1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// There are two possible memory layouts. In the first one, each byte of 22 /// application memory is backed by a shadow memory byte. The shadow byte can 23 /// represent up to 8 labels. To enable this you must specify the 24 /// -dfsan-fast-8-labels flag. On Linux/x86_64, memory is then laid out as 25 /// follows: 26 /// 27 /// +--------------------+ 0x800000000000 (top of memory) 28 /// | application memory | 29 /// +--------------------+ 0x700000008000 (kAppAddr) 30 /// | | 31 /// | unused | 32 /// | | 33 /// +--------------------+ 0x300200000000 (kUnusedAddr) 34 /// | union table | 35 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 36 /// | origin | 37 /// +--------------------+ 0x200000008000 (kOriginAddr) 38 /// | shadow memory | 39 /// +--------------------+ 0x100000008000 (kShadowAddr) 40 /// | unused | 41 /// +--------------------+ 0x000000010000 42 /// | reserved by kernel | 43 /// +--------------------+ 0x000000000000 44 /// 45 /// 46 /// In the second memory layout, each byte of application memory is backed by 47 /// two bytes of shadow memory which hold the label. That means we can represent 48 /// either 16 labels (with -dfsan-fast-16-labels flag) or 2^16 labels (on the 49 /// default legacy mode) per byte. On Linux/x86_64, memory is then laid out as 50 /// follows: 51 /// 52 /// +--------------------+ 0x800000000000 (top of memory) 53 /// | application memory | 54 /// +--------------------+ 0x700000008000 (kAppAddr) 55 /// | | 56 /// | unused | 57 /// | | 58 /// +--------------------+ 0x300200000000 (kUnusedAddr) 59 /// | union table | 60 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 61 /// | origin | 62 /// +--------------------+ 0x200000008000 (kOriginAddr) 63 /// | shadow memory | 64 /// +--------------------+ 0x000000010000 (kShadowAddr) 65 /// | reserved by kernel | 66 /// +--------------------+ 0x000000000000 67 /// 68 /// 69 /// To derive a shadow memory address from an application memory address, 70 /// bits 44-46 are cleared to bring the address into the range 71 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 72 /// account for the double byte representation of shadow labels and move the 73 /// address into the shadow memory range. See the function 74 /// DataFlowSanitizer::getShadowAddress below. 75 /// 76 /// For more information, please refer to the design document: 77 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 78 // 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 82 #include "llvm/ADT/DenseMap.h" 83 #include "llvm/ADT/DenseSet.h" 84 #include "llvm/ADT/DepthFirstIterator.h" 85 #include "llvm/ADT/None.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include "llvm/ADT/SmallVector.h" 88 #include "llvm/ADT/StringExtras.h" 89 #include "llvm/ADT/StringRef.h" 90 #include "llvm/ADT/Triple.h" 91 #include "llvm/ADT/iterator.h" 92 #include "llvm/Analysis/ValueTracking.h" 93 #include "llvm/IR/Argument.h" 94 #include "llvm/IR/Attributes.h" 95 #include "llvm/IR/BasicBlock.h" 96 #include "llvm/IR/Constant.h" 97 #include "llvm/IR/Constants.h" 98 #include "llvm/IR/DataLayout.h" 99 #include "llvm/IR/DerivedTypes.h" 100 #include "llvm/IR/Dominators.h" 101 #include "llvm/IR/Function.h" 102 #include "llvm/IR/GlobalAlias.h" 103 #include "llvm/IR/GlobalValue.h" 104 #include "llvm/IR/GlobalVariable.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InlineAsm.h" 107 #include "llvm/IR/InstVisitor.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/LLVMContext.h" 113 #include "llvm/IR/MDBuilder.h" 114 #include "llvm/IR/Module.h" 115 #include "llvm/IR/PassManager.h" 116 #include "llvm/IR/Type.h" 117 #include "llvm/IR/User.h" 118 #include "llvm/IR/Value.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Alignment.h" 122 #include "llvm/Support/Casting.h" 123 #include "llvm/Support/CommandLine.h" 124 #include "llvm/Support/ErrorHandling.h" 125 #include "llvm/Support/SpecialCaseList.h" 126 #include "llvm/Support/VirtualFileSystem.h" 127 #include "llvm/Transforms/Instrumentation.h" 128 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 129 #include "llvm/Transforms/Utils/Local.h" 130 #include <algorithm> 131 #include <cassert> 132 #include <cstddef> 133 #include <cstdint> 134 #include <iterator> 135 #include <memory> 136 #include <set> 137 #include <string> 138 #include <utility> 139 #include <vector> 140 141 using namespace llvm; 142 143 // This must be consistent with ShadowWidthBits. 144 static const Align ShadowTLSAlignment = Align(2); 145 146 static const Align MinOriginAlignment = Align(4); 147 148 // The size of TLS variables. These constants must be kept in sync with the ones 149 // in dfsan.cpp. 150 static const unsigned ArgTLSSize = 800; 151 static const unsigned RetvalTLSSize = 800; 152 153 // External symbol to be used when generating the shadow address for 154 // architectures with multiple VMAs. Instead of using a constant integer 155 // the runtime will set the external mask based on the VMA range. 156 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 157 158 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 159 // alignment requirements provided by the input IR are correct. For example, 160 // if the input IR contains a load with alignment 8, this flag will cause 161 // the shadow load to have alignment 16. This flag is disabled by default as 162 // we have unfortunately encountered too much code (including Clang itself; 163 // see PR14291) which performs misaligned access. 164 static cl::opt<bool> ClPreserveAlignment( 165 "dfsan-preserve-alignment", 166 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 167 cl::init(false)); 168 169 // The ABI list files control how shadow parameters are passed. The pass treats 170 // every function labelled "uninstrumented" in the ABI list file as conforming 171 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 172 // additional annotations for those functions, a call to one of those functions 173 // will produce a warning message, as the labelling behaviour of the function is 174 // unknown. The other supported annotations are "functional" and "discard", 175 // which are described below under DataFlowSanitizer::WrapperKind. 176 static cl::list<std::string> ClABIListFiles( 177 "dfsan-abilist", 178 cl::desc("File listing native ABI functions and how the pass treats them"), 179 cl::Hidden); 180 181 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 182 // functions (see DataFlowSanitizer::InstrumentedABI below). 183 static cl::opt<bool> 184 ClArgsABI("dfsan-args-abi", 185 cl::desc("Use the argument ABI rather than the TLS ABI"), 186 cl::Hidden); 187 188 // Controls whether the pass includes or ignores the labels of pointers in load 189 // instructions. 190 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 191 "dfsan-combine-pointer-labels-on-load", 192 cl::desc("Combine the label of the pointer with the label of the data when " 193 "loading from memory."), 194 cl::Hidden, cl::init(true)); 195 196 // Controls whether the pass includes or ignores the labels of pointers in 197 // stores instructions. 198 static cl::opt<bool> ClCombinePointerLabelsOnStore( 199 "dfsan-combine-pointer-labels-on-store", 200 cl::desc("Combine the label of the pointer with the label of the data when " 201 "storing in memory."), 202 cl::Hidden, cl::init(false)); 203 204 static cl::opt<bool> ClDebugNonzeroLabels( 205 "dfsan-debug-nonzero-labels", 206 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 207 "load or return with a nonzero label"), 208 cl::Hidden); 209 210 // Experimental feature that inserts callbacks for certain data events. 211 // Currently callbacks are only inserted for loads, stores, memory transfers 212 // (i.e. memcpy and memmove), and comparisons. 213 // 214 // If this flag is set to true, the user must provide definitions for the 215 // following callback functions: 216 // void __dfsan_load_callback(dfsan_label Label, void* addr); 217 // void __dfsan_store_callback(dfsan_label Label, void* addr); 218 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 219 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 220 static cl::opt<bool> ClEventCallbacks( 221 "dfsan-event-callbacks", 222 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 223 cl::Hidden, cl::init(false)); 224 225 // Use a distinct bit for each base label, enabling faster unions with less 226 // instrumentation. Limits the max number of base labels to 16. 227 static cl::opt<bool> ClFast16Labels( 228 "dfsan-fast-16-labels", 229 cl::desc("Use more efficient instrumentation, limiting the number of " 230 "labels to 16."), 231 cl::Hidden, cl::init(false)); 232 233 // Use a distinct bit for each base label, enabling faster unions with less 234 // instrumentation. Limits the max number of base labels to 8. 235 static cl::opt<bool> ClFast8Labels( 236 "dfsan-fast-8-labels", 237 cl::desc("Use more efficient instrumentation, limiting the number of " 238 "labels to 8."), 239 cl::Hidden, cl::init(false)); 240 241 // Controls whether the pass tracks the control flow of select instructions. 242 static cl::opt<bool> ClTrackSelectControlFlow( 243 "dfsan-track-select-control-flow", 244 cl::desc("Propagate labels from condition values of select instructions " 245 "to results."), 246 cl::Hidden, cl::init(true)); 247 248 // TODO: This default value follows MSan. DFSan may use a different value. 249 static cl::opt<int> ClInstrumentWithCallThreshold( 250 "dfsan-instrument-with-call-threshold", 251 cl::desc("If the function being instrumented requires more than " 252 "this number of origin stores, use callbacks instead of " 253 "inline checks (-1 means never use callbacks)."), 254 cl::Hidden, cl::init(3500)); 255 256 // Controls how to track origins. 257 // * 0: do not track origins. 258 // * 1: track origins at memory store operations. 259 // * 2: track origins at memory load and store operations. 260 // TODO: track callsites. 261 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 262 cl::desc("Track origins of labels"), 263 cl::Hidden, cl::init(0)); 264 265 static StringRef getGlobalTypeString(const GlobalValue &G) { 266 // Types of GlobalVariables are always pointer types. 267 Type *GType = G.getValueType(); 268 // For now we support excluding struct types only. 269 if (StructType *SGType = dyn_cast<StructType>(GType)) { 270 if (!SGType->isLiteral()) 271 return SGType->getName(); 272 } 273 return "<unknown type>"; 274 } 275 276 namespace { 277 278 class DFSanABIList { 279 std::unique_ptr<SpecialCaseList> SCL; 280 281 public: 282 DFSanABIList() = default; 283 284 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 285 286 /// Returns whether either this function or its source file are listed in the 287 /// given category. 288 bool isIn(const Function &F, StringRef Category) const { 289 return isIn(*F.getParent(), Category) || 290 SCL->inSection("dataflow", "fun", F.getName(), Category); 291 } 292 293 /// Returns whether this global alias is listed in the given category. 294 /// 295 /// If GA aliases a function, the alias's name is matched as a function name 296 /// would be. Similarly, aliases of globals are matched like globals. 297 bool isIn(const GlobalAlias &GA, StringRef Category) const { 298 if (isIn(*GA.getParent(), Category)) 299 return true; 300 301 if (isa<FunctionType>(GA.getValueType())) 302 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 303 304 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 305 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 306 Category); 307 } 308 309 /// Returns whether this module is listed in the given category. 310 bool isIn(const Module &M, StringRef Category) const { 311 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 312 } 313 }; 314 315 /// TransformedFunction is used to express the result of transforming one 316 /// function type into another. This struct is immutable. It holds metadata 317 /// useful for updating calls of the old function to the new type. 318 struct TransformedFunction { 319 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 320 std::vector<unsigned> ArgumentIndexMapping) 321 : OriginalType(OriginalType), TransformedType(TransformedType), 322 ArgumentIndexMapping(ArgumentIndexMapping) {} 323 324 // Disallow copies. 325 TransformedFunction(const TransformedFunction &) = delete; 326 TransformedFunction &operator=(const TransformedFunction &) = delete; 327 328 // Allow moves. 329 TransformedFunction(TransformedFunction &&) = default; 330 TransformedFunction &operator=(TransformedFunction &&) = default; 331 332 /// Type of the function before the transformation. 333 FunctionType *OriginalType; 334 335 /// Type of the function after the transformation. 336 FunctionType *TransformedType; 337 338 /// Transforming a function may change the position of arguments. This 339 /// member records the mapping from each argument's old position to its new 340 /// position. Argument positions are zero-indexed. If the transformation 341 /// from F to F' made the first argument of F into the third argument of F', 342 /// then ArgumentIndexMapping[0] will equal 2. 343 std::vector<unsigned> ArgumentIndexMapping; 344 }; 345 346 /// Given function attributes from a call site for the original function, 347 /// return function attributes appropriate for a call to the transformed 348 /// function. 349 AttributeList 350 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 351 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 352 353 // Construct a vector of AttributeSet for each function argument. 354 std::vector<llvm::AttributeSet> ArgumentAttributes( 355 TransformedFunction.TransformedType->getNumParams()); 356 357 // Copy attributes from the parameter of the original function to the 358 // transformed version. 'ArgumentIndexMapping' holds the mapping from 359 // old argument position to new. 360 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 361 I < IE; ++I) { 362 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 363 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 364 } 365 366 // Copy annotations on varargs arguments. 367 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 368 IE = CallSiteAttrs.getNumAttrSets(); 369 I < IE; ++I) { 370 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 371 } 372 373 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 374 CallSiteAttrs.getRetAttributes(), 375 llvm::makeArrayRef(ArgumentAttributes)); 376 } 377 378 class DataFlowSanitizer { 379 friend struct DFSanFunction; 380 friend class DFSanVisitor; 381 382 enum { 383 OriginWidthBits = 32, 384 OriginWidthBytes = OriginWidthBits / 8 385 }; 386 387 /// Which ABI should be used for instrumented functions? 388 enum InstrumentedABI { 389 /// Argument and return value labels are passed through additional 390 /// arguments and by modifying the return type. 391 IA_Args, 392 393 /// Argument and return value labels are passed through TLS variables 394 /// __dfsan_arg_tls and __dfsan_retval_tls. 395 IA_TLS 396 }; 397 398 /// How should calls to uninstrumented functions be handled? 399 enum WrapperKind { 400 /// This function is present in an uninstrumented form but we don't know 401 /// how it should be handled. Print a warning and call the function anyway. 402 /// Don't label the return value. 403 WK_Warning, 404 405 /// This function does not write to (user-accessible) memory, and its return 406 /// value is unlabelled. 407 WK_Discard, 408 409 /// This function does not write to (user-accessible) memory, and the label 410 /// of its return value is the union of the label of its arguments. 