push_back(NewF); 1432 } 1433 } 1434 1435 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1436 .addAttribute(Attribute::ReadNone); 1437 1438 // First, change the ABI of every function in the module. ABI-listed 1439 // functions keep their original ABI and get a wrapper function. 1440 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1441 FE = FnsToInstrument.end(); 1442 FI != FE; ++FI) { 1443 Function &F = **FI; 1444 FunctionType *FT = F.getFunctionType(); 1445 1446 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1447 FT->getReturnType()->isVoidTy()); 1448 1449 if (isInstrumented(&F)) { 1450 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1451 // easily identify cases of mismatching ABIs. 1452 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1453 FunctionType *NewFT = getArgsFunctionType(FT); 1454 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1455 F.getAddressSpace(), "", &M); 1456 NewF->copyAttributesFrom(&F); 1457 NewF->removeAttributes( 1458 AttributeList::ReturnIndex, 1459 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1460 for (Function::arg_iterator FArg = F.arg_begin(), 1461 NewFArg = NewF->arg_begin(), 1462 FArgEnd = F.arg_end(); 1463 FArg != FArgEnd; ++FArg, ++NewFArg) { 1464 FArg->replaceAllUsesWith(&*NewFArg); 1465 } 1466 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1467 1468 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1469 UI != UE;) { 1470 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1471 ++UI; 1472 if (BA) { 1473 BA->replaceAllUsesWith( 1474 BlockAddress::get(NewF, BA->getBasicBlock())); 1475 delete BA; 1476 } 1477 } 1478 F.replaceAllUsesWith( 1479 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1480 NewF->takeName(&F); 1481 F.eraseFromParent(); 1482 *FI = NewF; 1483 addGlobalNamePrefix(NewF); 1484 } else { 1485 addGlobalNamePrefix(&F); 1486 } 1487 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1488 // Build a wrapper function for F. The wrapper simply calls F, and is 1489 // added to FnsToInstrument so that any instrumentation according to its 1490 // WrapperKind is done in the second pass below. 1491 FunctionType *NewFT = 1492 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1493 1494 // If the function being wrapped has local linkage, then preserve the 1495 // function's linkage in the wrapper function. 1496 GlobalValue::LinkageTypes WrapperLinkage = 1497 F.hasLocalLinkage() ? F.getLinkage() 1498 : GlobalValue::LinkOnceODRLinkage; 1499 1500 Function *NewF = buildWrapperFunction( 1501 &F, 1502 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1503 std::string(F.getName()), 1504 WrapperLinkage, NewFT); 1505 if (getInstrumentedABI() == IA_TLS) 1506 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1507 1508 Value *WrappedFnCst = 1509 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1510 F.replaceAllUsesWith(WrappedFnCst); 1511 1512 UnwrappedFnMap[WrappedFnCst] = &F; 1513 *FI = NewF; 1514 1515 if (!F.isDeclaration()) { 1516 // This function is probably defining an interposition of an 1517 // uninstrumented function and hence needs to keep the original ABI. 1518 // But any functions it may call need to use the instrumented ABI, so 1519 // we instrument it in a mode which preserves the original ABI. 1520 FnsWithNativeABI.insert(&F); 1521 1522 // This code needs to rebuild the iterators, as they may be invalidated 1523 // by the push_back, taking care that the new range does not include 1524 // any functions added by this code. 1525 size_t N = FI - FnsToInstrument.begin(), 1526 Count = FE - FnsToInstrument.begin(); 1527 FnsToInstrument.push_back(&F); 1528 FI = FnsToInstrument.begin() + N; 1529 FE = FnsToInstrument.begin() + Count; 1530 } 1531 // Hopefully, nobody will try to indirectly call a vararg 1532 // function... yet. 1533 } else if (FT->isVarArg()) { 1534 UnwrappedFnMap[&F] = &F; 1535 *FI = nullptr; 1536 } 1537 } 1538 1539 for (Function *F : FnsToInstrument) { 1540 if (!F || F->isDeclaration()) 1541 continue; 1542 1543 removeUnreachableBlocks(*F); 1544 1545 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1546 1547 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1548 // Build a copy of the list before iterating over it. 1549 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1550 1551 for (BasicBlock *BB : BBList) { 1552 Instruction *Inst = &BB->front(); 1553 while (true) { 1554 // DFSanVisitor may split the current basic block, changing the current 1555 // instruction's next pointer and moving the next instruction to the 1556 // tail block from which we should continue. 1557 Instruction *Next = Inst->getNextNode(); 1558 // DFSanVisitor may delete Inst, so keep track of whether it was a 1559 // terminator. 1560 bool IsTerminator = Inst->isTerminator(); 1561 if (!DFSF.SkipInsts.count(Inst)) 1562 DFSanVisitor(DFSF).visit(Inst); 1563 if (IsTerminator) 1564 break; 1565 Inst = Next; 1566 } 1567 } 1568 1569 // We will not necessarily be able to compute the shadow for every phi node 1570 // until we have visited every block. Therefore, the code that handles phi 1571 // nodes adds them to the PHIFixups list so that they can be properly 1572 // handled here. 1573 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1574 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1575 ++Val) { 1576 P.ShadowPhi->setIncomingValue( 1577 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1578 if (P.OriginPhi) 1579 P.OriginPhi->setIncomingValue( 1580 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1581 } 1582 } 1583 1584 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1585 // places (i.e. instructions in basic blocks we haven't even begun visiting 1586 // yet). To make our life easier, do this work in a pass after the main 1587 // instrumentation. 1588 if (ClDebugNonzeroLabels) { 1589 for (Value *V : DFSF.NonZeroChecks) { 1590 Instruction *Pos; 1591 if (Instruction *I = dyn_cast<Instruction>(V)) 1592 Pos = I->getNextNode(); 1593 else 1594 Pos = &DFSF.F->getEntryBlock().front(); 1595 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1596 Pos = Pos->getNextNode(); 1597 IRBuilder<> IRB(Pos); 1598 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1599 Value *Ne = 1600 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1601 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1602 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1603 IRBuilder<> ThenIRB(BI); 1604 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1605 } 1606 } 1607 } 1608 1609 return Changed || !FnsToInstrument.empty() || 1610 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1611 } 1612 1613 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1614 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1615 if (ArgOffset) 1616 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1617 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1618 "_dfsarg"); 1619 } 1620 1621 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1622 return IRB.CreatePointerCast( 1623 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1624 } 1625 1626 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1627 1628 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1629 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1630 "_dfsarg_o"); 1631 } 1632 1633 Value *DFSanFunction::getOrigin(Value *V) { 1634 assert(DFS.shouldTrackOrigins()); 1635 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1636 return DFS.ZeroOrigin; 1637 Value *&Origin = ValOriginMap[V]; 1638 if (!Origin) { 1639 if (Argument *A = dyn_cast<Argument>(V)) { 1640 if (IsNativeABI) 1641 return DFS.ZeroOrigin; 1642 switch (IA) { 1643 case DataFlowSanitizer::IA_TLS: { 1644 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1645 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1646 IRBuilder<> IRB(ArgOriginTLSPos); 1647 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1648 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1649 } else { 1650 // Overflow 1651 Origin = DFS.ZeroOrigin; 1652 } 1653 break; 1654 } 1655 case DataFlowSanitizer::IA_Args: { 1656 Origin = DFS.ZeroOrigin; 1657 break; 1658 } 1659 } 1660 } else { 1661 Origin = DFS.ZeroOrigin; 1662 } 1663 } 1664 return Origin; 1665 } 1666 1667 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1668 if (!DFS.shouldTrackOrigins()) 1669 return; 1670 assert(!ValOriginMap.count(I)); 1671 assert(Origin->getType() == DFS.OriginTy); 1672 ValOriginMap[I] = Origin; 1673 } 1674 1675 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1676 unsigned ArgOffset = 0; 1677 const DataLayout &DL = F->getParent()->getDataLayout(); 1678 for (auto &FArg : F->args()) { 1679 if (!FArg.getType()->isSized()) { 1680 if (A == &FArg) 1681 break; 1682 continue; 1683 } 1684 1685 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1686 if (A != &FArg) { 1687 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1688 if (ArgOffset > ArgTLSSize) 1689 break; // ArgTLS overflows, uses a zero shadow. 