1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.  Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// |                    |
27 /// |       unused       |
28 /// |                    |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// |    union table     |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// |   shadow memory    |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range.  See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 
47 #include "llvm/Transforms/Instrumentation.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/DenseSet.h"
50 #include "llvm/ADT/DepthFirstIterator.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/Triple.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/DebugInfo.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/SpecialCaseList.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <iterator>
70 #include <set>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 // External symbol to be used when generating the shadow address for
76 // architectures with multiple VMAs. Instead of using a constant integer
77 // the runtime will set the external mask based on the VMA range.
78 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
79 
80 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
81 // alignment requirements provided by the input IR are correct.  For example,
82 // if the input IR contains a load with alignment 8, this flag will cause
83 // the shadow load to have alignment 16.  This flag is disabled by default as
84 // we have unfortunately encountered too much code (including Clang itself;
85 // see PR14291) which performs misaligned access.
86 static cl::opt<bool> ClPreserveAlignment(
87     "dfsan-preserve-alignment",
88     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
89     cl::init(false));
90 
91 // The ABI list files control how shadow parameters are passed. The pass treats
92 // every function labelled "uninstrumented" in the ABI list file as conforming
93 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
94 // additional annotations for those functions, a call to one of those functions
95 // will produce a warning message, as the labelling behaviour of the function is
96 // unknown.  The other supported annotations are "functional" and "discard",
97 // which are described below under DataFlowSanitizer::WrapperKind.
98 static cl::list<std::string> ClABIListFiles(
99     "dfsan-abilist",
100     cl::desc("File listing native ABI functions and how the pass treats them"),
101     cl::Hidden);
102 
103 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
104 // functions (see DataFlowSanitizer::InstrumentedABI below).
105 static cl::opt<bool> ClArgsABI(
106     "dfsan-args-abi",
107     cl::desc("Use the argument ABI rather than the TLS ABI"),
108     cl::Hidden);
109 
110 // Controls whether the pass includes or ignores the labels of pointers in load
111 // instructions.
112 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
113     "dfsan-combine-pointer-labels-on-load",
114     cl::desc("Combine the label of the pointer with the label of the data when "
115              "loading from memory."),
116     cl::Hidden, cl::init(true));
117 
118 // Controls whether the pass includes or ignores the labels of pointers in
119 // stores instructions.
120 static cl::opt<bool> ClCombinePointerLabelsOnStore(
121     "dfsan-combine-pointer-labels-on-store",
122     cl::desc("Combine the label of the pointer with the label of the data when "
123              "storing in memory."),
124     cl::Hidden, cl::init(false));
125 
126 static cl::opt<bool> ClDebugNonzeroLabels(
127     "dfsan-debug-nonzero-labels",
128     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
129              "load or return with a nonzero label"),
130     cl::Hidden);
131 
132 
133 namespace {
134 
135 StringRef GetGlobalTypeString(const GlobalValue &G) {
136   // Types of GlobalVariables are always pointer types.
137   Type *GType = G.getValueType();
138   // For now we support blacklisting struct types only.
139   if (StructType *SGType = dyn_cast<StructType>(GType)) {
140     if (!SGType->isLiteral())
141       return SGType->getName();
142   }
143   return "<unknown type>";
144 }
145 
146 class DFSanABIList {
147   std::unique_ptr<SpecialCaseList> SCL;
148 
149  public:
150   DFSanABIList() {}
151 
152   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
153 
154   /// Returns whether either this function or its source file are listed in the
155   /// given category.
156   bool isIn(const Function &F, StringRef Category) const {
157     return isIn(*F.getParent(), Category) ||
158            SCL->inSection("fun", F.getName(), Category);
159   }
160 
161   /// Returns whether this global alias is listed in the given category.
162   ///
163   /// If GA aliases a function, the alias's name is matched as a function name
164   /// would be.  Similarly, aliases of globals are matched like globals.
165   bool isIn(const GlobalAlias &GA, StringRef Category) const {
166     if (isIn(*GA.getParent(), Category))
167       return true;
168 
169     if (isa<FunctionType>(GA.getValueType()))
170       return SCL->inSection("fun", GA.getName(), Category);
171 
172     return SCL->inSection("global", GA.getName(), Category) ||
173            SCL->inSection("type", GetGlobalTypeString(GA), Category);
174   }
175 
176   /// Returns whether this module is listed in the given category.
177   bool isIn(const Module &M, StringRef Category) const {
178     return SCL->inSection("src", M.getModuleIdentifier(), Category);
179   }
180 };
181 
182 class DataFlowSanitizer : public ModulePass {
183   friend struct DFSanFunction;
184   friend class DFSanVisitor;
185 
186   enum {
187     ShadowWidth = 16
188   };
189 
190   /// Which ABI should be used for instrumented functions?
191   enum InstrumentedABI {
192     /// Argument and return value labels are passed through additional
193     /// arguments and by modifying the return type.
194     IA_Args,
195 
196     /// Argument and return value labels are passed through TLS variables
197     /// __dfsan_arg_tls and __dfsan_retval_tls.
198     IA_TLS
199   };
200 
201   /// How should calls to uninstrumented functions be handled?
202   enum WrapperKind {
203     /// This function is present in an uninstrumented form but we don't know
204     /// how it should be handled.  Print a warning and call the function anyway.
205     /// Don't label the return value.
206     WK_Warning,
207 
208     /// This function does not write to (user-accessible) memory, and its return
209     /// value is unlabelled.
210     WK_Discard,
211 
212     /// This function does not write to (user-accessible) memory, and the label
213     /// of its return value is the union of the label of its arguments.
214     WK_Functional,
215 
216     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
217     /// where F is the name of the function.  This function may wrap the
218     /// original function or provide its own implementation.  This is similar to
219     /// the IA_Args ABI, except that IA_Args uses a struct return type to
220     /// pass the return value shadow in a register, while WK_Custom uses an
221     /// extra pointer argument to return the shadow.  This allows the wrapped
222     /// form of the function type to be expressed in C.
