1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallVector.h" 69 #include "llvm/ADT/StringRef.h" 70 #include "llvm/ADT/StringSet.h" 71 #include "llvm/ADT/Triple.h" 72 #include "llvm/ADT/iterator.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Argument.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DataLayout.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/GlobalAlias.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/GlobalVariable.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InstVisitor.h" 88 #include "llvm/IR/InstrTypes.h" 89 #include "llvm/IR/Instruction.h" 90 #include "llvm/IR/Instructions.h" 91 #include "llvm/IR/IntrinsicInst.h" 92 #include "llvm/IR/MDBuilder.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/InitializePasses.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Alignment.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/SpecialCaseList.h" 105 #include "llvm/Support/VirtualFileSystem.h" 106 #include "llvm/Transforms/Instrumentation.h" 107 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 108 #include "llvm/Transforms/Utils/Local.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstddef> 112 #include <cstdint> 113 #include <memory> 114 #include <set> 115 #include <string> 116 #include <utility> 117 #include <vector> 118 119 using namespace llvm; 120 121 // This must be consistent with ShadowWidthBits. 122 static const Align ShadowTLSAlignment = Align(2); 123 124 static const Align MinOriginAlignment = Align(4); 125 126 // The size of TLS variables. These constants must be kept in sync with the ones 127 // in dfsan.cpp. 128 static const unsigned ArgTLSSize = 800; 129 static const unsigned RetvalTLSSize = 800; 130 131 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 132 // alignment requirements provided by the input IR are correct. For example, 133 // if the input IR contains a load with alignment 8, this flag will cause 134 // the shadow load to have alignment 16. This flag is disabled by default as 135 // we have unfortunately encountered too much code (including Clang itself; 136 // see PR14291) which performs misaligned access. 137 static cl::opt<bool> ClPreserveAlignment( 138 "dfsan-preserve-alignment", 139 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 140 cl::init(false)); 141 142 // The ABI list files control how shadow parameters are passed. The pass treats 143 // every function labelled "uninstrumented" in the ABI list file as conforming 144 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 145 // additional annotations for those functions, a call to one of those functions 146 // will produce a warning message, as the labelling behaviour of the function is 147 // unknown. The other supported annotations for uninstrumented functions are 148 // "functional" and "discard", which are described below under 149 // DataFlowSanitizer::WrapperKind. 150 // Functions will often be labelled with both "uninstrumented" and one of 151 // "functional" or "discard". This will leave the function unchanged by this 152 // pass, and create a wrapper function that will call the original. 153 // 154 // Instrumented functions can also be annotated as "force_zero_labels", which 155 // will make all shadow and return values set zero labels. 156 // Functions should never be labelled with both "force_zero_labels" and 157 // "uninstrumented" or any of the unistrumented wrapper kinds. 158 static cl::list<std::string> ClABIListFiles( 159 "dfsan-abilist", 160 cl::desc("File listing native ABI functions and how the pass treats them"), 161 cl::Hidden); 162 163 // Controls whether the pass includes or ignores the labels of pointers in load 164 // instructions. 165 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 166 "dfsan-combine-pointer-labels-on-load", 167 cl::desc("Combine the label of the pointer with the label of the data when " 168 "loading from memory."), 169 cl::Hidden, cl::init(true)); 170 171 // Controls whether the pass includes or ignores the labels of pointers in 172 // stores instructions. 173 static cl::opt<bool> ClCombinePointerLabelsOnStore( 174 "dfsan-combine-pointer-labels-on-store", 175 cl::desc("Combine the label of the pointer with the label of the data when " 176 "storing in memory."), 177 cl::Hidden, cl::init(false)); 178 179 // Controls whether the pass propagates labels of offsets in GEP instructions. 180 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 181 "dfsan-combine-offset-labels-on-gep", 182 cl::desc( 183 "Combine the label of the offset with the label of the pointer when " 184 "doing pointer arithmetic."), 185 cl::Hidden, cl::init(true)); 186 187 static cl::list<std::string> ClCombineTaintLookupTables( 188 "dfsan-combine-taint-lookup-table", 189 cl::desc( 190 "When dfsan-combine-offset-labels-on-gep and/or " 191 "dfsan-combine-pointer-labels-on-load are false, this flag can " 192 "be used to re-enable combining offset and/or pointer taint when " 193 "loading specific constant global variables (i.e. lookup tables)."), 194 cl::Hidden); 195 196 static cl::opt<bool> ClDebugNonzeroLabels( 197 "dfsan-debug-nonzero-labels", 198 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 199 "load or return with a nonzero label"), 200 cl::Hidden); 201 202 // Experimental feature that inserts callbacks for certain data events. 203 // Currently callbacks are only inserted for loads, stores, memory transfers 204 // (i.e. memcpy and memmove), and comparisons. 205 // 206 // If this flag is set to true, the user must provide definitions for the 207 // following callback functions: 208 // void __dfsan_load_callback(dfsan_label Label, void* addr); 209 // void __dfsan_store_callback(dfsan_label Label, void* addr); 210 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 211 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 212 static cl::opt<bool> ClEventCallbacks( 213 "dfsan-event-callbacks", 214 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 215 cl::Hidden, cl::init(false)); 216 217 // Experimental feature that inserts callbacks for conditionals, including: 218 // conditional branch, switch, select. 219 // This must be true for dfsan_set_conditional_callback() to have effect. 220 static cl::opt<bool> ClConditionalCallbacks( 221 "dfsan-conditional-callbacks", 222 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 223 cl::init(false)); 224 225 // Controls whether the pass tracks the control flow of select instructions. 226 static cl::opt<bool> ClTrackSelectControlFlow( 227 "dfsan-track-select-control-flow", 228 cl::desc("Propagate labels from condition values of select instructions " 229 "to results."), 230 cl::Hidden, cl::init(true)); 231 232 // TODO: This default value follows MSan. DFSan may use a different value. 233 static cl::opt<int> ClInstrumentWithCallThreshold( 234 "dfsan-instrument-with-call-threshold", 235 cl::desc("If the function being instrumented requires more than " 236 "this number of origin stores, use callbacks instead of " 237 "inline checks (-1 means never use callbacks)."), 238 cl::Hidden, cl::init(3500)); 239 240 // Controls how to track origins. 241 // * 0: do not track origins. 242 // * 1: track origins at memory store operations. 243 // * 2: track origins at memory load and store operations. 244 // TODO: track callsites. 245 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 246 cl::desc("Track origins of labels"), 247 cl::Hidden, cl::init(0)); 248 249 static cl::opt<bool> ClIgnorePersonalityRoutine( 250 "dfsan-ignore-personality-routine", 251 cl::desc("If a personality routine is marked uninstrumented from the ABI " 252 "list, do not create a wrapper for it."), 253 cl::Hidden, cl::init(false)); 254 255 static StringRef getGlobalTypeString(const GlobalValue &G) { 256 // Types of GlobalVariables are always pointer types. 257 Type *GType = G.getValueType(); 258 // For now we support excluding struct types only. 259 if (StructType *SGType = dyn_cast<StructType>(GType)) { 260 if (!SGType->isLiteral()) 261 return SGType->getName(); 262 } 263 return "<unknown type>"; 264 } 265 266 namespace { 267 268 // Memory map parameters used in application-to-shadow address calculation. 269 // Offset = (Addr & ~AndMask) ^ XorMask 270 // Shadow = ShadowBase + Offset 271 // Origin = (OriginBase + Offset) & ~3ULL 272 struct MemoryMapParams { 273 uint64_t AndMask; 274 uint64_t XorMask; 275 uint64_t ShadowBase; 276 uint64_t OriginBase; 277 }; 278 279 } // end anonymous namespace 280 281 // x86_64 Linux 282 // NOLINTNEXTLINE(readability-identifier-naming) 283 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 284 0, // AndMask (not used) 285 0x500000000000, // XorMask 286 0, // ShadowBase (not used) 287 0x100000000000, // OriginBase 288 }; 289 290 namespace { 291 292 class DFSanABIList { 293 std::unique_ptr<SpecialCaseList> SCL; 294 295 public: 296 DFSanABIList() = default; 297 298 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 299 300 /// Returns whether either this function or its source file are listed in the 301 /// given category. 302 bool isIn(const Function &F, StringRef Category) const { 303 return isIn(*F.getParent(), Category) || 304 SCL->inSection("dataflow", "fun", F.getName(), Category); 305 } 306 307 /// Returns whether this global alias is listed in the given category. 308 /// 309 /// If GA aliases a function, the alias's name is matched as a function name 310 /// would be. Similarly, aliases of globals are matched like globals. 311 bool isIn(const GlobalAlias &GA, StringRef Category) const { 312 if (isIn(*GA.getParent(), Category)) 313 return true; 314 315 if (isa<FunctionType>(GA.getValueType())) 316 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 317 318 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 319 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 320 Category); 321 } 322 323 /// Returns whether this module is listed in the given category. 324 bool isIn(const Module &M, StringRef Category) const { 325 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 326 } 327 }; 328 329 /// TransformedFunction is used to express the result of transforming one 330 /// function type into another. This struct is immutable. It holds metadata 331 /// useful for updating calls of the old function to the new type. 332 struct TransformedFunction { 333 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 334 std::vector<unsigned> ArgumentIndexMapping) 335 : OriginalType(OriginalType), TransformedType(TransformedType), 336 ArgumentIndexMapping(ArgumentIndexMapping) {} 337 338 // Disallow copies. 339 TransformedFunction(const TransformedFunction &) = delete; 340 TransformedFunction &operator=(const TransformedFunction &) = delete; 341 342 // Allow moves. 343 TransformedFunction(TransformedFunction &&) = default; 344 TransformedFunction &operator=(TransformedFunction &&) = default; 345 346 /// Type of the function before the transformation. 347 FunctionType *OriginalType; 348 349 /// Type of the function after the transformation. 350 FunctionType *TransformedType; 351 352 /// Transforming a function may change the position of arguments. This 353 /// member records the mapping from each argument's old position to its new 354 /// position. Argument positions are zero-indexed. If the transformation 355 /// from F to F' made the first argument of F into the third argument of F', 356 /// then ArgumentIndexMapping[0] will equal 2. 357 std::vector<unsigned> ArgumentIndexMapping; 358 }; 359 360 /// Given function attributes from a call site for the original function, 361 /// return function attributes appropriate for a call to the transformed 362 /// function. 363 AttributeList 364 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 365 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 366 367 // Construct a vector of AttributeSet for each function argument. 368 std::vector<llvm::AttributeSet> ArgumentAttributes( 369 TransformedFunction.TransformedType->getNumParams()); 370 371 // Copy attributes from the parameter of the original function to the 372 // transformed version. 'ArgumentIndexMapping' holds the mapping from 373 // old argument position to new. 374 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 375 I < IE; ++I) { 376 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 377 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 378 } 379 380 // Copy annotations on varargs arguments. 381 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 382 IE = CallSiteAttrs.getNumAttrSets(); 383 I < IE; ++I) { 384 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 385 } 386 387 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 388 CallSiteAttrs.getRetAttrs(), 389 llvm::makeArrayRef(ArgumentAttributes)); 390 } 391 392 class DataFlowSanitizer { 393 friend struct DFSanFunction; 394 friend class DFSanVisitor; 395 396 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 397 398 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 399 400 /// How should calls to uninstrumented functions be handled? 401 enum WrapperKind { 402 /// This function is present in an uninstrumented form but we don't know 403 /// how it should be handled. Print a warning and call the function anyway. 404 /// Don't label the return value. 405 WK_Warning, 406 407 /// This function does not write to (user-accessible) memory, and its return 408 /// value is unlabelled. 409 WK_Discard, 410 411 /// This function does not write to (user-accessible) memory, and the label 412 /// of its return value is the union of the label of its arguments. 413 WK_Functional, 414 415 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 416 /// where F is the name of the function. This function may wrap the 417 /// original function or provide its own implementation. WK_Custom uses an 418 /// extra pointer argument to return the shadow. This allows the wrapped 419 /// form of the function type to be expressed in C. 420 WK_Custom 421 }; 422 423 Module *Mod; 424 LLVMContext *Ctx; 425 Type *Int8Ptr; 426 IntegerType *OriginTy; 427 PointerType *OriginPtrTy; 428 ConstantInt *ZeroOrigin; 429 /// The shadow type for all primitive types and vector types. 