1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/DenseSet.h" 50 #include "llvm/ADT/DepthFirstIterator.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/Triple.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/DebugInfo.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/SpecialCaseList.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <iterator> 70 #include <set> 71 #include <utility> 72 73 using namespace llvm; 74 75 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 76 // alignment requirements provided by the input IR are correct. For example, 77 // if the input IR contains a load with alignment 8, this flag will cause 78 // the shadow load to have alignment 16. This flag is disabled by default as 79 // we have unfortunately encountered too much code (including Clang itself; 80 // see PR14291) which performs misaligned access. 81 static cl::opt<bool> ClPreserveAlignment( 82 "dfsan-preserve-alignment", 83 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 84 cl::init(false)); 85 86 // The ABI list files control how shadow parameters are passed. The pass treats 87 // every function labelled "uninstrumented" in the ABI list file as conforming 88 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 89 // additional annotations for those functions, a call to one of those functions 90 // will produce a warning message, as the labelling behaviour of the function is 91 // unknown. The other supported annotations are "functional" and "discard", 92 // which are described below under DataFlowSanitizer::WrapperKind. 93 static cl::list<std::string> ClABIListFiles( 94 "dfsan-abilist", 95 cl::desc("File listing native ABI functions and how the pass treats them"), 96 cl::Hidden); 97 98 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 99 // functions (see DataFlowSanitizer::InstrumentedABI below). 100 static cl::opt<bool> ClArgsABI( 101 "dfsan-args-abi", 102 cl::desc("Use the argument ABI rather than the TLS ABI"), 103 cl::Hidden); 104 105 // Controls whether the pass includes or ignores the labels of pointers in load 106 // instructions. 107 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 108 "dfsan-combine-pointer-labels-on-load", 109 cl::desc("Combine the label of the pointer with the label of the data when " 110 "loading from memory."), 111 cl::Hidden, cl::init(true)); 112 113 // Controls whether the pass includes or ignores the labels of pointers in 114 // stores instructions. 115 static cl::opt<bool> ClCombinePointerLabelsOnStore( 116 "dfsan-combine-pointer-labels-on-store", 117 cl::desc("Combine the label of the pointer with the label of the data when " 118 "storing in memory."), 119 cl::Hidden, cl::init(false)); 120 121 static cl::opt<bool> ClDebugNonzeroLabels( 122 "dfsan-debug-nonzero-labels", 123 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 124 "load or return with a nonzero label"), 125 cl::Hidden); 126 127 namespace { 128 129 StringRef GetGlobalTypeString(const GlobalValue &G) { 130 // Types of GlobalVariables are always pointer types. 131 Type *GType = G.getType()->getElementType(); 132 // For now we support blacklisting struct types only. 133 if (StructType *SGType = dyn_cast<StructType>(GType)) { 134 if (!SGType->isLiteral()) 135 return SGType->getName(); 136 } 137 return "<unknown type>"; 138 } 139 140 class DFSanABIList { 141 std::unique_ptr<SpecialCaseList> SCL; 142 143 public: 144 DFSanABIList() {} 145 146 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 147 148 /// Returns whether either this function or its source file are listed in the 149 /// given category. 150 bool isIn(const Function &F, StringRef Category) const { 151 return isIn(*F.getParent(), Category) || 152 SCL->inSection("fun", F.getName(), Category); 153 } 154 155 /// Returns whether this global alias is listed in the given category. 156 /// 157 /// If GA aliases a function, the alias's name is matched as a function name 158 /// would be. Similarly, aliases of globals are matched like globals. 159 bool isIn(const GlobalAlias &GA, StringRef Category) const { 160 if (isIn(*GA.getParent(), Category)) 161 return true; 162 163 if (isa<FunctionType>(GA.getType()->getElementType())) 164 return SCL->inSection("fun", GA.getName(), Category); 165 166 return SCL->inSection("global", GA.getName(), Category) || 167 SCL->inSection("type", GetGlobalTypeString(GA), Category); 168 } 169 170 /// Returns whether this module is listed in the given category. 171 bool isIn(const Module &M, StringRef Category) const { 172 return SCL->inSection("src", M.getModuleIdentifier(), Category); 173 } 174 }; 175 176 class DataFlowSanitizer : public ModulePass { 177 friend struct DFSanFunction; 178 friend class DFSanVisitor; 179 180 enum { 181 ShadowWidth = 16 182 }; 183 184 /// Which ABI should be used for instrumented functions? 185 enum InstrumentedABI { 186 /// Argument and return value labels are passed through additional 187 /// arguments and by modifying the return type. 188 IA_Args, 189 190 /// Argument and return value labels are passed through TLS variables 191 /// __dfsan_arg_tls and __dfsan_retval_tls. 192 IA_TLS 193 }; 194 195 /// How should calls to uninstrumented functions be handled? 196 enum WrapperKind { 197 /// This function is present in an uninstrumented form but we don't know 198 /// how it should be handled. Print a warning and call the function anyway. 199 /// Don't label the return value. 200 WK_Warning, 201 202 /// This function does not write to (user-accessible) memory, and its return 203 /// value is unlabelled. 204 WK_Discard, 205 206 /// This function does not write to (user-accessible) memory, and the label 207 /// of its return value is the union of the label of its arguments. 208 WK_Functional, 209 210 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 211 /// where F is the name of the function. This function may wrap the 212 /// original function or provide its own implementation. This is similar to 213 /// the IA_Args ABI, except that IA_Args uses a struct return type to 214 /// pass the return value shadow in a register, while WK_Custom uses an 215 /// extra pointer argument to return the shadow. This allows the wrapped 216 /// form of the function type to be expressed in C. 217 WK_Custom 218 }; 219 220 const DataLayout *DL; 221 Module *Mod; 222 LLVMContext *Ctx; 223 IntegerType *ShadowTy; 224 PointerType *ShadowPtrTy; 225 IntegerType *IntptrTy; 226 ConstantInt *ZeroShadow; 227 ConstantInt *ShadowPtrMask; 228 ConstantInt *ShadowPtrMul; 229 Constant *ArgTLS; 230 Constant *RetvalTLS; 231 void *(*GetArgTLSPtr)(); 232 void *(*GetRetvalTLSPtr)(); 233 Constant *GetArgTLS; 234 Constant *GetRetvalTLS; 235 FunctionType *DFSanUnionFnTy; 236 FunctionType *DFSanUnionLoadFnTy; 237 FunctionType *DFSanUnimplementedFnTy; 238 FunctionType *DFSanSetLabelFnTy; 239 FunctionType *DFSanNonzeroLabelFnTy; 240 FunctionType *DFSanVarargWrapperFnTy; 241 Constant *DFSanUnionFn; 242 Constant *DFSanCheckedUnionFn; 243 Constant *DFSanUnionLoadFn; 244 Constant *DFSanUnimplementedFn; 245 Constant *DFSanSetLabelFn; 246 Constant *DFSanNonzeroLabelFn; 247 Constant *DFSanVarargWrapperFn; 248 MDNode *ColdCallWeights; 249 DFSanABIList ABIList; 250 DenseMap<Value *, Function *> UnwrappedFnMap; 251 AttributeSet ReadOnlyNoneAttrs; 252 DenseMap<const Function *, DISubprogram> FunctionDIs; 253 254 Value *getShadowAddress(Value *Addr, Instruction *Pos); 255 bool isInstrumented(const Function *F); 256 bool isInstrumented(const GlobalAlias *GA); 257 FunctionType *getArgsFunctionType(FunctionType *T); 258 FunctionType *getTrampolineFunctionType(FunctionType *T); 259 FunctionType *getCustomFunctionType(FunctionType *T); 260 InstrumentedABI getInstrumentedABI(); 261 WrapperKind getWrapperKind(Function *F); 262 void addGlobalNamePrefix(GlobalValue *GV); 263 Function *buildWrapperFunction(Function *F, StringRef NewFName, 264 GlobalValue::LinkageTypes NewFLink, 265 FunctionType *NewFT); 266 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 267 268 public: 269 DataFlowSanitizer( 270 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 271 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 272 static char ID; 273 bool doInitialization(Module &M) override; 274 bool runOnModule(Module &M) override; 275 }; 276 277 struct DFSanFunction { 278 DataFlowSanitizer &DFS; 279 Function *F; 280 DominatorTree DT; 281 DataFlowSanitizer::InstrumentedABI IA; 282 bool IsNativeABI; 283 Value *ArgTLSPtr; 284 Value *RetvalTLSPtr; 285 AllocaInst *LabelReturnAlloca; 286 DenseMap<Value *, Value *> ValShadowMap; 287 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 288 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 289 DenseSet<Instruction *> SkipInsts; 290 std::vector<Value *> NonZeroChecks; 291 bool AvoidNewBlocks; 292 293 struct CachedCombinedShadow { 294 BasicBlock *Block; 295 Value *Shadow; 296 }; 297 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 298 CachedCombinedShadows; 299 DenseMap<Value *, std::set<Value *>> ShadowElements; 300 301 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 302 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 303 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr), 304 LabelReturnAlloca(nullptr) { 305 DT.recalculate(*F); 306 // FIXME: Need to track down the register allocator issue which causes poor 307 // performance in pathological cases with large numbers of basic blocks. 308 AvoidNewBlocks = F->size() > 1000; 309 } 310 Value *getArgTLSPtr(); 311 Value *getArgTLS(unsigned Index, Instruction *Pos); 312 Value *getRetvalTLS(); 313 Value *getShadow(Value *V); 314 void setShadow(Instruction *I, Value *Shadow); 315 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 316 Value *combineOperandShadows(Instruction *Inst); 317 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 318 Instruction *Pos); 319 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 320 Instruction *Pos); 321 }; 322 323 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 324 public: 325 DFSanFunction &DFSF; 326 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 327 328 void visitOperandShadowInst(Instruction &I); 329 330 void visitBinaryOperator(BinaryOperator &BO); 331 void visitCastInst(CastInst &CI); 332 void visitCmpInst(CmpInst &CI); 333 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 334 void visitLoadInst(LoadInst &LI); 335 void visitStoreInst(StoreInst &SI); 336 void visitReturnInst(ReturnInst &RI); 337 void visitCallSite(CallSite CS); 338 void visitPHINode(PHINode &PN); 339 void visitExtractElementInst(ExtractElementInst &I); 340 void visitInsertElementInst(InsertElementInst &I); 341 void visitShuffleVectorInst(ShuffleVectorInst &I); 342 void visitExtractValueInst(ExtractValueInst &I); 343 void visitInsertValueInst(InsertValueInst &I); 344 void visitAllocaInst(AllocaInst &I); 345 void visitSelectInst(SelectInst &I); 346 void visitMemSetInst(MemSetInst &I); 347 void visitMemTransferInst(MemTransferInst &I); 348 }; 349 350 } 351 352 char DataFlowSanitizer::ID; 353 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 354 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 355 356 ModulePass * 357 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 358 void *(*getArgTLS)(), 359 void *(*getRetValTLS)()) { 360 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 361 } 362 363 DataFlowSanitizer::DataFlowSanitizer( 364 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 365 void *(*getRetValTLS)()) 366 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 367 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 368 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 369 ClABIListFiles.end()); 370 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 371 } 372 373 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 374 llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 375 ArgTypes.append(T->getNumParams(), ShadowTy); 376 if (T->isVarArg()) 377 ArgTypes.push_back(ShadowPtrTy); 378 Type *RetType = T->getReturnType(); 379 if (!RetType->isVoidTy()) 380 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr); 381 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 382 } 383 384 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 385 assert(!T->isVarArg()); 386 llvm::SmallVector<Type *, 4> ArgTypes; 387 ArgTypes.push_back(T->getPointerTo()); 388 ArgTypes.append(T->param_begin(), T->param_end()); 389 ArgTypes.append(T->getNumParams(), ShadowTy); 390 Type *RetType = T->getReturnType(); 391 if (!RetType->isVoidTy()) 392 ArgTypes.push_back(ShadowPtrTy); 393 return FunctionType::get(T->getReturnType(), ArgTypes, false); 394 } 395 396 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 397 llvm::SmallVector<Type *, 4> ArgTypes; 398 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 399 i != e; ++i) { 400 FunctionType *FT; 401 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 402 *i)->getElementType()))) { 403 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 404 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 405 } else { 406 ArgTypes.push_back(*i); 407 } 408 } 409 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 410 ArgTypes.push_back(ShadowTy); 411 if (T->isVarArg()) 412 ArgTypes.push_back(ShadowPtrTy); 413 Type *RetType = T->getReturnType(); 414 if (!RetType->isVoidTy()) 415 ArgTypes.push_back(ShadowPtrTy); 416 return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()); 417 } 418 419 bool DataFlowSanitizer::doInitialization(Module &M) { 420 llvm::Triple TargetTriple(M.getTargetTriple()); 421 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 422 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 423 TargetTriple.getArch() == llvm::Triple::mips64el; 424 425 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 