1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // This must be consistent with ShadowWidthBits. 110 static const Align kShadowTLSAlignment = Align(2); 111 112 // The size of TLS variables. These constants must be kept in sync with the ones 113 // in dfsan.cpp. 114 static const unsigned kArgTLSSize = 800; 115 static const unsigned kRetvalTLSSize = 800; 116 117 // External symbol to be used when generating the shadow address for 118 // architectures with multiple VMAs. Instead of using a constant integer 119 // the runtime will set the external mask based on the VMA range. 120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 121 122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 123 // alignment requirements provided by the input IR are correct. For example, 124 // if the input IR contains a load with alignment 8, this flag will cause 125 // the shadow load to have alignment 16. This flag is disabled by default as 126 // we have unfortunately encountered too much code (including Clang itself; 127 // see PR14291) which performs misaligned access. 128 static cl::opt<bool> ClPreserveAlignment( 129 "dfsan-preserve-alignment", 130 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 131 cl::init(false)); 132 133 // The ABI list files control how shadow parameters are passed. The pass treats 134 // every function labelled "uninstrumented" in the ABI list file as conforming 135 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 136 // additional annotations for those functions, a call to one of those functions 137 // will produce a warning message, as the labelling behaviour of the function is 138 // unknown. The other supported annotations are "functional" and "discard", 139 // which are described below under DataFlowSanitizer::WrapperKind. 140 static cl::list<std::string> ClABIListFiles( 141 "dfsan-abilist", 142 cl::desc("File listing native ABI functions and how the pass treats them"), 143 cl::Hidden); 144 145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 146 // functions (see DataFlowSanitizer::InstrumentedABI below). 147 static cl::opt<bool> ClArgsABI( 148 "dfsan-args-abi", 149 cl::desc("Use the argument ABI rather than the TLS ABI"), 150 cl::Hidden); 151 152 // Controls whether the pass includes or ignores the labels of pointers in load 153 // instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 155 "dfsan-combine-pointer-labels-on-load", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "loading from memory."), 158 cl::Hidden, cl::init(true)); 159 160 // Controls whether the pass includes or ignores the labels of pointers in 161 // stores instructions. 162 static cl::opt<bool> ClCombinePointerLabelsOnStore( 163 "dfsan-combine-pointer-labels-on-store", 164 cl::desc("Combine the label of the pointer with the label of the data when " 165 "storing in memory."), 166 cl::Hidden, cl::init(false)); 167 168 static cl::opt<bool> ClDebugNonzeroLabels( 169 "dfsan-debug-nonzero-labels", 170 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 171 "load or return with a nonzero label"), 172 cl::Hidden); 173 174 // Experimental feature that inserts callbacks for certain data events. 175 // Currently callbacks are only inserted for loads, stores, memory transfers 176 // (i.e. memcpy and memmove), and comparisons. 177 // 178 // If this flag is set to true, the user must provide definitions for the 179 // following callback functions: 180 // void __dfsan_load_callback(dfsan_label Label, void* addr); 181 // void __dfsan_store_callback(dfsan_label Label, void* addr); 182 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 183 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 184 static cl::opt<bool> ClEventCallbacks( 185 "dfsan-event-callbacks", 186 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 187 cl::Hidden, cl::init(false)); 188 189 // Use a distinct bit for each base label, enabling faster unions with less 190 // instrumentation. Limits the max number of base labels to 16. 191 static cl::opt<bool> ClFast16Labels( 192 "dfsan-fast-16-labels", 193 cl::desc("Use more efficient instrumentation, limiting the number of " 194 "labels to 16."), 195 cl::Hidden, cl::init(false)); 196 197 // Controls whether the pass tracks the control flow of select instructions. 198 static cl::opt<bool> ClTrackSelectControlFlow( 199 "dfsan-track-select-control-flow", 200 cl::desc("Propagate labels from condition values of select instructions " 201 "to results."), 202 cl::Hidden, cl::init(true)); 203 204 static StringRef GetGlobalTypeString(const GlobalValue &G) { 205 // Types of GlobalVariables are always pointer types. 206 Type *GType = G.getValueType(); 207 // For now we support excluding struct types only. 208 if (StructType *SGType = dyn_cast<StructType>(GType)) { 209 if (!SGType->isLiteral()) 210 return SGType->getName(); 211 } 212 return "<unknown type>"; 213 } 214 215 namespace { 216 217 class DFSanABIList { 218 std::unique_ptr<SpecialCaseList> SCL; 219 220 public: 221 DFSanABIList() = default; 222 223 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 224 225 /// Returns whether either this function or its source file are listed in the 226 /// given category. 227 bool isIn(const Function &F, StringRef Category) const { 228 return isIn(*F.getParent(), Category) || 229 SCL->inSection("dataflow", "fun", F.getName(), Category); 230 } 231 232 /// Returns whether this global alias is listed in the given category. 233 /// 234 /// If GA aliases a function, the alias's name is matched as a function name 235 /// would be. Similarly, aliases of globals are matched like globals. 236 bool isIn(const GlobalAlias &GA, StringRef Category) const { 237 if (isIn(*GA.getParent(), Category)) 238 return true; 239 240 if (isa<FunctionType>(GA.getValueType())) 241 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 242 243 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 244 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 245 Category); 246 } 247 248 /// Returns whether this module is listed in the given category. 249 bool isIn(const Module &M, StringRef Category) const { 250 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 251 } 252 }; 253 254 /// TransformedFunction is used to express the result of transforming one 255 /// function type into another. This struct is immutable. It holds metadata 256 /// useful for updating calls of the old function to the new type. 257 struct TransformedFunction { 258 TransformedFunction(FunctionType* OriginalType, 259 FunctionType* TransformedType, 260 std::vector<unsigned> ArgumentIndexMapping) 261 : OriginalType(OriginalType), 262 TransformedType(TransformedType), 263 ArgumentIndexMapping(ArgumentIndexMapping) {} 264 265 // Disallow copies. 266 TransformedFunction(const TransformedFunction&) = delete; 267 TransformedFunction& operator=(const TransformedFunction&) = delete; 268 269 // Allow moves. 270 TransformedFunction(TransformedFunction&&) = default; 271 TransformedFunction& operator=(TransformedFunction&&) = default; 272 273 /// Type of the function before the transformation. 274 FunctionType *OriginalType; 275 276 /// Type of the function after the transformation. 277 FunctionType *TransformedType; 278 279 /// Transforming a function may change the position of arguments. This 280 /// member records the mapping from each argument's old position to its new 281 /// position. Argument positions are zero-indexed. If the transformation 282 /// from F to F' made the first argument of F into the third argument of F', 283 /// then ArgumentIndexMapping[0] will equal 2. 284 std::vector<unsigned> ArgumentIndexMapping; 285 }; 286 287 /// Given function attributes from a call site for the original function, 288 /// return function attributes appropriate for a call to the transformed 289 /// function. 290 AttributeList TransformFunctionAttributes( 291 const TransformedFunction& TransformedFunction, 292 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 293 294 // Construct a vector of AttributeSet for each function argument. 295 std::vector<llvm::AttributeSet> ArgumentAttributes( 296 TransformedFunction.TransformedType->getNumParams()); 297 298 // Copy attributes from the parameter of the original function to the 299 // transformed version. 'ArgumentIndexMapping' holds the mapping from 300 // old argument position to new. 301 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 302 i < ie; ++i) { 303 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 304 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 305 } 306 307 // Copy annotations on varargs arguments. 308 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 309 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 310 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 311 } 312 313 return AttributeList::get( 314 Ctx, 315 CallSiteAttrs.getFnAttributes(), 316 CallSiteAttrs.getRetAttributes(), 317 llvm::makeArrayRef(ArgumentAttributes)); 318 } 319 320 class DataFlowSanitizer { 321 friend struct DFSanFunction; 322 friend class DFSanVisitor; 323 324 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 325 326 /// Which ABI should be used for instrumented functions? 327 enum InstrumentedABI { 328 /// Argument and return value labels are passed through additional 329 /// arguments and by modifying the return type. 330 IA_Args, 331 332 /// Argument and return value labels are passed through TLS variables 333 /// __dfsan_arg_tls and __dfsan_retval_tls. 334 IA_TLS 335 }; 336 337 /// How should calls to uninstrumented functions be handled? 338 enum WrapperKind { 339 /// This function is present in an uninstrumented form but we don't know 340 /// how it should be handled. Print a warning and call the function anyway. 341 /// Don't label the return value. 