1690 continue; 1691 } 1692 1693 if (ArgOffset + Size > ArgTLSSize) 1694 break; // ArgTLS overflows, uses a zero shadow. 1695 1696 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1697 IRBuilder<> IRB(ArgTLSPos); 1698 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1699 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1700 ShadowTLSAlignment); 1701 } 1702 1703 return DFS.getZeroShadow(A); 1704 } 1705 1706 Value *DFSanFunction::getShadow(Value *V) { 1707 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1708 return DFS.getZeroShadow(V); 1709 Value *&Shadow = ValShadowMap[V]; 1710 if (!Shadow) { 1711 if (Argument *A = dyn_cast<Argument>(V)) { 1712 if (IsNativeABI) 1713 return DFS.getZeroShadow(V); 1714 switch (IA) { 1715 case DataFlowSanitizer::IA_TLS: { 1716 Shadow = getShadowForTLSArgument(A); 1717 break; 1718 } 1719 case DataFlowSanitizer::IA_Args: { 1720 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1721 Function::arg_iterator Arg = F->arg_begin(); 1722 std::advance(Arg, ArgIdx); 1723 Shadow = &*Arg; 1724 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1725 break; 1726 } 1727 } 1728 NonZeroChecks.push_back(Shadow); 1729 } else { 1730 Shadow = DFS.getZeroShadow(V); 1731 } 1732 } 1733 return Shadow; 1734 } 1735 1736 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1737 assert(!ValShadowMap.count(I)); 1738 assert(DFS.shouldTrackFieldsAndIndices() || 1739 Shadow->getType() == DFS.PrimitiveShadowTy); 1740 ValShadowMap[I] = Shadow; 1741 } 1742 1743 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1744 // Returns Addr & shadow_mask 1745 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1746 Value *ShadowPtrMaskValue; 1747 if (DFSanRuntimeShadowMask) 1748 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1749 else 1750 ShadowPtrMaskValue = ShadowPtrMask; 1751 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1752 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1753 } 1754 1755 std::pair<Value *, Value *> 1756 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1757 Instruction *Pos) { 1758 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1759 IRBuilder<> IRB(Pos); 1760 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1761 Value *ShadowPtr = getShadowAddress(Addr, Pos, ShadowOffset); 1762 Value *OriginPtr = nullptr; 1763 if (shouldTrackOrigins()) { 1764 static Value *OriginByShadowOffset = ConstantInt::get( 1765 IntptrTy, OriginBase->getZExtValue() - ShadowBase->getZExtValue()); 1766 1767 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginByShadowOffset); 1768 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1769 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1770 // So Mask is unnecessary. 1771 if (Alignment < MinOriginAlignment) { 1772 uint64_t Mask = MinOriginAlignment.value() - 1; 1773 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1774 } 1775 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1776 } 1777 return {ShadowPtr, OriginPtr}; 1778 } 1779 1780 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1781 Value *ShadowOffset) { 1782 IRBuilder<> IRB(Pos); 1783 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1784 } 1785 1786 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1787 // Returns (Addr & shadow_mask) 1788 IRBuilder<> IRB(Pos); 1789 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1790 return getShadowAddress(Addr, Pos, ShadowOffset); 1791 } 1792 1793 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1794 Instruction *Pos) { 1795 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1796 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1797 } 1798 1799 // Generates IR to compute the union of the two given shadows, inserting it 1800 // before Pos. The combined value is with primitive type. 1801 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1802 if (DFS.isZeroShadow(V1)) 1803 return collapseToPrimitiveShadow(V2, Pos); 1804 if (DFS.isZeroShadow(V2)) 1805 return collapseToPrimitiveShadow(V1, Pos); 1806 if (V1 == V2) 1807 return collapseToPrimitiveShadow(V1, Pos); 1808 1809 auto V1Elems = ShadowElements.find(V1); 1810 auto V2Elems = ShadowElements.find(V2); 1811 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1812 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1813 V2Elems->second.begin(), V2Elems->second.end())) { 1814 return collapseToPrimitiveShadow(V1, Pos); 1815 } 1816 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1817 V1Elems->second.begin(), V1Elems->second.end())) { 1818 return collapseToPrimitiveShadow(V2, Pos); 1819 } 1820 } else if (V1Elems != ShadowElements.end()) { 1821 if (V1Elems->second.count(V2)) 1822 return collapseToPrimitiveShadow(V1, Pos); 1823 } else if (V2Elems != ShadowElements.end()) { 1824 if (V2Elems->second.count(V1)) 1825 return collapseToPrimitiveShadow(V2, Pos); 1826 } 1827 1828 auto Key = std::make_pair(V1, V2); 1829 if (V1 > V2) 1830 std::swap(Key.first, Key.second); 1831 CachedShadow &CCS = CachedShadows[Key]; 1832 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1833 return CCS.Shadow; 1834 1835 // Converts inputs shadows to shadows with primitive types. 1836 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1837 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1838 1839 IRBuilder<> IRB(Pos); 1840 CCS.Block = Pos->getParent(); 1841 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1842 1843 std::set<Value *> UnionElems; 1844 if (V1Elems != ShadowElements.end()) { 1845 UnionElems = V1Elems->second; 1846 } else { 1847 UnionElems.insert(V1); 1848 } 1849 if (V2Elems != ShadowElements.end()) { 1850 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1851 } else { 1852 UnionElems.insert(V2); 1853 } 1854 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1855 1856 return CCS.Shadow; 1857 } 1858 1859 // A convenience function which folds the shadows of each of the operands 1860 // of the provided instruction Inst, inserting the IR before Inst. Returns 1861 // the computed union Value. 