1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // This must be consistent with ShadowWidthBits. 110 static const Align kShadowTLSAlignment = Align(2); 111 112 // The size of TLS variables. These constants must be kept in sync with the ones 113 // in dfsan.cpp. 114 static const unsigned kArgTLSSize = 800; 115 static const unsigned kRetvalTLSSize = 800; 116 117 // External symbol to be used when generating the shadow address for 118 // architectures with multiple VMAs. Instead of using a constant integer 119 // the runtime will set the external mask based on the VMA range. 120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 121 122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 123 // alignment requirements provided by the input IR are correct. For example, 124 // if the input IR contains a load with alignment 8, this flag will cause 125 // the shadow load to have alignment 16. This flag is disabled by default as 126 // we have unfortunately encountered too much code (including Clang itself; 127 // see PR14291) which performs misaligned access. 128 static cl::opt<bool> ClPreserveAlignment( 129 "dfsan-preserve-alignment", 130 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 131 cl::init(false)); 132 133 // The ABI list files control how shadow parameters are passed. The pass treats 134 // every function labelled "uninstrumented" in the ABI list file as conforming 135 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 136 // additional annotations for those functions, a call to one of those functions 137 // will produce a warning message, as the labelling behaviour of the function is 138 // unknown. The other supported annotations are "functional" and "discard", 139 // which are described below under DataFlowSanitizer::WrapperKind. 140 static cl::list<std::string> ClABIListFiles( 141 "dfsan-abilist", 142 cl::desc("File listing native ABI functions and how the pass treats them"), 143 cl::Hidden); 144 145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 146 // functions (see DataFlowSanitizer::InstrumentedABI below). 147 static cl::opt<bool> ClArgsABI( 148 "dfsan-args-abi", 149 cl::desc("Use the argument ABI rather than the TLS ABI"), 150 cl::Hidden); 151 152 // Controls whether the pass includes or ignores the labels of pointers in load 153 // instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 155 "dfsan-combine-pointer-labels-on-load", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "loading from memory."), 158 cl::Hidden, cl::init(true)); 159 160 // Controls whether the pass includes or ignores the labels of pointers in 161 // stores instructions. 162 static cl::opt<bool> ClCombinePointerLabelsOnStore( 163 "dfsan-combine-pointer-labels-on-store", 164 cl::desc("Combine the label of the pointer with the label of the data when " 165 "storing in memory."), 166 cl::Hidden, cl::init(false)); 167 168 static cl::opt<bool> ClDebugNonzeroLabels( 169 "dfsan-debug-nonzero-labels", 170 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 171 "load or return with a nonzero label"), 172 cl::Hidden); 173 174 // Experimental feature that inserts callbacks for certain data events. 175 // Currently callbacks are only inserted for loads, stores, memory transfers 176 // (i.e. memcpy and memmove), and comparisons. 177 // 178 // If this flag is set to true, the user must provide definitions for the 179 // following callback functions: 180 // void __dfsan_load_callback(dfsan_label Label, void* addr); 181 // void __dfsan_store_callback(dfsan_label Label, void* addr); 182 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 183 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 184 static cl::opt<bool> ClEventCallbacks( 185 "dfsan-event-callbacks", 186 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 187 cl::Hidden, cl::init(false)); 188 189 // Use a distinct bit for each base label, enabling faster unions with less 190 // instrumentation. Limits the max number of base labels to 16. 191 static cl::opt<bool> ClFast16Labels( 192 "dfsan-fast-16-labels", 193 cl::desc("Use more efficient instrumentation, limiting the number of " 194 "labels to 16."), 195 cl::Hidden, cl::init(false)); 196 197 // Controls whether the pass tracks the control flow of select instructions. 198 static cl::opt<bool> ClTrackSelectControlFlow( 199 "dfsan-track-select-control-flow", 200 cl::desc("Propagate labels from condition values of select instructions " 201 "to results."), 202 cl::Hidden, cl::init(true)); 203 204 static StringRef GetGlobalTypeString(const GlobalValue &G) { 205 // Types of GlobalVariables are always pointer types. 206 Type *GType = G.getValueType(); 207 // For now we support excluding struct types only. 208 if (StructType *SGType = dyn_cast<StructType>(GType)) { 209 if (!SGType->isLiteral()) 210 return SGType->getName(); 211 } 212 return "<unknown type>"; 213 } 214 215 namespace { 216 217 class DFSanABIList { 218 std::unique_ptr<SpecialCaseList> SCL; 219 220 public: 221 DFSanABIList() = default; 222 223 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 224 225 /// Returns whether either this function or its source file are listed in the 226 /// given category. 227 bool isIn(const Function &F, StringRef Category) const { 228 return isIn(*F.getParent(), Category) || 229 SCL->inSection("dataflow", "fun", F.getName(), Category); 230 } 231 232 /// Returns whether this global alias is listed in the given category. 233 /// 234 /// If GA aliases a function, the alias's name is matched as a function name 235 /// would be. Similarly, aliases of globals are matched like globals. 236 bool isIn(const GlobalAlias &GA, StringRef Category) const { 237 if (isIn(*GA.getParent(), Category)) 238 return true; 239 240 if (isa<FunctionType>(GA.getValueType())) 241 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 242 243 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 244 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 245 Category); 246 } 247 248 /// Returns whether this module is listed in the given category. 249 bool isIn(const Module &M, StringRef Category) const { 250 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 251 } 252 }; 253 254 /// TransformedFunction is used to express the result of transforming one 255 /// function type into another. This struct is immutable. It holds metadata 256 /// useful for updating calls of the old function to the new type. 257 struct TransformedFunction { 258 TransformedFunction(FunctionType* OriginalType, 259 FunctionType* TransformedType, 260 std::vector<unsigned> ArgumentIndexMapping) 261 : OriginalType(OriginalType), 262 TransformedType(TransformedType), 263 ArgumentIndexMapping(ArgumentIndexMapping) {} 264 265 // Disallow copies. 266 TransformedFunction(const TransformedFunction&) = delete; 267 TransformedFunction& operator=(const TransformedFunction&) = delete; 268 269 // Allow moves. 270 TransformedFunction(TransformedFunction&&) = default; 271 TransformedFunction& operator=(TransformedFunction&&) = default; 272 273 /// Type of the function before the transformation. 274 FunctionType *OriginalType; 275 276 /// Type of the function after the transformation. 277 FunctionType *TransformedType; 278 279 /// Transforming a function may change the position of arguments. This 280 /// member records the mapping from each argument's old position to its new 281 /// position. Argument positions are zero-indexed. If the transformation 282 /// from F to F' made the first argument of F into the third argument of F', 283 /// then ArgumentIndexMapping[0] will equal 2. 284 std::vector<unsigned> ArgumentIndexMapping; 285 }; 286 287 /// Given function attributes from a call site for the original function, 288 /// return function attributes appropriate for a call to the transformed 289 /// function. 290 AttributeList TransformFunctionAttributes( 291 const TransformedFunction& TransformedFunction, 292 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 293 294 // Construct a vector of AttributeSet for each function argument. 295 std::vector<llvm::AttributeSet> ArgumentAttributes( 296 TransformedFunction.TransformedType->getNumParams()); 297 298 // Copy attributes from the parameter of the original function to the 299 // transformed version. 'ArgumentIndexMapping' holds the mapping from 300 // old argument position to new. 301 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 302 i < ie; ++i) { 303 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 304 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 305 } 306 307 // Copy annotations on varargs arguments. 