1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x300200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 32 /// | origin | 33 /// +--------------------+ 0x200000008000 (kOriginAddr) 34 /// | shadow memory | 35 /// +--------------------+ 0x000000010000 (kShadowAddr) 36 /// | reserved by kernel | 37 /// +--------------------+ 0x000000000000 38 /// 39 /// To derive a shadow memory address from an application memory address, 40 /// bits 44-46 are cleared to bring the address into the range 41 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 42 /// account for the double byte representation of shadow labels and move the 43 /// address into the shadow memory range. See the function 44 /// DataFlowSanitizer::getShadowAddress below. 45 /// 46 /// For more information, please refer to the design document: 47 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 52 #include "llvm/ADT/DenseMap.h" 53 #include "llvm/ADT/DenseSet.h" 54 #include "llvm/ADT/DepthFirstIterator.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InlineAsm.h" 77 #include "llvm/IR/InstVisitor.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MDBuilder.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/Alignment.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/SpecialCaseList.h" 96 #include "llvm/Support/VirtualFileSystem.h" 97 #include "llvm/Transforms/Instrumentation.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstddef> 103 #include <cstdint> 104 #include <iterator> 105 #include <memory> 106 #include <set> 107 #include <string> 108 #include <utility> 109 #include <vector> 110 111 using namespace llvm; 112 113 // This must be consistent with ShadowWidthBits. 114 static const Align ShadowTLSAlignment = Align(2); 115 116 static const Align MinOriginAlignment = Align(4); 117 118 // The size of TLS variables. These constants must be kept in sync with the ones 119 // in dfsan.cpp. 120 static const unsigned ArgTLSSize = 800; 121 static const unsigned RetvalTLSSize = 800; 122 123 // External symbol to be used when generating the shadow address for 124 // architectures with multiple VMAs. Instead of using a constant integer 125 // the runtime will set the external mask based on the VMA range. 126 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 127 128 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 129 // alignment requirements provided by the input IR are correct. For example, 130 // if the input IR contains a load with alignment 8, this flag will cause 131 // the shadow load to have alignment 16. This flag is disabled by default as 132 // we have unfortunately encountered too much code (including Clang itself; 133 // see PR14291) which performs misaligned access. 134 static cl::opt<bool> ClPreserveAlignment( 135 "dfsan-preserve-alignment", 136 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 137 cl::init(false)); 138 139 // The ABI list files control how shadow parameters are passed. The pass treats 140 // every function labelled "uninstrumented" in the ABI list file as conforming 141 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 142 // additional annotations for those functions, a call to one of those functions 143 // will produce a warning message, as the labelling behaviour of the function is 144 // unknown. The other supported annotations are "functional" and "discard", 145 // which are described below under DataFlowSanitizer::WrapperKind. 146 static cl::list<std::string> ClABIListFiles( 147 "dfsan-abilist", 148 cl::desc("File listing native ABI functions and how the pass treats them"), 149 cl::Hidden); 150 151 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 152 // functions (see DataFlowSanitizer::InstrumentedABI below). 153 static cl::opt<bool> 154 ClArgsABI("dfsan-args-abi", 155 cl::desc("Use the argument ABI rather than the TLS ABI"), 156 cl::Hidden); 157 158 // Controls whether the pass includes or ignores the labels of pointers in load 159 // instructions. 160 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 161 "dfsan-combine-pointer-labels-on-load", 162 cl::desc("Combine the label of the pointer with the label of the data when " 163 "loading from memory."), 164 cl::Hidden, cl::init(true)); 165 166 // Controls whether the pass includes or ignores the labels of pointers in 167 // stores instructions. 168 static cl::opt<bool> ClCombinePointerLabelsOnStore( 169 "dfsan-combine-pointer-labels-on-store", 170 cl::desc("Combine the label of the pointer with the label of the data when " 171 "storing in memory."), 172 cl::Hidden, cl::init(false)); 173 174 static cl::opt<bool> ClDebugNonzeroLabels( 175 "dfsan-debug-nonzero-labels", 176 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 177 "load or return with a nonzero label"), 178 cl::Hidden); 179 180 // Experimental feature that inserts callbacks for certain data events. 181 // Currently callbacks are only inserted for loads, stores, memory transfers 182 // (i.e. memcpy and memmove), and comparisons. 183 // 184 // If this flag is set to true, the user must provide definitions for the 185 // following callback functions: 186 // void __dfsan_load_callback(dfsan_label Label, void* addr); 187 // void __dfsan_store_callback(dfsan_label Label, void* addr); 188 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 189 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 190 static cl::opt<bool> ClEventCallbacks( 191 "dfsan-event-callbacks", 192 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 193 cl::Hidden, cl::init(false)); 194 195 // Use a distinct bit for each base label, enabling faster unions with less 196 // instrumentation. Limits the max number of base labels to 16. 197 static cl::opt<bool> ClFast16Labels( 198 "dfsan-fast-16-labels", 199 cl::desc("Use more efficient instrumentation, limiting the number of " 200 "labels to 16."), 201 cl::Hidden, cl::init(false)); 202 203 // Controls whether the pass tracks the control flow of select instructions. 204 static cl::opt<bool> ClTrackSelectControlFlow( 205 "dfsan-track-select-control-flow", 206 cl::desc("Propagate labels from condition values of select instructions " 207 "to results."), 208 cl::Hidden, cl::init(true)); 209 210 // TODO: This default value follows MSan. DFSan may use a different value. 211 static cl::opt<int> ClInstrumentWithCallThreshold( 212 "dfsan-instrument-with-call-threshold", 213 cl::desc("If the function being instrumented requires more than " 214 "this number of origin stores, use callbacks instead of " 215 "inline checks (-1 means never use callbacks)."), 216 cl::Hidden, cl::init(3500)); 217 218 // Controls how to track origins. 219 // * 0: do not track origins. 220 // * 1: track origins at memory store operations. 221 // * 2: TODO: track origins at memory store operations and callsites. 222 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 223 cl::desc("Track origins of labels"), 224 cl::Hidden, cl::init(0)); 225 226 static StringRef getGlobalTypeString(const GlobalValue &G) { 227 // Types of GlobalVariables are always pointer types. 228 Type *GType = G.getValueType(); 229 // For now we support excluding struct types only. 230 if (StructType *SGType = dyn_cast<StructType>(GType)) { 231 if (!SGType->isLiteral()) 232 return SGType->getName(); 233 } 234 return "<unknown type>"; 235 } 236 237 namespace { 238 239 class DFSanABIList { 240 std::unique_ptr<SpecialCaseList> SCL; 241 242 public: 243 DFSanABIList() = default; 244 245 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 246 247 /// Returns whether either this function or its source file are listed in the 248 /// given category. 249 bool isIn(const Function &F, StringRef Category) const { 250 return isIn(*F.getParent(), Category) || 251 SCL->inSection("dataflow", "fun", F.getName(), Category); 252 } 253 254 /// Returns whether this global alias is listed in the given category. 255 /// 256 /// If GA aliases a function, the alias's name is matched as a function name 257 /// would be. Similarly, aliases of globals are matched like globals. 258 bool isIn(const GlobalAlias &GA, StringRef Category) const { 259 if (isIn(*GA.getParent(), Category)) 260 return true; 261 262 if (isa<FunctionType>(GA.getValueType())) 263 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 264 265 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 266 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 267 Category); 268 } 269 270 /// Returns whether this module is listed in the given category. 271 bool isIn(const Module &M, StringRef Category) const { 272 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 273 } 274 }; 275 276 /// TransformedFunction is used to express the result of transforming one 277 /// function type into another. This struct is immutable. It holds metadata 278 /// useful for updating calls of the old function to the new type. 279 struct TransformedFunction { 280 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 281 std::vector<unsigned> ArgumentIndexMapping) 282 : OriginalType(OriginalType), TransformedType(TransformedType), 283 ArgumentIndexMapping(ArgumentIndexMapping) {} 284 285 // Disallow copies. 286 TransformedFunction(const TransformedFunction &) = delete; 287 TransformedFunction &operator=(const TransformedFunction &) = delete; 288 289 // Allow moves. 290 TransformedFunction(TransformedFunction &&) = default; 291 TransformedFunction &operator=(TransformedFunction &&) = default; 292 293 /// Type of the function before the transformation. 294 FunctionType *OriginalType; 295 296 /// Type of the function after the transformation. 297 FunctionType *TransformedType; 298 299 /// Transforming a function may change the position of arguments. This 300 /// member records the mapping from each argument's old position to its new 301 /// position. Argument positions are zero-indexed. If the transformation 302 /// from F to F' made the first argument of F into the third argument of F', 303 /// then ArgumentIndexMapping[0] will equal 2. 304 std::vector<unsigned> ArgumentIndexMapping; 305 }; 306 307 /// Given function attributes from a call site for the original function, 308 /// return function attributes appropriate for a call to the transformed 309 /// function. 310 AttributeList 311 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 312 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 313 314 // Construct a vector of AttributeSet for each function argument. 315 std::vector<llvm::AttributeSet> ArgumentAttributes( 316 TransformedFunction.TransformedType->getNumParams()); 317 318 // Copy attributes from the parameter of the original function to the 319 // transformed version. 'ArgumentIndexMapping' holds the mapping from 320 // old argument position to new. 321 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 322 I < IE; ++I) { 323 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 324 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 325 } 326 327 // Copy annotations on varargs arguments. 328 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 329 IE = CallSiteAttrs.getNumAttrSets(); 330 I < IE; ++I) { 331 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 332 } 333 334 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 335 CallSiteAttrs.getRetAttributes(), 336 llvm::makeArrayRef(ArgumentAttributes)); 337 } 338 339 class DataFlowSanitizer { 340 friend struct DFSanFunction; 341 friend class DFSanVisitor; 342 343 enum { 344 ShadowWidthBits = 16, 345 ShadowWidthBytes = ShadowWidthBits / 8, 346 OriginWidthBits = 32, 347 OriginWidthBytes = OriginWidthBits / 8 348 }; 349 350 /// Which ABI should be used for instrumented functions? 351 enum InstrumentedABI { 352 /// Argument and return value labels are passed through additional 353 /// arguments and by modifying the return type. 354 IA_Args, 355 356 /// Argument and return value labels are passed through TLS variables 357 /// __dfsan_arg_tls and __dfsan_retval_tls. 358 IA_TLS 359 }; 360 361 /// How should calls to uninstrumented functions be handled? 362 enum WrapperKind { 363 /// This function is present in an uninstrumented form but we don't know 364 /// how it should be handled. Print a warning and call the function anyway. 365 /// Don't label the return value. 366 WK_Warning, 367 368 /// This function does not write to (user-accessible) memory, and its return 369 /// value is unlabelled. 370 WK_Discard, 371 372 /// This function does not write to (user-accessible) memory, and the label 373 /// of its return value is the union of the label of its arguments. 374 WK_Functional, 375 376 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 377 /// where F is the name of the function. This function may wrap the 378 /// original function or provide its own implementation. This is similar to 379 /// the IA_Args ABI, except that IA_Args uses a struct return type to 380 /// pass the return value shadow in a register, while WK_Custom uses an 381 /// extra pointer argument to return the shadow. This allows the wrapped 382 /// form of the function type to be expressed in C. 383 WK_Custom 384 }; 385 386 Module *Mod; 387 LLVMContext *Ctx; 388 Type *Int8Ptr; 389 IntegerType *OriginTy; 390 PointerType *OriginPtrTy; 391 ConstantInt *OriginBase; 392 ConstantInt *ZeroOrigin; 393 /// The shadow type for all primitive types and vector types. 