1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/DenseSet.h" 50 #include "llvm/ADT/DepthFirstIterator.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/Triple.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/DebugInfo.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/SpecialCaseList.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <iterator> 70 #include <set> 71 #include <utility> 72 73 using namespace llvm; 74 75 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 76 // alignment requirements provided by the input IR are correct. For example, 77 // if the input IR contains a load with alignment 8, this flag will cause 78 // the shadow load to have alignment 16. This flag is disabled by default as 79 // we have unfortunately encountered too much code (including Clang itself; 80 // see PR14291) which performs misaligned access. 81 static cl::opt<bool> ClPreserveAlignment( 82 "dfsan-preserve-alignment", 83 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 84 cl::init(false)); 85 86 // The ABI list files control how shadow parameters are passed. The pass treats 87 // every function labelled "uninstrumented" in the ABI list file as conforming 88 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 89 // additional annotations for those functions, a call to one of those functions 90 // will produce a warning message, as the labelling behaviour of the function is 91 // unknown. The other supported annotations are "functional" and "discard", 92 // which are described below under DataFlowSanitizer::WrapperKind. 93 static cl::list<std::string> ClABIListFiles( 94 "dfsan-abilist", 95 cl::desc("File listing native ABI functions and how the pass treats them"), 96 cl::Hidden); 97 98 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 99 // functions (see DataFlowSanitizer::InstrumentedABI below). 100 static cl::opt<bool> ClArgsABI( 101 "dfsan-args-abi", 102 cl::desc("Use the argument ABI rather than the TLS ABI"), 103 cl::Hidden); 104 105 // Controls whether the pass includes or ignores the labels of pointers in load 106 // instructions. 107 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 108 "dfsan-combine-pointer-labels-on-load", 109 cl::desc("Combine the label of the pointer with the label of the data when " 110 "loading from memory."), 111 cl::Hidden, cl::init(true)); 112 113 // Controls whether the pass includes or ignores the labels of pointers in 114 // stores instructions. 115 static cl::opt<bool> ClCombinePointerLabelsOnStore( 116 "dfsan-combine-pointer-labels-on-store", 117 cl::desc("Combine the label of the pointer with the label of the data when " 118 "storing in memory."), 119 cl::Hidden, cl::init(false)); 120 121 static cl::opt<bool> ClDebugNonzeroLabels( 122 "dfsan-debug-nonzero-labels", 123 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 124 "load or return with a nonzero label"), 125 cl::Hidden); 126 127 namespace { 128 129 StringRef GetGlobalTypeString(const GlobalValue &G) { 130 // Types of GlobalVariables are always pointer types. 131 Type *GType = G.getType()->getElementType(); 132 // For now we support blacklisting struct types only. 133 if (StructType *SGType = dyn_cast<StructType>(GType)) { 134 if (!SGType->isLiteral()) 135 return SGType->getName(); 136 } 137 return "<unknown type>"; 138 } 139 140 class DFSanABIList { 141 std::unique_ptr<SpecialCaseList> SCL; 142 143 public: 144 DFSanABIList() {} 145 146 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 147 148 /// Returns whether either this function or its source file are listed in the 149 /// given category. 150 bool isIn(const Function &F, StringRef Category) const { 151 return isIn(*F.getParent(), Category) || 152 SCL->inSection("fun", F.getName(), Category); 153 } 154 155 /// Returns whether this global alias is listed in the given category. 156 /// 157 /// If GA aliases a function, the alias's name is matched as a function name 158 /// would be. Similarly, aliases of globals are matched like globals. 159 bool isIn(const GlobalAlias &GA, StringRef Category) const { 160 if (isIn(*GA.getParent(), Category)) 161 return true; 162 163 if (isa<FunctionType>(GA.getType()->getElementType())) 164 return SCL->inSection("fun", GA.getName(), Category); 165 166 return SCL->inSection("global", GA.getName(), Category) || 167 SCL->inSection("type", GetGlobalTypeString(GA), Category); 168 } 169 170 /// Returns whether this module is listed in the given category. 