1862 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1863 if (Inst->getNumOperands() == 0) 1864 return DFS.getZeroShadow(Inst); 1865 1866 Value *Shadow = getShadow(Inst->getOperand(0)); 1867 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1868 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1869 1870 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1871 } 1872 1873 void DFSanVisitor::visitInstOperands(Instruction &I) { 1874 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1875 DFSF.setShadow(&I, CombinedShadow); 1876 visitInstOperandOrigins(I); 1877 } 1878 1879 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1880 const std::vector<Value *> &Origins, 1881 Instruction *Pos, ConstantInt *Zero) { 1882 assert(Shadows.size() == Origins.size()); 1883 size_t Size = Origins.size(); 1884 if (Size == 0) 1885 return DFS.ZeroOrigin; 1886 Value *Origin = nullptr; 1887 if (!Zero) 1888 Zero = DFS.ZeroPrimitiveShadow; 1889 for (size_t I = 0; I != Size; ++I) { 1890 Value *OpOrigin = Origins[I]; 1891 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1892 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1893 continue; 1894 if (!Origin) { 1895 Origin = OpOrigin; 1896 continue; 1897 } 1898 Value *OpShadow = Shadows[I]; 1899 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1900 IRBuilder<> IRB(Pos); 1901 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1902 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1903 } 1904 return Origin ? Origin : DFS.ZeroOrigin; 1905 } 1906 1907 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1908 size_t Size = Inst->getNumOperands(); 1909 std::vector<Value *> Shadows(Size); 1910 std::vector<Value *> Origins(Size); 1911 for (unsigned I = 0; I != Size; ++I) { 1912 Shadows[I] = getShadow(Inst->getOperand(I)); 1913 Origins[I] = getOrigin(Inst->getOperand(I)); 1914 } 1915 return combineOrigins(Shadows, Origins, Inst); 1916 } 1917 1918 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1919 if (!DFSF.DFS.shouldTrackOrigins()) 1920 return; 1921 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1922 DFSF.setOrigin(&I, CombinedOrigin); 1923 } 1924 1925 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1926 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1927 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1928 } 1929 1930 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1931 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1932 return Align(std::max(MinOriginAlignment, Alignment)); 1933 } 1934 1935 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1936 Align InstAlignment) { 1937 // When enabling tracking load instructions, we always use 1938 // __dfsan_load_label_and_origin to reduce code size. 1939 if (ClTrackOrigins == 2) 1940 return true; 1941 1942 assert(Size != 0); 1943 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1944 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1945 // load its origin aligned at 4. If not, although origins may be lost, it 1946 // should not happen very often. 1947 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1948 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1949 // * Otherwise we use __dfsan_load_label_and_origin. 1950 // This should ensure that common cases run efficiently. 1951 if (Size <= 2) 1952 return false; 1953 1954 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1955 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1956 } 1957 1958 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1959 Value **OriginAddr) { 1960 IRBuilder<> IRB(Pos); 1961 *OriginAddr = 1962 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1963 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1964 } 1965 1966 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1967 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1968 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1969 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1970 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1971 1972 assert(Size >= 4 && "Not large enough load size for fast path!"); 1973 1974 // Used for origin tracking. 1975 std::vector<Value *> Shadows; 1976 std::vector<Value *> Origins; 1977 1978 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1979 // but this function is only used in a subset of cases that make it possible 1980 // to optimize the instrumentation. 1981 // 1982 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1983 // per byte) is either: 1984 // - a multiple of 8 (common) 1985 // - equal to 4 (only for load32) 1986 // 1987 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1988 // other cases, we use a 64-bit integer to hold the wide shadow. 1989 Type *WideShadowTy = 1990 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1991 1992 IRBuilder<> IRB(Pos); 1993 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1994 Value *CombinedWideShadow = 1995 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1996 1997 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1998 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1999 2000 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2001 if (BytesPerWideShadow > 4) { 2002 assert(BytesPerWideShadow == 8); 2003 // The wide shadow relates to two origin pointers: one for the first four 2004 // application bytes, and one for the latest four. We use a left shift to 2005 // get just the shadow bytes that correspond to the first origin pointer, 2006 // and then the entire shadow for the second origin pointer (which will be 2007 // chosen by combineOrigins() iff the least-significant half of the wide 2008 // shadow was empty but the other half was not). 2009 Value *WideShadowLo = IRB.CreateShl( 2010 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2011 Shadows.push_back(WideShadow); 2012 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2013 2014 Shadows.push_back(WideShadowLo); 2015 Origins.push_back(Origin); 2016 } else { 2017 Shadows.push_back(WideShadow); 2018 Origins.push_back(Origin); 2019 } 2020 }; 2021 2022 if (ShouldTrackOrigins) 2023 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2024 2025 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2026 // then OR individual shadows within the combined WideShadow by binary ORing. 2027 // This is fewer instructions than ORing shadows individually, since it 2028 // needs logN shift/or instructions (N being the bytes of the combined wide 2029 // shadow). 2030 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2031 ByteOfs += BytesPerWideShadow) { 2032 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 2033 ConstantInt::get(DFS.IntptrTy, 1)); 2034 Value *NextWideShadow = 2035 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2036 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2037 if (ShouldTrackOrigins) { 2038 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2039 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2040 } 2041 } 2042 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2043 Width >>= 1) { 2044 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2045 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2046 } 2047 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2048 ShouldTrackOrigins 2049 ? combineOrigins(Shadows, Origins, Pos, 2050 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2051 : DFS.ZeroOrigin}; 2052 } 2053 2054 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2055 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2056 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2057 2058 // Non-escaped loads. 2059 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2060 const auto SI = AllocaShadowMap.find(AI); 2061 if (SI != AllocaShadowMap.end()) { 2062 IRBuilder<> IRB(Pos); 2063 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2064 const auto OI = AllocaOriginMap.find(AI); 2065 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2066 return {ShadowLI, ShouldTrackOrigins 2067 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2068 : nullptr}; 2069 } 2070 } 2071 2072 // Load from constant addresses. 2073 SmallVector<const Value *, 2> Objs; 2074 getUnderlyingObjects(Addr, Objs); 2075 bool AllConstants = true; 2076 for (const Value *Obj : Objs) { 2077 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2078 continue; 2079 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2080 continue; 2081 2082 AllConstants = false; 2083 break; 2084 } 2085 if (AllConstants) 2086 return {DFS.ZeroPrimitiveShadow, 2087 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2088 2089 if (Size == 0) 2090 return {DFS.ZeroPrimitiveShadow, 2091 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2092 2093 // Use callback to load if this is not an optimizable case for origin 2094 // tracking. 