223     WK_Custom
224   };
225 
226   Module *Mod;
227   LLVMContext *Ctx;
228   IntegerType *ShadowTy;
229   PointerType *ShadowPtrTy;
230   IntegerType *IntptrTy;
231   ConstantInt *ZeroShadow;
232   ConstantInt *ShadowPtrMask;
233   ConstantInt *ShadowPtrMul;
234   Constant *ArgTLS;
235   Constant *RetvalTLS;
236   void *(*GetArgTLSPtr)();
237   void *(*GetRetvalTLSPtr)();
238   Constant *GetArgTLS;
239   Constant *GetRetvalTLS;
240   Constant *ExternalShadowMask;
241   FunctionType *DFSanUnionFnTy;
242   FunctionType *DFSanUnionLoadFnTy;
243   FunctionType *DFSanUnimplementedFnTy;
244   FunctionType *DFSanSetLabelFnTy;
245   FunctionType *DFSanNonzeroLabelFnTy;
246   FunctionType *DFSanVarargWrapperFnTy;
247   Constant *DFSanUnionFn;
248   Constant *DFSanCheckedUnionFn;
249   Constant *DFSanUnionLoadFn;
250   Constant *DFSanUnimplementedFn;
251   Constant *DFSanSetLabelFn;
252   Constant *DFSanNonzeroLabelFn;
253   Constant *DFSanVarargWrapperFn;
254   MDNode *ColdCallWeights;
255   DFSanABIList ABIList;
256   DenseMap<Value *, Function *> UnwrappedFnMap;
257   AttributeList ReadOnlyNoneAttrs;
258   bool DFSanRuntimeShadowMask;
259 
260   Value *getShadowAddress(Value *Addr, Instruction *Pos);
261   bool isInstrumented(const Function *F);
262   bool isInstrumented(const GlobalAlias *GA);
263   FunctionType *getArgsFunctionType(FunctionType *T);
264   FunctionType *getTrampolineFunctionType(FunctionType *T);
265   FunctionType *getCustomFunctionType(FunctionType *T);
266   InstrumentedABI getInstrumentedABI();
267   WrapperKind getWrapperKind(Function *F);
268   void addGlobalNamePrefix(GlobalValue *GV);
269   Function *buildWrapperFunction(Function *F, StringRef NewFName,
270                                  GlobalValue::LinkageTypes NewFLink,
271                                  FunctionType *NewFT);
272   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
273 
274  public:
275   DataFlowSanitizer(
276       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
277       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
278   static char ID;
279   bool doInitialization(Module &M) override;
280   bool runOnModule(Module &M) override;
281 };
282 
283 struct DFSanFunction {
284   DataFlowSanitizer &DFS;
285   Function *F;
286   DominatorTree DT;
287   DataFlowSanitizer::InstrumentedABI IA;
288   bool IsNativeABI;
289   Value *ArgTLSPtr;
290   Value *RetvalTLSPtr;
291   AllocaInst *LabelReturnAlloca;
292   DenseMap<Value *, Value *> ValShadowMap;
293   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
294   std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
295   DenseSet<Instruction *> SkipInsts;
296   std::vector<Value *> NonZeroChecks;
297   bool AvoidNewBlocks;
298 
299   struct CachedCombinedShadow {
300     BasicBlock *Block;
301     Value *Shadow;
302   };
303   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
304       CachedCombinedShadows;
305   DenseMap<Value *, std::set<Value *>> ShadowElements;
306 
307   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
308       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
309         IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
310         LabelReturnAlloca(nullptr) {
311     DT.recalculate(*F);
312     // FIXME: Need to track down the register allocator issue which causes poor
313     // performance in pathological cases with large numbers of basic blocks.
314     AvoidNewBlocks = F->size() > 1000;
315   }
316   Value *getArgTLSPtr();
317   Value *getArgTLS(unsigned Index, Instruction *Pos);
318   Value *getRetvalTLS();
319   Value *getShadow(Value *V);
320   void setShadow(Instruction *I, Value *Shadow);
321   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
322   Value *combineOperandShadows(Instruction *Inst);
323   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
324                     Instruction *Pos);
325   void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
326                    Instruction *Pos);
327 };
328 
329 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
330  public:
331   DFSanFunction &DFSF;
332   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
333 
334   const DataLayout &getDataLayout() const {
335     return DFSF.F->getParent()->getDataLayout();
336   }
337 
338   void visitOperandShadowInst(Instruction &I);
339 
340   void visitBinaryOperator(BinaryOperator &BO);
341   void visitCastInst(CastInst &CI);
342   void visitCmpInst(CmpInst &CI);
343   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
344   void visitLoadInst(LoadInst &LI);
345   void visitStoreInst(StoreInst &SI);
346   void visitReturnInst(ReturnInst &RI);
347   void visitCallSite(CallSite CS);
348   void visitPHINode(PHINode &PN);
349   void visitExtractElementInst(ExtractElementInst &I);
350   void visitInsertElementInst(InsertElementInst &I);
351   void visitShuffleVectorInst(ShuffleVectorInst &I);
352   void visitExtractValueInst(ExtractValueInst &I);
353   void visitInsertValueInst(InsertValueInst &I);
354   void visitAllocaInst(AllocaInst &I);
355   void visitSelectInst(SelectInst &I);
356   void visitMemSetInst(MemSetInst &I);
357   void visitMemTransferInst(MemTransferInst &I);
358 };
359 
360 }
361 
362 char DataFlowSanitizer::ID;
363 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
364                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
365 
366 ModulePass *
367 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
368                                   void *(*getArgTLS)(),
369                                   void *(*getRetValTLS)()) {
370   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
371 }
372 
373 DataFlowSanitizer::DataFlowSanitizer(
374     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
375     void *(*getRetValTLS)())
376     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
377       DFSanRuntimeShadowMask(false) {
378   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
379   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
380                          ClABIListFiles.end());
381   ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
382 }
383 
384 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
385   llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
386   ArgTypes.append(T->getNumParams(), ShadowTy);
387   if (T->isVarArg())
388     ArgTypes.push_back(ShadowPtrTy);
389   Type *RetType = T->getReturnType();
390   if (!RetType->isVoidTy())
391     RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
392   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
393 }
394 
395 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
396   assert(!T->isVarArg());
397   llvm::SmallVector<Type *, 4> ArgTypes;
398   ArgTypes.push_back(T->getPointerTo());
399   ArgTypes.append(T->param_begin(), T->param_end());
400   ArgTypes.append(T->getNumParams(), ShadowTy);
401   Type *RetType = T->getReturnType();
402   if (!RetType->isVoidTy())
403     ArgTypes.push_back(ShadowPtrTy);
404   return FunctionType::get(T->getReturnType(), ArgTypes, false);
405 }
406 
407 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
408   llvm::SmallVector<Type *, 4> ArgTypes;
409   for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
410        i != e; ++i) {
411     FunctionType *FT;
412     if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
413                                      *i)->getElementType()))) {
414       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
415       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
416     } else {
417       ArgTypes.push_back(*i);
418     }
419   }
420   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
421     ArgTypes.push_back(ShadowTy);
422   if (T->isVarArg())
423     ArgTypes.push_back(ShadowPtrTy);
