1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
12 /// analysis.
13 ///
14 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
15 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
16 /// analysis framework to be used by clients to help detect application-specific
17 /// issues within their own code.
18 ///
19 /// The analysis is based on automatic propagation of data flow labels (also
20 /// known as taint labels) through a program as it performs computation.  Each
21 /// byte of application memory is backed by two bytes of shadow memory which
22 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
23 ///
24 /// +--------------------+ 0x800000000000 (top of memory)
25 /// | application memory |
26 /// +--------------------+ 0x700000008000 (kAppAddr)
27 /// |                    |
28 /// |       unused       |
29 /// |                    |
30 /// +--------------------+ 0x200200000000 (kUnusedAddr)
31 /// |    union table     |
32 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
33 /// |   shadow memory    |
34 /// +--------------------+ 0x000000010000 (kShadowAddr)
35 /// | reserved by kernel |
36 /// +--------------------+ 0x000000000000
37 ///
38 /// To derive a shadow memory address from an application memory address,
39 /// bits 44-46 are cleared to bring the address into the range
40 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
41 /// account for the double byte representation of shadow labels and move the
42 /// address into the shadow memory range.  See the function
43 /// DataFlowSanitizer::getShadowAddress below.
44 ///
45 /// For more information, please refer to the design document:
46 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
52 #include "llvm/ADT/DepthFirstIterator.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Triple.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CallSite.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalValue.h"
72 #include "llvm/IR/GlobalVariable.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstVisitor.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/MDBuilder.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/SpecialCaseList.h"
91 #include "llvm/Transforms/Instrumentation.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstddef>
97 #include <cstdint>
98 #include <iterator>
99 #include <memory>
100 #include <set>
101 #include <string>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 
107 // External symbol to be used when generating the shadow address for
108 // architectures with multiple VMAs. Instead of using a constant integer
109 // the runtime will set the external mask based on the VMA range.
110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
111 
112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
113 // alignment requirements provided by the input IR are correct.  For example,
114 // if the input IR contains a load with alignment 8, this flag will cause
115 // the shadow load to have alignment 16.  This flag is disabled by default as
116 // we have unfortunately encountered too much code (including Clang itself;
117 // see PR14291) which performs misaligned access.
118 static cl::opt<bool> ClPreserveAlignment(
119     "dfsan-preserve-alignment",
120     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
121     cl::init(false));
122 
123 // The ABI list files control how shadow parameters are passed. The pass treats
124 // every function labelled "uninstrumented" in the ABI list file as conforming
125 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
126 // additional annotations for those functions, a call to one of those functions
127 // will produce a warning message, as the labelling behaviour of the function is
128 // unknown.  The other supported annotations are "functional" and "discard",
129 // which are described below under DataFlowSanitizer::WrapperKind.
130 static cl::list<std::string> ClABIListFiles(
131     "dfsan-abilist",
132     cl::desc("File listing native ABI functions and how the pass treats them"),
133     cl::Hidden);
134 
135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
136 // functions (see DataFlowSanitizer::InstrumentedABI below).
137 static cl::opt<bool> ClArgsABI(
138     "dfsan-args-abi",
139     cl::desc("Use the argument ABI rather than the TLS ABI"),
140     cl::Hidden);
141 
142 // Controls whether the pass includes or ignores the labels of pointers in load
143 // instructions.
144 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
145     "dfsan-combine-pointer-labels-on-load",
146     cl::desc("Combine the label of the pointer with the label of the data when "
147              "loading from memory."),
148     cl::Hidden, cl::init(true));
149 
150 // Controls whether the pass includes or ignores the labels of pointers in
151 // stores instructions.
152 static cl::opt<bool> ClCombinePointerLabelsOnStore(
153     "dfsan-combine-pointer-labels-on-store",
154     cl::desc("Combine the label of the pointer with the label of the data when "
155              "storing in memory."),
156     cl::Hidden, cl::init(false));
157 
158 static cl::opt<bool> ClDebugNonzeroLabels(
159     "dfsan-debug-nonzero-labels",
160     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
161              "load or return with a nonzero label"),
162     cl::Hidden);
163 
164 static StringRef GetGlobalTypeString(const GlobalValue &G) {
165   // Types of GlobalVariables are always pointer types.
166   Type *GType = G.getValueType();
167   // For now we support blacklisting struct types only.
168   if (StructType *SGType = dyn_cast<StructType>(GType)) {
169     if (!SGType->isLiteral())
170       return SGType->getName();
171   }
172   return "<unknown type>";
173 }
174 
175 namespace {
176 
177 class DFSanABIList {
178   std::unique_ptr<SpecialCaseList> SCL;
179 
180  public:
181   DFSanABIList() = default;
182 
183   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
184 
185   /// Returns whether either this function or its source file are listed in the
186   /// given category.
187   bool isIn(const Function &F, StringRef Category) const {
188     return isIn(*F.getParent(), Category) ||
189            SCL->inSection("dataflow", "fun", F.getName(), Category);
190   }
191 
192   /// Returns whether this global alias is listed in the given category.
193   ///
194   /// If GA aliases a function, the alias's name is matched as a function name
195   /// would be.  Similarly, aliases of globals are matched like globals.
196   bool isIn(const GlobalAlias &GA, StringRef Category) const {
197     if (isIn(*GA.getParent(), Category))
198       return true;
199 
200     if (isa<FunctionType>(GA.getValueType()))
201       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
202 
203     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
204            SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
205                           Category);
206   }
207 
208   /// Returns whether this module is listed in the given category.
209   bool isIn(const Module &M, StringRef Category) const {
210     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
211   }
212 };
213 
214 /// TransformedFunction is used to express the result of transforming one
215 /// function type into another.  This struct is immutable.  It holds metadata
216 /// useful for updating calls of the old function to the new type.
217 struct TransformedFunction {
218   TransformedFunction(FunctionType* OriginalType,
219                       FunctionType* TransformedType,
220                       std::vector<unsigned> ArgumentIndexMapping)
221       : OriginalType(OriginalType),
222         TransformedType(TransformedType),
223         ArgumentIndexMapping(ArgumentIndexMapping) {}
224 
225   // Disallow copies.
226   TransformedFunction(const TransformedFunction&) = delete;
227   TransformedFunction& operator=(const TransformedFunction&) = delete;
228 
229   // Allow moves.
230   TransformedFunction(TransformedFunction&&) = default;
231   TransformedFunction& operator=(TransformedFunction&&) = default;
232 
233   /// Type of the function before the transformation.
234   FunctionType* const OriginalType;
235 
236   /// Type of the function after the transformation.