430 IntegerType *PrimitiveShadowTy; 431 PointerType *PrimitiveShadowPtrTy; 432 IntegerType *IntptrTy; 433 ConstantInt *ZeroPrimitiveShadow; 434 Constant *ArgTLS; 435 ArrayType *ArgOriginTLSTy; 436 Constant *ArgOriginTLS; 437 Constant *RetvalTLS; 438 Constant *RetvalOriginTLS; 439 FunctionType *DFSanUnionLoadFnTy; 440 FunctionType *DFSanLoadLabelAndOriginFnTy; 441 FunctionType *DFSanUnimplementedFnTy; 442 FunctionType *DFSanSetLabelFnTy; 443 FunctionType *DFSanNonzeroLabelFnTy; 444 FunctionType *DFSanVarargWrapperFnTy; 445 FunctionType *DFSanConditionalCallbackFnTy; 446 FunctionType *DFSanConditionalCallbackOriginFnTy; 447 FunctionType *DFSanCmpCallbackFnTy; 448 FunctionType *DFSanLoadStoreCallbackFnTy; 449 FunctionType *DFSanMemTransferCallbackFnTy; 450 FunctionType *DFSanChainOriginFnTy; 451 FunctionType *DFSanChainOriginIfTaintedFnTy; 452 FunctionType *DFSanMemOriginTransferFnTy; 453 FunctionType *DFSanMaybeStoreOriginFnTy; 454 FunctionCallee DFSanUnionLoadFn; 455 FunctionCallee DFSanLoadLabelAndOriginFn; 456 FunctionCallee DFSanUnimplementedFn; 457 FunctionCallee DFSanSetLabelFn; 458 FunctionCallee DFSanNonzeroLabelFn; 459 FunctionCallee DFSanVarargWrapperFn; 460 FunctionCallee DFSanLoadCallbackFn; 461 FunctionCallee DFSanStoreCallbackFn; 462 FunctionCallee DFSanMemTransferCallbackFn; 463 FunctionCallee DFSanConditionalCallbackFn; 464 FunctionCallee DFSanConditionalCallbackOriginFn; 465 FunctionCallee DFSanCmpCallbackFn; 466 FunctionCallee DFSanChainOriginFn; 467 FunctionCallee DFSanChainOriginIfTaintedFn; 468 FunctionCallee DFSanMemOriginTransferFn; 469 FunctionCallee DFSanMaybeStoreOriginFn; 470 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 471 MDNode *ColdCallWeights; 472 MDNode *OriginStoreWeights; 473 DFSanABIList ABIList; 474 DenseMap<Value *, Function *> UnwrappedFnMap; 475 AttributeMask ReadOnlyNoneAttrs; 476 StringSet<> CombineTaintLookupTableNames; 477 478 /// Memory map parameters used in calculation mapping application addresses 479 /// to shadow addresses and origin addresses. 480 const MemoryMapParams *MapParams; 481 482 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 483 Value *getShadowAddress(Value *Addr, Instruction *Pos); 484 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 485 std::pair<Value *, Value *> 486 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 487 bool isInstrumented(const Function *F); 488 bool isInstrumented(const GlobalAlias *GA); 489 bool isForceZeroLabels(const Function *F); 490 TransformedFunction getCustomFunctionType(FunctionType *T); 491 WrapperKind getWrapperKind(Function *F); 492 void addGlobalNameSuffix(GlobalValue *GV); 493 Function *buildWrapperFunction(Function *F, StringRef NewFName, 494 GlobalValue::LinkageTypes NewFLink, 495 FunctionType *NewFT); 496 void initializeCallbackFunctions(Module &M); 497 void initializeRuntimeFunctions(Module &M); 498 void injectMetadataGlobals(Module &M); 499 bool initializeModule(Module &M); 500 501 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 502 /// from it. Returns the origin's loaded value. 503 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 504 Value **OriginAddr); 505 506 /// Returns whether the given load byte size is amenable to inlined 507 /// optimization patterns. 508 bool hasLoadSizeForFastPath(uint64_t Size); 509 510 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 511 bool shouldTrackOrigins(); 512 513 /// Returns a zero constant with the shadow type of OrigTy. 514 /// 515 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 516 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 517 /// getZeroShadow(other type) = i16(0) 518 Constant *getZeroShadow(Type *OrigTy); 519 /// Returns a zero constant with the shadow type of V's type. 520 Constant *getZeroShadow(Value *V); 521 522 /// Checks if V is a zero shadow. 523 bool isZeroShadow(Value *V); 524 525 /// Returns the shadow type of OrigTy. 526 /// 527 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 528 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 529 /// getShadowTy(other type) = i16 530 Type *getShadowTy(Type *OrigTy); 531 /// Returns the shadow type of of V's type. 532 Type *getShadowTy(Value *V); 533 534 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 535 536 public: 537 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 538 539 bool runImpl(Module &M); 540 }; 541 542 struct DFSanFunction { 543 DataFlowSanitizer &DFS; 544 Function *F; 545 DominatorTree DT; 546 bool IsNativeABI; 547 bool IsForceZeroLabels; 548 AllocaInst *LabelReturnAlloca = nullptr; 549 AllocaInst *OriginReturnAlloca = nullptr; 550 DenseMap<Value *, Value *> ValShadowMap; 551 DenseMap<Value *, Value *> ValOriginMap; 552 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 553 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 554 555 struct PHIFixupElement { 556 PHINode *Phi; 557 PHINode *ShadowPhi; 558 PHINode *OriginPhi; 559 }; 560 std::vector<PHIFixupElement> PHIFixups; 561 562 DenseSet<Instruction *> SkipInsts; 563 std::vector<Value *> NonZeroChecks; 564 565 struct CachedShadow { 566 BasicBlock *Block; // The block where Shadow is defined. 567 Value *Shadow; 568 }; 569 /// Maps a value to its latest shadow value in terms of domination tree. 570 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 571 /// Maps a value to its latest collapsed shadow value it was converted to in 572 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 573 /// used at a post process where CFG blocks are split. So it does not cache 574 /// BasicBlock like CachedShadows, but uses domination between values. 575 DenseMap<Value *, Value *> CachedCollapsedShadows; 576 DenseMap<Value *, std::set<Value *>> ShadowElements; 577 578 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 579 bool IsForceZeroLabels) 580 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 581 IsForceZeroLabels(IsForceZeroLabels) { 582 DT.recalculate(*F); 583 } 584 585 /// Computes the shadow address for a given function argument. 586 /// 587 /// Shadow = ArgTLS+ArgOffset. 588 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 589 590 /// Computes the shadow address for a return value. 591 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 592 593 /// Computes the origin address for a given function argument. 594 /// 595 /// Origin = ArgOriginTLS[ArgNo]. 596 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 597 598 /// Computes the origin address for a return value. 599 Value *getRetvalOriginTLS(); 600 601 Value *getOrigin(Value *V); 602 void setOrigin(Instruction *I, Value *Origin); 603 /// Generates IR to compute the origin of the last operand with a taint label. 604 Value *combineOperandOrigins(Instruction *Inst); 605 /// Before the instruction Pos, generates IR to compute the last origin with a 606 /// taint label. Labels and origins are from vectors Shadows and Origins 607 /// correspondingly. The generated IR is like 608 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 609 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 610 /// zeros with other bitwidths. 611 Value *combineOrigins(const std::vector<Value *> &Shadows, 612 const std::vector<Value *> &Origins, Instruction *Pos, 613 ConstantInt *Zero = nullptr); 614 615 Value *getShadow(Value *V); 616 void setShadow(Instruction *I, Value *Shadow); 617 /// Generates IR to compute the union of the two given shadows, inserting it 618 /// before Pos. The combined value is with primitive type. 619 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 620 /// Combines the shadow values of V1 and V2, then converts the combined value 621 /// with primitive type into a shadow value with the original type T. 622 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 623 Instruction *Pos); 624 Value *combineOperandShadows(Instruction *Inst); 625 626 /// Generates IR to load shadow and origin corresponding to bytes [\p 627 /// Addr, \p Addr + \p Size), where addr has alignment \p 628 /// InstAlignment, and take the union of each of those shadows. The returned 629 /// shadow always has primitive type. 630 /// 631 /// When tracking loads is enabled, the returned origin is a chain at the 632 /// current stack if the returned shadow is tainted. 633 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 634 Align InstAlignment, 635 Instruction *Pos); 636 637 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 638 Align InstAlignment, Value *PrimitiveShadow, 639 Value *Origin, Instruction *Pos); 640 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 641 /// the expanded shadow value. 642 /// 643 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 644 /// EFP([n x T], PS) = [n x EFP(T,PS)] 645 /// EFP(other types, PS) = PS 646 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 647 Instruction *Pos); 648 /// Collapses Shadow into a single primitive shadow value, unioning all 649 /// primitive shadow values in the process. Returns the final primitive 650 /// shadow value. 651 /// 652 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 653 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 654 /// CTP(other types, PS) = PS 655 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 656 657 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 658 Instruction *Pos); 659 660 Align getShadowAlign(Align InstAlignment); 661 662 // If ClConditionalCallbacks is enabled, insert a callback after a given 663 // branch instruction using the given conditional expression. 664 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 665 666 bool isLookupTableConstant(Value *P); 667 668 private: 669 /// Collapses the shadow with aggregate type into a single primitive shadow 670 /// value. 671 template <class AggregateType> 672 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 673 IRBuilder<> &IRB); 674 675 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 676 677 /// Returns the shadow value of an argument A. 678 Value *getShadowForTLSArgument(Argument *A); 679 680 /// The fast path of loading shadows. 681 std::pair<Value *, Value *> 682 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 683 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 684 Instruction *Pos); 685 686 Align getOriginAlign(Align InstAlignment); 687 688 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 689 /// is __dfsan_load_label_and_origin. This function returns the union of all 690 /// labels and the origin of the first taint label. However this is an 691 /// additional call with many instructions. To ensure common cases are fast, 692 /// checks if it is possible to load labels and origins without using the 693 /// callback function. 694 /// 695 /// When enabling tracking load instructions, we always use 696 /// __dfsan_load_label_and_origin to reduce code size. 697 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 698 699 /// Returns a chain at the current stack with previous origin V. 700 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 701 702 /// Returns a chain at the current stack with previous origin V if Shadow is 703 /// tainted. 704 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 705 706 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 707 /// Origin otherwise. 708 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 709 710 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 711 /// Size). 712 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 713 uint64_t StoreOriginSize, Align Alignment); 714 715 /// Stores Origin in terms of its Shadow value. 716 /// * Do not write origins for zero shadows because we do not trace origins 717 /// for untainted sinks. 718 /// * Use __dfsan_maybe_store_origin if there are too many origin store 719 /// instrumentations. 720 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 721 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 722 723 /// Convert a scalar value to an i1 by comparing with 0. 724 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 725 726 bool shouldInstrumentWithCall(); 727 728 /// Generates IR to load shadow and origin corresponding to bytes [\p 729 /// Addr, \p Addr + \p Size), where addr has alignment \p 730 /// InstAlignment, and take the union of each of those shadows. The returned 731 /// shadow always has primitive type. 732 std::pair<Value *, Value *> 733 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 734 Align InstAlignment, Instruction *Pos); 735 int NumOriginStores = 0; 736 }; 737 738 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 739 public: 740 DFSanFunction &DFSF; 741 742 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 743 744 const DataLayout &getDataLayout() const { 745 return DFSF.F->getParent()->getDataLayout(); 746 } 747 748 // Combines shadow values and origins for all of I's operands. 749 void visitInstOperands(Instruction &I); 750 751 void visitUnaryOperator(UnaryOperator &UO); 752 void visitBinaryOperator(BinaryOperator &BO); 753 void visitBitCastInst(BitCastInst &BCI); 754 void visitCastInst(CastInst &CI); 755 void visitCmpInst(CmpInst &CI); 756 void visitLandingPadInst(LandingPadInst &LPI); 757 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 758 void visitLoadInst(LoadInst &LI); 759 void visitStoreInst(StoreInst &SI); 760 void visitAtomicRMWInst(AtomicRMWInst &I); 761 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 762 void visitReturnInst(ReturnInst &RI); 763 void visitCallBase(CallBase &CB); 764 void visitPHINode(PHINode &PN); 765 void visitExtractElementInst(ExtractElementInst &I); 766 void visitInsertElementInst(InsertElementInst &I); 767 void visitShuffleVectorInst(ShuffleVectorInst &I); 768 void visitExtractValueInst(ExtractValueInst &I); 769 void visitInsertValueInst(InsertValueInst &I); 770 void visitAllocaInst(AllocaInst &I); 771 void visitSelectInst(SelectInst &I); 772 void visitMemSetInst(MemSetInst &I); 773 void visitMemTransferInst(MemTransferInst &I); 774 void visitBranchInst(BranchInst &BR); 775 void visitSwitchInst(SwitchInst &SW); 776 777 private: 778 void visitCASOrRMW(Align InstAlignment, Instruction &I); 779 780 // Returns false when this is an invoke of a custom function. 