1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/DenseSet.h" 51 #include "llvm/ADT/DepthFirstIterator.h" 52 #include "llvm/ADT/None.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/ADT/Triple.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CallSite.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalValue.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstVisitor.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/MDBuilder.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/SpecialCaseList.h" 91 #include "llvm/Transforms/Instrumentation.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstddef> 96 #include <cstdint> 97 #include <iterator> 98 #include <memory> 99 #include <set> 100 #include <string> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 106 // External symbol to be used when generating the shadow address for 107 // architectures with multiple VMAs. Instead of using a constant integer 108 // the runtime will set the external mask based on the VMA range. 109 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 110 111 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 112 // alignment requirements provided by the input IR are correct. For example, 113 // if the input IR contains a load with alignment 8, this flag will cause 114 // the shadow load to have alignment 16. This flag is disabled by default as 115 // we have unfortunately encountered too much code (including Clang itself; 116 // see PR14291) which performs misaligned access. 117 static cl::opt<bool> ClPreserveAlignment( 118 "dfsan-preserve-alignment", 119 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 120 cl::init(false)); 121 122 // The ABI list files control how shadow parameters are passed. The pass treats 123 // every function labelled "uninstrumented" in the ABI list file as conforming 124 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 125 // additional annotations for those functions, a call to one of those functions 126 // will produce a warning message, as the labelling behaviour of the function is 127 // unknown. The other supported annotations are "functional" and "discard", 128 // which are described below under DataFlowSanitizer::WrapperKind. 129 static cl::list<std::string> ClABIListFiles( 130 "dfsan-abilist", 131 cl::desc("File listing native ABI functions and how the pass treats them"), 132 cl::Hidden); 133 134 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 135 // functions (see DataFlowSanitizer::InstrumentedABI below). 136 static cl::opt<bool> ClArgsABI( 137 "dfsan-args-abi", 138 cl::desc("Use the argument ABI rather than the TLS ABI"), 139 cl::Hidden); 140 141 // Controls whether the pass includes or ignores the labels of pointers in load 142 // instructions. 143 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 144 "dfsan-combine-pointer-labels-on-load", 145 cl::desc("Combine the label of the pointer with the label of the data when " 146 "loading from memory."), 147 cl::Hidden, cl::init(true)); 148 149 // Controls whether the pass includes or ignores the labels of pointers in 150 // stores instructions. 151 static cl::opt<bool> ClCombinePointerLabelsOnStore( 152 "dfsan-combine-pointer-labels-on-store", 153 cl::desc("Combine the label of the pointer with the label of the data when " 154 "storing in memory."), 155 cl::Hidden, cl::init(false)); 156 157 static cl::opt<bool> ClDebugNonzeroLabels( 158 "dfsan-debug-nonzero-labels", 159 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 160 "load or return with a nonzero label"), 161 cl::Hidden); 162 163 static StringRef GetGlobalTypeString(const GlobalValue &G) { 164 // Types of GlobalVariables are always pointer types. 165 Type *GType = G.getValueType(); 166 // For now we support blacklisting struct types only. 167 if (StructType *SGType = dyn_cast<StructType>(GType)) { 168 if (!SGType->isLiteral()) 169 return SGType->getName(); 170 } 171 return "<unknown type>"; 172 } 173 174 namespace { 175 176 class DFSanABIList { 177 std::unique_ptr<SpecialCaseList> SCL; 178 179 public: 180 DFSanABIList() = default; 181 182 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 183 184 /// Returns whether either this function or its source file are listed in the 185 /// given category. 186 bool isIn(const Function &F, StringRef Category) const { 187 return isIn(*F.getParent(), Category) || 188 SCL->inSection("dataflow", "fun", F.getName(), Category); 189 } 190 191 /// Returns whether this global alias is listed in the given category. 192 /// 193 /// If GA aliases a function, the alias's name is matched as a function name 194 /// would be. Similarly, aliases of globals are matched like globals. 195 bool isIn(const GlobalAlias &GA, StringRef Category) const { 196 if (isIn(*GA.getParent(), Category)) 197 return true; 198 199 if (isa<FunctionType>(GA.getValueType())) 200 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 201 202 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 203 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 204 Category); 205 } 206 207 /// Returns whether this module is listed in the given category. 208 bool isIn(const Module &M, StringRef Category) const { 209 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 210 } 211 }; 212 213 /// TransformedFunction is used to express the result of transforming one 214 /// function type into another. This struct is immutable. It holds metadata 215 /// useful for updating calls of the old function to the new type. 216 struct TransformedFunction { 217 TransformedFunction(FunctionType* OriginalType, 218 FunctionType* TransformedType, 219 std::vector<unsigned> ArgumentIndexMapping) 220 : OriginalType(OriginalType), 221 TransformedType(TransformedType), 222 ArgumentIndexMapping(ArgumentIndexMapping) {} 223 224 // Disallow copies. 225 TransformedFunction(const TransformedFunction&) = delete; 226 TransformedFunction& operator=(const TransformedFunction&) = delete; 227 228 // Allow moves. 229 TransformedFunction(TransformedFunction&&) = default; 230 TransformedFunction& operator=(TransformedFunction&&) = default; 231 232 /// Type of the function before the transformation. 233 FunctionType *OriginalType; 234 235 /// Type of the function after the transformation. 236 FunctionType *TransformedType; 237 238 /// Transforming a function may change the position of arguments. This 239 /// member records the mapping from each argument's old position to its new 240 /// position. Argument positions are zero-indexed. If the transformation 241 /// from F to F' made the first argument of F into the third argument of F', 242 /// then ArgumentIndexMapping[0] will equal 2. 243 std::vector<unsigned> ArgumentIndexMapping; 244 }; 245 246 /// Given function attributes from a call site for the original function, 247 /// return function attributes appropriate for a call to the transformed 248 /// function. 249 AttributeList TransformFunctionAttributes( 250 const TransformedFunction& TransformedFunction, 251 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 252 253 // Construct a vector of AttributeSet for each function argument. 254 std::vector<llvm::AttributeSet> ArgumentAttributes( 255 TransformedFunction.TransformedType->getNumParams()); 256 257 // Copy attributes from the parameter of the original function to the 258 // transformed version. 'ArgumentIndexMapping' holds the mapping from 259 // old argument position to new. 260 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 261 i < ie; ++i) { 262 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 263 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 264 } 265 266 // Copy annotations on varargs arguments. 