2095 if (ShouldTrackOrigins && 2096 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2097 IRBuilder<> IRB(Pos); 2098 CallInst *Call = 2099 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2100 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2101 ConstantInt::get(DFS.IntptrTy, Size)}); 2102 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2103 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2104 DFS.PrimitiveShadowTy), 2105 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2106 } 2107 2108 // Other cases that support loading shadows or origins in a fast way. 2109 Value *ShadowAddr, *OriginAddr; 2110 std::tie(ShadowAddr, OriginAddr) = 2111 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2112 2113 const Align ShadowAlign = getShadowAlign(InstAlignment); 2114 const Align OriginAlign = getOriginAlign(InstAlignment); 2115 Value *Origin = nullptr; 2116 if (ShouldTrackOrigins) { 2117 IRBuilder<> IRB(Pos); 2118 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2119 } 2120 2121 // When the byte size is small enough, we can load the shadow directly with 2122 // just a few instructions. 2123 switch (Size) { 2124 case 1: { 2125 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2126 LI->setAlignment(ShadowAlign); 2127 return {LI, Origin}; 2128 } 2129 case 2: { 2130 IRBuilder<> IRB(Pos); 2131 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2132 ConstantInt::get(DFS.IntptrTy, 1)); 2133 Value *Load = 2134 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2135 Value *Load1 = 2136 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2137 return {combineShadows(Load, Load1, Pos), Origin}; 2138 } 2139 } 2140 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2141 2142 if (HasSizeForFastPath) 2143 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2144 OriginAlign, Origin, Pos); 2145 2146 IRBuilder<> IRB(Pos); 2147 CallInst *FallbackCall = IRB.CreateCall( 2148 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2149 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2150 return {FallbackCall, Origin}; 2151 } 2152 2153 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2154 uint64_t Size, 2155 Align InstAlignment, 2156 Instruction *Pos) { 2157 Value *PrimitiveShadow, *Origin; 2158 std::tie(PrimitiveShadow, Origin) = 2159 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2160 if (DFS.shouldTrackOrigins()) { 2161 if (ClTrackOrigins == 2) { 2162 IRBuilder<> IRB(Pos); 2163 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2164 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2165 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2166 } 2167 } 2168 return {PrimitiveShadow, Origin}; 2169 } 2170 2171 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2172 switch (AO) { 2173 case AtomicOrdering::NotAtomic: 2174 return AtomicOrdering::NotAtomic; 2175 case AtomicOrdering::Unordered: 2176 case AtomicOrdering::Monotonic: 2177 case AtomicOrdering::Acquire: 2178 return AtomicOrdering::Acquire; 2179 case AtomicOrdering::Release: 2180 case AtomicOrdering::AcquireRelease: 2181 return AtomicOrdering::AcquireRelease; 2182 case AtomicOrdering::SequentiallyConsistent: 2183 return AtomicOrdering::SequentiallyConsistent; 2184 } 2185 llvm_unreachable("Unknown ordering"); 2186 } 2187 2188 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2189 auto &DL = LI.getModule()->getDataLayout(); 2190 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2191 if (Size == 0) { 2192 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2193 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2194 return; 2195 } 2196 2197 // When an application load is atomic, increase atomic ordering between 2198 // atomic application loads and stores to ensure happen-before order; load 2199 // shadow data after application data; store zero shadow data before 2200 // application data. This ensure shadow loads return either labels of the 2201 // initial application data or zeros. 2202 if (LI.isAtomic()) 2203 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2204 2205 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2206 std::vector<Value *> Shadows; 2207 std::vector<Value *> Origins; 2208 Value *PrimitiveShadow, *Origin; 2209 std::tie(PrimitiveShadow, Origin) = 2210 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2211 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2212 if (ShouldTrackOrigins) { 2213 Shadows.push_back(PrimitiveShadow); 2214 Origins.push_back(Origin); 2215 } 2216 if (ClCombinePointerLabelsOnLoad) { 2217 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2218 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2219 if (ShouldTrackOrigins) { 2220 Shadows.push_back(PtrShadow); 2221 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2222 } 2223 } 2224 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2225 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2226 2227 Value *Shadow = 2228 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2229 DFSF.setShadow(&LI, Shadow); 2230 2231 if (ShouldTrackOrigins) { 2232 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2233 } 2234 2235 if (ClEventCallbacks) { 2236 IRBuilder<> IRB(Pos); 2237 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2238 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2239 } 2240 } 2241 2242 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2243 IRBuilder<> &IRB) { 2244 assert(DFS.shouldTrackOrigins()); 2245 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2246 } 2247 2248 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2249 if (!DFS.shouldTrackOrigins()) 2250 return V; 2251 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2252 } 2253 2254 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2255 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2256 const DataLayout &DL = F->getParent()->getDataLayout(); 2257 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2258 if (IntptrSize == OriginSize) 2259 return Origin; 2260 assert(IntptrSize == OriginSize * 2); 2261 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2262 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2263 } 2264 2265 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2266 Value *StoreOriginAddr, 2267 uint64_t StoreOriginSize, Align Alignment) { 2268 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2269 const DataLayout &DL = F->getParent()->getDataLayout(); 2270 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2271 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2272 assert(IntptrAlignment >= MinOriginAlignment); 2273 assert(IntptrSize >= OriginSize); 2274 2275 unsigned Ofs = 0; 2276 Align CurrentAlignment = Alignment; 2277 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2278 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2279 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2280 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2281 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2282 Value *Ptr = 2283 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2284 : IntptrStoreOriginPtr; 2285 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2286 Ofs += IntptrSize / OriginSize; 2287 CurrentAlignment = IntptrAlignment; 2288 } 2289 } 2290 2291 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2292 ++I) { 2293 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2294 : StoreOriginAddr; 2295 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2296 CurrentAlignment = MinOriginAlignment; 2297 } 2298 } 2299 2300 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2301 const Twine &Name) { 2302 Type *VTy = V->getType(); 2303 assert(VTy->isIntegerTy()); 2304 if (VTy->getIntegerBitWidth() == 1) 2305 // Just converting a bool to a bool, so do nothing. 