781 bool visitWrappedCallBase(Function &F, CallBase &CB); 782 783 // Combines origins for all of I's operands. 784 void visitInstOperandOrigins(Instruction &I); 785 786 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 787 IRBuilder<> &IRB); 788 789 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 790 IRBuilder<> &IRB); 791 }; 792 793 } // end anonymous namespace 794 795 DataFlowSanitizer::DataFlowSanitizer( 796 const std::vector<std::string> &ABIListFiles) { 797 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 798 llvm::append_range(AllABIListFiles, ClABIListFiles); 799 // FIXME: should we propagate vfs::FileSystem to this constructor? 800 ABIList.set( 801 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 802 803 for (StringRef v : ClCombineTaintLookupTables) 804 CombineTaintLookupTableNames.insert(v); 805 } 806 807 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 808 SmallVector<Type *, 4> ArgTypes; 809 810 // Some parameters of the custom function being constructed are 811 // parameters of T. Record the mapping from parameters of T to 812 // parameters of the custom function, so that parameter attributes 813 // at call sites can be updated. 814 std::vector<unsigned> ArgumentIndexMapping; 815 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 816 Type *ParamType = T->getParamType(I); 817 ArgumentIndexMapping.push_back(ArgTypes.size()); 818 ArgTypes.push_back(ParamType); 819 } 820 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 821 ArgTypes.push_back(PrimitiveShadowTy); 822 if (T->isVarArg()) 823 ArgTypes.push_back(PrimitiveShadowPtrTy); 824 Type *RetType = T->getReturnType(); 825 if (!RetType->isVoidTy()) 826 ArgTypes.push_back(PrimitiveShadowPtrTy); 827 828 if (shouldTrackOrigins()) { 829 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 830 ArgTypes.push_back(OriginTy); 831 if (T->isVarArg()) 832 ArgTypes.push_back(OriginPtrTy); 833 if (!RetType->isVoidTy()) 834 ArgTypes.push_back(OriginPtrTy); 835 } 836 837 return TransformedFunction( 838 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 839 ArgumentIndexMapping); 840 } 841 842 bool DataFlowSanitizer::isZeroShadow(Value *V) { 843 Type *T = V->getType(); 844 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 845 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 846 return CI->isZero(); 847 return false; 848 } 849 850 return isa<ConstantAggregateZero>(V); 851 } 852 853 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 854 uint64_t ShadowSize = Size * ShadowWidthBytes; 855 return ShadowSize % 8 == 0 || ShadowSize == 4; 856 } 857 858 bool DataFlowSanitizer::shouldTrackOrigins() { 859 static const bool ShouldTrackOrigins = ClTrackOrigins; 860 return ShouldTrackOrigins; 861 } 862 863 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 864 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 865 return ZeroPrimitiveShadow; 866 Type *ShadowTy = getShadowTy(OrigTy); 867 return ConstantAggregateZero::get(ShadowTy); 868 } 869 870 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 871 return getZeroShadow(V->getType()); 872 } 873 874 static Value *expandFromPrimitiveShadowRecursive( 875 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 876 Value *PrimitiveShadow, IRBuilder<> &IRB) { 877 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 878 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 879 880 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 881 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 882 Indices.push_back(Idx); 883 Shadow = expandFromPrimitiveShadowRecursive( 884 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 885 Indices.pop_back(); 886 } 887 return Shadow; 888 } 889 890 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 891 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 892 Indices.push_back(Idx); 893 Shadow = expandFromPrimitiveShadowRecursive( 894 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 895 Indices.pop_back(); 896 } 897 return Shadow; 898 } 899 llvm_unreachable("Unexpected shadow type"); 900 } 901 902 bool DFSanFunction::shouldInstrumentWithCall() { 903 return ClInstrumentWithCallThreshold >= 0 && 904 NumOriginStores >= ClInstrumentWithCallThreshold; 905 } 906 907 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 908 Instruction *Pos) { 909 Type *ShadowTy = DFS.getShadowTy(T); 910 911 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 912 return PrimitiveShadow; 913 914 if (DFS.isZeroShadow(PrimitiveShadow)) 915 return DFS.getZeroShadow(ShadowTy); 916 917 IRBuilder<> IRB(Pos); 918 SmallVector<unsigned, 4> Indices; 919 Value *Shadow = UndefValue::get(ShadowTy); 920 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 921 PrimitiveShadow, IRB); 922 923 // Caches the primitive shadow value that built the shadow value. 924 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 925 return Shadow; 926 } 927 928 template <class AggregateType> 929 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 930 IRBuilder<> &IRB) { 931 if (!AT->getNumElements()) 932 return DFS.ZeroPrimitiveShadow; 933 934 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 935 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 936 937 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 938 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 939 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 940 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 941 } 942 return Aggregator; 943 } 944 945 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 946 IRBuilder<> &IRB) { 947 Type *ShadowTy = Shadow->getType(); 948 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 949 return Shadow; 950 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 951 return collapseAggregateShadow<>(AT, Shadow, IRB); 952 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 953 return collapseAggregateShadow<>(ST, Shadow, IRB); 954 llvm_unreachable("Unexpected shadow type"); 955 } 956 957 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 958 Instruction *Pos) { 959 Type *ShadowTy = Shadow->getType(); 960 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 961 return Shadow; 962 963 // Checks if the cached collapsed shadow value dominates Pos. 964 Value *&CS = CachedCollapsedShadows[Shadow]; 965 if (CS && DT.dominates(CS, Pos)) 966 return CS; 967 968 IRBuilder<> IRB(Pos); 969 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 970 // Caches the converted primitive shadow value. 971 CS = PrimitiveShadow; 972 return PrimitiveShadow; 973 } 974 975 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 976 Value *Condition) { 977 if (!ClConditionalCallbacks) { 978 return; 979 } 980 IRBuilder<> IRB(&I); 981 Value *CondShadow = getShadow(Condition); 982 if (DFS.shouldTrackOrigins()) { 983 Value *CondOrigin = getOrigin(Condition); 984 IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 985 {CondShadow, CondOrigin}); 986 } else { 987 IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 988 } 989 } 990 991 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 992 if (!OrigTy->isSized()) 993 return PrimitiveShadowTy; 994 if (isa<IntegerType>(OrigTy)) 995 return PrimitiveShadowTy; 996 if (isa<VectorType>(OrigTy)) 997 return PrimitiveShadowTy; 998 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 999 return ArrayType::get(getShadowTy(AT->getElementType()), 1000 AT->getNumElements()); 1001 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1002 SmallVector<Type *, 4> Elements; 1003 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1004 Elements.push_back(getShadowTy(ST->getElementType(I))); 1005 return StructType::get(*Ctx, Elements); 1006 } 1007 return PrimitiveShadowTy; 1008 } 1009 1010 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1011 return getShadowTy(V->getType()); 1012 } 1013 1014 bool DataFlowSanitizer::initializeModule(Module &M) { 1015 Triple TargetTriple(M.getTargetTriple()); 1016 const DataLayout &DL = M.getDataLayout(); 1017 1018 if (TargetTriple.getOS() != Triple::Linux) 1019 report_fatal_error("unsupported operating system"); 1020 if (TargetTriple.getArch() != Triple::x86_64) 1021 report_fatal_error("unsupported architecture"); 1022 MapParams = &Linux_X86_64_MemoryMapParams; 1023 1024 Mod = &M; 1025 Ctx = &M.getContext(); 1026 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1027 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1028 OriginPtrTy = PointerType::getUnqual(OriginTy); 1029 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1030 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1031 IntptrTy = DL.getIntPtrType(*Ctx); 1032 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1033 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1034 1035 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1036 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1037 /*isVarArg=*/false); 1038 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1039 DFSanLoadLabelAndOriginFnTy = 1040 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1041 /*isVarArg=*/false); 1042 DFSanUnimplementedFnTy = FunctionType::get( 1043 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1044 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1045 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1046 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1047 DFSanSetLabelArgs, /*isVarArg=*/false); 1048 DFSanNonzeroLabelFnTy = 1049 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1050 DFSanVarargWrapperFnTy = FunctionType::get( 1051 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1052 DFSanConditionalCallbackFnTy = 1053 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1054 /*isVarArg=*/false); 1055 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1056 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1057 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1058 /*isVarArg=*/false); 1059 DFSanCmpCallbackFnTy = 1060 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1061 /*isVarArg=*/false); 1062 DFSanChainOriginFnTy = 1063 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1064 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1065 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1066 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1067 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1068 Int8Ptr, IntptrTy, OriginTy}; 1069 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1070 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1071 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1072 DFSanMemOriginTransferFnTy = FunctionType::get( 1073 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1074 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1075 DFSanLoadStoreCallbackFnTy = 1076 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1077 /*isVarArg=*/false); 1078 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1079 DFSanMemTransferCallbackFnTy = 1080 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1081 /*isVarArg=*/false); 1082 1083 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1084 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1085 return true; 1086 } 1087 1088 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1089 return !ABIList.isIn(*F, "uninstrumented"); 1090 } 1091 1092 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1093 return !ABIList.isIn(*GA, "uninstrumented"); 1094 } 1095 1096 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1097 return ABIList.isIn(*F, "force_zero_labels"); 1098 } 1099 1100 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1101 if (ABIList.isIn(*F, "functional")) 1102 return WK_Functional; 1103 if (ABIList.isIn(*F, "discard")) 1104 return WK_Discard; 1105 if (ABIList.isIn(*F, "custom")) 1106 return WK_Custom; 1107 1108 return WK_Warning; 1109 } 1110 1111 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1112 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1113 GV->setName(GVName + Suffix); 1114 1115 // Try to change the name of the function in module inline asm. We only do 1116 // this for specific asm directives, currently only ".symver", to try to avoid 1117 // corrupting asm which happens to contain the symbol name as a substring. 