171 bool isIn(const Module &M, StringRef Category) const { 172 return SCL->inSection("src", M.getModuleIdentifier(), Category); 173 } 174 }; 175 176 class DataFlowSanitizer : public ModulePass { 177 friend struct DFSanFunction; 178 friend class DFSanVisitor; 179 180 enum { 181 ShadowWidth = 16 182 }; 183 184 /// Which ABI should be used for instrumented functions? 185 enum InstrumentedABI { 186 /// Argument and return value labels are passed through additional 187 /// arguments and by modifying the return type. 188 IA_Args, 189 190 /// Argument and return value labels are passed through TLS variables 191 /// __dfsan_arg_tls and __dfsan_retval_tls. 192 IA_TLS 193 }; 194 195 /// How should calls to uninstrumented functions be handled? 196 enum WrapperKind { 197 /// This function is present in an uninstrumented form but we don't know 198 /// how it should be handled. Print a warning and call the function anyway. 199 /// Don't label the return value. 200 WK_Warning, 201 202 /// This function does not write to (user-accessible) memory, and its return 203 /// value is unlabelled. 204 WK_Discard, 205 206 /// This function does not write to (user-accessible) memory, and the label 207 /// of its return value is the union of the label of its arguments. 208 WK_Functional, 209 210 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 211 /// where F is the name of the function. This function may wrap the 212 /// original function or provide its own implementation. This is similar to 213 /// the IA_Args ABI, except that IA_Args uses a struct return type to 214 /// pass the return value shadow in a register, while WK_Custom uses an 215 /// extra pointer argument to return the shadow. This allows the wrapped 216 /// form of the function type to be expressed in C. 217 WK_Custom 218 }; 219 220 const DataLayout *DL; 221 Module *Mod; 222 LLVMContext *Ctx; 223 IntegerType *ShadowTy; 224 PointerType *ShadowPtrTy; 225 IntegerType *IntptrTy; 226 ConstantInt *ZeroShadow; 227 ConstantInt *ShadowPtrMask; 228 ConstantInt *ShadowPtrMul; 229 Constant *ArgTLS; 230 Constant *RetvalTLS; 231 void *(*GetArgTLSPtr)(); 232 void *(*GetRetvalTLSPtr)(); 233 Constant *GetArgTLS; 234 Constant *GetRetvalTLS; 235 FunctionType *DFSanUnionFnTy; 236 FunctionType *DFSanUnionLoadFnTy; 237 FunctionType *DFSanUnimplementedFnTy; 238 FunctionType *DFSanSetLabelFnTy; 239 FunctionType *DFSanNonzeroLabelFnTy; 240 FunctionType *DFSanVarargWrapperFnTy; 241 Constant *DFSanUnionFn; 242 Constant *DFSanCheckedUnionFn; 243 Constant *DFSanUnionLoadFn; 244 Constant *DFSanUnimplementedFn; 245 Constant *DFSanSetLabelFn; 246 Constant *DFSanNonzeroLabelFn; 247 Constant *DFSanVarargWrapperFn; 248 MDNode *ColdCallWeights; 249 DFSanABIList ABIList; 250 DenseMap<Value *, Function *> UnwrappedFnMap; 251 AttributeSet ReadOnlyNoneAttrs; 252 DenseMap<const Function *, DISubprogram> FunctionDIs; 253 254 Value *getShadowAddress(Value *Addr, Instruction *Pos); 255 bool isInstrumented(const Function *F); 256 bool isInstrumented(const GlobalAlias *GA); 257 FunctionType *getArgsFunctionType(FunctionType *T); 258 FunctionType *getTrampolineFunctionType(FunctionType *T); 259 FunctionType *getCustomFunctionType(FunctionType *T); 260 InstrumentedABI getInstrumentedABI(); 261 WrapperKind getWrapperKind(Function *F); 262 void addGlobalNamePrefix(GlobalValue *GV); 263 Function *buildWrapperFunction(Function *F, StringRef NewFName, 264 GlobalValue::LinkageTypes NewFLink, 265 FunctionType *NewFT); 266 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 267 268 public: 269 DataFlowSanitizer( 270 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 271 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 272 static char ID; 273 bool doInitialization(Module &M) override; 274 bool runOnModule(Module &M) override; 275 }; 276 277 struct DFSanFunction { 278 DataFlowSanitizer &DFS; 279 Function *F; 280 DominatorTree DT; 281 DataFlowSanitizer::InstrumentedABI IA; 282 bool IsNativeABI; 283 Value *ArgTLSPtr; 284 Value *RetvalTLSPtr; 285 AllocaInst *LabelReturnAlloca; 286 DenseMap<Value *, Value *> ValShadowMap; 287 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 288 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 289 DenseSet<Instruction *> SkipInsts; 290 std::vector<Value *> NonZeroChecks; 291 bool AvoidNewBlocks; 292 293 struct CachedCombinedShadow { 294 BasicBlock *Block; 295 Value *Shadow; 296 }; 297 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 298 CachedCombinedShadows; 299 DenseMap<Value *, std::set<Value *>> ShadowElements; 300 301 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 302 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 303 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr), 304 LabelReturnAlloca(nullptr) { 305 DT.recalculate(*F); 306 // FIXME: Need to track down the register allocator issue which causes poor 307 // performance in pathological cases with large numbers of basic blocks. 