308 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 309 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 310 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 311 } 312 313 return AttributeList::get( 314 Ctx, 315 CallSiteAttrs.getFnAttributes(), 316 CallSiteAttrs.getRetAttributes(), 317 llvm::makeArrayRef(ArgumentAttributes)); 318 } 319 320 class DataFlowSanitizer { 321 friend struct DFSanFunction; 322 friend class DFSanVisitor; 323 324 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 325 326 /// Which ABI should be used for instrumented functions? 327 enum InstrumentedABI { 328 /// Argument and return value labels are passed through additional 329 /// arguments and by modifying the return type. 330 IA_Args, 331 332 /// Argument and return value labels are passed through TLS variables 333 /// __dfsan_arg_tls and __dfsan_retval_tls. 334 IA_TLS 335 }; 336 337 /// How should calls to uninstrumented functions be handled? 338 enum WrapperKind { 339 /// This function is present in an uninstrumented form but we don't know 340 /// how it should be handled. Print a warning and call the function anyway. 341 /// Don't label the return value. 342 WK_Warning, 343 344 /// This function does not write to (user-accessible) memory, and its return 345 /// value is unlabelled. 346 WK_Discard, 347 348 /// This function does not write to (user-accessible) memory, and the label 349 /// of its return value is the union of the label of its arguments. 350 WK_Functional, 351 352 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 353 /// where F is the name of the function. This function may wrap the 354 /// original function or provide its own implementation. This is similar to 355 /// the IA_Args ABI, except that IA_Args uses a struct return type to 356 /// pass the return value shadow in a register, while WK_Custom uses an 357 /// extra pointer argument to return the shadow. This allows the wrapped 358 /// form of the function type to be expressed in C. 359 WK_Custom 360 }; 361 362 Module *Mod; 363 LLVMContext *Ctx; 364 Type *Int8Ptr; 365 /// The shadow type for all primitive types. Until we support field/index 366 /// level shadow values, aggregate and vector types also use this shadow 367 /// type. 368 IntegerType *PrimitiveShadowTy; 369 PointerType *PrimitiveShadowPtrTy; 370 IntegerType *IntptrTy; 371 ConstantInt *ZeroPrimitiveShadow; 372 ConstantInt *ShadowPtrMask; 373 ConstantInt *ShadowPtrMul; 374 Constant *ArgTLS; 375 Constant *RetvalTLS; 376 Constant *ExternalShadowMask; 377 FunctionType *DFSanUnionFnTy; 378 FunctionType *DFSanUnionLoadFnTy; 379 FunctionType *DFSanUnimplementedFnTy; 380 FunctionType *DFSanSetLabelFnTy; 381 FunctionType *DFSanNonzeroLabelFnTy; 382 FunctionType *DFSanVarargWrapperFnTy; 383 FunctionType *DFSanCmpCallbackFnTy; 384 FunctionType *DFSanLoadStoreCallbackFnTy; 385 FunctionType *DFSanMemTransferCallbackFnTy; 386 FunctionCallee DFSanUnionFn; 387 FunctionCallee DFSanCheckedUnionFn; 388 FunctionCallee DFSanUnionLoadFn; 389 FunctionCallee DFSanUnionLoadFast16LabelsFn; 390 FunctionCallee DFSanUnimplementedFn; 391 FunctionCallee DFSanSetLabelFn; 392 FunctionCallee DFSanNonzeroLabelFn; 393 FunctionCallee DFSanVarargWrapperFn; 394 FunctionCallee DFSanLoadCallbackFn; 395 FunctionCallee DFSanStoreCallbackFn; 396 FunctionCallee DFSanMemTransferCallbackFn; 397 FunctionCallee DFSanCmpCallbackFn; 398 MDNode *ColdCallWeights; 399 DFSanABIList ABIList; 400 DenseMap<Value *, Function *> UnwrappedFnMap; 401 AttrBuilder ReadOnlyNoneAttrs; 402 bool DFSanRuntimeShadowMask = false; 403 404 Value *getShadowAddress(Value *Addr, Instruction *Pos); 405 bool isInstrumented(const Function *F); 406 bool isInstrumented(const GlobalAlias *GA); 407 FunctionType *getArgsFunctionType(FunctionType *T); 408 FunctionType *getTrampolineFunctionType(FunctionType *T); 409 TransformedFunction getCustomFunctionType(FunctionType *T); 410 InstrumentedABI getInstrumentedABI(); 411 WrapperKind getWrapperKind(Function *F); 412 void addGlobalNamePrefix(GlobalValue *GV); 413 Function *buildWrapperFunction(Function *F, StringRef NewFName, 414 GlobalValue::LinkageTypes NewFLink, 415 FunctionType *NewFT); 416 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 417 void initializeCallbackFunctions(Module &M); 418 void initializeRuntimeFunctions(Module &M); 419 420 bool init(Module &M); 421 422 public: 423 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 424 425 bool runImpl(Module &M); 426 }; 427 428 struct DFSanFunction { 429 DataFlowSanitizer &DFS; 430 Function *F; 431 DominatorTree DT; 432 DataFlowSanitizer::InstrumentedABI IA; 433 bool IsNativeABI; 434 AllocaInst *LabelReturnAlloca = nullptr; 435 DenseMap<Value *, Value *> ValShadowMap; 436 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 437 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 438 DenseSet<Instruction *> SkipInsts; 439 std::vector<Value *> NonZeroChecks; 440 bool AvoidNewBlocks; 441 442 struct CachedShadow { 443 BasicBlock *Block; // The block where Shadow is defined. 444 Value *Shadow; 445 }; 446 /// Maps a value to its latest shadow value in terms of domination tree. 447 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 448 DenseMap<Value *, std::set<Value *>> ShadowElements; 449 450 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 451 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 452 DT.recalculate(*F); 453 // FIXME: Need to track down the register allocator issue which causes poor 454 // performance in pathological cases with large numbers of basic blocks. 455 AvoidNewBlocks = F->size() > 1000; 456 } 457 458 /// Computes the shadow address for a given function argument. 459 /// 460 /// Shadow = ArgTLS+ArgOffset. 461 Value *getArgTLS(unsigned ArgOffset, IRBuilder<> &IRB); 462 463 /// Computes the shadow address for a retval. 464 Value *getRetvalTLS(IRBuilder<> &IRB); 465 466 Value *getShadow(Value *V); 467 void setShadow(Instruction *I, Value *Shadow); 468 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 469 Value *combineOperandShadows(Instruction *Inst); 470 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 471 Instruction *Pos); 472 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow, 473 Instruction *Pos); 474 475 private: 476 /// Returns the shadow value of an argument A. 477 Value *getShadowForTLSArgument(Argument *A); 478 }; 479 480 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 481 public: 482 DFSanFunction &DFSF; 483 484 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 485 486 const DataLayout &getDataLayout() const { 487 return DFSF.F->getParent()->getDataLayout(); 488 } 489 490 // Combines shadow values for all of I's operands. Returns the combined shadow 491 // value. 492 Value *visitOperandShadowInst(Instruction &I); 493 494 void visitUnaryOperator(UnaryOperator &UO); 495 void visitBinaryOperator(BinaryOperator &BO); 496 void visitCastInst(CastInst &CI); 497 void visitCmpInst(CmpInst &CI); 498 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 499 void visitLoadInst(LoadInst &LI); 500 void visitStoreInst(StoreInst &SI); 501 void visitReturnInst(ReturnInst &RI); 502 void visitCallBase(CallBase &CB); 503 void visitPHINode(PHINode &PN); 504 void visitExtractElementInst(ExtractElementInst &I); 505 void visitInsertElementInst(InsertElementInst &I); 506 void visitShuffleVectorInst(ShuffleVectorInst &I); 507 void visitExtractValueInst(ExtractValueInst &I); 508 void visitInsertValueInst(InsertValueInst &I); 509 void visitAllocaInst(AllocaInst &I); 510 void visitSelectInst(SelectInst &I); 511 void visitMemSetInst(MemSetInst &I); 512 void visitMemTransferInst(MemTransferInst &I); 513 }; 514 515 } // end anonymous namespace 516 517 DataFlowSanitizer::DataFlowSanitizer( 518 const std::vector<std::string> &ABIListFiles) { 519 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 520 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 521 ClABIListFiles.end()); 522 // FIXME: should we propagate vfs::FileSystem to this constructor? 