1118 // Note that the substitution for .symver assumes that the versioned symbol 1119 // also has an instrumented name. 1120 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1121 std::string SearchStr = ".symver " + GVName + ","; 1122 size_t Pos = Asm.find(SearchStr); 1123 if (Pos != std::string::npos) { 1124 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1125 Pos = Asm.find("@"); 1126 1127 if (Pos == std::string::npos) 1128 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1129 1130 Asm.replace(Pos, 1, Suffix + "@"); 1131 GV->getParent()->setModuleInlineAsm(Asm); 1132 } 1133 } 1134 1135 Function * 1136 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1137 GlobalValue::LinkageTypes NewFLink, 1138 FunctionType *NewFT) { 1139 FunctionType *FT = F->getFunctionType(); 1140 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1141 NewFName, F->getParent()); 1142 NewF->copyAttributesFrom(F); 1143 NewF->removeRetAttrs( 1144 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1145 1146 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1147 if (F->isVarArg()) { 1148 NewF->removeFnAttr("split-stack"); 1149 CallInst::Create(DFSanVarargWrapperFn, 1150 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1151 BB); 1152 new UnreachableInst(*Ctx, BB); 1153 } else { 1154 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1155 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1156 1157 CallInst *CI = CallInst::Create(F, Args, "", BB); 1158 if (FT->getReturnType()->isVoidTy()) 1159 ReturnInst::Create(*Ctx, BB); 1160 else 1161 ReturnInst::Create(*Ctx, CI, BB); 1162 } 1163 1164 return NewF; 1165 } 1166 1167 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1168 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1169 { 1170 AttributeList AL; 1171 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1172 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1173 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1174 DFSanUnionLoadFn = 1175 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1176 } 1177 { 1178 AttributeList AL; 1179 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1180 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1181 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1182 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1183 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1184 } 1185 DFSanUnimplementedFn = 1186 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1187 { 1188 AttributeList AL; 1189 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1190 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1191 DFSanSetLabelFn = 1192 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1193 } 1194 DFSanNonzeroLabelFn = 1195 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1196 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1197 DFSanVarargWrapperFnTy); 1198 { 1199 AttributeList AL; 1200 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1201 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1202 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1203 DFSanChainOriginFnTy, AL); 1204 } 1205 { 1206 AttributeList AL; 1207 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1208 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1209 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1210 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1211 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1212 } 1213 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1214 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1215 1216 { 1217 AttributeList AL; 1218 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1219 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1220 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1221 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1222 } 1223 1224 DFSanRuntimeFunctions.insert( 1225 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1226 DFSanRuntimeFunctions.insert( 1227 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1228 DFSanRuntimeFunctions.insert( 1229 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1230 DFSanRuntimeFunctions.insert( 1231 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1232 DFSanRuntimeFunctions.insert( 1233 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1234 DFSanRuntimeFunctions.insert( 1235 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1236 DFSanRuntimeFunctions.insert( 1237 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1238 DFSanRuntimeFunctions.insert( 1239 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1240 DFSanRuntimeFunctions.insert( 1241 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1242 DFSanRuntimeFunctions.insert( 1243 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1244 DFSanRuntimeFunctions.insert( 1245 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1246 DFSanRuntimeFunctions.insert( 1247 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1248 DFSanRuntimeFunctions.insert( 1249 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1250 DFSanRuntimeFunctions.insert( 1251 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1252 DFSanRuntimeFunctions.insert( 1253 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1254 DFSanRuntimeFunctions.insert( 1255 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1256 } 1257 1258 // Initializes event callback functions and declare them in the module 1259 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1260 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1261 DFSanLoadStoreCallbackFnTy); 1262 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1263 DFSanLoadStoreCallbackFnTy); 1264 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1265 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1266 DFSanCmpCallbackFn = 1267 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1268 1269 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1270 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy); 1271 DFSanConditionalCallbackOriginFn = 1272 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1273 DFSanConditionalCallbackOriginFnTy); 1274 } 1275 1276 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1277 // These variables can be used: 1278 // - by the runtime (to discover what the shadow width was, during 1279 // compilation) 1280 // - in testing (to avoid hardcoding the shadow width and type but instead 1281 // extract them by pattern matching) 1282 Type *IntTy = Type::getInt32Ty(*Ctx); 1283 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1284 return new GlobalVariable( 1285 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1286 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1287 }); 1288 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1289 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1290 GlobalValue::WeakODRLinkage, 1291 ConstantInt::get(IntTy, ShadowWidthBytes), 1292 "__dfsan_shadow_width_bytes"); 1293 }); 1294 } 1295 1296 bool DataFlowSanitizer::runImpl(Module &M) { 1297 initializeModule(M); 1298 1299 if (ABIList.isIn(M, "skip")) 1300 return false; 1301 1302 const unsigned InitialGlobalSize = M.global_size(); 1303 const unsigned InitialModuleSize = M.size(); 1304 1305 bool Changed = false; 1306 1307 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1308 Type *Ty) -> Constant * { 1309 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1310 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1311 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1312 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1313 } 1314 return C; 1315 }; 1316 1317 // These globals must be kept in sync with the ones in dfsan.cpp. 1318 ArgTLS = 1319 GetOrInsertGlobal("__dfsan_arg_tls", 1320 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1321 RetvalTLS = GetOrInsertGlobal( 1322 "__dfsan_retval_tls", 1323 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1324 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1325 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1326 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1327 1328 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1329 Changed = true; 1330 return new GlobalVariable( 1331 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1332 ConstantInt::getSigned(OriginTy, 1333 shouldTrackOrigins() ? ClTrackOrigins : 0), 1334 "__dfsan_track_origins"); 1335 }); 1336 1337 injectMetadataGlobals(M); 1338 1339 initializeCallbackFunctions(M); 1340 initializeRuntimeFunctions(M); 1341 1342 std::vector<Function *> FnsToInstrument; 1343 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1344 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1345 SmallPtrSet<Constant *, 1> PersonalityFns; 1346 for (Function &F : M) 1347 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) { 1348 FnsToInstrument.push_back(&F); 1349 if (F.hasPersonalityFn()) 1350 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1351 } 1352 1353 if (ClIgnorePersonalityRoutine) { 1354 for (auto *C : PersonalityFns) { 1355 assert(isa<Function>(C) && "Personality routine is not a function!"); 1356 Function *F = cast<Function>(C); 1357 if (!isInstrumented(F)) 1358 FnsToInstrument.erase( 1359 std::remove(FnsToInstrument.begin(), FnsToInstrument.end(), F), 1360 FnsToInstrument.end()); 1361 } 1362 } 1363 1364 // Give function aliases prefixes when necessary, and build wrappers where the 1365 // instrumentedness is inconsistent. 1366 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1367 // Don't stop on weak. We assume people aren't playing games with the 1368 // instrumentedness of overridden weak aliases. 1369 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1370 if (!F) 1371 continue; 1372 1373 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1374 if (GAInst && FInst) { 1375 addGlobalNameSuffix(&GA); 1376 } else if (GAInst != FInst) { 1377 // Non-instrumented alias of an instrumented function, or vice versa. 1378 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1379 // below will take care of instrumenting it. 1380 Function *NewF = 1381 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1382 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); 1383 NewF->takeName(&GA); 1384 GA.eraseFromParent(); 1385 FnsToInstrument.push_back(NewF); 1386 } 1387 } 1388 1389 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1390 .addAttribute(Attribute::ReadNone); 1391 1392 // First, change the ABI of every function in the module. ABI-listed 1393 // functions keep their original ABI and get a wrapper function. 1394 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1395 FE = FnsToInstrument.end(); 1396 FI != FE; ++FI) { 1397 Function &F = **FI; 1398 FunctionType *FT = F.getFunctionType(); 1399 1400 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1401 FT->getReturnType()->isVoidTy()); 1402 1403 if (isInstrumented(&F)) { 1404 if (isForceZeroLabels(&F)) 1405 FnsWithForceZeroLabel.insert(&F); 1406 1407 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1408 // easily identify cases of mismatching ABIs. This naming scheme is 1409 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1410 addGlobalNameSuffix(&F); 1411 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1412 // Build a wrapper function for F. The wrapper simply calls F, and is 1413 // added to FnsToInstrument so that any instrumentation according to its 1414 // WrapperKind is done in the second pass below. 1415 1416 // If the function being wrapped has local linkage, then preserve the 1417 // function's linkage in the wrapper function. 1418 GlobalValue::LinkageTypes WrapperLinkage = 1419 F.hasLocalLinkage() ? F.getLinkage() 1420 : GlobalValue::LinkOnceODRLinkage; 1421 1422 Function *NewF = buildWrapperFunction( 1423 &F, 1424 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1425 std::string(F.getName()), 1426 WrapperLinkage, FT); 1427 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1428 1429 Value *WrappedFnCst = 1430 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1431 F.replaceAllUsesWith(WrappedFnCst); 1432 1433 UnwrappedFnMap[WrappedFnCst] = &F; 1434 *FI = NewF; 1435 1436 if (!F.isDeclaration()) { 1437 // This function is probably defining an interposition of an 1438 // uninstrumented function and hence needs to keep the original ABI. 1439 // But any functions it may call need to use the instrumented ABI, so 1440 // we instrument it in a mode which preserves the original ABI. 1441 FnsWithNativeABI.insert(&F); 1442 1443 // This code needs to rebuild the iterators, as they may be invalidated 1444 // by the push_back, taking care that the new range does not include 1445 // any functions added by this code. 1446 size_t N = FI - FnsToInstrument.begin(), 1447 Count = FE - FnsToInstrument.begin(); 1448 FnsToInstrument.push_back(&F); 1449 FI = FnsToInstrument.begin() + N; 1450 FE = FnsToInstrument.begin() + Count; 1451 } 1452 // Hopefully, nobody will try to indirectly call a vararg 1453 // function... yet. 1454 } else if (FT->isVarArg()) { 1455 UnwrappedFnMap[&F] = &F; 1456 *FI = nullptr; 1457 } 1458 } 1459 1460 for (Function *F : FnsToInstrument) { 1461 if (!F || F->isDeclaration()) 1462 continue; 1463 1464 removeUnreachableBlocks(*F); 1465 1466 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1467 FnsWithForceZeroLabel.count(F)); 1468 1469 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1470 // Build a copy of the list before iterating over it. 1471 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1472 1473 for (BasicBlock *BB : BBList) { 1474 Instruction *Inst = &BB->front(); 1475 while (true) { 1476 // DFSanVisitor may split the current basic block, changing the current 1477 // instruction's next pointer and moving the next instruction to the 1478 // tail block from which we should continue. 1479 Instruction *Next = Inst->getNextNode(); 1480 // DFSanVisitor may delete Inst, so keep track of whether it was a 1481 // terminator. 1482 bool IsTerminator = Inst->isTerminator(); 1483 if (!DFSF.SkipInsts.count(Inst)) 1484 DFSanVisitor(DFSF).visit(Inst); 1485 if (IsTerminator) 1486 break; 1487 Inst = Next; 1488 } 1489 } 1490 1491 // We will not necessarily be able to compute the shadow for every phi node 1492 // until we have visited every block. Therefore, the code that handles phi 1493 // nodes adds them to the PHIFixups list so that they can be properly 1494 // handled here. 1495 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1496 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1497 ++Val) { 1498 P.ShadowPhi->setIncomingValue( 1499 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1500 if (P.OriginPhi) 1501 P.OriginPhi->setIncomingValue( 1502 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1503 } 1504 } 1505 1506 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1507 // places (i.e. instructions in basic blocks we haven't even begun visiting 1508 // yet). To make our life easier, do this work in a pass after the main 1509 // instrumentation. 