342 WK_Warning, 343 344 /// This function does not write to (user-accessible) memory, and its return 345 /// value is unlabelled. 346 WK_Discard, 347 348 /// This function does not write to (user-accessible) memory, and the label 349 /// of its return value is the union of the label of its arguments. 350 WK_Functional, 351 352 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 353 /// where F is the name of the function. This function may wrap the 354 /// original function or provide its own implementation. This is similar to 355 /// the IA_Args ABI, except that IA_Args uses a struct return type to 356 /// pass the return value shadow in a register, while WK_Custom uses an 357 /// extra pointer argument to return the shadow. This allows the wrapped 358 /// form of the function type to be expressed in C. 359 WK_Custom 360 }; 361 362 Module *Mod; 363 LLVMContext *Ctx; 364 Type *Int8Ptr; 365 /// The shadow type for all primitive types and vector types. 366 IntegerType *PrimitiveShadowTy; 367 PointerType *PrimitiveShadowPtrTy; 368 IntegerType *IntptrTy; 369 ConstantInt *ZeroPrimitiveShadow; 370 ConstantInt *ShadowPtrMask; 371 ConstantInt *ShadowPtrMul; 372 Constant *ArgTLS; 373 Constant *RetvalTLS; 374 Constant *ExternalShadowMask; 375 FunctionType *DFSanUnionFnTy; 376 FunctionType *DFSanUnionLoadFnTy; 377 FunctionType *DFSanUnimplementedFnTy; 378 FunctionType *DFSanSetLabelFnTy; 379 FunctionType *DFSanNonzeroLabelFnTy; 380 FunctionType *DFSanVarargWrapperFnTy; 381 FunctionType *DFSanCmpCallbackFnTy; 382 FunctionType *DFSanLoadStoreCallbackFnTy; 383 FunctionType *DFSanMemTransferCallbackFnTy; 384 FunctionCallee DFSanUnionFn; 385 FunctionCallee DFSanCheckedUnionFn; 386 FunctionCallee DFSanUnionLoadFn; 387 FunctionCallee DFSanUnionLoadFast16LabelsFn; 388 FunctionCallee DFSanUnimplementedFn; 389 FunctionCallee DFSanSetLabelFn; 390 FunctionCallee DFSanNonzeroLabelFn; 391 FunctionCallee DFSanVarargWrapperFn; 392 FunctionCallee DFSanLoadCallbackFn; 393 FunctionCallee DFSanStoreCallbackFn; 394 FunctionCallee DFSanMemTransferCallbackFn; 395 FunctionCallee DFSanCmpCallbackFn; 396 MDNode *ColdCallWeights; 397 DFSanABIList ABIList; 398 DenseMap<Value *, Function *> UnwrappedFnMap; 399 AttrBuilder ReadOnlyNoneAttrs; 400 bool DFSanRuntimeShadowMask = false; 401 402 Value *getShadowAddress(Value *Addr, Instruction *Pos); 403 bool isInstrumented(const Function *F); 404 bool isInstrumented(const GlobalAlias *GA); 405 FunctionType *getArgsFunctionType(FunctionType *T); 406 FunctionType *getTrampolineFunctionType(FunctionType *T); 407 TransformedFunction getCustomFunctionType(FunctionType *T); 408 InstrumentedABI getInstrumentedABI(); 409 WrapperKind getWrapperKind(Function *F); 410 void addGlobalNamePrefix(GlobalValue *GV); 411 Function *buildWrapperFunction(Function *F, StringRef NewFName, 412 GlobalValue::LinkageTypes NewFLink, 413 FunctionType *NewFT); 414 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 415 void initializeCallbackFunctions(Module &M); 416 void initializeRuntimeFunctions(Module &M); 417 418 bool init(Module &M); 419 420 /// Returns whether the pass tracks labels for struct fields and array 421 /// indices. Support only fast16 mode in TLS ABI mode. 422 bool shouldTrackFieldsAndIndices(); 423 424 /// Returns a zero constant with the shadow type of OrigTy. 425 /// 426 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 427 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 428 /// getZeroShadow(other type) = i16(0) 429 /// 430 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 431 /// returns false. 432 Constant *getZeroShadow(Type *OrigTy); 433 /// Returns a zero constant with the shadow type of V's type. 434 Constant *getZeroShadow(Value *V); 435 436 /// Checks if V is a zero shadow. 437 bool isZeroShadow(Value *V); 438 439 /// Returns the shadow type of OrigTy. 440 /// 441 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 442 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 443 /// getShadowTy(other type) = i16 444 /// 445 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 446 /// returns false. 447 Type *getShadowTy(Type *OrigTy); 448 /// Returns the shadow type of of V's type. 449 Type *getShadowTy(Value *V); 450 451 public: 452 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 453 454 bool runImpl(Module &M); 455 }; 456 457 struct DFSanFunction { 458 DataFlowSanitizer &DFS; 459 Function *F; 460 DominatorTree DT; 461 DataFlowSanitizer::InstrumentedABI IA; 462 bool IsNativeABI; 463 AllocaInst *LabelReturnAlloca = nullptr; 464 DenseMap<Value *, Value *> ValShadowMap; 465 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 466 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 467 DenseSet<Instruction *> SkipInsts; 468 std::vector<Value *> NonZeroChecks; 469 bool AvoidNewBlocks; 470 471 struct CachedShadow { 472 BasicBlock *Block; // The block where Shadow is defined. 473 Value *Shadow; 474 }; 475 /// Maps a value to its latest shadow value in terms of domination tree. 476 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 477 /// Maps a value to its latest collapsed shadow value it was converted to in 478 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 479 /// used at a post process where CFG blocks are split. So it does not cache 480 /// BasicBlock like CachedShadows, but uses domination between values. 481 DenseMap<Value *, Value *> CachedCollapsedShadows; 482 DenseMap<Value *, std::set<Value *>> ShadowElements; 483 484 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 485 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 486 DT.recalculate(*F); 487 // FIXME: Need to track down the register allocator issue which causes poor 488 // performance in pathological cases with large numbers of basic blocks. 489 AvoidNewBlocks = F->size() > 1000; 490 } 491 492 /// Computes the shadow address for a given function argument. 493 /// 494 /// Shadow = ArgTLS+ArgOffset. 495 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 496 497 /// Computes the shadow address for a retval. 498 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 499 500 Value *getShadow(Value *V); 501 void setShadow(Instruction *I, Value *Shadow); 502 /// Generates IR to compute the union of the two given shadows, inserting it 503 /// before Pos. The combined value is with primitive type. 504 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 505 /// Combines the shadow values of V1 and V2, then converts the combined value 506 /// with primitive type into a shadow value with the original type T. 507 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 508 Instruction *Pos); 509 Value *combineOperandShadows(Instruction *Inst); 510 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 511 Instruction *Pos); 512 void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, 513 Value *PrimitiveShadow, Instruction *Pos); 514 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 515 /// the expanded shadow value. 516 /// 517 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 518 /// EFP([n x T], PS) = [n x EFP(T,PS)] 519 /// EFP(other types, PS) = PS 520 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 521 Instruction *Pos); 522 /// Collapses Shadow into a single primitive shadow value, unioning all 523 /// primitive shadow values in the process. Returns the final primitive 524 /// shadow value. 525 /// 526 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 527 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 528 /// CTP(other types, PS) = PS 529 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 530 531 private: 532 /// Collapses the shadow with aggregate type into a single primitive shadow 533 /// value. 534 template <class AggregateType> 535 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 536 IRBuilder<> &IRB); 537 538 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 539 540 /// Returns the shadow value of an argument A. 541 Value *getShadowForTLSArgument(Argument *A); 542 }; 543 544 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 545 public: 546 DFSanFunction &DFSF; 547 548 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 549 550 const DataLayout &getDataLayout() const { 551 return DFSF.F->getParent()->getDataLayout(); 552 } 553 554 // Combines shadow values for all of I's operands. Returns the combined shadow 555 // value. 556 Value *visitOperandShadowInst(Instruction &I); 557 558 void visitUnaryOperator(UnaryOperator &UO); 559 void visitBinaryOperator(BinaryOperator &BO); 560 void visitCastInst(CastInst &CI); 561 void visitCmpInst(CmpInst &CI); 562 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 563 void visitLoadInst(LoadInst &LI); 564 void visitStoreInst(StoreInst &SI); 565 void visitReturnInst(ReturnInst &RI); 566 void visitCallBase(CallBase &CB); 567 void visitPHINode(PHINode &PN); 568 void visitExtractElementInst(ExtractElementInst &I); 569 void visitInsertElementInst(InsertElementInst &I); 570 void visitShuffleVectorInst(ShuffleVectorInst &I); 571 void visitExtractValueInst(ExtractValueInst &I); 572 void visitInsertValueInst(InsertValueInst &I); 573 void visitAllocaInst(AllocaInst &I); 574 void visitSelectInst(SelectInst &I); 575 void visitMemSetInst(MemSetInst &I); 576 void visitMemTransferInst(MemTransferInst &I); 577 }; 578 579 } // end anonymous namespace 580 581 DataFlowSanitizer::DataFlowSanitizer( 582 const std::vector<std::string> &ABIListFiles) { 583 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 584 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 585 ClABIListFiles.end()); 586 // FIXME: should we propagate vfs::FileSystem to this constructor? 