424   Type *RetType = T->getReturnType();
425   if (!RetType->isVoidTy())
426     ArgTypes.push_back(ShadowPtrTy);
427   return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
428 }
429 
430 bool DataFlowSanitizer::doInitialization(Module &M) {
431   llvm::Triple TargetTriple(M.getTargetTriple());
432   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
433   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
434                   TargetTriple.getArch() == llvm::Triple::mips64el;
435   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64 ||
436                    TargetTriple.getArch() == llvm::Triple::aarch64_be;
437 
438   const DataLayout &DL = M.getDataLayout();
439 
440   Mod = &M;
441   Ctx = &M.getContext();
442   ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
443   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
444   IntptrTy = DL.getIntPtrType(*Ctx);
445   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
446   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
447   if (IsX86_64)
448     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
449   else if (IsMIPS64)
450     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
451   // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
452   else if (IsAArch64)
453     DFSanRuntimeShadowMask = true;
454   else
455     report_fatal_error("unsupported triple");
456 
457   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
458   DFSanUnionFnTy =
459       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
460   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
461   DFSanUnionLoadFnTy =
462       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
463   DFSanUnimplementedFnTy = FunctionType::get(
464       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
465   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
466   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
467                                         DFSanSetLabelArgs, /*isVarArg=*/false);
468   DFSanNonzeroLabelFnTy = FunctionType::get(
469       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
470   DFSanVarargWrapperFnTy = FunctionType::get(
471       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
472 
473   if (GetArgTLSPtr) {
474     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
475     ArgTLS = nullptr;
476     GetArgTLS = ConstantExpr::getIntToPtr(
477         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
478         PointerType::getUnqual(
479             FunctionType::get(PointerType::getUnqual(ArgTLSTy),
480                               (Type *)nullptr)));
481   }
482   if (GetRetvalTLSPtr) {
483     RetvalTLS = nullptr;
484     GetRetvalTLS = ConstantExpr::getIntToPtr(
485         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
486         PointerType::getUnqual(
487             FunctionType::get(PointerType::getUnqual(ShadowTy),
488                               (Type *)nullptr)));
489   }
490 
491   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
492   return true;
493 }
494 
495 bool DataFlowSanitizer::isInstrumented(const Function *F) {
496   return !ABIList.isIn(*F, "uninstrumented");
497 }
498 
499 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
500   return !ABIList.isIn(*GA, "uninstrumented");
501 }
502 
503 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
504   return ClArgsABI ? IA_Args : IA_TLS;
505 }
506 
507 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
508   if (ABIList.isIn(*F, "functional"))
509     return WK_Functional;
510   if (ABIList.isIn(*F, "discard"))
511     return WK_Discard;
512   if (ABIList.isIn(*F, "custom"))
513     return WK_Custom;
514 
515   return WK_Warning;
516 }
517 
518 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
519   std::string GVName = GV->getName(), Prefix = "dfs$";
520   GV->setName(Prefix + GVName);
521 
522   // Try to change the name of the function in module inline asm.  We only do
523   // this for specific asm directives, currently only ".symver", to try to avoid
524   // corrupting asm which happens to contain the symbol name as a substring.
525   // Note that the substitution for .symver assumes that the versioned symbol
526   // also has an instrumented name.
527   std::string Asm = GV->getParent()->getModuleInlineAsm();
528   std::string SearchStr = ".symver " + GVName + ",";
529   size_t Pos = Asm.find(SearchStr);
530   if (Pos != std::string::npos) {
531     Asm.replace(Pos, SearchStr.size(),
532                 ".symver " + Prefix + GVName + "," + Prefix);
533     GV->getParent()->setModuleInlineAsm(Asm);
534   }
535 }
536 
537 Function *
538 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
539                                         GlobalValue::LinkageTypes NewFLink,
540                                         FunctionType *NewFT) {
541   FunctionType *FT = F->getFunctionType();
542   Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
543                                     F->getParent());
544   NewF->copyAttributesFrom(F);
545   NewF->removeAttributes(
546       AttributeList::ReturnIndex,
547       AttributeList::get(
548           F->getContext(), AttributeList::ReturnIndex,
549           AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
550 
551   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
552   if (F->isVarArg()) {
553     NewF->removeAttributes(
554         AttributeList::FunctionIndex,
555         AttributeList().addAttribute(*Ctx, AttributeList::FunctionIndex,
556                                      "split-stack"));
557     CallInst::Create(DFSanVarargWrapperFn,
558                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
559                      BB);
560     new UnreachableInst(*Ctx, BB);
561   } else {
562     std::vector<Value *> Args;
563     unsigned n = FT->getNumParams();
564     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
565       Args.push_back(&*ai);
566     CallInst *CI = CallInst::Create(F, Args, "", BB);
567     if (FT->getReturnType()->isVoidTy())
568       ReturnInst::Create(*Ctx, BB);
569     else
570       ReturnInst::Create(*Ctx, CI, BB);
571   }
572 
573   return NewF;
574 }
575 
576 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
577                                                           StringRef FName) {
578   FunctionType *FTT = getTrampolineFunctionType(FT);
579   Constant *C = Mod->getOrInsertFunction(FName, FTT);
580   Function *F = dyn_cast<Function>(C);
581   if (F && F->isDeclaration()) {
582     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
583     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
584     std::vector<Value *> Args;
585     Function::arg_iterator AI = F->arg_begin(); ++AI;
586     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
587       Args.push_back(&*AI);
588     CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB);
589     ReturnInst *RI;
590     if (FT->getReturnType()->isVoidTy())
591       RI = ReturnInst::Create(*Ctx, BB);
592     else
593       RI = ReturnInst::Create(*Ctx, CI, BB);
594 
595     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
596     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
597     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
598       DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
599     DFSanVisitor(DFSF).visitCallInst(*CI);
600     if (!FT->getReturnType()->isVoidTy())
601       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
602                     &*std::prev(F->arg_end()), RI);
603   }
604 
605   return C;
606 }
607 
608 bool DataFlowSanitizer::runOnModule(Module &M) {
609   if (ABIList.isIn(M, "skip"))
610     return false;
611 
612   if (!GetArgTLSPtr) {
613     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