2306 return V; 2307 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2308 } 2309 2310 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2311 Value *Shadow, Value *Origin, 2312 Value *StoreOriginAddr, Align InstAlignment) { 2313 // Do not write origins for zero shadows because we do not trace origins for 2314 // untainted sinks. 2315 const Align OriginAlignment = getOriginAlign(InstAlignment); 2316 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2317 IRBuilder<> IRB(Pos); 2318 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2319 if (!ConstantShadow->isZeroValue()) 2320 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2321 OriginAlignment); 2322 return; 2323 } 2324 2325 if (shouldInstrumentWithCall()) { 2326 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2327 {CollapsedShadow, 2328 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2329 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2330 } else { 2331 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2332 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2333 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2334 IRBuilder<> IRBNew(CheckTerm); 2335 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2336 OriginAlignment); 2337 ++NumOriginStores; 2338 } 2339 } 2340 2341 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2342 Align ShadowAlign, 2343 Instruction *Pos) { 2344 IRBuilder<> IRB(Pos); 2345 IntegerType *ShadowTy = 2346 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2347 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2348 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2349 Value *ExtShadowAddr = 2350 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2351 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2352 // Do not write origins for 0 shadows because we do not trace origins for 2353 // untainted sinks. 2354 } 2355 2356 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2357 Align InstAlignment, 2358 Value *PrimitiveShadow, 2359 Value *Origin, 2360 Instruction *Pos) { 2361 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2362 2363 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2364 const auto SI = AllocaShadowMap.find(AI); 2365 if (SI != AllocaShadowMap.end()) { 2366 IRBuilder<> IRB(Pos); 2367 IRB.CreateStore(PrimitiveShadow, SI->second); 2368 2369 // Do not write origins for 0 shadows because we do not trace origins for 2370 // untainted sinks. 2371 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2372 const auto OI = AllocaOriginMap.find(AI); 2373 assert(OI != AllocaOriginMap.end() && Origin); 2374 IRB.CreateStore(Origin, OI->second); 2375 } 2376 return; 2377 } 2378 } 2379 2380 const Align ShadowAlign = getShadowAlign(InstAlignment); 2381 if (DFS.isZeroShadow(PrimitiveShadow)) { 2382 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2383 return; 2384 } 2385 2386 IRBuilder<> IRB(Pos); 2387 Value *ShadowAddr, *OriginAddr; 2388 std::tie(ShadowAddr, OriginAddr) = 2389 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2390 2391 const unsigned ShadowVecSize = 8; 2392 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2393 "Shadow vector is too large!"); 2394 2395 uint64_t Offset = 0; 2396 uint64_t LeftSize = Size; 2397 if (LeftSize >= ShadowVecSize) { 2398 auto *ShadowVecTy = 2399 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2400 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2401 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2402 ShadowVec = IRB.CreateInsertElement( 2403 ShadowVec, PrimitiveShadow, 2404 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2405 } 2406 Value *ShadowVecAddr = 2407 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2408 do { 2409 Value *CurShadowVecAddr = 2410 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2411 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2412 LeftSize -= ShadowVecSize; 2413 ++Offset; 2414 } while (LeftSize >= ShadowVecSize); 2415 Offset *= ShadowVecSize; 2416 } 2417 while (LeftSize > 0) { 2418 Value *CurShadowAddr = 2419 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2420 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2421 --LeftSize; 2422 ++Offset; 2423 } 2424 2425 if (ShouldTrackOrigins) { 2426 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2427 InstAlignment); 2428 } 2429 } 2430 2431 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2432 switch (AO) { 2433 case AtomicOrdering::NotAtomic: 2434 return AtomicOrdering::NotAtomic; 2435 case AtomicOrdering::Unordered: 2436 case AtomicOrdering::Monotonic: 2437 case AtomicOrdering::Release: 2438 return AtomicOrdering::Release; 2439 case AtomicOrdering::Acquire: 2440 case AtomicOrdering::AcquireRelease: 2441 return AtomicOrdering::AcquireRelease; 2442 case AtomicOrdering::SequentiallyConsistent: 2443 return AtomicOrdering::SequentiallyConsistent; 2444 } 2445 llvm_unreachable("Unknown ordering"); 2446 } 2447 2448 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2449 auto &DL = SI.getModule()->getDataLayout(); 2450 Value *Val = SI.getValueOperand(); 2451 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2452 if (Size == 0) 2453 return; 2454 2455 // When an application store is atomic, increase atomic ordering between 2456 // atomic application loads and stores to ensure happen-before order; load 2457 // shadow data after application data; store zero shadow data before 2458 // application data. This ensure shadow loads return either labels of the 2459 // initial application data or zeros. 2460 if (SI.isAtomic()) 2461 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2462 2463 const bool ShouldTrackOrigins = 2464 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2465 std::vector<Value *> Shadows; 2466 std::vector<Value *> Origins; 2467 2468 Value *Shadow = 2469 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2470 2471 if (ShouldTrackOrigins) { 2472 Shadows.push_back(Shadow); 2473 Origins.push_back(DFSF.getOrigin(Val)); 2474 } 2475 2476 Value *PrimitiveShadow; 2477 if (ClCombinePointerLabelsOnStore) { 2478 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2479 if (ShouldTrackOrigins) { 2480 Shadows.push_back(PtrShadow); 2481 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2482 } 2483 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2484 } else { 2485 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2486 } 2487 Value *Origin = nullptr; 2488 if (ShouldTrackOrigins) 2489 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2490 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2491 PrimitiveShadow, Origin, &SI); 2492 if (ClEventCallbacks) { 2493 IRBuilder<> IRB(&SI); 2494 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2495 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2496 } 2497 } 2498 2499 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2500 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2501 2502 Value *Val = I.getOperand(1); 2503 const auto &DL = I.getModule()->getDataLayout(); 2504 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2505 if (Size == 0) 2506 return; 2507 2508 // Conservatively set data at stored addresses and return with zero shadow to 2509 // prevent shadow data races. 2510 IRBuilder<> IRB(&I); 2511 Value *Addr = I.getOperand(0); 2512 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2513 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2514 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2515 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2516 } 2517 2518 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2519 visitCASOrRMW(I.getAlign(), I); 2520 // TODO: The ordering change follows MSan. It is possible not to change 2521 // ordering because we always set and use 0 shadows. 