426 if (!DLP) 427 report_fatal_error("data layout missing"); 428 DL = &DLP->getDataLayout(); 429 430 Mod = &M; 431 Ctx = &M.getContext(); 432 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 433 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 434 IntptrTy = DL->getIntPtrType(*Ctx); 435 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 436 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 437 if (IsX86_64) 438 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 439 else if (IsMIPS64) 440 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 441 else 442 report_fatal_error("unsupported triple"); 443 444 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 445 DFSanUnionFnTy = 446 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 447 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 448 DFSanUnionLoadFnTy = 449 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 450 DFSanUnimplementedFnTy = FunctionType::get( 451 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 452 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 453 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 454 DFSanSetLabelArgs, /*isVarArg=*/false); 455 DFSanNonzeroLabelFnTy = FunctionType::get( 456 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 457 DFSanVarargWrapperFnTy = FunctionType::get( 458 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 459 460 if (GetArgTLSPtr) { 461 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 462 ArgTLS = nullptr; 463 GetArgTLS = ConstantExpr::getIntToPtr( 464 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 465 PointerType::getUnqual( 466 FunctionType::get(PointerType::getUnqual(ArgTLSTy), 467 (Type *)nullptr))); 468 } 469 if (GetRetvalTLSPtr) { 470 RetvalTLS = nullptr; 471 GetRetvalTLS = ConstantExpr::getIntToPtr( 472 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 473 PointerType::getUnqual( 474 FunctionType::get(PointerType::getUnqual(ShadowTy), 475 (Type *)nullptr))); 476 } 477 478 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 479 return true; 480 } 481 482 bool DataFlowSanitizer::isInstrumented(const Function *F) { 483 return !ABIList.isIn(*F, "uninstrumented"); 484 } 485 486 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 487 return !ABIList.isIn(*GA, "uninstrumented"); 488 } 489 490 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 491 return ClArgsABI ? IA_Args : IA_TLS; 492 } 493 494 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 495 if (ABIList.isIn(*F, "functional")) 496 return WK_Functional; 497 if (ABIList.isIn(*F, "discard")) 498 return WK_Discard; 499 if (ABIList.isIn(*F, "custom")) 500 return WK_Custom; 501 502 return WK_Warning; 503 } 504 505 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 506 std::string GVName = GV->getName(), Prefix = "dfs$"; 507 GV->setName(Prefix + GVName); 508 509 // Try to change the name of the function in module inline asm. We only do 510 // this for specific asm directives, currently only ".symver", to try to avoid 511 // corrupting asm which happens to contain the symbol name as a substring. 512 // Note that the substitution for .symver assumes that the versioned symbol 513 // also has an instrumented name. 514 std::string Asm = GV->getParent()->getModuleInlineAsm(); 515 std::string SearchStr = ".symver " + GVName + ","; 516 size_t Pos = Asm.find(SearchStr); 517 if (Pos != std::string::npos) { 518 Asm.replace(Pos, SearchStr.size(), 519 ".symver " + Prefix + GVName + "," + Prefix); 520 GV->getParent()->setModuleInlineAsm(Asm); 521 } 522 } 523 524 Function * 525 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 526 GlobalValue::LinkageTypes NewFLink, 527 FunctionType *NewFT) { 528 FunctionType *FT = F->getFunctionType(); 529 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 530 F->getParent()); 531 NewF->copyAttributesFrom(F); 532 NewF->removeAttributes( 533 AttributeSet::ReturnIndex, 534 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 535 AttributeSet::ReturnIndex)); 536 537 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 538 if (F->isVarArg()) { 539 NewF->removeAttributes( 540 AttributeSet::FunctionIndex, 541 AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex, 542 "split-stack")); 543 CallInst::Create(DFSanVarargWrapperFn, 544 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 545 BB); 546 new UnreachableInst(*Ctx, BB); 547 } else { 548 std::vector<Value *> Args; 549 unsigned n = FT->getNumParams(); 550 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 551 Args.push_back(&*ai); 552 CallInst *CI = CallInst::Create(F, Args, "", BB); 553 if (FT->getReturnType()->isVoidTy()) 554 ReturnInst::Create(*Ctx, BB); 555 else 556 ReturnInst::Create(*Ctx, CI, BB); 557 } 558 559 return NewF; 560 } 561 562 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 563 StringRef FName) { 564 FunctionType *FTT = getTrampolineFunctionType(FT); 565 Constant *C = Mod->getOrInsertFunction(FName, FTT); 566 Function *F = dyn_cast<Function>(C); 567 if (F && F->isDeclaration()) { 568 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 569 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 570 std::vector<Value *> Args; 571 Function::arg_iterator AI = F->arg_begin(); ++AI; 572 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 573 Args.push_back(&*AI); 574 CallInst *CI = 575 CallInst::Create(&F->getArgumentList().front(), Args, "", BB); 576 ReturnInst *RI; 577 if (FT->getReturnType()->isVoidTy()) 578 RI = ReturnInst::Create(*Ctx, BB); 579 else 580 RI = ReturnInst::Create(*Ctx, CI, BB); 581 582 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 583 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 584 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 585 DFSF.ValShadowMap[ValAI] = ShadowAI; 586 DFSanVisitor(DFSF).visitCallInst(*CI); 587 if (!FT->getReturnType()->isVoidTy()) 588 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 589 &F->getArgumentList().back(), RI); 590 } 591 592 return C; 593 } 594 595 bool DataFlowSanitizer::runOnModule(Module &M) { 596 if (!DL) 597 return false; 598 599 if (ABIList.isIn(M, "skip")) 600 return false; 601 602 FunctionDIs = makeSubprogramMap(M); 603 604 if (!GetArgTLSPtr) { 605 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 606 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 607 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 608 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 609 } 610 if (!GetRetvalTLSPtr) { 611 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 612 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 613 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 614 } 615 616 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 617 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 618 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 619 