394 IntegerType *PrimitiveShadowTy; 395 PointerType *PrimitiveShadowPtrTy; 396 IntegerType *IntptrTy; 397 ConstantInt *ZeroPrimitiveShadow; 398 ConstantInt *ShadowPtrMask; 399 ConstantInt *ShadowPtrMul; 400 Constant *ArgTLS; 401 ArrayType *ArgOriginTLSTy; 402 Constant *ArgOriginTLS; 403 Constant *RetvalTLS; 404 Constant *RetvalOriginTLS; 405 Constant *ExternalShadowMask; 406 FunctionType *DFSanUnionFnTy; 407 FunctionType *DFSanUnionLoadFnTy; 408 FunctionType *DFSanLoadLabelAndOriginFnTy; 409 FunctionType *DFSanUnimplementedFnTy; 410 FunctionType *DFSanSetLabelFnTy; 411 FunctionType *DFSanNonzeroLabelFnTy; 412 FunctionType *DFSanVarargWrapperFnTy; 413 FunctionType *DFSanCmpCallbackFnTy; 414 FunctionType *DFSanLoadStoreCallbackFnTy; 415 FunctionType *DFSanMemTransferCallbackFnTy; 416 FunctionType *DFSanChainOriginFnTy; 417 FunctionType *DFSanMemOriginTransferFnTy; 418 FunctionType *DFSanMaybeStoreOriginFnTy; 419 FunctionCallee DFSanUnionFn; 420 FunctionCallee DFSanCheckedUnionFn; 421 FunctionCallee DFSanUnionLoadFn; 422 FunctionCallee DFSanUnionLoadFast16LabelsFn; 423 FunctionCallee DFSanLoadLabelAndOriginFn; 424 FunctionCallee DFSanUnimplementedFn; 425 FunctionCallee DFSanSetLabelFn; 426 FunctionCallee DFSanNonzeroLabelFn; 427 FunctionCallee DFSanVarargWrapperFn; 428 FunctionCallee DFSanLoadCallbackFn; 429 FunctionCallee DFSanStoreCallbackFn; 430 FunctionCallee DFSanMemTransferCallbackFn; 431 FunctionCallee DFSanCmpCallbackFn; 432 FunctionCallee DFSanChainOriginFn; 433 FunctionCallee DFSanMemOriginTransferFn; 434 FunctionCallee DFSanMaybeStoreOriginFn; 435 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 436 MDNode *ColdCallWeights; 437 MDNode *OriginStoreWeights; 438 DFSanABIList ABIList; 439 DenseMap<Value *, Function *> UnwrappedFnMap; 440 AttrBuilder ReadOnlyNoneAttrs; 441 bool DFSanRuntimeShadowMask = false; 442 443 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 444 Value *getShadowAddress(Value *Addr, Instruction *Pos); 445 std::pair<Value *, Value *> 446 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 447 bool isInstrumented(const Function *F); 448 bool isInstrumented(const GlobalAlias *GA); 449 FunctionType *getArgsFunctionType(FunctionType *T); 450 FunctionType *getTrampolineFunctionType(FunctionType *T); 451 TransformedFunction getCustomFunctionType(FunctionType *T); 452 InstrumentedABI getInstrumentedABI(); 453 WrapperKind getWrapperKind(Function *F); 454 void addGlobalNamePrefix(GlobalValue *GV); 455 Function *buildWrapperFunction(Function *F, StringRef NewFName, 456 GlobalValue::LinkageTypes NewFLink, 457 FunctionType *NewFT); 458 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 459 void initializeCallbackFunctions(Module &M); 460 void initializeRuntimeFunctions(Module &M); 461 void injectMetadataGlobals(Module &M); 462 463 bool init(Module &M); 464 465 /// Returns whether the pass tracks origins. Support only fast16 mode in TLS 466 /// ABI mode. 467 bool shouldTrackOrigins(); 468 469 /// Returns whether the pass tracks labels for struct fields and array 470 /// indices. Support only fast16 mode in TLS ABI mode. 471 bool shouldTrackFieldsAndIndices(); 472 473 /// Returns a zero constant with the shadow type of OrigTy. 474 /// 475 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 476 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 477 /// getZeroShadow(other type) = i16(0) 478 /// 479 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 480 /// returns false. 481 Constant *getZeroShadow(Type *OrigTy); 482 /// Returns a zero constant with the shadow type of V's type. 483 Constant *getZeroShadow(Value *V); 484 485 /// Checks if V is a zero shadow. 486 bool isZeroShadow(Value *V); 487 488 /// Returns the shadow type of OrigTy. 489 /// 490 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 491 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 492 /// getShadowTy(other type) = i16 493 /// 494 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 495 /// returns false. 496 Type *getShadowTy(Type *OrigTy); 497 /// Returns the shadow type of of V's type. 498 Type *getShadowTy(Value *V); 499 500 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 501 502 public: 503 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 504 505 bool runImpl(Module &M); 506 }; 507 508 struct DFSanFunction { 509 DataFlowSanitizer &DFS; 510 Function *F; 511 DominatorTree DT; 512 DataFlowSanitizer::InstrumentedABI IA; 513 bool IsNativeABI; 514 AllocaInst *LabelReturnAlloca = nullptr; 515 AllocaInst *OriginReturnAlloca = nullptr; 516 DenseMap<Value *, Value *> ValShadowMap; 517 DenseMap<Value *, Value *> ValOriginMap; 518 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 519 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 520 521 struct PHIFixupElement { 522 PHINode *Phi; 523 PHINode *ShadowPhi; 524 PHINode *OriginPhi; 525 }; 526 std::vector<PHIFixupElement> PHIFixups; 527 528 DenseSet<Instruction *> SkipInsts; 529 std::vector<Value *> NonZeroChecks; 530 bool AvoidNewBlocks; 531 532 struct CachedShadow { 533 BasicBlock *Block; // The block where Shadow is defined. 534 Value *Shadow; 535 }; 536 /// Maps a value to its latest shadow value in terms of domination tree. 537 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 538 /// Maps a value to its latest collapsed shadow value it was converted to in 539 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 540 /// used at a post process where CFG blocks are split. So it does not cache 541 /// BasicBlock like CachedShadows, but uses domination between values. 542 DenseMap<Value *, Value *> CachedCollapsedShadows; 543 DenseMap<Value *, std::set<Value *>> ShadowElements; 544 545 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 546 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 547 DT.recalculate(*F); 548 // FIXME: Need to track down the register allocator issue which causes poor 549 // performance in pathological cases with large numbers of basic blocks. 550 AvoidNewBlocks = F->size() > 1000; 551 } 552 553 /// Computes the shadow address for a given function argument. 554 /// 555 /// Shadow = ArgTLS+ArgOffset. 556 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 557 558 /// Computes the shadow address for a return value. 559 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 560 561 /// Computes the origin address for a given function argument. 562 /// 563 /// Origin = ArgOriginTLS[ArgNo]. 564 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 565 566 /// Computes the origin address for a return value. 567 Value *getRetvalOriginTLS(); 568 569 Value *getOrigin(Value *V); 570 void setOrigin(Instruction *I, Value *Origin); 571 /// Generates IR to compute the origin of the last operand with a taint label. 572 Value *combineOperandOrigins(Instruction *Inst); 573 /// Before the instruction Pos, generates IR to compute the last origin with a 574 /// taint label. Labels and origins are from vectors Shadows and Origins 575 /// correspondingly. The generated IR is like 576 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 577 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 578 /// zeros with other bitwidths. 579 Value *combineOrigins(const std::vector<Value *> &Shadows, 580 const std::vector<Value *> &Origins, Instruction *Pos, 581 ConstantInt *Zero = nullptr); 582 583 Value *getShadow(Value *V); 584 void setShadow(Instruction *I, Value *Shadow); 585 /// Generates IR to compute the union of the two given shadows, inserting it 586 /// before Pos. The combined value is with primitive type. 587 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 588 /// Combines the shadow values of V1 and V2, then converts the combined value 589 /// with primitive type into a shadow value with the original type T. 590 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 591 Instruction *Pos); 592 Value *combineOperandShadows(Instruction *Inst); 593 std::pair<Value *, Value *> loadShadowOrigin(Value *ShadowAddr, uint64_t Size, 594 Align InstAlignment, 595 Instruction *Pos); 596 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 597 Align InstAlignment, Value *PrimitiveShadow, 598 Value *Origin, Instruction *Pos); 599 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 600 /// the expanded shadow value. 601 /// 602 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 603 /// EFP([n x T], PS) = [n x EFP(T,PS)] 604 /// EFP(other types, PS) = PS 605 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 606 Instruction *Pos); 607 /// Collapses Shadow into a single primitive shadow value, unioning all 608 /// primitive shadow values in the process. Returns the final primitive 609 /// shadow value. 610 /// 611 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 612 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 613 /// CTP(other types, PS) = PS 614 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 615 616 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 617 Instruction *Pos); 618 619 Align getShadowAlign(Align InstAlignment); 620 621 private: 622 /// Collapses the shadow with aggregate type into a single primitive shadow 623 /// value. 624 template <class AggregateType> 625 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 626 IRBuilder<> &IRB); 627 628 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 629 630 /// Returns the shadow value of an argument A. 631 Value *getShadowForTLSArgument(Argument *A); 632 633 /// The fast path of loading shadow in legacy mode. 634 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 635 Align ShadowAlign, Instruction *Pos); 636 637 /// The fast path of loading shadow in fast-16-label mode. 638 std::pair<Value *, Value *> 639 loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 640 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 641 Instruction *Pos); 642 643 Align getOriginAlign(Align InstAlignment); 644 645 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 646 /// is __dfsan_load_label_and_origin. This function returns the union of all 647 /// labels and the origin of the first taint label. However this is an 648 /// additional call with many instructions. To ensure common cases are fast, 649 /// checks if it is possible to load labels and origins without using the 650 /// callback function. 651 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 652 653 /// Returns a chain at the current stack with previous origin V. 654 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 655 656 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 657 /// Origin otherwise. 658 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 659 660 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 661 /// Size). 662 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 663 uint64_t StoreOriginSize, Align Alignment); 664 665 /// Stores Origin in terms of its Shadow value. 666 /// * Do not write origins for zero shadows because we do not trace origins 667 /// for untainted sinks. 668 /// * Use __dfsan_maybe_store_origin if there are too many origin store 669 /// instrumentations. 670 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 671 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 672 673 /// Convert a scalar value to an i1 by comparing with 0. 674 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 675 676 bool shouldInstrumentWithCall(); 677 678 int NumOriginStores = 0; 679 }; 680 681 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 682 public: 683 DFSanFunction &DFSF; 684 685 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 686 687 const DataLayout &getDataLayout() const { 688 return DFSF.F->getParent()->getDataLayout(); 689 } 690 691 // Combines shadow values and origins for all of I's operands. 692 void visitInstOperands(Instruction &I); 693 694 void visitUnaryOperator(UnaryOperator &UO); 695 void visitBinaryOperator(BinaryOperator &BO); 696 void visitCastInst(CastInst &CI); 697 void visitCmpInst(CmpInst &CI); 698 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 699 void visitLoadInst(LoadInst &LI); 700 void visitStoreInst(StoreInst &SI); 701 void visitAtomicRMWInst(AtomicRMWInst &I); 702 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 703 void visitReturnInst(ReturnInst &RI); 704 void visitCallBase(CallBase &CB); 705 void visitPHINode(PHINode &PN); 706 void visitExtractElementInst(ExtractElementInst &I); 707 void visitInsertElementInst(InsertElementInst &I); 708 void visitShuffleVectorInst(ShuffleVectorInst &I); 709 void visitExtractValueInst(ExtractValueInst &I); 710 void visitInsertValueInst(InsertValueInst &I); 711 void visitAllocaInst(AllocaInst &I); 712 void visitSelectInst(SelectInst &I); 713 void visitMemSetInst(MemSetInst &I); 714 void visitMemTransferInst(MemTransferInst &I); 715 716 private: 717 void visitCASOrRMW(Align InstAlignment, Instruction &I); 718 719 // Returns false when this is an invoke of a custom function. 720 bool visitWrappedCallBase(Function &F, CallBase &CB); 721 722 // Combines origins for all of I's operands. 723 void visitInstOperandOrigins(Instruction &I); 724 725 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 726 IRBuilder<> &IRB); 727 728 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 729 IRBuilder<> &IRB); 730 }; 731 732 } // end anonymous namespace 733 734 DataFlowSanitizer::DataFlowSanitizer( 735 const std::vector<std::string> &ABIListFiles) { 736 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 737 llvm::append_range(AllABIListFiles, ClABIListFiles); 738 // FIXME: should we propagate vfs::FileSystem to this constructor? 739 ABIList.set( 740 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 741 } 742 743 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 744 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 745 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 746 if (T->isVarArg()) 747 ArgTypes.push_back(PrimitiveShadowPtrTy); 748 Type *RetType = T->getReturnType(); 749 if (!RetType->isVoidTy()) 750 RetType = StructType::get(RetType, PrimitiveShadowTy); 751 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 752 } 753 754 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 755 assert(!T->isVarArg()); 756 SmallVector<Type *, 4> ArgTypes; 757 ArgTypes.push_back(T->getPointerTo()); 758 ArgTypes.append(T->param_begin(), T->param_end()); 759 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 760 Type *RetType = T->getReturnType(); 761 if (!RetType->isVoidTy()) 762 ArgTypes.push_back(PrimitiveShadowPtrTy); 763 764 if (shouldTrackOrigins()) { 765 ArgTypes.append(T->getNumParams(), OriginTy); 766 if (!RetType->isVoidTy()) 767 ArgTypes.push_back(OriginPtrTy); 768 } 769 770 return FunctionType::get(T->getReturnType(), ArgTypes, false); 771 } 772 773 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 774 SmallVector<Type *, 4> ArgTypes; 775 776 // Some parameters of the custom function being constructed are 777 // parameters of T. Record the mapping from parameters of T to 778 // parameters of the custom function, so that parameter attributes 779 // at call sites can be updated. 