308 AvoidNewBlocks = F->size() > 1000; 309 } 310 Value *getArgTLSPtr(); 311 Value *getArgTLS(unsigned Index, Instruction *Pos); 312 Value *getRetvalTLS(); 313 Value *getShadow(Value *V); 314 void setShadow(Instruction *I, Value *Shadow); 315 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 316 Value *combineOperandShadows(Instruction *Inst); 317 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 318 Instruction *Pos); 319 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 320 Instruction *Pos); 321 }; 322 323 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 324 public: 325 DFSanFunction &DFSF; 326 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 327 328 void visitOperandShadowInst(Instruction &I); 329 330 void visitBinaryOperator(BinaryOperator &BO); 331 void visitCastInst(CastInst &CI); 332 void visitCmpInst(CmpInst &CI); 333 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 334 void visitLoadInst(LoadInst &LI); 335 void visitStoreInst(StoreInst &SI); 336 void visitReturnInst(ReturnInst &RI); 337 void visitCallSite(CallSite CS); 338 void visitPHINode(PHINode &PN); 339 void visitExtractElementInst(ExtractElementInst &I); 340 void visitInsertElementInst(InsertElementInst &I); 341 void visitShuffleVectorInst(ShuffleVectorInst &I); 342 void visitExtractValueInst(ExtractValueInst &I); 343 void visitInsertValueInst(InsertValueInst &I); 344 void visitAllocaInst(AllocaInst &I); 345 void visitSelectInst(SelectInst &I); 346 void visitMemSetInst(MemSetInst &I); 347 void visitMemTransferInst(MemTransferInst &I); 348 }; 349 350 } 351 352 char DataFlowSanitizer::ID; 353 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 354 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 355 356 ModulePass * 357 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 358 void *(*getArgTLS)(), 359 void *(*getRetValTLS)()) { 360 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 361 } 362 363 DataFlowSanitizer::DataFlowSanitizer( 364 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 365 void *(*getRetValTLS)()) 366 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 367 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 368 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 369 ClABIListFiles.end()); 370 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 371 } 372 373 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 374 llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 375 ArgTypes.append(T->getNumParams(), ShadowTy); 376 if (T->isVarArg()) 377 ArgTypes.push_back(ShadowPtrTy); 378 Type *RetType = T->getReturnType(); 379 if (!RetType->isVoidTy()) 380 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr); 381 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 382 } 383 384 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 385 assert(!T->isVarArg()); 386 llvm::SmallVector<Type *, 4> ArgTypes; 387 ArgTypes.push_back(T->getPointerTo()); 388 ArgTypes.append(T->param_begin(), T->param_end()); 389 ArgTypes.append(T->getNumParams(), ShadowTy); 390 Type *RetType = T->getReturnType(); 391 if (!RetType->isVoidTy()) 392 ArgTypes.push_back(ShadowPtrTy); 393 return FunctionType::get(T->getReturnType(), ArgTypes, false); 394 } 395 396 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 397 llvm::SmallVector<Type *, 4> ArgTypes; 398 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 399 i != e; ++i) { 400 FunctionType *FT; 401 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 402 *i)->getElementType()))) { 403 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 404 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 405 } else { 406 ArgTypes.push_back(*i); 407 } 408 } 409 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 410 ArgTypes.push_back(ShadowTy); 411 if (T->isVarArg()) 412 ArgTypes.push_back(ShadowPtrTy); 413 Type *RetType = T->getReturnType(); 414 if (!RetType->isVoidTy()) 415 ArgTypes.push_back(ShadowPtrTy); 416 return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()); 417 } 418 419 bool