2522 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2523 } 2524 2525 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2526 visitCASOrRMW(I.getAlign(), I); 2527 // TODO: The ordering change follows MSan. It is possible not to change 2528 // ordering because we always set and use 0 shadows. 2529 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2530 } 2531 2532 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2533 visitInstOperands(UO); 2534 } 2535 2536 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2537 visitInstOperands(BO); 2538 } 2539 2540 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2541 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2542 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2543 // a musttail call and a ret, don't instrument. New instructions are not 2544 // allowed after a musttail call. 2545 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2546 if (CI->isMustTailCall()) 2547 return; 2548 } 2549 // TODO: handle musttail call returns for IA_Args. 2550 visitInstOperands(BCI); 2551 } 2552 2553 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2554 2555 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2556 visitInstOperands(CI); 2557 if (ClEventCallbacks) { 2558 IRBuilder<> IRB(&CI); 2559 Value *CombinedShadow = DFSF.getShadow(&CI); 2560 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2561 } 2562 } 2563 2564 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2565 if (ClCombineOffsetLabelsOnGEP) { 2566 visitInstOperands(GEPI); 2567 return; 2568 } 2569 2570 // Only propagate shadow/origin of base pointer value but ignore those of 2571 // offset operands. 2572 Value *BasePointer = GEPI.getPointerOperand(); 2573 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2574 if (DFSF.DFS.shouldTrackOrigins()) 2575 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2576 } 2577 2578 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2579 visitInstOperands(I); 2580 } 2581 2582 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2583 visitInstOperands(I); 2584 } 2585 2586 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2587 visitInstOperands(I); 2588 } 2589 2590 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2591 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2592 visitInstOperands(I); 2593 return; 2594 } 2595 2596 IRBuilder<> IRB(&I); 2597 Value *Agg = I.getAggregateOperand(); 2598 Value *AggShadow = DFSF.getShadow(Agg); 2599 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2600 DFSF.setShadow(&I, ResShadow); 2601 visitInstOperandOrigins(I); 2602 } 2603 2604 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2605 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2606 visitInstOperands(I); 2607 return; 2608 } 2609 2610 IRBuilder<> IRB(&I); 2611 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2612 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2613 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2614 DFSF.setShadow(&I, Res); 2615 visitInstOperandOrigins(I); 2616 } 2617 2618 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2619 bool AllLoadsStores = true; 2620 for (User *U : I.users()) { 2621 if (isa<LoadInst>(U)) 2622 continue; 2623 2624 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2625 if (SI->getPointerOperand() == &I) 2626 continue; 2627 } 2628 2629 AllLoadsStores = false; 2630 break; 2631 } 2632 if (AllLoadsStores) { 2633 IRBuilder<> IRB(&I); 2634 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2635 if (DFSF.DFS.shouldTrackOrigins()) { 2636 DFSF.AllocaOriginMap[&I] = 2637 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2638 } 2639 } 2640 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2641 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2642 } 2643 2644 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2645 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2646 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2647 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2648 Value *ShadowSel = nullptr; 2649 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2650 std::vector<Value *> Shadows; 2651 std::vector<Value *> Origins; 2652 Value *TrueOrigin = 2653 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2654 Value *FalseOrigin = 2655 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2656 2657 if (isa<VectorType>(I.getCondition()->getType())) { 2658 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2659 FalseShadow, &I); 2660 if (ShouldTrackOrigins) { 2661 Shadows.push_back(TrueShadow); 2662 Shadows.push_back(FalseShadow); 2663 Origins.push_back(TrueOrigin); 2664 Origins.push_back(FalseOrigin); 2665 } 2666 } else { 2667 if (TrueShadow == FalseShadow) { 2668 ShadowSel = TrueShadow; 2669 if (ShouldTrackOrigins) { 2670 Shadows.push_back(TrueShadow); 2671 Origins.push_back(TrueOrigin); 2672 } 2673 } else { 2674 ShadowSel = 2675 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2676 if (ShouldTrackOrigins) { 2677 Shadows.push_back(ShadowSel); 2678 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2679 FalseOrigin, "", &I)); 2680 } 2681 } 2682 } 2683 DFSF.setShadow(&I, ClTrackSelectControlFlow 2684 ? DFSF.combineShadowsThenConvert( 2685 I.getType(), CondShadow, ShadowSel, &I) 2686 : ShadowSel); 2687 if (ShouldTrackOrigins) { 2688 if (ClTrackSelectControlFlow) { 2689 Shadows.push_back(CondShadow); 2690 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2691 } 2692 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2693 } 2694 } 2695 2696 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2697 IRBuilder<> IRB(&I); 2698 Value *ValShadow = DFSF.getShadow(I.getValue()); 2699 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2700 ? DFSF.getOrigin(I.getValue()) 2701 : DFSF.DFS.ZeroOrigin; 2702 IRB.CreateCall( 2703 DFSF.DFS.DFSanSetLabelFn, 2704 {ValShadow, ValOrigin, 2705 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2706 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2707 } 2708 2709 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2710 IRBuilder<> IRB(&I); 2711 2712 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2713 // need to move origins before moving shadows. 2714 if (DFSF.DFS.shouldTrackOrigins()) { 2715 IRB.CreateCall( 2716 DFSF.DFS.DFSanMemOriginTransferFn, 2717 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2718 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2719 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2720 } 2721 2722 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2723 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2724 Value *LenShadow = 2725 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2726 DFSF.DFS.ShadowWidthBytes)); 2727 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2728 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2729 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2730 auto *MTI = cast<MemTransferInst>( 2731 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2732 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2733 if (ClPreserveAlignment) { 2734 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2735 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2736 } else { 2737 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2738 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2739 } 2740 if (ClEventCallbacks) { 2741 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2742 {RawDestShadow, 2743 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2744 } 2745 } 2746 2747 static bool isAMustTailRetVal(Value *RetVal) { 2748 // Tail call may have a bitcast between return. 2749 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2750 RetVal = I->getOperand(0); 2751 } 2752 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2753 return I->isMustTailCall(); 2754 } 2755 return false; 2756 } 2757 2758 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2759 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2760 switch (DFSF.IA) { 2761 case DataFlowSanitizer::IA_TLS: { 2762 // Don't emit the instrumentation for musttail call returns. 