780 std::vector<unsigned> ArgumentIndexMapping; 781 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 782 Type *ParamType = T->getParamType(I); 783 FunctionType *FT; 784 if (isa<PointerType>(ParamType) && 785 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 786 ArgumentIndexMapping.push_back(ArgTypes.size()); 787 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 788 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 789 } else { 790 ArgumentIndexMapping.push_back(ArgTypes.size()); 791 ArgTypes.push_back(ParamType); 792 } 793 } 794 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 795 ArgTypes.push_back(PrimitiveShadowTy); 796 if (T->isVarArg()) 797 ArgTypes.push_back(PrimitiveShadowPtrTy); 798 Type *RetType = T->getReturnType(); 799 if (!RetType->isVoidTy()) 800 ArgTypes.push_back(PrimitiveShadowPtrTy); 801 802 if (shouldTrackOrigins()) { 803 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 804 ArgTypes.push_back(OriginTy); 805 if (T->isVarArg()) 806 ArgTypes.push_back(OriginPtrTy); 807 if (!RetType->isVoidTy()) 808 ArgTypes.push_back(OriginPtrTy); 809 } 810 811 return TransformedFunction( 812 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 813 ArgumentIndexMapping); 814 } 815 816 bool DataFlowSanitizer::isZeroShadow(Value *V) { 817 if (!shouldTrackFieldsAndIndices()) 818 return ZeroPrimitiveShadow == V; 819 820 Type *T = V->getType(); 821 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 822 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 823 return CI->isZero(); 824 return false; 825 } 826 827 return isa<ConstantAggregateZero>(V); 828 } 829 830 bool DataFlowSanitizer::shouldTrackOrigins() { 831 static const bool ShouldTrackOrigins = 832 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 833 ClFast16Labels; 834 return ShouldTrackOrigins; 835 } 836 837 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 838 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 839 } 840 841 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 842 if (!shouldTrackFieldsAndIndices()) 843 return ZeroPrimitiveShadow; 844 845 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 846 return ZeroPrimitiveShadow; 847 Type *ShadowTy = getShadowTy(OrigTy); 848 return ConstantAggregateZero::get(ShadowTy); 849 } 850 851 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 852 return getZeroShadow(V->getType()); 853 } 854 855 static Value *expandFromPrimitiveShadowRecursive( 856 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 857 Value *PrimitiveShadow, IRBuilder<> &IRB) { 858 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 859 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 860 861 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 862 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 863 Indices.push_back(Idx); 864 Shadow = expandFromPrimitiveShadowRecursive( 865 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 866 Indices.pop_back(); 867 } 868 return Shadow; 869 } 870 871 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 872 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 873 Indices.push_back(Idx); 874 Shadow = expandFromPrimitiveShadowRecursive( 875 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 876 Indices.pop_back(); 877 } 878 return Shadow; 879 } 880 llvm_unreachable("Unexpected shadow type"); 881 } 882 883 bool DFSanFunction::shouldInstrumentWithCall() { 884 return ClInstrumentWithCallThreshold >= 0 && 885 NumOriginStores >= ClInstrumentWithCallThreshold; 886 } 887 888 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 889 Instruction *Pos) { 890 Type *ShadowTy = DFS.getShadowTy(T); 891 892 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 893 return PrimitiveShadow; 894 895 if (DFS.isZeroShadow(PrimitiveShadow)) 896 return DFS.getZeroShadow(ShadowTy); 897 898 IRBuilder<> IRB(Pos); 899 SmallVector<unsigned, 4> Indices; 900 Value *Shadow = UndefValue::get(ShadowTy); 901 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 902 PrimitiveShadow, IRB); 903 904 // Caches the primitive shadow value that built the shadow value. 905 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 906 return Shadow; 907 } 908 909 template <class AggregateType> 910 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 911 IRBuilder<> &IRB) { 912 if (!AT->getNumElements()) 913 return DFS.ZeroPrimitiveShadow; 914 915 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 916 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 917 918 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 919 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 920 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 921 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 922 } 923 return Aggregator; 924 } 925 926 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 927 IRBuilder<> &IRB) { 928 Type *ShadowTy = Shadow->getType(); 929 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 930 return Shadow; 931 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 932 return collapseAggregateShadow<>(AT, Shadow, IRB); 933 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 934 return collapseAggregateShadow<>(ST, Shadow, IRB); 935 llvm_unreachable("Unexpected shadow type"); 936 } 937 938 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 939 Instruction *Pos) { 940 Type *ShadowTy = Shadow->getType(); 941 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 942 return Shadow; 943 944 assert(DFS.shouldTrackFieldsAndIndices()); 945 946 // Checks if the cached collapsed shadow value dominates Pos. 947 Value *&CS = CachedCollapsedShadows[Shadow]; 948 if (CS && DT.dominates(CS, Pos)) 949 return CS; 950 951 IRBuilder<> IRB(Pos); 952 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 953 // Caches the converted primitive shadow value. 954 CS = PrimitiveShadow; 955 return PrimitiveShadow; 956 } 957 958 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 959 if (!shouldTrackFieldsAndIndices()) 960 return PrimitiveShadowTy; 961 962 if (!OrigTy->isSized()) 963 return PrimitiveShadowTy; 964 if (isa<IntegerType>(OrigTy)) 965 return PrimitiveShadowTy; 966 if (isa<VectorType>(OrigTy)) 967 return PrimitiveShadowTy; 968 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 969 return ArrayType::get(getShadowTy(AT->getElementType()), 970 AT->getNumElements()); 971 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 972 SmallVector<Type *, 4> Elements; 973 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 974 Elements.push_back(getShadowTy(ST->getElementType(I))); 975 return StructType::get(*Ctx, Elements); 976 } 977 return PrimitiveShadowTy; 978 } 979 980 Type *DataFlowSanitizer::getShadowTy(Value *V) { 981 return getShadowTy(V->getType()); 982 } 983 984 bool DataFlowSanitizer::init(Module &M) { 985 Triple TargetTriple(M.getTargetTriple()); 986 const DataLayout &DL = M.getDataLayout(); 987 988 Mod = &M; 989 Ctx = &M.getContext(); 990 Int8Ptr = Type::getInt8PtrTy(*Ctx); 991 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 992 OriginPtrTy = PointerType::getUnqual(OriginTy); 993 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 994 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 995 IntptrTy = DL.getIntPtrType(*Ctx); 996 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 997 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 998 OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL); 999 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1000 1001 switch (TargetTriple.getArch()) { 1002 case Triple::x86_64: 1003 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 1004 break; 1005 case Triple::mips64: 1006 case Triple::mips64el: 1007 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 1008 break; 1009 case Triple::aarch64: 1010 case Triple::aarch64_be: 1011 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 1012 DFSanRuntimeShadowMask = true; 1013 break; 1014 default: 1015 report_fatal_error("unsupported triple"); 1016 } 1017 1018 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 1019 DFSanUnionFnTy = 1020 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 1021 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1022 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1023 /*isVarArg=*/false); 1024 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1025 DFSanLoadLabelAndOriginFnTy = 1026 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1027 /*isVarArg=*/false); 1028 DFSanUnimplementedFnTy = FunctionType::get( 1029 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1030 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1031 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1032 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1033 DFSanSetLabelArgs, /*isVarArg=*/false); 1034 DFSanNonzeroLabelFnTy = 1035 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1036 DFSanVarargWrapperFnTy = FunctionType::get( 1037 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1038 DFSanCmpCallbackFnTy = 1039 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1040 /*isVarArg=*/false); 1041 DFSanChainOriginFnTy = 1042 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1043 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1044 Int8Ptr, IntptrTy, OriginTy}; 1045 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1046 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1047 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1048 DFSanMemOriginTransferFnTy = FunctionType::get( 1049 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1050 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1051 DFSanLoadStoreCallbackFnTy = 1052 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1053 /*isVarArg=*/false); 1054 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1055 DFSanMemTransferCallbackFnTy = 1056 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1057 /*isVarArg=*/false); 1058 1059 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1060 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1061 return true; 1062 } 1063 1064 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1065 return !ABIList.isIn(*F, "uninstrumented"); 1066 } 1067 1068 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1069 return !ABIList.isIn(*GA, "uninstrumented"); 1070 } 1071 1072 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1073 return ClArgsABI ? IA_Args : IA_TLS; 1074 } 1075 1076 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1077 if (ABIList.isIn(*F, "functional")) 1078 return WK_Functional; 1079 if (ABIList.isIn(*F, "discard")) 1080 return WK_Discard; 1081 if (ABIList.isIn(*F, "custom")) 1082 return WK_Custom; 1083 1084 return WK_Warning; 1085 } 1086 1087 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 1088 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 1089 GV->setName(Prefix + GVName); 1090 1091 // Try to change the name of the function in module inline asm. We only do 1092 // this for specific asm directives, currently only ".symver", to try to avoid 1093 // corrupting asm which happens to contain the symbol name as a substring. 1094 // Note that the substitution for .symver assumes that the versioned symbol 1095 // also has an instrumented name. 1096 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1097 std::string SearchStr = ".symver " + GVName + ","; 1098 size_t Pos = Asm.find(SearchStr); 1099 if (Pos != std::string::npos) { 1100 Asm.replace(Pos, SearchStr.size(), 1101 ".symver " + Prefix + GVName + "," + Prefix); 1102 GV->getParent()->setModuleInlineAsm(Asm); 1103 } 1104 } 1105 1106 Function * 1107 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1108 GlobalValue::LinkageTypes NewFLink, 1109 FunctionType *NewFT) { 1110 FunctionType *FT = F->getFunctionType(); 1111 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1112 NewFName, F->getParent()); 1113 NewF->copyAttributesFrom(F); 1114 NewF->removeAttributes( 1115 AttributeList::ReturnIndex, 1116 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1117 1118 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1119 if (F->isVarArg()) { 1120 NewF->removeAttributes(AttributeList::FunctionIndex, 1121 AttrBuilder().addAttribute("split-stack")); 1122 CallInst::Create(DFSanVarargWrapperFn, 1123 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1124 BB); 1125 new UnreachableInst(*Ctx, BB); 1126 } else { 1127 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1128 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1129 1130 CallInst *CI = CallInst::Create(F, Args, "", BB); 1131 if (FT->getReturnType()->isVoidTy()) 1132 ReturnInst::Create(*Ctx, BB); 1133 else 1134 ReturnInst::Create(*Ctx, CI, BB); 1135 } 1136 1137 return NewF; 1138 } 1139 1140 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1141 StringRef FName) { 1142 FunctionType *FTT = getTrampolineFunctionType(FT); 1143 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1144 Function *F = dyn_cast<Function>(C.getCallee()); 1145 if (F && F->isDeclaration()) { 1146 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1147 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1148 std::vector<Value *> Args; 1149 Function::arg_iterator AI = F->arg_begin() + 1; 1150 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1151 Args.push_back(&*AI); 1152 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1153 Type *RetType = FT->getReturnType(); 1154 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1155 : ReturnInst::Create(*Ctx, CI, BB); 1156 1157 // F is called by a wrapped custom function with primitive shadows. So 1158 // its arguments and return value need conversion. 