411 WK_Functional, 412 413 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 414 /// where F is the name of the function. This function may wrap the 415 /// original function or provide its own implementation. This is similar to 416 /// the IA_Args ABI, except that IA_Args uses a struct return type to 417 /// pass the return value shadow in a register, while WK_Custom uses an 418 /// extra pointer argument to return the shadow. This allows the wrapped 419 /// form of the function type to be expressed in C. 420 WK_Custom 421 }; 422 423 unsigned ShadowWidthBits; 424 unsigned ShadowWidthBytes; 425 426 Module *Mod; 427 LLVMContext *Ctx; 428 Type *Int8Ptr; 429 IntegerType *OriginTy; 430 PointerType *OriginPtrTy; 431 ConstantInt *OriginBase; 432 ConstantInt *ZeroOrigin; 433 /// The shadow type for all primitive types and vector types. 434 IntegerType *PrimitiveShadowTy; 435 PointerType *PrimitiveShadowPtrTy; 436 IntegerType *IntptrTy; 437 ConstantInt *ZeroPrimitiveShadow; 438 ConstantInt *ShadowPtrMask; 439 ConstantInt *ShadowPtrMul; 440 Constant *ArgTLS; 441 ArrayType *ArgOriginTLSTy; 442 Constant *ArgOriginTLS; 443 Constant *RetvalTLS; 444 Constant *RetvalOriginTLS; 445 Constant *ExternalShadowMask; 446 FunctionType *DFSanUnionFnTy; 447 FunctionType *DFSanUnionLoadFnTy; 448 FunctionType *DFSanLoadLabelAndOriginFnTy; 449 FunctionType *DFSanUnimplementedFnTy; 450 FunctionType *DFSanSetLabelFnTy; 451 FunctionType *DFSanNonzeroLabelFnTy; 452 FunctionType *DFSanVarargWrapperFnTy; 453 FunctionType *DFSanCmpCallbackFnTy; 454 FunctionType *DFSanLoadStoreCallbackFnTy; 455 FunctionType *DFSanMemTransferCallbackFnTy; 456 FunctionType *DFSanChainOriginFnTy; 457 FunctionType *DFSanChainOriginIfTaintedFnTy; 458 FunctionType *DFSanMemOriginTransferFnTy; 459 FunctionType *DFSanMaybeStoreOriginFnTy; 460 FunctionCallee DFSanUnionFn; 461 FunctionCallee DFSanCheckedUnionFn; 462 FunctionCallee DFSanUnionLoadFn; 463 FunctionCallee DFSanUnionLoadFastLabelsFn; 464 FunctionCallee DFSanLoadLabelAndOriginFn; 465 FunctionCallee DFSanUnimplementedFn; 466 FunctionCallee DFSanSetLabelFn; 467 FunctionCallee DFSanNonzeroLabelFn; 468 FunctionCallee DFSanVarargWrapperFn; 469 FunctionCallee DFSanLoadCallbackFn; 470 FunctionCallee DFSanStoreCallbackFn; 471 FunctionCallee DFSanMemTransferCallbackFn; 472 FunctionCallee DFSanCmpCallbackFn; 473 FunctionCallee DFSanChainOriginFn; 474 FunctionCallee DFSanChainOriginIfTaintedFn; 475 FunctionCallee DFSanMemOriginTransferFn; 476 FunctionCallee DFSanMaybeStoreOriginFn; 477 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 478 MDNode *ColdCallWeights; 479 MDNode *OriginStoreWeights; 480 DFSanABIList ABIList; 481 DenseMap<Value *, Function *> UnwrappedFnMap; 482 AttrBuilder ReadOnlyNoneAttrs; 483 bool DFSanRuntimeShadowMask = false; 484 485 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 486 Value *getShadowAddress(Value *Addr, Instruction *Pos); 487 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 488 std::pair<Value *, Value *> 489 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 490 bool isInstrumented(const Function *F); 491 bool isInstrumented(const GlobalAlias *GA); 492 FunctionType *getArgsFunctionType(FunctionType *T); 493 FunctionType *getTrampolineFunctionType(FunctionType *T); 494 TransformedFunction getCustomFunctionType(FunctionType *T); 495 InstrumentedABI getInstrumentedABI(); 496 WrapperKind getWrapperKind(Function *F); 497 void addGlobalNamePrefix(GlobalValue *GV); 498 Function *buildWrapperFunction(Function *F, StringRef NewFName, 499 GlobalValue::LinkageTypes NewFLink, 500 FunctionType *NewFT); 501 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 502 void initializeCallbackFunctions(Module &M); 503 void initializeRuntimeFunctions(Module &M); 504 void injectMetadataGlobals(Module &M); 505 506 bool init(Module &M); 507 508 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 509 /// from it. Returns the origin's loaded value. 510 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 511 Value **OriginAddr); 512 513 /// Returns whether fast8 or fast16 mode has been specified. 514 bool hasFastLabelsEnabled(); 515 516 /// Returns whether the given load byte size is amenable to inlined 517 /// optimization patterns. 518 bool hasLoadSizeForFastPath(uint64_t Size); 519 520 /// Returns whether the pass tracks origins. Support only fast16 mode in TLS 521 /// ABI mode. 522 bool shouldTrackOrigins(); 523 524 /// Returns whether the pass tracks labels for struct fields and array 525 /// indices. Support only fast16 mode in TLS ABI mode. 526 bool shouldTrackFieldsAndIndices(); 527 528 /// Returns a zero constant with the shadow type of OrigTy. 529 /// 530 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 531 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 532 /// getZeroShadow(other type) = i16(0) 533 /// 534 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 535 /// returns false. 536 Constant *getZeroShadow(Type *OrigTy); 537 /// Returns a zero constant with the shadow type of V's type. 538 Constant *getZeroShadow(Value *V); 539 540 /// Checks if V is a zero shadow. 541 bool isZeroShadow(Value *V); 542 543 /// Returns the shadow type of OrigTy. 544 /// 545 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 546 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 547 /// getShadowTy(other type) = i16 548 /// 549 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 550 /// returns false. 551 Type *getShadowTy(Type *OrigTy); 552 /// Returns the shadow type of of V's type. 553 Type *getShadowTy(Value *V); 554 555 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 556 557 public: 558 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 559 560 bool runImpl(Module &M); 561 }; 562 563 struct DFSanFunction { 564 DataFlowSanitizer &DFS; 565 Function *F; 566 DominatorTree DT; 567 DataFlowSanitizer::InstrumentedABI IA; 568 bool IsNativeABI; 569 AllocaInst *LabelReturnAlloca = nullptr; 570 AllocaInst *OriginReturnAlloca = nullptr; 571 DenseMap<Value *, Value *> ValShadowMap; 572 DenseMap<Value *, Value *> ValOriginMap; 573 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 574 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 575 576 struct PHIFixupElement { 577 PHINode *Phi; 578 PHINode *ShadowPhi; 579 PHINode *OriginPhi; 580 }; 581 std::vector<PHIFixupElement> PHIFixups; 582 583 DenseSet<Instruction *> SkipInsts; 584 std::vector<Value *> NonZeroChecks; 585 bool AvoidNewBlocks; 586 587 struct CachedShadow { 588 BasicBlock *Block; // The block where Shadow is defined. 589 Value *Shadow; 590 }; 591 /// Maps a value to its latest shadow value in terms of domination tree. 592 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 593 /// Maps a value to its latest collapsed shadow value it was converted to in 594 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 595 /// used at a post process where CFG blocks are split. So it does not cache 596 /// BasicBlock like CachedShadows, but uses domination between values. 597 DenseMap<Value *, Value *> CachedCollapsedShadows; 598 DenseMap<Value *, std::set<Value *>> ShadowElements; 599 600 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 601 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 602 DT.recalculate(*F); 603 // FIXME: Need to track down the register allocator issue which causes poor 604 // performance in pathological cases with large numbers of basic blocks. 605 AvoidNewBlocks = F->size() > 1000; 606 } 607 608 /// Computes the shadow address for a given function argument. 609 /// 610 /// Shadow = ArgTLS+ArgOffset. 611 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 612 613 /// Computes the shadow address for a return value. 614 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 615 616 /// Computes the origin address for a given function argument. 617 /// 618 /// Origin = ArgOriginTLS[ArgNo]. 619 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 620 621 /// Computes the origin address for a return value. 622 Value *getRetvalOriginTLS(); 623 624 Value *getOrigin(Value *V); 625 void setOrigin(Instruction *I, Value *Origin); 626 /// Generates IR to compute the origin of the last operand with a taint label. 627 Value *combineOperandOrigins(Instruction *Inst); 628 /// Before the instruction Pos, generates IR to compute the last origin with a 629 /// taint label. Labels and origins are from vectors Shadows and Origins 630 /// correspondingly. The generated IR is like 631 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 632 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 633 /// zeros with other bitwidths. 634 Value *combineOrigins(const std::vector<Value *> &Shadows, 635 const std::vector<Value *> &Origins, Instruction *Pos, 636 ConstantInt *Zero = nullptr); 637 638 Value *getShadow(Value *V); 639 void setShadow(Instruction *I, Value *Shadow); 640 /// Generates IR to compute the union of the two given shadows, inserting it 641 /// before Pos. The combined value is with primitive type. 642 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 643 /// Combines the shadow values of V1 and V2, then converts the combined value 644 /// with primitive type into a shadow value with the original type T. 645 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 646 Instruction *Pos); 647 Value *combineOperandShadows(Instruction *Inst); 648 649 /// Generates IR to load shadow and origin corresponding to bytes [\p 650 /// Addr, \p Addr + \p Size), where addr has alignment \p 651 /// InstAlignment, and take the union of each of those shadows. The returned 652 /// shadow always has primitive type. 653 /// 654 /// When tracking loads is enabled, the returned origin is a chain at the 655 /// current stack if the returned shadow is tainted. 656 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 657 Align InstAlignment, 658 Instruction *Pos); 659 660 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 661 Align InstAlignment, Value *PrimitiveShadow, 662 Value *Origin, Instruction *Pos); 663 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 664 /// the expanded shadow value. 665 /// 666 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 667 /// EFP([n x T], PS) = [n x EFP(T,PS)] 668 /// EFP(other types, PS) = PS 669 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 670 Instruction *Pos); 671 /// Collapses Shadow into a single primitive shadow value, unioning all 672 /// primitive shadow values in the process. Returns the final primitive 673 /// shadow value. 674 /// 675 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 676 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 677 /// CTP(other types, PS) = PS 678 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 679 680 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 681 Instruction *Pos); 682 683 Align getShadowAlign(Align InstAlignment); 684 685 private: 686 /// Collapses the shadow with aggregate type into a single primitive shadow 687 /// value. 688 template <class AggregateType> 689 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 690 IRBuilder<> &IRB); 691 692 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 693 694 /// Returns the shadow value of an argument A. 695 Value *getShadowForTLSArgument(Argument *A); 696 697 /// The fast path of loading shadow in legacy mode. 698 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 699 Align ShadowAlign, Instruction *Pos); 700 701 /// The fast path of loading shadow in fast-16-label mode. 702 std::pair<Value *, Value *> 703 loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 704 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 705 Instruction *Pos); 706 707 Align getOriginAlign(Align InstAlignment); 708 709 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 710 /// is __dfsan_load_label_and_origin. This function returns the union of all 711 /// labels and the origin of the first taint label. However this is an 712 /// additional call with many instructions. To ensure common cases are fast, 713 /// checks if it is possible to load labels and origins without using the 714 /// callback function. 715 /// 716 /// When enabling tracking load instructions, we always use 717 /// __dfsan_load_label_and_origin to reduce code size. 718 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 719 720 /// Returns a chain at the current stack with previous origin V. 721 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 722 723 /// Returns a chain at the current stack with previous origin V if Shadow is 724 /// tainted. 725 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 726 727 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 728 /// Origin otherwise. 729 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 730 731 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 732 /// Size). 733 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 734 uint64_t StoreOriginSize, Align Alignment); 735 736 /// Stores Origin in terms of its Shadow value. 737 /// * Do not write origins for zero shadows because we do not trace origins 738 /// for untainted sinks. 739 /// * Use __dfsan_maybe_store_origin if there are too many origin store 740 /// instrumentations. 741 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 742 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 743 744 /// Convert a scalar value to an i1 by comparing with 0. 745 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 746 747 bool shouldInstrumentWithCall(); 748 749 /// Generates IR to load shadow and origin corresponding to bytes [\p 750 /// Addr, \p Addr + \p Size), where addr has alignment \p 751 /// InstAlignment, and take the union of each of those shadows. The returned 752 /// shadow always has primitive type. 753 std::pair<Value *, Value *> 754 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 755 Align InstAlignment, Instruction *Pos); 756 int NumOriginStores = 0; 757 }; 758 759 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 760 public: 761 DFSanFunction &DFSF; 762 763 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 764 765 const DataLayout &getDataLayout() const { 766 return DFSF.F->getParent()->getDataLayout(); 767 } 768 769 // Combines shadow values and origins for all of I's operands. 770 void visitInstOperands(Instruction &I); 771 772 void visitUnaryOperator(UnaryOperator &UO); 773 void visitBinaryOperator(BinaryOperator &BO); 774 void visitCastInst(CastInst &CI); 775 void visitCmpInst(CmpInst &CI); 776 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 777 void visitLoadInst(LoadInst &LI); 778 void visitStoreInst(StoreInst &SI); 779 void visitAtomicRMWInst(AtomicRMWInst &I); 780 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 781 void visitReturnInst(ReturnInst &RI); 782 void visitCallBase(CallBase &CB); 783 void visitPHINode(PHINode &PN); 784 void visitExtractElementInst(ExtractElementInst &I); 785 void visitInsertElementInst(InsertElementInst &I); 786 void visitShuffleVectorInst(ShuffleVectorInst &I); 787 void visitExtractValueInst(ExtractValueInst &I); 788 void visitInsertValueInst(InsertValueInst &I); 789 void visitAllocaInst(AllocaInst &I); 790 void visitSelectInst(SelectInst &I); 791 void visitMemSetInst(MemSetInst &I); 792 void visitMemTransferInst(MemTransferInst &I); 793 794 private: 795 void visitCASOrRMW(Align InstAlignment, Instruction &I); 796 797 // Returns false when this is an invoke of a custom function. 798 bool visitWrappedCallBase(Function &F, CallBase &CB); 799 800 // Combines origins for all of I's operands. 