587 ABIList.set( 588 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 589 } 590 591 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 592 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 593 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 594 if (T->isVarArg()) 595 ArgTypes.push_back(PrimitiveShadowPtrTy); 596 Type *RetType = T->getReturnType(); 597 if (!RetType->isVoidTy()) 598 RetType = StructType::get(RetType, PrimitiveShadowTy); 599 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 600 } 601 602 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 603 assert(!T->isVarArg()); 604 SmallVector<Type *, 4> ArgTypes; 605 ArgTypes.push_back(T->getPointerTo()); 606 ArgTypes.append(T->param_begin(), T->param_end()); 607 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 608 Type *RetType = T->getReturnType(); 609 if (!RetType->isVoidTy()) 610 ArgTypes.push_back(PrimitiveShadowPtrTy); 611 return FunctionType::get(T->getReturnType(), ArgTypes, false); 612 } 613 614 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 615 SmallVector<Type *, 4> ArgTypes; 616 617 // Some parameters of the custom function being constructed are 618 // parameters of T. Record the mapping from parameters of T to 619 // parameters of the custom function, so that parameter attributes 620 // at call sites can be updated. 621 std::vector<unsigned> ArgumentIndexMapping; 622 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 623 Type* param_type = T->getParamType(i); 624 FunctionType *FT; 625 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 626 cast<PointerType>(param_type)->getElementType()))) { 627 ArgumentIndexMapping.push_back(ArgTypes.size()); 628 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 629 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 630 } else { 631 ArgumentIndexMapping.push_back(ArgTypes.size()); 632 ArgTypes.push_back(param_type); 633 } 634 } 635 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 636 ArgTypes.push_back(PrimitiveShadowTy); 637 if (T->isVarArg()) 638 ArgTypes.push_back(PrimitiveShadowPtrTy); 639 Type *RetType = T->getReturnType(); 640 if (!RetType->isVoidTy()) 641 ArgTypes.push_back(PrimitiveShadowPtrTy); 642 return TransformedFunction( 643 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 644 ArgumentIndexMapping); 645 } 646 647 bool DataFlowSanitizer::isZeroShadow(Value *V) { 648 if (!shouldTrackFieldsAndIndices()) 649 return ZeroPrimitiveShadow == V; 650 651 Type *T = V->getType(); 652 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 653 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 654 return CI->isZero(); 655 return false; 656 } 657 658 return isa<ConstantAggregateZero>(V); 659 } 660 661 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 662 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 663 } 664 665 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 666 if (!shouldTrackFieldsAndIndices()) 667 return ZeroPrimitiveShadow; 668 669 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 670 return ZeroPrimitiveShadow; 671 Type *ShadowTy = getShadowTy(OrigTy); 672 return ConstantAggregateZero::get(ShadowTy); 673 } 674 675 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 676 return getZeroShadow(V->getType()); 677 } 678 679 static Value *expandFromPrimitiveShadowRecursive( 680 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 681 Value *PrimitiveShadow, IRBuilder<> &IRB) { 682 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 683 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 684 685 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 686 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 687 Indices.push_back(Idx); 688 Shadow = expandFromPrimitiveShadowRecursive( 689 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 690 Indices.pop_back(); 691 } 692 return Shadow; 693 } 694 695 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 696 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 697 Indices.push_back(Idx); 698 Shadow = expandFromPrimitiveShadowRecursive( 699 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 700 Indices.pop_back(); 701 } 702 return Shadow; 703 } 704 llvm_unreachable("Unexpected shadow type"); 705 } 706 707 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 708 Instruction *Pos) { 709 Type *ShadowTy = DFS.getShadowTy(T); 710 711 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 712 return PrimitiveShadow; 713 714 if (DFS.isZeroShadow(PrimitiveShadow)) 715 return DFS.getZeroShadow(ShadowTy); 716 717 IRBuilder<> IRB(Pos); 718 SmallVector<unsigned, 4> Indices; 719 Value *Shadow = UndefValue::get(ShadowTy); 720 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 721 PrimitiveShadow, IRB); 722 723 // Caches the primitive shadow value that built the shadow value. 724 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 725 return Shadow; 726 } 727 728 template <class AggregateType> 729 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 730 IRBuilder<> &IRB) { 731 if (!AT->getNumElements()) 732 return DFS.ZeroPrimitiveShadow; 733 734 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 735 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 736 737 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 738 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 739 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 740 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 741 } 742 return Aggregator; 743 } 744 745 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 746 IRBuilder<> &IRB) { 747 Type *ShadowTy = Shadow->getType(); 748 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 749 return Shadow; 750 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 751 return collapseAggregateShadow<>(AT, Shadow, IRB); 752 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 753 return collapseAggregateShadow<>(ST, Shadow, IRB); 754 llvm_unreachable("Unexpected shadow type"); 755 } 756 757 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 758 Instruction *Pos) { 759 Type *ShadowTy = Shadow->getType(); 760 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 761 return Shadow; 762 763 assert(DFS.shouldTrackFieldsAndIndices()); 764 765 // Checks if the cached collapsed shadow value dominates Pos. 766 Value *&CS = CachedCollapsedShadows[Shadow]; 767 if (CS && DT.dominates(CS, Pos)) 768 return CS; 769 770 IRBuilder<> IRB(Pos); 771 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 772 // Caches the converted primitive shadow value. 773 CS = PrimitiveShadow; 774 return PrimitiveShadow; 775 } 776 777 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 778 if (!shouldTrackFieldsAndIndices()) 779 return PrimitiveShadowTy; 780 781 if (!OrigTy->isSized()) 782 return PrimitiveShadowTy; 783 if (isa<IntegerType>(OrigTy)) 784 return PrimitiveShadowTy; 785 if (isa<VectorType>(OrigTy)) 786 return PrimitiveShadowTy; 787 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 788 return ArrayType::get(getShadowTy(AT->getElementType()), 789 AT->getNumElements()); 790 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 791 SmallVector<Type *, 4> Elements; 792 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 793 Elements.push_back(getShadowTy(ST->getElementType(I))); 794 return StructType::get(*Ctx, Elements); 795 } 796 return PrimitiveShadowTy; 797 } 798 799 Type *DataFlowSanitizer::getShadowTy(Value *V) { 800 return getShadowTy(V->getType()); 801 } 802 803 bool DataFlowSanitizer::init(Module &M) { 804 Triple TargetTriple(M.getTargetTriple()); 805 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 806 bool IsMIPS64 = TargetTriple.isMIPS64(); 807 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 808 TargetTriple.getArch() == Triple::aarch64_be; 809 810 const DataLayout &DL = M.getDataLayout(); 811 812 Mod = &M; 813 Ctx = &M.getContext(); 814 Int8Ptr = Type::getInt8PtrTy(*Ctx); 815 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 816 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 817 IntptrTy = DL.getIntPtrType(*Ctx); 818 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 819 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 820 if (IsX86_64) 821 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 822 else if (IsMIPS64) 823 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 824 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 825 else if (IsAArch64) 826 DFSanRuntimeShadowMask = true; 827 else 828 report_fatal_error("unsupported triple"); 829 830 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 831 DFSanUnionFnTy = 832 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 833 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 834 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 835 /*isVarArg=*/false); 836 DFSanUnimplementedFnTy = FunctionType::get( 837 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 838 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 839 IntptrTy}; 840 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 841 DFSanSetLabelArgs, /*isVarArg=*/false); 842 DFSanNonzeroLabelFnTy = 843 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 844 DFSanVarargWrapperFnTy = FunctionType::get( 845 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 846 DFSanCmpCallbackFnTy = 847 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 848 /*isVarArg=*/false); 849 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 850 DFSanLoadStoreCallbackFnTy = 851 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 852 /*isVarArg=*/false); 853 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 854 DFSanMemTransferCallbackFnTy = 855 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 856 /*isVarArg=*/false); 857 858 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 859 return true; 860 } 861 862 bool DataFlowSanitizer::isInstrumented(const Function *F) { 863 return !ABIList.isIn(*F, "uninstrumented"); 864 } 865 866 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 867 return !ABIList.isIn(*GA, "uninstrumented"); 868 } 869 870 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 871 return ClArgsABI ? IA_Args : IA_TLS; 872 } 873 874 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 875 if (ABIList.isIn(*F, "functional")) 876 return WK_Functional; 877 if (ABIList.isIn(*F, "discard")) 878 return WK_Discard; 879 if (ABIList.isIn(*F, "custom")) 880 return WK_Custom; 881 882 return WK_Warning; 883 } 884 885 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 886 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 887 GV->setName(Prefix + GVName); 888 889 // Try to change the name of the function in module inline asm. We only do 890 // this for specific asm directives, currently only ".symver", to try to avoid 891 // corrupting asm which happens to contain the symbol name as a substring. 