1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallVector.h" 69 #include "llvm/ADT/StringRef.h" 70 #include "llvm/ADT/Triple.h" 71 #include "llvm/ADT/iterator.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/Argument.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/BasicBlock.h" 76 #include "llvm/IR/Constant.h" 77 #include "llvm/IR/Constants.h" 78 #include "llvm/IR/DataLayout.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GlobalAlias.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/GlobalVariable.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstVisitor.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/MDBuilder.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/User.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/Support/Alignment.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/SpecialCaseList.h" 104 #include "llvm/Support/VirtualFileSystem.h" 105 #include "llvm/Transforms/Instrumentation.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstddef> 111 #include <cstdint> 112 #include <memory> 113 #include <set> 114 #include <string> 115 #include <utility> 116 #include <vector> 117 118 using namespace llvm; 119 120 // This must be consistent with ShadowWidthBits. 121 static const Align ShadowTLSAlignment = Align(2); 122 123 static const Align MinOriginAlignment = Align(4); 124 125 // The size of TLS variables. These constants must be kept in sync with the ones 126 // in dfsan.cpp. 127 static const unsigned ArgTLSSize = 800; 128 static const unsigned RetvalTLSSize = 800; 129 130 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 131 // alignment requirements provided by the input IR are correct. For example, 132 // if the input IR contains a load with alignment 8, this flag will cause 133 // the shadow load to have alignment 16. This flag is disabled by default as 134 // we have unfortunately encountered too much code (including Clang itself; 135 // see PR14291) which performs misaligned access. 136 static cl::opt<bool> ClPreserveAlignment( 137 "dfsan-preserve-alignment", 138 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 139 cl::init(false)); 140 141 // The ABI list files control how shadow parameters are passed. The pass treats 142 // every function labelled "uninstrumented" in the ABI list file as conforming 143 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 144 // additional annotations for those functions, a call to one of those functions 145 // will produce a warning message, as the labelling behaviour of the function is 146 // unknown. The other supported annotations for uninstrumented functions are 147 // "functional" and "discard", which are described below under 148 // DataFlowSanitizer::WrapperKind. 149 // Functions will often be labelled with both "uninstrumented" and one of 150 // "functional" or "discard". This will leave the function unchanged by this 151 // pass, and create a wrapper function that will call the original. 152 // 153 // Instrumented functions can also be annotated as "force_zero_labels", which 154 // will make all shadow and return values set zero labels. 155 // Functions should never be labelled with both "force_zero_labels" and 156 // "uninstrumented" or any of the unistrumented wrapper kinds. 157 static cl::list<std::string> ClABIListFiles( 158 "dfsan-abilist", 159 cl::desc("File listing native ABI functions and how the pass treats them"), 160 cl::Hidden); 161 162 // Controls whether the pass includes or ignores the labels of pointers in load 163 // instructions. 164 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 165 "dfsan-combine-pointer-labels-on-load", 166 cl::desc("Combine the label of the pointer with the label of the data when " 167 "loading from memory."), 168 cl::Hidden, cl::init(true)); 169 170 // Controls whether the pass includes or ignores the labels of pointers in 171 // stores instructions. 172 static cl::opt<bool> ClCombinePointerLabelsOnStore( 173 "dfsan-combine-pointer-labels-on-store", 174 cl::desc("Combine the label of the pointer with the label of the data when " 175 "storing in memory."), 176 cl::Hidden, cl::init(false)); 177 178 // Controls whether the pass propagates labels of offsets in GEP instructions. 179 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 180 "dfsan-combine-offset-labels-on-gep", 181 cl::desc( 182 "Combine the label of the offset with the label of the pointer when " 183 "doing pointer arithmetic."), 184 cl::Hidden, cl::init(true)); 185 186 static cl::opt<bool> ClDebugNonzeroLabels( 187 "dfsan-debug-nonzero-labels", 188 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 189 "load or return with a nonzero label"), 190 cl::Hidden); 191 192 // Experimental feature that inserts callbacks for certain data events. 193 // Currently callbacks are only inserted for loads, stores, memory transfers 194 // (i.e. memcpy and memmove), and comparisons. 195 // 196 // If this flag is set to true, the user must provide definitions for the 197 // following callback functions: 198 // void __dfsan_load_callback(dfsan_label Label, void* addr); 199 // void __dfsan_store_callback(dfsan_label Label, void* addr); 200 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 201 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 202 static cl::opt<bool> ClEventCallbacks( 203 "dfsan-event-callbacks", 204 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 205 cl::Hidden, cl::init(false)); 206 207 // Experimental feature that inserts callbacks for conditionals, including: 208 // conditional branch, switch, select. 209 // This must be true for dfsan_set_conditional_callback() to have effect. 210 static cl::opt<bool> ClConditionalCallbacks( 211 "dfsan-conditional-callbacks", 212 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 213 cl::init(false)); 214 215 // Controls whether the pass tracks the control flow of select instructions. 216 static cl::opt<bool> ClTrackSelectControlFlow( 217 "dfsan-track-select-control-flow", 218 cl::desc("Propagate labels from condition values of select instructions " 219 "to results."), 220 cl::Hidden, cl::init(true)); 221 222 // TODO: This default value follows MSan. DFSan may use a different value. 223 static cl::opt<int> ClInstrumentWithCallThreshold( 224 "dfsan-instrument-with-call-threshold", 225 cl::desc("If the function being instrumented requires more than " 226 "this number of origin stores, use callbacks instead of " 227 "inline checks (-1 means never use callbacks)."), 228 cl::Hidden, cl::init(3500)); 229 230 // Controls how to track origins. 231 // * 0: do not track origins. 232 // * 1: track origins at memory store operations. 233 // * 2: track origins at memory load and store operations. 234 // TODO: track callsites. 235 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 236 cl::desc("Track origins of labels"), 237 cl::Hidden, cl::init(0)); 238 239 static cl::opt<bool> ClIgnorePersonalityRoutine( 240 "dfsan-ignore-personality-routine", 241 cl::desc("If a personality routine is marked uninstrumented from the ABI " 242 "list, do not create a wrapper for it."), 243 cl::Hidden, cl::init(false)); 244 245 static StringRef getGlobalTypeString(const GlobalValue &G) { 246 // Types of GlobalVariables are always pointer types. 247 Type *GType = G.getValueType(); 248 // For now we support excluding struct types only. 249 if (StructType *SGType = dyn_cast<StructType>(GType)) { 250 if (!SGType->isLiteral()) 251 return SGType->getName(); 252 } 253 return "<unknown type>"; 254 } 255 256 namespace { 257 258 // Memory map parameters used in application-to-shadow address calculation. 259 // Offset = (Addr & ~AndMask) ^ XorMask 260 // Shadow = ShadowBase + Offset 261 // Origin = (OriginBase + Offset) & ~3ULL 262 struct MemoryMapParams { 263 uint64_t AndMask; 264 uint64_t XorMask; 265 uint64_t ShadowBase; 266 uint64_t OriginBase; 267 }; 268 269 } // end anonymous namespace 270 271 // x86_64 Linux 272 // NOLINTNEXTLINE(readability-identifier-naming) 273 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 274 0, // AndMask (not used) 275 0x500000000000, // XorMask 276 0, // ShadowBase (not used) 277 0x100000000000, // OriginBase 278 }; 279 280 namespace { 281 282 class DFSanABIList { 283 std::unique_ptr<SpecialCaseList> SCL; 284 285 public: 286 DFSanABIList() = default; 287 288 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 289 290 /// Returns whether either this function or its source file are listed in the 291 /// given category. 292 bool isIn(const Function &F, StringRef Category) const { 293 return isIn(*F.getParent(), Category) || 294 SCL->inSection("dataflow", "fun", F.getName(), Category); 295 } 296 297 /// Returns whether this global alias is listed in the given category. 298 /// 299 /// If GA aliases a function, the alias's name is matched as a function name 300 /// would be. Similarly, aliases of globals are matched like globals. 301 bool isIn(const GlobalAlias &GA, StringRef Category) const { 302 if (isIn(*GA.getParent(), Category)) 303 return true; 304 305 if (isa<FunctionType>(GA.getValueType())) 306 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 307 308 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 309 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 310 Category); 311 } 312 313 /// Returns whether this module is listed in the given category. 314 bool isIn(const Module &M, StringRef Category) const { 315 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 316 } 317 }; 318 319 /// TransformedFunction is used to express the result of transforming one 320 /// function type into another. This struct is immutable. It holds metadata 321 /// useful for updating calls of the old function to the new type. 322 struct TransformedFunction { 323 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 324 std::vector<unsigned> ArgumentIndexMapping) 325 : OriginalType(OriginalType), TransformedType(TransformedType), 326 ArgumentIndexMapping(ArgumentIndexMapping) {} 327 328 // Disallow copies. 329 TransformedFunction(const TransformedFunction &) = delete; 330 TransformedFunction &operator=(const TransformedFunction &) = delete; 331 332 // Allow moves. 333 TransformedFunction(TransformedFunction &&) = default; 334 TransformedFunction &operator=(TransformedFunction &&) = default; 335 336 /// Type of the function before the transformation. 337 FunctionType *OriginalType; 338 339 /// Type of the function after the transformation. 340 FunctionType *TransformedType; 341 342 /// Transforming a function may change the position of arguments. This 343 /// member records the mapping from each argument's old position to its new 344 /// position. Argument positions are zero-indexed. If the transformation 345 /// from F to F' made the first argument of F into the third argument of F', 346 /// then ArgumentIndexMapping[0] will equal 2. 347 std::vector<unsigned> ArgumentIndexMapping; 348 }; 349 350 /// Given function attributes from a call site for the original function, 351 /// return function attributes appropriate for a call to the transformed 352 /// function. 353 AttributeList 354 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 355 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 356 357 // Construct a vector of AttributeSet for each function argument. 358 std::vector<llvm::AttributeSet> ArgumentAttributes( 359 TransformedFunction.TransformedType->getNumParams()); 360 361 // Copy attributes from the parameter of the original function to the 362 // transformed version. 'ArgumentIndexMapping' holds the mapping from 363 // old argument position to new. 364 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 365 I < IE; ++I) { 366 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 367 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 368 } 369 370 // Copy annotations on varargs arguments. 371 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 372 IE = CallSiteAttrs.getNumAttrSets(); 373 I < IE; ++I) { 374 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 375 } 376 377 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 378 CallSiteAttrs.getRetAttrs(), 379 llvm::makeArrayRef(ArgumentAttributes)); 380 } 381 382 class DataFlowSanitizer { 383 friend struct DFSanFunction; 384 friend class DFSanVisitor; 385 386 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 387 388 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 389 390 /// How should calls to uninstrumented functions be handled? 391 enum WrapperKind { 392 /// This function is present in an uninstrumented form but we don't know 393 /// how it should be handled. Print a warning and call the function anyway. 394 /// Don't label the return value. 395 WK_Warning, 396 397 /// This function does not write to (user-accessible) memory, and its return 398 /// value is unlabelled. 399 WK_Discard, 400 401 /// This function does not write to (user-accessible) memory, and the label 402 /// of its return value is the union of the label of its arguments. 403 WK_Functional, 404 405 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 406 /// where F is the name of the function. This function may wrap the 407 /// original function or provide its own implementation. WK_Custom uses an 408 /// extra pointer argument to return the shadow. This allows the wrapped 409 /// form of the function type to be expressed in C. 410 WK_Custom 411 }; 412 413 Module *Mod; 414 LLVMContext *Ctx; 415 Type *Int8Ptr; 416 IntegerType *OriginTy; 417 PointerType *OriginPtrTy; 418 ConstantInt *ZeroOrigin; 419 /// The shadow type for all primitive types and vector types. 