1510 if (ClDebugNonzeroLabels) { 1511 for (Value *V : DFSF.NonZeroChecks) { 1512 Instruction *Pos; 1513 if (Instruction *I = dyn_cast<Instruction>(V)) 1514 Pos = I->getNextNode(); 1515 else 1516 Pos = &DFSF.F->getEntryBlock().front(); 1517 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1518 Pos = Pos->getNextNode(); 1519 IRBuilder<> IRB(Pos); 1520 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1521 Value *Ne = 1522 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1523 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1524 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1525 IRBuilder<> ThenIRB(BI); 1526 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1527 } 1528 } 1529 } 1530 1531 return Changed || !FnsToInstrument.empty() || 1532 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1533 } 1534 1535 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1536 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1537 if (ArgOffset) 1538 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1539 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1540 "_dfsarg"); 1541 } 1542 1543 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1544 return IRB.CreatePointerCast( 1545 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1546 } 1547 1548 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1549 1550 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1551 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1552 "_dfsarg_o"); 1553 } 1554 1555 Value *DFSanFunction::getOrigin(Value *V) { 1556 assert(DFS.shouldTrackOrigins()); 1557 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1558 return DFS.ZeroOrigin; 1559 Value *&Origin = ValOriginMap[V]; 1560 if (!Origin) { 1561 if (Argument *A = dyn_cast<Argument>(V)) { 1562 if (IsNativeABI) 1563 return DFS.ZeroOrigin; 1564 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1565 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1566 IRBuilder<> IRB(ArgOriginTLSPos); 1567 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1568 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1569 } else { 1570 // Overflow 1571 Origin = DFS.ZeroOrigin; 1572 } 1573 } else { 1574 Origin = DFS.ZeroOrigin; 1575 } 1576 } 1577 return Origin; 1578 } 1579 1580 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1581 if (!DFS.shouldTrackOrigins()) 1582 return; 1583 assert(!ValOriginMap.count(I)); 1584 assert(Origin->getType() == DFS.OriginTy); 1585 ValOriginMap[I] = Origin; 1586 } 1587 1588 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1589 unsigned ArgOffset = 0; 1590 const DataLayout &DL = F->getParent()->getDataLayout(); 1591 for (auto &FArg : F->args()) { 1592 if (!FArg.getType()->isSized()) { 1593 if (A == &FArg) 1594 break; 1595 continue; 1596 } 1597 1598 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1599 if (A != &FArg) { 1600 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1601 if (ArgOffset > ArgTLSSize) 1602 break; // ArgTLS overflows, uses a zero shadow. 1603 continue; 1604 } 1605 1606 if (ArgOffset + Size > ArgTLSSize) 1607 break; // ArgTLS overflows, uses a zero shadow. 1608 1609 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1610 IRBuilder<> IRB(ArgTLSPos); 1611 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1612 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1613 ShadowTLSAlignment); 1614 } 1615 1616 return DFS.getZeroShadow(A); 1617 } 1618 1619 Value *DFSanFunction::getShadow(Value *V) { 1620 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1621 return DFS.getZeroShadow(V); 1622 if (IsForceZeroLabels) 1623 return DFS.getZeroShadow(V); 1624 Value *&Shadow = ValShadowMap[V]; 1625 if (!Shadow) { 1626 if (Argument *A = dyn_cast<Argument>(V)) { 1627 if (IsNativeABI) 1628 return DFS.getZeroShadow(V); 1629 Shadow = getShadowForTLSArgument(A); 1630 NonZeroChecks.push_back(Shadow); 1631 } else { 1632 Shadow = DFS.getZeroShadow(V); 1633 } 1634 } 1635 return Shadow; 1636 } 1637 1638 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1639 assert(!ValShadowMap.count(I)); 1640 ValShadowMap[I] = Shadow; 1641 } 1642 1643 /// Compute the integer shadow offset that corresponds to a given 1644 /// application address. 1645 /// 1646 /// Offset = (Addr & ~AndMask) ^ XorMask 1647 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1648 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1649 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1650 1651 uint64_t AndMask = MapParams->AndMask; 1652 if (AndMask) 1653 OffsetLong = 1654 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1655 1656 uint64_t XorMask = MapParams->XorMask; 1657 if (XorMask) 1658 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1659 return OffsetLong; 1660 } 1661 1662 std::pair<Value *, Value *> 1663 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1664 Instruction *Pos) { 1665 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1666 IRBuilder<> IRB(Pos); 1667 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1668 Value *ShadowLong = ShadowOffset; 1669 uint64_t ShadowBase = MapParams->ShadowBase; 1670 if (ShadowBase != 0) { 1671 ShadowLong = 1672 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1673 } 1674 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1675 Value *ShadowPtr = 1676 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1677 Value *OriginPtr = nullptr; 1678 if (shouldTrackOrigins()) { 1679 Value *OriginLong = ShadowOffset; 1680 uint64_t OriginBase = MapParams->OriginBase; 1681 if (OriginBase != 0) 1682 OriginLong = 1683 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1684 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1685 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1686 // So Mask is unnecessary. 1687 if (Alignment < MinOriginAlignment) { 1688 uint64_t Mask = MinOriginAlignment.value() - 1; 1689 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1690 } 1691 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1692 } 1693 return std::make_pair(ShadowPtr, OriginPtr); 1694 } 1695 1696 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1697 Value *ShadowOffset) { 1698 IRBuilder<> IRB(Pos); 1699 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1700 } 1701 1702 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1703 IRBuilder<> IRB(Pos); 1704 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1705 return getShadowAddress(Addr, Pos, ShadowOffset); 1706 } 1707 1708 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1709 Instruction *Pos) { 1710 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1711 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1712 } 1713 1714 // Generates IR to compute the union of the two given shadows, inserting it 1715 // before Pos. The combined value is with primitive type. 1716 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1717 if (DFS.isZeroShadow(V1)) 1718 return collapseToPrimitiveShadow(V2, Pos); 1719 if (DFS.isZeroShadow(V2)) 1720 return collapseToPrimitiveShadow(V1, Pos); 1721 if (V1 == V2) 1722 return collapseToPrimitiveShadow(V1, Pos); 1723 1724 auto V1Elems = ShadowElements.find(V1); 1725 auto V2Elems = ShadowElements.find(V2); 1726 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1727 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1728 V2Elems->second.begin(), V2Elems->second.end())) { 1729 return collapseToPrimitiveShadow(V1, Pos); 1730 } 1731 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1732 V1Elems->second.begin(), V1Elems->second.end())) { 1733 return collapseToPrimitiveShadow(V2, Pos); 1734 } 1735 } else if (V1Elems != ShadowElements.end()) { 1736 if (V1Elems->second.count(V2)) 1737 return collapseToPrimitiveShadow(V1, Pos); 1738 } else if (V2Elems != ShadowElements.end()) { 1739 if (V2Elems->second.count(V1)) 1740 return collapseToPrimitiveShadow(V2, Pos); 1741 } 1742 1743 auto Key = std::make_pair(V1, V2); 1744 if (V1 > V2) 1745 std::swap(Key.first, Key.second); 1746 CachedShadow &CCS = CachedShadows[Key]; 1747 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1748 return CCS.Shadow; 1749 1750 // Converts inputs shadows to shadows with primitive types. 1751 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1752 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1753 1754 IRBuilder<> IRB(Pos); 1755 CCS.Block = Pos->getParent(); 1756 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1757 1758 std::set<Value *> UnionElems; 1759 if (V1Elems != ShadowElements.end()) { 1760 UnionElems = V1Elems->second; 1761 } else { 1762 UnionElems.insert(V1); 1763 } 1764 if (V2Elems != ShadowElements.end()) { 1765 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1766 } else { 1767 UnionElems.insert(V2); 1768 } 1769 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1770 1771 return CCS.Shadow; 1772 } 1773 1774 // A convenience function which folds the shadows of each of the operands 1775 // of the provided instruction Inst, inserting the IR before Inst. Returns 1776 // the computed union Value. 1777 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1778 if (Inst->getNumOperands() == 0) 1779 return DFS.getZeroShadow(Inst); 1780 1781 Value *Shadow = getShadow(Inst->getOperand(0)); 1782 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1783 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1784 1785 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1786 } 1787 1788 void DFSanVisitor::visitInstOperands(Instruction &I) { 1789 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1790 DFSF.setShadow(&I, CombinedShadow); 1791 visitInstOperandOrigins(I); 1792 } 1793 1794 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1795 const std::vector<Value *> &Origins, 1796 Instruction *Pos, ConstantInt *Zero) { 1797 assert(Shadows.size() == Origins.size()); 1798 size_t Size = Origins.size(); 1799 if (Size == 0) 1800 return DFS.ZeroOrigin; 1801 Value *Origin = nullptr; 1802 if (!Zero) 1803 Zero = DFS.ZeroPrimitiveShadow; 1804 for (size_t I = 0; I != Size; ++I) { 1805 Value *OpOrigin = Origins[I]; 1806 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1807 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1808 continue; 1809 if (!Origin) { 1810 Origin = OpOrigin; 1811 continue; 1812 } 1813 Value *OpShadow = Shadows[I]; 1814 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1815 IRBuilder<> IRB(Pos); 1816 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1817 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1818 } 1819 return Origin ? Origin : DFS.ZeroOrigin; 1820 } 1821 1822 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1823 size_t Size = Inst->getNumOperands(); 1824 std::vector<Value *> Shadows(Size); 1825 std::vector<Value *> Origins(Size); 1826 for (unsigned I = 0; I != Size; ++I) { 1827 Shadows[I] = getShadow(Inst->getOperand(I)); 1828 Origins[I] = getOrigin(Inst->getOperand(I)); 1829 } 1830 return combineOrigins(Shadows, Origins, Inst); 1831 } 1832 1833 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1834 if (!DFSF.DFS.shouldTrackOrigins()) 1835 return; 1836 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1837 DFSF.setOrigin(&I, CombinedOrigin); 1838 } 1839 1840 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1841 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1842 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1843 } 1844 1845 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1846 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1847 return Align(std::max(MinOriginAlignment, Alignment)); 1848 } 1849 1850 bool DFSanFunction::isLookupTableConstant(Value *P) { 1851 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts())) 1852 if (GV->isConstant() && GV->hasName()) 1853 return DFS.CombineTaintLookupTableNames.count(GV->getName()); 1854 1855 return false; 1856 } 1857 1858 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1859 Align InstAlignment) { 1860 // When enabling tracking load instructions, we always use 1861 // __dfsan_load_label_and_origin to reduce code size. 1862 if (ClTrackOrigins == 2) 1863 return true; 1864 1865 assert(Size != 0); 1866 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1867 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1868 // load its origin aligned at 4. If not, although origins may be lost, it 1869 // should not happen very often. 1870 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1871 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1872 // * Otherwise we use __dfsan_load_label_and_origin. 1873 // This should ensure that common cases run efficiently. 1874 if (Size <= 2) 1875 return false; 1876 1877 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1878 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1879 } 1880 1881 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1882 Value **OriginAddr) { 1883 IRBuilder<> IRB(Pos); 1884 *OriginAddr = 1885 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1886 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1887 } 1888 1889 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1890 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1891 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1892 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1893 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1894 1895 assert(Size >= 4 && "Not large enough load size for fast path!"); 1896 1897 // Used for origin tracking. 1898 std::vector<Value *> Shadows; 1899 std::vector<Value *> Origins; 1900 1901 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1902 // but this function is only used in a subset of cases that make it possible 1903 // to optimize the instrumentation. 1904 // 1905 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1906 // per byte) is either: 1907 // - a multiple of 8 (common) 1908 // - equal to 4 (only for load32) 1909 // 1910 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1911 // other cases, we use a 64-bit integer to hold the wide shadow. 