892 // Note that the substitution for .symver assumes that the versioned symbol 893 // also has an instrumented name. 894 std::string Asm = GV->getParent()->getModuleInlineAsm(); 895 std::string SearchStr = ".symver " + GVName + ","; 896 size_t Pos = Asm.find(SearchStr); 897 if (Pos != std::string::npos) { 898 Asm.replace(Pos, SearchStr.size(), 899 ".symver " + Prefix + GVName + "," + Prefix); 900 GV->getParent()->setModuleInlineAsm(Asm); 901 } 902 } 903 904 Function * 905 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 906 GlobalValue::LinkageTypes NewFLink, 907 FunctionType *NewFT) { 908 FunctionType *FT = F->getFunctionType(); 909 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 910 NewFName, F->getParent()); 911 NewF->copyAttributesFrom(F); 912 NewF->removeAttributes( 913 AttributeList::ReturnIndex, 914 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 915 916 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 917 if (F->isVarArg()) { 918 NewF->removeAttributes(AttributeList::FunctionIndex, 919 AttrBuilder().addAttribute("split-stack")); 920 CallInst::Create(DFSanVarargWrapperFn, 921 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 922 BB); 923 new UnreachableInst(*Ctx, BB); 924 } else { 925 std::vector<Value *> Args; 926 unsigned n = FT->getNumParams(); 927 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 928 Args.push_back(&*ai); 929 CallInst *CI = CallInst::Create(F, Args, "", BB); 930 if (FT->getReturnType()->isVoidTy()) 931 ReturnInst::Create(*Ctx, BB); 932 else 933 ReturnInst::Create(*Ctx, CI, BB); 934 } 935 936 return NewF; 937 } 938 939 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 940 StringRef FName) { 941 FunctionType *FTT = getTrampolineFunctionType(FT); 942 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 943 Function *F = dyn_cast<Function>(C.getCallee()); 944 if (F && F->isDeclaration()) { 945 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 946 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 947 std::vector<Value *> Args; 948 Function::arg_iterator AI = F->arg_begin(); ++AI; 949 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 950 Args.push_back(&*AI); 951 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 952 ReturnInst *RI; 953 if (FT->getReturnType()->isVoidTy()) 954 RI = ReturnInst::Create(*Ctx, BB); 955 else 956 RI = ReturnInst::Create(*Ctx, CI, BB); 957 958 // F is called by a wrapped custom function with primitive shadows. So 959 // its arguments and return value need conversion. 960 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 961 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 962 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 963 Value *Shadow = 964 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 965 DFSF.ValShadowMap[&*ValAI] = Shadow; 966 } 967 DFSanVisitor(DFSF).visitCallInst(*CI); 968 if (!FT->getReturnType()->isVoidTy()) { 969 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 970 DFSF.getShadow(RI->getReturnValue()), RI); 971 new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI); 972 } 973 } 974 975 return cast<Constant>(C.getCallee()); 976 } 977 978 // Initialize DataFlowSanitizer runtime functions and declare them in the module 979 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 980 { 981 AttributeList AL; 982 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 983 Attribute::NoUnwind); 984 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 985 Attribute::ReadNone); 986 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 987 Attribute::ZExt); 988 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 989 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 990 DFSanUnionFn = 991 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 992 } 993 { 994 AttributeList AL; 995 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 996 Attribute::NoUnwind); 997 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 998 Attribute::ReadNone); 999 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1000 Attribute::ZExt); 1001 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1002 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1003 DFSanCheckedUnionFn = 1004 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1005 } 1006 { 1007 AttributeList AL; 1008 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1009 Attribute::NoUnwind); 1010 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1011 Attribute::ReadOnly); 1012 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1013 Attribute::ZExt); 1014 DFSanUnionLoadFn = 1015 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1016 } 1017 { 1018 AttributeList AL; 1019 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1020 Attribute::NoUnwind); 1021 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1022 Attribute::ReadOnly); 1023 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1024 Attribute::ZExt); 1025 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1026 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1027 } 1028 DFSanUnimplementedFn = 1029 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1030 { 1031 AttributeList AL; 1032 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1033 DFSanSetLabelFn = 1034 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1035 } 1036 DFSanNonzeroLabelFn = 1037 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1038 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1039 DFSanVarargWrapperFnTy); 1040 } 1041 1042 // Initializes event callback functions and declare them in the module 1043 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1044 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1045 DFSanLoadStoreCallbackFnTy); 1046 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1047 DFSanLoadStoreCallbackFnTy); 1048 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1049 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1050 DFSanCmpCallbackFn = 1051 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1052 } 1053 1054 bool DataFlowSanitizer::runImpl(Module &M) { 1055 init(M); 1056 1057 if (ABIList.isIn(M, "skip")) 1058 return false; 1059 1060 const unsigned InitialGlobalSize = M.global_size(); 1061 const unsigned InitialModuleSize = M.size(); 1062 1063 bool Changed = false; 1064 1065 Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8); 1066 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 1067 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 1068 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1069 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1070 } 1071 Type *RetvalTLSTy = 1072 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8); 1073 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy); 1074 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 1075 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1076 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1077 } 1078 1079 ExternalShadowMask = 1080 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 1081 1082 initializeCallbackFunctions(M); 1083 initializeRuntimeFunctions(M); 1084 1085 std::vector<Function *> FnsToInstrument; 1086 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1087 for (Function &i : M) { 1088 if (!i.isIntrinsic() && 1089 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 1090 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 1091 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 1092 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 1093 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 1094 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 1095 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 1096 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 1097 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 1098 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 1099 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 1100 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 1101 FnsToInstrument.push_back(&i); 1102 } 1103 1104 // Give function aliases prefixes when necessary, and build wrappers where the 1105 // instrumentedness is inconsistent. 1106 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 1107 GlobalAlias *GA = &*i; 1108 ++i; 1109 // Don't stop on weak. We assume people aren't playing games with the 1110 // instrumentedness of overridden weak aliases. 1111 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 1112 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1113 if (GAInst && FInst) { 1114 addGlobalNamePrefix(GA); 1115 } else if (GAInst != FInst) { 1116 // Non-instrumented alias of an instrumented function, or vice versa. 1117 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1118 // below will take care of instrumenting it. 1119 Function *NewF = 1120 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1121 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1122 NewF->takeName(GA); 1123 GA->eraseFromParent(); 1124 FnsToInstrument.push_back(NewF); 1125 } 1126 } 1127 } 1128 1129 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1130 .addAttribute(Attribute::ReadNone); 1131 1132 // First, change the ABI of every function in the module. ABI-listed 1133 // functions keep their original ABI and get a wrapper function. 