801 void visitInstOperandOrigins(Instruction &I); 802 803 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 804 IRBuilder<> &IRB); 805 806 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 807 IRBuilder<> &IRB); 808 }; 809 810 } // end anonymous namespace 811 812 DataFlowSanitizer::DataFlowSanitizer( 813 const std::vector<std::string> &ABIListFiles) { 814 if (ClFast8Labels && ClFast16Labels) { 815 report_fatal_error( 816 "cannot set both -dfsan-fast-8-labels and -dfsan-fast-16-labels"); 817 } 818 819 ShadowWidthBits = ClFast8Labels ? 8 : 16; 820 ShadowWidthBytes = ShadowWidthBits / 8; 821 822 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 823 llvm::append_range(AllABIListFiles, ClABIListFiles); 824 // FIXME: should we propagate vfs::FileSystem to this constructor? 825 ABIList.set( 826 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 827 } 828 829 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 830 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 831 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 832 if (T->isVarArg()) 833 ArgTypes.push_back(PrimitiveShadowPtrTy); 834 Type *RetType = T->getReturnType(); 835 if (!RetType->isVoidTy()) 836 RetType = StructType::get(RetType, PrimitiveShadowTy); 837 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 838 } 839 840 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 841 assert(!T->isVarArg()); 842 SmallVector<Type *, 4> ArgTypes; 843 ArgTypes.push_back(T->getPointerTo()); 844 ArgTypes.append(T->param_begin(), T->param_end()); 845 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 846 Type *RetType = T->getReturnType(); 847 if (!RetType->isVoidTy()) 848 ArgTypes.push_back(PrimitiveShadowPtrTy); 849 850 if (shouldTrackOrigins()) { 851 ArgTypes.append(T->getNumParams(), OriginTy); 852 if (!RetType->isVoidTy()) 853 ArgTypes.push_back(OriginPtrTy); 854 } 855 856 return FunctionType::get(T->getReturnType(), ArgTypes, false); 857 } 858 859 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 860 SmallVector<Type *, 4> ArgTypes; 861 862 // Some parameters of the custom function being constructed are 863 // parameters of T. Record the mapping from parameters of T to 864 // parameters of the custom function, so that parameter attributes 865 // at call sites can be updated. 866 std::vector<unsigned> ArgumentIndexMapping; 867 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 868 Type *ParamType = T->getParamType(I); 869 FunctionType *FT; 870 if (isa<PointerType>(ParamType) && 871 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 872 ArgumentIndexMapping.push_back(ArgTypes.size()); 873 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 874 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 875 } else { 876 ArgumentIndexMapping.push_back(ArgTypes.size()); 877 ArgTypes.push_back(ParamType); 878 } 879 } 880 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 881 ArgTypes.push_back(PrimitiveShadowTy); 882 if (T->isVarArg()) 883 ArgTypes.push_back(PrimitiveShadowPtrTy); 884 Type *RetType = T->getReturnType(); 885 if (!RetType->isVoidTy()) 886 ArgTypes.push_back(PrimitiveShadowPtrTy); 887 888 if (shouldTrackOrigins()) { 889 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 890 ArgTypes.push_back(OriginTy); 891 if (T->isVarArg()) 892 ArgTypes.push_back(OriginPtrTy); 893 if (!RetType->isVoidTy()) 894 ArgTypes.push_back(OriginPtrTy); 895 } 896 897 return TransformedFunction( 898 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 899 ArgumentIndexMapping); 900 } 901 902 bool DataFlowSanitizer::isZeroShadow(Value *V) { 903 if (!shouldTrackFieldsAndIndices()) 904 return ZeroPrimitiveShadow == V; 905 906 Type *T = V->getType(); 907 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 908 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 909 return CI->isZero(); 910 return false; 911 } 912 913 return isa<ConstantAggregateZero>(V); 914 } 915 916 bool DataFlowSanitizer::hasFastLabelsEnabled() { 917 static const bool HasFastLabelsEnabled = ClFast8Labels || ClFast16Labels; 918 return HasFastLabelsEnabled; 919 } 920 921 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 922 uint64_t ShadowSize = Size * ShadowWidthBytes; 923 return ShadowSize % 8 == 0 || ShadowSize == 4; 924 } 925 926 bool DataFlowSanitizer::shouldTrackOrigins() { 927 static const bool ShouldTrackOrigins = 928 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 929 hasFastLabelsEnabled(); 930 return ShouldTrackOrigins; 931 } 932 933 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 934 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 935 hasFastLabelsEnabled(); 936 } 937 938 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 939 if (!shouldTrackFieldsAndIndices()) 940 return ZeroPrimitiveShadow; 941 942 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 943 return ZeroPrimitiveShadow; 944 Type *ShadowTy = getShadowTy(OrigTy); 945 return ConstantAggregateZero::get(ShadowTy); 946 } 947 948 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 949 return getZeroShadow(V->getType()); 950 } 951 952 static Value *expandFromPrimitiveShadowRecursive( 953 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 954 Value *PrimitiveShadow, IRBuilder<> &IRB) { 955 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 956 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 957 958 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 959 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 960 Indices.push_back(Idx); 961 Shadow = expandFromPrimitiveShadowRecursive( 962 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 963 Indices.pop_back(); 964 } 965 return Shadow; 966 } 967 968 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 969 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 970 Indices.push_back(Idx); 971 Shadow = expandFromPrimitiveShadowRecursive( 972 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 973 Indices.pop_back(); 974 } 975 return Shadow; 976 } 977 llvm_unreachable("Unexpected shadow type"); 978 } 979 980 bool DFSanFunction::shouldInstrumentWithCall() { 981 return ClInstrumentWithCallThreshold >= 0 && 982 NumOriginStores >= ClInstrumentWithCallThreshold; 983 } 984 985 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 986 Instruction *Pos) { 987 Type *ShadowTy = DFS.getShadowTy(T); 988 989 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 990 return PrimitiveShadow; 991 992 if (DFS.isZeroShadow(PrimitiveShadow)) 993 return DFS.getZeroShadow(ShadowTy); 994 995 IRBuilder<> IRB(Pos); 996 SmallVector<unsigned, 4> Indices; 997 Value *Shadow = UndefValue::get(ShadowTy); 998 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 999 PrimitiveShadow, IRB); 1000 1001 // Caches the primitive shadow value that built the shadow value. 1002 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 1003 return Shadow; 1004 } 1005 1006 template <class AggregateType> 1007 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 1008 IRBuilder<> &IRB) { 1009 if (!AT->getNumElements()) 1010 return DFS.ZeroPrimitiveShadow; 1011 1012 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1013 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 1014 1015 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 1016 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1017 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 1018 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1019 } 1020 return Aggregator; 1021 } 1022 1023 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1024 IRBuilder<> &IRB) { 1025 Type *ShadowTy = Shadow->getType(); 1026 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1027 return Shadow; 1028 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 1029 return collapseAggregateShadow<>(AT, Shadow, IRB); 1030 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 1031 return collapseAggregateShadow<>(ST, Shadow, IRB); 1032 llvm_unreachable("Unexpected shadow type"); 1033 } 1034 1035 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1036 Instruction *Pos) { 1037 Type *ShadowTy = Shadow->getType(); 1038 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1039 return Shadow; 1040 1041 assert(DFS.shouldTrackFieldsAndIndices()); 1042 1043 // Checks if the cached collapsed shadow value dominates Pos. 1044 Value *&CS = CachedCollapsedShadows[Shadow]; 1045 if (CS && DT.dominates(CS, Pos)) 1046 return CS; 1047 1048 IRBuilder<> IRB(Pos); 1049 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1050 // Caches the converted primitive shadow value. 1051 CS = PrimitiveShadow; 1052 return PrimitiveShadow; 1053 } 1054 1055 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1056 if (!shouldTrackFieldsAndIndices()) 1057 return PrimitiveShadowTy; 1058 1059 if (!OrigTy->isSized()) 1060 return PrimitiveShadowTy; 1061 if (isa<IntegerType>(OrigTy)) 1062 return PrimitiveShadowTy; 1063 if (isa<VectorType>(OrigTy)) 1064 return PrimitiveShadowTy; 1065 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1066 return ArrayType::get(getShadowTy(AT->getElementType()), 1067 AT->getNumElements()); 1068 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1069 SmallVector<Type *, 4> Elements; 1070 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1071 Elements.push_back(getShadowTy(ST->getElementType(I))); 1072 return StructType::get(*Ctx, Elements); 1073 } 1074 return PrimitiveShadowTy; 1075 } 1076 1077 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1078 return getShadowTy(V->getType()); 1079 } 1080 1081 bool DataFlowSanitizer::init(Module &M) { 1082 Triple TargetTriple(M.getTargetTriple()); 1083 const DataLayout &DL = M.getDataLayout(); 1084 1085 Mod = &M; 1086 Ctx = &M.getContext(); 1087 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1088 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1089 OriginPtrTy = PointerType::getUnqual(OriginTy); 1090 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1091 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1092 IntptrTy = DL.getIntPtrType(*Ctx); 1093 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1094 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 1095 OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL); 1096 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1097 1098 switch (TargetTriple.getArch()) { 1099 case Triple::x86_64: 1100 ShadowPtrMask = ClFast8Labels 1101 ? ConstantInt::getSigned(IntptrTy, ~0x600000000000LL) 1102 : ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 1103 break; 1104 case Triple::mips64: 1105 case Triple::mips64el: 1106 ShadowPtrMask = ClFast8Labels 1107 ? ConstantInt::getSigned(IntptrTy, ~0xE000000000LL) 1108 : ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 1109 break; 1110 case Triple::aarch64: 1111 case Triple::aarch64_be: 1112 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 1113 DFSanRuntimeShadowMask = true; 1114 break; 1115 default: 1116 report_fatal_error("unsupported triple"); 1117 } 1118 1119 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 1120 DFSanUnionFnTy = 1121 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 1122 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1123 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1124 /*isVarArg=*/false); 1125 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1126 DFSanLoadLabelAndOriginFnTy = 1127 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1128 /*isVarArg=*/false); 1129 DFSanUnimplementedFnTy = FunctionType::get( 1130 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1131 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1132 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1133 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1134 DFSanSetLabelArgs, /*isVarArg=*/false); 1135 DFSanNonzeroLabelFnTy = 1136 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1137 DFSanVarargWrapperFnTy = FunctionType::get( 1138 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1139 DFSanCmpCallbackFnTy = 1140 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1141 /*isVarArg=*/false); 1142 DFSanChainOriginFnTy = 1143 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1144 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1145 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1146 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1147 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1148 Int8Ptr, IntptrTy, OriginTy}; 1149 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1150 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1151 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1152 DFSanMemOriginTransferFnTy = FunctionType::get( 1153 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1154 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1155 DFSanLoadStoreCallbackFnTy = 1156 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1157 /*isVarArg=*/false); 1158 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1159 DFSanMemTransferCallbackFnTy = 1160 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1161 /*isVarArg=*/false); 1162 1163 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1164 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1165 return true; 1166 } 1167 1168 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1169 return !ABIList.isIn(*F, "uninstrumented"); 1170 } 1171 1172 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1173 return !ABIList.isIn(*GA, "uninstrumented"); 1174 } 1175 1176 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1177 return ClArgsABI ? IA_Args : IA_TLS; 1178 } 1179 1180 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1181 if (ABIList.isIn(*F, "functional")) 1182 return WK_Functional; 1183 if (ABIList.isIn(*F, "discard")) 1184 return WK_Discard; 1185 if (ABIList.isIn(*F, "custom")) 1186 return WK_Custom; 1187 1188 return WK_Warning; 1189 } 1190 1191 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 1192 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 1193 GV->setName(Prefix + GVName); 1194 1195 // Try to change the name of the function in module inline asm. We only do 1196 // this for specific asm directives, currently only ".symver", to try to avoid 1197 // corrupting asm which happens to contain the symbol name as a substring. 1198 // Note that the substitution for .symver assumes that the versioned symbol 1199 // also has an instrumented name. 1200 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1201 std::string SearchStr = ".symver " + GVName + ","; 1202 size_t Pos = Asm.find(SearchStr); 1203 if (Pos != std::string::npos) { 1204 Asm.replace(Pos, SearchStr.size(), 1205 ".symver " + Prefix + GVName + "," + Prefix); 1206 GV->getParent()->setModuleInlineAsm(Asm); 1207 } 1208 } 1209 1210 Function * 1211 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1212 GlobalValue::LinkageTypes NewFLink, 1213 FunctionType *NewFT) { 1214 FunctionType *FT = F->getFunctionType(); 1215 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1216 NewFName, F->getParent()); 1217 NewF->copyAttributesFrom(F); 1218 NewF->removeAttributes( 1219 AttributeList::ReturnIndex, 1220 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1221 1222 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1223 if (F->isVarArg()) { 1224 NewF->removeAttributes(AttributeList::FunctionIndex, 1225 AttrBuilder().addAttribute("split-stack")); 1226 CallInst::Create(DFSanVarargWrapperFn, 1227 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1228 BB); 1229 new UnreachableInst(*Ctx, BB); 1230 } else { 1231 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1232 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1233 1234 CallInst *CI = CallInst::Create(F, Args, "", BB); 1235 if (FT->getReturnType()->isVoidTy()) 1236 ReturnInst::Create(*Ctx, BB); 1237 else 1238 ReturnInst::Create(*Ctx, CI, BB); 1239 } 1240 1241 return NewF; 1242 } 1243 1244 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1245 StringRef FName) { 1246 FunctionType *FTT = getTrampolineFunctionType(FT); 1247 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1248 Function *F = dyn_cast<Function>(C.getCallee()); 1249 if (F && F->isDeclaration()) { 1250 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1251 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1252 std::vector<Value *> Args; 1253 Function::arg_iterator AI = F->arg_begin() + 1; 1254 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1255 Args.push_back(&*AI); 1256 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1257 Type *RetType = FT->getReturnType(); 1258 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1259 : ReturnInst::Create(*Ctx, CI, BB); 1260 1261 // F is called by a wrapped custom function with primitive shadows. So 1262 // its arguments and return value need conversion. 