420 IntegerType *PrimitiveShadowTy; 421 PointerType *PrimitiveShadowPtrTy; 422 IntegerType *IntptrTy; 423 ConstantInt *ZeroPrimitiveShadow; 424 Constant *ArgTLS; 425 ArrayType *ArgOriginTLSTy; 426 Constant *ArgOriginTLS; 427 Constant *RetvalTLS; 428 Constant *RetvalOriginTLS; 429 FunctionType *DFSanUnionLoadFnTy; 430 FunctionType *DFSanLoadLabelAndOriginFnTy; 431 FunctionType *DFSanUnimplementedFnTy; 432 FunctionType *DFSanSetLabelFnTy; 433 FunctionType *DFSanNonzeroLabelFnTy; 434 FunctionType *DFSanVarargWrapperFnTy; 435 FunctionType *DFSanConditionalCallbackFnTy; 436 FunctionType *DFSanConditionalCallbackOriginFnTy; 437 FunctionType *DFSanCmpCallbackFnTy; 438 FunctionType *DFSanLoadStoreCallbackFnTy; 439 FunctionType *DFSanMemTransferCallbackFnTy; 440 FunctionType *DFSanChainOriginFnTy; 441 FunctionType *DFSanChainOriginIfTaintedFnTy; 442 FunctionType *DFSanMemOriginTransferFnTy; 443 FunctionType *DFSanMaybeStoreOriginFnTy; 444 FunctionCallee DFSanUnionLoadFn; 445 FunctionCallee DFSanLoadLabelAndOriginFn; 446 FunctionCallee DFSanUnimplementedFn; 447 FunctionCallee DFSanSetLabelFn; 448 FunctionCallee DFSanNonzeroLabelFn; 449 FunctionCallee DFSanVarargWrapperFn; 450 FunctionCallee DFSanLoadCallbackFn; 451 FunctionCallee DFSanStoreCallbackFn; 452 FunctionCallee DFSanMemTransferCallbackFn; 453 FunctionCallee DFSanConditionalCallbackFn; 454 FunctionCallee DFSanConditionalCallbackOriginFn; 455 FunctionCallee DFSanCmpCallbackFn; 456 FunctionCallee DFSanChainOriginFn; 457 FunctionCallee DFSanChainOriginIfTaintedFn; 458 FunctionCallee DFSanMemOriginTransferFn; 459 FunctionCallee DFSanMaybeStoreOriginFn; 460 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 461 MDNode *ColdCallWeights; 462 MDNode *OriginStoreWeights; 463 DFSanABIList ABIList; 464 DenseMap<Value *, Function *> UnwrappedFnMap; 465 AttributeMask ReadOnlyNoneAttrs; 466 467 /// Memory map parameters used in calculation mapping application addresses 468 /// to shadow addresses and origin addresses. 469 const MemoryMapParams *MapParams; 470 471 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 472 Value *getShadowAddress(Value *Addr, Instruction *Pos); 473 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 474 std::pair<Value *, Value *> 475 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 476 bool isInstrumented(const Function *F); 477 bool isInstrumented(const GlobalAlias *GA); 478 bool isForceZeroLabels(const Function *F); 479 TransformedFunction getCustomFunctionType(FunctionType *T); 480 WrapperKind getWrapperKind(Function *F); 481 void addGlobalNameSuffix(GlobalValue *GV); 482 Function *buildWrapperFunction(Function *F, StringRef NewFName, 483 GlobalValue::LinkageTypes NewFLink, 484 FunctionType *NewFT); 485 void initializeCallbackFunctions(Module &M); 486 void initializeRuntimeFunctions(Module &M); 487 void injectMetadataGlobals(Module &M); 488 bool initializeModule(Module &M); 489 490 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 491 /// from it. Returns the origin's loaded value. 492 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 493 Value **OriginAddr); 494 495 /// Returns whether the given load byte size is amenable to inlined 496 /// optimization patterns. 497 bool hasLoadSizeForFastPath(uint64_t Size); 498 499 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 500 bool shouldTrackOrigins(); 501 502 /// Returns a zero constant with the shadow type of OrigTy. 503 /// 504 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 505 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 506 /// getZeroShadow(other type) = i16(0) 507 Constant *getZeroShadow(Type *OrigTy); 508 /// Returns a zero constant with the shadow type of V's type. 509 Constant *getZeroShadow(Value *V); 510 511 /// Checks if V is a zero shadow. 512 bool isZeroShadow(Value *V); 513 514 /// Returns the shadow type of OrigTy. 515 /// 516 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 517 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 518 /// getShadowTy(other type) = i16 519 Type *getShadowTy(Type *OrigTy); 520 /// Returns the shadow type of of V's type. 521 Type *getShadowTy(Value *V); 522 523 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 524 525 public: 526 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 527 528 bool runImpl(Module &M); 529 }; 530 531 struct DFSanFunction { 532 DataFlowSanitizer &DFS; 533 Function *F; 534 DominatorTree DT; 535 bool IsNativeABI; 536 bool IsForceZeroLabels; 537 AllocaInst *LabelReturnAlloca = nullptr; 538 AllocaInst *OriginReturnAlloca = nullptr; 539 DenseMap<Value *, Value *> ValShadowMap; 540 DenseMap<Value *, Value *> ValOriginMap; 541 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 542 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 543 544 struct PHIFixupElement { 545 PHINode *Phi; 546 PHINode *ShadowPhi; 547 PHINode *OriginPhi; 548 }; 549 std::vector<PHIFixupElement> PHIFixups; 550 551 DenseSet<Instruction *> SkipInsts; 552 std::vector<Value *> NonZeroChecks; 553 554 struct CachedShadow { 555 BasicBlock *Block; // The block where Shadow is defined. 556 Value *Shadow; 557 }; 558 /// Maps a value to its latest shadow value in terms of domination tree. 559 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 560 /// Maps a value to its latest collapsed shadow value it was converted to in 561 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 562 /// used at a post process where CFG blocks are split. So it does not cache 563 /// BasicBlock like CachedShadows, but uses domination between values. 564 DenseMap<Value *, Value *> CachedCollapsedShadows; 565 DenseMap<Value *, std::set<Value *>> ShadowElements; 566 567 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 568 bool IsForceZeroLabels) 569 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 570 IsForceZeroLabels(IsForceZeroLabels) { 571 DT.recalculate(*F); 572 } 573 574 /// Computes the shadow address for a given function argument. 575 /// 576 /// Shadow = ArgTLS+ArgOffset. 577 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 578 579 /// Computes the shadow address for a return value. 580 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 581 582 /// Computes the origin address for a given function argument. 583 /// 584 /// Origin = ArgOriginTLS[ArgNo]. 585 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 586 587 /// Computes the origin address for a return value. 588 Value *getRetvalOriginTLS(); 589 590 Value *getOrigin(Value *V); 591 void setOrigin(Instruction *I, Value *Origin); 592 /// Generates IR to compute the origin of the last operand with a taint label. 593 Value *combineOperandOrigins(Instruction *Inst); 594 /// Before the instruction Pos, generates IR to compute the last origin with a 595 /// taint label. Labels and origins are from vectors Shadows and Origins 596 /// correspondingly. The generated IR is like 597 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 598 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 599 /// zeros with other bitwidths. 600 Value *combineOrigins(const std::vector<Value *> &Shadows, 601 const std::vector<Value *> &Origins, Instruction *Pos, 602 ConstantInt *Zero = nullptr); 603 604 Value *getShadow(Value *V); 605 void setShadow(Instruction *I, Value *Shadow); 606 /// Generates IR to compute the union of the two given shadows, inserting it 607 /// before Pos. The combined value is with primitive type. 608 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 609 /// Combines the shadow values of V1 and V2, then converts the combined value 610 /// with primitive type into a shadow value with the original type T. 611 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 612 Instruction *Pos); 613 Value *combineOperandShadows(Instruction *Inst); 614 615 /// Generates IR to load shadow and origin corresponding to bytes [\p 616 /// Addr, \p Addr + \p Size), where addr has alignment \p 617 /// InstAlignment, and take the union of each of those shadows. The returned 618 /// shadow always has primitive type. 619 /// 620 /// When tracking loads is enabled, the returned origin is a chain at the 621 /// current stack if the returned shadow is tainted. 622 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 623 Align InstAlignment, 624 Instruction *Pos); 625 626 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 627 Align InstAlignment, Value *PrimitiveShadow, 628 Value *Origin, Instruction *Pos); 629 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 630 /// the expanded shadow value. 631 /// 632 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 633 /// EFP([n x T], PS) = [n x EFP(T,PS)] 634 /// EFP(other types, PS) = PS 635 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 636 Instruction *Pos); 637 /// Collapses Shadow into a single primitive shadow value, unioning all 638 /// primitive shadow values in the process. Returns the final primitive 639 /// shadow value. 640 /// 641 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 642 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 643 /// CTP(other types, PS) = PS 644 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 645 646 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 647 Instruction *Pos); 648 649 Align getShadowAlign(Align InstAlignment); 650 651 // If ClConditionalCallbacks is enabled, insert a callback after a given 652 // branch instruction using the given conditional expression. 653 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 654 655 private: 656 /// Collapses the shadow with aggregate type into a single primitive shadow 657 /// value. 658 template <class AggregateType> 659 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 660 IRBuilder<> &IRB); 661 662 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 663 664 /// Returns the shadow value of an argument A. 665 Value *getShadowForTLSArgument(Argument *A); 666 667 /// The fast path of loading shadows. 668 std::pair<Value *, Value *> 669 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 670 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 671 Instruction *Pos); 672 673 Align getOriginAlign(Align InstAlignment); 674 675 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 676 /// is __dfsan_load_label_and_origin. This function returns the union of all 677 /// labels and the origin of the first taint label. However this is an 678 /// additional call with many instructions. To ensure common cases are fast, 679 /// checks if it is possible to load labels and origins without using the 680 /// callback function. 681 /// 682 /// When enabling tracking load instructions, we always use 683 /// __dfsan_load_label_and_origin to reduce code size. 684 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 685 686 /// Returns a chain at the current stack with previous origin V. 687 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 688 689 /// Returns a chain at the current stack with previous origin V if Shadow is 690 /// tainted. 691 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 692 693 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 694 /// Origin otherwise. 695 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 696 697 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 698 /// Size). 699 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 700 uint64_t StoreOriginSize, Align Alignment); 701 702 /// Stores Origin in terms of its Shadow value. 703 /// * Do not write origins for zero shadows because we do not trace origins 704 /// for untainted sinks. 705 /// * Use __dfsan_maybe_store_origin if there are too many origin store 706 /// instrumentations. 707 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 708 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 709 710 /// Convert a scalar value to an i1 by comparing with 0. 711 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 712 713 bool shouldInstrumentWithCall(); 714 715 /// Generates IR to load shadow and origin corresponding to bytes [\p 716 /// Addr, \p Addr + \p Size), where addr has alignment \p 717 /// InstAlignment, and take the union of each of those shadows. The returned 718 /// shadow always has primitive type. 719 std::pair<Value *, Value *> 720 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 721 Align InstAlignment, Instruction *Pos); 722 int NumOriginStores = 0; 723 }; 724 725 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 726 public: 727 DFSanFunction &DFSF; 728 729 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 730 731 const DataLayout &getDataLayout() const { 732 return DFSF.F->getParent()->getDataLayout(); 733 } 734 735 // Combines shadow values and origins for all of I's operands. 736 void visitInstOperands(Instruction &I); 737 738 void visitUnaryOperator(UnaryOperator &UO); 739 void visitBinaryOperator(BinaryOperator &BO); 740 void visitBitCastInst(BitCastInst &BCI); 741 void visitCastInst(CastInst &CI); 742 void visitCmpInst(CmpInst &CI); 743 void visitLandingPadInst(LandingPadInst &LPI); 744 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 745 void visitLoadInst(LoadInst &LI); 746 void visitStoreInst(StoreInst &SI); 747 void visitAtomicRMWInst(AtomicRMWInst &I); 748 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 749 void visitReturnInst(ReturnInst &RI); 750 void visitCallBase(CallBase &CB); 751 void visitPHINode(PHINode &PN); 752 void visitExtractElementInst(ExtractElementInst &I); 753 void visitInsertElementInst(InsertElementInst &I); 754 void visitShuffleVectorInst(ShuffleVectorInst &I); 755 void visitExtractValueInst(ExtractValueInst &I); 756 void visitInsertValueInst(InsertValueInst &I); 757 void visitAllocaInst(AllocaInst &I); 758 void visitSelectInst(SelectInst &I); 759 void visitMemSetInst(MemSetInst &I); 760 void visitMemTransferInst(MemTransferInst &I); 761 void visitBranchInst(BranchInst &BR); 762 void visitSwitchInst(SwitchInst &SW); 763 764 private: 765 void visitCASOrRMW(Align InstAlignment, Instruction &I); 766 767 // Returns false when this is an invoke of a custom function. 