523 ABIList.set( 524 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 525 } 526 527 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 528 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 529 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 530 if (T->isVarArg()) 531 ArgTypes.push_back(PrimitiveShadowPtrTy); 532 Type *RetType = T->getReturnType(); 533 if (!RetType->isVoidTy()) 534 RetType = StructType::get(RetType, PrimitiveShadowTy); 535 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 536 } 537 538 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 539 assert(!T->isVarArg()); 540 SmallVector<Type *, 4> ArgTypes; 541 ArgTypes.push_back(T->getPointerTo()); 542 ArgTypes.append(T->param_begin(), T->param_end()); 543 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 544 Type *RetType = T->getReturnType(); 545 if (!RetType->isVoidTy()) 546 ArgTypes.push_back(PrimitiveShadowPtrTy); 547 return FunctionType::get(T->getReturnType(), ArgTypes, false); 548 } 549 550 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 551 SmallVector<Type *, 4> ArgTypes; 552 553 // Some parameters of the custom function being constructed are 554 // parameters of T. Record the mapping from parameters of T to 555 // parameters of the custom function, so that parameter attributes 556 // at call sites can be updated. 557 std::vector<unsigned> ArgumentIndexMapping; 558 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 559 Type* param_type = T->getParamType(i); 560 FunctionType *FT; 561 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 562 cast<PointerType>(param_type)->getElementType()))) { 563 ArgumentIndexMapping.push_back(ArgTypes.size()); 564 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 565 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 566 } else { 567 ArgumentIndexMapping.push_back(ArgTypes.size()); 568 ArgTypes.push_back(param_type); 569 } 570 } 571 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 572 ArgTypes.push_back(PrimitiveShadowTy); 573 if (T->isVarArg()) 574 ArgTypes.push_back(PrimitiveShadowPtrTy); 575 Type *RetType = T->getReturnType(); 576 if (!RetType->isVoidTy()) 577 ArgTypes.push_back(PrimitiveShadowPtrTy); 578 return TransformedFunction( 579 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 580 ArgumentIndexMapping); 581 } 582 583 bool DataFlowSanitizer::init(Module &M) { 584 Triple TargetTriple(M.getTargetTriple()); 585 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 586 bool IsMIPS64 = TargetTriple.isMIPS64(); 587 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 588 TargetTriple.getArch() == Triple::aarch64_be; 589 590 const DataLayout &DL = M.getDataLayout(); 591 592 Mod = &M; 593 Ctx = &M.getContext(); 594 Int8Ptr = Type::getInt8PtrTy(*Ctx); 595 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 596 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 597 IntptrTy = DL.getIntPtrType(*Ctx); 598 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 599 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 600 if (IsX86_64) 601 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 602 else if (IsMIPS64) 603 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 604 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 605 else if (IsAArch64) 606 DFSanRuntimeShadowMask = true; 607 else 608 report_fatal_error("unsupported triple"); 609 610 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 611 DFSanUnionFnTy = 612 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 613 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 614 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 615 /*isVarArg=*/false); 616 DFSanUnimplementedFnTy = FunctionType::get( 617 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 618 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 619 IntptrTy}; 620 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 621 DFSanSetLabelArgs, /*isVarArg=*/false); 622 DFSanNonzeroLabelFnTy = 623 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 624 DFSanVarargWrapperFnTy = FunctionType::get( 625 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 626 DFSanCmpCallbackFnTy = 627 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 628 /*isVarArg=*/false); 629 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 630 DFSanLoadStoreCallbackFnTy = 631 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 632 /*isVarArg=*/false); 633 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 634 DFSanMemTransferCallbackFnTy = 635 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 636 /*isVarArg=*/false); 637 638 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 639 return true; 640 } 641 642 bool DataFlowSanitizer::isInstrumented(const Function *F) { 643 return !ABIList.isIn(*F, "uninstrumented"); 644 } 645 646 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 647 return !ABIList.isIn(*GA, "uninstrumented"); 648 } 649 650 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 651 return ClArgsABI ? IA_Args : IA_TLS; 652 } 653 654 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 655 if (ABIList.isIn(*F, "functional")) 656 return WK_Functional; 657 if (ABIList.isIn(*F, "discard")) 658 return WK_Discard; 659 if (ABIList.isIn(*F, "custom")) 660 return WK_Custom; 661 662 return WK_Warning; 663 } 664 665 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 666 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 667 GV->setName(Prefix + GVName); 668 669 // Try to change the name of the function in module inline asm. We only do 670 // this for specific asm directives, currently only ".symver", to try to avoid 671 // corrupting asm which happens to contain the symbol name as a substring. 672 // Note that the substitution for .symver assumes that the versioned symbol 673 // also has an instrumented name. 674 std::string Asm = GV->getParent()->getModuleInlineAsm(); 675 std::string SearchStr = ".symver " + GVName + ","; 676 size_t Pos = Asm.find(SearchStr); 677 if (Pos != std::string::npos) { 678 Asm.replace(Pos, SearchStr.size(), 679 ".symver " + Prefix + GVName + "," + Prefix); 680 GV->getParent()->setModuleInlineAsm(Asm); 681 } 682 } 683 684 Function * 685 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 686 GlobalValue::LinkageTypes NewFLink, 687 FunctionType *NewFT) { 688 FunctionType *FT = F->getFunctionType(); 689 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 690 NewFName, F->getParent()); 691 NewF->copyAttributesFrom(F); 692 NewF->removeAttributes( 693 AttributeList::ReturnIndex, 694 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 695 696 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 697 if (F->isVarArg()) { 698 NewF->removeAttributes(AttributeList::FunctionIndex, 699 AttrBuilder().addAttribute("split-stack")); 700 CallInst::Create(DFSanVarargWrapperFn, 701 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 702 BB); 703 new UnreachableInst(*Ctx, BB); 704 } else { 705 std::vector<Value *> Args; 706 unsigned n = FT->getNumParams(); 707 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 708 Args.push_back(&*ai); 709 CallInst *CI = CallInst::Create(F, Args, "", BB); 710 if (FT->getReturnType()->isVoidTy()) 711 ReturnInst::Create(*Ctx, BB); 712 else 713 ReturnInst::Create(*Ctx, CI, BB); 714 } 715 716 return NewF; 717 } 718 719 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 720 StringRef FName) { 721 FunctionType *FTT = getTrampolineFunctionType(FT); 722 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 723 Function *F = dyn_cast<Function>(C.getCallee()); 724 if (F && F->isDeclaration()) { 725 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 726 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 727 std::vector<Value *> Args; 728 Function::arg_iterator AI = F->arg_begin(); ++AI; 729 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 730 Args.push_back(&*AI); 731 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 732 ReturnInst *RI; 733 if (FT->getReturnType()->isVoidTy()) 734 RI = ReturnInst::Create(*Ctx, BB); 735 else 736 RI = ReturnInst::Create(*Ctx, CI, BB); 737 738 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 739 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 740 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 741 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 742 DFSanVisitor(DFSF).visitCallInst(*CI); 743 if (!FT->getReturnType()->isVoidTy()) 744 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 745 &*std::prev(F->arg_end()), RI); 746 } 747 748 return cast<Constant>(C.getCallee()); 749 } 750 751 // Initialize DataFlowSanitizer runtime functions and declare them in the module 752 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 753 { 754 AttributeList AL; 755 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 756 Attribute::NoUnwind); 757 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 758 Attribute::ReadNone); 759 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 760 Attribute::ZExt); 