1263 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1264 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1265 ++ValAI; 1266 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1267 Value *Shadow = 1268 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1269 DFSF.ValShadowMap[&*ValAI] = Shadow; 1270 } 1271 Function::arg_iterator RetShadowAI = ShadowAI; 1272 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1273 if (ShouldTrackOrigins) { 1274 ValAI = F->arg_begin(); 1275 ++ValAI; 1276 Function::arg_iterator OriginAI = ShadowAI; 1277 if (!RetType->isVoidTy()) 1278 ++OriginAI; 1279 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1280 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1281 } 1282 } 1283 DFSanVisitor(DFSF).visitCallInst(*CI); 1284 if (!RetType->isVoidTy()) { 1285 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1286 DFSF.getShadow(RI->getReturnValue()), RI); 1287 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1288 if (ShouldTrackOrigins) { 1289 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1290 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1291 } 1292 } 1293 } 1294 1295 return cast<Constant>(C.getCallee()); 1296 } 1297 1298 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1299 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1300 { 1301 AttributeList AL; 1302 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1303 Attribute::NoUnwind); 1304 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1305 Attribute::ReadNone); 1306 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1307 Attribute::ZExt); 1308 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1309 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1310 DFSanUnionFn = 1311 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1312 } 1313 { 1314 AttributeList AL; 1315 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1316 Attribute::NoUnwind); 1317 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1318 Attribute::ReadNone); 1319 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1320 Attribute::ZExt); 1321 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1322 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1323 DFSanCheckedUnionFn = 1324 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1325 } 1326 { 1327 AttributeList AL; 1328 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1329 Attribute::NoUnwind); 1330 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1331 Attribute::ReadOnly); 1332 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1333 Attribute::ZExt); 1334 DFSanUnionLoadFn = 1335 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1336 } 1337 { 1338 AttributeList AL; 1339 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1340 Attribute::NoUnwind); 1341 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1342 Attribute::ReadOnly); 1343 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1344 Attribute::ZExt); 1345 DFSanUnionLoadFastLabelsFn = Mod->getOrInsertFunction( 1346 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1347 } 1348 { 1349 AttributeList AL; 1350 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1351 Attribute::NoUnwind); 1352 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1353 Attribute::ReadOnly); 1354 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1355 Attribute::ZExt); 1356 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1357 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1358 } 1359 DFSanUnimplementedFn = 1360 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1361 { 1362 AttributeList AL; 1363 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1364 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1365 DFSanSetLabelFn = 1366 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1367 } 1368 DFSanNonzeroLabelFn = 1369 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1370 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1371 DFSanVarargWrapperFnTy); 1372 { 1373 AttributeList AL; 1374 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1375 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1376 Attribute::ZExt); 1377 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1378 DFSanChainOriginFnTy, AL); 1379 } 1380 { 1381 AttributeList AL; 1382 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1383 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1384 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1385 Attribute::ZExt); 1386 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1387 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1388 } 1389 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1390 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1391 1392 { 1393 AttributeList AL; 1394 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1395 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1396 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1397 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1398 } 1399 1400 DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts()); 1401 DFSanRuntimeFunctions.insert( 1402 DFSanCheckedUnionFn.getCallee()->stripPointerCasts()); 1403 DFSanRuntimeFunctions.insert( 1404 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1405 DFSanRuntimeFunctions.insert( 1406 DFSanUnionLoadFastLabelsFn.getCallee()->stripPointerCasts()); 1407 DFSanRuntimeFunctions.insert( 1408 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1409 DFSanRuntimeFunctions.insert( 1410 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1411 DFSanRuntimeFunctions.insert( 1412 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1413 DFSanRuntimeFunctions.insert( 1414 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1415 DFSanRuntimeFunctions.insert( 1416 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1417 DFSanRuntimeFunctions.insert( 1418 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1419 DFSanRuntimeFunctions.insert( 1420 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1421 DFSanRuntimeFunctions.insert( 1422 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1423 DFSanRuntimeFunctions.insert( 1424 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1425 DFSanRuntimeFunctions.insert( 1426 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1427 DFSanRuntimeFunctions.insert( 1428 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1429 DFSanRuntimeFunctions.insert( 1430 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1431 DFSanRuntimeFunctions.insert( 1432 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1433 } 1434 1435 // Initializes event callback functions and declare them in the module 1436 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1437 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1438 DFSanLoadStoreCallbackFnTy); 1439 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1440 DFSanLoadStoreCallbackFnTy); 1441 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1442 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1443 DFSanCmpCallbackFn = 1444 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1445 } 1446 1447 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1448 // These variables can be used: 1449 // - by the runtime (to discover what the shadow width was, during 1450 // compilation) 1451 // - in testing (to avoid hardcoding the shadow width and type but instead 1452 // extract them by pattern matching) 1453 Type *IntTy = Type::getInt32Ty(*Ctx); 1454 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1455 return new GlobalVariable( 1456 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1457 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1458 }); 1459 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1460 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1461 GlobalValue::WeakODRLinkage, 1462 ConstantInt::get(IntTy, ShadowWidthBytes), 1463 "__dfsan_shadow_width_bytes"); 1464 }); 1465 } 1466 1467 bool DataFlowSanitizer::runImpl(Module &M) { 1468 init(M); 1469 1470 if (ABIList.isIn(M, "skip")) 1471 return false; 1472 1473 const unsigned InitialGlobalSize = M.global_size(); 1474 const unsigned InitialModuleSize = M.size(); 1475 1476 bool Changed = false; 1477 1478 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1479 Type *Ty) -> Constant * { 1480 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1481 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1482 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1483 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1484 } 1485 return C; 1486 }; 1487 1488 // These globals must be kept in sync with the ones in dfsan.cpp. 1489 ArgTLS = 1490 GetOrInsertGlobal("__dfsan_arg_tls", 1491 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1492 RetvalTLS = GetOrInsertGlobal( 1493 "__dfsan_retval_tls", 1494 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1495 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1496 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1497 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1498 1499 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1500 Changed = true; 1501 return new GlobalVariable( 1502 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1503 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1504 "__dfsan_track_origins"); 1505 }); 1506 1507 injectMetadataGlobals(M); 1508 1509 ExternalShadowMask = 1510 Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy); 1511 1512 initializeCallbackFunctions(M); 1513 initializeRuntimeFunctions(M); 1514 1515 std::vector<Function *> FnsToInstrument; 1516 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1517 for (Function &F : M) 1518 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1519 FnsToInstrument.push_back(&F); 1520 1521 // Give function aliases prefixes when necessary, and build wrappers where the 1522 // instrumentedness is inconsistent. 1523 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1524 AI != AE;) { 1525 GlobalAlias *GA = &*AI; 1526 ++AI; 1527 // Don't stop on weak. We assume people aren't playing games with the 1528 // instrumentedness of overridden weak aliases. 1529 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1530 if (!F) 1531 continue; 1532 1533 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1534 if (GAInst && FInst) { 1535 addGlobalNamePrefix(GA); 1536 } else if (GAInst != FInst) { 1537 // Non-instrumented alias of an instrumented function, or vice versa. 1538 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1539 // below will take care of instrumenting it. 1540 Function *NewF = 1541 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1542 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1543 NewF->takeName(GA); 1544 GA->eraseFromParent(); 1545 FnsToInstrument.push_back(NewF); 1546 } 1547 } 1548 1549 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1550 .addAttribute(Attribute::ReadNone); 1551 1552 // First, change the ABI of every function in the module. ABI-listed 1553 // functions keep their original ABI and get a wrapper function. 1554 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1555 FE = FnsToInstrument.end(); 1556 FI != FE; ++FI) { 1557 Function &F = **FI; 1558 FunctionType *FT = F.getFunctionType(); 1559 1560 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1561 FT->getReturnType()->isVoidTy()); 1562 1563 if (isInstrumented(&F)) { 1564 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1565 // easily identify cases of mismatching ABIs. 1566 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1567 FunctionType *NewFT = getArgsFunctionType(FT); 1568 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1569 F.getAddressSpace(), "", &M); 1570 NewF->copyAttributesFrom(&F); 1571 NewF->removeAttributes( 1572 AttributeList::ReturnIndex, 1573 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1574 for (Function::arg_iterator FArg = F.arg_begin(), 1575 NewFArg = NewF->arg_begin(), 1576 FArgEnd = F.arg_end(); 1577 FArg != FArgEnd; ++FArg, ++NewFArg) { 1578 FArg->replaceAllUsesWith(&*NewFArg); 1579 } 1580 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1581 1582 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1583 UI != UE;) { 1584 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1585 ++UI; 1586 if (BA) { 1587 BA->replaceAllUsesWith( 1588 BlockAddress::get(NewF, BA->getBasicBlock())); 1589 delete BA; 1590 } 1591 } 1592 F.replaceAllUsesWith( 1593 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1594 NewF->takeName(&F); 1595 F.eraseFromParent(); 1596 *FI = NewF; 1597 addGlobalNamePrefix(NewF); 1598 } else { 1599 addGlobalNamePrefix(&F); 1600 } 1601 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1602 // Build a wrapper function for F. The wrapper simply calls F, and is 1603 // added to FnsToInstrument so that any instrumentation according to its 1604 // WrapperKind is done in the second pass below. 1605 FunctionType *NewFT = 1606 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1607 1608 // If the function being wrapped has local linkage, then preserve the 1609 // function's linkage in the wrapper function. 1610 GlobalValue::LinkageTypes WrapperLinkage = 1611 F.hasLocalLinkage() ? F.getLinkage() 1612 : GlobalValue::LinkOnceODRLinkage; 1613 1614 Function *NewF = buildWrapperFunction( 1615 &F, 1616 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1617 std::string(F.getName()), 1618 WrapperLinkage, NewFT); 1619 if (getInstrumentedABI() == IA_TLS) 1620 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1621 1622 Value *WrappedFnCst = 1623 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1624 F.replaceAllUsesWith(WrappedFnCst); 1625 1626 UnwrappedFnMap[WrappedFnCst] = &F; 1627 *FI = NewF; 1628 1629 if (!F.isDeclaration()) { 1630 // This function is probably defining an interposition of an 1631 // uninstrumented function and hence needs to keep the original ABI. 1632 // But any functions it may call need to use the instrumented ABI, so 1633 // we instrument it in a mode which preserves the original ABI. 1634 FnsWithNativeABI.insert(&F); 1635 1636 // This code needs to rebuild the iterators, as they may be invalidated 1637 // by the push_back, taking care that the new range does not include 1638 // any functions added by this code. 1639 size_t N = FI - FnsToInstrument.begin(), 1640 Count = FE - FnsToInstrument.begin(); 1641 FnsToInstrument.push_back(&F); 1642 FI = FnsToInstrument.begin() + N; 1643 FE = FnsToInstrument.begin() + Count; 1644 } 1645 // Hopefully, nobody will try to indirectly call a vararg 1646 // function... yet. 1647 } else if (FT->isVarArg()) { 1648 UnwrappedFnMap[&F] = &F; 1649 *FI = nullptr; 1650 } 1651 } 1652 1653 for (Function *F : FnsToInstrument) { 1654 if (!F || F->isDeclaration()) 1655 continue; 1656 1657 removeUnreachableBlocks(*F); 1658 1659 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1660 1661 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1662 // Build a copy of the list before iterating over it. 1663 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1664 1665 for (BasicBlock *BB : BBList) { 1666 Instruction *Inst = &BB->front(); 1667 while (true) { 1668 // DFSanVisitor may split the current basic block, changing the current 1669 // instruction's next pointer and moving the next instruction to the 1670 // tail block from which we should continue. 