768 bool visitWrappedCallBase(Function &F, CallBase &CB); 769 770 // Combines origins for all of I's operands. 771 void visitInstOperandOrigins(Instruction &I); 772 773 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 774 IRBuilder<> &IRB); 775 776 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 777 IRBuilder<> &IRB); 778 }; 779 780 } // end anonymous namespace 781 782 DataFlowSanitizer::DataFlowSanitizer( 783 const std::vector<std::string> &ABIListFiles) { 784 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 785 llvm::append_range(AllABIListFiles, ClABIListFiles); 786 // FIXME: should we propagate vfs::FileSystem to this constructor? 787 ABIList.set( 788 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 789 } 790 791 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 792 SmallVector<Type *, 4> ArgTypes; 793 794 // Some parameters of the custom function being constructed are 795 // parameters of T. Record the mapping from parameters of T to 796 // parameters of the custom function, so that parameter attributes 797 // at call sites can be updated. 798 std::vector<unsigned> ArgumentIndexMapping; 799 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 800 Type *ParamType = T->getParamType(I); 801 ArgumentIndexMapping.push_back(ArgTypes.size()); 802 ArgTypes.push_back(ParamType); 803 } 804 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 805 ArgTypes.push_back(PrimitiveShadowTy); 806 if (T->isVarArg()) 807 ArgTypes.push_back(PrimitiveShadowPtrTy); 808 Type *RetType = T->getReturnType(); 809 if (!RetType->isVoidTy()) 810 ArgTypes.push_back(PrimitiveShadowPtrTy); 811 812 if (shouldTrackOrigins()) { 813 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 814 ArgTypes.push_back(OriginTy); 815 if (T->isVarArg()) 816 ArgTypes.push_back(OriginPtrTy); 817 if (!RetType->isVoidTy()) 818 ArgTypes.push_back(OriginPtrTy); 819 } 820 821 return TransformedFunction( 822 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 823 ArgumentIndexMapping); 824 } 825 826 bool DataFlowSanitizer::isZeroShadow(Value *V) { 827 Type *T = V->getType(); 828 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 829 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 830 return CI->isZero(); 831 return false; 832 } 833 834 return isa<ConstantAggregateZero>(V); 835 } 836 837 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 838 uint64_t ShadowSize = Size * ShadowWidthBytes; 839 return ShadowSize % 8 == 0 || ShadowSize == 4; 840 } 841 842 bool DataFlowSanitizer::shouldTrackOrigins() { 843 static const bool ShouldTrackOrigins = ClTrackOrigins; 844 return ShouldTrackOrigins; 845 } 846 847 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 848 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 849 return ZeroPrimitiveShadow; 850 Type *ShadowTy = getShadowTy(OrigTy); 851 return ConstantAggregateZero::get(ShadowTy); 852 } 853 854 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 855 return getZeroShadow(V->getType()); 856 } 857 858 static Value *expandFromPrimitiveShadowRecursive( 859 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 860 Value *PrimitiveShadow, IRBuilder<> &IRB) { 861 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 862 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 863 864 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 865 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 866 Indices.push_back(Idx); 867 Shadow = expandFromPrimitiveShadowRecursive( 868 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 869 Indices.pop_back(); 870 } 871 return Shadow; 872 } 873 874 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 875 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 876 Indices.push_back(Idx); 877 Shadow = expandFromPrimitiveShadowRecursive( 878 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 879 Indices.pop_back(); 880 } 881 return Shadow; 882 } 883 llvm_unreachable("Unexpected shadow type"); 884 } 885 886 bool DFSanFunction::shouldInstrumentWithCall() { 887 return ClInstrumentWithCallThreshold >= 0 && 888 NumOriginStores >= ClInstrumentWithCallThreshold; 889 } 890 891 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 892 Instruction *Pos) { 893 Type *ShadowTy = DFS.getShadowTy(T); 894 895 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 896 return PrimitiveShadow; 897 898 if (DFS.isZeroShadow(PrimitiveShadow)) 899 return DFS.getZeroShadow(ShadowTy); 900 901 IRBuilder<> IRB(Pos); 902 SmallVector<unsigned, 4> Indices; 903 Value *Shadow = UndefValue::get(ShadowTy); 904 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 905 PrimitiveShadow, IRB); 906 907 // Caches the primitive shadow value that built the shadow value. 908 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 909 return Shadow; 910 } 911 912 template <class AggregateType> 913 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 914 IRBuilder<> &IRB) { 915 if (!AT->getNumElements()) 916 return DFS.ZeroPrimitiveShadow; 917 918 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 919 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 920 921 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 922 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 923 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 924 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 925 } 926 return Aggregator; 927 } 928 929 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 930 IRBuilder<> &IRB) { 931 Type *ShadowTy = Shadow->getType(); 932 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 933 return Shadow; 934 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 935 return collapseAggregateShadow<>(AT, Shadow, IRB); 936 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 937 return collapseAggregateShadow<>(ST, Shadow, IRB); 938 llvm_unreachable("Unexpected shadow type"); 939 } 940 941 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 942 Instruction *Pos) { 943 Type *ShadowTy = Shadow->getType(); 944 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 945 return Shadow; 946 947 // Checks if the cached collapsed shadow value dominates Pos. 948 Value *&CS = CachedCollapsedShadows[Shadow]; 949 if (CS && DT.dominates(CS, Pos)) 950 return CS; 951 952 IRBuilder<> IRB(Pos); 953 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 954 // Caches the converted primitive shadow value. 955 CS = PrimitiveShadow; 956 return PrimitiveShadow; 957 } 958 959 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 960 Value *Condition) { 961 if (!ClConditionalCallbacks) { 962 return; 963 } 964 IRBuilder<> IRB(&I); 965 Value *CondShadow = getShadow(Condition); 966 if (DFS.shouldTrackOrigins()) { 967 Value *CondOrigin = getOrigin(Condition); 968 IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 969 {CondShadow, CondOrigin}); 970 } else { 971 IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 972 } 973 } 974 975 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 976 if (!OrigTy->isSized()) 977 return PrimitiveShadowTy; 978 if (isa<IntegerType>(OrigTy)) 979 return PrimitiveShadowTy; 980 if (isa<VectorType>(OrigTy)) 981 return PrimitiveShadowTy; 982 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 983 return ArrayType::get(getShadowTy(AT->getElementType()), 984 AT->getNumElements()); 985 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 986 SmallVector<Type *, 4> Elements; 987 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 988 Elements.push_back(getShadowTy(ST->getElementType(I))); 989 return StructType::get(*Ctx, Elements); 990 } 991 return PrimitiveShadowTy; 992 } 993 994 Type *DataFlowSanitizer::getShadowTy(Value *V) { 995 return getShadowTy(V->getType()); 996 } 997 998 bool DataFlowSanitizer::initializeModule(Module &M) { 999 Triple TargetTriple(M.getTargetTriple()); 1000 const DataLayout &DL = M.getDataLayout(); 1001 1002 if (TargetTriple.getOS() != Triple::Linux) 1003 report_fatal_error("unsupported operating system"); 1004 if (TargetTriple.getArch() != Triple::x86_64) 1005 report_fatal_error("unsupported architecture"); 1006 MapParams = &Linux_X86_64_MemoryMapParams; 1007 1008 Mod = &M; 1009 Ctx = &M.getContext(); 1010 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1011 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1012 OriginPtrTy = PointerType::getUnqual(OriginTy); 1013 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1014 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1015 IntptrTy = DL.getIntPtrType(*Ctx); 1016 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1017 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1018 1019 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1020 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1021 /*isVarArg=*/false); 1022 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1023 DFSanLoadLabelAndOriginFnTy = 1024 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1025 /*isVarArg=*/false); 1026 DFSanUnimplementedFnTy = FunctionType::get( 1027 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1028 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1029 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1030 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1031 DFSanSetLabelArgs, /*isVarArg=*/false); 1032 DFSanNonzeroLabelFnTy = 1033 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1034 DFSanVarargWrapperFnTy = FunctionType::get( 1035 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1036 DFSanConditionalCallbackFnTy = 1037 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1038 /*isVarArg=*/false); 1039 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1040 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1041 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1042 /*isVarArg=*/false); 1043 DFSanCmpCallbackFnTy = 1044 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1045 /*isVarArg=*/false); 1046 DFSanChainOriginFnTy = 1047 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1048 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1049 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1050 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1051 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1052 Int8Ptr, IntptrTy, OriginTy}; 1053 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1054 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1055 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1056 DFSanMemOriginTransferFnTy = FunctionType::get( 1057 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1058 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1059 DFSanLoadStoreCallbackFnTy = 1060 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1061 /*isVarArg=*/false); 1062 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1063 DFSanMemTransferCallbackFnTy = 1064 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1065 /*isVarArg=*/false); 1066 1067 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1068 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1069 return true; 1070 } 1071 1072 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1073 return !ABIList.isIn(*F, "uninstrumented"); 1074 } 1075 1076 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1077 return !ABIList.isIn(*GA, "uninstrumented"); 1078 } 1079 1080 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1081 return ABIList.isIn(*F, "force_zero_labels"); 1082 } 1083 1084 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1085 if (ABIList.isIn(*F, "functional")) 1086 return WK_Functional; 1087 if (ABIList.isIn(*F, "discard")) 1088 return WK_Discard; 1089 if (ABIList.isIn(*F, "custom")) 1090 return WK_Custom; 1091 1092 return WK_Warning; 1093 } 1094 1095 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1096 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1097 GV->setName(GVName + Suffix); 1098 1099 // Try to change the name of the function in module inline asm. We only do 1100 // this for specific asm directives, currently only ".symver", to try to avoid 1101 // corrupting asm which happens to contain the symbol name as a substring. 