2763 if (isAMustTailRetVal(RI.getReturnValue())) 2764 return; 2765 2766 Value *S = DFSF.getShadow(RI.getReturnValue()); 2767 IRBuilder<> IRB(&RI); 2768 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2769 unsigned Size = 2770 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2771 if (Size <= RetvalTLSSize) { 2772 // If the size overflows, stores nothing. At callsite, oversized return 2773 // shadows are set to zero. 2774 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2775 ShadowTLSAlignment); 2776 } 2777 if (DFSF.DFS.shouldTrackOrigins()) { 2778 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2779 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2780 } 2781 break; 2782 } 2783 case DataFlowSanitizer::IA_Args: { 2784 // TODO: handle musttail call returns for IA_Args. 2785 2786 IRBuilder<> IRB(&RI); 2787 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2788 Value *InsVal = 2789 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2790 Value *InsShadow = 2791 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2792 RI.setOperand(0, InsShadow); 2793 break; 2794 } 2795 } 2796 } 2797 } 2798 2799 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2800 std::vector<Value *> &Args, 2801 IRBuilder<> &IRB) { 2802 FunctionType *FT = F.getFunctionType(); 2803 2804 auto *I = CB.arg_begin(); 2805 2806 // Adds non-variable argument shadows. 2807 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2808 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2809 2810 // Adds variable argument shadows. 2811 if (FT->isVarArg()) { 2812 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2813 CB.arg_size() - FT->getNumParams()); 2814 auto *LabelVAAlloca = 2815 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2816 "labelva", &DFSF.F->getEntryBlock().front()); 2817 2818 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2819 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2820 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2821 LabelVAPtr); 2822 } 2823 2824 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2825 } 2826 2827 // Adds the return value shadow. 2828 if (!FT->getReturnType()->isVoidTy()) { 2829 if (!DFSF.LabelReturnAlloca) { 2830 DFSF.LabelReturnAlloca = new AllocaInst( 2831 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2832 "labelreturn", &DFSF.F->getEntryBlock().front()); 2833 } 2834 Args.push_back(DFSF.LabelReturnAlloca); 2835 } 2836 } 2837 2838 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2839 std::vector<Value *> &Args, 2840 IRBuilder<> &IRB) { 2841 FunctionType *FT = F.getFunctionType(); 2842 2843 auto *I = CB.arg_begin(); 2844 2845 // Add non-variable argument origins. 2846 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2847 Args.push_back(DFSF.getOrigin(*I)); 2848 2849 // Add variable argument origins. 2850 if (FT->isVarArg()) { 2851 auto *OriginVATy = 2852 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2853 auto *OriginVAAlloca = 2854 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2855 "originva", &DFSF.F->getEntryBlock().front()); 2856 2857 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2858 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2859 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2860 } 2861 2862 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2863 } 2864 2865 // Add the return value origin. 2866 if (!FT->getReturnType()->isVoidTy()) { 2867 if (!DFSF.OriginReturnAlloca) { 2868 DFSF.OriginReturnAlloca = new AllocaInst( 2869 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2870 "originreturn", &DFSF.F->getEntryBlock().front()); 2871 } 2872 Args.push_back(DFSF.OriginReturnAlloca); 2873 } 2874 } 2875 2876 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2877 IRBuilder<> IRB(&CB); 2878 switch (DFSF.DFS.getWrapperKind(&F)) { 2879 case DataFlowSanitizer::WK_Warning: 2880 CB.setCalledFunction(&F); 2881 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2882 IRB.CreateGlobalStringPtr(F.getName())); 2883 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2884 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2885 return true; 2886 case DataFlowSanitizer::WK_Discard: 2887 CB.setCalledFunction(&F); 2888 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2889 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2890 return true; 2891 case DataFlowSanitizer::WK_Functional: 2892 CB.setCalledFunction(&F); 2893 visitInstOperands(CB); 2894 return true; 2895 case DataFlowSanitizer::WK_Custom: 2896 // Don't try to handle invokes of custom functions, it's too complicated. 2897 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2898 // wrapper. 2899 CallInst *CI = dyn_cast<CallInst>(&CB); 2900 if (!CI) 2901 return false; 2902 2903 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2904 FunctionType *FT = F.getFunctionType(); 2905 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2906 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2907 CustomFName += F.getName(); 2908 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2909 CustomFName, CustomFn.TransformedType); 2910 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2911 CustomFn->copyAttributesFrom(&F); 2912 2913 // Custom functions returning non-void will write to the return label. 2914 if (!FT->getReturnType()->isVoidTy()) { 2915 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2916 DFSF.DFS.ReadOnlyNoneAttrs); 2917 } 2918 } 2919 2920 std::vector<Value *> Args; 2921 2922 // Adds non-variable arguments. 2923 auto *I = CB.arg_begin(); 2924 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2925 Type *T = (*I)->getType(); 2926 FunctionType *ParamFT; 2927 if (isa<PointerType>(T) && 2928 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2929 std::string TName = "dfst"; 2930 TName += utostr(FT->getNumParams() - N); 2931 TName += "$"; 2932 TName += F.getName(); 2933 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2934 Args.push_back(T); 2935 Args.push_back( 2936 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2937 } else { 2938 Args.push_back(*I); 2939 } 2940 } 2941 2942 // Adds shadow arguments. 2943 const unsigned ShadowArgStart = Args.size(); 2944 addShadowArguments(F, CB, Args, IRB); 2945 2946 // Adds origin arguments. 2947 const unsigned OriginArgStart = Args.size(); 2948 if (ShouldTrackOrigins) 2949 addOriginArguments(F, CB, Args, IRB); 2950 2951 // Adds variable arguments. 2952 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2953 2954 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2955 CustomCI->setCallingConv(CI->getCallingConv()); 2956 CustomCI->setAttributes(transformFunctionAttributes( 2957 CustomFn, CI->getContext(), CI->getAttributes())); 2958 2959 // Update the parameter attributes of the custom call instruction to 2960 // zero extend the shadow parameters. This is required for targets 2961 // which consider PrimitiveShadowTy an illegal type. 2962 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2963 const unsigned ArgNo = ShadowArgStart + N; 2964 if (CustomCI->getArgOperand(ArgNo)->getType() == 2965 DFSF.DFS.PrimitiveShadowTy) 2966 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2967 if (ShouldTrackOrigins) { 2968 const unsigned OriginArgNo = OriginArgStart + N; 2969 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2970 DFSF.DFS.OriginTy) 2971 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2972 } 2973 } 2974 2975 // Loads the return value shadow and origin. 