237   FunctionType* const TransformedType;
238 
239   /// Transforming a function may change the position of arguments.  This
240   /// member records the mapping from each argument's old position to its new
241   /// position.  Argument positions are zero-indexed.  If the transformation
242   /// from F to F' made the first argument of F into the third argument of F',
243   /// then ArgumentIndexMapping[0] will equal 2.
244   const std::vector<unsigned> ArgumentIndexMapping;
245 };
246 
247 /// Given function attributes from a call site for the original function,
248 /// return function attributes appropriate for a call to the transformed
249 /// function.
250 AttributeList TransformFunctionAttributes(
251     const TransformedFunction& TransformedFunction,
252     LLVMContext& Ctx, AttributeList CallSiteAttrs) {
253 
254   // Construct a vector of AttributeSet for each function argument.
255   std::vector<llvm::AttributeSet> ArgumentAttributes(
256       TransformedFunction.TransformedType->getNumParams());
257 
258   // Copy attributes from the parameter of the original function to the
259   // transformed version.  'ArgumentIndexMapping' holds the mapping from
260   // old argument position to new.
261   for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
262        i < ie; ++i) {
263     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
264     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
265   }
266 
267   // Copy annotations on varargs arguments.
268   for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
269        ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
270     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
271   }
272 
273   return AttributeList::get(
274       Ctx,
275       CallSiteAttrs.getFnAttributes(),
276       CallSiteAttrs.getRetAttributes(),
277       llvm::makeArrayRef(ArgumentAttributes));
278 }
279 
280 class DataFlowSanitizer : public ModulePass {
281   friend struct DFSanFunction;
282   friend class DFSanVisitor;
283 
284   enum {
285     ShadowWidth = 16
286   };
287 
288   /// Which ABI should be used for instrumented functions?
289   enum InstrumentedABI {
290     /// Argument and return value labels are passed through additional
291     /// arguments and by modifying the return type.
292     IA_Args,
293 
294     /// Argument and return value labels are passed through TLS variables
295     /// __dfsan_arg_tls and __dfsan_retval_tls.
296     IA_TLS
297   };
298 
299   /// How should calls to uninstrumented functions be handled?
300   enum WrapperKind {
301     /// This function is present in an uninstrumented form but we don't know
302     /// how it should be handled.  Print a warning and call the function anyway.
303     /// Don't label the return value.
304     WK_Warning,
305 
306     /// This function does not write to (user-accessible) memory, and its return
307     /// value is unlabelled.
308     WK_Discard,
309 
310     /// This function does not write to (user-accessible) memory, and the label
311     /// of its return value is the union of the label of its arguments.
312     WK_Functional,
313 
314     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
315     /// where F is the name of the function.  This function may wrap the
316     /// original function or provide its own implementation.  This is similar to
317     /// the IA_Args ABI, except that IA_Args uses a struct return type to
318     /// pass the return value shadow in a register, while WK_Custom uses an
319     /// extra pointer argument to return the shadow.  This allows the wrapped
320     /// form of the function type to be expressed in C.
321     WK_Custom
322   };
323 
324   Module *Mod;
325   LLVMContext *Ctx;
326   IntegerType *ShadowTy;
327   PointerType *ShadowPtrTy;
328   IntegerType *IntptrTy;
329   ConstantInt *ZeroShadow;
330   ConstantInt *ShadowPtrMask;
331   ConstantInt *ShadowPtrMul;
332   Constant *ArgTLS;
333   Constant *RetvalTLS;
334   void *(*GetArgTLSPtr)();
335   void *(*GetRetvalTLSPtr)();
336   Constant *GetArgTLS;
337   Constant *GetRetvalTLS;
338   Constant *ExternalShadowMask;
339   FunctionType *DFSanUnionFnTy;
340   FunctionType *DFSanUnionLoadFnTy;
341   FunctionType *DFSanUnimplementedFnTy;
342   FunctionType *DFSanSetLabelFnTy;
343   FunctionType *DFSanNonzeroLabelFnTy;
344   FunctionType *DFSanVarargWrapperFnTy;
345   Constant *DFSanUnionFn;
346   Constant *DFSanCheckedUnionFn;
347   Constant *DFSanUnionLoadFn;
348   Constant *DFSanUnimplementedFn;
349   Constant *DFSanSetLabelFn;
350   Constant *DFSanNonzeroLabelFn;
351   Constant *DFSanVarargWrapperFn;
352   MDNode *ColdCallWeights;
353   DFSanABIList ABIList;
354   DenseMap<Value *, Function *> UnwrappedFnMap;
355   AttrBuilder ReadOnlyNoneAttrs;
356   bool DFSanRuntimeShadowMask = false;
357 
358   Value *getShadowAddress(Value *Addr, Instruction *Pos);
359   bool isInstrumented(const Function *F);
360   bool isInstrumented(const GlobalAlias *GA);
361   FunctionType *getArgsFunctionType(FunctionType *T);
362   FunctionType *getTrampolineFunctionType(FunctionType *T);
363   TransformedFunction getCustomFunctionType(FunctionType *T);
364   InstrumentedABI getInstrumentedABI();
365   WrapperKind getWrapperKind(Function *F);
366   void addGlobalNamePrefix(GlobalValue *GV);
367   Function *buildWrapperFunction(Function *F, StringRef NewFName,
368                                  GlobalValue::LinkageTypes NewFLink,
369                                  FunctionType *NewFT);
370   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
371 
372 public:
373   static char ID;
374 
375   DataFlowSanitizer(
376       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
377       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
378 
379   bool doInitialization(Module &M) override;
380   bool runOnModule(Module &M) override;
381 };
382 
383 struct DFSanFunction {
384   DataFlowSanitizer &DFS;
385   Function *F;
386   DominatorTree DT;
387   DataFlowSanitizer::InstrumentedABI IA;
388   bool IsNativeABI;
389   Value *ArgTLSPtr = nullptr;
390   Value *RetvalTLSPtr = nullptr;
391   AllocaInst *LabelReturnAlloca = nullptr;
392   DenseMap<Value *, Value *> ValShadowMap;
393   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
394   std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
395   DenseSet<Instruction *> SkipInsts;
396   std::vector<Value *> NonZeroChecks;
397   bool AvoidNewBlocks;
398 
399   struct CachedCombinedShadow {
400     BasicBlock *Block;
401     Value *Shadow;
402   };
403   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
404       CachedCombinedShadows;
405   DenseMap<Value *, std::set<Value *>> ShadowElements;
406 
407   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
408       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
409     DT.recalculate(*F);
410     // FIXME: Need to track down the register allocator issue which causes poor
411     // performance in pathological cases with large numbers of basic blocks.