1912 Type *WideShadowTy = 1913 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1914 1915 IRBuilder<> IRB(Pos); 1916 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1917 Value *CombinedWideShadow = 1918 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1919 1920 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1921 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1922 1923 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 1924 if (BytesPerWideShadow > 4) { 1925 assert(BytesPerWideShadow == 8); 1926 // The wide shadow relates to two origin pointers: one for the first four 1927 // application bytes, and one for the latest four. We use a left shift to 1928 // get just the shadow bytes that correspond to the first origin pointer, 1929 // and then the entire shadow for the second origin pointer (which will be 1930 // chosen by combineOrigins() iff the least-significant half of the wide 1931 // shadow was empty but the other half was not). 1932 Value *WideShadowLo = IRB.CreateShl( 1933 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 1934 Shadows.push_back(WideShadow); 1935 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 1936 1937 Shadows.push_back(WideShadowLo); 1938 Origins.push_back(Origin); 1939 } else { 1940 Shadows.push_back(WideShadow); 1941 Origins.push_back(Origin); 1942 } 1943 }; 1944 1945 if (ShouldTrackOrigins) 1946 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 1947 1948 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 1949 // then OR individual shadows within the combined WideShadow by binary ORing. 1950 // This is fewer instructions than ORing shadows individually, since it 1951 // needs logN shift/or instructions (N being the bytes of the combined wide 1952 // shadow). 1953 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 1954 ByteOfs += BytesPerWideShadow) { 1955 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 1956 ConstantInt::get(DFS.IntptrTy, 1)); 1957 Value *NextWideShadow = 1958 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1959 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1960 if (ShouldTrackOrigins) { 1961 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 1962 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 1963 } 1964 } 1965 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 1966 Width >>= 1) { 1967 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1968 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1969 } 1970 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 1971 ShouldTrackOrigins 1972 ? combineOrigins(Shadows, Origins, Pos, 1973 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 1974 : DFS.ZeroOrigin}; 1975 } 1976 1977 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 1978 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 1979 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1980 1981 // Non-escaped loads. 1982 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1983 const auto SI = AllocaShadowMap.find(AI); 1984 if (SI != AllocaShadowMap.end()) { 1985 IRBuilder<> IRB(Pos); 1986 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 1987 const auto OI = AllocaOriginMap.find(AI); 1988 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 1989 return {ShadowLI, ShouldTrackOrigins 1990 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 1991 : nullptr}; 1992 } 1993 } 1994 1995 // Load from constant addresses. 1996 SmallVector<const Value *, 2> Objs; 1997 getUnderlyingObjects(Addr, Objs); 1998 bool AllConstants = true; 1999 for (const Value *Obj : Objs) { 2000 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2001 continue; 2002 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2003 continue; 2004 2005 AllConstants = false; 2006 break; 2007 } 2008 if (AllConstants) 2009 return {DFS.ZeroPrimitiveShadow, 2010 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2011 2012 if (Size == 0) 2013 return {DFS.ZeroPrimitiveShadow, 2014 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2015 2016 // Use callback to load if this is not an optimizable case for origin 2017 // tracking. 2018 if (ShouldTrackOrigins && 2019 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2020 IRBuilder<> IRB(Pos); 2021 CallInst *Call = 2022 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2023 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2024 ConstantInt::get(DFS.IntptrTy, Size)}); 2025 Call->addRetAttr(Attribute::ZExt); 2026 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2027 DFS.PrimitiveShadowTy), 2028 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2029 } 2030 2031 // Other cases that support loading shadows or origins in a fast way. 2032 Value *ShadowAddr, *OriginAddr; 2033 std::tie(ShadowAddr, OriginAddr) = 2034 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2035 2036 const Align ShadowAlign = getShadowAlign(InstAlignment); 2037 const Align OriginAlign = getOriginAlign(InstAlignment); 2038 Value *Origin = nullptr; 2039 if (ShouldTrackOrigins) { 2040 IRBuilder<> IRB(Pos); 2041 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2042 } 2043 2044 // When the byte size is small enough, we can load the shadow directly with 2045 // just a few instructions. 2046 switch (Size) { 2047 case 1: { 2048 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2049 LI->setAlignment(ShadowAlign); 2050 return {LI, Origin}; 2051 } 2052 case 2: { 2053 IRBuilder<> IRB(Pos); 2054 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2055 ConstantInt::get(DFS.IntptrTy, 1)); 2056 Value *Load = 2057 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2058 Value *Load1 = 2059 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2060 return {combineShadows(Load, Load1, Pos), Origin}; 2061 } 2062 } 2063 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2064 2065 if (HasSizeForFastPath) 2066 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2067 OriginAlign, Origin, Pos); 2068 2069 IRBuilder<> IRB(Pos); 2070 CallInst *FallbackCall = IRB.CreateCall( 2071 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2072 FallbackCall->addRetAttr(Attribute::ZExt); 2073 return {FallbackCall, Origin}; 2074 } 2075 2076 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2077 uint64_t Size, 2078 Align InstAlignment, 2079 Instruction *Pos) { 2080 Value *PrimitiveShadow, *Origin; 2081 std::tie(PrimitiveShadow, Origin) = 2082 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2083 if (DFS.shouldTrackOrigins()) { 2084 if (ClTrackOrigins == 2) { 2085 IRBuilder<> IRB(Pos); 2086 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2087 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2088 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2089 } 2090 } 2091 return {PrimitiveShadow, Origin}; 2092 } 2093 2094 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2095 switch (AO) { 2096 case AtomicOrdering::NotAtomic: 2097 return AtomicOrdering::NotAtomic; 2098 case AtomicOrdering::Unordered: 2099 case AtomicOrdering::Monotonic: 2100 case AtomicOrdering::Acquire: 2101 return AtomicOrdering::Acquire; 2102 case AtomicOrdering::Release: 2103 case AtomicOrdering::AcquireRelease: 2104 return AtomicOrdering::AcquireRelease; 2105 case AtomicOrdering::SequentiallyConsistent: 2106 return AtomicOrdering::SequentiallyConsistent; 2107 } 2108 llvm_unreachable("Unknown ordering"); 2109 } 2110 2111 Value *StripPointerGEPsAndCasts(Value *V) { 2112 if (!V->getType()->isPointerTy()) 2113 return V; 2114 2115 // DFSan pass should be running on valid IR, but we'll 2116 // keep a seen set to ensure there are no issues. 2117 SmallPtrSet<const Value *, 4> Visited; 2118 Visited.insert(V); 2119 do { 2120 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 2121 V = GEP->getPointerOperand(); 2122 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2123 V = cast<Operator>(V)->getOperand(0); 2124 if (!V->getType()->isPointerTy()) 2125 return V; 2126 } else if (isa<GlobalAlias>(V)) { 2127 V = cast<GlobalAlias>(V)->getAliasee(); 2128 } 2129 } while (Visited.insert(V).second); 2130 2131 return V; 2132 } 2133 2134 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2135 auto &DL = LI.getModule()->getDataLayout(); 2136 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2137 if (Size == 0) { 2138 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2139 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2140 return; 2141 } 2142 2143 // When an application load is atomic, increase atomic ordering between 2144 // atomic application loads and stores to ensure happen-before order; load 2145 // shadow data after application data; store zero shadow data before 2146 // application data. This ensure shadow loads return either labels of the 2147 // initial application data or zeros. 2148 if (LI.isAtomic()) 2149 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2150 2151 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2152 std::vector<Value *> Shadows; 2153 std::vector<Value *> Origins; 2154 Value *PrimitiveShadow, *Origin; 2155 std::tie(PrimitiveShadow, Origin) = 2156 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2157 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2158 if (ShouldTrackOrigins) { 2159 Shadows.push_back(PrimitiveShadow); 2160 Origins.push_back(Origin); 2161 } 2162 if (ClCombinePointerLabelsOnLoad || 2163 DFSF.isLookupTableConstant( 2164 StripPointerGEPsAndCasts(LI.getPointerOperand()))) { 2165 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2166 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2167 if (ShouldTrackOrigins) { 2168 Shadows.push_back(PtrShadow); 2169 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2170 } 2171 } 2172 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2173 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2174 2175 Value *Shadow = 2176 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2177 DFSF.setShadow(&LI, Shadow); 2178 2179 if (ShouldTrackOrigins) { 2180 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2181 } 2182 2183 if (ClEventCallbacks) { 2184 IRBuilder<> IRB(Pos); 2185 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2186 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2187 } 2188 } 2189 2190 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2191 IRBuilder<> &IRB) { 2192 assert(DFS.shouldTrackOrigins()); 2193 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2194 } 2195 2196 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2197 if (!DFS.shouldTrackOrigins()) 2198 return V; 2199 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2200 } 2201 2202 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2203 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2204 const DataLayout &DL = F->getParent()->getDataLayout(); 2205 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2206 if (IntptrSize == OriginSize) 2207 return Origin; 2208 assert(IntptrSize == OriginSize * 2); 2209 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2210 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2211 } 2212 2213 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2214 Value *StoreOriginAddr, 2215 uint64_t StoreOriginSize, Align Alignment) { 2216 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2217 const DataLayout &DL = F->getParent()->getDataLayout(); 2218 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2219 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2220 assert(IntptrAlignment >= MinOriginAlignment); 2221 assert(IntptrSize >= OriginSize); 2222 2223 unsigned Ofs = 0; 2224 Align CurrentAlignment = Alignment; 2225 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2226 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2227 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2228 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2229 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2230 Value *Ptr = 2231 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2232 : IntptrStoreOriginPtr; 2233 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2234 Ofs += IntptrSize / OriginSize; 2235 CurrentAlignment = IntptrAlignment; 2236 } 2237 } 2238 2239 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2240 ++I) { 2241 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2242 : StoreOriginAddr; 2243 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2244 CurrentAlignment = MinOriginAlignment; 2245 } 2246 } 2247 2248 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2249 const Twine &Name) { 2250 Type *VTy = V->getType(); 2251 assert(VTy->isIntegerTy()); 2252 if (VTy->getIntegerBitWidth() == 1) 2253 // Just converting a bool to a bool, so do nothing. 2254 return V; 2255 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2256 } 2257 2258 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2259 Value *Shadow, Value *Origin, 2260 Value *StoreOriginAddr, Align InstAlignment) { 2261 // Do not write origins for zero shadows because we do not trace origins for 2262 // untainted sinks. 