614     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
615     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
616       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
617   }
618   if (!GetRetvalTLSPtr) {
619     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
620     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
621       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
622   }
623 
624   ExternalShadowMask =
625       Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
626 
627   DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
628   if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
629     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
630     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
631     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
632     F->addAttribute(1, Attribute::ZExt);
633     F->addAttribute(2, Attribute::ZExt);
634   }
635   DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
636   if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
637     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
638     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
639     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
640     F->addAttribute(1, Attribute::ZExt);
641     F->addAttribute(2, Attribute::ZExt);
642   }
643   DFSanUnionLoadFn =
644       Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
645   if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
646     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
647     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
648     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
649   }
650   DFSanUnimplementedFn =
651       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
652   DFSanSetLabelFn =
653       Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
654   if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
655     F->addAttribute(1, Attribute::ZExt);
656   }
657   DFSanNonzeroLabelFn =
658       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
659   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
660                                                   DFSanVarargWrapperFnTy);
661 
662   std::vector<Function *> FnsToInstrument;
663   llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
664   for (Function &i : M) {
665     if (!i.isIntrinsic() &&
666         &i != DFSanUnionFn &&
667         &i != DFSanCheckedUnionFn &&
668         &i != DFSanUnionLoadFn &&
669         &i != DFSanUnimplementedFn &&
670         &i != DFSanSetLabelFn &&
671         &i != DFSanNonzeroLabelFn &&
672         &i != DFSanVarargWrapperFn)
673       FnsToInstrument.push_back(&i);
674   }
675 
676   // Give function aliases prefixes when necessary, and build wrappers where the
677   // instrumentedness is inconsistent.
678   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
679     GlobalAlias *GA = &*i;
680     ++i;
681     // Don't stop on weak.  We assume people aren't playing games with the
682     // instrumentedness of overridden weak aliases.
683     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
684       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
685       if (GAInst && FInst) {
686         addGlobalNamePrefix(GA);
687       } else if (GAInst != FInst) {
688         // Non-instrumented alias of an instrumented function, or vice versa.
689         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
690         // below will take care of instrumenting it.
691         Function *NewF =
692             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
693         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
694         NewF->takeName(GA);
695         GA->eraseFromParent();
696         FnsToInstrument.push_back(NewF);
697       }
698     }
699   }
700 
701   AttrBuilder B;
702   B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
703   ReadOnlyNoneAttrs = AttributeList::get(*Ctx, AttributeList::FunctionIndex, B);
704 
705   // First, change the ABI of every function in the module.  ABI-listed
706   // functions keep their original ABI and get a wrapper function.
707   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
708                                          e = FnsToInstrument.end();
709        i != e; ++i) {
710     Function &F = **i;
711     FunctionType *FT = F.getFunctionType();
712 
713     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
714                               FT->getReturnType()->isVoidTy());
715 
716     if (isInstrumented(&F)) {
717       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
718       // easily identify cases of mismatching ABIs.
719       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
720         FunctionType *NewFT = getArgsFunctionType(FT);
721         Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
722         NewF->copyAttributesFrom(&F);
723         NewF->removeAttributes(
724             AttributeList::ReturnIndex,
725             AttributeList::get(
726                 NewF->getContext(), AttributeList::ReturnIndex,
727                 AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
728         for (Function::arg_iterator FArg = F.arg_begin(),
729                                     NewFArg = NewF->arg_begin(),
730                                     FArgEnd = F.arg_end();
731              FArg != FArgEnd; ++FArg, ++NewFArg) {
732           FArg->replaceAllUsesWith(&*NewFArg);
733         }
734         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
735 
736         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
737              UI != UE;) {
738           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
739           ++UI;
740           if (BA) {
741             BA->replaceAllUsesWith(
742                 BlockAddress::get(NewF, BA->getBasicBlock()));
743             delete BA;
744           }
745         }
746         F.replaceAllUsesWith(
747             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
748         NewF->takeName(&F);
749         F.eraseFromParent();
750         *i = NewF;
751         addGlobalNamePrefix(NewF);
752       } else {
753         addGlobalNamePrefix(&F);
754       }
755     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
756       // Build a wrapper function for F.  The wrapper simply calls F, and is
757       // added to FnsToInstrument so that any instrumentation according to its
758       // WrapperKind is done in the second pass below.
759       FunctionType *NewFT = getInstrumentedABI() == IA_Args
760                                 ? getArgsFunctionType(FT)
761                                 : FT;
762       Function *NewF = buildWrapperFunction(
763           &F, std::string("dfsw$") + std::string(F.getName()),
764           GlobalValue::LinkOnceODRLinkage, NewFT);
765       if (getInstrumentedABI() == IA_TLS)
766         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
767 
768       Value *WrappedFnCst =
769           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
770       F.replaceAllUsesWith(WrappedFnCst);
771 
772       UnwrappedFnMap[WrappedFnCst] = &F;
773       *i = NewF;
774 
775       if (!F.isDeclaration()) {
776         // This function is probably defining an interposition of an
777         // uninstrumented function and hence needs to keep the original ABI.
778         // But any functions it may call need to use the instrumented ABI, so
779         // we instrument it in a mode which preserves the original ABI.
780         FnsWithNativeABI.insert(&F);
781 
782         // This code needs to rebuild the iterators, as they may be invalidated
783         // by the push_back, taking care that the new range does not include
784         // any functions added by this code.