DataFlowSanitizer::doInitialization(Module &M) { 420 llvm::Triple TargetTriple(M.getTargetTriple()); 421 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 422 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 423 TargetTriple.getArch() == llvm::Triple::mips64el; 424 425 DL = &M.getDataLayout(); 426 427 Mod = &M; 428 Ctx = &M.getContext(); 429 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 430 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 431 IntptrTy = DL->getIntPtrType(*Ctx); 432 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 433 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 434 if (IsX86_64) 435 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 436 else if (IsMIPS64) 437 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 438 else 439 report_fatal_error("unsupported triple"); 440 441 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 442 DFSanUnionFnTy = 443 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 444 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 445 DFSanUnionLoadFnTy = 446 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 447 DFSanUnimplementedFnTy = FunctionType::get( 448 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 449 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 450 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 451 DFSanSetLabelArgs, /*isVarArg=*/false); 452 DFSanNonzeroLabelFnTy = FunctionType::get( 453 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 454 DFSanVarargWrapperFnTy = FunctionType::get( 455 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 456 457 if (GetArgTLSPtr) { 458 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 459 ArgTLS = nullptr; 460 GetArgTLS = ConstantExpr::getIntToPtr( 461 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 462 PointerType::getUnqual( 463 FunctionType::get(PointerType::getUnqual(ArgTLSTy), 464 (Type *)nullptr))); 465 } 466 if (GetRetvalTLSPtr) { 467 RetvalTLS = nullptr; 468 GetRetvalTLS = ConstantExpr::getIntToPtr( 469 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 470 PointerType::getUnqual( 471 FunctionType::get(PointerType::getUnqual(ShadowTy), 472 (Type *)nullptr))); 473 } 474 475 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 476 return true; 477 } 478 479 bool DataFlowSanitizer::isInstrumented(const Function *F) { 480 return !ABIList.isIn(*F, "uninstrumented"); 481 } 482 483 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 484 return !ABIList.isIn(*GA, "uninstrumented"); 485 } 486 487 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 488 return ClArgsABI ? IA_Args : IA_TLS; 489 } 490 491 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 492 if (ABIList.isIn(*F, "functional")) 493 return WK_Functional; 494 if (ABIList.isIn(*F, "discard")) 495 return WK_Discard; 496 if (ABIList.isIn(*F, "custom")) 497 return WK_Custom; 498 499 return WK_Warning; 500 } 501 502 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 503 std::string GVName = GV->getName(), Prefix = "dfs$"; 504 GV->setName(Prefix + GVName); 505 506 // Try to change the name of the function in module inline asm. We only do 507 // this for specific asm directives, currently only ".symver", to try to avoid 508 // corrupting asm which happens to contain the symbol name as a substring. 509 // Note that the substitution for .symver assumes that the versioned symbol 510 // also has an instrumented name. 511 std::string Asm = GV->getParent()->getModuleInlineAsm(); 512 std::string SearchStr = ".symver " + GVName + ","; 513 size_t Pos = Asm.find(SearchStr); 514 if (Pos != std::string::npos) { 515 Asm.replace(Pos, SearchStr.size(), 516 ".symver " + Prefix + GVName + "," + Prefix); 517 GV->getParent()->setModuleInlineAsm(Asm); 518 } 519 } 520 521 Function * 522 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 523 GlobalValue::LinkageTypes NewFLink, 524 FunctionType *NewFT) { 525 FunctionType *FT = F->getFunctionType(); 526 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 527 F->getParent()); 528 NewF->copyAttributesFrom(F); 529 NewF->removeAttributes( 530 AttributeSet::ReturnIndex, 531 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 532 AttributeSet::ReturnIndex)); 533 534 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 535 if (F->isVarArg()) { 536 NewF->removeAttributes( 537 AttributeSet::FunctionIndex, 538 AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex, 539 "split-stack")); 540 CallInst::Create(DFSanVarargWrapperFn, 541 