412     AvoidNewBlocks = F->size() > 1000;
413   }
414 
415   Value *getArgTLSPtr();
416   Value *getArgTLS(unsigned Index, Instruction *Pos);
417   Value *getRetvalTLS();
418   Value *getShadow(Value *V);
419   void setShadow(Instruction *I, Value *Shadow);
420   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
421   Value *combineOperandShadows(Instruction *Inst);
422   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
423                     Instruction *Pos);
424   void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
425                    Instruction *Pos);
426 };
427 
428 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
429 public:
430   DFSanFunction &DFSF;
431 
432   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
433 
434   const DataLayout &getDataLayout() const {
435     return DFSF.F->getParent()->getDataLayout();
436   }
437 
438   void visitOperandShadowInst(Instruction &I);
439   void visitBinaryOperator(BinaryOperator &BO);
440   void visitCastInst(CastInst &CI);
441   void visitCmpInst(CmpInst &CI);
442   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
443   void visitLoadInst(LoadInst &LI);
444   void visitStoreInst(StoreInst &SI);
445   void visitReturnInst(ReturnInst &RI);
446   void visitCallSite(CallSite CS);
447   void visitPHINode(PHINode &PN);
448   void visitExtractElementInst(ExtractElementInst &I);
449   void visitInsertElementInst(InsertElementInst &I);
450   void visitShuffleVectorInst(ShuffleVectorInst &I);
451   void visitExtractValueInst(ExtractValueInst &I);
452   void visitInsertValueInst(InsertValueInst &I);
453   void visitAllocaInst(AllocaInst &I);
454   void visitSelectInst(SelectInst &I);
455   void visitMemSetInst(MemSetInst &I);
456   void visitMemTransferInst(MemTransferInst &I);
457 };
458 
459 } // end anonymous namespace
460 
461 char DataFlowSanitizer::ID;
462 
463 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
464                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
465 
466 ModulePass *
467 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
468                                   void *(*getArgTLS)(),
469                                   void *(*getRetValTLS)()) {
470   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
471 }
472 
473 DataFlowSanitizer::DataFlowSanitizer(
474     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
475     void *(*getRetValTLS)())
476     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
477   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
478   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
479                          ClABIListFiles.end());
480   ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
481 }
482 
483 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
484   SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
485   ArgTypes.append(T->getNumParams(), ShadowTy);
486   if (T->isVarArg())
487     ArgTypes.push_back(ShadowPtrTy);
488   Type *RetType = T->getReturnType();
489   if (!RetType->isVoidTy())
490     RetType = StructType::get(RetType, ShadowTy);
491   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
492 }
493 
494 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
495   assert(!T->isVarArg());
496   SmallVector<Type *, 4> ArgTypes;
497   ArgTypes.push_back(T->getPointerTo());
498   ArgTypes.append(T->param_begin(), T->param_end());
499   ArgTypes.append(T->getNumParams(), ShadowTy);
500   Type *RetType = T->getReturnType();
501   if (!RetType->isVoidTy())
502     ArgTypes.push_back(ShadowPtrTy);
503   return FunctionType::get(T->getReturnType(), ArgTypes, false);
504 }
505 
506 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
507   SmallVector<Type *, 4> ArgTypes;
508 
509   // Some parameters of the custom function being constructed are
510   // parameters of T.  Record the mapping from parameters of T to
511   // parameters of the custom function, so that parameter attributes
512   // at call sites can be updated.
513   std::vector<unsigned> ArgumentIndexMapping;
514   for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
515     Type* param_type = T->getParamType(i);
516     FunctionType *FT;
517     if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
518             cast<PointerType>(param_type)->getElementType()))) {
519       ArgumentIndexMapping.push_back(ArgTypes.size());
520       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
521       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
522     } else {
523       ArgumentIndexMapping.push_back(ArgTypes.size());
524       ArgTypes.push_back(param_type);
525     }
526   }
527   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
528     ArgTypes.push_back(ShadowTy);
529   if (T->isVarArg())
530     ArgTypes.push_back(ShadowPtrTy);
531   Type *RetType = T->getReturnType();
532   if (!RetType->isVoidTy())
533     ArgTypes.push_back(ShadowPtrTy);
534   return TransformedFunction(
535       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
536       ArgumentIndexMapping);
537 }
538 
539 bool DataFlowSanitizer::doInitialization(Module &M) {
540   Triple TargetTriple(M.getTargetTriple());
541   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
542   bool IsMIPS64 = TargetTriple.getArch() == Triple::mips64 ||
543                   TargetTriple.getArch() == Triple::mips64el;
544   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
545                    TargetTriple.getArch() == Triple::aarch64_be;
546 
547   const DataLayout &DL = M.getDataLayout();
548 
549   Mod = &M;
550   Ctx = &M.getContext();
551   ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
552   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
553   IntptrTy = DL.getIntPtrType(*Ctx);
554   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
555   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
556   if (IsX86_64)
557     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
558   else if (IsMIPS64)
559     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
560   // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
561   else if (IsAArch64)
562     DFSanRuntimeShadowMask = true;
563   else
564     report_fatal_error("unsupported triple");
565 
566   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
567   DFSanUnionFnTy =
568       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
569   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
570   DFSanUnionLoadFnTy =
571       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
572   DFSanUnimplementedFnTy = FunctionType::get(
573       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
574   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
575   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
576                                         DFSanSetLabelArgs, /*isVarArg=*/false);
577   DFSanNonzeroLabelFnTy = FunctionType::get(
578       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
579   DFSanVarargWrapperFnTy = FunctionType::get(
580       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
581 
582   if (GetArgTLSPtr) {
583     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
584     ArgTLS = nullptr;
585     GetArgTLS = ConstantExpr::getIntToPtr(
586         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
587         PointerType::getUnqual(
588             FunctionType::get(PointerType::getUnqual(ArgTLSTy), false)));
589   }
590   if (GetRetvalTLSPtr) {
591     RetvalTLS = nullptr;
592     GetRetvalTLS = ConstantExpr::getIntToPtr(
593         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
594         PointerType::getUnqual(
595             FunctionType::get(PointerType::getUnqual(ShadowTy), false)));
596   }
597 
598   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
599   return true;
600 }
601 
602 bool DataFlowSanitizer::isInstrumented(const Function *F) {
603   return !ABIList.isIn(*F, "uninstrumented");
604 }
605 
606 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
607   return !ABIList.isIn(*GA, "uninstrumented");
608 }
609 
610 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
611   return ClArgsABI ? IA_Args : IA_TLS;
612 }
613 
614 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
615   if (ABIList.isIn(*F, "functional"))
616     return WK_Functional;
617   if (ABIList.isIn(*F, "discard"))
618     return WK_Discard;
619   if (ABIList.isIn(*F, "custom"))
620     return WK_Custom;
621 
622   return WK_Warning;
623 }
624 
625 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
626   std::string GVName = GV->getName(), Prefix = "dfs$";
627   GV->setName(Prefix + GVName);
628 
629   // Try to change the name of the function in module inline asm.  We only do
630   // this for specific asm directives, currently only ".symver", to try to avoid
631   // corrupting asm which happens to contain the symbol name as a substring.