785         size_t N = i - FnsToInstrument.begin(),
786                Count = e - FnsToInstrument.begin();
787         FnsToInstrument.push_back(&F);
788         i = FnsToInstrument.begin() + N;
789         e = FnsToInstrument.begin() + Count;
790       }
791                // Hopefully, nobody will try to indirectly call a vararg
792                // function... yet.
793     } else if (FT->isVarArg()) {
794       UnwrappedFnMap[&F] = &F;
795       *i = nullptr;
796     }
797   }
798 
799   for (Function *i : FnsToInstrument) {
800     if (!i || i->isDeclaration())
801       continue;
802 
803     removeUnreachableBlocks(*i);
804 
805     DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
806 
807     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
808     // Build a copy of the list before iterating over it.
809     llvm::SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
810 
811     for (BasicBlock *i : BBList) {
812       Instruction *Inst = &i->front();
813       while (1) {
814         // DFSanVisitor may split the current basic block, changing the current
815         // instruction's next pointer and moving the next instruction to the
816         // tail block from which we should continue.
817         Instruction *Next = Inst->getNextNode();
818         // DFSanVisitor may delete Inst, so keep track of whether it was a
819         // terminator.
820         bool IsTerminator = isa<TerminatorInst>(Inst);
821         if (!DFSF.SkipInsts.count(Inst))
822           DFSanVisitor(DFSF).visit(Inst);
823         if (IsTerminator)
824           break;
825         Inst = Next;
826       }
827     }
828 
829     // We will not necessarily be able to compute the shadow for every phi node
830     // until we have visited every block.  Therefore, the code that handles phi
831     // nodes adds them to the PHIFixups list so that they can be properly
832     // handled here.
833     for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
834              i = DFSF.PHIFixups.begin(),
835              e = DFSF.PHIFixups.end();
836          i != e; ++i) {
837       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
838            ++val) {
839         i->second->setIncomingValue(
840             val, DFSF.getShadow(i->first->getIncomingValue(val)));
841       }
842     }
843 
844     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
845     // places (i.e. instructions in basic blocks we haven't even begun visiting
846     // yet).  To make our life easier, do this work in a pass after the main
847     // instrumentation.
848     if (ClDebugNonzeroLabels) {
849       for (Value *V : DFSF.NonZeroChecks) {
850         Instruction *Pos;
851         if (Instruction *I = dyn_cast<Instruction>(V))
852           Pos = I->getNextNode();
853         else
854           Pos = &DFSF.F->getEntryBlock().front();
855         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
856           Pos = Pos->getNextNode();
857         IRBuilder<> IRB(Pos);
858         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
859         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
860             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
861         IRBuilder<> ThenIRB(BI);
862         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
863       }
864     }
865   }
866 
867   return false;
868 }
869 
870 Value *DFSanFunction::getArgTLSPtr() {
871   if (ArgTLSPtr)
872     return ArgTLSPtr;
873   if (DFS.ArgTLS)
874     return ArgTLSPtr = DFS.ArgTLS;
875 
876   IRBuilder<> IRB(&F->getEntryBlock().front());
877   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
878 }
879 
880 Value *DFSanFunction::getRetvalTLS() {
881   if (RetvalTLSPtr)
882     return RetvalTLSPtr;
883   if (DFS.RetvalTLS)
884     return RetvalTLSPtr = DFS.RetvalTLS;
885 
886   IRBuilder<> IRB(&F->getEntryBlock().front());
887   return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
888 }
889 
890 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
891   IRBuilder<> IRB(Pos);
892   return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
893 }
894 
895 Value *DFSanFunction::getShadow(Value *V) {
896   if (!isa<Argument>(V) && !isa<Instruction>(V))
897     return DFS.ZeroShadow;
898   Value *&Shadow = ValShadowMap[V];
899   if (!Shadow) {
900     if (Argument *A = dyn_cast<Argument>(V)) {
901       if (IsNativeABI)
902         return DFS.ZeroShadow;
903       switch (IA) {
904       case DataFlowSanitizer::IA_TLS: {
905         Value *ArgTLSPtr = getArgTLSPtr();
906         Instruction *ArgTLSPos =
907             DFS.ArgTLS ? &*F->getEntryBlock().begin()
908                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
909         IRBuilder<> IRB(ArgTLSPos);
910         Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
911         break;
912       }
913       case DataFlowSanitizer::IA_Args: {
914         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
915         Function::arg_iterator i = F->arg_begin();
916         while (ArgIdx--)
917           ++i;
918         Shadow = &*i;
919         assert(Shadow->getType() == DFS.ShadowTy);
920         break;
921       }
922       }
923       NonZeroChecks.push_back(Shadow);
924     } else {
925       Shadow = DFS.ZeroShadow;
926     }
927   }
928   return Shadow;
929 }
930 
931 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
932   assert(!ValShadowMap.count(I));
933   assert(Shadow->getType() == DFS.ShadowTy);
934   ValShadowMap[I] = Shadow;
935 }
936 
937 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
938   assert(Addr != RetvalTLS && "Reinstrumenting?");
939   IRBuilder<> IRB(Pos);
940   Value *ShadowPtrMaskValue;
941   if (DFSanRuntimeShadowMask)
942     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
943   else
944     ShadowPtrMaskValue = ShadowPtrMask;
945   return IRB.CreateIntToPtr(
946       IRB.CreateMul(
947           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
948                         IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
949           ShadowPtrMul),
950       ShadowPtrTy);
951 }
952 
953 // Generates IR to compute the union of the two given shadows, inserting it
954 // before Pos.  Returns the computed union Value.