1102 // Note that the substitution for .symver assumes that the versioned symbol 1103 // also has an instrumented name. 1104 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1105 std::string SearchStr = ".symver " + GVName + ","; 1106 size_t Pos = Asm.find(SearchStr); 1107 if (Pos != std::string::npos) { 1108 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1109 Pos = Asm.find("@"); 1110 1111 if (Pos == std::string::npos) 1112 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1113 1114 Asm.replace(Pos, 1, Suffix + "@"); 1115 GV->getParent()->setModuleInlineAsm(Asm); 1116 } 1117 } 1118 1119 Function * 1120 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1121 GlobalValue::LinkageTypes NewFLink, 1122 FunctionType *NewFT) { 1123 FunctionType *FT = F->getFunctionType(); 1124 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1125 NewFName, F->getParent()); 1126 NewF->copyAttributesFrom(F); 1127 NewF->removeRetAttrs( 1128 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1129 1130 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1131 if (F->isVarArg()) { 1132 NewF->removeFnAttr("split-stack"); 1133 CallInst::Create(DFSanVarargWrapperFn, 1134 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1135 BB); 1136 new UnreachableInst(*Ctx, BB); 1137 } else { 1138 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1139 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1140 1141 CallInst *CI = CallInst::Create(F, Args, "", BB); 1142 if (FT->getReturnType()->isVoidTy()) 1143 ReturnInst::Create(*Ctx, BB); 1144 else 1145 ReturnInst::Create(*Ctx, CI, BB); 1146 } 1147 1148 return NewF; 1149 } 1150 1151 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1152 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1153 { 1154 AttributeList AL; 1155 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1156 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1157 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1158 DFSanUnionLoadFn = 1159 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1160 } 1161 { 1162 AttributeList AL; 1163 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1164 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1165 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1166 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1167 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1168 } 1169 DFSanUnimplementedFn = 1170 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1171 { 1172 AttributeList AL; 1173 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1174 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1175 DFSanSetLabelFn = 1176 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1177 } 1178 DFSanNonzeroLabelFn = 1179 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1180 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1181 DFSanVarargWrapperFnTy); 1182 { 1183 AttributeList AL; 1184 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1185 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1186 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1187 DFSanChainOriginFnTy, AL); 1188 } 1189 { 1190 AttributeList AL; 1191 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1192 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1193 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1194 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1195 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1196 } 1197 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1198 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1199 1200 { 1201 AttributeList AL; 1202 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1203 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1204 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1205 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1206 } 1207 1208 DFSanRuntimeFunctions.insert( 1209 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1210 DFSanRuntimeFunctions.insert( 1211 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1212 DFSanRuntimeFunctions.insert( 1213 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1214 DFSanRuntimeFunctions.insert( 1215 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1216 DFSanRuntimeFunctions.insert( 1217 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1218 DFSanRuntimeFunctions.insert( 1219 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1220 DFSanRuntimeFunctions.insert( 1221 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1222 DFSanRuntimeFunctions.insert( 1223 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1224 DFSanRuntimeFunctions.insert( 1225 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1226 DFSanRuntimeFunctions.insert( 1227 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1228 DFSanRuntimeFunctions.insert( 1229 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1230 DFSanRuntimeFunctions.insert( 1231 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1232 DFSanRuntimeFunctions.insert( 1233 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1234 DFSanRuntimeFunctions.insert( 1235 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1236 DFSanRuntimeFunctions.insert( 1237 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1238 DFSanRuntimeFunctions.insert( 1239 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1240 } 1241 1242 // Initializes event callback functions and declare them in the module 1243 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1244 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1245 DFSanLoadStoreCallbackFnTy); 1246 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1247 DFSanLoadStoreCallbackFnTy); 1248 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1249 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1250 DFSanCmpCallbackFn = 1251 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1252 1253 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1254 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy); 1255 DFSanConditionalCallbackOriginFn = 1256 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1257 DFSanConditionalCallbackOriginFnTy); 1258 } 1259 1260 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1261 // These variables can be used: 1262 // - by the runtime (to discover what the shadow width was, during 1263 // compilation) 1264 // - in testing (to avoid hardcoding the shadow width and type but instead 1265 // extract them by pattern matching) 1266 Type *IntTy = Type::getInt32Ty(*Ctx); 1267 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1268 return new GlobalVariable( 1269 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1270 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1271 }); 1272 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1273 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1274 GlobalValue::WeakODRLinkage, 1275 ConstantInt::get(IntTy, ShadowWidthBytes), 1276 "__dfsan_shadow_width_bytes"); 1277 }); 1278 } 1279 1280 bool DataFlowSanitizer::runImpl(Module &M) { 1281 initializeModule(M); 1282 1283 if (ABIList.isIn(M, "skip")) 1284 return false; 1285 1286 const unsigned InitialGlobalSize = M.global_size(); 1287 const unsigned InitialModuleSize = M.size(); 1288 1289 bool Changed = false; 1290 1291 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1292 Type *Ty) -> Constant * { 1293 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1294 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1295 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1296 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1297 } 1298 return C; 1299 }; 1300 1301 // These globals must be kept in sync with the ones in dfsan.cpp. 1302 ArgTLS = 1303 GetOrInsertGlobal("__dfsan_arg_tls", 1304 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1305 RetvalTLS = GetOrInsertGlobal( 1306 "__dfsan_retval_tls", 1307 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1308 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1309 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1310 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1311 1312 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1313 Changed = true; 1314 return new GlobalVariable( 1315 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1316 ConstantInt::getSigned(OriginTy, 1317 shouldTrackOrigins() ? ClTrackOrigins : 0), 1318 "__dfsan_track_origins"); 1319 }); 1320 1321 injectMetadataGlobals(M); 1322 1323 initializeCallbackFunctions(M); 1324 initializeRuntimeFunctions(M); 1325 1326 std::vector<Function *> FnsToInstrument; 1327 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1328 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1329 SmallPtrSet<Constant *, 1> PersonalityFns; 1330 for (Function &F : M) 1331 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) { 1332 FnsToInstrument.push_back(&F); 1333 if (F.hasPersonalityFn()) 1334 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1335 } 1336 1337 if (ClIgnorePersonalityRoutine) { 1338 for (auto *C : PersonalityFns) { 1339 assert(isa<Function>(C) && "Personality routine is not a function!"); 1340 Function *F = cast<Function>(C); 1341 if (!isInstrumented(F)) 1342 FnsToInstrument.erase( 1343 std::remove(FnsToInstrument.begin(), FnsToInstrument.end(), F), 1344 FnsToInstrument.end()); 1345 } 1346 } 1347 1348 // Give function aliases prefixes when necessary, and build wrappers where the 1349 // instrumentedness is inconsistent. 1350 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1351 // Don't stop on weak. We assume people aren't playing games with the 1352 // instrumentedness of overridden weak aliases. 1353 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1354 if (!F) 1355 continue; 1356 1357 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1358 if (GAInst && FInst) { 1359 addGlobalNameSuffix(&GA); 1360 } else if (GAInst != FInst) { 1361 // Non-instrumented alias of an instrumented function, or vice versa. 1362 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1363 // below will take care of instrumenting it. 1364 Function *NewF = 1365 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1366 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); 1367 NewF->takeName(&GA); 1368 GA.eraseFromParent(); 1369 FnsToInstrument.push_back(NewF); 1370 } 1371 } 1372 1373 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1374 .addAttribute(Attribute::ReadNone); 1375 1376 // First, change the ABI of every function in the module. ABI-listed 1377 // functions keep their original ABI and get a wrapper function. 1378 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1379 FE = FnsToInstrument.end(); 1380 FI != FE; ++FI) { 1381 Function &F = **FI; 1382 FunctionType *FT = F.getFunctionType(); 1383 1384 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1385 FT->getReturnType()->isVoidTy()); 1386 1387 if (isInstrumented(&F)) { 1388 if (isForceZeroLabels(&F)) 1389 FnsWithForceZeroLabel.insert(&F); 1390 1391 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1392 // easily identify cases of mismatching ABIs. This naming scheme is 1393 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1394 addGlobalNameSuffix(&F); 1395 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1396 // Build a wrapper function for F. The wrapper simply calls F, and is 1397 // added to FnsToInstrument so that any instrumentation according to its 1398 // WrapperKind is done in the second pass below. 1399 1400 // If the function being wrapped has local linkage, then preserve the 1401 // function's linkage in the wrapper function. 1402 GlobalValue::LinkageTypes WrapperLinkage = 1403 F.hasLocalLinkage() ? F.getLinkage() 1404 : GlobalValue::LinkOnceODRLinkage; 1405 1406 Function *NewF = buildWrapperFunction( 1407 &F, 1408 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1409 std::string(F.getName()), 1410 WrapperLinkage, FT); 1411 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1412 1413 Value *WrappedFnCst = 1414 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1415 F.replaceAllUsesWith(WrappedFnCst); 1416 1417 UnwrappedFnMap[WrappedFnCst] = &F; 1418 *FI = NewF; 1419 1420 if (!F.isDeclaration()) { 1421 // This function is probably defining an interposition of an 1422 // uninstrumented function and hence needs to keep the original ABI. 1423 // But any functions it may call need to use the instrumented ABI, so 1424 // we instrument it in a mode which preserves the original ABI. 1425 FnsWithNativeABI.insert(&F); 1426 1427 // This code needs to rebuild the iterators, as they may be invalidated 1428 // by the push_back, taking care that the new range does not include 1429 // any functions added by this code. 1430 size_t N = FI - FnsToInstrument.begin(), 1431 Count = FE - FnsToInstrument.begin(); 1432 FnsToInstrument.push_back(&F); 1433 FI = FnsToInstrument.begin() + N; 1434 FE = FnsToInstrument.begin() + Count; 1435 } 1436 // Hopefully, nobody will try to indirectly call a vararg 1437 // function... yet. 1438 } else if (FT->isVarArg()) { 1439 UnwrappedFnMap[&F] = &F; 1440 *FI = nullptr; 1441 } 1442 } 1443 1444 for (Function *F : FnsToInstrument) { 1445 if (!F || F->isDeclaration()) 1446 continue; 1447 1448 removeUnreachableBlocks(*F); 1449 1450 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1451 FnsWithForceZeroLabel.count(F)); 1452 1453 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1454 // Build a copy of the list before iterating over it. 1455 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1456 1457 for (BasicBlock *BB : BBList) { 1458 Instruction *Inst = &BB->front(); 1459 while (true) { 1460 // DFSanVisitor may split the current basic block, changing the current 1461 // instruction's next pointer and moving the next instruction to the 1462 // tail block from which we should continue. 1463 Instruction *Next = Inst->getNextNode(); 1464 // DFSanVisitor may delete Inst, so keep track of whether it was a 1465 // terminator. 1466 bool IsTerminator = Inst->isTerminator(); 1467 if (!DFSF.SkipInsts.count(Inst)) 1468 DFSanVisitor(DFSF).visit(Inst); 1469 if (IsTerminator) 1470 break; 1471 Inst = Next; 1472 } 1473 } 1474 1475 // We will not necessarily be able to compute the shadow for every phi node 1476 // until we have visited every block. Therefore, the code that handles phi 1477 // nodes adds them to the PHIFixups list so that they can be properly 1478 // handled here. 1479 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1480 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1481 ++Val) { 1482 P.ShadowPhi->setIncomingValue( 1483 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1484 if (P.OriginPhi) 1485 P.OriginPhi->setIncomingValue( 1486 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1487 } 1488 } 1489 1490 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1491 // places (i.e. instructions in basic blocks we haven't even begun visiting 1492 // yet). To make our life easier, do this work in a pass after the main 1493 // instrumentation. 