2263 const Align OriginAlignment = getOriginAlign(InstAlignment); 2264 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2265 IRBuilder<> IRB(Pos); 2266 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2267 if (!ConstantShadow->isZeroValue()) 2268 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2269 OriginAlignment); 2270 return; 2271 } 2272 2273 if (shouldInstrumentWithCall()) { 2274 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2275 {CollapsedShadow, 2276 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2277 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2278 } else { 2279 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2280 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2281 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2282 IRBuilder<> IRBNew(CheckTerm); 2283 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2284 OriginAlignment); 2285 ++NumOriginStores; 2286 } 2287 } 2288 2289 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2290 Align ShadowAlign, 2291 Instruction *Pos) { 2292 IRBuilder<> IRB(Pos); 2293 IntegerType *ShadowTy = 2294 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2295 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2296 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2297 Value *ExtShadowAddr = 2298 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2299 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2300 // Do not write origins for 0 shadows because we do not trace origins for 2301 // untainted sinks. 2302 } 2303 2304 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2305 Align InstAlignment, 2306 Value *PrimitiveShadow, 2307 Value *Origin, 2308 Instruction *Pos) { 2309 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2310 2311 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2312 const auto SI = AllocaShadowMap.find(AI); 2313 if (SI != AllocaShadowMap.end()) { 2314 IRBuilder<> IRB(Pos); 2315 IRB.CreateStore(PrimitiveShadow, SI->second); 2316 2317 // Do not write origins for 0 shadows because we do not trace origins for 2318 // untainted sinks. 2319 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2320 const auto OI = AllocaOriginMap.find(AI); 2321 assert(OI != AllocaOriginMap.end() && Origin); 2322 IRB.CreateStore(Origin, OI->second); 2323 } 2324 return; 2325 } 2326 } 2327 2328 const Align ShadowAlign = getShadowAlign(InstAlignment); 2329 if (DFS.isZeroShadow(PrimitiveShadow)) { 2330 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2331 return; 2332 } 2333 2334 IRBuilder<> IRB(Pos); 2335 Value *ShadowAddr, *OriginAddr; 2336 std::tie(ShadowAddr, OriginAddr) = 2337 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2338 2339 const unsigned ShadowVecSize = 8; 2340 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2341 "Shadow vector is too large!"); 2342 2343 uint64_t Offset = 0; 2344 uint64_t LeftSize = Size; 2345 if (LeftSize >= ShadowVecSize) { 2346 auto *ShadowVecTy = 2347 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2348 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2349 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2350 ShadowVec = IRB.CreateInsertElement( 2351 ShadowVec, PrimitiveShadow, 2352 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2353 } 2354 Value *ShadowVecAddr = 2355 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2356 do { 2357 Value *CurShadowVecAddr = 2358 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2359 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2360 LeftSize -= ShadowVecSize; 2361 ++Offset; 2362 } while (LeftSize >= ShadowVecSize); 2363 Offset *= ShadowVecSize; 2364 } 2365 while (LeftSize > 0) { 2366 Value *CurShadowAddr = 2367 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2368 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2369 --LeftSize; 2370 ++Offset; 2371 } 2372 2373 if (ShouldTrackOrigins) { 2374 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2375 InstAlignment); 2376 } 2377 } 2378 2379 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2380 switch (AO) { 2381 case AtomicOrdering::NotAtomic: 2382 return AtomicOrdering::NotAtomic; 2383 case AtomicOrdering::Unordered: 2384 case AtomicOrdering::Monotonic: 2385 case AtomicOrdering::Release: 2386 return AtomicOrdering::Release; 2387 case AtomicOrdering::Acquire: 2388 case AtomicOrdering::AcquireRelease: 2389 return AtomicOrdering::AcquireRelease; 2390 case AtomicOrdering::SequentiallyConsistent: 2391 return AtomicOrdering::SequentiallyConsistent; 2392 } 2393 llvm_unreachable("Unknown ordering"); 2394 } 2395 2396 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2397 auto &DL = SI.getModule()->getDataLayout(); 2398 Value *Val = SI.getValueOperand(); 2399 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2400 if (Size == 0) 2401 return; 2402 2403 // When an application store is atomic, increase atomic ordering between 2404 // atomic application loads and stores to ensure happen-before order; load 2405 // shadow data after application data; store zero shadow data before 2406 // application data. This ensure shadow loads return either labels of the 2407 // initial application data or zeros. 2408 if (SI.isAtomic()) 2409 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2410 2411 const bool ShouldTrackOrigins = 2412 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2413 std::vector<Value *> Shadows; 2414 std::vector<Value *> Origins; 2415 2416 Value *Shadow = 2417 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2418 2419 if (ShouldTrackOrigins) { 2420 Shadows.push_back(Shadow); 2421 Origins.push_back(DFSF.getOrigin(Val)); 2422 } 2423 2424 Value *PrimitiveShadow; 2425 if (ClCombinePointerLabelsOnStore) { 2426 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2427 if (ShouldTrackOrigins) { 2428 Shadows.push_back(PtrShadow); 2429 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2430 } 2431 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2432 } else { 2433 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2434 } 2435 Value *Origin = nullptr; 2436 if (ShouldTrackOrigins) 2437 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2438 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2439 PrimitiveShadow, Origin, &SI); 2440 if (ClEventCallbacks) { 2441 IRBuilder<> IRB(&SI); 2442 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2443 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2444 } 2445 } 2446 2447 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2448 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2449 2450 Value *Val = I.getOperand(1); 2451 const auto &DL = I.getModule()->getDataLayout(); 2452 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2453 if (Size == 0) 2454 return; 2455 2456 // Conservatively set data at stored addresses and return with zero shadow to 2457 // prevent shadow data races. 2458 IRBuilder<> IRB(&I); 2459 Value *Addr = I.getOperand(0); 2460 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2461 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2462 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2463 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2464 } 2465 2466 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2467 visitCASOrRMW(I.getAlign(), I); 2468 // TODO: The ordering change follows MSan. It is possible not to change 2469 // ordering because we always set and use 0 shadows. 2470 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2471 } 2472 2473 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2474 visitCASOrRMW(I.getAlign(), I); 2475 // TODO: The ordering change follows MSan. It is possible not to change 2476 // ordering because we always set and use 0 shadows. 2477 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2478 } 2479 2480 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2481 visitInstOperands(UO); 2482 } 2483 2484 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2485 visitInstOperands(BO); 2486 } 2487 2488 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2489 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2490 // a musttail call and a ret, don't instrument. New instructions are not 2491 // allowed after a musttail call. 2492 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2493 if (CI->isMustTailCall()) 2494 return; 2495 visitInstOperands(BCI); 2496 } 2497 2498 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2499 2500 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2501 visitInstOperands(CI); 2502 if (ClEventCallbacks) { 2503 IRBuilder<> IRB(&CI); 2504 Value *CombinedShadow = DFSF.getShadow(&CI); 2505 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2506 } 2507 } 2508 2509 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2510 // We do not need to track data through LandingPadInst. 2511 // 2512 // For the C++ exceptions, if a value is thrown, this value will be stored 2513 // in a memory location provided by __cxa_allocate_exception(...) (on the 2514 // throw side) or __cxa_begin_catch(...) (on the catch side). 2515 // This memory will have a shadow, so with the loads and stores we will be 2516 // able to propagate labels on data thrown through exceptions, without any 2517 // special handling of the LandingPadInst. 2518 // 2519 // The second element in the pair result of the LandingPadInst is a 2520 // register value, but it is for a type ID and should never be tainted. 2521 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2522 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2523 } 2524 2525 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2526 if (ClCombineOffsetLabelsOnGEP || 2527 DFSF.isLookupTableConstant( 2528 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) { 2529 visitInstOperands(GEPI); 2530 return; 2531 } 2532 2533 // Only propagate shadow/origin of base pointer value but ignore those of 2534 // offset operands. 2535 Value *BasePointer = GEPI.getPointerOperand(); 2536 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2537 if (DFSF.DFS.shouldTrackOrigins()) 2538 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2539 } 2540 2541 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2542 visitInstOperands(I); 2543 } 2544 2545 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2546 visitInstOperands(I); 2547 } 2548 2549 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2550 visitInstOperands(I); 2551 } 2552 2553 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2554 IRBuilder<> IRB(&I); 2555 Value *Agg = I.getAggregateOperand(); 2556 Value *AggShadow = DFSF.getShadow(Agg); 2557 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2558 DFSF.setShadow(&I, ResShadow); 2559 visitInstOperandOrigins(I); 2560 } 2561 2562 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2563 IRBuilder<> IRB(&I); 2564 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2565 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2566 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2567 DFSF.setShadow(&I, Res); 2568 visitInstOperandOrigins(I); 2569 } 2570 2571 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2572 bool AllLoadsStores = true; 2573 for (User *U : I.users()) { 2574 if (isa<LoadInst>(U)) 2575 continue; 2576 2577 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2578 if (SI->getPointerOperand() == &I) 2579 continue; 2580 } 2581 2582 AllLoadsStores = false; 2583 break; 2584 } 2585 if (AllLoadsStores) { 2586 IRBuilder<> IRB(&I); 2587 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2588 if (DFSF.DFS.shouldTrackOrigins()) { 2589 DFSF.AllocaOriginMap[&I] = 2590 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2591 } 2592 } 2593 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2594 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2595 } 2596 2597 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2598 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2599 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2600 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2601 Value *ShadowSel = nullptr; 2602 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2603 std::vector<Value *> Shadows; 2604 std::vector<Value *> Origins; 2605 Value *TrueOrigin = 2606 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2607 Value *FalseOrigin = 2608 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2609 2610 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2611 2612 if (isa<VectorType>(I.getCondition()->getType())) { 2613 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2614 FalseShadow, &I); 2615 if (ShouldTrackOrigins) { 2616 Shadows.push_back(TrueShadow); 2617 Shadows.push_back(FalseShadow); 2618 Origins.push_back(TrueOrigin); 2619 Origins.push_back(FalseOrigin); 2620 } 2621 } else { 2622 if (TrueShadow == FalseShadow) { 2623 ShadowSel = TrueShadow; 2624 if (ShouldTrackOrigins) { 2625 Shadows.push_back(TrueShadow); 2626 Origins.push_back(TrueOrigin); 2627 } 2628 } else { 2629 ShadowSel = 2630 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2631 if (ShouldTrackOrigins) { 2632 Shadows.push_back(ShadowSel); 2633 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2634 FalseOrigin, "", &I)); 2635 } 2636 } 2637 } 2638 DFSF.setShadow(&I, ClTrackSelectControlFlow 2639 ? DFSF.combineShadowsThenConvert( 2640 I.getType(), CondShadow, ShadowSel, &I) 2641 : ShadowSel); 2642 if (ShouldTrackOrigins) { 2643 if (ClTrackSelectControlFlow) { 2644 Shadows.push_back(CondShadow); 2645 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2646 } 2647 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2648 } 2649 } 2650 2651 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2652 IRBuilder<> IRB(&I); 2653 Value *ValShadow = DFSF.getShadow(I.getValue()); 2654 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2655 ? DFSF.getOrigin(I.getValue()) 2656 : DFSF.DFS.ZeroOrigin; 2657 IRB.CreateCall( 2658 DFSF.DFS.DFSanSetLabelFn, 2659 {ValShadow, ValOrigin, 2660 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2661 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2662 } 2663 2664 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2665 IRBuilder<> IRB(&I); 2666 2667 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2668 // need to move origins before moving shadows. 