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 542 BB); 543 new UnreachableInst(*Ctx, BB); 544 } else { 545 std::vector<Value *> Args; 546 unsigned n = FT->getNumParams(); 547 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 548 Args.push_back(&*ai); 549 CallInst *CI = CallInst::Create(F, Args, "", BB); 550 if (FT->getReturnType()->isVoidTy()) 551 ReturnInst::Create(*Ctx, BB); 552 else 553 ReturnInst::Create(*Ctx, CI, BB); 554 } 555 556 return NewF; 557 } 558 559 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 560 StringRef FName) { 561 FunctionType *FTT = getTrampolineFunctionType(FT); 562 Constant *C = Mod->getOrInsertFunction(FName, FTT); 563 Function *F = dyn_cast<Function>(C); 564 if (F && F->isDeclaration()) { 565 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 566 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 567 std::vector<Value *> Args; 568 Function::arg_iterator AI = F->arg_begin(); ++AI; 569 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 570 Args.push_back(&*AI); 571 CallInst *CI = 572 CallInst::Create(&F->getArgumentList().front(), Args, "", BB); 573 ReturnInst *RI; 574 if (FT->getReturnType()->isVoidTy()) 575 RI = ReturnInst::Create(*Ctx, BB); 576 else 577 RI = ReturnInst::Create(*Ctx, CI, BB); 578 579 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 580 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 581 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 582 DFSF.ValShadowMap[ValAI] = ShadowAI; 583 DFSanVisitor(DFSF).visitCallInst(*CI); 584 if (!FT->getReturnType()->isVoidTy()) 585 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 586 &F->getArgumentList().back(), RI); 587 } 588 589 return C; 590 } 591 592 bool DataFlowSanitizer::runOnModule(Module &M) { 593 if (ABIList.isIn(M, "skip")) 594 return false; 595 596 FunctionDIs = makeSubprogramMap(M); 597 598 if (!GetArgTLSPtr) { 599 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 600 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 601 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 602 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 603 } 604 if (!GetRetvalTLSPtr) { 605 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 606 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 607 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 608 } 609 610 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 611 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 612 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 613 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 614 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 615 F->addAttribute(1, Attribute::ZExt); 616 F->addAttribute(2, Attribute::ZExt); 617 } 618 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 619 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 620 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 621 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 622 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 623 F->addAttribute(1, Attribute::ZExt); 624 F->addAttribute(2, Attribute::ZExt); 625 } 626 DFSanUnionLoadFn = 627 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 628 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 629 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 630 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 631 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 632 } 633 DFSanUnimplementedFn = 634 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 635 DFSanSetLabelFn = 636 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 637 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 638 F->addAttribute(1, Attribute::ZExt); 639 } 640 DFSanNonzeroLabelFn = 641 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 642 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 643 DFSanVarargWrapperFnTy); 644 645 std::vector<Function *> FnsToInstrument; 646 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 647 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) { 648 if (!i->isIntrinsic() && 649 i != DFSanUnionFn && 650 i != DFSanCheckedUnionFn && 651 i != DFSanUnionLoadFn && 652 i != DFSanUnimplementedFn && 653 i != DFSanSetLabelFn && 654 i != DFSanNonzeroLabelFn && 655 i != DFSanVarargWrapperFn) 656 FnsToInstrument.push_back(&*i); 657 } 658 659 // Give function aliases prefixes when necessary, and build wrappers where the 660 // instrumentedness is inconsistent. 