1159 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1160 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1161 ++ValAI; 1162 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1163 Value *Shadow = 1164 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1165 DFSF.ValShadowMap[&*ValAI] = Shadow; 1166 } 1167 Function::arg_iterator RetShadowAI = ShadowAI; 1168 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1169 if (ShouldTrackOrigins) { 1170 ValAI = F->arg_begin(); 1171 ++ValAI; 1172 Function::arg_iterator OriginAI = ShadowAI; 1173 if (!RetType->isVoidTy()) 1174 ++OriginAI; 1175 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1176 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1177 } 1178 } 1179 DFSanVisitor(DFSF).visitCallInst(*CI); 1180 if (!RetType->isVoidTy()) { 1181 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1182 DFSF.getShadow(RI->getReturnValue()), RI); 1183 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1184 if (ShouldTrackOrigins) { 1185 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1186 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1187 } 1188 } 1189 } 1190 1191 return cast<Constant>(C.getCallee()); 1192 } 1193 1194 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1195 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1196 { 1197 AttributeList AL; 1198 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1199 Attribute::NoUnwind); 1200 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1201 Attribute::ReadNone); 1202 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1203 Attribute::ZExt); 1204 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1205 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1206 DFSanUnionFn = 1207 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1208 } 1209 { 1210 AttributeList AL; 1211 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1212 Attribute::NoUnwind); 1213 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1214 Attribute::ReadNone); 1215 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1216 Attribute::ZExt); 1217 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1218 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1219 DFSanCheckedUnionFn = 1220 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1221 } 1222 { 1223 AttributeList AL; 1224 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1225 Attribute::NoUnwind); 1226 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1227 Attribute::ReadOnly); 1228 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1229 Attribute::ZExt); 1230 DFSanUnionLoadFn = 1231 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1232 } 1233 { 1234 AttributeList AL; 1235 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1236 Attribute::NoUnwind); 1237 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1238 Attribute::ReadOnly); 1239 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1240 Attribute::ZExt); 1241 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1242 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1243 } 1244 { 1245 AttributeList AL; 1246 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1247 Attribute::NoUnwind); 1248 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1249 Attribute::ReadOnly); 1250 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1251 Attribute::ZExt); 1252 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1253 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1254 } 1255 DFSanUnimplementedFn = 1256 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1257 { 1258 AttributeList AL; 1259 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1260 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1261 DFSanSetLabelFn = 1262 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1263 } 1264 DFSanNonzeroLabelFn = 1265 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1266 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1267 DFSanVarargWrapperFnTy); 1268 { 1269 AttributeList AL; 1270 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1271 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1272 Attribute::ZExt); 1273 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1274 DFSanChainOriginFnTy, AL); 1275 } 1276 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1277 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1278 1279 { 1280 AttributeList AL; 1281 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1282 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1283 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1284 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1285 } 1286 1287 DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts()); 1288 DFSanRuntimeFunctions.insert( 1289 DFSanCheckedUnionFn.getCallee()->stripPointerCasts()); 1290 DFSanRuntimeFunctions.insert( 1291 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1292 DFSanRuntimeFunctions.insert( 1293 DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts()); 1294 DFSanRuntimeFunctions.insert( 1295 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1296 DFSanRuntimeFunctions.insert( 1297 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1298 DFSanRuntimeFunctions.insert( 1299 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1300 DFSanRuntimeFunctions.insert( 1301 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1302 DFSanRuntimeFunctions.insert( 1303 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1304 DFSanRuntimeFunctions.insert( 1305 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1306 DFSanRuntimeFunctions.insert( 1307 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1308 DFSanRuntimeFunctions.insert( 1309 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1310 DFSanRuntimeFunctions.insert( 1311 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1312 DFSanRuntimeFunctions.insert( 1313 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1314 DFSanRuntimeFunctions.insert( 1315 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1316 DFSanRuntimeFunctions.insert( 1317 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1318 } 1319 1320 // Initializes event callback functions and declare them in the module 1321 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1322 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1323 DFSanLoadStoreCallbackFnTy); 1324 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1325 DFSanLoadStoreCallbackFnTy); 1326 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1327 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1328 DFSanCmpCallbackFn = 1329 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1330 } 1331 1332 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1333 // These variables can be used: 1334 // - by the runtime (to discover what the shadow width was, during 1335 // compilation) 1336 // - in testing (to avoid hardcoding the shadow width and type but instead 1337 // extract them by pattern matching) 1338 Type *IntTy = Type::getInt32Ty(*Ctx); 1339 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1340 return new GlobalVariable( 1341 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1342 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1343 }); 1344 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1345 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1346 GlobalValue::WeakODRLinkage, 1347 ConstantInt::get(IntTy, ShadowWidthBytes), 1348 "__dfsan_shadow_width_bytes"); 1349 }); 1350 } 1351 1352 bool DataFlowSanitizer::runImpl(Module &M) { 1353 init(M); 1354 1355 if (ABIList.isIn(M, "skip")) 1356 return false; 1357 1358 const unsigned InitialGlobalSize = M.global_size(); 1359 const unsigned InitialModuleSize = M.size(); 1360 1361 bool Changed = false; 1362 1363 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1364 Type *Ty) -> Constant * { 1365 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1366 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1367 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1368 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1369 } 1370 return C; 1371 }; 1372 1373 // These globals must be kept in sync with the ones in dfsan.cpp. 1374 ArgTLS = 1375 GetOrInsertGlobal("__dfsan_arg_tls", 1376 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1377 RetvalTLS = GetOrInsertGlobal( 1378 "__dfsan_retval_tls", 1379 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1380 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1381 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1382 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1383 1384 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1385 Changed = true; 1386 return new GlobalVariable( 1387 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1388 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1389 "__dfsan_track_origins"); 1390 }); 1391 1392 injectMetadataGlobals(M); 1393 1394 ExternalShadowMask = 1395 Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy); 1396 1397 initializeCallbackFunctions(M); 1398 initializeRuntimeFunctions(M); 1399 1400 std::vector<Function *> FnsToInstrument; 1401 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1402 for (Function &F : M) 1403 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1404 FnsToInstrument.push_back(&F); 1405 1406 // Give function aliases prefixes when necessary, and build wrappers where the 1407 // instrumentedness is inconsistent. 1408 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1409 AI != AE;) { 1410 GlobalAlias *GA = &*AI; 1411 ++AI; 1412 // Don't stop on weak. We assume people aren't playing games with the 1413 // instrumentedness of overridden weak aliases. 1414 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1415 if (!F) 1416 continue; 1417 1418 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1419 if (GAInst && FInst) { 1420 addGlobalNamePrefix(GA); 1421 } else if (GAInst != FInst) { 1422 // Non-instrumented alias of an instrumented function, or vice versa. 1423 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1424 // below will take care of instrumenting it. 1425 Function *NewF = 1426 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1427 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1428 NewF->takeName(GA); 1429 GA->eraseFromParent(); 1430 FnsToInstrument.push_back(NewF); 1431 } 1432 } 1433 1434 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1435 .addAttribute(Attribute::ReadNone); 1436 1437 // First, change the ABI of every function in the module. ABI-listed 1438 // functions keep their original ABI and get a wrapper function. 1439 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1440 FE = FnsToInstrument.end(); 1441 FI != FE; ++FI) { 1442 Function &F = **FI; 1443 FunctionType *FT = F.getFunctionType(); 1444 1445 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1446 FT->getReturnType()->isVoidTy()); 1447 1448 if (isInstrumented(&F)) { 1449 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1450 // easily identify cases of mismatching ABIs. 1451 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1452 FunctionType *NewFT = getArgsFunctionType(FT); 1453 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1454 F.getAddressSpace(), "", &M); 1455 NewF->copyAttributesFrom(&F); 1456 NewF->removeAttributes( 1457 AttributeList::ReturnIndex, 1458 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1459 for (Function::arg_iterator FArg = F.arg_begin(), 1460 NewFArg = NewF->arg_begin(), 1461 FArgEnd = F.arg_end(); 1462 FArg != FArgEnd; ++FArg, ++NewFArg) { 1463 FArg->replaceAllUsesWith(&*NewFArg); 1464 } 1465 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1466 1467 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1468 UI != UE;) { 1469 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1470 ++UI; 1471 if (BA) { 1472 BA->replaceAllUsesWith( 1473 BlockAddress::get(NewF, BA->getBasicBlock())); 1474 delete BA; 1475 } 1476 } 1477 F.replaceAllUsesWith( 1478 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1479 NewF->takeName(&F); 1480 F.eraseFromParent(); 1481 *FI = NewF; 1482 addGlobalNamePrefix(NewF); 1483 } else { 1484 addGlobalNamePrefix(&F); 1485 } 1486 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1487 // Build a wrapper function for F. The wrapper simply calls F, and is 1488 // added to FnsToInstrument so that any instrumentation according to its 1489 // WrapperKind is done in the second pass below. 1490 FunctionType *NewFT = 1491 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1492 1493 // If the function being wrapped has local linkage, then preserve the 1494 // function's linkage in the wrapper function. 1495 GlobalValue::LinkageTypes WrapperLinkage = 1496 F.hasLocalLinkage() ? F.getLinkage() 1497 : GlobalValue::LinkOnceODRLinkage; 1498 1499 Function *NewF = buildWrapperFunction( 1500 &F, 1501 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1502 std::string(F.getName()), 1503 WrapperLinkage, NewFT); 1504 if (getInstrumentedABI() == IA_TLS) 1505 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1506 1507 Value *WrappedFnCst = 1508 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1509 F.replaceAllUsesWith(WrappedFnCst); 1510 1511 UnwrappedFnMap[WrappedFnCst] = &F; 1512 *FI = NewF; 1513 1514 if (!F.isDeclaration()) { 1515 // This function is probably defining an interposition of an 1516 // uninstrumented function and hence needs to keep the original ABI. 1517 // But any functions it may call need to use the instrumented ABI, so 1518 // we instrument it in a mode which preserves the original ABI. 1519 FnsWithNativeABI.insert(&F); 1520 1521 // This code needs to rebuild the iterators, as they may be invalidated 1522 // by the push_back, taking care that the new range does not include 1523 // any functions added by this code. 1524 size_t N = FI - FnsToInstrument.begin(), 1525 Count = FE - FnsToInstrument.begin(); 1526 FnsToInstrument.push_back(&F); 1527 FI = FnsToInstrument.begin() + N; 1528 FE = FnsToInstrument.begin() + Count; 1529 } 1530 // Hopefully, nobody will try to indirectly call a vararg 1531 // function... yet. 1532 } else if (FT->isVarArg()) { 1533 UnwrappedFnMap[&F] = &F; 1534 *FI = nullptr; 1535 } 1536 } 1537 1538 for (Function *F : FnsToInstrument) { 1539 if (!F || F->isDeclaration()) 1540 continue; 1541 1542 removeUnreachableBlocks(*F); 1543 1544 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1545 1546 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1547 // Build a copy of the list before iterating over it. 1548 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1549 1550 for (BasicBlock *BB : BBList) { 1551 Instruction *Inst = &BB->front(); 1552 while (true) { 1553 // DFSanVisitor may split the current basic block, changing the current 1554 // instruction's next pointer and moving the next instruction to the 1555 // tail block from which we should continue. 1556 Instruction *Next = Inst->getNextNode(); 1557 // DFSanVisitor may delete Inst, so keep track of whether it was a 1558 // terminator. 