632   // Note that the substitution for .symver assumes that the versioned symbol
633   // also has an instrumented name.
634   std::string Asm = GV->getParent()->getModuleInlineAsm();
635   std::string SearchStr = ".symver " + GVName + ",";
636   size_t Pos = Asm.find(SearchStr);
637   if (Pos != std::string::npos) {
638     Asm.replace(Pos, SearchStr.size(),
639                 ".symver " + Prefix + GVName + "," + Prefix);
640     GV->getParent()->setModuleInlineAsm(Asm);
641   }
642 }
643 
644 Function *
645 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
646                                         GlobalValue::LinkageTypes NewFLink,
647                                         FunctionType *NewFT) {
648   FunctionType *FT = F->getFunctionType();
649   Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
650                                     F->getParent());
651   NewF->copyAttributesFrom(F);
652   NewF->removeAttributes(
653       AttributeList::ReturnIndex,
654       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
655 
656   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
657   if (F->isVarArg()) {
658     NewF->removeAttributes(AttributeList::FunctionIndex,
659                            AttrBuilder().addAttribute("split-stack"));
660     CallInst::Create(DFSanVarargWrapperFn,
661                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
662                      BB);
663     new UnreachableInst(*Ctx, BB);
664   } else {
665     std::vector<Value *> Args;
666     unsigned n = FT->getNumParams();
667     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
668       Args.push_back(&*ai);
669     CallInst *CI = CallInst::Create(F, Args, "", BB);
670     if (FT->getReturnType()->isVoidTy())
671       ReturnInst::Create(*Ctx, BB);
672     else
673       ReturnInst::Create(*Ctx, CI, BB);
674   }
675 
676   return NewF;
677 }
678 
679 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
680                                                           StringRef FName) {
681   FunctionType *FTT = getTrampolineFunctionType(FT);
682   Constant *C = Mod->getOrInsertFunction(FName, FTT);
683   Function *F = dyn_cast<Function>(C);
684   if (F && F->isDeclaration()) {
685     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
686     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
687     std::vector<Value *> Args;
688     Function::arg_iterator AI = F->arg_begin(); ++AI;
689     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
690       Args.push_back(&*AI);
691     CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB);
692     ReturnInst *RI;
693     if (FT->getReturnType()->isVoidTy())
694       RI = ReturnInst::Create(*Ctx, BB);
695     else
696       RI = ReturnInst::Create(*Ctx, CI, BB);
697 
698     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
699     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
700     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
701       DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
702     DFSanVisitor(DFSF).visitCallInst(*CI);
703     if (!FT->getReturnType()->isVoidTy())
704       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
705                     &*std::prev(F->arg_end()), RI);
706   }
707 
708   return C;
709 }
710 
711 bool DataFlowSanitizer::runOnModule(Module &M) {
712   if (ABIList.isIn(M, "skip"))
713     return false;
714 
715   if (!GetArgTLSPtr) {
716     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
717     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
718     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
719       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
720   }
721   if (!GetRetvalTLSPtr) {
722     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
723     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
724       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
725   }
726 
727   ExternalShadowMask =
728       Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
729 
730   DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
731   if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
732     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
733     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
734     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
735     F->addParamAttr(0, Attribute::ZExt);
736     F->addParamAttr(1, Attribute::ZExt);
737   }
738   DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
739   if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
740     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
741     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
742     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
743     F->addParamAttr(0, Attribute::ZExt);
744     F->addParamAttr(1, Attribute::ZExt);
745   }
746   DFSanUnionLoadFn =
747       Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
748   if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
749     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
750     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
751     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
752   }
753   DFSanUnimplementedFn =
754       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
755   DFSanSetLabelFn =
756       Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
757   if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
758     F->addParamAttr(0, Attribute::ZExt);
759   }
760   DFSanNonzeroLabelFn =
761       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
762   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
763                                                   DFSanVarargWrapperFnTy);
764 
765   std::vector<Function *> FnsToInstrument;
766   SmallPtrSet<Function *, 2> FnsWithNativeABI;
767   for (Function &i : M) {
768     if (!i.isIntrinsic() &&
769         &i != DFSanUnionFn &&
770         &i != DFSanCheckedUnionFn &&
771         &i != DFSanUnionLoadFn &&
772         &i != DFSanUnimplementedFn &&
773         &i != DFSanSetLabelFn &&
774         &i != DFSanNonzeroLabelFn &&
775         &i != DFSanVarargWrapperFn)
776       FnsToInstrument.push_back(&i);
777   }
778 
779   // Give function aliases prefixes when necessary, and build wrappers where the
780   // instrumentedness is inconsistent.
781   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
782     GlobalAlias *GA = &*i;
783     ++i;
784     // Don't stop on weak.  We assume people aren't playing games with the
785     // instrumentedness of overridden weak aliases.
786     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
787       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
788       if (GAInst && FInst) {
789         addGlobalNamePrefix(GA);
790       } else if (GAInst != FInst) {
791         // Non-instrumented alias of an instrumented function, or vice versa.
792         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
793         // below will take care of instrumenting it.
794         Function *NewF =
795             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
796         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
797         NewF->takeName(GA);
798         GA->eraseFromParent();
799         FnsToInstrument.push_back(NewF);
800       }
801     }
802   }
803 
804   ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
805       .addAttribute(Attribute::ReadNone);
806 
807   // First, change the ABI of every function in the module.  ABI-listed
808   // functions keep their original ABI and get a wrapper function.
809   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
810                                          e = FnsToInstrument.end();
811        i != e; ++i) {
812     Function &F = **i;
813     FunctionType *FT = F.getFunctionType();
814 
815     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
816                               FT->getReturnType()->isVoidTy());
817 
818     if (isInstrumented(&F)) {
819       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
820       // easily identify cases of mismatching ABIs.
821       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
822         FunctionType *NewFT = getArgsFunctionType(FT);
823         Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
824         NewF->copyAttributesFrom(&F);
825         NewF->removeAttributes(
826             AttributeList::ReturnIndex,
827             AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
828         for (Function::arg_iterator FArg = F.arg_begin(),
829                                     NewFArg = NewF->arg_begin(),
830                                     FArgEnd = F.arg_end();
831              FArg != FArgEnd; ++FArg, ++NewFArg) {
832           FArg->replaceAllUsesWith(&*NewFArg);
833         }
834         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
835 
836         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
837              UI != UE;) {
838           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
839           ++UI;
840           if (BA) {
841             BA->replaceAllUsesWith(
842                 BlockAddress::get(NewF, BA->getBasicBlock()));
843             delete BA;
844           }
845         }
846         F.replaceAllUsesWith(
847             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
848         NewF->takeName(&F);
849         F.eraseFromParent();
850         *i = NewF;
851         addGlobalNamePrefix(NewF);
852       } else {
853         addGlobalNamePrefix(&F);
854       }
855     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
856       // Build a wrapper function for F.  The wrapper simply calls F, and is
857       // added to FnsToInstrument so that any instrumentation according to its
858       // WrapperKind is done in the second pass below.