1494 if (ClDebugNonzeroLabels) { 1495 for (Value *V : DFSF.NonZeroChecks) { 1496 Instruction *Pos; 1497 if (Instruction *I = dyn_cast<Instruction>(V)) 1498 Pos = I->getNextNode(); 1499 else 1500 Pos = &DFSF.F->getEntryBlock().front(); 1501 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1502 Pos = Pos->getNextNode(); 1503 IRBuilder<> IRB(Pos); 1504 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1505 Value *Ne = 1506 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1507 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1508 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1509 IRBuilder<> ThenIRB(BI); 1510 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1511 } 1512 } 1513 } 1514 1515 return Changed || !FnsToInstrument.empty() || 1516 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1517 } 1518 1519 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1520 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1521 if (ArgOffset) 1522 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1523 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1524 "_dfsarg"); 1525 } 1526 1527 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1528 return IRB.CreatePointerCast( 1529 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1530 } 1531 1532 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1533 1534 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1535 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1536 "_dfsarg_o"); 1537 } 1538 1539 Value *DFSanFunction::getOrigin(Value *V) { 1540 assert(DFS.shouldTrackOrigins()); 1541 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1542 return DFS.ZeroOrigin; 1543 Value *&Origin = ValOriginMap[V]; 1544 if (!Origin) { 1545 if (Argument *A = dyn_cast<Argument>(V)) { 1546 if (IsNativeABI) 1547 return DFS.ZeroOrigin; 1548 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1549 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1550 IRBuilder<> IRB(ArgOriginTLSPos); 1551 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1552 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1553 } else { 1554 // Overflow 1555 Origin = DFS.ZeroOrigin; 1556 } 1557 } else { 1558 Origin = DFS.ZeroOrigin; 1559 } 1560 } 1561 return Origin; 1562 } 1563 1564 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1565 if (!DFS.shouldTrackOrigins()) 1566 return; 1567 assert(!ValOriginMap.count(I)); 1568 assert(Origin->getType() == DFS.OriginTy); 1569 ValOriginMap[I] = Origin; 1570 } 1571 1572 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1573 unsigned ArgOffset = 0; 1574 const DataLayout &DL = F->getParent()->getDataLayout(); 1575 for (auto &FArg : F->args()) { 1576 if (!FArg.getType()->isSized()) { 1577 if (A == &FArg) 1578 break; 1579 continue; 1580 } 1581 1582 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1583 if (A != &FArg) { 1584 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1585 if (ArgOffset > ArgTLSSize) 1586 break; // ArgTLS overflows, uses a zero shadow. 1587 continue; 1588 } 1589 1590 if (ArgOffset + Size > ArgTLSSize) 1591 break; // ArgTLS overflows, uses a zero shadow. 1592 1593 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1594 IRBuilder<> IRB(ArgTLSPos); 1595 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1596 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1597 ShadowTLSAlignment); 1598 } 1599 1600 return DFS.getZeroShadow(A); 1601 } 1602 1603 Value *DFSanFunction::getShadow(Value *V) { 1604 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1605 return DFS.getZeroShadow(V); 1606 if (IsForceZeroLabels) 1607 return DFS.getZeroShadow(V); 1608 Value *&Shadow = ValShadowMap[V]; 1609 if (!Shadow) { 1610 if (Argument *A = dyn_cast<Argument>(V)) { 1611 if (IsNativeABI) 1612 return DFS.getZeroShadow(V); 1613 Shadow = getShadowForTLSArgument(A); 1614 NonZeroChecks.push_back(Shadow); 1615 } else { 1616 Shadow = DFS.getZeroShadow(V); 1617 } 1618 } 1619 return Shadow; 1620 } 1621 1622 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1623 assert(!ValShadowMap.count(I)); 1624 ValShadowMap[I] = Shadow; 1625 } 1626 1627 /// Compute the integer shadow offset that corresponds to a given 1628 /// application address. 1629 /// 1630 /// Offset = (Addr & ~AndMask) ^ XorMask 1631 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1632 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1633 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1634 1635 uint64_t AndMask = MapParams->AndMask; 1636 if (AndMask) 1637 OffsetLong = 1638 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1639 1640 uint64_t XorMask = MapParams->XorMask; 1641 if (XorMask) 1642 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1643 return OffsetLong; 1644 } 1645 1646 std::pair<Value *, Value *> 1647 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1648 Instruction *Pos) { 1649 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1650 IRBuilder<> IRB(Pos); 1651 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1652 Value *ShadowLong = ShadowOffset; 1653 uint64_t ShadowBase = MapParams->ShadowBase; 1654 if (ShadowBase != 0) { 1655 ShadowLong = 1656 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1657 } 1658 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1659 Value *ShadowPtr = 1660 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1661 Value *OriginPtr = nullptr; 1662 if (shouldTrackOrigins()) { 1663 Value *OriginLong = ShadowOffset; 1664 uint64_t OriginBase = MapParams->OriginBase; 1665 if (OriginBase != 0) 1666 OriginLong = 1667 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1668 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1669 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1670 // So Mask is unnecessary. 1671 if (Alignment < MinOriginAlignment) { 1672 uint64_t Mask = MinOriginAlignment.value() - 1; 1673 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1674 } 1675 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1676 } 1677 return std::make_pair(ShadowPtr, OriginPtr); 1678 } 1679 1680 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1681 Value *ShadowOffset) { 1682 IRBuilder<> IRB(Pos); 1683 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1684 } 1685 1686 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1687 IRBuilder<> IRB(Pos); 1688 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1689 return getShadowAddress(Addr, Pos, ShadowOffset); 1690 } 1691 1692 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1693 Instruction *Pos) { 1694 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1695 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1696 } 1697 1698 // Generates IR to compute the union of the two given shadows, inserting it 1699 // before Pos. The combined value is with primitive type. 1700 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1701 if (DFS.isZeroShadow(V1)) 1702 return collapseToPrimitiveShadow(V2, Pos); 1703 if (DFS.isZeroShadow(V2)) 1704 return collapseToPrimitiveShadow(V1, Pos); 1705 if (V1 == V2) 1706 return collapseToPrimitiveShadow(V1, Pos); 1707 1708 auto V1Elems = ShadowElements.find(V1); 1709 auto V2Elems = ShadowElements.find(V2); 1710 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1711 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1712 V2Elems->second.begin(), V2Elems->second.end())) { 1713 return collapseToPrimitiveShadow(V1, Pos); 1714 } 1715 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1716 V1Elems->second.begin(), V1Elems->second.end())) { 1717 return collapseToPrimitiveShadow(V2, Pos); 1718 } 1719 } else if (V1Elems != ShadowElements.end()) { 1720 if (V1Elems->second.count(V2)) 1721 return collapseToPrimitiveShadow(V1, Pos); 1722 } else if (V2Elems != ShadowElements.end()) { 1723 if (V2Elems->second.count(V1)) 1724 return collapseToPrimitiveShadow(V2, Pos); 1725 } 1726 1727 auto Key = std::make_pair(V1, V2); 1728 if (V1 > V2) 1729 std::swap(Key.first, Key.second); 1730 CachedShadow &CCS = CachedShadows[Key]; 1731 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1732 return CCS.Shadow; 1733 1734 // Converts inputs shadows to shadows with primitive types. 1735 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1736 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1737 1738 IRBuilder<> IRB(Pos); 1739 CCS.Block = Pos->getParent(); 1740 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1741 1742 std::set<Value *> UnionElems; 1743 if (V1Elems != ShadowElements.end()) { 1744 UnionElems = V1Elems->second; 1745 } else { 1746 UnionElems.insert(V1); 1747 } 1748 if (V2Elems != ShadowElements.end()) { 1749 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1750 } else { 1751 UnionElems.insert(V2); 1752 } 1753 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1754 1755 return CCS.Shadow; 1756 } 1757 1758 // A convenience function which folds the shadows of each of the operands 1759 // of the provided instruction Inst, inserting the IR before Inst. Returns 1760 // the computed union Value. 1761 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1762 if (Inst->getNumOperands() == 0) 1763 return DFS.getZeroShadow(Inst); 1764 1765 Value *Shadow = getShadow(Inst->getOperand(0)); 1766 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1767 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1768 1769 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1770 } 1771 1772 void DFSanVisitor::visitInstOperands(Instruction &I) { 1773 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1774 DFSF.setShadow(&I, CombinedShadow); 1775 visitInstOperandOrigins(I); 1776 } 1777 1778 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1779 const std::vector<Value *> &Origins, 1780 Instruction *Pos, ConstantInt *Zero) { 1781 assert(Shadows.size() == Origins.size()); 1782 size_t Size = Origins.size(); 1783 if (Size == 0) 1784 return DFS.ZeroOrigin; 1785 Value *Origin = nullptr; 1786 if (!Zero) 1787 Zero = DFS.ZeroPrimitiveShadow; 1788 for (size_t I = 0; I != Size; ++I) { 1789 Value *OpOrigin = Origins[I]; 1790 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1791 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1792 continue; 1793 if (!Origin) { 1794 Origin = OpOrigin; 1795 continue; 1796 } 1797 Value *OpShadow = Shadows[I]; 1798 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1799 IRBuilder<> IRB(Pos); 1800 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1801 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1802 } 1803 return Origin ? Origin : DFS.ZeroOrigin; 1804 } 1805 1806 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1807 size_t Size = Inst->getNumOperands(); 1808 std::vector<Value *> Shadows(Size); 1809 std::vector<Value *> Origins(Size); 1810 for (unsigned I = 0; I != Size; ++I) { 1811 Shadows[I] = getShadow(Inst->getOperand(I)); 1812 Origins[I] = getOrigin(Inst->getOperand(I)); 1813 } 1814 return combineOrigins(Shadows, Origins, Inst); 1815 } 1816 1817 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1818 if (!DFSF.DFS.shouldTrackOrigins()) 1819 return; 1820 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1821 DFSF.setOrigin(&I, CombinedOrigin); 1822 } 1823 1824 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1825 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1826 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1827 } 1828 1829 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1830 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1831 return Align(std::max(MinOriginAlignment, Alignment)); 1832 } 1833 1834 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1835 Align InstAlignment) { 1836 // When enabling tracking load instructions, we always use 1837 // __dfsan_load_label_and_origin to reduce code size. 1838 if (ClTrackOrigins == 2) 1839 return true; 1840 1841 assert(Size != 0); 1842 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1843 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1844 // load its origin aligned at 4. If not, although origins may be lost, it 1845 // should not happen very often. 1846 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1847 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1848 // * Otherwise we use __dfsan_load_label_and_origin. 1849 // This should ensure that common cases run efficiently. 1850 if (Size <= 2) 1851 return false; 1852 1853 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1854 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1855 } 1856 1857 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1858 Value **OriginAddr) { 1859 IRBuilder<> IRB(Pos); 1860 *OriginAddr = 1861 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1862 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1863 } 1864 1865 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1866 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1867 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1868 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1869 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1870 1871 assert(Size >= 4 && "Not large enough load size for fast path!"); 1872 1873 // Used for origin tracking. 1874 std::vector<Value *> Shadows; 1875 std::vector<Value *> Origins; 1876 1877 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1878 // but this function is only used in a subset of cases that make it possible 1879 // to optimize the instrumentation. 