955 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
956   if (V1 == DFS.ZeroShadow)
957     return V2;
958   if (V2 == DFS.ZeroShadow)
959     return V1;
960   if (V1 == V2)
961     return V1;
962 
963   auto V1Elems = ShadowElements.find(V1);
964   auto V2Elems = ShadowElements.find(V2);
965   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
966     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
967                       V2Elems->second.begin(), V2Elems->second.end())) {
968       return V1;
969     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
970                              V1Elems->second.begin(), V1Elems->second.end())) {
971       return V2;
972     }
973   } else if (V1Elems != ShadowElements.end()) {
974     if (V1Elems->second.count(V2))
975       return V1;
976   } else if (V2Elems != ShadowElements.end()) {
977     if (V2Elems->second.count(V1))
978       return V2;
979   }
980 
981   auto Key = std::make_pair(V1, V2);
982   if (V1 > V2)
983     std::swap(Key.first, Key.second);
984   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
985   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
986     return CCS.Shadow;
987 
988   IRBuilder<> IRB(Pos);
989   if (AvoidNewBlocks) {
990     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
991     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
992     Call->addAttribute(1, Attribute::ZExt);
993     Call->addAttribute(2, Attribute::ZExt);
994 
995     CCS.Block = Pos->getParent();
996     CCS.Shadow = Call;
997   } else {
998     BasicBlock *Head = Pos->getParent();
999     Value *Ne = IRB.CreateICmpNE(V1, V2);
1000     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1001         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1002     IRBuilder<> ThenIRB(BI);
1003     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1004     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1005     Call->addAttribute(1, Attribute::ZExt);
1006     Call->addAttribute(2, Attribute::ZExt);
1007 
1008     BasicBlock *Tail = BI->getSuccessor(0);
1009     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1010     Phi->addIncoming(Call, Call->getParent());
1011     Phi->addIncoming(V1, Head);
1012 
1013     CCS.Block = Tail;
1014     CCS.Shadow = Phi;
1015   }
1016 
1017   std::set<Value *> UnionElems;
1018   if (V1Elems != ShadowElements.end()) {
1019     UnionElems = V1Elems->second;
1020   } else {
1021     UnionElems.insert(V1);
1022   }
1023   if (V2Elems != ShadowElements.end()) {
1024     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1025   } else {
1026     UnionElems.insert(V2);
1027   }
1028   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1029 
1030   return CCS.Shadow;
1031 }
1032 
1033 // A convenience function which folds the shadows of each of the operands
1034 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1035 // the computed union Value.
1036 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1037   if (Inst->getNumOperands() == 0)
1038     return DFS.ZeroShadow;
1039 
1040   Value *Shadow = getShadow(Inst->getOperand(0));
1041   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1042     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1043   }
1044   return Shadow;
1045 }
1046 
1047 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1048   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1049   DFSF.setShadow(&I, CombinedShadow);
1050 }
1051 
1052 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1053 // Addr has alignment Align, and take the union of each of those shadows.
1054 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1055                                  Instruction *Pos) {
1056   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1057     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1058         AllocaShadowMap.find(AI);
1059     if (i != AllocaShadowMap.end()) {
1060       IRBuilder<> IRB(Pos);
1061       return IRB.CreateLoad(i->second);
1062     }
1063   }
1064 
1065   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1066   SmallVector<Value *, 2> Objs;
1067   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1068   bool AllConstants = true;
1069   for (Value *Obj : Objs) {
1070     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1071       continue;
1072     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1073       continue;
1074 
1075     AllConstants = false;
1076     break;
1077   }
1078   if (AllConstants)
1079     return DFS.ZeroShadow;
1080 
1081   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1082   switch (Size) {
1083   case 0:
1084     return DFS.ZeroShadow;
1085   case 1: {
1086     LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1087     LI->setAlignment(ShadowAlign);
1088     return LI;
1089   }
1090   case 2: {
1091     IRBuilder<> IRB(Pos);
1092     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1093                                        ConstantInt::get(DFS.IntptrTy, 1));
1094     return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1095                           IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1096   }
1097   }
1098   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1099     // Fast path for the common case where each byte has identical shadow: load
1100     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1101     // shadow is non-equal.
1102     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1103     IRBuilder<> FallbackIRB(FallbackBB);
1104     CallInst *FallbackCall = FallbackIRB.CreateCall(
1105         DFS.DFSanUnionLoadFn,
1106         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1107     FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1108 
1109     // Compare each of the shadows stored in the loaded 64 bits to each other,
1110     // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1111     IRBuilder<> IRB(Pos);
1112     Value *WideAddr =
1113         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1114     Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1115     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1116     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1117     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1118     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1119     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1120 
1121     BasicBlock *Head = Pos->getParent();
1122     BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1123 
1124     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1125       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1126 
1127       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1128       for (auto Child : Children)
1129         DT.changeImmediateDominator(Child, NewNode);
1130     }
1131 
1132     // In the following code LastBr will refer to the previous basic block's
1133     // conditional branch instruction, whose true successor is fixed up to point
1134     // to the next block during the loop below or to the tail after the final
1135     // iteration.