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 620 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 621 F->addAttribute(1, Attribute::ZExt); 622 F->addAttribute(2, Attribute::ZExt); 623 } 624 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 625 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 626 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 627 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 628 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 629 F->addAttribute(1, Attribute::ZExt); 630 F->addAttribute(2, Attribute::ZExt); 631 } 632 DFSanUnionLoadFn = 633 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 634 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 635 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 636 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 637 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 638 } 639 DFSanUnimplementedFn = 640 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 641 DFSanSetLabelFn = 642 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 643 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 644 F->addAttribute(1, Attribute::ZExt); 645 } 646 DFSanNonzeroLabelFn = 647 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 648 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 649 DFSanVarargWrapperFnTy); 650 651 std::vector<Function *> FnsToInstrument; 652 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 653 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) { 654 if (!i->isIntrinsic() && 655 i != DFSanUnionFn && 656 i != DFSanCheckedUnionFn && 657 i != DFSanUnionLoadFn && 658 i != DFSanUnimplementedFn && 659 i != DFSanSetLabelFn && 660 i != DFSanNonzeroLabelFn && 661 i != DFSanVarargWrapperFn) 662 FnsToInstrument.push_back(&*i); 663 } 664 665 // Give function aliases prefixes when necessary, and build wrappers where the 666 // instrumentedness is inconsistent. 667 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 668 GlobalAlias *GA = &*i; 669 ++i; 670 // Don't stop on weak. We assume people aren't playing games with the 671 // instrumentedness of overridden weak aliases. 672 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 673 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 674 if (GAInst && FInst) { 675 addGlobalNamePrefix(GA); 676 } else if (GAInst != FInst) { 677 // Non-instrumented alias of an instrumented function, or vice versa. 678 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 679 // below will take care of instrumenting it. 680 Function *NewF = 681 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 682 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 683 NewF->takeName(GA); 684 GA->eraseFromParent(); 685 FnsToInstrument.push_back(NewF); 686 } 687 } 688 } 689 690 AttrBuilder B; 691 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 692 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B); 693 694 // First, change the ABI of every function in the module. ABI-listed 695 // functions keep their original ABI and get a wrapper function. 696 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 697 e = FnsToInstrument.end(); 698 i != e; ++i) { 699 Function &F = **i; 700 FunctionType *FT = F.getFunctionType(); 701 702 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 703 FT->getReturnType()->isVoidTy()); 704 705 if (isInstrumented(&F)) { 706 // Instrumented functions get a 'dfs$' prefix. This allows us to more 707 // easily identify cases of mismatching ABIs. 708 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 709 FunctionType *NewFT = getArgsFunctionType(FT); 710 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 711 NewF->copyAttributesFrom(&F); 712 NewF->removeAttributes( 713 AttributeSet::ReturnIndex, 714 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 715 AttributeSet::ReturnIndex)); 716 for (Function::arg_iterator FArg = F.arg_begin(), 717 NewFArg = NewF->arg_begin(), 718 FArgEnd = F.arg_end(); 719 FArg != FArgEnd; ++FArg, ++NewFArg) { 720 FArg->replaceAllUsesWith(NewFArg); 721 } 722 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 723 724 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 725 UI != UE;) { 726 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 727 ++UI; 728 if (BA) { 729 BA->replaceAllUsesWith( 730 BlockAddress::get(NewF, BA->getBasicBlock())); 731 delete BA; 732 } 733 } 734 F.replaceAllUsesWith( 735 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 736 NewF->takeName(&F); 737 F.eraseFromParent(); 738 *i = NewF; 739 addGlobalNamePrefix(NewF); 740 } else { 741 addGlobalNamePrefix(&F); 742 } 743 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 744 // Build a wrapper function for F. The wrapper simply calls F, and is 745 // added to FnsToInstrument so that any instrumentation according to its 746 // WrapperKind is done in the second pass below. 747 FunctionType *NewFT = getInstrumentedABI() == IA_Args 748 ? getArgsFunctionType(FT) 749 : FT; 750 Function *NewF = buildWrapperFunction( 751 &F, std::string("dfsw$") + std::string(F.getName()), 752 GlobalValue::LinkOnceODRLinkage, NewFT); 753 if (getInstrumentedABI() == IA_TLS) 754 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs); 755 756 Value *WrappedFnCst = 757 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 758 F.replaceAllUsesWith(WrappedFnCst); 759 760 // Patch the pointer to LLVM function in debug info descriptor. 761 auto DI = FunctionDIs.find(&F); 762 if (DI != FunctionDIs.end()) 763 DI->second.replaceFunction(&F); 764 765 UnwrappedFnMap[WrappedFnCst] = &F; 766 *i = NewF; 767 768 if (!F.isDeclaration()) { 769 // This function is probably defining an interposition of an 770 // uninstrumented function and hence needs to keep the original ABI. 771 // But any functions it may call need to use the instrumented ABI, so 772 // we instrument it in a mode which preserves the original ABI. 773 FnsWithNativeABI.insert(&F); 774 775 // This code needs to rebuild the iterators, as they may be invalidated 776 // by the push_back, taking care that the new range does not include 777 // any functions added by this code. 778 size_t N = i - FnsToInstrument.begin(), 779 Count = e - FnsToInstrument.begin(); 780 FnsToInstrument.push_back(&F); 781 i = FnsToInstrument.begin() + N; 782 e = FnsToInstrument.begin() + Count; 783 } 784 // Hopefully, nobody will try to indirectly call a vararg 785 // function... yet. 786 } else if (FT->isVarArg()) { 787 UnwrappedFnMap[&F] = &F; 788 *i = nullptr; 789 } 790 } 791 792 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 793 e = FnsToInstrument.end(); 794 i != e; ++i) { 795 if (!