1134 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 1135 e = FnsToInstrument.end(); 1136 i != e; ++i) { 1137 Function &F = **i; 1138 FunctionType *FT = F.getFunctionType(); 1139 1140 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1141 FT->getReturnType()->isVoidTy()); 1142 1143 if (isInstrumented(&F)) { 1144 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1145 // easily identify cases of mismatching ABIs. 1146 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1147 FunctionType *NewFT = getArgsFunctionType(FT); 1148 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1149 F.getAddressSpace(), "", &M); 1150 NewF->copyAttributesFrom(&F); 1151 NewF->removeAttributes( 1152 AttributeList::ReturnIndex, 1153 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1154 for (Function::arg_iterator FArg = F.arg_begin(), 1155 NewFArg = NewF->arg_begin(), 1156 FArgEnd = F.arg_end(); 1157 FArg != FArgEnd; ++FArg, ++NewFArg) { 1158 FArg->replaceAllUsesWith(&*NewFArg); 1159 } 1160 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1161 1162 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1163 UI != UE;) { 1164 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1165 ++UI; 1166 if (BA) { 1167 BA->replaceAllUsesWith( 1168 BlockAddress::get(NewF, BA->getBasicBlock())); 1169 delete BA; 1170 } 1171 } 1172 F.replaceAllUsesWith( 1173 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1174 NewF->takeName(&F); 1175 F.eraseFromParent(); 1176 *i = NewF; 1177 addGlobalNamePrefix(NewF); 1178 } else { 1179 addGlobalNamePrefix(&F); 1180 } 1181 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1182 // Build a wrapper function for F. The wrapper simply calls F, and is 1183 // added to FnsToInstrument so that any instrumentation according to its 1184 // WrapperKind is done in the second pass below. 1185 FunctionType *NewFT = getInstrumentedABI() == IA_Args 1186 ? getArgsFunctionType(FT) 1187 : FT; 1188 1189 // If the function being wrapped has local linkage, then preserve the 1190 // function's linkage in the wrapper function. 1191 GlobalValue::LinkageTypes wrapperLinkage = 1192 F.hasLocalLinkage() 1193 ? F.getLinkage() 1194 : GlobalValue::LinkOnceODRLinkage; 1195 1196 Function *NewF = buildWrapperFunction( 1197 &F, std::string("dfsw$") + std::string(F.getName()), 1198 wrapperLinkage, NewFT); 1199 if (getInstrumentedABI() == IA_TLS) 1200 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1201 1202 Value *WrappedFnCst = 1203 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1204 F.replaceAllUsesWith(WrappedFnCst); 1205 1206 UnwrappedFnMap[WrappedFnCst] = &F; 1207 *i = NewF; 1208 1209 if (!F.isDeclaration()) { 1210 // This function is probably defining an interposition of an 1211 // uninstrumented function and hence needs to keep the original ABI. 1212 // But any functions it may call need to use the instrumented ABI, so 1213 // we instrument it in a mode which preserves the original ABI. 1214 FnsWithNativeABI.insert(&F); 1215 1216 // This code needs to rebuild the iterators, as they may be invalidated 1217 // by the push_back, taking care that the new range does not include 1218 // any functions added by this code. 1219 size_t N = i - FnsToInstrument.begin(), 1220 Count = e - FnsToInstrument.begin(); 1221 FnsToInstrument.push_back(&F); 1222 i = FnsToInstrument.begin() + N; 1223 e = FnsToInstrument.begin() + Count; 1224 } 1225 // Hopefully, nobody will try to indirectly call a vararg 1226 // function... yet. 1227 } else if (FT->isVarArg()) { 1228 UnwrappedFnMap[&F] = &F; 1229 *i = nullptr; 1230 } 1231 } 1232 1233 for (Function *i : FnsToInstrument) { 1234 if (!i || i->isDeclaration()) 1235 continue; 1236 1237 removeUnreachableBlocks(*i); 1238 1239 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 1240 1241 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1242 // Build a copy of the list before iterating over it. 1243 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 1244 1245 for (BasicBlock *i : BBList) { 1246 Instruction *Inst = &i->front(); 1247 while (true) { 1248 // DFSanVisitor may split the current basic block, changing the current 1249 // instruction's next pointer and moving the next instruction to the 1250 // tail block from which we should continue. 1251 Instruction *Next = Inst->getNextNode(); 1252 // DFSanVisitor may delete Inst, so keep track of whether it was a 1253 // terminator. 1254 bool IsTerminator = Inst->isTerminator(); 1255 if (!DFSF.SkipInsts.count(Inst)) 1256 DFSanVisitor(DFSF).visit(Inst); 1257 if (IsTerminator) 1258 break; 1259 Inst = Next; 1260 } 1261 } 1262 1263 // We will not necessarily be able to compute the shadow for every phi node 1264 // until we have visited every block. Therefore, the code that handles phi 1265 // nodes adds them to the PHIFixups list so that they can be properly 1266 // handled here. 1267 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1268 i = DFSF.PHIFixups.begin(), 1269 e = DFSF.PHIFixups.end(); 1270 i != e; ++i) { 1271 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1272 ++val) { 1273 i->second->setIncomingValue( 1274 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1275 } 1276 } 1277 1278 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1279 // places (i.e. instructions in basic blocks we haven't even begun visiting 1280 // yet). To make our life easier, do this work in a pass after the main 1281 // instrumentation. 1282 if (ClDebugNonzeroLabels) { 1283 for (Value *V : DFSF.NonZeroChecks) { 1284 Instruction *Pos; 1285 if (Instruction *I = dyn_cast<Instruction>(V)) 1286 Pos = I->getNextNode(); 1287 else 1288 Pos = &DFSF.F->getEntryBlock().front(); 1289 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1290 Pos = Pos->getNextNode(); 1291 IRBuilder<> IRB(Pos); 1292 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1293 Value *Ne = 1294 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1295 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1296 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1297 IRBuilder<> ThenIRB(BI); 1298 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1299 } 1300 } 1301 } 1302 1303 return Changed || !FnsToInstrument.empty() || 1304 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1305 } 1306 1307 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1308 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1309 if (ArgOffset) 1310 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1311 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1312 "_dfsarg"); 1313 } 1314 1315 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1316 return IRB.CreatePointerCast( 1317 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1318 } 1319 1320 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1321 unsigned ArgOffset = 0; 1322 const DataLayout &DL = F->getParent()->getDataLayout(); 1323 for (auto &FArg : F->args()) { 1324 if (!FArg.getType()->isSized()) { 1325 if (A == &FArg) 1326 break; 1327 continue; 1328 } 1329 1330 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1331 if (A != &FArg) { 1332 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1333 if (ArgOffset > kArgTLSSize) 1334 break; // ArgTLS overflows, uses a zero shadow. 1335 continue; 1336 } 1337 1338 if (ArgOffset + Size > kArgTLSSize) 1339 break; // ArgTLS overflows, uses a zero shadow. 1340 1341 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1342 IRBuilder<> IRB(ArgTLSPos); 1343 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1344 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1345 kShadowTLSAlignment); 1346 } 1347 1348 return DFS.getZeroShadow(A); 1349 } 1350 1351 Value *DFSanFunction::getShadow(Value *V) { 1352 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1353 return DFS.getZeroShadow(V); 1354 Value *&Shadow = ValShadowMap[V]; 1355 if (!Shadow) { 1356 if (Argument *A = dyn_cast<Argument>(V)) { 1357 if (IsNativeABI) 1358 return DFS.getZeroShadow(V); 1359 switch (IA) { 1360 case DataFlowSanitizer::IA_TLS: { 1361 Shadow = getShadowForTLSArgument(A); 1362 break; 1363 } 1364 case DataFlowSanitizer::IA_Args: { 1365 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1366 Function::arg_iterator i = F->arg_begin(); 1367 while (ArgIdx--) 1368 ++i; 1369 Shadow = &*i; 1370 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1371 break; 1372 } 1373 } 1374 NonZeroChecks.push_back(Shadow); 1375 } else { 1376 Shadow = DFS.getZeroShadow(V); 1377 } 1378 } 1379 return Shadow; 1380 } 1381 1382 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1383 assert(!ValShadowMap.count(I)); 1384 assert(DFS.shouldTrackFieldsAndIndices() || 1385 Shadow->getType() == DFS.PrimitiveShadowTy); 1386 ValShadowMap[I] = Shadow; 1387 } 1388 1389 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1390 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1391 IRBuilder<> IRB(Pos); 1392 Value *ShadowPtrMaskValue; 1393 if (DFSanRuntimeShadowMask) 1394 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1395 else 1396 ShadowPtrMaskValue = ShadowPtrMask; 1397 return IRB.CreateIntToPtr( 1398 IRB.CreateMul( 1399 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1400 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1401 ShadowPtrMul), 1402 PrimitiveShadowPtrTy); 1403 } 1404 1405 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1406 Instruction *Pos) { 1407 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1408 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1409 } 1410 1411 // Generates IR to compute the union of the two given shadows, inserting it 1412 // before Pos. The combined value is with primitive type. 1413 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1414 if (DFS.isZeroShadow(V1)) 1415 return collapseToPrimitiveShadow(V2, Pos); 1416 if (DFS.isZeroShadow(V2)) 1417 return collapseToPrimitiveShadow(V1, Pos); 1418 if (V1 == V2) 1419 return collapseToPrimitiveShadow(V1, Pos); 1420 1421 auto V1Elems = ShadowElements.find(V1); 1422 auto V2Elems = ShadowElements.find(V2); 1423 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1424 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1425 V2Elems->second.begin(), V2Elems->second.end())) { 1426 return collapseToPrimitiveShadow(V1, Pos); 1427 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1428 V1Elems->second.begin(), V1Elems->second.end())) { 1429 return collapseToPrimitiveShadow(V2, Pos); 1430 } 1431 } else if (V1Elems != ShadowElements.end()) { 1432 if (V1Elems->second.count(V2)) 1433 return collapseToPrimitiveShadow(V1, Pos); 1434 } else if (V2Elems != ShadowElements.end()) { 1435 if (V2Elems->second.count(V1)) 1436 return collapseToPrimitiveShadow(V2, Pos); 1437 } 1438 1439 auto Key = std::make_pair(V1, V2); 1440 if (V1 > V2) 1441 std::swap(Key.first, Key.second); 1442 CachedShadow &CCS = CachedShadows[Key]; 1443 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1444 return CCS.Shadow; 1445 1446 // Converts inputs shadows to shadows with primitive types. 