761 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 762 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 763 DFSanUnionFn = 764 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 765 } 766 { 767 AttributeList AL; 768 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 769 Attribute::NoUnwind); 770 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 771 Attribute::ReadNone); 772 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 773 Attribute::ZExt); 774 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 775 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 776 DFSanCheckedUnionFn = 777 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 778 } 779 { 780 AttributeList AL; 781 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 782 Attribute::NoUnwind); 783 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 784 Attribute::ReadOnly); 785 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 786 Attribute::ZExt); 787 DFSanUnionLoadFn = 788 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 789 } 790 { 791 AttributeList AL; 792 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 793 Attribute::NoUnwind); 794 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 795 Attribute::ReadOnly); 796 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 797 Attribute::ZExt); 798 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 799 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 800 } 801 DFSanUnimplementedFn = 802 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 803 { 804 AttributeList AL; 805 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 806 DFSanSetLabelFn = 807 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 808 } 809 DFSanNonzeroLabelFn = 810 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 811 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 812 DFSanVarargWrapperFnTy); 813 } 814 815 // Initializes event callback functions and declare them in the module 816 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 817 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 818 DFSanLoadStoreCallbackFnTy); 819 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 820 DFSanLoadStoreCallbackFnTy); 821 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 822 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 823 DFSanCmpCallbackFn = 824 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 825 } 826 827 bool DataFlowSanitizer::runImpl(Module &M) { 828 init(M); 829 830 if (ABIList.isIn(M, "skip")) 831 return false; 832 833 const unsigned InitialGlobalSize = M.global_size(); 834 const unsigned InitialModuleSize = M.size(); 835 836 bool Changed = false; 837 838 Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8); 839 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 840 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 841 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 842 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 843 } 844 Type *RetvalTLSTy = 845 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8); 846 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy); 847 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 848 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 849 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 850 } 851 852 ExternalShadowMask = 853 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 854 855 initializeCallbackFunctions(M); 856 initializeRuntimeFunctions(M); 857 858 std::vector<Function *> FnsToInstrument; 859 SmallPtrSet<Function *, 2> FnsWithNativeABI; 860 for (Function &i : M) { 861 if (!i.isIntrinsic() && 862 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 863 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 864 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 865 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 866 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 867 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 868 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 869 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 870 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 871 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 872 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 873 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 874 FnsToInstrument.push_back(&i); 875 } 876 877 // Give function aliases prefixes when necessary, and build wrappers where the 878 // instrumentedness is inconsistent. 879 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 880 GlobalAlias *GA = &*i; 881 ++i; 882 // Don't stop on weak. We assume people aren't playing games with the 883 // instrumentedness of overridden weak aliases. 884 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 885 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 886 if (GAInst && FInst) { 887 addGlobalNamePrefix(GA); 888 } else if (GAInst != FInst) { 889 // Non-instrumented alias of an instrumented function, or vice versa. 890 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 891 // below will take care of instrumenting it. 892 Function *NewF = 893 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 894 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 895 NewF->takeName(GA); 896 GA->eraseFromParent(); 897 FnsToInstrument.push_back(NewF); 898 } 899 } 900 } 901 902 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 903 .addAttribute(Attribute::ReadNone); 904 905 // First, change the ABI of every function in the module. ABI-listed 906 // functions keep their original ABI and get a wrapper function. 907 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 908 e = FnsToInstrument.end(); 909 i != e; ++i) { 910 Function &F = **i; 911 FunctionType *FT = F.getFunctionType(); 912 913 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 914 FT->getReturnType()->isVoidTy()); 915 916 if (isInstrumented(&F)) { 917 // Instrumented functions get a 'dfs$' prefix. This allows us to more 918 // easily identify cases of mismatching ABIs. 919 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 920 FunctionType *NewFT = getArgsFunctionType(FT); 921 Function *NewF = Function::Create(NewFT, F.getLinkage(), 922 F.getAddressSpace(), "", &M); 923 NewF->copyAttributesFrom(&F); 924 NewF->removeAttributes( 925 AttributeList::ReturnIndex, 926 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 927 for (Function::arg_iterator FArg = F.arg_begin(), 928 NewFArg = NewF->arg_begin(), 929 FArgEnd = F.arg_end(); 930 FArg != FArgEnd; ++FArg, ++NewFArg) { 931 FArg->replaceAllUsesWith(&*NewFArg); 932 } 933 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 934 935 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 936 UI != UE;) { 937 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 938 ++UI; 939 if (BA) { 940 BA->replaceAllUsesWith( 941 BlockAddress::get(NewF, BA->getBasicBlock())); 942 delete BA; 943 } 944 } 945 F.replaceAllUsesWith( 946 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 947 NewF->takeName(&F); 948 F.eraseFromParent(); 949 *i = NewF; 950 addGlobalNamePrefix(NewF); 951 } else { 952 addGlobalNamePrefix(&F); 953 } 954 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 955 // Build a wrapper function for F. The wrapper simply calls F, and is 956 // added to FnsToInstrument so that any instrumentation according to its 957 // WrapperKind is done in the second pass below. 958 FunctionType *NewFT = getInstrumentedABI() == IA_Args 959 ? getArgsFunctionType(FT) 960 : FT; 961 962 // If the function being wrapped has local linkage, then preserve the 963 // function's linkage in the wrapper function. 