*i || (*i)->isDeclaration()) 796 continue; 797 798 removeUnreachableBlocks(**i); 799 800 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i)); 801 802 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 803 // Build a copy of the list before iterating over it. 804 llvm::SmallVector<BasicBlock *, 4> BBList( 805 depth_first(&(*i)->getEntryBlock())); 806 807 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(), 808 e = BBList.end(); 809 i != e; ++i) { 810 Instruction *Inst = &(*i)->front(); 811 while (1) { 812 // DFSanVisitor may split the current basic block, changing the current 813 // instruction's next pointer and moving the next instruction to the 814 // tail block from which we should continue. 815 Instruction *Next = Inst->getNextNode(); 816 // DFSanVisitor may delete Inst, so keep track of whether it was a 817 // terminator. 818 bool IsTerminator = isa<TerminatorInst>(Inst); 819 if (!DFSF.SkipInsts.count(Inst)) 820 DFSanVisitor(DFSF).visit(Inst); 821 if (IsTerminator) 822 break; 823 Inst = Next; 824 } 825 } 826 827 // We will not necessarily be able to compute the shadow for every phi node 828 // until we have visited every block. Therefore, the code that handles phi 829 // nodes adds them to the PHIFixups list so that they can be properly 830 // handled here. 831 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 832 i = DFSF.PHIFixups.begin(), 833 e = DFSF.PHIFixups.end(); 834 i != e; ++i) { 835 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 836 ++val) { 837 i->second->setIncomingValue( 838 val, DFSF.getShadow(i->first->getIncomingValue(val))); 839 } 840 } 841 842 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 843 // places (i.e. instructions in basic blocks we haven't even begun visiting 844 // yet). To make our life easier, do this work in a pass after the main 845 // instrumentation. 846 if (ClDebugNonzeroLabels) { 847 for (Value *V : DFSF.NonZeroChecks) { 848 Instruction *Pos; 849 if (Instruction *I = dyn_cast<Instruction>(V)) 850 Pos = I->getNextNode(); 851 else 852 Pos = DFSF.F->getEntryBlock().begin(); 853 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 854 Pos = Pos->getNextNode(); 855 IRBuilder<> IRB(Pos); 856 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 857 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 858 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 859 IRBuilder<> ThenIRB(BI); 860 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn); 861 } 862 } 863 } 864 865 return false; 866 } 867 868 Value *DFSanFunction::getArgTLSPtr() { 869 if (ArgTLSPtr) 870 return ArgTLSPtr; 871 if (DFS.ArgTLS) 872 return ArgTLSPtr = DFS.ArgTLS; 873 874 IRBuilder<> IRB(F->getEntryBlock().begin()); 875 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS); 876 } 877 878 Value *DFSanFunction::getRetvalTLS() { 879 if (RetvalTLSPtr) 880 return RetvalTLSPtr; 881 if (DFS.RetvalTLS) 882 return RetvalTLSPtr = DFS.RetvalTLS; 883 884 IRBuilder<> IRB(F->getEntryBlock().begin()); 885 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS); 886 } 887 888 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 889 IRBuilder<> IRB(Pos); 890 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 891 } 892 893 Value *DFSanFunction::getShadow(Value *V) { 894 if (!isa<Argument>(V) && !isa<Instruction>(V)) 895 return DFS.ZeroShadow; 896 Value *&Shadow = ValShadowMap[V]; 897 if (!Shadow) { 898 if (Argument *A = dyn_cast<Argument>(V)) { 899 if (IsNativeABI) 900 return DFS.ZeroShadow; 901 switch (IA) { 902 case DataFlowSanitizer::IA_TLS: { 903 Value *ArgTLSPtr = getArgTLSPtr(); 904 Instruction *ArgTLSPos = 905 DFS.ArgTLS ? &*F->getEntryBlock().begin() 906 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 907 IRBuilder<> IRB(ArgTLSPos); 908 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 909 break; 910 } 911 case DataFlowSanitizer::IA_Args: { 912 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2; 913 Function::arg_iterator i = F->arg_begin(); 914 while (ArgIdx--) 915 ++i; 916 Shadow = i; 917 assert(Shadow->getType() == DFS.ShadowTy); 918 break; 919 } 920 } 921 NonZeroChecks.push_back(Shadow); 922 } else { 923 Shadow = DFS.ZeroShadow; 924 } 925 } 926 return Shadow; 927 } 928 929 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 930 assert(!ValShadowMap.count(I)); 931 assert(Shadow->getType() == DFS.ShadowTy); 932 ValShadowMap[I] = Shadow; 933 } 934 935 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 936 assert(Addr != RetvalTLS && "Reinstrumenting?"); 937 IRBuilder<> IRB(Pos); 938 return IRB.CreateIntToPtr( 939 IRB.CreateMul( 940 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask), 941 ShadowPtrMul), 942 ShadowPtrTy); 943 } 944 945 // Generates IR to compute the union of the two given shadows, inserting it 946 // before Pos. Returns the computed union Value. 947 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 948 if (V1 == DFS.ZeroShadow) 949 return V2; 950 if (V2 == DFS.ZeroShadow) 951 return V1; 952 if (V1 == V2) 953 return V1; 954 955 auto V1Elems = ShadowElements.find(V1); 956 auto V2Elems = ShadowElements.find(V2); 957 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 958 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 959 V2Elems->second.begin(), V2Elems->second.end())) { 960 return V1; 961 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 962 V1Elems->second.begin(), V1Elems->second.end())) { 963 return V2; 964 } 965 } else if (V1Elems != ShadowElements.end()) { 966 if (V1Elems->second.count(V2)) 967 return V1; 968 } else if (V2Elems != ShadowElements.end()) { 969 if (V2Elems->second.count(V1)) 970 return V2; 971 } 972 973 auto Key = std::make_pair(V1, V2); 974 if (V1 > V2) 975 std::swap(Key.first, Key.second); 976 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 977 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 978 return CCS.Shadow; 979 980 IRBuilder<> IRB(Pos); 981 if (AvoidNewBlocks) { 982 CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2); 983 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 984 Call->addAttribute(1, Attribute::ZExt); 985 Call->addAttribute(2, Attribute::ZExt); 986 987 CCS.Block = Pos->getParent(); 988 CCS.Shadow = Call; 989 } else { 990 BasicBlock *Head = Pos->getParent(); 991 Value *Ne = IRB.CreateICmpNE(V1, V2); 992 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 993 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 994 IRBuilder<> ThenIRB(BI); 995 CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2); 996 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 997 Call->addAttribute(1, Attribute::ZExt); 998 Call->addAttribute(2, Attribute::ZExt); 999 1000 BasicBlock *Tail = BI->getSuccessor(0); 1001 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin()); 1002 Phi->addIncoming(Call, Call->getParent()); 1003 Phi->addIncoming(V1, Head); 1004 1005 CCS.Block = Tail; 1006 CCS.Shadow = Phi; 1007 } 1008 1009 std::set<Value *> UnionElems; 1010 if (V1Elems != ShadowElements.end()) { 1011 UnionElems = V1Elems->second; 1012 } else { 1013 UnionElems.insert(V1); 1014 } 1015 if (V2Elems != ShadowElements.end()) { 1016 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1017 } else { 1018 UnionElems.insert(V2); 1019 } 1020 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1021 1022 return CCS.Shadow; 1023 } 1024 1025 // A convenience function which folds the shadows of each of the operands 1026 // of the provided instruction Inst, inserting the IR before Inst. Returns 1027 // the computed union Value. 