1136     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1137     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1138     DT.addNewBlock(FallbackBB, Head);
1139 
1140     for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1141          Ofs += 64 / DFS.ShadowWidth) {
1142       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1143       DT.addNewBlock(NextBB, LastBr->getParent());
1144       IRBuilder<> NextIRB(NextBB);
1145       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1146                                    ConstantInt::get(DFS.IntptrTy, 1));
1147       Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1148       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1149       LastBr->setSuccessor(0, NextBB);
1150       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1151     }
1152 
1153     LastBr->setSuccessor(0, Tail);
1154     FallbackIRB.CreateBr(Tail);
1155     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1156     Shadow->addIncoming(FallbackCall, FallbackBB);
1157     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1158     return Shadow;
1159   }
1160 
1161   IRBuilder<> IRB(Pos);
1162   CallInst *FallbackCall = IRB.CreateCall(
1163       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1164   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1165   return FallbackCall;
1166 }
1167 
1168 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1169   auto &DL = LI.getModule()->getDataLayout();
1170   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1171   if (Size == 0) {
1172     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1173     return;
1174   }
1175 
1176   uint64_t Align;
1177   if (ClPreserveAlignment) {
1178     Align = LI.getAlignment();
1179     if (Align == 0)
1180       Align = DL.getABITypeAlignment(LI.getType());
1181   } else {
1182     Align = 1;
1183   }
1184   IRBuilder<> IRB(&LI);
1185   Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1186   if (ClCombinePointerLabelsOnLoad) {
1187     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1188     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1189   }
1190   if (Shadow != DFSF.DFS.ZeroShadow)
1191     DFSF.NonZeroChecks.push_back(Shadow);
1192 
1193   DFSF.setShadow(&LI, Shadow);
1194 }
1195 
1196 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1197                                 Value *Shadow, Instruction *Pos) {
1198   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1199     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1200         AllocaShadowMap.find(AI);
1201     if (i != AllocaShadowMap.end()) {
1202       IRBuilder<> IRB(Pos);
1203       IRB.CreateStore(Shadow, i->second);
1204       return;
1205     }
1206   }
1207 
1208   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1209   IRBuilder<> IRB(Pos);
1210   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1211   if (Shadow == DFS.ZeroShadow) {
1212     IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1213     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1214     Value *ExtShadowAddr =
1215         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1216     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1217     return;
1218   }
1219 
1220   const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1221   uint64_t Offset = 0;
1222   if (Size >= ShadowVecSize) {
1223     VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1224     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1225     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1226       ShadowVec = IRB.CreateInsertElement(
1227           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1228     }
1229     Value *ShadowVecAddr =
1230         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1231     do {
1232       Value *CurShadowVecAddr =
1233           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1234       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1235       Size -= ShadowVecSize;
1236       ++Offset;
1237     } while (Size >= ShadowVecSize);
1238     Offset *= ShadowVecSize;
1239   }
1240   while (Size > 0) {
1241     Value *CurShadowAddr =
1242         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1243     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1244     --Size;
1245     ++Offset;
1246   }
1247 }
1248 
1249 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1250   auto &DL = SI.getModule()->getDataLayout();
1251   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1252   if (Size == 0)
1253     return;
1254 
1255   uint64_t Align;
1256   if (ClPreserveAlignment) {
1257     Align = SI.getAlignment();
1258     if (Align == 0)
1259       Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1260   } else {
1261     Align = 1;
1262   }
1263 
1264   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1265   if (ClCombinePointerLabelsOnStore) {
1266     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1267     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1268   }
1269   DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1270 }
1271 
1272 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1273   visitOperandShadowInst(BO);
1274 }
1275 
1276 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1277 
1278 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1279 
1280 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1281   visitOperandShadowInst(GEPI);
1282 }
1283 
1284 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1285   visitOperandShadowInst(I);
1286 }
1287 
1288 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1289   visitOperandShadowInst(I);
1290 }
1291 
1292 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1293   visitOperandShadowInst(I);
1294 }
1295 
1296 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1297   visitOperandShadowInst(I);
1298 }
1299 
1300 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1301   visitOperandShadowInst(I);
1302 }
1303 
1304 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1305   bool AllLoadsStores = true;
1306   for (User *U : I.users()) {
1307     if (isa<LoadInst>(U))
1308       continue;
1309 
1310     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1311       if (SI->getPointerOperand() == &I)
1312         continue;
1313     }
1314 
1315     AllLoadsStores = false;
1316     break;
1317   }
1318   if (AllLoadsStores) {
1319     IRBuilder<> IRB(&I);
1320     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1321   }
1322   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1323 }
1324 
1325 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1326   Value *CondShadow = DFSF.getShadow(I.getCondition());
1327   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1328   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1329 
1330   if (isa<VectorType>(I.getCondition()->getType())) {
1331     DFSF.setShadow(
1332         &I,
1333         DFSF.combineShadows(
1334             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1335   } else {
1336     Value *ShadowSel;
1337     if (TrueShadow == FalseShadow) {
1338       ShadowSel = TrueShadow;
1339     } else {
1340       ShadowSel =
1341           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1342     }
1343     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1344   }
1345 }
1346 
1347 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1348   IRBuilder<> IRB(&I);
1349   Value *ValShadow = DFSF.getShadow(I.getValue());
1350   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1351                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1352                                                                 *DFSF.DFS.Ctx)),
1353                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1354 }
1355 
1356 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1357   IRBuilder<> IRB(&I);
1358   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1359   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1360   Value *LenShadow = IRB.CreateMul(
1361       I.getLength(),
1362       ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1363   Value *AlignShadow;
1364   if (ClPreserveAlignment) {
1365     AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1366                                 ConstantInt::get(I.getAlignmentCst()->getType(),
1367                                                  DFSF.DFS.ShadowWidth / 8));
1368   } else {
1369     AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1370                                    DFSF.DFS.ShadowWidth / 8);
1371   }
1372   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1373   DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1374   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1375   IRB.CreateCall(I.getCalledValue(), {DestShadow, SrcShadow, LenShadow,
1376                                       AlignShadow, I.getVolatileCst()});
1377 }
1378 
1379 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1380   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1381     switch (DFSF.IA) {
1382     case DataFlowSanitizer::IA_TLS: {
1383       Value *S = DFSF.getShadow(RI.getReturnValue());
1384       IRBuilder<> IRB(&RI);
1385       IRB.CreateStore(S, DFSF.getRetvalTLS());
1386       break;
1387     }
1388     case DataFlowSanitizer::IA_Args: {
1389       IRBuilder<> IRB(&RI);
1390       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1391       Value *InsVal =
1392           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1393       Value *InsShadow =
1394           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1395       RI.setOperand(0, InsShadow);
1396       break;
1397     }
1398     }
1399   }
1400 }
1401 
1402 void DFSanVisitor::visitCallSite(CallSite CS) {
1403   Function *F = CS.getCalledFunction();
1404   if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1405     visitOperandShadowInst(*CS.getInstruction());
1406     return;
1407   }
1408 
1409   // Calls to this function are synthesized in wrappers, and we shouldn't
1410   // instrument them.
1411   if (F == DFSF.DFS.DFSanVarargWrapperFn)
1412     return;
1413 
1414   IRBuilder<> IRB(CS.getInstruction());
1415 
1416   DenseMap<Value *, Function *>::iterator i =
1417       DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1418   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1419     Function *F = i->second;
1420     switch (DFSF.DFS.getWrapperKind(F)) {
1421     case DataFlowSanitizer::WK_Warning: {
1422       CS.setCalledFunction(F);
1423       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1424                      IRB.CreateGlobalStringPtr(F->getName()));
1425       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1426       return;
1427     }
1428     case DataFlowSanitizer::WK_Discard: {
1429       CS.setCalledFunction(F);
1430       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1431       return;
1432     }
1433     case DataFlowSanitizer::WK_Functional: {
1434       CS.setCalledFunction(F);
1435       visitOperandShadowInst(*CS.getInstruction());
1436       return;
1437     }
1438     case DataFlowSanitizer::WK_Custom: {
1439       // Don't try to handle invokes of custom functions, it's too complicated.