964 GlobalValue::LinkageTypes wrapperLinkage = 965 F.hasLocalLinkage() 966 ? F.getLinkage() 967 : GlobalValue::LinkOnceODRLinkage; 968 969 Function *NewF = buildWrapperFunction( 970 &F, std::string("dfsw$") + std::string(F.getName()), 971 wrapperLinkage, NewFT); 972 if (getInstrumentedABI() == IA_TLS) 973 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 974 975 Value *WrappedFnCst = 976 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 977 F.replaceAllUsesWith(WrappedFnCst); 978 979 UnwrappedFnMap[WrappedFnCst] = &F; 980 *i = NewF; 981 982 if (!F.isDeclaration()) { 983 // This function is probably defining an interposition of an 984 // uninstrumented function and hence needs to keep the original ABI. 985 // But any functions it may call need to use the instrumented ABI, so 986 // we instrument it in a mode which preserves the original ABI. 987 FnsWithNativeABI.insert(&F); 988 989 // This code needs to rebuild the iterators, as they may be invalidated 990 // by the push_back, taking care that the new range does not include 991 // any functions added by this code. 992 size_t N = i - FnsToInstrument.begin(), 993 Count = e - FnsToInstrument.begin(); 994 FnsToInstrument.push_back(&F); 995 i = FnsToInstrument.begin() + N; 996 e = FnsToInstrument.begin() + Count; 997 } 998 // Hopefully, nobody will try to indirectly call a vararg 999 // function... yet. 1000 } else if (FT->isVarArg()) { 1001 UnwrappedFnMap[&F] = &F; 1002 *i = nullptr; 1003 } 1004 } 1005 1006 for (Function *i : FnsToInstrument) { 1007 if (!i || i->isDeclaration()) 1008 continue; 1009 1010 removeUnreachableBlocks(*i); 1011 1012 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 1013 1014 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1015 // Build a copy of the list before iterating over it. 1016 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 1017 1018 for (BasicBlock *i : BBList) { 1019 Instruction *Inst = &i->front(); 1020 while (true) { 1021 // DFSanVisitor may split the current basic block, changing the current 1022 // instruction's next pointer and moving the next instruction to the 1023 // tail block from which we should continue. 1024 Instruction *Next = Inst->getNextNode(); 1025 // DFSanVisitor may delete Inst, so keep track of whether it was a 1026 // terminator. 1027 bool IsTerminator = Inst->isTerminator(); 1028 if (!DFSF.SkipInsts.count(Inst)) 1029 DFSanVisitor(DFSF).visit(Inst); 1030 if (IsTerminator) 1031 break; 1032 Inst = Next; 1033 } 1034 } 1035 1036 // We will not necessarily be able to compute the shadow for every phi node 1037 // until we have visited every block. Therefore, the code that handles phi 1038 // nodes adds them to the PHIFixups list so that they can be properly 1039 // handled here. 1040 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1041 i = DFSF.PHIFixups.begin(), 1042 e = DFSF.PHIFixups.end(); 1043 i != e; ++i) { 1044 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1045 ++val) { 1046 i->second->setIncomingValue( 1047 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1048 } 1049 } 1050 1051 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1052 // places (i.e. instructions in basic blocks we haven't even begun visiting 1053 // yet). To make our life easier, do this work in a pass after the main 1054 // instrumentation. 1055 if (ClDebugNonzeroLabels) { 1056 for (Value *V : DFSF.NonZeroChecks) { 1057 Instruction *Pos; 1058 if (Instruction *I = dyn_cast<Instruction>(V)) 1059 Pos = I->getNextNode(); 1060 else 1061 Pos = &DFSF.F->getEntryBlock().front(); 1062 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1063 Pos = Pos->getNextNode(); 1064 IRBuilder<> IRB(Pos); 1065 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroPrimitiveShadow); 1066 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1067 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1068 IRBuilder<> ThenIRB(BI); 1069 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1070 } 1071 } 1072 } 1073 1074 return Changed || !FnsToInstrument.empty() || 1075 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1076 } 1077 1078 Value *DFSanFunction::getArgTLS(unsigned ArgOffset, IRBuilder<> &IRB) { 1079 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1080 if (ArgOffset) 1081 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1082 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.PrimitiveShadowTy, 0), 1083 "_dfsarg"); 1084 } 1085 1086 Value *DFSanFunction::getRetvalTLS(IRBuilder<> &IRB) { 1087 return IRB.CreatePointerCast( 1088 DFS.RetvalTLS, PointerType::get(DFS.PrimitiveShadowTy, 0), "_dfsret"); 1089 } 1090 1091 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1092 unsigned ArgOffset = 0; 1093 const DataLayout &DL = F->getParent()->getDataLayout(); 1094 for (auto &FArg : F->args()) { 1095 if (!FArg.getType()->isSized()) { 1096 if (A == &FArg) 1097 break; 1098 continue; 1099 } 1100 1101 unsigned Size = DL.getTypeAllocSize(DFS.PrimitiveShadowTy); 1102 if (A != &FArg) { 1103 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1104 if (ArgOffset > kArgTLSSize) 1105 break; // ArgTLS overflows, uses a zero shadow. 1106 continue; 1107 } 1108 1109 if (ArgOffset + Size > kArgTLSSize) 1110 break; // ArgTLS overflows, uses a zero shadow. 1111 1112 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1113 IRBuilder<> IRB(ArgTLSPos); 1114 Value *ArgShadowPtr = getArgTLS(ArgOffset, IRB); 1115 return IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ArgShadowPtr, 1116 kShadowTLSAlignment); 1117 } 1118 1119 return DFS.ZeroPrimitiveShadow; 1120 } 1121 1122 Value *DFSanFunction::getShadow(Value *V) { 1123 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1124 return DFS.ZeroPrimitiveShadow; 1125 Value *&Shadow = ValShadowMap[V]; 1126 if (!Shadow) { 1127 if (Argument *A = dyn_cast<Argument>(V)) { 1128 if (IsNativeABI) 1129 return DFS.ZeroPrimitiveShadow; 1130 switch (IA) { 1131 case DataFlowSanitizer::IA_TLS: { 1132 Shadow = getShadowForTLSArgument(A); 1133 break; 1134 } 1135 case DataFlowSanitizer::IA_Args: { 1136 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1137 Function::arg_iterator i = F->arg_begin(); 1138 while (ArgIdx--) 1139 ++i; 1140 Shadow = &*i; 1141 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1142 break; 1143 } 1144 } 1145 NonZeroChecks.push_back(Shadow); 1146 } else { 1147 Shadow = DFS.ZeroPrimitiveShadow; 1148 } 1149 } 1150 return Shadow; 1151 } 1152 1153 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1154 assert(!ValShadowMap.count(I)); 1155 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1156 ValShadowMap[I] = Shadow; 1157 } 1158 1159 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1160 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1161 IRBuilder<> IRB(Pos); 1162 Value *ShadowPtrMaskValue; 1163 if (DFSanRuntimeShadowMask) 1164 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1165 else 1166 ShadowPtrMaskValue = ShadowPtrMask; 1167 return IRB.CreateIntToPtr( 1168 IRB.CreateMul( 1169 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1170 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1171 ShadowPtrMul), 1172 PrimitiveShadowPtrTy); 1173 } 1174 1175 // Generates IR to compute the union of the two given shadows, inserting it 1176 // before Pos. Returns the computed union Value. 1177 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1178 if (V1 == DFS.ZeroPrimitiveShadow) 1179 return V2; 1180 if (V2 == DFS.ZeroPrimitiveShadow) 1181 return V1; 1182 if (V1 == V2) 1183 return V1; 1184 1185 auto V1Elems = ShadowElements.find(V1); 1186 auto V2Elems = ShadowElements.find(V2); 1187 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1188 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1189 V2Elems->second.begin(), V2Elems->second.end())) { 1190 return V1; 1191 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1192 V1Elems->second.begin(), V1Elems->second.end())) { 1193 return V2; 1194 } 1195 } else if (V1Elems != ShadowElements.end()) { 1196 if (V1Elems->second.count(V2)) 1197 return V1; 1198 } else if (V2Elems != ShadowElements.end()) { 1199 if (V2Elems->second.count(V1)) 1200 return V2; 1201 } 1202 1203 auto Key = std::make_pair(V1, V2); 1204 if (V1 > V2) 1205 std::swap(Key.first, Key.second); 1206 CachedShadow &CCS = CachedShadows[Key]; 1207 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1208 return CCS.Shadow; 1209 1210 IRBuilder<> IRB(Pos); 1211 if (ClFast16Labels) { 1212 CCS.Block = Pos->getParent(); 1213 CCS.Shadow = IRB.CreateOr(V1, V2); 1214 } else if (AvoidNewBlocks) { 1215 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1216 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1217 Call->addParamAttr(0, Attribute::ZExt); 1218 Call->addParamAttr(1, Attribute::ZExt); 1219 1220 CCS.Block = Pos->getParent(); 1221 CCS.Shadow = Call; 1222 } else { 1223 BasicBlock *Head = Pos->getParent(); 1224 Value *Ne = IRB.CreateICmpNE(V1, V2); 1225 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1226 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1227 IRBuilder<> ThenIRB(BI); 1228 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1229 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1230 Call->addParamAttr(0, Attribute::ZExt); 1231 Call->addParamAttr(1, Attribute::ZExt); 1232 1233 BasicBlock *Tail = BI->getSuccessor(0); 1234 PHINode *Phi = 1235 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1236 Phi->addIncoming(Call, Call->getParent()); 1237 Phi->addIncoming(V1, Head); 1238 1239 CCS.Block = Tail; 1240 CCS.Shadow = Phi; 1241 } 1242 1243 std::set<Value *> UnionElems; 1244 if (V1Elems != ShadowElements.end()) { 1245 UnionElems = V1Elems->second; 1246 } else { 1247 UnionElems.insert(V1); 1248 } 1249 if (V2Elems != ShadowElements.end()) { 1250 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1251 } else { 1252 UnionElems.insert(V2); 1253 } 1254 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1255 1256 return CCS.Shadow; 1257 } 1258 1259 // A convenience function which folds the shadows of each of the operands 1260 // of the provided instruction Inst, inserting the IR before Inst. Returns 1261 // the computed union Value. 