1559 bool IsTerminator = Inst->isTerminator(); 1560 if (!DFSF.SkipInsts.count(Inst)) 1561 DFSanVisitor(DFSF).visit(Inst); 1562 if (IsTerminator) 1563 break; 1564 Inst = Next; 1565 } 1566 } 1567 1568 // We will not necessarily be able to compute the shadow for every phi node 1569 // until we have visited every block. Therefore, the code that handles phi 1570 // nodes adds them to the PHIFixups list so that they can be properly 1571 // handled here. 1572 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1573 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1574 ++Val) { 1575 P.ShadowPhi->setIncomingValue( 1576 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1577 if (P.OriginPhi) 1578 P.OriginPhi->setIncomingValue( 1579 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1580 } 1581 } 1582 1583 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1584 // places (i.e. instructions in basic blocks we haven't even begun visiting 1585 // yet). To make our life easier, do this work in a pass after the main 1586 // instrumentation. 1587 if (ClDebugNonzeroLabels) { 1588 for (Value *V : DFSF.NonZeroChecks) { 1589 Instruction *Pos; 1590 if (Instruction *I = dyn_cast<Instruction>(V)) 1591 Pos = I->getNextNode(); 1592 else 1593 Pos = &DFSF.F->getEntryBlock().front(); 1594 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1595 Pos = Pos->getNextNode(); 1596 IRBuilder<> IRB(Pos); 1597 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1598 Value *Ne = 1599 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1600 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1601 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1602 IRBuilder<> ThenIRB(BI); 1603 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1604 } 1605 } 1606 } 1607 1608 return Changed || !FnsToInstrument.empty() || 1609 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1610 } 1611 1612 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1613 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1614 if (ArgOffset) 1615 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1616 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1617 "_dfsarg"); 1618 } 1619 1620 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1621 return IRB.CreatePointerCast( 1622 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1623 } 1624 1625 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1626 1627 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1628 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1629 "_dfsarg_o"); 1630 } 1631 1632 Value *DFSanFunction::getOrigin(Value *V) { 1633 assert(DFS.shouldTrackOrigins()); 1634 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1635 return DFS.ZeroOrigin; 1636 Value *&Origin = ValOriginMap[V]; 1637 if (!Origin) { 1638 if (Argument *A = dyn_cast<Argument>(V)) { 1639 if (IsNativeABI) 1640 return DFS.ZeroOrigin; 1641 switch (IA) { 1642 case DataFlowSanitizer::IA_TLS: { 1643 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1644 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1645 IRBuilder<> IRB(ArgOriginTLSPos); 1646 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1647 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1648 } else { 1649 // Overflow 1650 Origin = DFS.ZeroOrigin; 1651 } 1652 break; 1653 } 1654 case DataFlowSanitizer::IA_Args: { 1655 Origin = DFS.ZeroOrigin; 1656 break; 1657 } 1658 } 1659 } else { 1660 Origin = DFS.ZeroOrigin; 1661 } 1662 } 1663 return Origin; 1664 } 1665 1666 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1667 if (!DFS.shouldTrackOrigins()) 1668 return; 1669 assert(!ValOriginMap.count(I)); 1670 assert(Origin->getType() == DFS.OriginTy); 1671 ValOriginMap[I] = Origin; 1672 } 1673 1674 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1675 unsigned ArgOffset = 0; 1676 const DataLayout &DL = F->getParent()->getDataLayout(); 1677 for (auto &FArg : F->args()) { 1678 if (!FArg.getType()->isSized()) { 1679 if (A == &FArg) 1680 break; 1681 continue; 1682 } 1683 1684 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1685 if (A != &FArg) { 1686 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1687 if (ArgOffset > ArgTLSSize) 1688 break; // ArgTLS overflows, uses a zero shadow. 1689 continue; 1690 } 1691 1692 if (ArgOffset + Size > ArgTLSSize) 1693 break; // ArgTLS overflows, uses a zero shadow. 1694 1695 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1696 IRBuilder<> IRB(ArgTLSPos); 1697 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1698 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1699 ShadowTLSAlignment); 1700 } 1701 1702 return DFS.getZeroShadow(A); 1703 } 1704 1705 Value *DFSanFunction::getShadow(Value *V) { 1706 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1707 return DFS.getZeroShadow(V); 1708 Value *&Shadow = ValShadowMap[V]; 1709 if (!Shadow) { 1710 if (Argument *A = dyn_cast<Argument>(V)) { 1711 if (IsNativeABI) 1712 return DFS.getZeroShadow(V); 1713 switch (IA) { 1714 case DataFlowSanitizer::IA_TLS: { 1715 Shadow = getShadowForTLSArgument(A); 1716 break; 1717 } 1718 case DataFlowSanitizer::IA_Args: { 1719 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1720 Function::arg_iterator Arg = F->arg_begin(); 1721 std::advance(Arg, ArgIdx); 1722 Shadow = &*Arg; 1723 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1724 break; 1725 } 1726 } 1727 NonZeroChecks.push_back(Shadow); 1728 } else { 1729 Shadow = DFS.getZeroShadow(V); 1730 } 1731 } 1732 return Shadow; 1733 } 1734 1735 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1736 assert(!ValShadowMap.count(I)); 1737 assert(DFS.shouldTrackFieldsAndIndices() || 1738 Shadow->getType() == DFS.PrimitiveShadowTy); 1739 ValShadowMap[I] = Shadow; 1740 } 1741 1742 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1743 // Returns Addr & shadow_mask 1744 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1745 Value *ShadowPtrMaskValue; 1746 if (DFSanRuntimeShadowMask) 1747 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1748 else 1749 ShadowPtrMaskValue = ShadowPtrMask; 1750 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1751 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1752 } 1753 1754 std::pair<Value *, Value *> 1755 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1756 Instruction *Pos) { 1757 // Returns ((Addr & shadow_mask) + origin_base) & ~4UL 1758 IRBuilder<> IRB(Pos); 1759 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1760 Value *ShadowPtr = IRB.CreateIntToPtr( 1761 IRB.CreateMul(ShadowOffset, ShadowPtrMul), PrimitiveShadowPtrTy); 1762 Value *OriginPtr = nullptr; 1763 if (shouldTrackOrigins()) { 1764 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase); 1765 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1766 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1767 // So Mask is unnecessary. 1768 if (Alignment < MinOriginAlignment) { 1769 uint64_t Mask = MinOriginAlignment.value() - 1; 1770 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1771 } 1772 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1773 } 1774 return {ShadowPtr, OriginPtr}; 1775 } 1776 1777 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1778 // Returns (Addr & shadow_mask) x 2 1779 IRBuilder<> IRB(Pos); 1780 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1781 return IRB.CreateIntToPtr(IRB.CreateMul(ShadowOffset, ShadowPtrMul), 1782 PrimitiveShadowPtrTy); 1783 } 1784 1785 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1786 Instruction *Pos) { 1787 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1788 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1789 } 1790 1791 // Generates IR to compute the union of the two given shadows, inserting it 1792 // before Pos. The combined value is with primitive type. 1793 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1794 if (DFS.isZeroShadow(V1)) 1795 return collapseToPrimitiveShadow(V2, Pos); 1796 if (DFS.isZeroShadow(V2)) 1797 return collapseToPrimitiveShadow(V1, Pos); 1798 if (V1 == V2) 1799 return collapseToPrimitiveShadow(V1, Pos); 1800 1801 auto V1Elems = ShadowElements.find(V1); 1802 auto V2Elems = ShadowElements.find(V2); 1803 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1804 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1805 V2Elems->second.begin(), V2Elems->second.end())) { 1806 return collapseToPrimitiveShadow(V1, Pos); 1807 } 1808 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1809 V1Elems->second.begin(), V1Elems->second.end())) { 1810 return collapseToPrimitiveShadow(V2, Pos); 1811 } 1812 } else if (V1Elems != ShadowElements.end()) { 1813 if (V1Elems->second.count(V2)) 1814 return collapseToPrimitiveShadow(V1, Pos); 1815 } else if (V2Elems != ShadowElements.end()) { 1816 if (V2Elems->second.count(V1)) 1817 return collapseToPrimitiveShadow(V2, Pos); 1818 } 1819 1820 auto Key = std::make_pair(V1, V2); 1821 if (V1 > V2) 1822 std::swap(Key.first, Key.second); 1823 CachedShadow &CCS = CachedShadows[Key]; 1824 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1825 return CCS.Shadow; 1826 1827 // Converts inputs shadows to shadows with primitive types. 1828 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1829 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1830 1831 IRBuilder<> IRB(Pos); 1832 if (ClFast16Labels) { 1833 CCS.Block = Pos->getParent(); 1834 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1835 } else if (AvoidNewBlocks) { 1836 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1837 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1838 Call->addParamAttr(0, Attribute::ZExt); 1839 Call->addParamAttr(1, Attribute::ZExt); 1840 1841 CCS.Block = Pos->getParent(); 1842 CCS.Shadow = Call; 1843 } else { 1844 BasicBlock *Head = Pos->getParent(); 1845 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1846 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1847 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1848 IRBuilder<> ThenIRB(BI); 1849 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1850 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1851 Call->addParamAttr(0, Attribute::ZExt); 1852 Call->addParamAttr(1, Attribute::ZExt); 1853 1854 BasicBlock *Tail = BI->getSuccessor(0); 1855 PHINode *Phi = 1856 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1857 Phi->addIncoming(Call, Call->getParent()); 1858 Phi->addIncoming(PV1, Head); 1859 1860 CCS.Block = Tail; 1861 CCS.Shadow = Phi; 1862 } 1863 1864 std::set<Value *> UnionElems; 1865 if (V1Elems != ShadowElements.end()) { 1866 UnionElems = V1Elems->second; 1867 } else { 1868 UnionElems.insert(V1); 1869 } 1870 if (V2Elems != ShadowElements.end()) { 1871 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1872 } else { 1873 UnionElems.insert(V2); 1874 } 1875 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1876 1877 return CCS.Shadow; 1878 } 1879 1880 // A convenience function which folds the shadows of each of the operands 1881 // of the provided instruction Inst, inserting the IR before Inst. Returns 1882 // the computed union Value. 1883 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1884 if (Inst->getNumOperands() == 0) 1885 return DFS.getZeroShadow(Inst); 1886 1887 Value *Shadow = getShadow(Inst->getOperand(0)); 1888 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1889 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1890 1891 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1892 } 1893 1894 void DFSanVisitor::visitInstOperands(Instruction &I) { 1895 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1896 DFSF.setShadow(&I, CombinedShadow); 1897 visitInstOperandOrigins(I); 1898 } 1899 1900 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1901 const std::vector<Value *> &Origins, 1902 Instruction *Pos, ConstantInt *Zero) { 1903 assert(Shadows.size() == Origins.size()); 1904 size_t Size = Origins.size(); 1905 if (Size == 0) 1906 return DFS.ZeroOrigin; 1907 Value *Origin = nullptr; 1908 if (!Zero) 1909 Zero = DFS.ZeroPrimitiveShadow; 1910 for (size_t I = 0; I != Size; ++I) { 1911 Value *OpOrigin = Origins[I]; 1912 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1913 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1914 continue; 1915 if (!Origin) { 1916 Origin = OpOrigin; 1917 continue; 1918 } 1919 Value *OpShadow = Shadows[I]; 1920 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1921 IRBuilder<> IRB(Pos); 1922 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1923 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1924 } 1925 return Origin ? Origin : DFS.ZeroOrigin; 1926 } 1927 1928 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1929 size_t Size = Inst->getNumOperands(); 1930 std::vector<Value *> Shadows(Size); 1931 std::vector<Value *> Origins(Size); 1932 for (unsigned I = 0; I != Size; ++I) { 1933 Shadows[I] = getShadow(Inst->getOperand(I)); 1934 Origins[I] = getOrigin(Inst->getOperand(I)); 1935 } 1936 return combineOrigins(Shadows, Origins, Inst); 1937 } 1938 1939 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1940 if (!DFSF.DFS.shouldTrackOrigins()) 1941 return; 1942 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1943 DFSF.setOrigin(&I, CombinedOrigin); 1944 } 1945 1946 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1947 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1948 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1949 } 1950 1951 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1952 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1953 return Align(std::max(MinOriginAlignment, Alignment)); 1954 } 1955 1956 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1957 Align InstAlignment) { 1958 assert(Size != 0); 1959 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1960 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1961 // load its origin aligned at 4. If not, although origins may be lost, it 1962 // should not happen very often. 1963 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1964 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1965 // * Otherwise we use __dfsan_load_label_and_origin. 1966 // This should ensure that common cases run efficiently. 1967 if (Size <= 2) 1968 return false; 1969 1970 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1971 if (Alignment >= MinOriginAlignment && 1972 Size % (64 / DFS.ShadowWidthBits) == 0) 1973 return false; 1974 1975 return true; 1976 } 1977 1978 std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast( 1979 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1980 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1981 // First OR all the WideShadows, then OR individual shadows within the 1982 // combined WideShadow. This is fewer instructions than ORing shadows 1983 // individually. 