1671 Instruction *Next = Inst->getNextNode(); 1672 // DFSanVisitor may delete Inst, so keep track of whether it was a 1673 // terminator. 1674 bool IsTerminator = Inst->isTerminator(); 1675 if (!DFSF.SkipInsts.count(Inst)) 1676 DFSanVisitor(DFSF).visit(Inst); 1677 if (IsTerminator) 1678 break; 1679 Inst = Next; 1680 } 1681 } 1682 1683 // We will not necessarily be able to compute the shadow for every phi node 1684 // until we have visited every block. Therefore, the code that handles phi 1685 // nodes adds them to the PHIFixups list so that they can be properly 1686 // handled here. 1687 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1688 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1689 ++Val) { 1690 P.ShadowPhi->setIncomingValue( 1691 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1692 if (P.OriginPhi) 1693 P.OriginPhi->setIncomingValue( 1694 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1695 } 1696 } 1697 1698 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1699 // places (i.e. instructions in basic blocks we haven't even begun visiting 1700 // yet). To make our life easier, do this work in a pass after the main 1701 // instrumentation. 1702 if (ClDebugNonzeroLabels) { 1703 for (Value *V : DFSF.NonZeroChecks) { 1704 Instruction *Pos; 1705 if (Instruction *I = dyn_cast<Instruction>(V)) 1706 Pos = I->getNextNode(); 1707 else 1708 Pos = &DFSF.F->getEntryBlock().front(); 1709 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1710 Pos = Pos->getNextNode(); 1711 IRBuilder<> IRB(Pos); 1712 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1713 Value *Ne = 1714 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1715 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1716 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1717 IRBuilder<> ThenIRB(BI); 1718 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1719 } 1720 } 1721 } 1722 1723 return Changed || !FnsToInstrument.empty() || 1724 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1725 } 1726 1727 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1728 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1729 if (ArgOffset) 1730 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1731 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1732 "_dfsarg"); 1733 } 1734 1735 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1736 return IRB.CreatePointerCast( 1737 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1738 } 1739 1740 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1741 1742 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1743 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1744 "_dfsarg_o"); 1745 } 1746 1747 Value *DFSanFunction::getOrigin(Value *V) { 1748 assert(DFS.shouldTrackOrigins()); 1749 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1750 return DFS.ZeroOrigin; 1751 Value *&Origin = ValOriginMap[V]; 1752 if (!Origin) { 1753 if (Argument *A = dyn_cast<Argument>(V)) { 1754 if (IsNativeABI) 1755 return DFS.ZeroOrigin; 1756 switch (IA) { 1757 case DataFlowSanitizer::IA_TLS: { 1758 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1759 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1760 IRBuilder<> IRB(ArgOriginTLSPos); 1761 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1762 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1763 } else { 1764 // Overflow 1765 Origin = DFS.ZeroOrigin; 1766 } 1767 break; 1768 } 1769 case DataFlowSanitizer::IA_Args: { 1770 Origin = DFS.ZeroOrigin; 1771 break; 1772 } 1773 } 1774 } else { 1775 Origin = DFS.ZeroOrigin; 1776 } 1777 } 1778 return Origin; 1779 } 1780 1781 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1782 if (!DFS.shouldTrackOrigins()) 1783 return; 1784 assert(!ValOriginMap.count(I)); 1785 assert(Origin->getType() == DFS.OriginTy); 1786 ValOriginMap[I] = Origin; 1787 } 1788 1789 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1790 unsigned ArgOffset = 0; 1791 const DataLayout &DL = F->getParent()->getDataLayout(); 1792 for (auto &FArg : F->args()) { 1793 if (!FArg.getType()->isSized()) { 1794 if (A == &FArg) 1795 break; 1796 continue; 1797 } 1798 1799 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1800 if (A != &FArg) { 1801 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1802 if (ArgOffset > ArgTLSSize) 1803 break; // ArgTLS overflows, uses a zero shadow. 1804 continue; 1805 } 1806 1807 if (ArgOffset + Size > ArgTLSSize) 1808 break; // ArgTLS overflows, uses a zero shadow. 1809 1810 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1811 IRBuilder<> IRB(ArgTLSPos); 1812 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1813 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1814 ShadowTLSAlignment); 1815 } 1816 1817 return DFS.getZeroShadow(A); 1818 } 1819 1820 Value *DFSanFunction::getShadow(Value *V) { 1821 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1822 return DFS.getZeroShadow(V); 1823 Value *&Shadow = ValShadowMap[V]; 1824 if (!Shadow) { 1825 if (Argument *A = dyn_cast<Argument>(V)) { 1826 if (IsNativeABI) 1827 return DFS.getZeroShadow(V); 1828 switch (IA) { 1829 case DataFlowSanitizer::IA_TLS: { 1830 Shadow = getShadowForTLSArgument(A); 1831 break; 1832 } 1833 case DataFlowSanitizer::IA_Args: { 1834 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1835 Function::arg_iterator Arg = F->arg_begin(); 1836 std::advance(Arg, ArgIdx); 1837 Shadow = &*Arg; 1838 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1839 break; 1840 } 1841 } 1842 NonZeroChecks.push_back(Shadow); 1843 } else { 1844 Shadow = DFS.getZeroShadow(V); 1845 } 1846 } 1847 return Shadow; 1848 } 1849 1850 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1851 assert(!ValShadowMap.count(I)); 1852 assert(DFS.shouldTrackFieldsAndIndices() || 1853 Shadow->getType() == DFS.PrimitiveShadowTy); 1854 ValShadowMap[I] = Shadow; 1855 } 1856 1857 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1858 // Returns Addr & shadow_mask 1859 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1860 Value *ShadowPtrMaskValue; 1861 if (DFSanRuntimeShadowMask) 1862 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1863 else 1864 ShadowPtrMaskValue = ShadowPtrMask; 1865 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1866 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1867 } 1868 1869 std::pair<Value *, Value *> 1870 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1871 Instruction *Pos) { 1872 // Returns ((Addr & shadow_mask) + origin_base) & ~4UL 1873 IRBuilder<> IRB(Pos); 1874 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1875 Value *ShadowPtr = getShadowAddress(Addr, Pos, ShadowOffset); 1876 Value *OriginPtr = nullptr; 1877 if (shouldTrackOrigins()) { 1878 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase); 1879 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1880 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1881 // So Mask is unnecessary. 1882 if (Alignment < MinOriginAlignment) { 1883 uint64_t Mask = MinOriginAlignment.value() - 1; 1884 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1885 } 1886 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1887 } 1888 return {ShadowPtr, OriginPtr}; 1889 } 1890 1891 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1892 Value *ShadowOffset) { 1893 IRBuilder<> IRB(Pos); 1894 1895 if (!ShadowPtrMul->isOne()) 1896 ShadowOffset = IRB.CreateMul(ShadowOffset, ShadowPtrMul); 1897 1898 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1899 } 1900 1901 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1902 // Returns (Addr & shadow_mask) x 2 1903 IRBuilder<> IRB(Pos); 1904 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1905 return getShadowAddress(Addr, Pos, ShadowOffset); 1906 } 1907 1908 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1909 Instruction *Pos) { 1910 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1911 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1912 } 1913 1914 // Generates IR to compute the union of the two given shadows, inserting it 1915 // before Pos. The combined value is with primitive type. 1916 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1917 if (DFS.isZeroShadow(V1)) 1918 return collapseToPrimitiveShadow(V2, Pos); 1919 if (DFS.isZeroShadow(V2)) 1920 return collapseToPrimitiveShadow(V1, Pos); 1921 if (V1 == V2) 1922 return collapseToPrimitiveShadow(V1, Pos); 1923 1924 auto V1Elems = ShadowElements.find(V1); 1925 auto V2Elems = ShadowElements.find(V2); 1926 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1927 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1928 V2Elems->second.begin(), V2Elems->second.end())) { 1929 return collapseToPrimitiveShadow(V1, Pos); 1930 } 1931 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1932 V1Elems->second.begin(), V1Elems->second.end())) { 1933 return collapseToPrimitiveShadow(V2, Pos); 1934 } 1935 } else if (V1Elems != ShadowElements.end()) { 1936 if (V1Elems->second.count(V2)) 1937 return collapseToPrimitiveShadow(V1, Pos); 1938 } else if (V2Elems != ShadowElements.end()) { 1939 if (V2Elems->second.count(V1)) 1940 return collapseToPrimitiveShadow(V2, Pos); 1941 } 1942 1943 auto Key = std::make_pair(V1, V2); 1944 if (V1 > V2) 1945 std::swap(Key.first, Key.second); 1946 CachedShadow &CCS = CachedShadows[Key]; 1947 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1948 return CCS.Shadow; 1949 1950 // Converts inputs shadows to shadows with primitive types. 1951 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1952 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1953 1954 IRBuilder<> IRB(Pos); 1955 if (DFS.hasFastLabelsEnabled()) { 1956 CCS.Block = Pos->getParent(); 1957 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1958 } else if (AvoidNewBlocks) { 1959 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1960 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1961 Call->addParamAttr(0, Attribute::ZExt); 1962 Call->addParamAttr(1, Attribute::ZExt); 1963 1964 CCS.Block = Pos->getParent(); 1965 CCS.Shadow = Call; 1966 } else { 1967 BasicBlock *Head = Pos->getParent(); 1968 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1969 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1970 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1971 IRBuilder<> ThenIRB(BI); 1972 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1973 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1974 Call->addParamAttr(0, Attribute::ZExt); 1975 Call->addParamAttr(1, Attribute::ZExt); 1976 1977 BasicBlock *Tail = BI->getSuccessor(0); 1978 PHINode *Phi = 1979 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1980 Phi->addIncoming(Call, Call->getParent()); 1981 Phi->addIncoming(PV1, Head); 1982 1983 CCS.Block = Tail; 1984 CCS.Shadow = Phi; 1985 } 1986 1987 std::set<Value *> UnionElems; 1988 if (V1Elems != ShadowElements.end()) { 1989 UnionElems = V1Elems->second; 1990 } else { 1991 UnionElems.insert(V1); 1992 } 1993 if (V2Elems != ShadowElements.end()) { 1994 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1995 } else { 1996 UnionElems.insert(V2); 1997 } 1998 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1999 2000 return CCS.Shadow; 2001 } 2002 2003 // A convenience function which folds the shadows of each of the operands 2004 // of the provided instruction Inst, inserting the IR before Inst. Returns 2005 // the computed union Value. 2006 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 2007 if (Inst->getNumOperands() == 0) 2008 return DFS.getZeroShadow(Inst); 2009 2010 Value *Shadow = getShadow(Inst->getOperand(0)); 2011 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 2012 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 2013 2014 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 2015 } 2016 2017 void DFSanVisitor::visitInstOperands(Instruction &I) { 2018 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 2019 DFSF.setShadow(&I, CombinedShadow); 2020 visitInstOperandOrigins(I); 2021 } 2022 2023 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 2024 const std::vector<Value *> &Origins, 2025 Instruction *Pos, ConstantInt *Zero) { 2026 assert(Shadows.size() == Origins.size()); 2027 size_t Size = Origins.size(); 2028 if (Size == 0) 2029 return DFS.ZeroOrigin; 2030 Value *Origin = nullptr; 2031 if (!Zero) 2032 Zero = DFS.ZeroPrimitiveShadow; 2033 for (size_t I = 0; I != Size; ++I) { 2034 Value *OpOrigin = Origins[I]; 2035 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 2036 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 2037 continue; 2038 if (!Origin) { 2039 Origin = OpOrigin; 2040 continue; 2041 } 2042 Value *OpShadow = Shadows[I]; 2043 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 2044 IRBuilder<> IRB(Pos); 2045 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 2046 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2047 } 2048 return Origin ? Origin : DFS.ZeroOrigin; 2049 } 2050 2051 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 2052 size_t Size = Inst->getNumOperands(); 2053 std::vector<Value *> Shadows(Size); 2054 std::vector<Value *> Origins(Size); 2055 for (unsigned I = 0; I != Size; ++I) { 2056 Shadows[I] = getShadow(Inst->getOperand(I)); 2057 Origins[I] = getOrigin(Inst->getOperand(I)); 2058 } 2059 return combineOrigins(Shadows, Origins, Inst); 2060 } 2061 2062 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2063 if (!DFSF.DFS.shouldTrackOrigins()) 2064 return; 2065 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2066 DFSF.setOrigin(&I, CombinedOrigin); 2067 } 2068 2069 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2070 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2071 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2072 } 2073 2074 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2075 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2076 return Align(std::max(MinOriginAlignment, Alignment)); 2077 } 2078 2079 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2080 Align InstAlignment) { 2081 // When enabling tracking load instructions, we always use 2082 // __dfsan_load_label_and_origin to reduce code size. 2083 if (ClTrackOrigins == 2) 2084 return true; 2085 2086 assert(Size != 0); 2087 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2088 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2089 // load its origin aligned at 4. If not, although origins may be lost, it 2090 // should not happen very often. 2091 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2092 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2093 // * Otherwise we use __dfsan_load_label_and_origin. 2094 // This should ensure that common cases run efficiently. 