1262 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1263 if (Inst->getNumOperands() == 0) 1264 return DFS.ZeroPrimitiveShadow; 1265 1266 Value *Shadow = getShadow(Inst->getOperand(0)); 1267 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1268 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1269 } 1270 return Shadow; 1271 } 1272 1273 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1274 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1275 DFSF.setShadow(&I, CombinedShadow); 1276 return CombinedShadow; 1277 } 1278 1279 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1280 // Addr has alignment Align, and take the union of each of those shadows. 1281 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1282 Instruction *Pos) { 1283 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1284 const auto i = AllocaShadowMap.find(AI); 1285 if (i != AllocaShadowMap.end()) { 1286 IRBuilder<> IRB(Pos); 1287 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1288 } 1289 } 1290 1291 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1292 SmallVector<const Value *, 2> Objs; 1293 getUnderlyingObjects(Addr, Objs); 1294 bool AllConstants = true; 1295 for (const Value *Obj : Objs) { 1296 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1297 continue; 1298 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1299 continue; 1300 1301 AllConstants = false; 1302 break; 1303 } 1304 if (AllConstants) 1305 return DFS.ZeroPrimitiveShadow; 1306 1307 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1308 switch (Size) { 1309 case 0: 1310 return DFS.ZeroPrimitiveShadow; 1311 case 1: { 1312 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1313 LI->setAlignment(ShadowAlign); 1314 return LI; 1315 } 1316 case 2: { 1317 IRBuilder<> IRB(Pos); 1318 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1319 ConstantInt::get(DFS.IntptrTy, 1)); 1320 return combineShadows( 1321 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1322 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1323 Pos); 1324 } 1325 } 1326 1327 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { 1328 // First OR all the WideShadows, then OR individual shadows within the 1329 // combined WideShadow. This is fewer instructions than ORing shadows 1330 // individually. 1331 IRBuilder<> IRB(Pos); 1332 Value *WideAddr = 1333 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1334 Value *CombinedWideShadow = 1335 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1336 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1337 Ofs += 64 / DFS.ShadowWidthBits) { 1338 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1339 ConstantInt::get(DFS.IntptrTy, 1)); 1340 Value *NextWideShadow = 1341 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1342 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1343 } 1344 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1345 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1346 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1347 } 1348 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1349 } 1350 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1351 // Fast path for the common case where each byte has identical shadow: load 1352 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1353 // shadow is non-equal. 1354 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1355 IRBuilder<> FallbackIRB(FallbackBB); 1356 CallInst *FallbackCall = FallbackIRB.CreateCall( 1357 DFS.DFSanUnionLoadFn, 1358 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1359 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1360 1361 // Compare each of the shadows stored in the loaded 64 bits to each other, 1362 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1363 IRBuilder<> IRB(Pos); 1364 Value *WideAddr = 1365 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1366 Value *WideShadow = 1367 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1368 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1369 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1370 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1371 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1372 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1373 1374 BasicBlock *Head = Pos->getParent(); 1375 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1376 1377 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1378 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1379 1380 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1381 for (auto Child : Children) 1382 DT.changeImmediateDominator(Child, NewNode); 1383 } 1384 1385 // In the following code LastBr will refer to the previous basic block's 1386 // conditional branch instruction, whose true successor is fixed up to point 1387 // to the next block during the loop below or to the tail after the final 1388 // iteration. 1389 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1390 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1391 DT.addNewBlock(FallbackBB, Head); 1392 1393 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1394 Ofs += 64 / DFS.ShadowWidthBits) { 1395 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1396 DT.addNewBlock(NextBB, LastBr->getParent()); 1397 IRBuilder<> NextIRB(NextBB); 1398 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1399 ConstantInt::get(DFS.IntptrTy, 1)); 1400 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1401 WideAddr, ShadowAlign); 1402 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1403 LastBr->setSuccessor(0, NextBB); 1404 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1405 } 1406 1407 LastBr->setSuccessor(0, Tail); 1408 FallbackIRB.CreateBr(Tail); 1409 PHINode *Shadow = 1410 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1411 Shadow->addIncoming(FallbackCall, FallbackBB); 1412 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1413 return Shadow; 1414 } 1415 1416 IRBuilder<> IRB(Pos); 1417 FunctionCallee &UnionLoadFn = 1418 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1419 CallInst *FallbackCall = IRB.CreateCall( 1420 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1421 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1422 return FallbackCall; 1423 } 1424 1425 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1426 auto &DL = LI.getModule()->getDataLayout(); 1427 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1428 if (Size == 0) { 1429 DFSF.setShadow(&LI, DFSF.DFS.ZeroPrimitiveShadow); 1430 return; 1431 } 1432 1433 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1434 Value *Shadow = 1435 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1436 if (ClCombinePointerLabelsOnLoad) { 1437 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1438 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1439 } 1440 if (Shadow != DFSF.DFS.ZeroPrimitiveShadow) 1441 DFSF.NonZeroChecks.push_back(Shadow); 1442 1443 DFSF.setShadow(&LI, Shadow); 1444 if (ClEventCallbacks) { 1445 IRBuilder<> IRB(&LI); 1446 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1447 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {Shadow, Addr8}); 1448 } 1449 } 1450 1451 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment, 1452 Value *Shadow, Instruction *Pos) { 1453 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1454 const auto i = AllocaShadowMap.find(AI); 1455 if (i != AllocaShadowMap.end()) { 1456 IRBuilder<> IRB(Pos); 1457 IRB.CreateStore(Shadow, i->second); 1458 return; 1459 } 1460 } 1461 1462 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1463 IRBuilder<> IRB(Pos); 1464 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1465 if (Shadow == DFS.ZeroPrimitiveShadow) { 1466 IntegerType *ShadowTy = 1467 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1468 