1984 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1985 std::vector<Value *> Shadows; 1986 std::vector<Value *> Origins; 1987 IRBuilder<> IRB(Pos); 1988 Value *WideAddr = 1989 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1990 Value *CombinedWideShadow = 1991 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1992 if (ShouldTrackOrigins) { 1993 Shadows.push_back(CombinedWideShadow); 1994 Origins.push_back(FirstOrigin); 1995 } 1996 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1997 Ofs += 64 / DFS.ShadowWidthBits) { 1998 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1999 ConstantInt::get(DFS.IntptrTy, 1)); 2000 Value *NextWideShadow = 2001 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 2002 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2003 if (ShouldTrackOrigins) { 2004 Shadows.push_back(NextWideShadow); 2005 OriginAddr = IRB.CreateGEP(DFS.OriginTy, OriginAddr, 2006 ConstantInt::get(DFS.IntptrTy, 1)); 2007 Origins.push_back( 2008 IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign)); 2009 } 2010 } 2011 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 2012 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2013 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2014 } 2015 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2016 ShouldTrackOrigins 2017 ? combineOrigins(Shadows, Origins, Pos, 2018 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2019 : DFS.ZeroOrigin}; 2020 } 2021 2022 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 2023 Align ShadowAlign, 2024 Instruction *Pos) { 2025 // Fast path for the common case where each byte has identical shadow: load 2026 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 2027 // shadow is non-equal. 2028 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 2029 IRBuilder<> FallbackIRB(FallbackBB); 2030 CallInst *FallbackCall = FallbackIRB.CreateCall( 2031 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2032 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2033 2034 // Compare each of the shadows stored in the loaded 64 bits to each other, 2035 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 2036 IRBuilder<> IRB(Pos); 2037 Value *WideAddr = 2038 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 2039 Value *WideShadow = 2040 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 2041 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 2042 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 2043 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 2044 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 2045 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 2046 2047 BasicBlock *Head = Pos->getParent(); 2048 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 2049 2050 if (DomTreeNode *OldNode = DT.getNode(Head)) { 2051 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 2052 2053 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 2054 for (auto *Child : Children) 2055 DT.changeImmediateDominator(Child, NewNode); 2056 } 2057 2058 // In the following code LastBr will refer to the previous basic block's 2059 // conditional branch instruction, whose true successor is fixed up to point 2060 // to the next block during the loop below or to the tail after the final 2061 // iteration. 2062 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 2063 ReplaceInstWithInst(Head->getTerminator(), LastBr); 2064 DT.addNewBlock(FallbackBB, Head); 2065 2066 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 2067 Ofs += 64 / DFS.ShadowWidthBits) { 2068 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 2069 DT.addNewBlock(NextBB, LastBr->getParent()); 2070 IRBuilder<> NextIRB(NextBB); 2071 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 2072 ConstantInt::get(DFS.IntptrTy, 1)); 2073 Value *NextWideShadow = 2074 NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), WideAddr, ShadowAlign); 2075 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 2076 LastBr->setSuccessor(0, NextBB); 2077 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 2078 } 2079 2080 LastBr->setSuccessor(0, Tail); 2081 FallbackIRB.CreateBr(Tail); 2082 PHINode *Shadow = 2083 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 2084 Shadow->addIncoming(FallbackCall, FallbackBB); 2085 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 2086 return Shadow; 2087 } 2088 2089 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 2090 // Addr has alignment Align, and take the union of each of those shadows. The 2091 // returned shadow always has primitive type. 2092 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2093 uint64_t Size, 2094 Align InstAlignment, 2095 Instruction *Pos) { 2096 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2097 2098 // Non-escaped loads. 2099 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2100 const auto SI = AllocaShadowMap.find(AI); 2101 if (SI != AllocaShadowMap.end()) { 2102 IRBuilder<> IRB(Pos); 2103 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2104 const auto OI = AllocaOriginMap.find(AI); 2105 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2106 return {ShadowLI, ShouldTrackOrigins 2107 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2108 : nullptr}; 2109 } 2110 } 2111 2112 // Load from constant addresses. 2113 SmallVector<const Value *, 2> Objs; 2114 getUnderlyingObjects(Addr, Objs); 2115 bool AllConstants = true; 2116 for (const Value *Obj : Objs) { 2117 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2118 continue; 2119 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2120 continue; 2121 2122 AllConstants = false; 2123 break; 2124 } 2125 if (AllConstants) 2126 return {DFS.ZeroPrimitiveShadow, 2127 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2128 2129 if (Size == 0) 2130 return {DFS.ZeroPrimitiveShadow, 2131 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2132 2133 // Use callback to load if this is not an optimizable case for origin 2134 // tracking. 2135 if (ShouldTrackOrigins && 2136 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2137 IRBuilder<> IRB(Pos); 2138 CallInst *Call = 2139 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2140 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2141 ConstantInt::get(DFS.IntptrTy, Size)}); 2142 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2143 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2144 DFS.PrimitiveShadowTy), 2145 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2146 } 2147 2148 // Other cases that support loading shadows or origins in a fast way. 2149 Value *ShadowAddr, *OriginAddr; 2150 std::tie(ShadowAddr, OriginAddr) = 2151 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2152 2153 const Align ShadowAlign = getShadowAlign(InstAlignment); 2154 const Align OriginAlign = getOriginAlign(InstAlignment); 2155 Value *Origin = nullptr; 2156 if (ShouldTrackOrigins) { 2157 IRBuilder<> IRB(Pos); 2158 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2159 } 2160 2161 switch (Size) { 2162 case 1: { 2163 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2164 LI->setAlignment(ShadowAlign); 2165 return {LI, Origin}; 2166 } 2167 case 2: { 2168 IRBuilder<> IRB(Pos); 2169 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2170 ConstantInt::get(DFS.IntptrTy, 1)); 2171 Value *Load = 2172 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2173 Value *Load1 = 2174 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2175 return {combineShadows(Load, Load1, Pos), Origin}; 2176 } 2177 } 2178 2179 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) 2180 return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2181 OriginAlign, Origin, Pos); 2182 2183 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) 2184 return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin}; 2185 2186 IRBuilder<> IRB(Pos); 2187 FunctionCallee &UnionLoadFn = 2188 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 2189 CallInst *FallbackCall = IRB.CreateCall( 2190 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2191 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2192 return {FallbackCall, Origin}; 2193 } 2194 2195 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2196 switch (AO) { 2197 case AtomicOrdering::NotAtomic: 2198 return AtomicOrdering::NotAtomic; 2199 case AtomicOrdering::Unordered: 2200 case AtomicOrdering::Monotonic: 2201 case AtomicOrdering::Acquire: 2202 return AtomicOrdering::Acquire; 2203 case AtomicOrdering::Release: 2204 case AtomicOrdering::AcquireRelease: 2205 return AtomicOrdering::AcquireRelease; 2206 case AtomicOrdering::SequentiallyConsistent: 2207 return AtomicOrdering::SequentiallyConsistent; 2208 } 2209 llvm_unreachable("Unknown ordering"); 2210 } 2211 2212 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2213 auto &DL = LI.getModule()->getDataLayout(); 2214 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2215 if (Size == 0) { 2216 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2217 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2218 return; 2219 } 2220 2221 // When an application load is atomic, increase atomic ordering between 2222 // atomic application loads and stores to ensure happen-before order; load 2223 // shadow data after application data; store zero shadow data before 2224 // application data. This ensure shadow loads return either labels of the 2225 // initial application data or zeros. 2226 if (LI.isAtomic()) 2227 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2228 2229 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2230 std::vector<Value *> Shadows; 2231 std::vector<Value *> Origins; 2232 Value *PrimitiveShadow, *Origin; 2233 std::tie(PrimitiveShadow, Origin) = 2234 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2235 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2236 if (ShouldTrackOrigins) { 2237 Shadows.push_back(PrimitiveShadow); 2238 Origins.push_back(Origin); 2239 } 2240 if (ClCombinePointerLabelsOnLoad) { 2241 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2242 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2243 if (ShouldTrackOrigins) { 2244 Shadows.push_back(PtrShadow); 2245 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2246 } 2247 } 2248 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2249 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2250 2251 Value *Shadow = 2252 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2253 DFSF.setShadow(&LI, Shadow); 2254 2255 if (ShouldTrackOrigins) { 2256 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2257 } 2258 2259 if (ClEventCallbacks) { 2260 IRBuilder<> IRB(Pos); 2261 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2262 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2263 } 2264 } 2265 2266 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2267 if (!DFS.shouldTrackOrigins()) 2268 return V; 2269 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2270 } 2271 2272 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2273 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2274 const DataLayout &DL = F->getParent()->getDataLayout(); 2275 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2276 if (IntptrSize == OriginSize) 2277 return Origin; 2278 assert(IntptrSize == OriginSize * 2); 2279 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2280 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2281 } 2282 2283 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2284 Value *StoreOriginAddr, 2285 uint64_t StoreOriginSize, Align Alignment) { 2286 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2287 const DataLayout &DL = F->getParent()->getDataLayout(); 2288 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2289 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2290 assert(IntptrAlignment >= MinOriginAlignment); 2291 assert(IntptrSize >= OriginSize); 2292 2293 unsigned Ofs = 0; 2294 Align CurrentAlignment = Alignment; 2295 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2296 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2297 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2298 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2299 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2300 Value *Ptr = 2301 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2302 : IntptrStoreOriginPtr; 2303 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2304 Ofs += IntptrSize / OriginSize; 2305 CurrentAlignment = IntptrAlignment; 2306 } 2307 } 2308 2309 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2310 ++I) { 2311 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2312 : StoreOriginAddr; 2313 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2314 CurrentAlignment = MinOriginAlignment; 2315 } 2316 } 2317 2318 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2319 const Twine &Name) { 2320 Type *VTy = V->getType(); 2321 assert(VTy->isIntegerTy()); 2322 if (VTy->getIntegerBitWidth() == 1) 2323 // Just converting a bool to a bool, so do nothing. 2324 return V; 2325 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2326 } 2327 2328 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2329 Value *Shadow, Value *Origin, 2330 Value *StoreOriginAddr, Align InstAlignment) { 2331 // Do not write origins for zero shadows because we do not trace origins for 2332 // untainted sinks. 