661 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 662 GlobalAlias *GA = &*i; 663 ++i; 664 // Don't stop on weak. We assume people aren't playing games with the 665 // instrumentedness of overridden weak aliases. 666 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 667 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 668 if (GAInst && FInst) { 669 addGlobalNamePrefix(GA); 670 } else if (GAInst != FInst) { 671 // Non-instrumented alias of an instrumented function, or vice versa. 672 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 673 // below will take care of instrumenting it. 674 Function *NewF = 675 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 676 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 677 NewF->takeName(GA); 678 GA->eraseFromParent(); 679 FnsToInstrument.push_back(NewF); 680 } 681 } 682 } 683 684 AttrBuilder B; 685 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 686 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B); 687 688 // First, change the ABI of every function in the module. ABI-listed 689 // functions keep their original ABI and get a wrapper function. 690 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 691 e = FnsToInstrument.end(); 692 i != e; ++i) { 693 Function &F = **i; 694 FunctionType *FT = F.getFunctionType(); 695 696 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 697 FT->getReturnType()->isVoidTy()); 698 699 if (isInstrumented(&F)) { 700 // Instrumented functions get a 'dfs$' prefix. This allows us to more 701 // easily identify cases of mismatching ABIs. 702 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 703 FunctionType *NewFT = getArgsFunctionType(FT); 704 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 705 NewF->copyAttributesFrom(&F); 706 NewF->removeAttributes( 707 AttributeSet::ReturnIndex, 708 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 709 AttributeSet::ReturnIndex)); 710 for (Function::arg_iterator FArg = F.arg_begin(), 711 NewFArg = NewF->arg_begin(), 712 FArgEnd = F.arg_end(); 713 FArg != FArgEnd; ++FArg, ++NewFArg) { 714 FArg->replaceAllUsesWith(NewFArg); 715 } 716 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 717 718 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 719 UI != UE;) { 720 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 721 ++UI; 722 if (BA) { 723 BA->replaceAllUsesWith( 724 BlockAddress::get(NewF, BA->getBasicBlock())); 725 delete BA; 726 } 727 } 728 F.replaceAllUsesWith( 729 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 730 NewF->takeName(&F); 731 F.eraseFromParent(); 732 *i = NewF; 733 addGlobalNamePrefix(NewF); 734 } else { 735 addGlobalNamePrefix(&F); 736 } 737 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 738 // Build a wrapper function for F. The wrapper simply calls F, and is 739 // added to FnsToInstrument so that any instrumentation according to its 740 // WrapperKind is done in the second pass below. 741 FunctionType *NewFT = getInstrumentedABI() == IA_Args 742 ? getArgsFunctionType(FT) 743 : FT; 744 Function *NewF = buildWrapperFunction( 745 &F, std::string("dfsw$") + std::string(F.getName()), 746 GlobalValue::LinkOnceODRLinkage, NewFT); 747 if (getInstrumentedABI() == IA_TLS) 748 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs); 749 750 Value *WrappedFnCst = 751 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 752 F.replaceAllUsesWith(WrappedFnCst); 753 754 // Patch the pointer to LLVM function in debug info descriptor. 755 auto DI = FunctionDIs.find(&F); 756 if (DI != FunctionDIs.end()) 757 DI->second.replaceFunction(&F); 758 759 UnwrappedFnMap[WrappedFnCst] = &F; 760 *i = NewF; 761 762 if (!F.isDeclaration()) { 763 // This function is probably defining an interposition of an 764 // uninstrumented function and hence needs to keep the original ABI. 765 // But any functions it may call need to use the instrumented ABI, so 766 // we instrument it in a mode which preserves the original ABI. 767 FnsWithNativeABI.insert(&F); 768 769 // This code needs to rebuild the iterators, as they may be invalidated 770 // by the push_back, taking care that the new range does not include 771 // any functions added by this code. 772 size_t N = i - FnsToInstrument.begin(), 773 Count = e - FnsToInstrument.begin(); 774 FnsToInstrument.push_back(&F); 775 i = FnsToInstrument.begin() + N; 776 e = FnsToInstrument.begin() + Count; 777 } 778 // Hopefully, nobody will try to indirectly call a vararg 779 // function... yet. 780 } else if (FT->isVarArg()) { 781 UnwrappedFnMap[&F] = &F; 782 *i = nullptr; 783 } 784 } 785 786 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 787 e = FnsToInstrument.end(); 788 i != e; ++i) { 789 if (!