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1469 Value *ExtShadowAddr = 1470 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1471 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1472 return; 1473 } 1474 1475 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1476 uint64_t Offset = 0; 1477 if (Size >= ShadowVecSize) { 1478 auto *ShadowVecTy = 1479 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 1480 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1481 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1482 ShadowVec = IRB.CreateInsertElement( 1483 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1484 } 1485 Value *ShadowVecAddr = 1486 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1487 do { 1488 Value *CurShadowVecAddr = 1489 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1490 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1491 Size -= ShadowVecSize; 1492 ++Offset; 1493 } while (Size >= ShadowVecSize); 1494 Offset *= ShadowVecSize; 1495 } 1496 while (Size > 0) { 1497 Value *CurShadowAddr = 1498 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 1499 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1500 --Size; 1501 ++Offset; 1502 } 1503 } 1504 1505 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1506 auto &DL = SI.getModule()->getDataLayout(); 1507 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1508 if (Size == 0) 1509 return; 1510 1511 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1512 1513 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1514 if (ClCombinePointerLabelsOnStore) { 1515 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1516 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1517 } 1518 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI); 1519 if (ClEventCallbacks) { 1520 IRBuilder<> IRB(&SI); 1521 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1522 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {Shadow, Addr8}); 1523 } 1524 } 1525 1526 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1527 visitOperandShadowInst(UO); 1528 } 1529 1530 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1531 visitOperandShadowInst(BO); 1532 } 1533 1534 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1535 1536 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1537 Value *CombinedShadow = visitOperandShadowInst(CI); 1538 if (ClEventCallbacks) { 1539 IRBuilder<> IRB(&CI); 1540 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1541 } 1542 } 1543 1544 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1545 visitOperandShadowInst(GEPI); 1546 } 1547 1548 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1549 visitOperandShadowInst(I); 1550 } 1551 1552 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1553 visitOperandShadowInst(I); 1554 } 1555 1556 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1557 visitOperandShadowInst(I); 1558 } 1559 1560 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1561 visitOperandShadowInst(I); 1562 } 1563 1564 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1565 visitOperandShadowInst(I); 1566 } 1567 1568 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1569 bool AllLoadsStores = true; 1570 for (User *U : I.users()) { 1571 if (isa<LoadInst>(U)) 1572 continue; 1573 1574 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1575 if (SI->getPointerOperand() == &I) 1576 continue; 1577 } 1578 1579 AllLoadsStores = false; 1580 break; 1581 } 1582 if (AllLoadsStores) { 1583 IRBuilder<> IRB(&I); 1584 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 1585 } 1586 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 1587 } 1588 1589 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1590 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1591 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1592 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1593 Value *ShadowSel = nullptr; 1594 1595 if (isa<VectorType>(I.getCondition()->getType())) { 1596 ShadowSel = DFSF.combineShadows(TrueShadow, FalseShadow, &I); 1597 } else { 1598 if (TrueShadow == FalseShadow) { 1599 ShadowSel = TrueShadow; 1600 } else { 1601 ShadowSel = 1602 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1603 } 1604 } 1605 DFSF.setShadow(&I, ClTrackSelectControlFlow 1606 ? DFSF.combineShadows(CondShadow, ShadowSel, &I) 1607 : ShadowSel); 1608 } 1609 1610 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1611 IRBuilder<> IRB(&I); 1612 Value *ValShadow = DFSF.getShadow(I.getValue()); 1613 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1614 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1615 *DFSF.DFS.Ctx)), 1616 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1617 } 1618 1619 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1620 IRBuilder<> IRB(&I); 1621 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1622 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1623 Value *LenShadow = 1624 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1625 DFSF.DFS.ShadowWidthBytes)); 1626 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1627 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1628 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1629 auto *MTI = cast<MemTransferInst>( 1630 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1631 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1632 if (ClPreserveAlignment) { 1633 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1634 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1635 } else { 1636 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1637 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1638 } 1639 if (ClEventCallbacks) { 1640 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1641 {RawDestShadow, I.getLength()}); 1642 } 1643 } 1644 1645 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1646 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1647 switch (DFSF.IA) { 1648 case DataFlowSanitizer::IA_TLS: { 1649 Value *S = DFSF.getShadow(RI.getReturnValue()); 1650 IRBuilder<> IRB(&RI); 1651 unsigned Size = 1652 getDataLayout().getTypeAllocSize(DFSF.DFS.PrimitiveShadowTy); 1653 if (Size <= kRetvalTLSSize) { 1654 // If the size overflows, stores nothing. At callsite, oversized return 1655 // shadows are set to zero. 1656 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(IRB), kShadowTLSAlignment); 1657 } 1658 break; 1659 } 1660 case DataFlowSanitizer::IA_Args: { 1661 IRBuilder<> IRB(&RI); 1662 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1663 Value *InsVal = 1664 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1665 Value *InsShadow = 1666 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1667 RI.setOperand(0, InsShadow); 1668 break; 1669 } 1670 } 1671 } 1672 } 1673 1674 void DFSanVisitor::visitCallBase(CallBase &CB) { 1675 Function *F = CB.getCalledFunction(); 1676 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1677 visitOperandShadowInst(CB); 1678 return; 1679 } 1680 1681 // Calls to this function are synthesized in wrappers, and we shouldn't 1682 // instrument them. 1683 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1684 return; 1685 1686 IRBuilder<> IRB(&CB); 1687 1688 DenseMap<Value *, Function *>::iterator i = 1689 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1690 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1691 Function *F = i->second; 1692 switch (DFSF.DFS.getWrapperKind(F)) { 1693 case DataFlowSanitizer::WK_Warning: 1694 CB.setCalledFunction(F); 1695 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1696 IRB.CreateGlobalStringPtr(F->getName())); 1697 DFSF.setShadow(&CB, DFSF.DFS.ZeroPrimitiveShadow); 1698 return; 1699 case DataFlowSanitizer::WK_Discard: 1700 CB.setCalledFunction(F); 1701 DFSF.setShadow(&CB, DFSF.DFS.ZeroPrimitiveShadow); 1702 return; 1703 case DataFlowSanitizer::WK_Functional: 1704 CB.setCalledFunction(F); 1705 visitOperandShadowInst(CB); 1706 return; 1707 case DataFlowSanitizer::WK_Custom: 1708 // Don't try to handle invokes of custom functions, it's too complicated. 1709 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1710 // wrapper. 1711 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1712 FunctionType *FT = F->getFunctionType(); 1713 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1714 std::string CustomFName = "__dfsw_"; 1715 CustomFName += F->getName(); 1716 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1717 CustomFName, CustomFn.TransformedType); 1718 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1719 CustomFn->copyAttributesFrom(F); 1720 1721 // Custom functions returning non-void will write to the return label. 