1880 // 1881 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1882 // per byte) is either: 1883 // - a multiple of 8 (common) 1884 // - equal to 4 (only for load32) 1885 // 1886 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1887 // other cases, we use a 64-bit integer to hold the wide shadow. 1888 Type *WideShadowTy = 1889 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1890 1891 IRBuilder<> IRB(Pos); 1892 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1893 Value *CombinedWideShadow = 1894 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1895 1896 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1897 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1898 1899 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 1900 if (BytesPerWideShadow > 4) { 1901 assert(BytesPerWideShadow == 8); 1902 // The wide shadow relates to two origin pointers: one for the first four 1903 // application bytes, and one for the latest four. We use a left shift to 1904 // get just the shadow bytes that correspond to the first origin pointer, 1905 // and then the entire shadow for the second origin pointer (which will be 1906 // chosen by combineOrigins() iff the least-significant half of the wide 1907 // shadow was empty but the other half was not). 1908 Value *WideShadowLo = IRB.CreateShl( 1909 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 1910 Shadows.push_back(WideShadow); 1911 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 1912 1913 Shadows.push_back(WideShadowLo); 1914 Origins.push_back(Origin); 1915 } else { 1916 Shadows.push_back(WideShadow); 1917 Origins.push_back(Origin); 1918 } 1919 }; 1920 1921 if (ShouldTrackOrigins) 1922 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 1923 1924 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 1925 // then OR individual shadows within the combined WideShadow by binary ORing. 1926 // This is fewer instructions than ORing shadows individually, since it 1927 // needs logN shift/or instructions (N being the bytes of the combined wide 1928 // shadow). 1929 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 1930 ByteOfs += BytesPerWideShadow) { 1931 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 1932 ConstantInt::get(DFS.IntptrTy, 1)); 1933 Value *NextWideShadow = 1934 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1935 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1936 if (ShouldTrackOrigins) { 1937 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 1938 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 1939 } 1940 } 1941 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 1942 Width >>= 1) { 1943 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1944 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1945 } 1946 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 1947 ShouldTrackOrigins 1948 ? combineOrigins(Shadows, Origins, Pos, 1949 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 1950 : DFS.ZeroOrigin}; 1951 } 1952 1953 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 1954 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 1955 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1956 1957 // Non-escaped loads. 1958 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1959 const auto SI = AllocaShadowMap.find(AI); 1960 if (SI != AllocaShadowMap.end()) { 1961 IRBuilder<> IRB(Pos); 1962 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 1963 const auto OI = AllocaOriginMap.find(AI); 1964 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 1965 return {ShadowLI, ShouldTrackOrigins 1966 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 1967 : nullptr}; 1968 } 1969 } 1970 1971 // Load from constant addresses. 1972 SmallVector<const Value *, 2> Objs; 1973 getUnderlyingObjects(Addr, Objs); 1974 bool AllConstants = true; 1975 for (const Value *Obj : Objs) { 1976 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1977 continue; 1978 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1979 continue; 1980 1981 AllConstants = false; 1982 break; 1983 } 1984 if (AllConstants) 1985 return {DFS.ZeroPrimitiveShadow, 1986 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 1987 1988 if (Size == 0) 1989 return {DFS.ZeroPrimitiveShadow, 1990 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 1991 1992 // Use callback to load if this is not an optimizable case for origin 1993 // tracking. 1994 if (ShouldTrackOrigins && 1995 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 1996 IRBuilder<> IRB(Pos); 1997 CallInst *Call = 1998 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 1999 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2000 ConstantInt::get(DFS.IntptrTy, Size)}); 2001 Call->addRetAttr(Attribute::ZExt); 2002 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2003 DFS.PrimitiveShadowTy), 2004 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2005 } 2006 2007 // Other cases that support loading shadows or origins in a fast way. 2008 Value *ShadowAddr, *OriginAddr; 2009 std::tie(ShadowAddr, OriginAddr) = 2010 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2011 2012 const Align ShadowAlign = getShadowAlign(InstAlignment); 2013 const Align OriginAlign = getOriginAlign(InstAlignment); 2014 Value *Origin = nullptr; 2015 if (ShouldTrackOrigins) { 2016 IRBuilder<> IRB(Pos); 2017 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2018 } 2019 2020 // When the byte size is small enough, we can load the shadow directly with 2021 // just a few instructions. 2022 switch (Size) { 2023 case 1: { 2024 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2025 LI->setAlignment(ShadowAlign); 2026 return {LI, Origin}; 2027 } 2028 case 2: { 2029 IRBuilder<> IRB(Pos); 2030 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2031 ConstantInt::get(DFS.IntptrTy, 1)); 2032 Value *Load = 2033 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2034 Value *Load1 = 2035 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2036 return {combineShadows(Load, Load1, Pos), Origin}; 2037 } 2038 } 2039 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2040 2041 if (HasSizeForFastPath) 2042 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2043 OriginAlign, Origin, Pos); 2044 2045 IRBuilder<> IRB(Pos); 2046 CallInst *FallbackCall = IRB.CreateCall( 2047 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2048 FallbackCall->addRetAttr(Attribute::ZExt); 2049 return {FallbackCall, Origin}; 2050 } 2051 2052 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2053 uint64_t Size, 2054 Align InstAlignment, 2055 Instruction *Pos) { 2056 Value *PrimitiveShadow, *Origin; 2057 std::tie(PrimitiveShadow, Origin) = 2058 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2059 if (DFS.shouldTrackOrigins()) { 2060 if (ClTrackOrigins == 2) { 2061 IRBuilder<> IRB(Pos); 2062 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2063 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2064 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2065 } 2066 } 2067 return {PrimitiveShadow, Origin}; 2068 } 2069 2070 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2071 switch (AO) { 2072 case AtomicOrdering::NotAtomic: 2073 return AtomicOrdering::NotAtomic; 2074 case AtomicOrdering::Unordered: 2075 case AtomicOrdering::Monotonic: 2076 case AtomicOrdering::Acquire: 2077 return AtomicOrdering::Acquire; 2078 case AtomicOrdering::Release: 2079 case AtomicOrdering::AcquireRelease: 2080 return AtomicOrdering::AcquireRelease; 2081 case AtomicOrdering::SequentiallyConsistent: 2082 return AtomicOrdering::SequentiallyConsistent; 2083 } 2084 llvm_unreachable("Unknown ordering"); 2085 } 2086 2087 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2088 auto &DL = LI.getModule()->getDataLayout(); 2089 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2090 if (Size == 0) { 2091 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2092 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2093 return; 2094 } 2095 2096 // When an application load is atomic, increase atomic ordering between 2097 // atomic application loads and stores to ensure happen-before order; load 2098 // shadow data after application data; store zero shadow data before 2099 // application data. This ensure shadow loads return either labels of the 2100 // initial application data or zeros. 2101 if (LI.isAtomic()) 2102 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2103 2104 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2105 std::vector<Value *> Shadows; 2106 std::vector<Value *> Origins; 2107 Value *PrimitiveShadow, *Origin; 2108 std::tie(PrimitiveShadow, Origin) = 2109 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2110 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2111 if (ShouldTrackOrigins) { 2112 Shadows.push_back(PrimitiveShadow); 2113 Origins.push_back(Origin); 2114 } 2115 if (ClCombinePointerLabelsOnLoad) { 2116 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2117 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2118 if (ShouldTrackOrigins) { 2119 Shadows.push_back(PtrShadow); 2120 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2121 } 2122 } 2123 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2124 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2125 2126 Value *Shadow = 2127 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2128 DFSF.setShadow(&LI, Shadow); 2129 2130 if (ShouldTrackOrigins) { 2131 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2132 } 2133 2134 if (ClEventCallbacks) { 2135 IRBuilder<> IRB(Pos); 2136 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2137 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2138 } 2139 } 2140 2141 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2142 IRBuilder<> &IRB) { 2143 assert(DFS.shouldTrackOrigins()); 2144 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2145 } 2146 2147 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2148 if (!DFS.shouldTrackOrigins()) 2149 return V; 2150 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2151 } 2152 2153 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2154 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2155 const DataLayout &DL = F->getParent()->getDataLayout(); 2156 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2157 if (IntptrSize == OriginSize) 2158 return Origin; 2159 assert(IntptrSize == OriginSize * 2); 2160 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2161 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2162 } 2163 2164 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2165 Value *StoreOriginAddr, 2166 uint64_t StoreOriginSize, Align Alignment) { 2167 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2168 const DataLayout &DL = F->getParent()->getDataLayout(); 2169 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2170 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2171 assert(IntptrAlignment >= MinOriginAlignment); 2172 assert(IntptrSize >= OriginSize); 2173 2174 unsigned Ofs = 0; 2175 Align CurrentAlignment = Alignment; 2176 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2177 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2178 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2179 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2180 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2181 Value *Ptr = 2182 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2183 : IntptrStoreOriginPtr; 2184 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2185 Ofs += IntptrSize / OriginSize; 2186 CurrentAlignment = IntptrAlignment; 2187 } 2188 } 2189 2190 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2191 ++I) { 2192 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2193 : StoreOriginAddr; 2194 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2195 CurrentAlignment = MinOriginAlignment; 2196 } 2197 } 2198 2199 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2200 const Twine &Name) { 2201 Type *VTy = V->getType(); 2202 assert(VTy->isIntegerTy()); 2203 if (VTy->getIntegerBitWidth() == 1) 2204 // Just converting a bool to a bool, so do nothing. 2205 return V; 2206 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2207 } 2208 2209 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2210 Value *Shadow, Value *Origin, 2211 Value *StoreOriginAddr, Align InstAlignment) { 2212 // Do not write origins for zero shadows because we do not trace origins for 2213 // untainted sinks. 2214 const Align OriginAlignment = getOriginAlign(InstAlignment); 2215 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2216 IRBuilder<> IRB(Pos); 2217 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2218 if (!ConstantShadow->isZeroValue()) 2219 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2220 OriginAlignment); 2221 return; 2222 } 2223 2224 if (shouldInstrumentWithCall()) { 2225 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2226 {CollapsedShadow, 2227 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2228 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2229 } else { 2230 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2231 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2232 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2233 IRBuilder<> IRBNew(CheckTerm); 2234 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2235 OriginAlignment); 2236 ++NumOriginStores; 2237 } 2238 } 2239 2240 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2241 Align ShadowAlign, 2242 Instruction *Pos) { 2243 IRBuilder<> IRB(Pos); 2244 IntegerType *ShadowTy = 2245 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2246 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2247 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2248 Value *ExtShadowAddr = 2249 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2250 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2251 // Do not write origins for 0 shadows because we do not trace origins for 2252 // untainted sinks. 