1440       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1441       // wrapper.
1442       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1443         FunctionType *FT = F->getFunctionType();
1444         FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1445         std::string CustomFName = "__dfsw_";
1446         CustomFName += F->getName();
1447         Constant *CustomF =
1448             DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1449         if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1450           CustomFn->copyAttributesFrom(F);
1451 
1452           // Custom functions returning non-void will write to the return label.
1453           if (!FT->getReturnType()->isVoidTy()) {
1454             CustomFn->removeAttributes(AttributeList::FunctionIndex,
1455                                        DFSF.DFS.ReadOnlyNoneAttrs);
1456           }
1457         }
1458 
1459         std::vector<Value *> Args;
1460 
1461         CallSite::arg_iterator i = CS.arg_begin();
1462         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1463           Type *T = (*i)->getType();
1464           FunctionType *ParamFT;
1465           if (isa<PointerType>(T) &&
1466               (ParamFT = dyn_cast<FunctionType>(
1467                    cast<PointerType>(T)->getElementType()))) {
1468             std::string TName = "dfst";
1469             TName += utostr(FT->getNumParams() - n);
1470             TName += "$";
1471             TName += F->getName();
1472             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1473             Args.push_back(T);
1474             Args.push_back(
1475                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1476           } else {
1477             Args.push_back(*i);
1478           }
1479         }
1480 
1481         i = CS.arg_begin();
1482         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1483           Args.push_back(DFSF.getShadow(*i));
1484 
1485         if (FT->isVarArg()) {
1486           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1487                                            CS.arg_size() - FT->getNumParams());
1488           auto *LabelVAAlloca = new AllocaInst(
1489               LabelVATy, getDataLayout().getAllocaAddrSpace(),
1490               "labelva", &DFSF.F->getEntryBlock().front());
1491 
1492           for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1493             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1494             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1495           }
1496 
1497           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1498         }
1499 
1500         if (!FT->getReturnType()->isVoidTy()) {
1501           if (!DFSF.LabelReturnAlloca) {
1502             DFSF.LabelReturnAlloca =
1503               new AllocaInst(DFSF.DFS.ShadowTy,
1504                              getDataLayout().getAllocaAddrSpace(),
1505                              "labelreturn", &DFSF.F->getEntryBlock().front());
1506           }
1507           Args.push_back(DFSF.LabelReturnAlloca);
1508         }
1509 
1510         for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1511           Args.push_back(*i);
1512 
1513         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1514         CustomCI->setCallingConv(CI->getCallingConv());
1515         CustomCI->setAttributes(CI->getAttributes());
1516 
1517         if (!FT->getReturnType()->isVoidTy()) {
1518           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1519           DFSF.setShadow(CustomCI, LabelLoad);
1520         }
1521 
1522         CI->replaceAllUsesWith(CustomCI);
1523         CI->eraseFromParent();
1524         return;
1525       }
1526       break;
1527     }
1528     }
1529   }
1530 
1531   FunctionType *FT = cast<FunctionType>(
1532       CS.getCalledValue()->getType()->getPointerElementType());
1533   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1534     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1535       IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1536                       DFSF.getArgTLS(i, CS.getInstruction()));
1537     }
1538   }
1539 
1540   Instruction *Next = nullptr;
1541   if (!CS.getType()->isVoidTy()) {
1542     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1543       if (II->getNormalDest()->getSinglePredecessor()) {
1544         Next = &II->getNormalDest()->front();
1545       } else {
1546         BasicBlock *NewBB =
1547             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1548         Next = &NewBB->front();
1549       }
1550     } else {
1551       assert(CS->getIterator() != CS->getParent()->end());
1552       Next = CS->getNextNode();
1553     }
1554 
1555     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1556       IRBuilder<> NextIRB(Next);
1557       LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1558       DFSF.SkipInsts.insert(LI);
1559       DFSF.setShadow(CS.getInstruction(), LI);
1560       DFSF.NonZeroChecks.push_back(LI);
1561     }
1562   }
1563 
1564   // Do all instrumentation for IA_Args down here to defer tampering with the
1565   // CFG in a way that SplitEdge may be able to detect.
1566   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1567     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1568     Value *Func =
1569         IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1570     std::vector<Value *> Args;
1571 
1572     CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1573     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1574       Args.push_back(*i);
1575 
1576     i = CS.arg_begin();
1577     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1578       Args.push_back(DFSF.getShadow(*i));
1579 
1580     if (FT->isVarArg()) {
1581       unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1582       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1583       AllocaInst *VarArgShadow =
1584         new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1585                        "", &DFSF.F->getEntryBlock().front());
1586       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1587       for (unsigned n = 0; i != e; ++i, ++n) {
1588         IRB.CreateStore(
1589             DFSF.getShadow(*i),
1590             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1591         Args.push_back(*i);
1592       }
1593     }
1594 
1595     CallSite NewCS;
1596     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1597       NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1598                                Args);
1599     } else {
1600       NewCS = IRB.CreateCall(Func, Args);
1601     }
1602     NewCS.setCallingConv(CS.getCallingConv());
1603     NewCS.setAttributes(CS.getAttributes().removeAttributes(
1604         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1605         AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
1606 
1607     if (Next) {
1608       ExtractValueInst *ExVal =
1609           ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1610       DFSF.SkipInsts.insert(ExVal);
1611       ExtractValueInst *ExShadow =
1612           ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1613       DFSF.SkipInsts.insert(ExShadow);
1614       DFSF.setShadow(ExVal, ExShadow);
1615       DFSF.NonZeroChecks.push_back(ExShadow);
1616 
1617       CS.getInstruction()->replaceAllUsesWith(ExVal);
1618     }
1619 
1620     CS.getInstruction()->eraseFromParent();
1621   }
1622 }
1623 
1624 void DFSanVisitor::visitPHINode(PHINode &PN) {
1625   PHINode *ShadowPN =
1626       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1627 
1628   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1629   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1630   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1631        ++i) {
1632     ShadowPN->addIncoming(UndefShadow, *i);
1633   }
1634 
1635   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1636   DFSF.setShadow(&PN, ShadowPN);
1637 }
1638