267 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 268 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 269 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 270 } 271 272 return AttributeList::get( 273 Ctx, 274 CallSiteAttrs.getFnAttributes(), 275 CallSiteAttrs.getRetAttributes(), 276 llvm::makeArrayRef(ArgumentAttributes)); 277 } 278 279 class DataFlowSanitizer : public ModulePass { 280 friend struct DFSanFunction; 281 friend class DFSanVisitor; 282 283 enum { 284 ShadowWidth = 16 285 }; 286 287 /// Which ABI should be used for instrumented functions? 288 enum InstrumentedABI { 289 /// Argument and return value labels are passed through additional 290 /// arguments and by modifying the return type. 291 IA_Args, 292 293 /// Argument and return value labels are passed through TLS variables 294 /// __dfsan_arg_tls and __dfsan_retval_tls. 295 IA_TLS 296 }; 297 298 /// How should calls to uninstrumented functions be handled? 299 enum WrapperKind { 300 /// This function is present in an uninstrumented form but we don't know 301 /// how it should be handled. Print a warning and call the function anyway. 302 /// Don't label the return value. 303 WK_Warning, 304 305 /// This function does not write to (user-accessible) memory, and its return 306 /// value is unlabelled. 307 WK_Discard, 308 309 /// This function does not write to (user-accessible) memory, and the label 310 /// of its return value is the union of the label of its arguments. 311 WK_Functional, 312 313 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 314 /// where F is the name of the function. This function may wrap the 315 /// original function or provide its own implementation. This is similar to 316 /// the IA_Args ABI, except that IA_Args uses a struct return type to 317 /// pass the return value shadow in a register, while WK_Custom uses an 318 /// extra pointer argument to return the shadow. This allows the wrapped 319 /// form of the function type to be expressed in C. 320 WK_Custom 321 }; 322 323 Module *Mod; 324 LLVMContext *Ctx; 325 IntegerType *ShadowTy; 326 PointerType *ShadowPtrTy; 327 IntegerType *IntptrTy; 328 ConstantInt *ZeroShadow; 329 ConstantInt *ShadowPtrMask; 330 ConstantInt *ShadowPtrMul; 331 Constant *ArgTLS; 332 Constant *RetvalTLS; 333 void *(*GetArgTLSPtr)(); 334 void *(*GetRetvalTLSPtr)(); 335 FunctionType *GetArgTLSTy; 336 FunctionType *GetRetvalTLSTy; 337 Constant *GetArgTLS; 338 Constant *GetRetvalTLS; 339 Constant *ExternalShadowMask; 340 FunctionType *DFSanUnionFnTy; 341 FunctionType *DFSanUnionLoadFnTy; 342 FunctionType *DFSanUnimplementedFnTy; 343 FunctionType *DFSanSetLabelFnTy; 344 FunctionType *DFSanNonzeroLabelFnTy; 345 FunctionType *DFSanVarargWrapperFnTy; 346 FunctionCallee DFSanUnionFn; 347 FunctionCallee DFSanCheckedUnionFn; 348 FunctionCallee DFSanUnionLoadFn; 349 FunctionCallee DFSanUnimplementedFn; 350 FunctionCallee DFSanSetLabelFn; 351 FunctionCallee DFSanNonzeroLabelFn; 352 FunctionCallee DFSanVarargWrapperFn; 353 MDNode *ColdCallWeights; 354 DFSanABIList ABIList; 355 DenseMap<Value *, Function *> UnwrappedFnMap; 356 AttrBuilder ReadOnlyNoneAttrs; 357 bool DFSanRuntimeShadowMask = false; 358 359 Value *getShadowAddress(Value *Addr, Instruction *Pos); 360 bool isInstrumented(const Function *F); 361 bool isInstrumented(const GlobalAlias *GA); 362 FunctionType *getArgsFunctionType(FunctionType *T); 363 FunctionType *getTrampolineFunctionType(FunctionType *T); 364 TransformedFunction getCustomFunctionType(FunctionType *T); 365 InstrumentedABI getInstrumentedABI(); 366 WrapperKind getWrapperKind(Function *F); 367 void addGlobalNamePrefix(GlobalValue *GV); 368 Function *buildWrapperFunction(Function *F, StringRef NewFName, 369 GlobalValue::LinkageTypes NewFLink, 370 FunctionType *NewFT); 371 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 372 373 public: 374 static char ID; 375 376 DataFlowSanitizer( 377 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 378 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 379 380 bool doInitialization(Module &M) override; 381 bool runOnModule(Module &M) override; 382 }; 383 384 struct DFSanFunction { 385 DataFlowSanitizer &DFS; 386 Function *F; 387 DominatorTree DT; 388 DataFlowSanitizer::InstrumentedABI IA; 389 bool IsNativeABI; 390 Value *ArgTLSPtr = nullptr; 391 Value *RetvalTLSPtr = nullptr; 392 AllocaInst *LabelReturnAlloca = nullptr; 393 DenseMap<Value *, Value *> ValShadowMap; 394 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 395 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 396 DenseSet<Instruction *> SkipInsts; 397 std::vector<Value *> NonZeroChecks; 398 bool AvoidNewBlocks; 399 400 struct CachedCombinedShadow { 401 BasicBlock *Block; 402 Value *Shadow; 403 }; 404 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 405 CachedCombinedShadows; 406 DenseMap<Value *, std::set<Value *>> ShadowElements; 407 408 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 409 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 410 DT.recalculate(*F); 411 // FIXME: Need to track down the register allocator issue which causes poor 412 // performance in pathological cases with large numbers of basic blocks. 413 AvoidNewBlocks = F->size() > 1000; 414 } 415 416 Value *getArgTLSPtr(); 417 Value *getArgTLS(unsigned Index, Instruction *Pos); 418 Value *getRetvalTLS(); 419 Value *getShadow(Value *V); 420 void setShadow(Instruction *I, Value *Shadow); 421 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 422 Value *combineOperandShadows(Instruction *Inst); 423 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 424 Instruction *Pos); 425 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 426 Instruction *Pos); 427 }; 428 429 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 430 public: 431 DFSanFunction &DFSF; 432 433 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 434 435 const DataLayout &getDataLayout() const { 436 return DFSF.F->getParent()->getDataLayout(); 437 } 438 439 void visitOperandShadowInst(Instruction &I); 440 void visitBinaryOperator(BinaryOperator &BO); 441 void visitCastInst(CastInst &CI); 442 void visitCmpInst(CmpInst &CI); 443 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 444 void visitLoadInst(LoadInst &LI); 445 void visitStoreInst(StoreInst &SI); 446 void visitReturnInst(ReturnInst &RI); 447 void visitCallSite(CallSite CS); 448 void visitPHINode(PHINode &PN); 449 void visitExtractElementInst(ExtractElementInst &I); 450 void visitInsertElementInst(InsertElementInst &I); 451 void visitShuffleVectorInst(ShuffleVectorInst &I); 452 void visitExtractValueInst(ExtractValueInst &I); 453 void visitInsertValueInst(InsertValueInst &I); 454 void visitAllocaInst(AllocaInst &I); 455 void visitSelectInst(SelectInst &I); 456 void visitMemSetInst(MemSetInst &I); 457 void visitMemTransferInst(MemTransferInst &I); 458 }; 459 460 } // end anonymous namespace 461 462 char DataFlowSanitizer::ID; 463 464 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 465 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 466 467 ModulePass * 468 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 469 void *(*getArgTLS)(), 470 void *(*getRetValTLS)()) { 471 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 472 } 473 474 DataFlowSanitizer::DataFlowSanitizer( 475 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 476 void *(*getRetValTLS)()) 477 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 478 