2976 if (!FT->getReturnType()->isVoidTy()) { 2977 LoadInst *LabelLoad = 2978 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2979 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2980 FT->getReturnType(), LabelLoad, &CB)); 2981 if (ShouldTrackOrigins) { 2982 LoadInst *OriginLoad = 2983 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2984 DFSF.setOrigin(CustomCI, OriginLoad); 2985 } 2986 } 2987 2988 CI->replaceAllUsesWith(CustomCI); 2989 CI->eraseFromParent(); 2990 return true; 2991 } 2992 return false; 2993 } 2994 2995 void DFSanVisitor::visitCallBase(CallBase &CB) { 2996 Function *F = CB.getCalledFunction(); 2997 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2998 visitInstOperands(CB); 2999 return; 3000 } 3001 3002 // Calls to this function are synthesized in wrappers, and we shouldn't 3003 // instrument them. 3004 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3005 return; 3006 3007 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3008 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3009 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3010 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3011 return; 3012 3013 IRBuilder<> IRB(&CB); 3014 3015 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3016 FunctionType *FT = CB.getFunctionType(); 3017 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3018 // Stores argument shadows. 3019 unsigned ArgOffset = 0; 3020 const DataLayout &DL = getDataLayout(); 3021 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3022 if (ShouldTrackOrigins) { 3023 // Ignore overflowed origins 3024 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3025 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3026 !DFSF.DFS.isZeroShadow(ArgShadow)) 3027 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3028 DFSF.getArgOriginTLS(I, IRB)); 3029 } 3030 3031 unsigned Size = 3032 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3033 // Stop storing if arguments' size overflows. Inside a function, arguments 3034 // after overflow have zero shadow values. 3035 if (ArgOffset + Size > ArgTLSSize) 3036 break; 3037 IRB.CreateAlignedStore( 3038 DFSF.getShadow(CB.getArgOperand(I)), 3039 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3040 ShadowTLSAlignment); 3041 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3042 } 3043 } 3044 3045 Instruction *Next = nullptr; 3046 if (!CB.getType()->isVoidTy()) { 3047 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3048 if (II->getNormalDest()->getSinglePredecessor()) { 3049 Next = &II->getNormalDest()->front(); 3050 } else { 3051 BasicBlock *NewBB = 3052 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3053 Next = &NewBB->front(); 3054 } 3055 } else { 3056 assert(CB.getIterator() != CB.getParent()->end()); 3057 Next = CB.getNextNode(); 3058 } 3059 3060 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3061 // Don't emit the epilogue for musttail call returns. 3062 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3063 return; 3064 3065 // Loads the return value shadow. 3066 IRBuilder<> NextIRB(Next); 3067 const DataLayout &DL = getDataLayout(); 3068 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3069 if (Size > RetvalTLSSize) { 3070 // Set overflowed return shadow to be zero. 3071 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3072 } else { 3073 LoadInst *LI = NextIRB.CreateAlignedLoad( 3074 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3075 ShadowTLSAlignment, "_dfsret"); 3076 DFSF.SkipInsts.insert(LI); 3077 DFSF.setShadow(&CB, LI); 3078 DFSF.NonZeroChecks.push_back(LI); 3079 } 3080 3081 if (ShouldTrackOrigins) { 3082 LoadInst *LI = NextIRB.CreateLoad( 3083 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3084 DFSF.SkipInsts.insert(LI); 3085 DFSF.setOrigin(&CB, LI); 3086 } 3087 } 3088 } 3089 3090 // Do all instrumentation for IA_Args down here to defer tampering with the 3091 // CFG in a way that SplitEdge may be able to detect. 3092 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3093 // TODO: handle musttail call returns for IA_Args. 3094 3095 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3096 Value *Func = 3097 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3098 3099 const unsigned NumParams = FT->getNumParams(); 3100 3101 // Copy original arguments. 3102 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3103 std::vector<Value *> Args(NumParams); 3104 std::copy_n(ArgIt, NumParams, Args.begin()); 3105 3106 // Add shadow arguments by transforming original arguments. 3107 std::generate_n(std::back_inserter(Args), NumParams, 3108 [&]() { return DFSF.getShadow(*ArgIt++); }); 3109 3110 if (FT->isVarArg()) { 3111 unsigned VarArgSize = CB.arg_size() - NumParams; 3112 ArrayType *VarArgArrayTy = 3113 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3114 AllocaInst *VarArgShadow = 3115 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3116 "", &DFSF.F->getEntryBlock().front()); 3117 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3118 3119 // Copy remaining var args. 3120 unsigned GepIndex = 0; 3121 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3122 IRB.CreateStore( 3123 DFSF.getShadow(Arg), 3124 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3125 Args.push_back(Arg); 3126 }); 3127 } 3128 3129 CallBase *NewCB; 3130 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3131 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3132 II->getUnwindDest(), Args); 3133 } else { 3134 NewCB = IRB.CreateCall(NewFT, Func, Args); 3135 } 3136 NewCB->setCallingConv(CB.getCallingConv()); 3137 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3138 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3139 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3140 3141 if (Next) { 3142 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3143 DFSF.SkipInsts.insert(ExVal); 3144 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3145 DFSF.SkipInsts.insert(ExShadow); 3146 DFSF.setShadow(ExVal, ExShadow); 3147 DFSF.NonZeroChecks.push_back(ExShadow); 3148 3149 CB.replaceAllUsesWith(ExVal); 3150 } 3151 3152 CB.eraseFromParent(); 3153 } 3154 } 3155 3156 void DFSanVisitor::visitPHINode(PHINode &PN) { 3157 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3158 PHINode *ShadowPN = 3159 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3160 3161 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3162 Value *UndefShadow = UndefValue::get(ShadowTy); 3163 for (BasicBlock *BB : PN.blocks()) 3164 ShadowPN->addIncoming(UndefShadow, BB); 3165 3166 DFSF.setShadow(&PN, ShadowPN); 3167 3168 PHINode *OriginPN = nullptr; 3169 if (DFSF.DFS.shouldTrackOrigins()) { 3170 OriginPN = 3171 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3172 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3173 for (BasicBlock *BB : PN.blocks()) 3174 OriginPN->addIncoming(UndefOrigin, BB); 3175 DFSF.setOrigin(&PN, OriginPN); 3176 } 3177 3178 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3179 } 3180 3181 namespace { 3182 class DataFlowSanitizerLegacyPass : public ModulePass { 3183 private: 3184 std::vector<std::string> ABIListFiles; 3185 3186 public: 3187 static char ID; 3188 3189 DataFlowSanitizerLegacyPass( 3190 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3191 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3192 3193 bool runOnModule(Module &M) override { 3194 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3195 } 3196 }; 3197 } // namespace 3198 3199 char DataFlowSanitizerLegacyPass::ID; 3200 3201 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3202 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3203 3204 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3205 const std::vector<std::string> &ABIListFiles) { 3206 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3207 } 3208 3209 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3210 ModuleAnalysisManager &AM) { 3211 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3212 return PreservedAnalyses::none(); 3213 } 3214 return PreservedAnalyses::all(); 3215 } 3216