1447 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1448 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1449 1450 IRBuilder<> IRB(Pos); 1451 if (ClFast16Labels) { 1452 CCS.Block = Pos->getParent(); 1453 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1454 } else if (AvoidNewBlocks) { 1455 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1456 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1457 Call->addParamAttr(0, Attribute::ZExt); 1458 Call->addParamAttr(1, Attribute::ZExt); 1459 1460 CCS.Block = Pos->getParent(); 1461 CCS.Shadow = Call; 1462 } else { 1463 BasicBlock *Head = Pos->getParent(); 1464 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1465 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1466 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1467 IRBuilder<> ThenIRB(BI); 1468 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1469 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1470 Call->addParamAttr(0, Attribute::ZExt); 1471 Call->addParamAttr(1, Attribute::ZExt); 1472 1473 BasicBlock *Tail = BI->getSuccessor(0); 1474 PHINode *Phi = 1475 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1476 Phi->addIncoming(Call, Call->getParent()); 1477 Phi->addIncoming(PV1, Head); 1478 1479 CCS.Block = Tail; 1480 CCS.Shadow = Phi; 1481 } 1482 1483 std::set<Value *> UnionElems; 1484 if (V1Elems != ShadowElements.end()) { 1485 UnionElems = V1Elems->second; 1486 } else { 1487 UnionElems.insert(V1); 1488 } 1489 if (V2Elems != ShadowElements.end()) { 1490 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1491 } else { 1492 UnionElems.insert(V2); 1493 } 1494 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1495 1496 return CCS.Shadow; 1497 } 1498 1499 // A convenience function which folds the shadows of each of the operands 1500 // of the provided instruction Inst, inserting the IR before Inst. Returns 1501 // the computed union Value. 1502 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1503 if (Inst->getNumOperands() == 0) 1504 return DFS.getZeroShadow(Inst); 1505 1506 Value *Shadow = getShadow(Inst->getOperand(0)); 1507 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1508 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1509 } 1510 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1511 } 1512 1513 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1514 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1515 DFSF.setShadow(&I, CombinedShadow); 1516 return CombinedShadow; 1517 } 1518 1519 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1520 // Addr has alignment Align, and take the union of each of those shadows. The 1521 // returned shadow always has primitive type. 1522 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1523 Instruction *Pos) { 1524 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1525 const auto i = AllocaShadowMap.find(AI); 1526 if (i != AllocaShadowMap.end()) { 1527 IRBuilder<> IRB(Pos); 1528 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1529 } 1530 } 1531 1532 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1533 SmallVector<const Value *, 2> Objs; 1534 getUnderlyingObjects(Addr, Objs); 1535 bool AllConstants = true; 1536 for (const Value *Obj : Objs) { 1537 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1538 continue; 1539 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1540 continue; 1541 1542 AllConstants = false; 1543 break; 1544 } 1545 if (AllConstants) 1546 return DFS.ZeroPrimitiveShadow; 1547 1548 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1549 switch (Size) { 1550 case 0: 1551 return DFS.ZeroPrimitiveShadow; 1552 case 1: { 1553 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1554 LI->setAlignment(ShadowAlign); 1555 return LI; 1556 } 1557 case 2: { 1558 IRBuilder<> IRB(Pos); 1559 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1560 ConstantInt::get(DFS.IntptrTy, 1)); 1561 return combineShadows( 1562 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1563 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1564 Pos); 1565 } 1566 } 1567 1568 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { 1569 // First OR all the WideShadows, then OR individual shadows within the 1570 // combined WideShadow. This is fewer instructions than ORing shadows 1571 // individually. 1572 IRBuilder<> IRB(Pos); 1573 Value *WideAddr = 1574 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1575 Value *CombinedWideShadow = 1576 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1577 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1578 Ofs += 64 / DFS.ShadowWidthBits) { 1579 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1580 ConstantInt::get(DFS.IntptrTy, 1)); 1581 Value *NextWideShadow = 1582 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1583 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1584 } 1585 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1586 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1587 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1588 } 1589 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1590 } 1591 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1592 // Fast path for the common case where each byte has identical shadow: load 1593 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1594 // shadow is non-equal. 1595 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1596 IRBuilder<> FallbackIRB(FallbackBB); 1597 CallInst *FallbackCall = FallbackIRB.CreateCall( 1598 DFS.DFSanUnionLoadFn, 1599 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1600 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1601 1602 // Compare each of the shadows stored in the loaded 64 bits to each other, 1603 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1604 IRBuilder<> IRB(Pos); 1605 Value *WideAddr = 1606 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1607 Value *WideShadow = 1608 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1609 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1610 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1611 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1612 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1613 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1614 1615 BasicBlock *Head = Pos->getParent(); 1616 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1617 1618 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1619 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1620 1621 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1622 for (auto Child : Children) 1623 DT.changeImmediateDominator(Child, NewNode); 1624 } 1625 1626 // In the following code LastBr will refer to the previous basic block's 1627 // conditional branch instruction, whose true successor is fixed up to point 1628 // to the next block during the loop below or to the tail after the final 1629 // iteration. 1630 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1631 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1632 DT.addNewBlock(FallbackBB, Head); 1633 1634 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1635 Ofs += 64 / DFS.ShadowWidthBits) { 1636 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1637 DT.addNewBlock(NextBB, LastBr->getParent()); 1638 IRBuilder<> NextIRB(NextBB); 1639 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1640 ConstantInt::get(DFS.IntptrTy, 1)); 1641 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1642 WideAddr, ShadowAlign); 1643 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1644 LastBr->setSuccessor(0, NextBB); 1645 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1646 } 1647 1648 LastBr->setSuccessor(0, Tail); 1649 FallbackIRB.CreateBr(Tail); 1650 PHINode *Shadow = 1651 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1652 Shadow->addIncoming(FallbackCall, FallbackBB); 1653 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1654 return Shadow; 1655 } 1656 1657 IRBuilder<> IRB(Pos); 1658 FunctionCallee &UnionLoadFn = 1659 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1660 CallInst *FallbackCall = IRB.CreateCall( 1661 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1662 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1663 return FallbackCall; 1664 } 1665 1666 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1667 auto &DL = LI.getModule()->getDataLayout(); 1668 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1669 if (Size == 0) { 