2333 const Align OriginAlignment = getOriginAlign(InstAlignment); 2334 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2335 IRBuilder<> IRB(Pos); 2336 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2337 if (!ConstantShadow->isZeroValue()) 2338 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2339 OriginAlignment); 2340 return; 2341 } 2342 2343 if (shouldInstrumentWithCall()) { 2344 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2345 {CollapsedShadow, 2346 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2347 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2348 } else { 2349 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2350 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2351 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2352 IRBuilder<> IRBNew(CheckTerm); 2353 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2354 OriginAlignment); 2355 ++NumOriginStores; 2356 } 2357 } 2358 2359 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2360 Align ShadowAlign, 2361 Instruction *Pos) { 2362 IRBuilder<> IRB(Pos); 2363 IntegerType *ShadowTy = 2364 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2365 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2366 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2367 Value *ExtShadowAddr = 2368 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2369 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2370 // Do not write origins for 0 shadows because we do not trace origins for 2371 // untainted sinks. 2372 } 2373 2374 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2375 Align InstAlignment, 2376 Value *PrimitiveShadow, 2377 Value *Origin, 2378 Instruction *Pos) { 2379 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2380 2381 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2382 const auto SI = AllocaShadowMap.find(AI); 2383 if (SI != AllocaShadowMap.end()) { 2384 IRBuilder<> IRB(Pos); 2385 IRB.CreateStore(PrimitiveShadow, SI->second); 2386 2387 // Do not write origins for 0 shadows because we do not trace origins for 2388 // untainted sinks. 2389 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2390 const auto OI = AllocaOriginMap.find(AI); 2391 assert(OI != AllocaOriginMap.end() && Origin); 2392 IRB.CreateStore(Origin, OI->second); 2393 } 2394 return; 2395 } 2396 } 2397 2398 const Align ShadowAlign = getShadowAlign(InstAlignment); 2399 if (DFS.isZeroShadow(PrimitiveShadow)) { 2400 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2401 return; 2402 } 2403 2404 IRBuilder<> IRB(Pos); 2405 Value *ShadowAddr, *OriginAddr; 2406 std::tie(ShadowAddr, OriginAddr) = 2407 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2408 2409 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 2410 uint64_t Offset = 0; 2411 uint64_t LeftSize = Size; 2412 if (LeftSize >= ShadowVecSize) { 2413 auto *ShadowVecTy = 2414 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2415 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2416 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2417 ShadowVec = IRB.CreateInsertElement( 2418 ShadowVec, PrimitiveShadow, 2419 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2420 } 2421 Value *ShadowVecAddr = 2422 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2423 do { 2424 Value *CurShadowVecAddr = 2425 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2426 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2427 LeftSize -= ShadowVecSize; 2428 ++Offset; 2429 } while (LeftSize >= ShadowVecSize); 2430 Offset *= ShadowVecSize; 2431 } 2432 while (LeftSize > 0) { 2433 Value *CurShadowAddr = 2434 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2435 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2436 --LeftSize; 2437 ++Offset; 2438 } 2439 2440 if (ShouldTrackOrigins) { 2441 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2442 InstAlignment); 2443 } 2444 } 2445 2446 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2447 switch (AO) { 2448 case AtomicOrdering::NotAtomic: 2449 return AtomicOrdering::NotAtomic; 2450 case AtomicOrdering::Unordered: 2451 case AtomicOrdering::Monotonic: 2452 case AtomicOrdering::Release: 2453 return AtomicOrdering::Release; 2454 case AtomicOrdering::Acquire: 2455 case AtomicOrdering::AcquireRelease: 2456 return AtomicOrdering::AcquireRelease; 2457 case AtomicOrdering::SequentiallyConsistent: 2458 return AtomicOrdering::SequentiallyConsistent; 2459 } 2460 llvm_unreachable("Unknown ordering"); 2461 } 2462 2463 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2464 auto &DL = SI.getModule()->getDataLayout(); 2465 Value *Val = SI.getValueOperand(); 2466 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2467 if (Size == 0) 2468 return; 2469 2470 // When an application store is atomic, increase atomic ordering between 2471 // atomic application loads and stores to ensure happen-before order; load 2472 // shadow data after application data; store zero shadow data before 2473 // application data. This ensure shadow loads return either labels of the 2474 // initial application data or zeros. 2475 if (SI.isAtomic()) 2476 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2477 2478 const bool ShouldTrackOrigins = 2479 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2480 std::vector<Value *> Shadows; 2481 std::vector<Value *> Origins; 2482 2483 Value *Shadow = 2484 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2485 2486 if (ShouldTrackOrigins) { 2487 Shadows.push_back(Shadow); 2488 Origins.push_back(DFSF.getOrigin(Val)); 2489 } 2490 2491 Value *PrimitiveShadow; 2492 if (ClCombinePointerLabelsOnStore) { 2493 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2494 if (ShouldTrackOrigins) { 2495 Shadows.push_back(PtrShadow); 2496 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2497 } 2498 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2499 } else { 2500 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2501 } 2502 Value *Origin = nullptr; 2503 if (ShouldTrackOrigins) 2504 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2505 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2506 PrimitiveShadow, Origin, &SI); 2507 if (ClEventCallbacks) { 2508 IRBuilder<> IRB(&SI); 2509 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2510 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2511 } 2512 } 2513 2514 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2515 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2516 2517 Value *Val = I.getOperand(1); 2518 const auto &DL = I.getModule()->getDataLayout(); 2519 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2520 if (Size == 0) 2521 return; 2522 2523 // Conservatively set data at stored addresses and return with zero shadow to 2524 // prevent shadow data races. 2525 IRBuilder<> IRB(&I); 2526 Value *Addr = I.getOperand(0); 2527 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2528 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2529 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2530 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2531 } 2532 2533 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2534 visitCASOrRMW(I.getAlign(), I); 2535 // TODO: The ordering change follows MSan. It is possible not to change 2536 // ordering because we always set and use 0 shadows. 2537 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2538 } 2539 2540 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2541 visitCASOrRMW(I.getAlign(), I); 2542 // TODO: The ordering change follows MSan. It is possible not to change 2543 // ordering because we always set and use 0 shadows. 2544 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2545 } 2546 2547 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2548 visitInstOperands(UO); 2549 } 2550 2551 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2552 visitInstOperands(BO); 2553 } 2554 2555 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2556 2557 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2558 visitInstOperands(CI); 2559 if (ClEventCallbacks) { 2560 IRBuilder<> IRB(&CI); 2561 Value *CombinedShadow = DFSF.getShadow(&CI); 2562 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2563 } 2564 } 2565 2566 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2567 visitInstOperands(GEPI); 2568 } 2569 2570 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2571 visitInstOperands(I); 2572 } 2573 2574 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2575 visitInstOperands(I); 2576 } 2577 2578 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2579 visitInstOperands(I); 2580 } 2581 2582 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2583 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2584 visitInstOperands(I); 2585 return; 2586 } 2587 2588 IRBuilder<> IRB(&I); 2589 Value *Agg = I.getAggregateOperand(); 2590 Value *AggShadow = DFSF.getShadow(Agg); 2591 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2592 DFSF.setShadow(&I, ResShadow); 2593 visitInstOperandOrigins(I); 2594 } 2595 2596 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2597 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2598 visitInstOperands(I); 2599 return; 2600 } 2601 2602 IRBuilder<> IRB(&I); 2603 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2604 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2605 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2606 DFSF.setShadow(&I, Res); 2607 visitInstOperandOrigins(I); 2608 } 2609 2610 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2611 bool AllLoadsStores = true; 2612 for (User *U : I.users()) { 2613 if (isa<LoadInst>(U)) 2614 continue; 2615 2616 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2617 if (SI->getPointerOperand() == &I) 2618 continue; 2619 } 2620 2621 AllLoadsStores = false; 2622 break; 2623 } 2624 if (AllLoadsStores) { 2625 IRBuilder<> IRB(&I); 2626 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2627 if (DFSF.DFS.shouldTrackOrigins()) { 2628 DFSF.AllocaOriginMap[&I] = 2629 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2630 } 2631 } 2632 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2633 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2634 } 2635 2636 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2637 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2638 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2639 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2640 Value *ShadowSel = nullptr; 2641 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2642 std::vector<Value *> Shadows; 2643 std::vector<Value *> Origins; 2644 Value *TrueOrigin = 2645 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2646 Value *FalseOrigin = 2647 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2648 2649 if (isa<VectorType>(I.getCondition()->getType())) { 2650 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2651 FalseShadow, &I); 2652 if (ShouldTrackOrigins) { 2653 Shadows.push_back(TrueShadow); 2654 Shadows.push_back(FalseShadow); 2655 Origins.push_back(TrueOrigin); 2656 Origins.push_back(FalseOrigin); 2657 } 2658 } else { 2659 if (TrueShadow == FalseShadow) { 2660 ShadowSel = TrueShadow; 2661 if (ShouldTrackOrigins) { 2662 Shadows.push_back(TrueShadow); 2663 Origins.push_back(TrueOrigin); 2664 } 2665 } else { 2666 ShadowSel = 2667 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2668 if (ShouldTrackOrigins) { 2669 Shadows.push_back(ShadowSel); 2670 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2671 FalseOrigin, "", &I)); 2672 } 2673 } 2674 } 2675 DFSF.setShadow(&I, ClTrackSelectControlFlow 2676 ? DFSF.combineShadowsThenConvert( 2677 I.getType(), CondShadow, ShadowSel, &I) 2678 : ShadowSel); 2679 if (ShouldTrackOrigins) { 2680 if (ClTrackSelectControlFlow) { 2681 Shadows.push_back(CondShadow); 2682 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2683 } 2684 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2685 } 2686 } 2687 2688 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2689 IRBuilder<> IRB(&I); 2690 Value *ValShadow = DFSF.getShadow(I.getValue()); 2691 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2692 ? DFSF.getOrigin(I.getValue()) 2693 : DFSF.DFS.ZeroOrigin; 2694 IRB.CreateCall( 2695 DFSF.DFS.DFSanSetLabelFn, 2696 {ValShadow, ValOrigin, 2697 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2698 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2699 } 2700 2701 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2702 IRBuilder<> IRB(&I); 2703 2704 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2705 // need to move origins before moving shadows. 2706 if (DFSF.DFS.shouldTrackOrigins()) { 2707 IRB.CreateCall( 2708 DFSF.DFS.DFSanMemOriginTransferFn, 2709 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2710 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2711 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2712 } 2713 2714 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2715 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2716 Value *LenShadow = 2717 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2718 DFSF.DFS.ShadowWidthBytes)); 2719 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2720 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2721 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2722 auto *MTI = cast<MemTransferInst>( 2723 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2724 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2725 if (ClPreserveAlignment) { 2726 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2727 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2728 } else { 2729 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2730 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2731 } 2732 if (ClEventCallbacks) { 2733 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2734 {RawDestShadow, I.getLength()}); 2735 } 2736 } 2737 2738 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2739 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2740 switch (DFSF.IA) { 2741 case DataFlowSanitizer::IA_TLS: { 2742 Value *S = DFSF.getShadow(RI.getReturnValue()); 2743 IRBuilder<> IRB(&RI); 2744 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2745 unsigned Size = 2746 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2747 if (Size <= RetvalTLSSize) { 2748 // If the size overflows, stores nothing. At callsite, oversized return 2749 // shadows are set to zero. 2750 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2751 ShadowTLSAlignment); 2752 } 2753 if (DFSF.DFS.shouldTrackOrigins()) { 2754 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2755 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2756 } 2757 break; 2758 } 2759 case DataFlowSanitizer::IA_Args: { 2760 IRBuilder<> IRB(&RI); 2761 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2762 Value *InsVal = 2763 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2764 Value *InsShadow = 2765 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2766 RI.setOperand(0, InsShadow); 2767 break; 2768 } 2769 } 2770 } 2771 } 2772 2773 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2774 std::vector<Value *> &Args, 2775 IRBuilder<> &IRB) { 2776 FunctionType *FT = F.getFunctionType(); 2777 2778 auto *I = CB.arg_begin(); 2779 2780 // Adds non-variable argument shadows. 