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 479 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 480 ClABIListFiles.end()); 481 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 482 } 483 484 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 485 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 486 ArgTypes.append(T->getNumParams(), ShadowTy); 487 if (T->isVarArg()) 488 ArgTypes.push_back(ShadowPtrTy); 489 Type *RetType = T->getReturnType(); 490 if (!RetType->isVoidTy()) 491 RetType = StructType::get(RetType, ShadowTy); 492 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 493 } 494 495 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 496 assert(!T->isVarArg()); 497 SmallVector<Type *, 4> ArgTypes; 498 ArgTypes.push_back(T->getPointerTo()); 499 ArgTypes.append(T->param_begin(), T->param_end()); 500 ArgTypes.append(T->getNumParams(), ShadowTy); 501 Type *RetType = T->getReturnType(); 502 if (!RetType->isVoidTy()) 503 ArgTypes.push_back(ShadowPtrTy); 504 return FunctionType::get(T->getReturnType(), ArgTypes, false); 505 } 506 507 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 508 SmallVector<Type *, 4> ArgTypes; 509 510 // Some parameters of the custom function being constructed are 511 // parameters of T. Record the mapping from parameters of T to 512 // parameters of the custom function, so that parameter attributes 513 // at call sites can be updated. 514 std::vector<unsigned> ArgumentIndexMapping; 515 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 516 Type* param_type = T->getParamType(i); 517 FunctionType *FT; 518 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 519 cast<PointerType>(param_type)->getElementType()))) { 520 ArgumentIndexMapping.push_back(ArgTypes.size()); 521 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 522 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 523 } else { 524 ArgumentIndexMapping.push_back(ArgTypes.size()); 525 ArgTypes.push_back(param_type); 526 } 527 } 528 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 529 ArgTypes.push_back(ShadowTy); 530 if (T->isVarArg()) 531 ArgTypes.push_back(ShadowPtrTy); 532 Type *RetType = T->getReturnType(); 533 if (!RetType->isVoidTy()) 534 ArgTypes.push_back(ShadowPtrTy); 535 return TransformedFunction( 536 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 537 ArgumentIndexMapping); 538 } 539 540 bool DataFlowSanitizer::doInitialization(Module &M) { 541 Triple TargetTriple(M.getTargetTriple()); 542 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 543 bool IsMIPS64 = TargetTriple.isMIPS64(); 544 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 545 TargetTriple.getArch() == Triple::aarch64_be; 546 547 const DataLayout &DL = M.getDataLayout(); 548 549 Mod = &M; 550 Ctx = &M.getContext(); 551 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 552 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 553 IntptrTy = DL.getIntPtrType(*Ctx); 554 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 555 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 556 if (IsX86_64) 557 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 558 else if (IsMIPS64) 559 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 560 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 561 else if (IsAArch64) 562 DFSanRuntimeShadowMask = true; 563 else 564 report_fatal_error("unsupported triple"); 565 566 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 567 DFSanUnionFnTy = 568 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 569 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 570 DFSanUnionLoadFnTy = 571 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 572 DFSanUnimplementedFnTy = FunctionType::get( 573 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 574 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 575 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 576 DFSanSetLabelArgs, /*isVarArg=*/false); 577 DFSanNonzeroLabelFnTy = FunctionType::get( 578 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 579 DFSanVarargWrapperFnTy = FunctionType::get( 580 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 581 582 if (GetArgTLSPtr) { 583 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 584 ArgTLS = nullptr; 585 GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false); 586 GetArgTLS = ConstantExpr::getIntToPtr( 587 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 588 PointerType::getUnqual(GetArgTLSTy)); 589 } 590 if (GetRetvalTLSPtr) { 591 RetvalTLS = nullptr; 592 GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false); 593 GetRetvalTLS = ConstantExpr::getIntToPtr( 594 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 595 PointerType::getUnqual(GetRetvalTLSTy)); 596 } 597 598 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 599 return true; 600 } 601 602 bool DataFlowSanitizer::isInstrumented(const Function *F) { 603 return !ABIList.isIn(*F, "uninstrumented"); 604 } 605 606 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 607 return !ABIList.isIn(*GA, "uninstrumented"); 608 } 609 610 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 611 return ClArgsABI ? IA_Args : IA_TLS; 612 } 613 614 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 615 if (ABIList.isIn(*F, "functional")) 616 return WK_Functional; 617 if (ABIList.isIn(*F, "discard")) 618 return WK_Discard; 619 if (ABIList.isIn(*F, "custom")) 620 return WK_Custom; 621 622 return WK_Warning; 623 } 624 625 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 626 std::string GVName = GV->getName(), Prefix = "dfs$"; 627 GV->setName(Prefix + GVName); 628 629 // Try to change the name of the function in module inline asm. We only do 630 // this for specific asm directives, currently only ".symver", to try to avoid 631 // corrupting asm which happens to contain the symbol name as a substring. 632 // Note that the substitution for .symver assumes that the versioned symbol 633 // also has an instrumented name. 634 std::string Asm = GV->getParent()->getModuleInlineAsm(); 635 std::string SearchStr = ".symver " + GVName + ","; 636 size_t Pos = Asm.find(SearchStr); 637 if (Pos != std::string::npos) { 638 Asm.replace(Pos, SearchStr.size(), 639 ".symver " + Prefix + GVName + "," + Prefix); 640 GV->getParent()->setModuleInlineAsm(Asm); 641 } 642 } 643 644 Function * 645 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 646 GlobalValue::LinkageTypes NewFLink, 647 FunctionType *NewFT) { 648 FunctionType *FT = F->getFunctionType(); 649 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 650 NewFName, F->getParent()); 651 NewF->copyAttributesFrom(F); 652 NewF->removeAttributes( 653 AttributeList::ReturnIndex, 654 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 655 656 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 657 if (F->isVarArg()) { 658 NewF->removeAttributes(AttributeList::FunctionIndex, 659 AttrBuilder().addAttribute("split-stack")); 660 CallInst::Create(DFSanVarargWrapperFn, 661 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 662 BB); 663 new UnreachableInst(*Ctx, BB); 664 } else { 665 std::vector<Value *> Args; 666 unsigned n = FT->getNumParams(); 667 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 668 Args.push_back(&*ai); 669 CallInst *CI = CallInst::Create(F, Args, "", BB); 670 if (FT->getReturnType()->isVoidTy()) 671 ReturnInst::Create(*Ctx, BB); 672 else 673 ReturnInst::Create(*Ctx, CI, BB); 674 } 675 676 return NewF; 677 } 678 679 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 680 StringRef FName) { 681 FunctionType *FTT = getTrampolineFunctionType(FT); 682 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 683 Function *F = dyn_cast<Function>(C.getCallee()); 684 if (F && F->isDeclaration()) { 685 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 686 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 687 std::vector<Value *> Args; 688 Function::arg_iterator AI = F->arg_begin(); ++AI; 689 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 690 Args.push_back(&*AI); 691 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 692 ReturnInst *RI; 693 if (FT->getReturnType()->isVoidTy()) 694 RI = ReturnInst::Create(*Ctx, BB); 695 else 696 RI = ReturnInst::Create(*Ctx, CI, BB); 697 698 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 699 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 700 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 701 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 702 DFSanVisitor(DFSF).visitCallInst(*CI); 703 if (!FT->getReturnType()->isVoidTy()) 704 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 705 &*std::prev(F->arg_end()), RI); 706 } 707 708 return cast<Constant>(C.getCallee()); 709 } 710 711 bool DataFlowSanitizer::runOnModule(Module &M) { 712 if (ABIList.isIn(M, "skip")) 713 return false; 714 715 if (!GetArgTLSPtr) { 716 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 717 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 718 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 719 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 720 } 721 if (!GetRetvalTLSPtr) { 722 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 723 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 724 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 725 } 726 727 ExternalShadowMask = 728 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 729 730 { 731 AttributeList AL; 732 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 733 Attribute::NoUnwind); 734 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 735 Attribute::ReadNone); 736 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 737 Attribute::ZExt); 738 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 739 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 740 DFSanUnionFn = 741 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 742 } 743 744 { 745 AttributeList AL; 746 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 747 Attribute::NoUnwind); 748 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 749 Attribute::ReadNone); 750 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 751 Attribute::ZExt); 752 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 753 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 754 DFSanCheckedUnionFn = 755 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 756 } 757 { 758 AttributeList AL; 759 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 760 Attribute::NoUnwind); 761 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 762 Attribute::ReadOnly); 763 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 764 Attribute::ZExt); 765 DFSanUnionLoadFn = 766 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 767 } 768 DFSanUnimplementedFn = 769 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 770 { 771 AttributeList AL; 772 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 773 DFSanSetLabelFn = 774 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 775 } 776 DFSanNonzeroLabelFn = 777 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 778 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 779 DFSanVarargWrapperFnTy); 780 781 std::vector<Function *> FnsToInstrument; 782 SmallPtrSet<Function *, 2> FnsWithNativeABI; 783 for (Function &i : M) { 784 if (!i.isIntrinsic() && 785 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 786 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 787 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 788 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 789 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 790 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 791 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 792 FnsToInstrument.push_back(&i); 793 } 794 795 // Give function aliases prefixes when necessary, and build wrappers where the 796 // instrumentedness is inconsistent. 797 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 798 GlobalAlias *GA = &*i; 799 ++i; 800 // Don't stop on weak. We assume people aren't playing games with the 801 // instrumentedness of overridden weak aliases. 802 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 803 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 804 if (GAInst && FInst) { 805 addGlobalNamePrefix(GA); 806 } else if (GAInst != FInst) { 807 // Non-instrumented alias of an instrumented function, or vice versa. 808 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 809 // below will take care of instrumenting it. 810 Function *NewF = 811 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 812 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 813 NewF->takeName(GA); 814 GA->eraseFromParent(); 815 FnsToInstrument.push_back(NewF); 816 } 817 } 818 } 819 820 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 821 .addAttribute(Attribute::ReadNone); 822 823 // First, change the ABI of every function in the module. ABI-listed 824 // functions keep their original ABI and get a wrapper function. 825 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 826 e = FnsToInstrument.end(); 827 i != e; ++i) { 828 Function &F = **i; 829 FunctionType *FT = F.getFunctionType(); 830 831 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 832 FT->getReturnType()->isVoidTy()); 833 834 if (isInstrumented(&F)) { 835 // Instrumented functions get a 'dfs$' prefix. This allows us to more 836 // easily identify cases of mismatching ABIs. 837 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 838 FunctionType *NewFT = getArgsFunctionType(FT); 839 Function *NewF = Function::Create(NewFT, F.getLinkage(), 840 F.getAddressSpace(), "", &M); 841 NewF->copyAttributesFrom(&F); 842 NewF->removeAttributes( 843 AttributeList::ReturnIndex, 844 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 845 for (Function::arg_iterator FArg = F.arg_begin(), 846 NewFArg = NewF->arg_begin(), 847 FArgEnd = F.arg_end(); 848 FArg != FArgEnd; ++FArg, ++NewFArg) { 849 FArg->replaceAllUsesWith(&*NewFArg); 850 } 851 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 852 853 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 854 UI != UE;) { 855 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 856 ++UI; 857 if (BA) { 858 BA->replaceAllUsesWith( 859 BlockAddress::get(NewF, BA->getBasicBlock())); 860 delete BA; 861 } 862 } 863 F.replaceAllUsesWith( 864 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 865 NewF->takeName(&F); 866 F.eraseFromParent(); 867 *i = NewF; 868 addGlobalNamePrefix(NewF); 869 } else { 870 addGlobalNamePrefix(&F); 871 } 872 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 873 // Build a wrapper function for F. The wrapper simply calls F, and is 874 // added to FnsToInstrument so that any instrumentation according to its 875 // WrapperKind is done in the second pass below. 876 FunctionType *NewFT = getInstrumentedABI() == IA_Args 877 ? getArgsFunctionType(FT) 878 : FT; 879 880 // If the function being wrapped has local linkage, then preserve the 881 // function's linkage in the wrapper function. 