2669 if (DFSF.DFS.shouldTrackOrigins()) { 2670 IRB.CreateCall( 2671 DFSF.DFS.DFSanMemOriginTransferFn, 2672 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2673 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2674 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2675 } 2676 2677 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2678 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2679 Value *LenShadow = 2680 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2681 DFSF.DFS.ShadowWidthBytes)); 2682 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2683 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2684 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2685 auto *MTI = cast<MemTransferInst>( 2686 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2687 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2688 if (ClPreserveAlignment) { 2689 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2690 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2691 } else { 2692 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2693 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2694 } 2695 if (ClEventCallbacks) { 2696 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2697 {RawDestShadow, 2698 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2699 } 2700 } 2701 2702 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2703 if (!BR.isConditional()) 2704 return; 2705 2706 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2707 } 2708 2709 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2710 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2711 } 2712 2713 static bool isAMustTailRetVal(Value *RetVal) { 2714 // Tail call may have a bitcast between return. 2715 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2716 RetVal = I->getOperand(0); 2717 } 2718 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2719 return I->isMustTailCall(); 2720 } 2721 return false; 2722 } 2723 2724 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2725 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2726 // Don't emit the instrumentation for musttail call returns. 2727 if (isAMustTailRetVal(RI.getReturnValue())) 2728 return; 2729 2730 Value *S = DFSF.getShadow(RI.getReturnValue()); 2731 IRBuilder<> IRB(&RI); 2732 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2733 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2734 if (Size <= RetvalTLSSize) { 2735 // If the size overflows, stores nothing. At callsite, oversized return 2736 // shadows are set to zero. 2737 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2738 } 2739 if (DFSF.DFS.shouldTrackOrigins()) { 2740 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2741 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2742 } 2743 } 2744 } 2745 2746 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2747 std::vector<Value *> &Args, 2748 IRBuilder<> &IRB) { 2749 FunctionType *FT = F.getFunctionType(); 2750 2751 auto *I = CB.arg_begin(); 2752 2753 // Adds non-variable argument shadows. 2754 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2755 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2756 2757 // Adds variable argument shadows. 2758 if (FT->isVarArg()) { 2759 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2760 CB.arg_size() - FT->getNumParams()); 2761 auto *LabelVAAlloca = 2762 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2763 "labelva", &DFSF.F->getEntryBlock().front()); 2764 2765 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2766 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2767 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2768 LabelVAPtr); 2769 } 2770 2771 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2772 } 2773 2774 // Adds the return value shadow. 2775 if (!FT->getReturnType()->isVoidTy()) { 2776 if (!DFSF.LabelReturnAlloca) { 2777 DFSF.LabelReturnAlloca = new AllocaInst( 2778 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2779 "labelreturn", &DFSF.F->getEntryBlock().front()); 2780 } 2781 Args.push_back(DFSF.LabelReturnAlloca); 2782 } 2783 } 2784 2785 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2786 std::vector<Value *> &Args, 2787 IRBuilder<> &IRB) { 2788 FunctionType *FT = F.getFunctionType(); 2789 2790 auto *I = CB.arg_begin(); 2791 2792 // Add non-variable argument origins. 2793 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2794 Args.push_back(DFSF.getOrigin(*I)); 2795 2796 // Add variable argument origins. 2797 if (FT->isVarArg()) { 2798 auto *OriginVATy = 2799 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2800 auto *OriginVAAlloca = 2801 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2802 "originva", &DFSF.F->getEntryBlock().front()); 2803 2804 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2805 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2806 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2807 } 2808 2809 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2810 } 2811 2812 // Add the return value origin. 2813 if (!FT->getReturnType()->isVoidTy()) { 2814 if (!DFSF.OriginReturnAlloca) { 2815 DFSF.OriginReturnAlloca = new AllocaInst( 2816 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2817 "originreturn", &DFSF.F->getEntryBlock().front()); 2818 } 2819 Args.push_back(DFSF.OriginReturnAlloca); 2820 } 2821 } 2822 2823 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2824 IRBuilder<> IRB(&CB); 2825 switch (DFSF.DFS.getWrapperKind(&F)) { 2826 case DataFlowSanitizer::WK_Warning: 2827 CB.setCalledFunction(&F); 2828 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2829 IRB.CreateGlobalStringPtr(F.getName())); 2830 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2831 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2832 return true; 2833 case DataFlowSanitizer::WK_Discard: 2834 CB.setCalledFunction(&F); 2835 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2836 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2837 return true; 2838 case DataFlowSanitizer::WK_Functional: 2839 CB.setCalledFunction(&F); 2840 visitInstOperands(CB); 2841 return true; 2842 case DataFlowSanitizer::WK_Custom: 2843 // Don't try to handle invokes of custom functions, it's too complicated. 2844 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2845 // wrapper. 2846 CallInst *CI = dyn_cast<CallInst>(&CB); 2847 if (!CI) 2848 return false; 2849 2850 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2851 FunctionType *FT = F.getFunctionType(); 2852 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2853 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2854 CustomFName += F.getName(); 2855 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2856 CustomFName, CustomFn.TransformedType); 2857 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2858 CustomFn->copyAttributesFrom(&F); 2859 2860 // Custom functions returning non-void will write to the return label. 2861 if (!FT->getReturnType()->isVoidTy()) { 2862 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2863 } 2864 } 2865 2866 std::vector<Value *> Args; 2867 2868 // Adds non-variable arguments. 2869 auto *I = CB.arg_begin(); 2870 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2871 Args.push_back(*I); 2872 } 2873 2874 // Adds shadow arguments. 2875 const unsigned ShadowArgStart = Args.size(); 2876 addShadowArguments(F, CB, Args, IRB); 2877 2878 // Adds origin arguments. 2879 const unsigned OriginArgStart = Args.size(); 2880 if (ShouldTrackOrigins) 2881 addOriginArguments(F, CB, Args, IRB); 2882 2883 // Adds variable arguments. 2884 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2885 2886 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2887 CustomCI->setCallingConv(CI->getCallingConv()); 2888 CustomCI->setAttributes(transformFunctionAttributes( 2889 CustomFn, CI->getContext(), CI->getAttributes())); 2890 2891 // Update the parameter attributes of the custom call instruction to 2892 // zero extend the shadow parameters. This is required for targets 2893 // which consider PrimitiveShadowTy an illegal type. 2894 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2895 const unsigned ArgNo = ShadowArgStart + N; 2896 if (CustomCI->getArgOperand(ArgNo)->getType() == 2897 DFSF.DFS.PrimitiveShadowTy) 2898 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2899 if (ShouldTrackOrigins) { 2900 const unsigned OriginArgNo = OriginArgStart + N; 2901 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2902 DFSF.DFS.OriginTy) 2903 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2904 } 2905 } 2906 2907 // Loads the return value shadow and origin. 2908 if (!FT->getReturnType()->isVoidTy()) { 2909 LoadInst *LabelLoad = 2910 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2911 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2912 FT->getReturnType(), LabelLoad, &CB)); 2913 if (ShouldTrackOrigins) { 2914 LoadInst *OriginLoad = 2915 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2916 DFSF.setOrigin(CustomCI, OriginLoad); 2917 } 2918 } 2919 2920 CI->replaceAllUsesWith(CustomCI); 2921 CI->eraseFromParent(); 2922 return true; 2923 } 2924 return false; 2925 } 2926 2927 void DFSanVisitor::visitCallBase(CallBase &CB) { 2928 Function *F = CB.getCalledFunction(); 2929 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2930 visitInstOperands(CB); 2931 return; 2932 } 2933 2934 // Calls to this function are synthesized in wrappers, and we shouldn't 2935 // instrument them. 2936 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2937 return; 2938 2939 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2940 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2941 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2942 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2943 return; 2944 2945 IRBuilder<> IRB(&CB); 2946 2947 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2948 FunctionType *FT = CB.getFunctionType(); 2949 const DataLayout &DL = getDataLayout(); 2950 2951 // Stores argument shadows. 2952 unsigned ArgOffset = 0; 2953 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2954 if (ShouldTrackOrigins) { 2955 // Ignore overflowed origins 2956 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2957 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2958 !DFSF.DFS.isZeroShadow(ArgShadow)) 2959 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2960 DFSF.getArgOriginTLS(I, IRB)); 2961 } 2962 2963 unsigned Size = 2964 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2965 // Stop storing if arguments' size overflows. Inside a function, arguments 2966 // after overflow have zero shadow values. 2967 if (ArgOffset + Size > ArgTLSSize) 2968 break; 2969 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 2970 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2971 ShadowTLSAlignment); 2972 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2973 } 2974 2975 Instruction *Next = nullptr; 2976 if (!CB.getType()->isVoidTy()) { 2977 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2978 if (II->getNormalDest()->getSinglePredecessor()) { 2979 Next = &II->getNormalDest()->front(); 2980 } else { 2981 BasicBlock *NewBB = 2982 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2983 Next = &NewBB->front(); 2984 } 2985 } else { 2986 assert(CB.getIterator() != CB.getParent()->end()); 2987 Next = CB.getNextNode(); 2988 } 2989 2990 // Don't emit the epilogue for musttail call returns. 2991 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 2992 return; 2993 2994 // Loads the return value shadow. 2995 IRBuilder<> NextIRB(Next); 2996 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2997 if (Size > RetvalTLSSize) { 2998 // Set overflowed return shadow to be zero. 2999 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3000 } else { 3001 LoadInst *LI = NextIRB.CreateAlignedLoad( 3002 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3003 ShadowTLSAlignment, "_dfsret"); 3004 DFSF.SkipInsts.insert(LI); 3005 DFSF.setShadow(&CB, LI); 3006 DFSF.NonZeroChecks.push_back(LI); 3007 } 3008 3009 if (ShouldTrackOrigins) { 3010 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 3011 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3012 DFSF.SkipInsts.insert(LI); 3013 DFSF.setOrigin(&CB, LI); 3014 } 3015 } 3016 } 3017 3018 void DFSanVisitor::visitPHINode(PHINode &PN) { 3019 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3020 PHINode *ShadowPN = 3021 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3022 3023 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3024 Value *UndefShadow = UndefValue::get(ShadowTy); 3025 for (BasicBlock *BB : PN.blocks()) 3026 ShadowPN->addIncoming(UndefShadow, BB); 3027 3028 DFSF.setShadow(&PN, ShadowPN); 3029 3030 PHINode *OriginPN = nullptr; 3031 if (DFSF.DFS.shouldTrackOrigins()) { 3032 OriginPN = 3033 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3034 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3035 for (BasicBlock *BB : PN.blocks()) 3036 OriginPN->addIncoming(UndefOrigin, BB); 3037 DFSF.setOrigin(&PN, OriginPN); 3038 } 3039 3040 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3041 } 3042 3043 namespace { 3044 class DataFlowSanitizerLegacyPass : public ModulePass { 3045 private: 3046 std::vector<std::string> ABIListFiles; 3047 3048 public: 3049 static char ID; 3050 3051 DataFlowSanitizerLegacyPass( 3052 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3053 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3054 3055 bool runOnModule(Module &M) override { 3056 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3057 } 3058 }; 3059 } // namespace 3060 3061 char DataFlowSanitizerLegacyPass::ID; 3062 3063 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3064 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3065 3066 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3067 const std::vector<std::string> &ABIListFiles) { 3068 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3069 } 3070 3071 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3072 ModuleAnalysisManager &AM) { 3073 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3074 return PreservedAnalyses::none(); 3075 } 3076 return PreservedAnalyses::all(); 3077 } 3078