2095 if (Size <= 2) 2096 return false; 2097 2098 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2099 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 2100 } 2101 2102 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 2103 Value **OriginAddr) { 2104 IRBuilder<> IRB(Pos); 2105 *OriginAddr = 2106 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2107 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2108 } 2109 2110 std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast( 2111 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2112 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 2113 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2114 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2115 2116 assert(Size >= 4 && "Not large enough load size for fast path!"); 2117 2118 // Used for origin tracking. 2119 std::vector<Value *> Shadows; 2120 std::vector<Value *> Origins; 2121 2122 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2123 // but this function is only used in a subset of cases that make it possible 2124 // to optimize the instrumentation. 2125 // 2126 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2127 // per byte) is either: 2128 // - a multiple of 8 (common) 2129 // - equal to 4 (only for load32 in fast-8 mode) 2130 // 2131 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2132 // other cases, we use a 64-bit integer to hold the wide shadow. 2133 Type *WideShadowTy = 2134 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2135 2136 IRBuilder<> IRB(Pos); 2137 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2138 Value *CombinedWideShadow = 2139 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2140 2141 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2142 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2143 2144 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2145 if (BytesPerWideShadow > 4) { 2146 assert(BytesPerWideShadow == 8); 2147 // The wide shadow relates to two origin pointers: one for the first four 2148 // application bytes, and one for the latest four. We use a left shift to 2149 // get just the shadow bytes that correspond to the first origin pointer, 2150 // and then the entire shadow for the second origin pointer (which will be 2151 // chosen by combineOrigins() iff the least-significant half of the wide 2152 // shadow was empty but the other half was not). 2153 Value *WideShadowLo = IRB.CreateShl( 2154 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2155 Shadows.push_back(WideShadow); 2156 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2157 2158 Shadows.push_back(WideShadowLo); 2159 Origins.push_back(Origin); 2160 } else { 2161 Shadows.push_back(WideShadow); 2162 Origins.push_back(Origin); 2163 } 2164 }; 2165 2166 if (ShouldTrackOrigins) 2167 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2168 2169 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2170 // then OR individual shadows within the combined WideShadow by binary ORing. 2171 // This is fewer instructions than ORing shadows individually, since it 2172 // needs logN shift/or instructions (N being the bytes of the combined wide 2173 // shadow). 2174 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2175 ByteOfs += BytesPerWideShadow) { 2176 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 2177 ConstantInt::get(DFS.IntptrTy, 1)); 2178 Value *NextWideShadow = 2179 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2180 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2181 if (ShouldTrackOrigins) { 2182 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2183 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2184 } 2185 } 2186 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2187 Width >>= 1) { 2188 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2189 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2190 } 2191 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2192 ShouldTrackOrigins 2193 ? combineOrigins(Shadows, Origins, Pos, 2194 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2195 : DFS.ZeroOrigin}; 2196 } 2197 2198 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 2199 Align ShadowAlign, 2200 Instruction *Pos) { 2201 // Fast path for the common case where each byte has identical shadow: load 2202 // shadow 64 (or 32) bits at a time, fall out to a __dfsan_union_load call if 2203 // any shadow is non-equal. 2204 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 2205 IRBuilder<> FallbackIRB(FallbackBB); 2206 CallInst *FallbackCall = FallbackIRB.CreateCall( 2207 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2208 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2209 2210 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2211 assert(Size >= 4 && "Not large enough load size for fast path!"); 2212 2213 // Same as in loadFast16AShadowsFast. In the case of load32, we can fit the 2214 // wide shadow in a 32-bit integer instead. 2215 Type *WideShadowTy = 2216 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2217 2218 // Compare each of the shadows stored in the loaded 64 bits to each other, 2219 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 2220 IRBuilder<> IRB(Pos); 2221 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2222 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2223 Value *WideShadow = 2224 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2225 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 2226 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 2227 Value *ShrShadow = 2228 IRB.CreateLShr(WideShadow, WideShadowBitWidth - DFS.ShadowWidthBits); 2229 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 2230 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 2231 2232 BasicBlock *Head = Pos->getParent(); 2233 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 2234 2235 if (DomTreeNode *OldNode = DT.getNode(Head)) { 2236 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 2237 2238 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 2239 for (auto *Child : Children) 2240 DT.changeImmediateDominator(Child, NewNode); 2241 } 2242 2243 // In the following code LastBr will refer to the previous basic block's 2244 // conditional branch instruction, whose true successor is fixed up to point 2245 // to the next block during the loop below or to the tail after the final 2246 // iteration. 2247 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 2248 ReplaceInstWithInst(Head->getTerminator(), LastBr); 2249 DT.addNewBlock(FallbackBB, Head); 2250 2251 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2252 2253 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2254 ByteOfs += BytesPerWideShadow) { 2255 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 2256 DT.addNewBlock(NextBB, LastBr->getParent()); 2257 IRBuilder<> NextIRB(NextBB); 2258 WideAddr = NextIRB.CreateGEP(WideShadowTy, WideAddr, 2259 ConstantInt::get(DFS.IntptrTy, 1)); 2260 Value *NextWideShadow = 2261 NextIRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2262 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 2263 LastBr->setSuccessor(0, NextBB); 2264 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 2265 } 2266 2267 LastBr->setSuccessor(0, Tail); 2268 FallbackIRB.CreateBr(Tail); 2269 PHINode *Shadow = 2270 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 2271 Shadow->addIncoming(FallbackCall, FallbackBB); 2272 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 2273 return Shadow; 2274 } 2275 2276 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2277 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2278 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2279 2280 // Non-escaped loads. 2281 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2282 const auto SI = AllocaShadowMap.find(AI); 2283 if (SI != AllocaShadowMap.end()) { 2284 IRBuilder<> IRB(Pos); 2285 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2286 const auto OI = AllocaOriginMap.find(AI); 2287 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2288 return {ShadowLI, ShouldTrackOrigins 2289 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2290 : nullptr}; 2291 } 2292 } 2293 2294 // Load from constant addresses. 2295 SmallVector<const Value *, 2> Objs; 2296 getUnderlyingObjects(Addr, Objs); 2297 bool AllConstants = true; 2298 for (const Value *Obj : Objs) { 2299 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2300 continue; 2301 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2302 continue; 2303 2304 AllConstants = false; 2305 break; 2306 } 2307 if (AllConstants) 2308 return {DFS.ZeroPrimitiveShadow, 2309 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2310 2311 if (Size == 0) 2312 return {DFS.ZeroPrimitiveShadow, 2313 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2314 2315 // Use callback to load if this is not an optimizable case for origin 2316 // tracking. 2317 if (ShouldTrackOrigins && 2318 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2319 IRBuilder<> IRB(Pos); 2320 CallInst *Call = 2321 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2322 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2323 ConstantInt::get(DFS.IntptrTy, Size)}); 2324 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2325 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2326 DFS.PrimitiveShadowTy), 2327 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2328 } 2329 2330 // Other cases that support loading shadows or origins in a fast way. 2331 Value *ShadowAddr, *OriginAddr; 2332 std::tie(ShadowAddr, OriginAddr) = 2333 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2334 2335 const Align ShadowAlign = getShadowAlign(InstAlignment); 2336 const Align OriginAlign = getOriginAlign(InstAlignment); 2337 Value *Origin = nullptr; 2338 if (ShouldTrackOrigins) { 2339 IRBuilder<> IRB(Pos); 2340 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2341 } 2342 2343 // When the byte size is small enough, we can load the shadow directly with 2344 // just a few instructions. 2345 switch (Size) { 2346 case 1: { 2347 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2348 LI->setAlignment(ShadowAlign); 2349 return {LI, Origin}; 2350 } 2351 case 2: { 2352 IRBuilder<> IRB(Pos); 2353 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2354 ConstantInt::get(DFS.IntptrTy, 1)); 2355 Value *Load = 2356 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2357 Value *Load1 = 2358 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2359 return {combineShadows(Load, Load1, Pos), Origin}; 2360 } 2361 } 2362 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2363 bool HasFastLabelsEnabled = DFS.hasFastLabelsEnabled(); 2364 2365 if (HasFastLabelsEnabled && HasSizeForFastPath) 2366 return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2367 OriginAlign, Origin, Pos); 2368 2369 if (!AvoidNewBlocks && HasSizeForFastPath) 2370 return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin}; 2371 2372 IRBuilder<> IRB(Pos); 2373 FunctionCallee &UnionLoadFn = HasFastLabelsEnabled 2374 ? DFS.DFSanUnionLoadFastLabelsFn 2375 : DFS.DFSanUnionLoadFn; 2376 CallInst *FallbackCall = IRB.CreateCall( 2377 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2378 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2379 return {FallbackCall, Origin}; 2380 } 2381 2382 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2383 uint64_t Size, 2384 Align InstAlignment, 2385 Instruction *Pos) { 2386 Value *PrimitiveShadow, *Origin; 2387 std::tie(PrimitiveShadow, Origin) = 2388 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2389 if (DFS.shouldTrackOrigins()) { 2390 if (ClTrackOrigins == 2) { 2391 IRBuilder<> IRB(Pos); 2392 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2393 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2394 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2395 } 2396 } 2397 return {PrimitiveShadow, Origin}; 2398 } 2399 2400 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2401 switch (AO) { 2402 case AtomicOrdering::NotAtomic: 2403 return AtomicOrdering::NotAtomic; 2404 case AtomicOrdering::Unordered: 2405 case AtomicOrdering::Monotonic: 2406 case AtomicOrdering::Acquire: 2407 return AtomicOrdering::Acquire; 2408 case AtomicOrdering::Release: 2409 case AtomicOrdering::AcquireRelease: 2410 return AtomicOrdering::AcquireRelease; 2411 case AtomicOrdering::SequentiallyConsistent: 2412 return AtomicOrdering::SequentiallyConsistent; 2413 } 2414 llvm_unreachable("Unknown ordering"); 2415 } 2416 2417 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2418 auto &DL = LI.getModule()->getDataLayout(); 2419 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2420 if (Size == 0) { 2421 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2422 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2423 return; 2424 } 2425 2426 // When an application load is atomic, increase atomic ordering between 2427 // atomic application loads and stores to ensure happen-before order; load 2428 // shadow data after application data; store zero shadow data before 2429 // application data. This ensure shadow loads return either labels of the 2430 // initial application data or zeros. 2431 if (LI.isAtomic()) 2432 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2433 2434 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2435 std::vector<Value *> Shadows; 2436 std::vector<Value *> Origins; 2437 Value *PrimitiveShadow, *Origin; 2438 std::tie(PrimitiveShadow, Origin) = 2439 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2440 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2441 if (ShouldTrackOrigins) { 2442 Shadows.push_back(PrimitiveShadow); 2443 Origins.push_back(Origin); 2444 } 2445 if (ClCombinePointerLabelsOnLoad) { 2446 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2447 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2448 if (ShouldTrackOrigins) { 2449 Shadows.push_back(PtrShadow); 2450 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2451 } 2452 } 2453 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2454 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2455 2456 Value *Shadow = 2457 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2458 DFSF.setShadow(&LI, Shadow); 2459 2460 if (ShouldTrackOrigins) { 2461 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2462 } 2463 2464 if (ClEventCallbacks) { 2465 IRBuilder<> IRB(Pos); 2466 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2467 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2468 } 2469 } 2470 2471 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2472 IRBuilder<> &IRB) { 2473 assert(DFS.shouldTrackOrigins()); 2474 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2475 } 2476 2477 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2478 if (!DFS.shouldTrackOrigins()) 2479 return V; 2480 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2481 } 2482 2483 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2484 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2485 const DataLayout &DL = F->getParent()->getDataLayout(); 2486 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2487 if (IntptrSize == OriginSize) 2488 return Origin; 2489 assert(IntptrSize == OriginSize * 2); 2490 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2491 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2492 } 2493 2494 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2495 Value *StoreOriginAddr, 2496 uint64_t StoreOriginSize, Align Alignment) { 2497 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2498 const DataLayout &DL = F->getParent()->getDataLayout(); 2499 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2500 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2501 assert(IntptrAlignment >= MinOriginAlignment); 2502 assert(IntptrSize >= OriginSize); 2503 2504 unsigned Ofs = 0; 2505 Align CurrentAlignment = Alignment; 2506 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2507 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2508 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2509 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2510 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2511 Value *Ptr = 2512 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2513 : IntptrStoreOriginPtr; 2514 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2515 Ofs += IntptrSize / OriginSize; 2516 CurrentAlignment = IntptrAlignment; 2517 } 2518 } 2519 2520 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2521 ++I) { 2522 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2523 : StoreOriginAddr; 2524 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2525 CurrentAlignment = MinOriginAlignment; 2526 } 2527 } 2528 2529 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2530 const Twine &Name) { 2531 Type *VTy = V->getType(); 2532 assert(VTy->isIntegerTy()); 2533 if (VTy->getIntegerBitWidth() == 1) 2534 // Just converting a bool to a bool, so do nothing. 