2781 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2782 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2783 2784 // Adds variable argument shadows. 2785 if (FT->isVarArg()) { 2786 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2787 CB.arg_size() - FT->getNumParams()); 2788 auto *LabelVAAlloca = 2789 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2790 "labelva", &DFSF.F->getEntryBlock().front()); 2791 2792 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2793 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2794 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2795 LabelVAPtr); 2796 } 2797 2798 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2799 } 2800 2801 // Adds the return value shadow. 2802 if (!FT->getReturnType()->isVoidTy()) { 2803 if (!DFSF.LabelReturnAlloca) { 2804 DFSF.LabelReturnAlloca = new AllocaInst( 2805 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2806 "labelreturn", &DFSF.F->getEntryBlock().front()); 2807 } 2808 Args.push_back(DFSF.LabelReturnAlloca); 2809 } 2810 } 2811 2812 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2813 std::vector<Value *> &Args, 2814 IRBuilder<> &IRB) { 2815 FunctionType *FT = F.getFunctionType(); 2816 2817 auto *I = CB.arg_begin(); 2818 2819 // Add non-variable argument origins. 2820 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2821 Args.push_back(DFSF.getOrigin(*I)); 2822 2823 // Add variable argument origins. 2824 if (FT->isVarArg()) { 2825 auto *OriginVATy = 2826 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2827 auto *OriginVAAlloca = 2828 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2829 "originva", &DFSF.F->getEntryBlock().front()); 2830 2831 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2832 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2833 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2834 } 2835 2836 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2837 } 2838 2839 // Add the return value origin. 2840 if (!FT->getReturnType()->isVoidTy()) { 2841 if (!DFSF.OriginReturnAlloca) { 2842 DFSF.OriginReturnAlloca = new AllocaInst( 2843 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2844 "originreturn", &DFSF.F->getEntryBlock().front()); 2845 } 2846 Args.push_back(DFSF.OriginReturnAlloca); 2847 } 2848 } 2849 2850 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2851 IRBuilder<> IRB(&CB); 2852 switch (DFSF.DFS.getWrapperKind(&F)) { 2853 case DataFlowSanitizer::WK_Warning: 2854 CB.setCalledFunction(&F); 2855 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2856 IRB.CreateGlobalStringPtr(F.getName())); 2857 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2858 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2859 return true; 2860 case DataFlowSanitizer::WK_Discard: 2861 CB.setCalledFunction(&F); 2862 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2863 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2864 return true; 2865 case DataFlowSanitizer::WK_Functional: 2866 CB.setCalledFunction(&F); 2867 visitInstOperands(CB); 2868 return true; 2869 case DataFlowSanitizer::WK_Custom: 2870 // Don't try to handle invokes of custom functions, it's too complicated. 2871 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2872 // wrapper. 2873 CallInst *CI = dyn_cast<CallInst>(&CB); 2874 if (!CI) 2875 return false; 2876 2877 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2878 FunctionType *FT = F.getFunctionType(); 2879 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2880 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2881 CustomFName += F.getName(); 2882 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2883 CustomFName, CustomFn.TransformedType); 2884 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2885 CustomFn->copyAttributesFrom(&F); 2886 2887 // Custom functions returning non-void will write to the return label. 2888 if (!FT->getReturnType()->isVoidTy()) { 2889 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2890 DFSF.DFS.ReadOnlyNoneAttrs); 2891 } 2892 } 2893 2894 std::vector<Value *> Args; 2895 2896 // Adds non-variable arguments. 2897 auto *I = CB.arg_begin(); 2898 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2899 Type *T = (*I)->getType(); 2900 FunctionType *ParamFT; 2901 if (isa<PointerType>(T) && 2902 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2903 std::string TName = "dfst"; 2904 TName += utostr(FT->getNumParams() - N); 2905 TName += "$"; 2906 TName += F.getName(); 2907 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2908 Args.push_back(T); 2909 Args.push_back( 2910 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2911 } else { 2912 Args.push_back(*I); 2913 } 2914 } 2915 2916 // Adds shadow arguments. 2917 const unsigned ShadowArgStart = Args.size(); 2918 addShadowArguments(F, CB, Args, IRB); 2919 2920 // Adds origin arguments. 2921 const unsigned OriginArgStart = Args.size(); 2922 if (ShouldTrackOrigins) 2923 addOriginArguments(F, CB, Args, IRB); 2924 2925 // Adds variable arguments. 2926 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2927 2928 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2929 CustomCI->setCallingConv(CI->getCallingConv()); 2930 CustomCI->setAttributes(transformFunctionAttributes( 2931 CustomFn, CI->getContext(), CI->getAttributes())); 2932 2933 // Update the parameter attributes of the custom call instruction to 2934 // zero extend the shadow parameters. This is required for targets 2935 // which consider PrimitiveShadowTy an illegal type. 2936 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2937 const unsigned ArgNo = ShadowArgStart + N; 2938 if (CustomCI->getArgOperand(ArgNo)->getType() == 2939 DFSF.DFS.PrimitiveShadowTy) 2940 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2941 if (ShouldTrackOrigins) { 2942 const unsigned OriginArgNo = OriginArgStart + N; 2943 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2944 DFSF.DFS.OriginTy) 2945 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2946 } 2947 } 2948 2949 // Loads the return value shadow and origin. 2950 if (!FT->getReturnType()->isVoidTy()) { 2951 LoadInst *LabelLoad = 2952 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2953 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2954 FT->getReturnType(), LabelLoad, &CB)); 2955 if (ShouldTrackOrigins) { 2956 LoadInst *OriginLoad = 2957 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2958 DFSF.setOrigin(CustomCI, OriginLoad); 2959 } 2960 } 2961 2962 CI->replaceAllUsesWith(CustomCI); 2963 CI->eraseFromParent(); 2964 return true; 2965 } 2966 return false; 2967 } 2968 2969 void DFSanVisitor::visitCallBase(CallBase &CB) { 2970 Function *F = CB.getCalledFunction(); 2971 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2972 visitInstOperands(CB); 2973 return; 2974 } 2975 2976 // Calls to this function are synthesized in wrappers, and we shouldn't 2977 // instrument them. 2978 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2979 return; 2980 2981 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2982 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2983 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2984 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2985 return; 2986 2987 IRBuilder<> IRB(&CB); 2988 2989 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2990 FunctionType *FT = CB.getFunctionType(); 2991 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2992 // Stores argument shadows. 2993 unsigned ArgOffset = 0; 2994 const DataLayout &DL = getDataLayout(); 2995 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2996 if (ShouldTrackOrigins) { 2997 // Ignore overflowed origins 2998 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2999 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3000 !DFSF.DFS.isZeroShadow(ArgShadow)) 3001 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3002 DFSF.getArgOriginTLS(I, IRB)); 3003 } 3004 3005 unsigned Size = 3006 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3007 // Stop storing if arguments' size overflows. Inside a function, arguments 3008 // after overflow have zero shadow values. 3009 if (ArgOffset + Size > ArgTLSSize) 3010 break; 3011 IRB.CreateAlignedStore( 3012 DFSF.getShadow(CB.getArgOperand(I)), 3013 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3014 ShadowTLSAlignment); 3015 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3016 } 3017 } 3018 3019 Instruction *Next = nullptr; 3020 if (!CB.getType()->isVoidTy()) { 3021 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3022 if (II->getNormalDest()->getSinglePredecessor()) { 3023 Next = &II->getNormalDest()->front(); 3024 } else { 3025 BasicBlock *NewBB = 3026 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3027 Next = &NewBB->front(); 3028 } 3029 } else { 3030 assert(CB.getIterator() != CB.getParent()->end()); 3031 Next = CB.getNextNode(); 3032 } 3033 3034 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3035 // Loads the return value shadow. 3036 IRBuilder<> NextIRB(Next); 3037 const DataLayout &DL = getDataLayout(); 3038 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3039 if (Size > RetvalTLSSize) { 3040 // Set overflowed return shadow to be zero. 3041 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3042 } else { 3043 LoadInst *LI = NextIRB.CreateAlignedLoad( 3044 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3045 ShadowTLSAlignment, "_dfsret"); 3046 DFSF.SkipInsts.insert(LI); 3047 DFSF.setShadow(&CB, LI); 3048 DFSF.NonZeroChecks.push_back(LI); 3049 } 3050 3051 if (ShouldTrackOrigins) { 3052 LoadInst *LI = NextIRB.CreateLoad( 3053 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3054 DFSF.SkipInsts.insert(LI); 3055 DFSF.setOrigin(&CB, LI); 3056 } 3057 } 3058 } 3059 3060 // Do all instrumentation for IA_Args down here to defer tampering with the 3061 // CFG in a way that SplitEdge may be able to detect. 3062 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3063 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3064 Value *Func = 3065 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3066 3067 const unsigned NumParams = FT->getNumParams(); 3068 3069 // Copy original arguments. 3070 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3071 std::vector<Value *> Args(NumParams); 3072 std::copy_n(ArgIt, NumParams, Args.begin()); 3073 3074 // Add shadow arguments by transforming original arguments. 3075 std::generate_n(std::back_inserter(Args), NumParams, 3076 [&]() { return DFSF.getShadow(*ArgIt++); }); 3077 3078 if (FT->isVarArg()) { 3079 unsigned VarArgSize = CB.arg_size() - NumParams; 3080 ArrayType *VarArgArrayTy = 3081 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3082 AllocaInst *VarArgShadow = 3083 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3084 "", &DFSF.F->getEntryBlock().front()); 3085 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3086 3087 // Copy remaining var args. 3088 unsigned GepIndex = 0; 3089 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3090 IRB.CreateStore( 3091 DFSF.getShadow(Arg), 3092 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3093 Args.push_back(Arg); 3094 }); 3095 } 3096 3097 CallBase *NewCB; 3098 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3099 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3100 II->getUnwindDest(), Args); 3101 } else { 3102 NewCB = IRB.CreateCall(NewFT, Func, Args); 3103 } 3104 NewCB->setCallingConv(CB.getCallingConv()); 3105 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3106 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3107 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3108 3109 if (Next) { 3110 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3111 DFSF.SkipInsts.insert(ExVal); 3112 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3113 DFSF.SkipInsts.insert(ExShadow); 3114 DFSF.setShadow(ExVal, ExShadow); 3115 DFSF.NonZeroChecks.push_back(ExShadow); 3116 3117 CB.replaceAllUsesWith(ExVal); 3118 } 3119 3120 CB.eraseFromParent(); 3121 } 3122 } 3123 3124 void DFSanVisitor::visitPHINode(PHINode &PN) { 3125 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3126 PHINode *ShadowPN = 3127 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3128 3129 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3130 Value *UndefShadow = UndefValue::get(ShadowTy); 3131 for (BasicBlock *BB : PN.blocks()) 3132 ShadowPN->addIncoming(UndefShadow, BB); 3133 3134 DFSF.setShadow(&PN, ShadowPN); 3135 3136 PHINode *OriginPN = nullptr; 3137 if (DFSF.DFS.shouldTrackOrigins()) { 3138 OriginPN = 3139 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3140 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3141 for (BasicBlock *BB : PN.blocks()) 3142 OriginPN->addIncoming(UndefOrigin, BB); 3143 DFSF.setOrigin(&PN, OriginPN); 3144 } 3145 3146 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3147 } 3148 3149 namespace { 3150 class DataFlowSanitizerLegacyPass : public ModulePass { 3151 private: 3152 std::vector<std::string> ABIListFiles; 3153 3154 public: 3155 static char ID; 3156 3157 DataFlowSanitizerLegacyPass( 3158 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3159 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3160 3161 bool runOnModule(Module &M) override { 3162 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3163 } 3164 }; 3165 } // namespace 3166 3167 char DataFlowSanitizerLegacyPass::ID; 3168 3169 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3170 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3171 3172 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3173 const std::vector<std::string> &ABIListFiles) { 3174 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3175 } 3176 3177 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3178 ModuleAnalysisManager &AM) { 3179 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3180 return PreservedAnalyses::none(); 3181 } 3182 return PreservedAnalyses::all(); 3183 } 3184