*i || (*i)->isDeclaration()) 790 continue; 791 792 removeUnreachableBlocks(**i); 793 794 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i)); 795 796 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 797 // Build a copy of the list before iterating over it. 798 llvm::SmallVector<BasicBlock *, 4> BBList( 799 depth_first(&(*i)->getEntryBlock())); 800 801 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(), 802 e = BBList.end(); 803 i != e; ++i) { 804 Instruction *Inst = &(*i)->front(); 805 while (1) { 806 // DFSanVisitor may split the current basic block, changing the current 807 // instruction's next pointer and moving the next instruction to the 808 // tail block from which we should continue. 809 Instruction *Next = Inst->getNextNode(); 810 // DFSanVisitor may delete Inst, so keep track of whether it was a 811 // terminator. 812 bool IsTerminator = isa<TerminatorInst>(Inst); 813 if (!DFSF.SkipInsts.count(Inst)) 814 DFSanVisitor(DFSF).visit(Inst); 815 if (IsTerminator) 816 break; 817 Inst = Next; 818 } 819 } 820 821 // We will not necessarily be able to compute the shadow for every phi node 822 // until we have visited every block. Therefore, the code that handles phi 823 // nodes adds them to the PHIFixups list so that they can be properly 824 // handled here. 825 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 826 i = DFSF.PHIFixups.begin(), 827 e = DFSF.PHIFixups.end(); 828 i != e; ++i) { 829 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 830 ++val) { 831 i->second->setIncomingValue( 832 val, DFSF.getShadow(i->first->getIncomingValue(val))); 833 } 834 } 835 836 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 837 // places (i.e. instructions in basic blocks we haven't even begun visiting 838 // yet). To make our life easier, do this work in a pass after the main 839 // instrumentation. 840 if (ClDebugNonzeroLabels) { 841 for (Value *V : DFSF.NonZeroChecks) { 842 Instruction *Pos; 843 if (Instruction *I = dyn_cast<Instruction>(V)) 844 Pos = I->getNextNode(); 845 else 846 Pos = DFSF.F->getEntryBlock().begin(); 847 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 848 Pos = Pos->getNextNode(); 849 IRBuilder<> IRB(Pos); 850 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 851 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 852 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 853 IRBuilder<> ThenIRB(BI); 854 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn); 855 } 856 } 857 } 858 859 return false; 860 } 861 862 Value *DFSanFunction::getArgTLSPtr() { 863 if (ArgTLSPtr) 864 return ArgTLSPtr; 865 if (DFS.ArgTLS) 866 return ArgTLSPtr = DFS.ArgTLS; 867 868 IRBuilder<> IRB(F->getEntryBlock().begin()); 869 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS); 870 } 871 872 Value *DFSanFunction::getRetvalTLS() { 873 if (RetvalTLSPtr) 874 return RetvalTLSPtr; 875 if (DFS.RetvalTLS) 876 return RetvalTLSPtr = DFS.RetvalTLS; 877 878 IRBuilder<> IRB(F->getEntryBlock().begin()); 879 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS); 880 } 881 882 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 883 IRBuilder<> IRB(Pos); 884 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 885 } 886 887 Value *DFSanFunction::getShadow(Value *V) { 888 if (!isa<Argument>(V) && !isa<Instruction>(V)) 889 return DFS.ZeroShadow; 890 Value *&Shadow = ValShadowMap[V]; 891 if (!Shadow) { 892 if (Argument *A = dyn_cast<Argument>(V)) { 893 if (IsNativeABI) 894 return DFS.ZeroShadow; 895 switch (IA) { 896 case DataFlowSanitizer::IA_TLS: { 897 Value *ArgTLSPtr = getArgTLSPtr(); 898 Instruction *ArgTLSPos = 899 DFS.ArgTLS ? &*F->getEntryBlock().begin() 900 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 901 IRBuilder<> IRB(ArgTLSPos); 902 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 903 break; 904 } 905 case DataFlowSanitizer::IA_Args: { 906 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2; 907 Function::arg_iterator i = F->arg_begin(); 908 while (ArgIdx--) 909 ++i; 910 Shadow = i; 911 assert(Shadow->getType() == DFS.ShadowTy); 912 break; 913 } 914 } 915 NonZeroChecks.push_back(Shadow); 916 } else { 917 Shadow = DFS.ZeroShadow; 918 } 919 } 920 return Shadow; 921 } 922 923 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 924 assert(!ValShadowMap.count(I)); 925 assert(Shadow->getType() == DFS.ShadowTy); 926 ValShadowMap[I] = Shadow; 927 } 928 929 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 930 assert(Addr != RetvalTLS && "Reinstrumenting?"); 931 IRBuilder<> IRB(Pos); 932 return IRB.CreateIntToPtr( 933 IRB.CreateMul( 934 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask), 935 ShadowPtrMul), 936 ShadowPtrTy); 937 } 938 939 // Generates IR to compute the union of the two given shadows, inserting it 940 // before Pos. Returns the computed union Value. 