1028 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1029 if (Inst->getNumOperands() == 0) 1030 return DFS.ZeroShadow; 1031 1032 Value *Shadow = getShadow(Inst->getOperand(0)); 1033 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1034 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1035 } 1036 return Shadow; 1037 } 1038 1039 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1040 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1041 DFSF.setShadow(&I, CombinedShadow); 1042 } 1043 1044 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1045 // Addr has alignment Align, and take the union of each of those shadows. 1046 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1047 Instruction *Pos) { 1048 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1049 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1050 AllocaShadowMap.find(AI); 1051 if (i != AllocaShadowMap.end()) { 1052 IRBuilder<> IRB(Pos); 1053 return IRB.CreateLoad(i->second); 1054 } 1055 } 1056 1057 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1058 SmallVector<Value *, 2> Objs; 1059 GetUnderlyingObjects(Addr, Objs, DFS.DL); 1060 bool AllConstants = true; 1061 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end(); 1062 i != e; ++i) { 1063 if (isa<Function>(*i) || isa<BlockAddress>(*i)) 1064 continue; 1065 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant()) 1066 continue; 1067 1068 AllConstants = false; 1069 break; 1070 } 1071 if (AllConstants) 1072 return DFS.ZeroShadow; 1073 1074 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1075 switch (Size) { 1076 case 0: 1077 return DFS.ZeroShadow; 1078 case 1: { 1079 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1080 LI->setAlignment(ShadowAlign); 1081 return LI; 1082 } 1083 case 2: { 1084 IRBuilder<> IRB(Pos); 1085 Value *ShadowAddr1 = 1086 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1087 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1088 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1089 } 1090 } 1091 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1092 // Fast path for the common case where each byte has identical shadow: load 1093 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1094 // shadow is non-equal. 1095 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1096 IRBuilder<> FallbackIRB(FallbackBB); 1097 CallInst *FallbackCall = FallbackIRB.CreateCall2( 1098 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1099 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1100 1101 // Compare each of the shadows stored in the loaded 64 bits to each other, 1102 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1103 IRBuilder<> IRB(Pos); 1104 Value *WideAddr = 1105 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1106 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1107 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1108 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1109 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1110 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1111 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1112 1113 BasicBlock *Head = Pos->getParent(); 1114 BasicBlock *Tail = Head->splitBasicBlock(Pos); 1115 1116 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1117 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1118 1119 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1120 for (auto Child : Children) 1121 DT.changeImmediateDominator(Child, NewNode); 1122 } 1123 1124 // In the following code LastBr will refer to the previous basic block's 1125 // conditional branch instruction, whose true successor is fixed up to point 1126 // to the next block during the loop below or to the tail after the final 1127 // iteration. 1128 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1129 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1130 DT.addNewBlock(FallbackBB, Head); 1131 1132 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1133 Ofs += 64 / DFS.ShadowWidth) { 1134 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1135 DT.addNewBlock(NextBB, LastBr->getParent()); 1136 IRBuilder<> NextIRB(NextBB); 1137 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1138 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1139 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1140 LastBr->setSuccessor(0, NextBB); 1141 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1142 } 1143 1144 LastBr->setSuccessor(0, Tail); 1145 FallbackIRB.CreateBr(Tail); 1146 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1147 Shadow->addIncoming(FallbackCall, FallbackBB); 1148 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1149 return Shadow; 1150 } 1151 1152 IRBuilder<> IRB(Pos); 1153 CallInst *FallbackCall = IRB.CreateCall2( 1154 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1155 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1156 return FallbackCall; 1157 } 1158 1159 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1160 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType()); 1161 if (Size == 0) { 1162 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1163 return; 1164 } 1165 1166 uint64_t Align; 1167 if (ClPreserveAlignment) { 1168 Align = LI.getAlignment(); 1169 if (Align == 0) 1170 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType()); 1171 } else { 1172 Align = 1; 1173 } 1174 IRBuilder<> IRB(&LI); 1175 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1176 if (ClCombinePointerLabelsOnLoad) { 1177 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1178 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1179 } 1180 if (Shadow != DFSF.DFS.ZeroShadow) 1181 DFSF.NonZeroChecks.push_back(Shadow); 1182 1183 DFSF.setShadow(&LI, Shadow); 1184 } 1185 1186 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1187 Value *Shadow, Instruction *Pos) { 1188 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1189 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1190 AllocaShadowMap.find(AI); 1191 if (i != AllocaShadowMap.end()) { 1192 IRBuilder<> IRB(Pos); 1193 IRB.CreateStore(Shadow, i->second); 1194 return; 1195 } 1196 } 1197 1198 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1199 IRBuilder<> IRB(Pos); 1200 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1201 if (Shadow == DFS.ZeroShadow) { 1202 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1203 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1204 Value *ExtShadowAddr = 1205 