2535 return V; 2536 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2537 } 2538 2539 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2540 Value *Shadow, Value *Origin, 2541 Value *StoreOriginAddr, Align InstAlignment) { 2542 // Do not write origins for zero shadows because we do not trace origins for 2543 // untainted sinks. 2544 const Align OriginAlignment = getOriginAlign(InstAlignment); 2545 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2546 IRBuilder<> IRB(Pos); 2547 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2548 if (!ConstantShadow->isZeroValue()) 2549 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2550 OriginAlignment); 2551 return; 2552 } 2553 2554 if (shouldInstrumentWithCall()) { 2555 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2556 {CollapsedShadow, 2557 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2558 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2559 } else { 2560 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2561 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2562 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2563 IRBuilder<> IRBNew(CheckTerm); 2564 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2565 OriginAlignment); 2566 ++NumOriginStores; 2567 } 2568 } 2569 2570 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2571 Align ShadowAlign, 2572 Instruction *Pos) { 2573 IRBuilder<> IRB(Pos); 2574 IntegerType *ShadowTy = 2575 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2576 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2577 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2578 Value *ExtShadowAddr = 2579 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2580 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2581 // Do not write origins for 0 shadows because we do not trace origins for 2582 // untainted sinks. 2583 } 2584 2585 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2586 Align InstAlignment, 2587 Value *PrimitiveShadow, 2588 Value *Origin, 2589 Instruction *Pos) { 2590 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2591 2592 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2593 const auto SI = AllocaShadowMap.find(AI); 2594 if (SI != AllocaShadowMap.end()) { 2595 IRBuilder<> IRB(Pos); 2596 IRB.CreateStore(PrimitiveShadow, SI->second); 2597 2598 // Do not write origins for 0 shadows because we do not trace origins for 2599 // untainted sinks. 2600 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2601 const auto OI = AllocaOriginMap.find(AI); 2602 assert(OI != AllocaOriginMap.end() && Origin); 2603 IRB.CreateStore(Origin, OI->second); 2604 } 2605 return; 2606 } 2607 } 2608 2609 const Align ShadowAlign = getShadowAlign(InstAlignment); 2610 if (DFS.isZeroShadow(PrimitiveShadow)) { 2611 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2612 return; 2613 } 2614 2615 IRBuilder<> IRB(Pos); 2616 Value *ShadowAddr, *OriginAddr; 2617 std::tie(ShadowAddr, OriginAddr) = 2618 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2619 2620 const unsigned ShadowVecSize = 8; 2621 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2622 "Shadow vector is too large!"); 2623 2624 uint64_t Offset = 0; 2625 uint64_t LeftSize = Size; 2626 if (LeftSize >= ShadowVecSize) { 2627 auto *ShadowVecTy = 2628 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2629 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2630 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2631 ShadowVec = IRB.CreateInsertElement( 2632 ShadowVec, PrimitiveShadow, 2633 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2634 } 2635 Value *ShadowVecAddr = 2636 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2637 do { 2638 Value *CurShadowVecAddr = 2639 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2640 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2641 LeftSize -= ShadowVecSize; 2642 ++Offset; 2643 } while (LeftSize >= ShadowVecSize); 2644 Offset *= ShadowVecSize; 2645 } 2646 while (LeftSize > 0) { 2647 Value *CurShadowAddr = 2648 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2649 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2650 --LeftSize; 2651 ++Offset; 2652 } 2653 2654 if (ShouldTrackOrigins) { 2655 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2656 InstAlignment); 2657 } 2658 } 2659 2660 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2661 switch (AO) { 2662 case AtomicOrdering::NotAtomic: 2663 return AtomicOrdering::NotAtomic; 2664 case AtomicOrdering::Unordered: 2665 case AtomicOrdering::Monotonic: 2666 case AtomicOrdering::Release: 2667 return AtomicOrdering::Release; 2668 case AtomicOrdering::Acquire: 2669 case AtomicOrdering::AcquireRelease: 2670 return AtomicOrdering::AcquireRelease; 2671 case AtomicOrdering::SequentiallyConsistent: 2672 return AtomicOrdering::SequentiallyConsistent; 2673 } 2674 llvm_unreachable("Unknown ordering"); 2675 } 2676 2677 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2678 auto &DL = SI.getModule()->getDataLayout(); 2679 Value *Val = SI.getValueOperand(); 2680 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2681 if (Size == 0) 2682 return; 2683 2684 // When an application store is atomic, increase atomic ordering between 2685 // atomic application loads and stores to ensure happen-before order; load 2686 // shadow data after application data; store zero shadow data before 2687 // application data. This ensure shadow loads return either labels of the 2688 // initial application data or zeros. 2689 if (SI.isAtomic()) 2690 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2691 2692 const bool ShouldTrackOrigins = 2693 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2694 std::vector<Value *> Shadows; 2695 std::vector<Value *> Origins; 2696 2697 Value *Shadow = 2698 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2699 2700 if (ShouldTrackOrigins) { 2701 Shadows.push_back(Shadow); 2702 Origins.push_back(DFSF.getOrigin(Val)); 2703 } 2704 2705 Value *PrimitiveShadow; 2706 if (ClCombinePointerLabelsOnStore) { 2707 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2708 if (ShouldTrackOrigins) { 2709 Shadows.push_back(PtrShadow); 2710 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2711 } 2712 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2713 } else { 2714 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2715 } 2716 Value *Origin = nullptr; 2717 if (ShouldTrackOrigins) 2718 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2719 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2720 PrimitiveShadow, Origin, &SI); 2721 if (ClEventCallbacks) { 2722 IRBuilder<> IRB(&SI); 2723 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2724 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2725 } 2726 } 2727 2728 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2729 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2730 2731 Value *Val = I.getOperand(1); 2732 const auto &DL = I.getModule()->getDataLayout(); 2733 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2734 if (Size == 0) 2735 return; 2736 2737 // Conservatively set data at stored addresses and return with zero shadow to 2738 // prevent shadow data races. 2739 IRBuilder<> IRB(&I); 2740 Value *Addr = I.getOperand(0); 2741 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2742 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2743 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2744 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2745 } 2746 2747 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2748 visitCASOrRMW(I.getAlign(), I); 2749 // TODO: The ordering change follows MSan. It is possible not to change 2750 // ordering because we always set and use 0 shadows. 2751 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2752 } 2753 2754 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2755 visitCASOrRMW(I.getAlign(), I); 2756 // TODO: The ordering change follows MSan. It is possible not to change 2757 // ordering because we always set and use 0 shadows. 2758 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2759 } 2760 2761 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2762 visitInstOperands(UO); 2763 } 2764 2765 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2766 visitInstOperands(BO); 2767 } 2768 2769 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2770 2771 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2772 visitInstOperands(CI); 2773 if (ClEventCallbacks) { 2774 IRBuilder<> IRB(&CI); 2775 Value *CombinedShadow = DFSF.getShadow(&CI); 2776 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2777 } 2778 } 2779 2780 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2781 visitInstOperands(GEPI); 2782 } 2783 2784 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2785 visitInstOperands(I); 2786 } 2787 2788 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2789 visitInstOperands(I); 2790 } 2791 2792 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2793 visitInstOperands(I); 2794 } 2795 2796 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2797 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2798 visitInstOperands(I); 2799 return; 2800 } 2801 2802 IRBuilder<> IRB(&I); 2803 Value *Agg = I.getAggregateOperand(); 2804 Value *AggShadow = DFSF.getShadow(Agg); 2805 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2806 DFSF.setShadow(&I, ResShadow); 2807 visitInstOperandOrigins(I); 2808 } 2809 2810 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2811 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2812 visitInstOperands(I); 2813 return; 2814 } 2815 2816 IRBuilder<> IRB(&I); 2817 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2818 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2819 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2820 DFSF.setShadow(&I, Res); 2821 visitInstOperandOrigins(I); 2822 } 2823 2824 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2825 bool AllLoadsStores = true; 2826 for (User *U : I.users()) { 2827 if (isa<LoadInst>(U)) 2828 continue; 2829 2830 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2831 if (SI->getPointerOperand() == &I) 2832 continue; 2833 } 2834 2835 AllLoadsStores = false; 2836 break; 2837 } 2838 if (AllLoadsStores) { 2839 IRBuilder<> IRB(&I); 2840 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2841 if (DFSF.DFS.shouldTrackOrigins()) { 2842 DFSF.AllocaOriginMap[&I] = 2843 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2844 } 2845 } 2846 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2847 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2848 } 2849 2850 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2851 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2852 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2853 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2854 Value *ShadowSel = nullptr; 2855 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2856 std::vector<Value *> Shadows; 2857 std::vector<Value *> Origins; 2858 Value *TrueOrigin = 2859 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2860 Value *FalseOrigin = 2861 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2862 2863 if (isa<VectorType>(I.getCondition()->getType())) { 2864 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2865 FalseShadow, &I); 2866 if (ShouldTrackOrigins) { 2867 Shadows.push_back(TrueShadow); 2868 Shadows.push_back(FalseShadow); 2869 Origins.push_back(TrueOrigin); 2870 Origins.push_back(FalseOrigin); 2871 } 2872 } else { 2873 if (TrueShadow == FalseShadow) { 2874 ShadowSel = TrueShadow; 2875 if (ShouldTrackOrigins) { 2876 Shadows.push_back(TrueShadow); 2877 Origins.push_back(TrueOrigin); 2878 } 2879 } else { 2880 ShadowSel = 2881 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2882 if (ShouldTrackOrigins) { 2883 Shadows.push_back(ShadowSel); 2884 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2885 FalseOrigin, "", &I)); 2886 } 2887 } 2888 } 2889 DFSF.setShadow(&I, ClTrackSelectControlFlow 2890 ? DFSF.combineShadowsThenConvert( 2891 I.getType(), CondShadow, ShadowSel, &I) 2892 : ShadowSel); 2893 if (ShouldTrackOrigins) { 2894 if (ClTrackSelectControlFlow) { 2895 Shadows.push_back(CondShadow); 2896 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2897 } 2898 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2899 } 2900 } 2901 2902 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2903 IRBuilder<> IRB(&I); 2904 Value *ValShadow = DFSF.getShadow(I.getValue()); 2905 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2906 ? DFSF.getOrigin(I.getValue()) 2907 : DFSF.DFS.ZeroOrigin; 2908 IRB.CreateCall( 2909 DFSF.DFS.DFSanSetLabelFn, 2910 {ValShadow, ValOrigin, 2911 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2912 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2913 } 2914 2915 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2916 IRBuilder<> IRB(&I); 2917 2918 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2919 // need to move origins before moving shadows. 