1670 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 1671 return; 1672 } 1673 1674 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1675 Value *PrimitiveShadow = 1676 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1677 if (ClCombinePointerLabelsOnLoad) { 1678 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1679 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI); 1680 } 1681 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 1682 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 1683 1684 Value *Shadow = 1685 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI); 1686 DFSF.setShadow(&LI, Shadow); 1687 if (ClEventCallbacks) { 1688 IRBuilder<> IRB(&LI); 1689 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1690 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 1691 } 1692 } 1693 1694 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size, 1695 Align Alignment, 1696 Value *PrimitiveShadow, 1697 Instruction *Pos) { 1698 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1699 const auto i = AllocaShadowMap.find(AI); 1700 if (i != AllocaShadowMap.end()) { 1701 IRBuilder<> IRB(Pos); 1702 IRB.CreateStore(PrimitiveShadow, i->second); 1703 return; 1704 } 1705 } 1706 1707 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1708 IRBuilder<> IRB(Pos); 1709 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1710 if (DFS.isZeroShadow(PrimitiveShadow)) { 1711 IntegerType *ShadowTy = 1712 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1713 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1714 Value *ExtShadowAddr = 1715 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1716 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1717 return; 1718 } 1719 1720 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1721 uint64_t Offset = 0; 1722 if (Size >= ShadowVecSize) { 1723 auto *ShadowVecTy = 1724 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 1725 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1726 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1727 ShadowVec = IRB.CreateInsertElement( 1728 ShadowVec, PrimitiveShadow, 1729 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1730 } 1731 Value *ShadowVecAddr = 1732 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1733 do { 1734 Value *CurShadowVecAddr = 1735 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1736 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1737 Size -= ShadowVecSize; 1738 ++Offset; 1739 } while (Size >= ShadowVecSize); 1740 Offset *= ShadowVecSize; 1741 } 1742 while (Size > 0) { 1743 Value *CurShadowAddr = 1744 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 1745 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 1746 --Size; 1747 ++Offset; 1748 } 1749 } 1750 1751 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1752 auto &DL = SI.getModule()->getDataLayout(); 1753 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1754 if (Size == 0) 1755 return; 1756 1757 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1758 1759 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1760 Value *PrimitiveShadow; 1761 if (ClCombinePointerLabelsOnStore) { 1762 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1763 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1764 } else { 1765 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 1766 } 1767 DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment, 1768 PrimitiveShadow, &SI); 1769 if (ClEventCallbacks) { 1770 IRBuilder<> IRB(&SI); 1771 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1772 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 1773 } 1774 } 1775 1776 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1777 visitOperandShadowInst(UO); 1778 } 1779 1780 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1781 visitOperandShadowInst(BO); 1782 } 1783 1784 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1785 1786 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1787 Value *CombinedShadow = visitOperandShadowInst(CI); 1788 if (ClEventCallbacks) { 1789 IRBuilder<> IRB(&CI); 1790 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1791 } 1792 } 1793 1794 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1795 visitOperandShadowInst(GEPI); 1796 } 1797 1798 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1799 visitOperandShadowInst(I); 1800 } 1801 1802 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1803 visitOperandShadowInst(I); 1804 } 1805 1806 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1807 visitOperandShadowInst(I); 1808 } 1809 1810 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1811 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1812 visitOperandShadowInst(I); 1813 return; 1814 } 1815 1816 IRBuilder<> IRB(&I); 1817 Value *Agg = I.getAggregateOperand(); 1818 Value *AggShadow = DFSF.getShadow(Agg); 1819 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 1820 DFSF.setShadow(&I, ResShadow); 1821 } 1822 1823 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1824 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1825 visitOperandShadowInst(I); 1826 return; 1827 } 1828 1829 IRBuilder<> IRB(&I); 1830 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 1831 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 1832 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 1833 DFSF.setShadow(&I, Res); 1834 } 1835 1836 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1837 bool AllLoadsStores = true; 1838 for (User *U : I.users()) { 1839 if (isa<LoadInst>(U)) 1840 continue; 1841 1842 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1843 if (SI->getPointerOperand() == &I) 1844 continue; 1845 } 1846 1847 AllLoadsStores = false; 1848 break; 1849 } 1850 if (AllLoadsStores) { 1851 IRBuilder<> IRB(&I); 1852 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 1853 } 1854 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 1855 } 1856 1857 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1858 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1859 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1860 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1861 Value *ShadowSel = nullptr; 1862 1863 if (isa<VectorType>(I.getCondition()->getType())) { 1864 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 1865 FalseShadow, &I); 1866 } else { 1867 if (TrueShadow == FalseShadow) { 1868 ShadowSel = TrueShadow; 1869 } else { 1870 ShadowSel = 1871 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1872 } 1873 } 1874 DFSF.setShadow(&I, ClTrackSelectControlFlow 1875 ? DFSF.combineShadowsThenConvert( 1876 I.getType(), CondShadow, ShadowSel, &I) 1877 : ShadowSel); 1878 } 1879 1880 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1881 IRBuilder<> IRB(&I); 1882 Value *ValShadow = DFSF.getShadow(I.getValue()); 1883 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1884 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1885 *DFSF.DFS.Ctx)), 1886 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1887 } 1888 1889 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1890 IRBuilder<> IRB(&I); 1891 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1892 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1893 Value *LenShadow = 1894 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1895 DFSF.DFS.ShadowWidthBytes)); 1896 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1897 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1898 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1899 auto *MTI = cast<MemTransferInst>( 1900 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1901 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1902 if (ClPreserveAlignment) { 1903 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1904 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1905 } else { 1906 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1907 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1908 } 1909 if (ClEventCallbacks) { 1910 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1911 {RawDestShadow, I.getLength()}); 1912 } 1913 } 1914 1915 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1916 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1917 switch (DFSF.IA) { 1918 case DataFlowSanitizer::IA_TLS: { 1919 Value *S = DFSF.getShadow(RI.getReturnValue()); 1920 IRBuilder<> IRB(&RI); 1921 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1922 unsigned Size = 1923 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 1924 if (Size <= kRetvalTLSSize) { 1925 // If the size overflows, stores nothing. At callsite, oversized return 1926 // shadows are set to zero. 1927 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 1928 kShadowTLSAlignment); 1929 } 1930 break; 1931 } 1932 case DataFlowSanitizer::IA_Args: { 1933 IRBuilder<> IRB(&RI); 1934 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1935 Value *InsVal = 1936 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1937 Value *InsShadow = 1938 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1939 RI.setOperand(0, InsShadow); 1940 break; 1941 } 1942 } 1943 } 1944 } 1945 1946 void DFSanVisitor::visitCallBase(CallBase &CB) { 1947 Function *F = CB.getCalledFunction(); 1948 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1949 visitOperandShadowInst(CB); 1950 return; 1951 } 1952 1953 // Calls to this function are synthesized in wrappers, and we shouldn't 1954 // instrument them. 1955 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1956 return; 1957 1958 IRBuilder<> IRB(&CB); 1959 1960 DenseMap<Value *, Function *>::iterator i = 1961 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1962 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1963 Function *F = i->second; 1964 switch (DFSF.DFS.getWrapperKind(F)) { 1965 case DataFlowSanitizer::WK_Warning: 1966 CB.setCalledFunction(F); 1967 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1968 IRB.CreateGlobalStringPtr(F->getName())); 1969 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1970 return; 1971 case DataFlowSanitizer::WK_Discard: 1972 CB.setCalledFunction(F); 1973 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1974 return; 1975 case DataFlowSanitizer::WK_Functional: 1976 CB.setCalledFunction(F); 1977 visitOperandShadowInst(CB); 1978 return; 1979 case DataFlowSanitizer::WK_Custom: 1980 // Don't try to handle invokes of custom functions, it's too complicated. 