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1206 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1207 return; 1208 } 1209 1210 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1211 uint64_t Offset = 0; 1212 if (Size >= ShadowVecSize) { 1213 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1214 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1215 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1216 ShadowVec = IRB.CreateInsertElement( 1217 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1218 } 1219 Value *ShadowVecAddr = 1220 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1221 do { 1222 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset); 1223 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1224 Size -= ShadowVecSize; 1225 ++Offset; 1226 } while (Size >= ShadowVecSize); 1227 Offset *= ShadowVecSize; 1228 } 1229 while (Size > 0) { 1230 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset); 1231 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1232 --Size; 1233 ++Offset; 1234 } 1235 } 1236 1237 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1238 uint64_t Size = 1239 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType()); 1240 if (Size == 0) 1241 return; 1242 1243 uint64_t Align; 1244 if (ClPreserveAlignment) { 1245 Align = SI.getAlignment(); 1246 if (Align == 0) 1247 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType()); 1248 } else { 1249 Align = 1; 1250 } 1251 1252 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1253 if (ClCombinePointerLabelsOnStore) { 1254 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1255 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1256 } 1257 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1258 } 1259 1260 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1261 visitOperandShadowInst(BO); 1262 } 1263 1264 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1265 1266 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1267 1268 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1269 visitOperandShadowInst(GEPI); 1270 } 1271 1272 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1273 visitOperandShadowInst(I); 1274 } 1275 1276 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1277 visitOperandShadowInst(I); 1278 } 1279 1280 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1281 visitOperandShadowInst(I); 1282 } 1283 1284 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1285 visitOperandShadowInst(I); 1286 } 1287 1288 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1289 visitOperandShadowInst(I); 1290 } 1291 1292 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1293 bool AllLoadsStores = true; 1294 for (User *U : I.users()) { 1295 if (isa<LoadInst>(U)) 1296 continue; 1297 1298 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1299 if (SI->getPointerOperand() == &I) 1300 continue; 1301 } 1302 1303 AllLoadsStores = false; 1304 break; 1305 } 1306 if (AllLoadsStores) { 1307 IRBuilder<> IRB(&I); 1308 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1309 } 1310 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1311 } 1312 1313 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1314 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1315 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1316 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1317 1318 if (isa<VectorType>(I.getCondition()->getType())) { 1319 DFSF.setShadow( 1320 &I, 1321 DFSF.combineShadows( 1322 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1323 } else { 1324 Value *ShadowSel; 1325 if (TrueShadow == FalseShadow) { 1326 ShadowSel = TrueShadow; 1327 } else { 1328 ShadowSel = 1329 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1330 } 1331 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1332 } 1333 } 1334 1335 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1336 IRBuilder<> IRB(&I); 1337 Value *ValShadow = DFSF.getShadow(I.getValue()); 1338 IRB.CreateCall3( 1339 DFSF.DFS.DFSanSetLabelFn, ValShadow, 1340 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 1341 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)); 1342 } 1343 1344 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1345 IRBuilder<> IRB(&I); 1346 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1347 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1348 Value *LenShadow = IRB.CreateMul( 1349 I.getLength(), 1350 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1351 Value *AlignShadow; 1352 if (ClPreserveAlignment) { 1353 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1354 ConstantInt::get(I.getAlignmentCst()->getType(), 1355 DFSF.DFS.ShadowWidth / 8)); 1356 } else { 1357 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1358 DFSF.DFS.ShadowWidth / 8); 1359 } 1360 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1361 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1362 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1363 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow, 1364 AlignShadow, I.getVolatileCst()); 1365 } 1366 1367 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1368 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1369 switch (DFSF.IA) { 1370 case DataFlowSanitizer::IA_TLS: { 1371 Value *S = DFSF.getShadow(RI.getReturnValue()); 1372 IRBuilder<> IRB(&RI); 1373 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1374 break; 1375 } 1376 case DataFlowSanitizer::IA_Args: { 1377 IRBuilder<> IRB(&RI); 1378 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1379 Value *InsVal = 1380 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1381 Value *InsShadow = 1382 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1383 RI.setOperand(0, InsShadow); 1384 break; 1385 } 1386 } 1387 } 1388 } 1389 1390 void DFSanVisitor::visitCallSite(CallSite CS) { 1391 Function *F = CS.getCalledFunction(); 1392 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1393 visitOperandShadowInst(*CS.getInstruction()); 1394 return; 1395 } 1396 1397 // Calls to this function are synthesized in wrappers, and we shouldn't 1398 // instrument them. 1399 if (F == DFSF.DFS.DFSanVarargWrapperFn) 1400 return; 1401 1402 assert(!(cast<FunctionType>( 1403 CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() && 1404 dyn_cast<InvokeInst>(CS.getInstruction()))); 1405 1406 IRBuilder<> IRB(CS.getInstruction()); 1407 1408 DenseMap<Value *, Function *>::iterator i = 1409 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1410 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1411 Function *F = i->second; 1412 switch (DFSF.DFS.getWrapperKind(F)) { 1413 case DataFlowSanitizer::WK_Warning: { 1414 CS.setCalledFunction(F); 1415 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1416 IRB.CreateGlobalStringPtr(F->getName())); 1417 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1418 return; 1419 } 1420 case DataFlowSanitizer::WK_Discard: { 1421 CS.setCalledFunction(F); 1422 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1423 return; 1424 } 1425 case DataFlowSanitizer::WK_Functional: { 1426 CS.setCalledFunction(F); 1427 visitOperandShadowInst(*CS.getInstruction()); 1428 return; 1429 } 1430 case DataFlowSanitizer::WK_Custom: { 1431 // Don't try to handle invokes of custom functions, it's too complicated. 