859       FunctionType *NewFT = getInstrumentedABI() == IA_Args
860                                 ? getArgsFunctionType(FT)
861                                 : FT;
862       Function *NewF = buildWrapperFunction(
863           &F, std::string("dfsw$") + std::string(F.getName()),
864           GlobalValue::LinkOnceODRLinkage, NewFT);
865       if (getInstrumentedABI() == IA_TLS)
866         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
867 
868       Value *WrappedFnCst =
869           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
870       F.replaceAllUsesWith(WrappedFnCst);
871 
872       UnwrappedFnMap[WrappedFnCst] = &F;
873       *i = NewF;
874 
875       if (!F.isDeclaration()) {
876         // This function is probably defining an interposition of an
877         // uninstrumented function and hence needs to keep the original ABI.
878         // But any functions it may call need to use the instrumented ABI, so
879         // we instrument it in a mode which preserves the original ABI.
880         FnsWithNativeABI.insert(&F);
881 
882         // This code needs to rebuild the iterators, as they may be invalidated
883         // by the push_back, taking care that the new range does not include
884         // any functions added by this code.
885         size_t N = i - FnsToInstrument.begin(),
886                Count = e - FnsToInstrument.begin();
887         FnsToInstrument.push_back(&F);
888         i = FnsToInstrument.begin() + N;
889         e = FnsToInstrument.begin() + Count;
890       }
891                // Hopefully, nobody will try to indirectly call a vararg
892                // function... yet.
893     } else if (FT->isVarArg()) {
894       UnwrappedFnMap[&F] = &F;
895       *i = nullptr;
896     }
897   }
898 
899   for (Function *i : FnsToInstrument) {
900     if (!i || i->isDeclaration())
901       continue;
902 
903     removeUnreachableBlocks(*i);
904 
905     DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
906 
907     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
908     // Build a copy of the list before iterating over it.
909     SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
910 
911     for (BasicBlock *i : BBList) {
912       Instruction *Inst = &i->front();
913       while (true) {
914         // DFSanVisitor may split the current basic block, changing the current
915         // instruction's next pointer and moving the next instruction to the
916         // tail block from which we should continue.
917         Instruction *Next = Inst->getNextNode();
918         // DFSanVisitor may delete Inst, so keep track of whether it was a
919         // terminator.
920         bool IsTerminator = isa<TerminatorInst>(Inst);
921         if (!DFSF.SkipInsts.count(Inst))
922           DFSanVisitor(DFSF).visit(Inst);
923         if (IsTerminator)
924           break;
925         Inst = Next;
926       }
927     }
928 
929     // We will not necessarily be able to compute the shadow for every phi node
930     // until we have visited every block.  Therefore, the code that handles phi
931     // nodes adds them to the PHIFixups list so that they can be properly
932     // handled here.
933     for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
934              i = DFSF.PHIFixups.begin(),
935              e = DFSF.PHIFixups.end();
936          i != e; ++i) {
937       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
938            ++val) {
939         i->second->setIncomingValue(
940             val, DFSF.getShadow(i->first->getIncomingValue(val)));
941       }
942     }
943 
944     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
945     // places (i.e. instructions in basic blocks we haven't even begun visiting
946     // yet).  To make our life easier, do this work in a pass after the main
947     // instrumentation.
948     if (ClDebugNonzeroLabels) {
949       for (Value *V : DFSF.NonZeroChecks) {
950         Instruction *Pos;
951         if (Instruction *I = dyn_cast<Instruction>(V))
952           Pos = I->getNextNode();
953         else
954           Pos = &DFSF.F->getEntryBlock().front();
955         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
956           Pos = Pos->getNextNode();
957         IRBuilder<> IRB(Pos);
958         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
959         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
960             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
961         IRBuilder<> ThenIRB(BI);
962         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
963       }
964     }
965   }
966 
967   return false;
968 }
969 
970 Value *DFSanFunction::getArgTLSPtr() {
971   if (ArgTLSPtr)
972     return ArgTLSPtr;
973   if (DFS.ArgTLS)
974     return ArgTLSPtr = DFS.ArgTLS;
975 
976   IRBuilder<> IRB(&F->getEntryBlock().front());
977   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
978 }
979 
980 Value *DFSanFunction::getRetvalTLS() {
981   if (RetvalTLSPtr)
982     return RetvalTLSPtr;
983   if (DFS.RetvalTLS)
984     return RetvalTLSPtr = DFS.RetvalTLS;
985 
986   IRBuilder<> IRB(&F->getEntryBlock().front());
987   return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
988 }
989 
990 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
991   IRBuilder<> IRB(Pos);
992   return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
993 }
994 
995 Value *DFSanFunction::getShadow(Value *V) {
996   if (!isa<Argument>(V) && !isa<Instruction>(V))
997     return DFS.ZeroShadow;
998   Value *&Shadow = ValShadowMap[V];
999   if (!Shadow) {
1000     if (Argument *A = dyn_cast<Argument>(V)) {
1001       if (IsNativeABI)
1002         return DFS.ZeroShadow;
1003       switch (IA) {
1004       case DataFlowSanitizer::IA_TLS: {
1005         Value *ArgTLSPtr = getArgTLSPtr();
1006         Instruction *ArgTLSPos =
1007             DFS.ArgTLS ? &*F->getEntryBlock().begin()
1008                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
1009         IRBuilder<> IRB(ArgTLSPos);
1010         Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
1011         break;
1012       }
1013       case DataFlowSanitizer::IA_Args: {
1014         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1015         Function::arg_iterator i = F->arg_begin();
1016         while (ArgIdx--)
1017           ++i;
1018         Shadow = &*i;
1019         assert(Shadow->getType() == DFS.ShadowTy);
1020         break;
1021       }
1022       }
1023       NonZeroChecks.push_back(Shadow);
1024     } else {
1025       Shadow = DFS.ZeroShadow;
1026     }
1027   }
1028   return Shadow;
1029 }
1030 
1031 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1032   assert(!ValShadowMap.count(I));
1033   assert(Shadow->getType() == DFS.ShadowTy);
1034   ValShadowMap[I] = Shadow;
1035 }
1036 
1037 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1038   assert(Addr != RetvalTLS && "Reinstrumenting?");
1039   IRBuilder<> IRB(Pos);
1040   Value *ShadowPtrMaskValue;
1041   if (DFSanRuntimeShadowMask)
1042     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1043   else
1044     ShadowPtrMaskValue = ShadowPtrMask;
1045   return IRB.CreateIntToPtr(
1046       IRB.CreateMul(
1047           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1048                         IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1049           ShadowPtrMul),
1050       ShadowPtrTy);
1051 }
1052 
1053 // Generates IR to compute the union of the two given shadows, inserting it
1054 // before Pos.  Returns the computed union Value.