2253 } 2254 2255 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2256 Align InstAlignment, 2257 Value *PrimitiveShadow, 2258 Value *Origin, 2259 Instruction *Pos) { 2260 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2261 2262 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2263 const auto SI = AllocaShadowMap.find(AI); 2264 if (SI != AllocaShadowMap.end()) { 2265 IRBuilder<> IRB(Pos); 2266 IRB.CreateStore(PrimitiveShadow, SI->second); 2267 2268 // Do not write origins for 0 shadows because we do not trace origins for 2269 // untainted sinks. 2270 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2271 const auto OI = AllocaOriginMap.find(AI); 2272 assert(OI != AllocaOriginMap.end() && Origin); 2273 IRB.CreateStore(Origin, OI->second); 2274 } 2275 return; 2276 } 2277 } 2278 2279 const Align ShadowAlign = getShadowAlign(InstAlignment); 2280 if (DFS.isZeroShadow(PrimitiveShadow)) { 2281 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2282 return; 2283 } 2284 2285 IRBuilder<> IRB(Pos); 2286 Value *ShadowAddr, *OriginAddr; 2287 std::tie(ShadowAddr, OriginAddr) = 2288 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2289 2290 const unsigned ShadowVecSize = 8; 2291 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2292 "Shadow vector is too large!"); 2293 2294 uint64_t Offset = 0; 2295 uint64_t LeftSize = Size; 2296 if (LeftSize >= ShadowVecSize) { 2297 auto *ShadowVecTy = 2298 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2299 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2300 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2301 ShadowVec = IRB.CreateInsertElement( 2302 ShadowVec, PrimitiveShadow, 2303 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2304 } 2305 Value *ShadowVecAddr = 2306 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2307 do { 2308 Value *CurShadowVecAddr = 2309 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2310 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2311 LeftSize -= ShadowVecSize; 2312 ++Offset; 2313 } while (LeftSize >= ShadowVecSize); 2314 Offset *= ShadowVecSize; 2315 } 2316 while (LeftSize > 0) { 2317 Value *CurShadowAddr = 2318 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2319 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2320 --LeftSize; 2321 ++Offset; 2322 } 2323 2324 if (ShouldTrackOrigins) { 2325 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2326 InstAlignment); 2327 } 2328 } 2329 2330 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2331 switch (AO) { 2332 case AtomicOrdering::NotAtomic: 2333 return AtomicOrdering::NotAtomic; 2334 case AtomicOrdering::Unordered: 2335 case AtomicOrdering::Monotonic: 2336 case AtomicOrdering::Release: 2337 return AtomicOrdering::Release; 2338 case AtomicOrdering::Acquire: 2339 case AtomicOrdering::AcquireRelease: 2340 return AtomicOrdering::AcquireRelease; 2341 case AtomicOrdering::SequentiallyConsistent: 2342 return AtomicOrdering::SequentiallyConsistent; 2343 } 2344 llvm_unreachable("Unknown ordering"); 2345 } 2346 2347 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2348 auto &DL = SI.getModule()->getDataLayout(); 2349 Value *Val = SI.getValueOperand(); 2350 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2351 if (Size == 0) 2352 return; 2353 2354 // When an application store is atomic, increase atomic ordering between 2355 // atomic application loads and stores to ensure happen-before order; load 2356 // shadow data after application data; store zero shadow data before 2357 // application data. This ensure shadow loads return either labels of the 2358 // initial application data or zeros. 2359 if (SI.isAtomic()) 2360 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2361 2362 const bool ShouldTrackOrigins = 2363 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2364 std::vector<Value *> Shadows; 2365 std::vector<Value *> Origins; 2366 2367 Value *Shadow = 2368 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2369 2370 if (ShouldTrackOrigins) { 2371 Shadows.push_back(Shadow); 2372 Origins.push_back(DFSF.getOrigin(Val)); 2373 } 2374 2375 Value *PrimitiveShadow; 2376 if (ClCombinePointerLabelsOnStore) { 2377 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2378 if (ShouldTrackOrigins) { 2379 Shadows.push_back(PtrShadow); 2380 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2381 } 2382 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2383 } else { 2384 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2385 } 2386 Value *Origin = nullptr; 2387 if (ShouldTrackOrigins) 2388 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2389 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2390 PrimitiveShadow, Origin, &SI); 2391 if (ClEventCallbacks) { 2392 IRBuilder<> IRB(&SI); 2393 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2394 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2395 } 2396 } 2397 2398 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2399 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2400 2401 Value *Val = I.getOperand(1); 2402 const auto &DL = I.getModule()->getDataLayout(); 2403 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2404 if (Size == 0) 2405 return; 2406 2407 // Conservatively set data at stored addresses and return with zero shadow to 2408 // prevent shadow data races. 2409 IRBuilder<> IRB(&I); 2410 Value *Addr = I.getOperand(0); 2411 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2412 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2413 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2414 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2415 } 2416 2417 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2418 visitCASOrRMW(I.getAlign(), I); 2419 // TODO: The ordering change follows MSan. It is possible not to change 2420 // ordering because we always set and use 0 shadows. 2421 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2422 } 2423 2424 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2425 visitCASOrRMW(I.getAlign(), I); 2426 // TODO: The ordering change follows MSan. It is possible not to change 2427 // ordering because we always set and use 0 shadows. 2428 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2429 } 2430 2431 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2432 visitInstOperands(UO); 2433 } 2434 2435 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2436 visitInstOperands(BO); 2437 } 2438 2439 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2440 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2441 // a musttail call and a ret, don't instrument. New instructions are not 2442 // allowed after a musttail call. 2443 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2444 if (CI->isMustTailCall()) 2445 return; 2446 visitInstOperands(BCI); 2447 } 2448 2449 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2450 2451 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2452 visitInstOperands(CI); 2453 if (ClEventCallbacks) { 2454 IRBuilder<> IRB(&CI); 2455 Value *CombinedShadow = DFSF.getShadow(&CI); 2456 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2457 } 2458 } 2459 2460 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2461 // We do not need to track data through LandingPadInst. 2462 // 2463 // For the C++ exceptions, if a value is thrown, this value will be stored 2464 // in a memory location provided by __cxa_allocate_exception(...) (on the 2465 // throw side) or __cxa_begin_catch(...) (on the catch side). 2466 // This memory will have a shadow, so with the loads and stores we will be 2467 // able to propagate labels on data thrown through exceptions, without any 2468 // special handling of the LandingPadInst. 2469 // 2470 // The second element in the pair result of the LandingPadInst is a 2471 // register value, but it is for a type ID and should never be tainted. 2472 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2473 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2474 } 2475 2476 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2477 if (ClCombineOffsetLabelsOnGEP) { 2478 visitInstOperands(GEPI); 2479 return; 2480 } 2481 2482 // Only propagate shadow/origin of base pointer value but ignore those of 2483 // offset operands. 2484 Value *BasePointer = GEPI.getPointerOperand(); 2485 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2486 if (DFSF.DFS.shouldTrackOrigins()) 2487 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2488 } 2489 2490 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2491 visitInstOperands(I); 2492 } 2493 2494 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2495 visitInstOperands(I); 2496 } 2497 2498 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2499 visitInstOperands(I); 2500 } 2501 2502 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2503 IRBuilder<> IRB(&I); 2504 Value *Agg = I.getAggregateOperand(); 2505 Value *AggShadow = DFSF.getShadow(Agg); 2506 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2507 DFSF.setShadow(&I, ResShadow); 2508 visitInstOperandOrigins(I); 2509 } 2510 2511 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2512 IRBuilder<> IRB(&I); 2513 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2514 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2515 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2516 DFSF.setShadow(&I, Res); 2517 visitInstOperandOrigins(I); 2518 } 2519 2520 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2521 bool AllLoadsStores = true; 2522 for (User *U : I.users()) { 2523 if (isa<LoadInst>(U)) 2524 continue; 2525 2526 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2527 if (SI->getPointerOperand() == &I) 2528 continue; 2529 } 2530 2531 AllLoadsStores = false; 2532 break; 2533 } 2534 if (AllLoadsStores) { 2535 IRBuilder<> IRB(&I); 2536 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2537 if (DFSF.DFS.shouldTrackOrigins()) { 2538 DFSF.AllocaOriginMap[&I] = 2539 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2540 } 2541 } 2542 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2543 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2544 } 2545 2546 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2547 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2548 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2549 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2550 Value *ShadowSel = nullptr; 2551 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2552 std::vector<Value *> Shadows; 2553 std::vector<Value *> Origins; 2554 Value *TrueOrigin = 2555 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2556 Value *FalseOrigin = 2557 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2558 2559 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2560 2561 if (isa<VectorType>(I.getCondition()->getType())) { 2562 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2563 FalseShadow, &I); 2564 if (ShouldTrackOrigins) { 2565 Shadows.push_back(TrueShadow); 2566 Shadows.push_back(FalseShadow); 2567 Origins.push_back(TrueOrigin); 2568 Origins.push_back(FalseOrigin); 2569 } 2570 } else { 2571 if (TrueShadow == FalseShadow) { 2572 ShadowSel = TrueShadow; 2573 if (ShouldTrackOrigins) { 2574 Shadows.push_back(TrueShadow); 2575 Origins.push_back(TrueOrigin); 2576 } 2577 } else { 2578 ShadowSel = 2579 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2580 if (ShouldTrackOrigins) { 2581 Shadows.push_back(ShadowSel); 2582 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2583 FalseOrigin, "", &I)); 2584 } 2585 } 2586 } 2587 DFSF.setShadow(&I, ClTrackSelectControlFlow 2588 ? DFSF.combineShadowsThenConvert( 2589 I.getType(), CondShadow, ShadowSel, &I) 2590 : ShadowSel); 2591 if (ShouldTrackOrigins) { 2592 if (ClTrackSelectControlFlow) { 2593 Shadows.push_back(CondShadow); 2594 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2595 } 2596 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2597 } 2598 } 2599 2600 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2601 IRBuilder<> IRB(&I); 2602 Value *ValShadow = DFSF.getShadow(I.getValue()); 2603 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2604 ? DFSF.getOrigin(I.getValue()) 2605 : DFSF.DFS.ZeroOrigin; 2606 IRB.CreateCall( 2607 DFSF.DFS.DFSanSetLabelFn, 2608 {ValShadow, ValOrigin, 2609 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2610 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2611 } 2612 2613 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2614 IRBuilder<> IRB(&I); 2615 2616 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2617 // need to move origins before moving shadows. 