1432 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1433 // wrapper. 1434 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1435 FunctionType *FT = F->getFunctionType(); 1436 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1437 std::string CustomFName = "__dfsw_"; 1438 CustomFName += F->getName(); 1439 Constant *CustomF = 1440 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1441 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1442 CustomFn->copyAttributesFrom(F); 1443 1444 // Custom functions returning non-void will write to the return label. 1445 if (!FT->getReturnType()->isVoidTy()) { 1446 CustomFn->removeAttributes(AttributeSet::FunctionIndex, 1447 DFSF.DFS.ReadOnlyNoneAttrs); 1448 } 1449 } 1450 1451 std::vector<Value *> Args; 1452 1453 CallSite::arg_iterator i = CS.arg_begin(); 1454 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1455 Type *T = (*i)->getType(); 1456 FunctionType *ParamFT; 1457 if (isa<PointerType>(T) && 1458 (ParamFT = dyn_cast<FunctionType>( 1459 cast<PointerType>(T)->getElementType()))) { 1460 std::string TName = "dfst"; 1461 TName += utostr(FT->getNumParams() - n); 1462 TName += "$"; 1463 TName += F->getName(); 1464 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1465 Args.push_back(T); 1466 Args.push_back( 1467 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1468 } else { 1469 Args.push_back(*i); 1470 } 1471 } 1472 1473 i = CS.arg_begin(); 1474 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1475 Args.push_back(DFSF.getShadow(*i)); 1476 1477 if (FT->isVarArg()) { 1478 auto LabelVAAlloca = 1479 new AllocaInst(ArrayType::get(DFSF.DFS.ShadowTy, 1480 CS.arg_size() - FT->getNumParams()), 1481 "labelva", DFSF.F->getEntryBlock().begin()); 1482 1483 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1484 auto LabelVAPtr = IRB.CreateStructGEP(LabelVAAlloca, n); 1485 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1486 } 1487 1488 Args.push_back(IRB.CreateStructGEP(LabelVAAlloca, 0)); 1489 } 1490 1491 if (!FT->getReturnType()->isVoidTy()) { 1492 if (!DFSF.LabelReturnAlloca) { 1493 DFSF.LabelReturnAlloca = 1494 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn", 1495 DFSF.F->getEntryBlock().begin()); 1496 } 1497 Args.push_back(DFSF.LabelReturnAlloca); 1498 } 1499 1500 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1501 Args.push_back(*i); 1502 1503 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1504 CustomCI->setCallingConv(CI->getCallingConv()); 1505 CustomCI->setAttributes(CI->getAttributes()); 1506 1507 if (!FT->getReturnType()->isVoidTy()) { 1508 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1509 DFSF.setShadow(CustomCI, LabelLoad); 1510 } 1511 1512 CI->replaceAllUsesWith(CustomCI); 1513 CI->eraseFromParent(); 1514 return; 1515 } 1516 break; 1517 } 1518 } 1519 } 1520 1521 FunctionType *FT = cast<FunctionType>( 1522 CS.getCalledValue()->getType()->getPointerElementType()); 1523 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1524 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1525 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1526 DFSF.getArgTLS(i, CS.getInstruction())); 1527 } 1528 } 1529 1530 Instruction *Next = nullptr; 1531 if (!CS.getType()->isVoidTy()) { 1532 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1533 if (II->getNormalDest()->getSinglePredecessor()) { 1534 Next = II->getNormalDest()->begin(); 1535 } else { 1536 BasicBlock *NewBB = 1537 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1538 Next = NewBB->begin(); 1539 } 1540 } else { 1541 Next = CS->getNextNode(); 1542 } 1543 1544 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1545 IRBuilder<> NextIRB(Next); 1546 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1547 DFSF.SkipInsts.insert(LI); 1548 DFSF.setShadow(CS.getInstruction(), LI); 1549 DFSF.NonZeroChecks.push_back(LI); 1550 } 1551 } 1552 1553 // Do all instrumentation for IA_Args down here to defer tampering with the 1554 // CFG in a way that SplitEdge may be able to detect. 1555 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1556 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1557 Value *Func = 1558 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1559 std::vector<Value *> Args; 1560 1561 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1562 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1563 Args.push_back(*i); 1564 1565 i = CS.arg_begin(); 1566 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1567 Args.push_back(DFSF.getShadow(*i)); 1568 1569 if (FT->isVarArg()) { 1570 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1571 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1572 AllocaInst *VarArgShadow = 1573 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin()); 1574 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0)); 1575 for (unsigned n = 0; i != e; ++i, ++n) { 1576 IRB.CreateStore(DFSF.getShadow(*i), 1577 IRB.CreateConstGEP2_32(VarArgShadow, 0, n)); 1578 Args.push_back(*i); 1579 } 1580 } 1581 1582 CallSite NewCS; 1583 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1584 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1585 Args); 1586 } else { 1587 NewCS = IRB.CreateCall(Func, Args); 1588 } 1589 NewCS.setCallingConv(CS.getCallingConv()); 1590 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1591 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex, 1592 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(), 1593 AttributeSet::ReturnIndex))); 1594 1595 if (Next) { 1596 ExtractValueInst *ExVal = 1597 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1598 DFSF.SkipInsts.insert(ExVal); 1599 ExtractValueInst *ExShadow = 1600 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1601 DFSF.SkipInsts.insert(ExShadow); 1602 DFSF.setShadow(ExVal, ExShadow); 1603 DFSF.NonZeroChecks.push_back(ExShadow); 1604 1605 CS.getInstruction()->replaceAllUsesWith(ExVal); 1606 } 1607 1608 CS.getInstruction()->eraseFromParent(); 1609 } 1610 } 1611 1612 void DFSanVisitor::visitPHINode(PHINode &PN) { 1613 PHINode *ShadowPN = 1614 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1615 1616 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1617 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1618 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1619 ++i) { 1620 ShadowPN->addIncoming(UndefShadow, *i); 1621 } 1622 1623 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1624 DFSF.setShadow(&PN, ShadowPN); 1625 } 1626