882 GlobalValue::LinkageTypes wrapperLinkage = 883 F.hasLocalLinkage() 884 ? F.getLinkage() 885 : GlobalValue::LinkOnceODRLinkage; 886 887 Function *NewF = buildWrapperFunction( 888 &F, std::string("dfsw$") + std::string(F.getName()), 889 wrapperLinkage, NewFT); 890 if (getInstrumentedABI() == IA_TLS) 891 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 892 893 Value *WrappedFnCst = 894 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 895 F.replaceAllUsesWith(WrappedFnCst); 896 897 UnwrappedFnMap[WrappedFnCst] = &F; 898 *i = NewF; 899 900 if (!F.isDeclaration()) { 901 // This function is probably defining an interposition of an 902 // uninstrumented function and hence needs to keep the original ABI. 903 // But any functions it may call need to use the instrumented ABI, so 904 // we instrument it in a mode which preserves the original ABI. 905 FnsWithNativeABI.insert(&F); 906 907 // This code needs to rebuild the iterators, as they may be invalidated 908 // by the push_back, taking care that the new range does not include 909 // any functions added by this code. 910 size_t N = i - FnsToInstrument.begin(), 911 Count = e - FnsToInstrument.begin(); 912 FnsToInstrument.push_back(&F); 913 i = FnsToInstrument.begin() + N; 914 e = FnsToInstrument.begin() + Count; 915 } 916 // Hopefully, nobody will try to indirectly call a vararg 917 // function... yet. 918 } else if (FT->isVarArg()) { 919 UnwrappedFnMap[&F] = &F; 920 *i = nullptr; 921 } 922 } 923 924 for (Function *i : FnsToInstrument) { 925 if (!i || i->isDeclaration()) 926 continue; 927 928 removeUnreachableBlocks(*i); 929 930 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 931 932 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 933 // Build a copy of the list before iterating over it. 934 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 935 936 for (BasicBlock *i : BBList) { 937 Instruction *Inst = &i->front(); 938 while (true) { 939 // DFSanVisitor may split the current basic block, changing the current 940 // instruction's next pointer and moving the next instruction to the 941 // tail block from which we should continue. 942 Instruction *Next = Inst->getNextNode(); 943 // DFSanVisitor may delete Inst, so keep track of whether it was a 944 // terminator. 945 bool IsTerminator = Inst->isTerminator(); 946 if (!DFSF.SkipInsts.count(Inst)) 947 DFSanVisitor(DFSF).visit(Inst); 948 if (IsTerminator) 949 break; 950 Inst = Next; 951 } 952 } 953 954 // We will not necessarily be able to compute the shadow for every phi node 955 // until we have visited every block. Therefore, the code that handles phi 956 // nodes adds them to the PHIFixups list so that they can be properly 957 // handled here. 958 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 959 i = DFSF.PHIFixups.begin(), 960 e = DFSF.PHIFixups.end(); 961 i != e; ++i) { 962 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 963 ++val) { 964 i->second->setIncomingValue( 965 val, DFSF.getShadow(i->first->getIncomingValue(val))); 966 } 967 } 968 969 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 970 // places (i.e. instructions in basic blocks we haven't even begun visiting 971 // yet). To make our life easier, do this work in a pass after the main 972 // instrumentation. 973 if (ClDebugNonzeroLabels) { 974 for (Value *V : DFSF.NonZeroChecks) { 975 Instruction *Pos; 976 if (Instruction *I = dyn_cast<Instruction>(V)) 977 Pos = I->getNextNode(); 978 else 979 Pos = &DFSF.F->getEntryBlock().front(); 980 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 981 Pos = Pos->getNextNode(); 982 IRBuilder<> IRB(Pos); 983 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 984 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 985 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 986 IRBuilder<> ThenIRB(BI); 987 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 988 } 989 } 990 } 991 992 return false; 993 } 994 995 Value *DFSanFunction::getArgTLSPtr() { 996 if (ArgTLSPtr) 997 return ArgTLSPtr; 998 if (DFS.ArgTLS) 999 return ArgTLSPtr = DFS.ArgTLS; 1000 1001 IRBuilder<> IRB(&F->getEntryBlock().front()); 1002 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {}); 1003 } 1004 1005 Value *DFSanFunction::getRetvalTLS() { 1006 if (RetvalTLSPtr) 1007 return RetvalTLSPtr; 1008 if (DFS.RetvalTLS) 1009 return RetvalTLSPtr = DFS.RetvalTLS; 1010 1011 IRBuilder<> IRB(&F->getEntryBlock().front()); 1012 return RetvalTLSPtr = 1013 IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {}); 1014 } 1015 1016 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1017 IRBuilder<> IRB(Pos); 1018 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), 1019 getArgTLSPtr(), 0, Idx); 1020 } 1021 1022 Value *DFSanFunction::getShadow(Value *V) { 1023 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1024 return DFS.ZeroShadow; 1025 Value *&Shadow = ValShadowMap[V]; 1026 if (!Shadow) { 1027 if (Argument *A = dyn_cast<Argument>(V)) { 1028 if (IsNativeABI) 1029 return DFS.ZeroShadow; 1030 switch (IA) { 1031 case DataFlowSanitizer::IA_TLS: { 1032 Value *ArgTLSPtr = getArgTLSPtr(); 1033 Instruction *ArgTLSPos = 1034 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1035 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1036 IRBuilder<> IRB(ArgTLSPos); 1037 Shadow = 1038 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); 1039 break; 1040 } 1041 case DataFlowSanitizer::IA_Args: { 1042 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1043 Function::arg_iterator i = F->arg_begin(); 1044 while (ArgIdx--) 1045 ++i; 1046 Shadow = &*i; 1047 assert(Shadow->getType() == DFS.ShadowTy); 1048 break; 1049 } 1050 } 1051 NonZeroChecks.push_back(Shadow); 1052 } else { 1053 Shadow = DFS.ZeroShadow; 1054 } 1055 } 1056 return Shadow; 1057 } 1058 1059 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1060 assert(!ValShadowMap.count(I)); 1061 assert(Shadow->getType() == DFS.ShadowTy); 1062 ValShadowMap[I] = Shadow; 1063 } 1064 1065 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1066 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1067 IRBuilder<> IRB(Pos); 1068 Value *ShadowPtrMaskValue; 1069 if (DFSanRuntimeShadowMask) 1070 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1071 else 1072 ShadowPtrMaskValue = ShadowPtrMask; 1073 return IRB.CreateIntToPtr( 1074 IRB.CreateMul( 1075 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1076 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1077 ShadowPtrMul), 1078 ShadowPtrTy); 1079 } 1080 1081 // Generates IR to compute the union of the two given shadows, inserting it 1082 // before Pos. Returns the computed union Value. 