1722 if (!FT->getReturnType()->isVoidTy()) { 1723 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1724 DFSF.DFS.ReadOnlyNoneAttrs); 1725 } 1726 } 1727 1728 std::vector<Value *> Args; 1729 1730 auto i = CB.arg_begin(); 1731 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1732 Type *T = (*i)->getType(); 1733 FunctionType *ParamFT; 1734 if (isa<PointerType>(T) && 1735 (ParamFT = dyn_cast<FunctionType>( 1736 cast<PointerType>(T)->getElementType()))) { 1737 std::string TName = "dfst"; 1738 TName += utostr(FT->getNumParams() - n); 1739 TName += "$"; 1740 TName += F->getName(); 1741 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1742 Args.push_back(T); 1743 Args.push_back( 1744 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1745 } else { 1746 Args.push_back(*i); 1747 } 1748 } 1749 1750 i = CB.arg_begin(); 1751 const unsigned ShadowArgStart = Args.size(); 1752 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1753 Args.push_back(DFSF.getShadow(*i)); 1754 1755 if (FT->isVarArg()) { 1756 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 1757 CB.arg_size() - FT->getNumParams()); 1758 auto *LabelVAAlloca = new AllocaInst( 1759 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1760 "labelva", &DFSF.F->getEntryBlock().front()); 1761 1762 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 1763 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1764 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1765 } 1766 1767 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1768 } 1769 1770 if (!FT->getReturnType()->isVoidTy()) { 1771 if (!DFSF.LabelReturnAlloca) { 1772 DFSF.LabelReturnAlloca = 1773 new AllocaInst(DFSF.DFS.PrimitiveShadowTy, 1774 getDataLayout().getAllocaAddrSpace(), 1775 "labelreturn", &DFSF.F->getEntryBlock().front()); 1776 } 1777 Args.push_back(DFSF.LabelReturnAlloca); 1778 } 1779 1780 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 1781 Args.push_back(*i); 1782 1783 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1784 CustomCI->setCallingConv(CI->getCallingConv()); 1785 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1786 CI->getContext(), CI->getAttributes())); 1787 1788 // Update the parameter attributes of the custom call instruction to 1789 // zero extend the shadow parameters. This is required for targets 1790 // which consider ShadowTy an illegal type. 1791 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1792 const unsigned ArgNo = ShadowArgStart + n; 1793 if (CustomCI->getArgOperand(ArgNo)->getType() == 1794 DFSF.DFS.PrimitiveShadowTy) 1795 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1796 } 1797 1798 if (!FT->getReturnType()->isVoidTy()) { 1799 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, 1800 DFSF.LabelReturnAlloca); 1801 DFSF.setShadow(CustomCI, LabelLoad); 1802 } 1803 1804 CI->replaceAllUsesWith(CustomCI); 1805 CI->eraseFromParent(); 1806 return; 1807 } 1808 break; 1809 } 1810 } 1811 1812 FunctionType *FT = CB.getFunctionType(); 1813 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1814 unsigned ArgOffset = 0; 1815 const DataLayout &DL = getDataLayout(); 1816 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 1817 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.PrimitiveShadowTy); 1818 // Stop storing if arguments' size overflows. Inside a function, arguments 1819 // after overflow have zero shadow values. 1820 if (ArgOffset + Size > kArgTLSSize) 1821 break; 1822 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 1823 DFSF.getArgTLS(ArgOffset, IRB), 1824 kShadowTLSAlignment); 1825 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1826 } 1827 } 1828 1829 Instruction *Next = nullptr; 1830 if (!CB.getType()->isVoidTy()) { 1831 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1832 if (II->getNormalDest()->getSinglePredecessor()) { 1833 Next = &II->getNormalDest()->front(); 1834 } else { 1835 BasicBlock *NewBB = 1836 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1837 Next = &NewBB->front(); 1838 } 1839 } else { 1840 assert(CB.getIterator() != CB.getParent()->end()); 1841 Next = CB.getNextNode(); 1842 } 1843 1844 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1845 IRBuilder<> NextIRB(Next); 1846 const DataLayout &DL = getDataLayout(); 1847 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.PrimitiveShadowTy); 1848 if (Size > kRetvalTLSSize) { 1849 // Set overflowed return shadow to be zero. 1850 DFSF.setShadow(&CB, DFSF.DFS.ZeroPrimitiveShadow); 1851 } else { 1852 LoadInst *LI = NextIRB.CreateAlignedLoad( 1853 DFSF.DFS.PrimitiveShadowTy, DFSF.getRetvalTLS(NextIRB), 1854 kShadowTLSAlignment, "_dfsret"); 1855 DFSF.SkipInsts.insert(LI); 1856 DFSF.setShadow(&CB, LI); 1857 DFSF.NonZeroChecks.push_back(LI); 1858 } 1859 } 1860 } 1861 1862 // Do all instrumentation for IA_Args down here to defer tampering with the 1863 // CFG in a way that SplitEdge may be able to detect. 1864 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1865 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1866 Value *Func = 1867 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 1868 std::vector<Value *> Args; 1869 1870 auto i = CB.arg_begin(), E = CB.arg_end(); 1871 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1872 Args.push_back(*i); 1873 1874 i = CB.arg_begin(); 1875 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1876 Args.push_back(DFSF.getShadow(*i)); 1877 1878 if (FT->isVarArg()) { 1879 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 1880 ArrayType *VarArgArrayTy = 1881 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 1882 AllocaInst *VarArgShadow = 1883 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1884 "", &DFSF.F->getEntryBlock().front()); 1885 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1886 for (unsigned n = 0; i != E; ++i, ++n) { 1887 IRB.CreateStore( 1888 DFSF.getShadow(*i), 1889 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1890 Args.push_back(*i); 1891 } 1892 } 1893 1894 CallBase *NewCB; 1895 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1896 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1897 II->getUnwindDest(), Args); 1898 } else { 1899 NewCB = IRB.CreateCall(NewFT, Func, Args); 1900 } 1901 NewCB->setCallingConv(CB.getCallingConv()); 1902 NewCB->setAttributes(CB.getAttributes().removeAttributes( 1903 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1904 AttributeFuncs::typeIncompatible(NewCB->getType()))); 1905 1906 if (Next) { 1907 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 1908 DFSF.SkipInsts.insert(ExVal); 1909 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 1910 DFSF.SkipInsts.insert(ExShadow); 1911 DFSF.setShadow(ExVal, ExShadow); 1912 DFSF.NonZeroChecks.push_back(ExShadow); 1913 1914 CB.replaceAllUsesWith(ExVal); 1915 } 1916 1917 CB.eraseFromParent(); 1918 } 1919 } 1920 1921 void DFSanVisitor::visitPHINode(PHINode &PN) { 1922 PHINode *ShadowPN = PHINode::Create(DFSF.DFS.PrimitiveShadowTy, 1923 PN.getNumIncomingValues(), "", &PN); 1924 1925 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1926 Value *UndefShadow = UndefValue::get(DFSF.DFS.PrimitiveShadowTy); 1927 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1928 ++i) { 1929 ShadowPN->addIncoming(UndefShadow, *i); 1930 } 1931 1932 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1933 DFSF.setShadow(&PN, ShadowPN); 1934 } 1935 1936 namespace { 1937 class DataFlowSanitizerLegacyPass : public ModulePass { 1938 private: 1939 std::vector<std::string> ABIListFiles; 1940 1941 public: 1942 static char ID; 1943 1944 DataFlowSanitizerLegacyPass( 1945 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 1946 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 1947 1948 bool runOnModule(Module &M) override { 1949 return DataFlowSanitizer(ABIListFiles).runImpl(M); 1950 } 1951 }; 1952 } // namespace 1953 1954 char DataFlowSanitizerLegacyPass::ID; 1955 1956 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 1957 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 1958 1959 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 1960 const std::vector<std::string> &ABIListFiles) { 1961 return new DataFlowSanitizerLegacyPass(ABIListFiles); 1962 } 1963 1964 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 1965 ModuleAnalysisManager &AM) { 1966 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 1967 return PreservedAnalyses::none(); 1968 } 1969 return PreservedAnalyses::all(); 1970 } 1971