2920 if (DFSF.DFS.shouldTrackOrigins()) { 2921 IRB.CreateCall( 2922 DFSF.DFS.DFSanMemOriginTransferFn, 2923 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2924 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2925 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2926 } 2927 2928 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2929 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2930 Value *LenShadow = 2931 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2932 DFSF.DFS.ShadowWidthBytes)); 2933 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2934 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2935 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2936 auto *MTI = cast<MemTransferInst>( 2937 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2938 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2939 if (ClPreserveAlignment) { 2940 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2941 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2942 } else { 2943 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2944 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2945 } 2946 if (ClEventCallbacks) { 2947 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2948 {RawDestShadow, 2949 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2950 } 2951 } 2952 2953 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2954 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2955 switch (DFSF.IA) { 2956 case DataFlowSanitizer::IA_TLS: { 2957 Value *S = DFSF.getShadow(RI.getReturnValue()); 2958 IRBuilder<> IRB(&RI); 2959 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2960 unsigned Size = 2961 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2962 if (Size <= RetvalTLSSize) { 2963 // If the size overflows, stores nothing. At callsite, oversized return 2964 // shadows are set to zero. 2965 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2966 ShadowTLSAlignment); 2967 } 2968 if (DFSF.DFS.shouldTrackOrigins()) { 2969 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2970 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2971 } 2972 break; 2973 } 2974 case DataFlowSanitizer::IA_Args: { 2975 IRBuilder<> IRB(&RI); 2976 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2977 Value *InsVal = 2978 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2979 Value *InsShadow = 2980 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2981 RI.setOperand(0, InsShadow); 2982 break; 2983 } 2984 } 2985 } 2986 } 2987 2988 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2989 std::vector<Value *> &Args, 2990 IRBuilder<> &IRB) { 2991 FunctionType *FT = F.getFunctionType(); 2992 2993 auto *I = CB.arg_begin(); 2994 2995 // Adds non-variable argument shadows. 2996 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2997 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2998 2999 // Adds variable argument shadows. 3000 if (FT->isVarArg()) { 3001 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 3002 CB.arg_size() - FT->getNumParams()); 3003 auto *LabelVAAlloca = 3004 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 3005 "labelva", &DFSF.F->getEntryBlock().front()); 3006 3007 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3008 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 3009 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 3010 LabelVAPtr); 3011 } 3012 3013 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 3014 } 3015 3016 // Adds the return value shadow. 3017 if (!FT->getReturnType()->isVoidTy()) { 3018 if (!DFSF.LabelReturnAlloca) { 3019 DFSF.LabelReturnAlloca = new AllocaInst( 3020 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 3021 "labelreturn", &DFSF.F->getEntryBlock().front()); 3022 } 3023 Args.push_back(DFSF.LabelReturnAlloca); 3024 } 3025 } 3026 3027 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 3028 std::vector<Value *> &Args, 3029 IRBuilder<> &IRB) { 3030 FunctionType *FT = F.getFunctionType(); 3031 3032 auto *I = CB.arg_begin(); 3033 3034 // Add non-variable argument origins. 3035 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3036 Args.push_back(DFSF.getOrigin(*I)); 3037 3038 // Add variable argument origins. 3039 if (FT->isVarArg()) { 3040 auto *OriginVATy = 3041 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 3042 auto *OriginVAAlloca = 3043 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 3044 "originva", &DFSF.F->getEntryBlock().front()); 3045 3046 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3047 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 3048 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 3049 } 3050 3051 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 3052 } 3053 3054 // Add the return value origin. 3055 if (!FT->getReturnType()->isVoidTy()) { 3056 if (!DFSF.OriginReturnAlloca) { 3057 DFSF.OriginReturnAlloca = new AllocaInst( 3058 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 3059 "originreturn", &DFSF.F->getEntryBlock().front()); 3060 } 3061 Args.push_back(DFSF.OriginReturnAlloca); 3062 } 3063 } 3064 3065 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 3066 IRBuilder<> IRB(&CB); 3067 switch (DFSF.DFS.getWrapperKind(&F)) { 3068 case DataFlowSanitizer::WK_Warning: 3069 CB.setCalledFunction(&F); 3070 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 3071 IRB.CreateGlobalStringPtr(F.getName())); 3072 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3073 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3074 return true; 3075 case DataFlowSanitizer::WK_Discard: 3076 CB.setCalledFunction(&F); 3077 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3078 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3079 return true; 3080 case DataFlowSanitizer::WK_Functional: 3081 CB.setCalledFunction(&F); 3082 visitInstOperands(CB); 3083 return true; 3084 case DataFlowSanitizer::WK_Custom: 3085 // Don't try to handle invokes of custom functions, it's too complicated. 3086 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 3087 // wrapper. 3088 CallInst *CI = dyn_cast<CallInst>(&CB); 3089 if (!CI) 3090 return false; 3091 3092 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3093 FunctionType *FT = F.getFunctionType(); 3094 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 3095 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 3096 CustomFName += F.getName(); 3097 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 3098 CustomFName, CustomFn.TransformedType); 3099 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3100 CustomFn->copyAttributesFrom(&F); 3101 3102 // Custom functions returning non-void will write to the return label. 3103 if (!FT->getReturnType()->isVoidTy()) { 3104 CustomFn->removeAttributes(AttributeList::FunctionIndex, 3105 DFSF.DFS.ReadOnlyNoneAttrs); 3106 } 3107 } 3108 3109 std::vector<Value *> Args; 3110 3111 // Adds non-variable arguments. 3112 auto *I = CB.arg_begin(); 3113 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3114 Type *T = (*I)->getType(); 3115 FunctionType *ParamFT; 3116 if (isa<PointerType>(T) && 3117 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 3118 std::string TName = "dfst"; 3119 TName += utostr(FT->getNumParams() - N); 3120 TName += "$"; 3121 TName += F.getName(); 3122 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 3123 Args.push_back(T); 3124 Args.push_back( 3125 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 3126 } else { 3127 Args.push_back(*I); 3128 } 3129 } 3130 3131 // Adds shadow arguments. 3132 const unsigned ShadowArgStart = Args.size(); 3133 addShadowArguments(F, CB, Args, IRB); 3134 3135 // Adds origin arguments. 3136 const unsigned OriginArgStart = Args.size(); 3137 if (ShouldTrackOrigins) 3138 addOriginArguments(F, CB, Args, IRB); 3139 3140 // Adds variable arguments. 3141 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3142 3143 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3144 CustomCI->setCallingConv(CI->getCallingConv()); 3145 CustomCI->setAttributes(transformFunctionAttributes( 3146 CustomFn, CI->getContext(), CI->getAttributes())); 3147 3148 // Update the parameter attributes of the custom call instruction to 3149 // zero extend the shadow parameters. This is required for targets 3150 // which consider PrimitiveShadowTy an illegal type. 3151 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3152 const unsigned ArgNo = ShadowArgStart + N; 3153 if (CustomCI->getArgOperand(ArgNo)->getType() == 3154 DFSF.DFS.PrimitiveShadowTy) 3155 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3156 if (ShouldTrackOrigins) { 3157 const unsigned OriginArgNo = OriginArgStart + N; 3158 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3159 DFSF.DFS.OriginTy) 3160 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3161 } 3162 } 3163 3164 // Loads the return value shadow and origin. 3165 if (!FT->getReturnType()->isVoidTy()) { 3166 LoadInst *LabelLoad = 3167 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3168 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3169 FT->getReturnType(), LabelLoad, &CB)); 3170 if (ShouldTrackOrigins) { 3171 LoadInst *OriginLoad = 3172 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3173 DFSF.setOrigin(CustomCI, OriginLoad); 3174 } 3175 } 3176 3177 CI->replaceAllUsesWith(CustomCI); 3178 CI->eraseFromParent(); 3179 return true; 3180 } 3181 return false; 3182 } 3183 3184 void DFSanVisitor::visitCallBase(CallBase &CB) { 3185 Function *F = CB.getCalledFunction(); 3186 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3187 visitInstOperands(CB); 3188 return; 3189 } 3190 3191 // Calls to this function are synthesized in wrappers, and we shouldn't 3192 // instrument them. 3193 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3194 return; 3195 3196 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3197 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3198 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3199 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3200 return; 3201 3202 IRBuilder<> IRB(&CB); 3203 3204 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3205 FunctionType *FT = CB.getFunctionType(); 3206 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3207 // Stores argument shadows. 3208 unsigned ArgOffset = 0; 3209 const DataLayout &DL = getDataLayout(); 3210 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3211 if (ShouldTrackOrigins) { 3212 // Ignore overflowed origins 3213 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3214 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3215 !DFSF.DFS.isZeroShadow(ArgShadow)) 3216 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3217 DFSF.getArgOriginTLS(I, IRB)); 3218 } 3219 3220 unsigned Size = 3221 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3222 // Stop storing if arguments' size overflows. Inside a function, arguments 3223 // after overflow have zero shadow values. 3224 if (ArgOffset + Size > ArgTLSSize) 3225 break; 3226 IRB.CreateAlignedStore( 3227 DFSF.getShadow(CB.getArgOperand(I)), 3228 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3229 ShadowTLSAlignment); 3230 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3231 } 3232 } 3233 3234 Instruction *Next = nullptr; 3235 if (!CB.getType()->isVoidTy()) { 3236 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3237 if (II->getNormalDest()->getSinglePredecessor()) { 3238 Next = &II->getNormalDest()->front(); 3239 } else { 3240 BasicBlock *NewBB = 3241 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3242 Next = &NewBB->front(); 3243 } 3244 } else { 3245 assert(CB.getIterator() != CB.getParent()->end()); 3246 Next = CB.getNextNode(); 3247 } 3248 3249 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3250 // Loads the return value shadow. 3251 IRBuilder<> NextIRB(Next); 3252 const DataLayout &DL = getDataLayout(); 3253 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3254 if (Size > RetvalTLSSize) { 3255 // Set overflowed return shadow to be zero. 3256 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3257 } else { 3258 LoadInst *LI = NextIRB.CreateAlignedLoad( 3259 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3260 ShadowTLSAlignment, "_dfsret"); 3261 DFSF.SkipInsts.insert(LI); 3262 DFSF.setShadow(&CB, LI); 3263 DFSF.NonZeroChecks.push_back(LI); 3264 } 3265 3266 if (ShouldTrackOrigins) { 3267 LoadInst *LI = NextIRB.CreateLoad( 3268 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3269 DFSF.SkipInsts.insert(LI); 3270 DFSF.setOrigin(&CB, LI); 3271 } 3272 } 3273 } 3274 3275 // Do all instrumentation for IA_Args down here to defer tampering with the 3276 // CFG in a way that SplitEdge may be able to detect. 3277 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3278 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3279 Value *Func = 3280 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3281 3282 const unsigned NumParams = FT->getNumParams(); 3283 3284 // Copy original arguments. 3285 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3286 std::vector<Value *> Args(NumParams); 3287 std::copy_n(ArgIt, NumParams, Args.begin()); 3288 3289 // Add shadow arguments by transforming original arguments. 3290 std::generate_n(std::back_inserter(Args), NumParams, 3291 [&]() { return DFSF.getShadow(*ArgIt++); }); 3292 3293 if (FT->isVarArg()) { 3294 unsigned VarArgSize = CB.arg_size() - NumParams; 3295 ArrayType *VarArgArrayTy = 3296 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3297 AllocaInst *VarArgShadow = 3298 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3299 "", &DFSF.F->getEntryBlock().front()); 3300 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3301 3302 // Copy remaining var args. 3303 unsigned GepIndex = 0; 3304 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3305 IRB.CreateStore( 3306 DFSF.getShadow(Arg), 3307 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3308 Args.push_back(Arg); 3309 }); 3310 } 3311 3312 CallBase *NewCB; 3313 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3314 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3315 II->getUnwindDest(), Args); 3316 } else { 3317 NewCB = IRB.CreateCall(NewFT, Func, Args); 3318 } 3319 NewCB->setCallingConv(CB.getCallingConv()); 3320 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3321 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3322 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3323 3324 if (Next) { 3325 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3326 DFSF.SkipInsts.insert(ExVal); 3327 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3328 DFSF.SkipInsts.insert(ExShadow); 3329 DFSF.setShadow(ExVal, ExShadow); 3330 DFSF.NonZeroChecks.push_back(ExShadow); 3331 3332 CB.replaceAllUsesWith(ExVal); 3333 } 3334 3335 CB.eraseFromParent(); 3336 } 3337 } 3338 3339 void DFSanVisitor::visitPHINode(PHINode &PN) { 3340 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3341 PHINode *ShadowPN = 3342 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3343 3344 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3345 Value *UndefShadow = UndefValue::get(ShadowTy); 3346 for (BasicBlock *BB : PN.blocks()) 3347 ShadowPN->addIncoming(UndefShadow, BB); 3348 3349 DFSF.setShadow(&PN, ShadowPN); 3350 3351 PHINode *OriginPN = nullptr; 3352 if (DFSF.DFS.shouldTrackOrigins()) { 3353 OriginPN = 3354 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3355 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3356 for (BasicBlock *BB : PN.blocks()) 3357 OriginPN->addIncoming(UndefOrigin, BB); 3358 DFSF.setOrigin(&PN, OriginPN); 3359 } 3360 3361 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3362 } 3363 3364 namespace { 3365 class DataFlowSanitizerLegacyPass : public ModulePass { 3366 private: 3367 std::vector<std::string> ABIListFiles; 3368 3369 public: 3370 static char ID; 3371 3372 DataFlowSanitizerLegacyPass( 3373 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3374 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3375 3376 bool runOnModule(Module &M) override { 3377 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3378 } 3379 }; 3380 } // namespace 3381 3382 char DataFlowSanitizerLegacyPass::ID; 3383 3384 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3385 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3386 3387 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3388 const std::vector<std::string> &ABIListFiles) { 3389 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3390 } 3391 3392 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3393 ModuleAnalysisManager &AM) { 3394 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3395 return PreservedAnalyses::none(); 3396 } 3397 return PreservedAnalyses::all(); 3398 } 3399