1083 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1084 if (V1 == DFS.ZeroShadow) 1085 return V2; 1086 if (V2 == DFS.ZeroShadow) 1087 return V1; 1088 if (V1 == V2) 1089 return V1; 1090 1091 auto V1Elems = ShadowElements.find(V1); 1092 auto V2Elems = ShadowElements.find(V2); 1093 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1094 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1095 V2Elems->second.begin(), V2Elems->second.end())) { 1096 return V1; 1097 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1098 V1Elems->second.begin(), V1Elems->second.end())) { 1099 return V2; 1100 } 1101 } else if (V1Elems != ShadowElements.end()) { 1102 if (V1Elems->second.count(V2)) 1103 return V1; 1104 } else if (V2Elems != ShadowElements.end()) { 1105 if (V2Elems->second.count(V1)) 1106 return V2; 1107 } 1108 1109 auto Key = std::make_pair(V1, V2); 1110 if (V1 > V2) 1111 std::swap(Key.first, Key.second); 1112 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1113 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1114 return CCS.Shadow; 1115 1116 IRBuilder<> IRB(Pos); 1117 if (AvoidNewBlocks) { 1118 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1119 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1120 Call->addParamAttr(0, Attribute::ZExt); 1121 Call->addParamAttr(1, Attribute::ZExt); 1122 1123 CCS.Block = Pos->getParent(); 1124 CCS.Shadow = Call; 1125 } else { 1126 BasicBlock *Head = Pos->getParent(); 1127 Value *Ne = IRB.CreateICmpNE(V1, V2); 1128 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1129 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1130 IRBuilder<> ThenIRB(BI); 1131 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1132 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1133 Call->addParamAttr(0, Attribute::ZExt); 1134 Call->addParamAttr(1, Attribute::ZExt); 1135 1136 BasicBlock *Tail = BI->getSuccessor(0); 1137 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1138 Phi->addIncoming(Call, Call->getParent()); 1139 Phi->addIncoming(V1, Head); 1140 1141 CCS.Block = Tail; 1142 CCS.Shadow = Phi; 1143 } 1144 1145 std::set<Value *> UnionElems; 1146 if (V1Elems != ShadowElements.end()) { 1147 UnionElems = V1Elems->second; 1148 } else { 1149 UnionElems.insert(V1); 1150 } 1151 if (V2Elems != ShadowElements.end()) { 1152 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1153 } else { 1154 UnionElems.insert(V2); 1155 } 1156 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1157 1158 return CCS.Shadow; 1159 } 1160 1161 // A convenience function which folds the shadows of each of the operands 1162 // of the provided instruction Inst, inserting the IR before Inst. Returns 1163 // the computed union Value. 1164 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1165 if (Inst->getNumOperands() == 0) 1166 return DFS.ZeroShadow; 1167 1168 Value *Shadow = getShadow(Inst->getOperand(0)); 1169 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1170 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1171 } 1172 return Shadow; 1173 } 1174 1175 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1176 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1177 DFSF.setShadow(&I, CombinedShadow); 1178 } 1179 1180 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1181 // Addr has alignment Align, and take the union of each of those shadows. 1182 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1183 Instruction *Pos) { 1184 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1185 const auto i = AllocaShadowMap.find(AI); 1186 if (i != AllocaShadowMap.end()) { 1187 IRBuilder<> IRB(Pos); 1188 return IRB.CreateLoad(DFS.ShadowTy, i->second); 1189 } 1190 } 1191 1192 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1193 SmallVector<const Value *, 2> Objs; 1194 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1195 bool AllConstants = true; 1196 for (const Value *Obj : Objs) { 1197 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1198 continue; 1199 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1200 continue; 1201 1202 AllConstants = false; 1203 break; 1204 } 1205 if (AllConstants) 1206 return DFS.ZeroShadow; 1207 1208 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1209 switch (Size) { 1210 case 0: 1211 return DFS.ZeroShadow; 1212 case 1: { 1213 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); 1214 LI->setAlignment(ShadowAlign); 1215 return LI; 1216 } 1217 case 2: { 1218 IRBuilder<> IRB(Pos); 1219 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1220 ConstantInt::get(DFS.IntptrTy, 1)); 1221 return combineShadows( 1222 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), 1223 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); 1224 } 1225 } 1226 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1227 // Fast path for the common case where each byte has identical shadow: load 1228 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1229 // shadow is non-equal. 1230 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1231 IRBuilder<> FallbackIRB(FallbackBB); 1232 CallInst *FallbackCall = FallbackIRB.CreateCall( 1233 DFS.DFSanUnionLoadFn, 1234 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1235 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1236 1237 // Compare each of the shadows stored in the loaded 64 bits to each other, 1238 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1239 IRBuilder<> IRB(Pos); 1240 Value *WideAddr = 1241 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1242 Value *WideShadow = 1243 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1244 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1245 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1246 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1247 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1248 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1249 1250 BasicBlock *Head = Pos->getParent(); 1251 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1252 1253 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1254 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1255 1256 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1257 for (auto Child : Children) 1258 DT.changeImmediateDominator(Child, NewNode); 1259 } 1260 1261 // In the following code LastBr will refer to the previous basic block's 1262 // conditional branch instruction, whose true successor is fixed up to point 1263 // to the next block during the loop below or to the tail after the final 1264 // iteration. 1265 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1266 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1267 DT.addNewBlock(FallbackBB, Head); 1268 1269 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1270 Ofs += 64 / DFS.ShadowWidth) { 1271 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1272 DT.addNewBlock(NextBB, LastBr->getParent()); 1273 IRBuilder<> NextIRB(NextBB); 1274 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1275 ConstantInt::get(DFS.IntptrTy, 1)); 1276 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1277 WideAddr, ShadowAlign); 1278 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1279 LastBr->setSuccessor(0, NextBB); 1280 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1281 } 1282 1283 LastBr->setSuccessor(0, Tail); 1284 FallbackIRB.CreateBr(Tail); 1285 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1286 Shadow->addIncoming(FallbackCall, FallbackBB); 1287 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1288 return Shadow; 1289 } 1290 1291 IRBuilder<> IRB(Pos); 1292 CallInst *FallbackCall = IRB.CreateCall( 1293 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1294 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1295 return FallbackCall; 1296 } 1297 1298 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1299 auto &DL = LI.getModule()->getDataLayout(); 1300 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1301 if (Size == 0) { 1302 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1303 return; 1304 } 1305 1306 uint64_t Align; 1307 if (ClPreserveAlignment) { 1308 Align = LI.getAlignment(); 1309 if (Align == 0) 1310 Align = DL.getABITypeAlignment(LI.getType()); 1311 } else { 1312 Align = 1; 1313 } 1314 IRBuilder<> IRB(&LI); 1315 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1316 if (ClCombinePointerLabelsOnLoad) { 1317 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1318 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1319 } 1320 if (Shadow != DFSF.DFS.ZeroShadow) 1321 DFSF.NonZeroChecks.push_back(Shadow); 1322 1323 DFSF.setShadow(&LI, Shadow); 1324 } 1325 1326 