1981 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1982 // wrapper. 1983 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1984 FunctionType *FT = F->getFunctionType(); 1985 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1986 std::string CustomFName = "__dfsw_"; 1987 CustomFName += F->getName(); 1988 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1989 CustomFName, CustomFn.TransformedType); 1990 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1991 CustomFn->copyAttributesFrom(F); 1992 1993 // Custom functions returning non-void will write to the return label. 1994 if (!FT->getReturnType()->isVoidTy()) { 1995 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1996 DFSF.DFS.ReadOnlyNoneAttrs); 1997 } 1998 } 1999 2000 std::vector<Value *> Args; 2001 2002 auto i = CB.arg_begin(); 2003 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 2004 Type *T = (*i)->getType(); 2005 FunctionType *ParamFT; 2006 if (isa<PointerType>(T) && 2007 (ParamFT = dyn_cast<FunctionType>( 2008 cast<PointerType>(T)->getElementType()))) { 2009 std::string TName = "dfst"; 2010 TName += utostr(FT->getNumParams() - n); 2011 TName += "$"; 2012 TName += F->getName(); 2013 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2014 Args.push_back(T); 2015 Args.push_back( 2016 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2017 } else { 2018 Args.push_back(*i); 2019 } 2020 } 2021 2022 i = CB.arg_begin(); 2023 const unsigned ShadowArgStart = Args.size(); 2024 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2025 Args.push_back( 2026 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB)); 2027 2028 if (FT->isVarArg()) { 2029 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2030 CB.arg_size() - FT->getNumParams()); 2031 auto *LabelVAAlloca = new AllocaInst( 2032 LabelVATy, getDataLayout().getAllocaAddrSpace(), 2033 "labelva", &DFSF.F->getEntryBlock().front()); 2034 2035 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 2036 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 2037 IRB.CreateStore( 2038 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB), 2039 LabelVAPtr); 2040 } 2041 2042 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2043 } 2044 2045 if (!FT->getReturnType()->isVoidTy()) { 2046 if (!DFSF.LabelReturnAlloca) { 2047 DFSF.LabelReturnAlloca = 2048 new AllocaInst(DFSF.DFS.PrimitiveShadowTy, 2049 getDataLayout().getAllocaAddrSpace(), 2050 "labelreturn", &DFSF.F->getEntryBlock().front()); 2051 } 2052 Args.push_back(DFSF.LabelReturnAlloca); 2053 } 2054 2055 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 2056 Args.push_back(*i); 2057 2058 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2059 CustomCI->setCallingConv(CI->getCallingConv()); 2060 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 2061 CI->getContext(), CI->getAttributes())); 2062 2063 // Update the parameter attributes of the custom call instruction to 2064 // zero extend the shadow parameters. This is required for targets 2065 // which consider PrimitiveShadowTy an illegal type. 2066 for (unsigned n = 0; n < FT->getNumParams(); n++) { 2067 const unsigned ArgNo = ShadowArgStart + n; 2068 if (CustomCI->getArgOperand(ArgNo)->getType() == 2069 DFSF.DFS.PrimitiveShadowTy) 2070 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2071 } 2072 2073 if (!FT->getReturnType()->isVoidTy()) { 2074 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, 2075 DFSF.LabelReturnAlloca); 2076 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2077 FT->getReturnType(), LabelLoad, &CB)); 2078 } 2079 2080 CI->replaceAllUsesWith(CustomCI); 2081 CI->eraseFromParent(); 2082 return; 2083 } 2084 break; 2085 } 2086 } 2087 2088 FunctionType *FT = CB.getFunctionType(); 2089 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2090 unsigned ArgOffset = 0; 2091 const DataLayout &DL = getDataLayout(); 2092 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2093 unsigned Size = 2094 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2095 // Stop storing if arguments' size overflows. Inside a function, arguments 2096 // after overflow have zero shadow values. 2097 if (ArgOffset + Size > kArgTLSSize) 2098 break; 2099 IRB.CreateAlignedStore( 2100 DFSF.getShadow(CB.getArgOperand(I)), 2101 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2102 kShadowTLSAlignment); 2103 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2104 } 2105 } 2106 2107 Instruction *Next = nullptr; 2108 if (!CB.getType()->isVoidTy()) { 2109 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2110 if (II->getNormalDest()->getSinglePredecessor()) { 2111 Next = &II->getNormalDest()->front(); 2112 } else { 2113 BasicBlock *NewBB = 2114 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2115 Next = &NewBB->front(); 2116 } 2117 } else { 2118 assert(CB.getIterator() != CB.getParent()->end()); 2119 Next = CB.getNextNode(); 2120 } 2121 2122 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2123 IRBuilder<> NextIRB(Next); 2124 const DataLayout &DL = getDataLayout(); 2125 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2126 if (Size > kRetvalTLSSize) { 2127 // Set overflowed return shadow to be zero. 2128 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2129 } else { 2130 LoadInst *LI = NextIRB.CreateAlignedLoad( 2131 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2132 kShadowTLSAlignment, "_dfsret"); 2133 DFSF.SkipInsts.insert(LI); 2134 DFSF.setShadow(&CB, LI); 2135 DFSF.NonZeroChecks.push_back(LI); 2136 } 2137 } 2138 } 2139 2140 // Do all instrumentation for IA_Args down here to defer tampering with the 2141 // CFG in a way that SplitEdge may be able to detect. 2142 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 2143 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 2144 Value *Func = 2145 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 2146 std::vector<Value *> Args; 2147 2148 auto i = CB.arg_begin(), E = CB.arg_end(); 2149 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2150 Args.push_back(*i); 2151 2152 i = CB.arg_begin(); 2153 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2154 Args.push_back(DFSF.getShadow(*i)); 2155 2156 if (FT->isVarArg()) { 2157 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 2158 ArrayType *VarArgArrayTy = 2159 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 2160 AllocaInst *VarArgShadow = 2161 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 2162 "", &DFSF.F->getEntryBlock().front()); 2163 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 2164 for (unsigned n = 0; i != E; ++i, ++n) { 2165 IRB.CreateStore( 2166 DFSF.getShadow(*i), 2167 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 2168 Args.push_back(*i); 2169 } 2170 } 2171 2172 CallBase *NewCB; 2173 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2174 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 2175 II->getUnwindDest(), Args); 2176 } else { 2177 NewCB = IRB.CreateCall(NewFT, Func, Args); 2178 } 2179 NewCB->setCallingConv(CB.getCallingConv()); 2180 NewCB->setAttributes(CB.getAttributes().removeAttributes( 2181 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 2182 AttributeFuncs::typeIncompatible(NewCB->getType()))); 2183 2184 if (Next) { 2185 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 2186 DFSF.SkipInsts.insert(ExVal); 2187 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 2188 DFSF.SkipInsts.insert(ExShadow); 2189 DFSF.setShadow(ExVal, ExShadow); 2190 DFSF.NonZeroChecks.push_back(ExShadow); 2191 2192 CB.replaceAllUsesWith(ExVal); 2193 } 2194 2195 CB.eraseFromParent(); 2196 } 2197 } 2198 2199 void DFSanVisitor::visitPHINode(PHINode &PN) { 2200 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2201 PHINode *ShadowPN = 2202 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2203 2204 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2205 Value *UndefShadow = UndefValue::get(ShadowTy); 2206 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 2207 ++i) { 2208 ShadowPN->addIncoming(UndefShadow, *i); 2209 } 2210 2211 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 2212 DFSF.setShadow(&PN, ShadowPN); 2213 } 2214 2215 namespace { 2216 class DataFlowSanitizerLegacyPass : public ModulePass { 2217 private: 2218 std::vector<std::string> ABIListFiles; 2219 2220 public: 2221 static char ID; 2222 2223 DataFlowSanitizerLegacyPass( 2224 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 2225 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 2226 2227 bool runOnModule(Module &M) override { 2228 return DataFlowSanitizer(ABIListFiles).runImpl(M); 2229 } 2230 }; 2231 } // namespace 2232 2233 char DataFlowSanitizerLegacyPass::ID; 2234 2235 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 2236 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 2237 2238 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 2239 const std::vector<std::string> &ABIListFiles) { 2240 return new DataFlowSanitizerLegacyPass(ABIListFiles); 2241 } 2242 2243 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 2244 ModuleAnalysisManager &AM) { 2245 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 2246 return PreservedAnalyses::none(); 2247 } 2248 return PreservedAnalyses::all(); 2249 } 2250