1055 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1056   if (V1 == DFS.ZeroShadow)
1057     return V2;
1058   if (V2 == DFS.ZeroShadow)
1059     return V1;
1060   if (V1 == V2)
1061     return V1;
1062 
1063   auto V1Elems = ShadowElements.find(V1);
1064   auto V2Elems = ShadowElements.find(V2);
1065   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1066     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1067                       V2Elems->second.begin(), V2Elems->second.end())) {
1068       return V1;
1069     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1070                              V1Elems->second.begin(), V1Elems->second.end())) {
1071       return V2;
1072     }
1073   } else if (V1Elems != ShadowElements.end()) {
1074     if (V1Elems->second.count(V2))
1075       return V1;
1076   } else if (V2Elems != ShadowElements.end()) {
1077     if (V2Elems->second.count(V1))
1078       return V2;
1079   }
1080 
1081   auto Key = std::make_pair(V1, V2);
1082   if (V1 > V2)
1083     std::swap(Key.first, Key.second);
1084   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
1085   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1086     return CCS.Shadow;
1087 
1088   IRBuilder<> IRB(Pos);
1089   if (AvoidNewBlocks) {
1090     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
1091     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1092     Call->addParamAttr(0, Attribute::ZExt);
1093     Call->addParamAttr(1, Attribute::ZExt);
1094 
1095     CCS.Block = Pos->getParent();
1096     CCS.Shadow = Call;
1097   } else {
1098     BasicBlock *Head = Pos->getParent();
1099     Value *Ne = IRB.CreateICmpNE(V1, V2);
1100     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1101         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1102     IRBuilder<> ThenIRB(BI);
1103     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1104     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1105     Call->addParamAttr(0, Attribute::ZExt);
1106     Call->addParamAttr(1, Attribute::ZExt);
1107 
1108     BasicBlock *Tail = BI->getSuccessor(0);
1109     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1110     Phi->addIncoming(Call, Call->getParent());
1111     Phi->addIncoming(V1, Head);
1112 
1113     CCS.Block = Tail;
1114     CCS.Shadow = Phi;
1115   }
1116 
1117   std::set<Value *> UnionElems;
1118   if (V1Elems != ShadowElements.end()) {
1119     UnionElems = V1Elems->second;
1120   } else {
1121     UnionElems.insert(V1);
1122   }
1123   if (V2Elems != ShadowElements.end()) {
1124     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1125   } else {
1126     UnionElems.insert(V2);
1127   }
1128   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1129 
1130   return CCS.Shadow;
1131 }
1132 
1133 // A convenience function which folds the shadows of each of the operands
1134 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1135 // the computed union Value.
1136 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1137   if (Inst->getNumOperands() == 0)
1138     return DFS.ZeroShadow;
1139 
1140   Value *Shadow = getShadow(Inst->getOperand(0));
1141   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1142     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1143   }
1144   return Shadow;
1145 }
1146 
1147 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1148   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1149   DFSF.setShadow(&I, CombinedShadow);
1150 }
1151 
1152 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1153 // Addr has alignment Align, and take the union of each of those shadows.
1154 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1155                                  Instruction *Pos) {
1156   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1157     const auto i = AllocaShadowMap.find(AI);
1158     if (i != AllocaShadowMap.end()) {
1159       IRBuilder<> IRB(Pos);
1160       return IRB.CreateLoad(i->second);
1161     }
1162   }
1163 
1164   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1165   SmallVector<Value *, 2> Objs;
1166   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1167   bool AllConstants = true;
1168   for (Value *Obj : Objs) {
1169     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1170       continue;
1171     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1172       continue;
1173 
1174     AllConstants = false;
1175     break;
1176   }
1177   if (AllConstants)
1178     return DFS.ZeroShadow;
1179 
1180   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1181   switch (Size) {
1182   case 0:
1183     return DFS.ZeroShadow;
1184   case 1: {
1185     LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1186     LI->setAlignment(ShadowAlign);
1187     return LI;
1188   }
1189   case 2: {
1190     IRBuilder<> IRB(Pos);
1191     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1192                                        ConstantInt::get(DFS.IntptrTy, 1));
1193     return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1194                           IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1195   }
1196   }
1197   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1198     // Fast path for the common case where each byte has identical shadow: load
1199     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1200     // shadow is non-equal.
1201     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1202     IRBuilder<> FallbackIRB(FallbackBB);
1203     CallInst *FallbackCall = FallbackIRB.CreateCall(
1204         DFS.DFSanUnionLoadFn,
1205         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1206     FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1207 
1208     // Compare each of the shadows stored in the loaded 64 bits to each other,
1209     // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1210     IRBuilder<> IRB(Pos);
1211     Value *WideAddr =
1212         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1213     Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1214     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1215     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1216     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1217     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1218     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1219 
1220     BasicBlock *Head = Pos->getParent();
1221     BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1222 
1223     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1224       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1225 
1226       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1227       for (auto Child : Children)
1228         DT.changeImmediateDominator(Child, NewNode);
1229     }
1230 
1231     // In the following code LastBr will refer to the previous basic block's
1232     // conditional branch instruction, whose true successor is fixed up to point
1233     // to the next block during the loop below or to the tail after the final
1234     // iteration.