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1327 Value *Shadow, Instruction *Pos) { 1328 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1329 const auto i = AllocaShadowMap.find(AI); 1330 if (i != AllocaShadowMap.end()) { 1331 IRBuilder<> IRB(Pos); 1332 IRB.CreateStore(Shadow, i->second); 1333 return; 1334 } 1335 } 1336 1337 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1338 IRBuilder<> IRB(Pos); 1339 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1340 if (Shadow == DFS.ZeroShadow) { 1341 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1342 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1343 Value *ExtShadowAddr = 1344 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1345 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1346 return; 1347 } 1348 1349 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1350 uint64_t Offset = 0; 1351 if (Size >= ShadowVecSize) { 1352 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1353 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1354 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1355 ShadowVec = IRB.CreateInsertElement( 1356 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1357 } 1358 Value *ShadowVecAddr = 1359 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1360 do { 1361 Value *CurShadowVecAddr = 1362 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1363 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1364 Size -= ShadowVecSize; 1365 ++Offset; 1366 } while (Size >= ShadowVecSize); 1367 Offset *= ShadowVecSize; 1368 } 1369 while (Size > 0) { 1370 Value *CurShadowAddr = 1371 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1372 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1373 --Size; 1374 ++Offset; 1375 } 1376 } 1377 1378 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1379 auto &DL = SI.getModule()->getDataLayout(); 1380 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1381 if (Size == 0) 1382 return; 1383 1384 uint64_t Align; 1385 if (ClPreserveAlignment) { 1386 Align = SI.getAlignment(); 1387 if (Align == 0) 1388 Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); 1389 } else { 1390 Align = 1; 1391 } 1392 1393 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1394 if (ClCombinePointerLabelsOnStore) { 1395 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1396 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1397 } 1398 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1399 } 1400 1401 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1402 visitOperandShadowInst(BO); 1403 } 1404 1405 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1406 1407 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1408 1409 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1410 visitOperandShadowInst(GEPI); 1411 } 1412 1413 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1414 visitOperandShadowInst(I); 1415 } 1416 1417 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1418 visitOperandShadowInst(I); 1419 } 1420 1421 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1422 visitOperandShadowInst(I); 1423 } 1424 1425 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1426 visitOperandShadowInst(I); 1427 } 1428 1429 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1430 visitOperandShadowInst(I); 1431 } 1432 1433 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1434 bool AllLoadsStores = true; 1435 for (User *U : I.users()) { 1436 if (isa<LoadInst>(U)) 1437 continue; 1438 1439 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1440 if (SI->getPointerOperand() == &I) 1441 continue; 1442 } 1443 1444 AllLoadsStores = false; 1445 break; 1446 } 1447 if (AllLoadsStores) { 1448 IRBuilder<> IRB(&I); 1449 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1450 } 1451 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1452 } 1453 1454 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1455 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1456 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1457 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1458 1459 if (isa<VectorType>(I.getCondition()->getType())) { 1460 DFSF.setShadow( 1461 &I, 1462 DFSF.combineShadows( 1463 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1464 } else { 1465 Value *ShadowSel; 1466 if (TrueShadow == FalseShadow) { 1467 ShadowSel = TrueShadow; 1468 } else { 1469 ShadowSel = 1470 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1471 } 1472 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1473 } 1474 } 1475 1476 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1477 IRBuilder<> IRB(&I); 1478 Value *ValShadow = DFSF.getShadow(I.getValue()); 1479 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1480 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1481 *DFSF.DFS.Ctx)), 1482 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1483 } 1484 1485 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1486 IRBuilder<> IRB(&I); 1487 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1488 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1489 Value *LenShadow = IRB.CreateMul( 1490 I.getLength(), 1491 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1492 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1493 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1494 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1495 auto *MTI = cast<MemTransferInst>( 1496 IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 1497 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1498 if (ClPreserveAlignment) { 1499 MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1500 MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1501 } else { 1502 MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); 1503 MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); 1504 } 1505 } 1506 1507 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1508 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1509 switch (DFSF.IA) { 1510 case DataFlowSanitizer::IA_TLS: { 1511 Value *S = DFSF.getShadow(RI.getReturnValue()); 1512 IRBuilder<> IRB(&RI); 1513 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1514 break; 1515 } 1516 case DataFlowSanitizer::IA_Args: { 1517 IRBuilder<> IRB(&RI); 1518 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1519 Value *InsVal = 1520 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1521 Value *InsShadow = 1522 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1523 RI.setOperand(0, InsShadow); 1524 break; 1525 } 1526 } 1527 } 1528 } 1529 1530 void DFSanVisitor::visitCallSite(CallSite CS) { 1531 Function *F = CS.getCalledFunction(); 1532 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1533 visitOperandShadowInst(*CS.getInstruction()); 1534 return; 1535 } 1536 1537 // Calls to this function are synthesized in wrappers, and we shouldn't 1538 // instrument them. 1539 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1540 return; 1541 1542 IRBuilder<> IRB(CS.getInstruction()); 1543 1544 DenseMap<Value *, Function *>::iterator i = 1545 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1546 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1547 Function *F = i->second; 1548 switch (DFSF.DFS.getWrapperKind(F)) { 1549 case DataFlowSanitizer::WK_Warning: 1550 CS.setCalledFunction(F); 1551 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1552 IRB.CreateGlobalStringPtr(F->getName())); 1553 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1554 return; 1555 case DataFlowSanitizer::WK_Discard: 1556 CS.setCalledFunction(F); 1557 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1558 return; 1559 case DataFlowSanitizer::WK_Functional: 1560 CS.setCalledFunction(F); 1561 visitOperandShadowInst(*CS.getInstruction()); 1562 return; 1563 case DataFlowSanitizer::WK_Custom: 1564 // Don't try to handle invokes of custom functions, it's too complicated. 