2618 if (DFSF.DFS.shouldTrackOrigins()) { 2619 IRB.CreateCall( 2620 DFSF.DFS.DFSanMemOriginTransferFn, 2621 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2622 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2623 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2624 } 2625 2626 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2627 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2628 Value *LenShadow = 2629 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2630 DFSF.DFS.ShadowWidthBytes)); 2631 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2632 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2633 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2634 auto *MTI = cast<MemTransferInst>( 2635 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2636 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2637 if (ClPreserveAlignment) { 2638 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2639 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2640 } else { 2641 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2642 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2643 } 2644 if (ClEventCallbacks) { 2645 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2646 {RawDestShadow, 2647 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2648 } 2649 } 2650 2651 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2652 if (!BR.isConditional()) 2653 return; 2654 2655 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2656 } 2657 2658 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2659 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2660 } 2661 2662 static bool isAMustTailRetVal(Value *RetVal) { 2663 // Tail call may have a bitcast between return. 2664 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2665 RetVal = I->getOperand(0); 2666 } 2667 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2668 return I->isMustTailCall(); 2669 } 2670 return false; 2671 } 2672 2673 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2674 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2675 // Don't emit the instrumentation for musttail call returns. 2676 if (isAMustTailRetVal(RI.getReturnValue())) 2677 return; 2678 2679 Value *S = DFSF.getShadow(RI.getReturnValue()); 2680 IRBuilder<> IRB(&RI); 2681 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2682 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2683 if (Size <= RetvalTLSSize) { 2684 // If the size overflows, stores nothing. At callsite, oversized return 2685 // shadows are set to zero. 2686 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2687 } 2688 if (DFSF.DFS.shouldTrackOrigins()) { 2689 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2690 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2691 } 2692 } 2693 } 2694 2695 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2696 std::vector<Value *> &Args, 2697 IRBuilder<> &IRB) { 2698 FunctionType *FT = F.getFunctionType(); 2699 2700 auto *I = CB.arg_begin(); 2701 2702 // Adds non-variable argument shadows. 2703 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2704 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2705 2706 // Adds variable argument shadows. 2707 if (FT->isVarArg()) { 2708 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2709 CB.arg_size() - FT->getNumParams()); 2710 auto *LabelVAAlloca = 2711 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2712 "labelva", &DFSF.F->getEntryBlock().front()); 2713 2714 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2715 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2716 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2717 LabelVAPtr); 2718 } 2719 2720 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2721 } 2722 2723 // Adds the return value shadow. 2724 if (!FT->getReturnType()->isVoidTy()) { 2725 if (!DFSF.LabelReturnAlloca) { 2726 DFSF.LabelReturnAlloca = new AllocaInst( 2727 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2728 "labelreturn", &DFSF.F->getEntryBlock().front()); 2729 } 2730 Args.push_back(DFSF.LabelReturnAlloca); 2731 } 2732 } 2733 2734 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2735 std::vector<Value *> &Args, 2736 IRBuilder<> &IRB) { 2737 FunctionType *FT = F.getFunctionType(); 2738 2739 auto *I = CB.arg_begin(); 2740 2741 // Add non-variable argument origins. 2742 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2743 Args.push_back(DFSF.getOrigin(*I)); 2744 2745 // Add variable argument origins. 2746 if (FT->isVarArg()) { 2747 auto *OriginVATy = 2748 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2749 auto *OriginVAAlloca = 2750 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2751 "originva", &DFSF.F->getEntryBlock().front()); 2752 2753 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2754 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2755 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2756 } 2757 2758 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2759 } 2760 2761 // Add the return value origin. 2762 if (!FT->getReturnType()->isVoidTy()) { 2763 if (!DFSF.OriginReturnAlloca) { 2764 DFSF.OriginReturnAlloca = new AllocaInst( 2765 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2766 "originreturn", &DFSF.F->getEntryBlock().front()); 2767 } 2768 Args.push_back(DFSF.OriginReturnAlloca); 2769 } 2770 } 2771 2772 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2773 IRBuilder<> IRB(&CB); 2774 switch (DFSF.DFS.getWrapperKind(&F)) { 2775 case DataFlowSanitizer::WK_Warning: 2776 CB.setCalledFunction(&F); 2777 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2778 IRB.CreateGlobalStringPtr(F.getName())); 2779 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2780 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2781 return true; 2782 case DataFlowSanitizer::WK_Discard: 2783 CB.setCalledFunction(&F); 2784 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2785 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2786 return true; 2787 case DataFlowSanitizer::WK_Functional: 2788 CB.setCalledFunction(&F); 2789 visitInstOperands(CB); 2790 return true; 2791 case DataFlowSanitizer::WK_Custom: 2792 // Don't try to handle invokes of custom functions, it's too complicated. 2793 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2794 // wrapper. 2795 CallInst *CI = dyn_cast<CallInst>(&CB); 2796 if (!CI) 2797 return false; 2798 2799 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2800 FunctionType *FT = F.getFunctionType(); 2801 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2802 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2803 CustomFName += F.getName(); 2804 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2805 CustomFName, CustomFn.TransformedType); 2806 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2807 CustomFn->copyAttributesFrom(&F); 2808 2809 // Custom functions returning non-void will write to the return label. 2810 if (!FT->getReturnType()->isVoidTy()) { 2811 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2812 } 2813 } 2814 2815 std::vector<Value *> Args; 2816 2817 // Adds non-variable arguments. 2818 auto *I = CB.arg_begin(); 2819 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2820 Args.push_back(*I); 2821 } 2822 2823 // Adds shadow arguments. 2824 const unsigned ShadowArgStart = Args.size(); 2825 addShadowArguments(F, CB, Args, IRB); 2826 2827 // Adds origin arguments. 2828 const unsigned OriginArgStart = Args.size(); 2829 if (ShouldTrackOrigins) 2830 addOriginArguments(F, CB, Args, IRB); 2831 2832 // Adds variable arguments. 2833 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2834 2835 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2836 CustomCI->setCallingConv(CI->getCallingConv()); 2837 CustomCI->setAttributes(transformFunctionAttributes( 2838 CustomFn, CI->getContext(), CI->getAttributes())); 2839 2840 // Update the parameter attributes of the custom call instruction to 2841 // zero extend the shadow parameters. This is required for targets 2842 // which consider PrimitiveShadowTy an illegal type. 2843 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2844 const unsigned ArgNo = ShadowArgStart + N; 2845 if (CustomCI->getArgOperand(ArgNo)->getType() == 2846 DFSF.DFS.PrimitiveShadowTy) 2847 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2848 if (ShouldTrackOrigins) { 2849 const unsigned OriginArgNo = OriginArgStart + N; 2850 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2851 DFSF.DFS.OriginTy) 2852 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2853 } 2854 } 2855 2856 // Loads the return value shadow and origin. 2857 if (!FT->getReturnType()->isVoidTy()) { 2858 LoadInst *LabelLoad = 2859 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2860 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2861 FT->getReturnType(), LabelLoad, &CB)); 2862 if (ShouldTrackOrigins) { 2863 LoadInst *OriginLoad = 2864 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2865 DFSF.setOrigin(CustomCI, OriginLoad); 2866 } 2867 } 2868 2869 CI->replaceAllUsesWith(CustomCI); 2870 CI->eraseFromParent(); 2871 return true; 2872 } 2873 return false; 2874 } 2875 2876 void DFSanVisitor::visitCallBase(CallBase &CB) { 2877 Function *F = CB.getCalledFunction(); 2878 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2879 visitInstOperands(CB); 2880 return; 2881 } 2882 2883 // Calls to this function are synthesized in wrappers, and we shouldn't 2884 // instrument them. 2885 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2886 return; 2887 2888 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2889 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2890 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2891 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2892 return; 2893 2894 IRBuilder<> IRB(&CB); 2895 2896 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2897 FunctionType *FT = CB.getFunctionType(); 2898 const DataLayout &DL = getDataLayout(); 2899 2900 // Stores argument shadows. 2901 unsigned ArgOffset = 0; 2902 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2903 if (ShouldTrackOrigins) { 2904 // Ignore overflowed origins 2905 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2906 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2907 !DFSF.DFS.isZeroShadow(ArgShadow)) 2908 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2909 DFSF.getArgOriginTLS(I, IRB)); 2910 } 2911 2912 unsigned Size = 2913 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2914 // Stop storing if arguments' size overflows. Inside a function, arguments 2915 // after overflow have zero shadow values. 2916 if (ArgOffset + Size > ArgTLSSize) 2917 break; 2918 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 2919 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2920 ShadowTLSAlignment); 2921 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2922 } 2923 2924 Instruction *Next = nullptr; 2925 if (!CB.getType()->isVoidTy()) { 2926 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2927 if (II->getNormalDest()->getSinglePredecessor()) { 2928 Next = &II->getNormalDest()->front(); 2929 } else { 2930 BasicBlock *NewBB = 2931 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2932 Next = &NewBB->front(); 2933 } 2934 } else { 2935 assert(CB.getIterator() != CB.getParent()->end()); 2936 Next = CB.getNextNode(); 2937 } 2938 2939 // Don't emit the epilogue for musttail call returns. 2940 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 2941 return; 2942 2943 // Loads the return value shadow. 2944 IRBuilder<> NextIRB(Next); 2945 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2946 if (Size > RetvalTLSSize) { 2947 // Set overflowed return shadow to be zero. 2948 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2949 } else { 2950 LoadInst *LI = NextIRB.CreateAlignedLoad( 2951 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2952 ShadowTLSAlignment, "_dfsret"); 2953 DFSF.SkipInsts.insert(LI); 2954 DFSF.setShadow(&CB, LI); 2955 DFSF.NonZeroChecks.push_back(LI); 2956 } 2957 2958 if (ShouldTrackOrigins) { 2959 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 2960 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 2961 DFSF.SkipInsts.insert(LI); 2962 DFSF.setOrigin(&CB, LI); 2963 } 2964 } 2965 } 2966 2967 void DFSanVisitor::visitPHINode(PHINode &PN) { 2968 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2969 PHINode *ShadowPN = 2970 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2971 2972 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2973 Value *UndefShadow = UndefValue::get(ShadowTy); 2974 for (BasicBlock *BB : PN.blocks()) 2975 ShadowPN->addIncoming(UndefShadow, BB); 2976 2977 DFSF.setShadow(&PN, ShadowPN); 2978 2979 PHINode *OriginPN = nullptr; 2980 if (DFSF.DFS.shouldTrackOrigins()) { 2981 OriginPN = 2982 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 2983 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 2984 for (BasicBlock *BB : PN.blocks()) 2985 OriginPN->addIncoming(UndefOrigin, BB); 2986 DFSF.setOrigin(&PN, OriginPN); 2987 } 2988 2989 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 2990 } 2991 2992 namespace { 2993 class DataFlowSanitizerLegacyPass : public ModulePass { 2994 private: 2995 std::vector<std::string> ABIListFiles; 2996 2997 public: 2998 static char ID; 2999 3000 DataFlowSanitizerLegacyPass( 3001 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3002 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3003 3004 bool runOnModule(Module &M) override { 3005 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3006 } 3007 }; 3008 } // namespace 3009 3010 char DataFlowSanitizerLegacyPass::ID; 3011 3012 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3013 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3014 3015 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3016 const std::vector<std::string> &ABIListFiles) { 3017 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3018 } 3019 3020 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3021 ModuleAnalysisManager &AM) { 3022 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3023 return PreservedAnalyses::none(); 3024 } 3025 return PreservedAnalyses::all(); 3026 } 3027