1235     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1236     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1237     DT.addNewBlock(FallbackBB, Head);
1238 
1239     for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1240          Ofs += 64 / DFS.ShadowWidth) {
1241       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1242       DT.addNewBlock(NextBB, LastBr->getParent());
1243       IRBuilder<> NextIRB(NextBB);
1244       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1245                                    ConstantInt::get(DFS.IntptrTy, 1));
1246       Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1247       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1248       LastBr->setSuccessor(0, NextBB);
1249       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1250     }
1251 
1252     LastBr->setSuccessor(0, Tail);
1253     FallbackIRB.CreateBr(Tail);
1254     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1255     Shadow->addIncoming(FallbackCall, FallbackBB);
1256     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1257     return Shadow;
1258   }
1259 
1260   IRBuilder<> IRB(Pos);
1261   CallInst *FallbackCall = IRB.CreateCall(
1262       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1263   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1264   return FallbackCall;
1265 }
1266 
1267 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1268   auto &DL = LI.getModule()->getDataLayout();
1269   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1270   if (Size == 0) {
1271     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1272     return;
1273   }
1274 
1275   uint64_t Align;
1276   if (ClPreserveAlignment) {
1277     Align = LI.getAlignment();
1278     if (Align == 0)
1279       Align = DL.getABITypeAlignment(LI.getType());
1280   } else {
1281     Align = 1;
1282   }
1283   IRBuilder<> IRB(&LI);
1284   Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1285   if (ClCombinePointerLabelsOnLoad) {
1286     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1287     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1288   }
1289   if (Shadow != DFSF.DFS.ZeroShadow)
1290     DFSF.NonZeroChecks.push_back(Shadow);
1291 
1292   DFSF.setShadow(&LI, Shadow);
1293 }
1294 
1295 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1296                                 Value *Shadow, Instruction *Pos) {
1297   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1298     const auto i = AllocaShadowMap.find(AI);
1299     if (i != AllocaShadowMap.end()) {
1300       IRBuilder<> IRB(Pos);
1301       IRB.CreateStore(Shadow, i->second);
1302       return;
1303     }
1304   }
1305 
1306   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1307   IRBuilder<> IRB(Pos);
1308   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1309   if (Shadow == DFS.ZeroShadow) {
1310     IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1311     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1312     Value *ExtShadowAddr =
1313         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1314     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1315     return;
1316   }
1317 
1318   const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1319   uint64_t Offset = 0;
1320   if (Size >= ShadowVecSize) {
1321     VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1322     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1323     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1324       ShadowVec = IRB.CreateInsertElement(
1325           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1326     }
1327     Value *ShadowVecAddr =
1328         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1329     do {
1330       Value *CurShadowVecAddr =
1331           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1332       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1333       Size -= ShadowVecSize;
1334       ++Offset;
1335     } while (Size >= ShadowVecSize);
1336     Offset *= ShadowVecSize;
1337   }
1338   while (Size > 0) {
1339     Value *CurShadowAddr =
1340         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1341     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1342     --Size;
1343     ++Offset;
1344   }
1345 }
1346 
1347 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1348   auto &DL = SI.getModule()->getDataLayout();
1349   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1350   if (Size == 0)
1351     return;
1352 
1353   uint64_t Align;
1354   if (ClPreserveAlignment) {
1355     Align = SI.getAlignment();
1356     if (Align == 0)
1357       Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1358   } else {
1359     Align = 1;
1360   }
1361 
1362   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1363   if (ClCombinePointerLabelsOnStore) {
1364     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1365     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1366   }
1367   DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1368 }
1369 
1370 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1371   visitOperandShadowInst(BO);
1372 }
1373 
1374 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1375 
1376 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1377 
1378 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1379   visitOperandShadowInst(GEPI);
1380 }
1381 
1382 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1383   visitOperandShadowInst(I);
1384 }
1385 
1386 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1387   visitOperandShadowInst(I);
1388 }
1389 
1390 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1391   visitOperandShadowInst(I);
1392 }
1393 
1394 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1395   visitOperandShadowInst(I);
1396 }
1397 
1398 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1399   visitOperandShadowInst(I);
1400 }
1401 
1402 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1403   bool AllLoadsStores = true;
1404   for (User *U : I.users()) {
1405     if (isa<LoadInst>(U))
1406       continue;
1407 
1408     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1409       if (SI->getPointerOperand() == &I)
1410         continue;
1411     }
1412 
1413     AllLoadsStores = false;
1414     break;
1415   }
1416   if (AllLoadsStores) {
1417     IRBuilder<> IRB(&I);
1418     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1419   }
1420   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1421 }
1422 
1423 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1424   Value *CondShadow = DFSF.getShadow(I.getCondition());
1425   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1426   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1427 
1428   if (isa<VectorType>(I.getCondition()->getType())) {
1429     DFSF.setShadow(
1430         &I,
1431         DFSF.combineShadows(
1432             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1433   } else {
1434     Value *ShadowSel;
1435     if (TrueShadow == FalseShadow) {
1436       ShadowSel = TrueShadow;
1437     } else {
1438       ShadowSel =
1439           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1440     }
1441     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1442   }
1443 }
1444 
1445 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1446   IRBuilder<> IRB(&I);
1447   Value *ValShadow = DFSF.getShadow(I.getValue());
1448   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1449                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1450                                                                 *DFSF.DFS.Ctx)),
1451                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1452 }
1453 
1454 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1455   IRBuilder<> IRB(&I);
1456   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1457   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1458   Value *LenShadow = IRB.CreateMul(
1459       I.getLength(),
1460       ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1461   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1462   DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1463   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1464   auto *MTI = cast<MemTransferInst>(
1465       IRB.CreateCall(I.getCalledValue(),
1466                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1467   if (ClPreserveAlignment) {
1468     MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
1469     MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
1470   } else {
1471     MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
1472     MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
1473   }
1474 }
1475 
1476 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1477   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1478     switch (DFSF.IA) {
1479     case DataFlowSanitizer::IA_TLS: {
1480       Value *S = DFSF.getShadow(RI.getReturnValue());
1481       IRBuilder<> IRB(&RI);
1482       IRB.CreateStore(S, DFSF.getRetvalTLS());
1483       break;
1484     }
1485     case DataFlowSanitizer::IA_Args: {
1486       IRBuilder<> IRB(&RI);
1487       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1488       Value *InsVal =
1489           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1490       Value *InsShadow =
1491           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1492       RI.setOperand(0, InsShadow);
1493       break;
1494     }
1495     }
1496   }
1497 }
1498 
1499 void DFSanVisitor::visitCallSite(CallSite CS) {
1500   Function *F = CS.getCalledFunction();
1501   if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1502     visitOperandShadowInst(*CS.getInstruction());
1503     return;
1504   }
1505 
1506   // Calls to this function are synthesized in wrappers, and we shouldn't
1507   // instrument them.
1508   if (F == DFSF.DFS.DFSanVarargWrapperFn)
1509     return;
1510 
1511   IRBuilder<> IRB(CS.getInstruction());
1512 
1513   DenseMap<Value *, Function *>::iterator i =
1514       DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1515   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1516     Function *F = i->second;
1517     switch (DFSF.DFS.getWrapperKind(F)) {
1518     case DataFlowSanitizer::WK_Warning:
1519       CS.setCalledFunction(F);
1520       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1521                      IRB.CreateGlobalStringPtr(F->getName()));
1522       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1523       return;
1524     case DataFlowSanitizer::WK_Discard:
1525       CS.setCalledFunction(F);
1526       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1527       return;
1528     case DataFlowSanitizer::WK_Functional:
1529       CS.setCalledFunction(F);
1530       visitOperandShadowInst(*CS.getInstruction());
1531       return;
1532     case DataFlowSanitizer::WK_Custom:
1533       // Don't try to handle invokes of custom functions, it's too complicated.