1565 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1566 // wrapper. 1567 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1568 FunctionType *FT = F->getFunctionType(); 1569 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1570 std::string CustomFName = "__dfsw_"; 1571 CustomFName += F->getName(); 1572 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1573 CustomFName, CustomFn.TransformedType); 1574 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1575 CustomFn->copyAttributesFrom(F); 1576 1577 // Custom functions returning non-void will write to the return label. 1578 if (!FT->getReturnType()->isVoidTy()) { 1579 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1580 DFSF.DFS.ReadOnlyNoneAttrs); 1581 } 1582 } 1583 1584 std::vector<Value *> Args; 1585 1586 CallSite::arg_iterator i = CS.arg_begin(); 1587 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1588 Type *T = (*i)->getType(); 1589 FunctionType *ParamFT; 1590 if (isa<PointerType>(T) && 1591 (ParamFT = dyn_cast<FunctionType>( 1592 cast<PointerType>(T)->getElementType()))) { 1593 std::string TName = "dfst"; 1594 TName += utostr(FT->getNumParams() - n); 1595 TName += "$"; 1596 TName += F->getName(); 1597 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1598 Args.push_back(T); 1599 Args.push_back( 1600 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1601 } else { 1602 Args.push_back(*i); 1603 } 1604 } 1605 1606 i = CS.arg_begin(); 1607 const unsigned ShadowArgStart = Args.size(); 1608 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1609 Args.push_back(DFSF.getShadow(*i)); 1610 1611 if (FT->isVarArg()) { 1612 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1613 CS.arg_size() - FT->getNumParams()); 1614 auto *LabelVAAlloca = new AllocaInst( 1615 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1616 "labelva", &DFSF.F->getEntryBlock().front()); 1617 1618 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1619 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1620 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1621 } 1622 1623 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1624 } 1625 1626 if (!FT->getReturnType()->isVoidTy()) { 1627 if (!DFSF.LabelReturnAlloca) { 1628 DFSF.LabelReturnAlloca = 1629 new AllocaInst(DFSF.DFS.ShadowTy, 1630 getDataLayout().getAllocaAddrSpace(), 1631 "labelreturn", &DFSF.F->getEntryBlock().front()); 1632 } 1633 Args.push_back(DFSF.LabelReturnAlloca); 1634 } 1635 1636 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1637 Args.push_back(*i); 1638 1639 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1640 CustomCI->setCallingConv(CI->getCallingConv()); 1641 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1642 CI->getContext(), CI->getAttributes())); 1643 1644 // Update the parameter attributes of the custom call instruction to 1645 // zero extend the shadow parameters. This is required for targets 1646 // which consider ShadowTy an illegal type. 1647 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1648 const unsigned ArgNo = ShadowArgStart + n; 1649 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1650 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1651 } 1652 1653 if (!FT->getReturnType()->isVoidTy()) { 1654 LoadInst *LabelLoad = 1655 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); 1656 DFSF.setShadow(CustomCI, LabelLoad); 1657 } 1658 1659 CI->replaceAllUsesWith(CustomCI); 1660 CI->eraseFromParent(); 1661 return; 1662 } 1663 break; 1664 } 1665 } 1666 1667 FunctionType *FT = cast<FunctionType>( 1668 CS.getCalledValue()->getType()->getPointerElementType()); 1669 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1670 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1671 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1672 DFSF.getArgTLS(i, CS.getInstruction())); 1673 } 1674 } 1675 1676 Instruction *Next = nullptr; 1677 if (!CS.getType()->isVoidTy()) { 1678 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1679 if (II->getNormalDest()->getSinglePredecessor()) { 1680 Next = &II->getNormalDest()->front(); 1681 } else { 1682 BasicBlock *NewBB = 1683 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1684 Next = &NewBB->front(); 1685 } 1686 } else { 1687 assert(CS->getIterator() != CS->getParent()->end()); 1688 Next = CS->getNextNode(); 1689 } 1690 1691 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1692 IRBuilder<> NextIRB(Next); 1693 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS()); 1694 DFSF.SkipInsts.insert(LI); 1695 DFSF.setShadow(CS.getInstruction(), LI); 1696 DFSF.NonZeroChecks.push_back(LI); 1697 } 1698 } 1699 1700 // Do all instrumentation for IA_Args down here to defer tampering with the 1701 // CFG in a way that SplitEdge may be able to detect. 1702 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1703 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1704 Value *Func = 1705 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1706 std::vector<Value *> Args; 1707 1708 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1709 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1710 Args.push_back(*i); 1711 1712 i = CS.arg_begin(); 1713 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1714 Args.push_back(DFSF.getShadow(*i)); 1715 1716 if (FT->isVarArg()) { 1717 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1718 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1719 AllocaInst *VarArgShadow = 1720 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1721 "", &DFSF.F->getEntryBlock().front()); 1722 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1723 for (unsigned n = 0; i != e; ++i, ++n) { 1724 IRB.CreateStore( 1725 DFSF.getShadow(*i), 1726 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1727 Args.push_back(*i); 1728 } 1729 } 1730 1731 CallSite NewCS; 1732 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1733 NewCS = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1734 II->getUnwindDest(), Args); 1735 } else { 1736 NewCS = IRB.CreateCall(NewFT, Func, Args); 1737 } 1738 NewCS.setCallingConv(CS.getCallingConv()); 1739 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1740 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1741 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); 1742 1743 if (Next) { 1744 ExtractValueInst *ExVal = 1745 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1746 DFSF.SkipInsts.insert(ExVal); 1747 ExtractValueInst *ExShadow = 1748 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1749 DFSF.SkipInsts.insert(ExShadow); 1750 DFSF.setShadow(ExVal, ExShadow); 1751 DFSF.NonZeroChecks.push_back(ExShadow); 1752 1753 CS.getInstruction()->replaceAllUsesWith(ExVal); 1754 } 1755 1756 CS.getInstruction()->eraseFromParent(); 1757 } 1758 } 1759 1760 void DFSanVisitor::visitPHINode(PHINode &PN) { 1761 PHINode *ShadowPN = 1762 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1763 1764 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1765 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1766 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1767 ++i) { 1768 ShadowPN->addIncoming(UndefShadow, *i); 1769 } 1770 1771 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1772 DFSF.setShadow(&PN, ShadowPN); 1773 } 1774