1534       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1535       // wrapper.
1536       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1537         FunctionType *FT = F->getFunctionType();
1538         TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1539         std::string CustomFName = "__dfsw_";
1540         CustomFName += F->getName();
1541         Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1542             CustomFName, CustomFn.TransformedType);
1543         if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1544           CustomFn->copyAttributesFrom(F);
1545 
1546           // Custom functions returning non-void will write to the return label.
1547           if (!FT->getReturnType()->isVoidTy()) {
1548             CustomFn->removeAttributes(AttributeList::FunctionIndex,
1549                                        DFSF.DFS.ReadOnlyNoneAttrs);
1550           }
1551         }
1552 
1553         std::vector<Value *> Args;
1554 
1555         CallSite::arg_iterator i = CS.arg_begin();
1556         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1557           Type *T = (*i)->getType();
1558           FunctionType *ParamFT;
1559           if (isa<PointerType>(T) &&
1560               (ParamFT = dyn_cast<FunctionType>(
1561                    cast<PointerType>(T)->getElementType()))) {
1562             std::string TName = "dfst";
1563             TName += utostr(FT->getNumParams() - n);
1564             TName += "$";
1565             TName += F->getName();
1566             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1567             Args.push_back(T);
1568             Args.push_back(
1569                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1570           } else {
1571             Args.push_back(*i);
1572           }
1573         }
1574 
1575         i = CS.arg_begin();
1576         const unsigned ShadowArgStart = Args.size();
1577         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1578           Args.push_back(DFSF.getShadow(*i));
1579 
1580         if (FT->isVarArg()) {
1581           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1582                                            CS.arg_size() - FT->getNumParams());
1583           auto *LabelVAAlloca = new AllocaInst(
1584               LabelVATy, getDataLayout().getAllocaAddrSpace(),
1585               "labelva", &DFSF.F->getEntryBlock().front());
1586 
1587           for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1588             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1589             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1590           }
1591 
1592           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1593         }
1594 
1595         if (!FT->getReturnType()->isVoidTy()) {
1596           if (!DFSF.LabelReturnAlloca) {
1597             DFSF.LabelReturnAlloca =
1598               new AllocaInst(DFSF.DFS.ShadowTy,
1599                              getDataLayout().getAllocaAddrSpace(),
1600                              "labelreturn", &DFSF.F->getEntryBlock().front());
1601           }
1602           Args.push_back(DFSF.LabelReturnAlloca);
1603         }
1604 
1605         for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1606           Args.push_back(*i);
1607 
1608         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1609         CustomCI->setCallingConv(CI->getCallingConv());
1610         CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
1611             CI->getContext(), CI->getAttributes()));
1612 
1613         // Update the parameter attributes of the custom call instruction to
1614         // zero extend the shadow parameters. This is required for targets
1615         // which consider ShadowTy an illegal type.
1616         for (unsigned n = 0; n < FT->getNumParams(); n++) {
1617           const unsigned ArgNo = ShadowArgStart + n;
1618           if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
1619             CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
1620         }
1621 
1622         if (!FT->getReturnType()->isVoidTy()) {
1623           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1624           DFSF.setShadow(CustomCI, LabelLoad);
1625         }
1626 
1627         CI->replaceAllUsesWith(CustomCI);
1628         CI->eraseFromParent();
1629         return;
1630       }
1631       break;
1632     }
1633   }
1634 
1635   FunctionType *FT = cast<FunctionType>(
1636       CS.getCalledValue()->getType()->getPointerElementType());
1637   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1638     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1639       IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1640                       DFSF.getArgTLS(i, CS.getInstruction()));
1641     }
1642   }
1643 
1644   Instruction *Next = nullptr;
1645   if (!CS.getType()->isVoidTy()) {
1646     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1647       if (II->getNormalDest()->getSinglePredecessor()) {
1648         Next = &II->getNormalDest()->front();
1649       } else {
1650         BasicBlock *NewBB =
1651             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1652         Next = &NewBB->front();
1653       }
1654     } else {
1655       assert(CS->getIterator() != CS->getParent()->end());
1656       Next = CS->getNextNode();
1657     }
1658 
1659     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1660       IRBuilder<> NextIRB(Next);
1661       LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1662       DFSF.SkipInsts.insert(LI);
1663       DFSF.setShadow(CS.getInstruction(), LI);
1664       DFSF.NonZeroChecks.push_back(LI);
1665     }
1666   }
1667 
1668   // Do all instrumentation for IA_Args down here to defer tampering with the
1669   // CFG in a way that SplitEdge may be able to detect.
1670   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1671     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1672     Value *Func =
1673         IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1674     std::vector<Value *> Args;
1675 
1676     CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1677     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1678       Args.push_back(*i);
1679 
1680     i = CS.arg_begin();
1681     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1682       Args.push_back(DFSF.getShadow(*i));
1683 
1684     if (FT->isVarArg()) {
1685       unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1686       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1687       AllocaInst *VarArgShadow =
1688         new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1689                        "", &DFSF.F->getEntryBlock().front());
1690       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1691       for (unsigned n = 0; i != e; ++i, ++n) {
1692         IRB.CreateStore(
1693             DFSF.getShadow(*i),
1694             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1695         Args.push_back(*i);
1696       }
1697     }
1698 
1699     CallSite NewCS;
1700     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1701       NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1702                                Args);
1703     } else {
1704       NewCS = IRB.CreateCall(Func, Args);
1705     }
1706     NewCS.setCallingConv(CS.getCallingConv());
1707     NewCS.setAttributes(CS.getAttributes().removeAttributes(
1708         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1709         AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
1710 
1711     if (Next) {
1712       ExtractValueInst *ExVal =
1713           ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1714       DFSF.SkipInsts.insert(ExVal);
1715       ExtractValueInst *ExShadow =
1716           ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1717       DFSF.SkipInsts.insert(ExShadow);
1718       DFSF.setShadow(ExVal, ExShadow);
1719       DFSF.NonZeroChecks.push_back(ExShadow);
1720 
1721       CS.getInstruction()->replaceAllUsesWith(ExVal);
1722     }
1723 
1724     CS.getInstruction()->eraseFromParent();
1725   }
1726 }
1727 
1728 void DFSanVisitor::visitPHINode(PHINode &PN) {
1729   PHINode *ShadowPN =
1730       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1731 
1732   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1733   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1734   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1735        ++i) {
1736     ShadowPN->addIncoming(UndefShadow, *i);
1737   }
1738 
1739   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1740   DFSF.setShadow(&PN, ShadowPN);
1741 }
1742