941 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 942 if (V1 == DFS.ZeroShadow) 943 return V2; 944 if (V2 == DFS.ZeroShadow) 945 return V1; 946 if (V1 == V2) 947 return V1; 948 949 auto V1Elems = ShadowElements.find(V1); 950 auto V2Elems = ShadowElements.find(V2); 951 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 952 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 953 V2Elems->second.begin(), V2Elems->second.end())) { 954 return V1; 955 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 956 V1Elems->second.begin(), V1Elems->second.end())) { 957 return V2; 958 } 959 } else if (V1Elems != ShadowElements.end()) { 960 if (V1Elems->second.count(V2)) 961 return V1; 962 } else if (V2Elems != ShadowElements.end()) { 963 if (V2Elems->second.count(V1)) 964 return V2; 965 } 966 967 auto Key = std::make_pair(V1, V2); 968 if (V1 > V2) 969 std::swap(Key.first, Key.second); 970 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 971 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 972 return CCS.Shadow; 973 974 IRBuilder<> IRB(Pos); 975 if (AvoidNewBlocks) { 976 CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2); 977 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 978 Call->addAttribute(1, Attribute::ZExt); 979 Call->addAttribute(2, Attribute::ZExt); 980 981 CCS.Block = Pos->getParent(); 982 CCS.Shadow = Call; 983 } else { 984 BasicBlock *Head = Pos->getParent(); 985 Value *Ne = IRB.CreateICmpNE(V1, V2); 986 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 987 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 988 IRBuilder<> ThenIRB(BI); 989 CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2); 990 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 991 Call->addAttribute(1, Attribute::ZExt); 992 Call->addAttribute(2, Attribute::ZExt); 993 994 BasicBlock *Tail = BI->getSuccessor(0); 995 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin()); 996 Phi->addIncoming(Call, Call->getParent()); 997 Phi->addIncoming(V1, Head); 998 999 CCS.Block = Tail; 1000 CCS.Shadow = Phi; 1001 } 1002 1003 std::set<Value *> UnionElems; 1004 if (V1Elems != ShadowElements.end()) { 1005 UnionElems = V1Elems->second; 1006 } else { 1007 UnionElems.insert(V1); 1008 } 1009 if (V2Elems != ShadowElements.end()) { 1010 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1011 } else { 1012 UnionElems.insert(V2); 1013 } 1014 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1015 1016 return CCS.Shadow; 1017 } 1018 1019 // A convenience function which folds the shadows of each of the operands 1020 // of the provided instruction Inst, inserting the IR before Inst. Returns 1021 // the computed union Value. 1022 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1023 if (Inst->getNumOperands() == 0) 1024 return DFS.ZeroShadow; 1025 1026 Value *Shadow = getShadow(Inst->getOperand(0)); 1027 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1028 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1029 } 1030 return Shadow; 1031 } 1032 1033 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1034 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1035 DFSF.setShadow(&I, CombinedShadow); 1036 } 1037 1038 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1039 // Addr has alignment Align, and take the union of each of those shadows. 1040 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1041 Instruction *Pos) { 1042 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1043 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1044 AllocaShadowMap.find(AI); 1045 if (i != AllocaShadowMap.end()) { 1046 IRBuilder<> IRB(Pos); 1047 return IRB.CreateLoad(i->second); 1048 } 1049 } 1050 1051 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1052 SmallVector<Value *, 2> Objs; 1053 GetUnderlyingObjects(Addr, Objs, DFS.DL); 1054 bool AllConstants = true; 1055 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end(); 1056 i != e; ++i) { 1057 if (isa<Function>(*i) || isa<BlockAddress>(*i)) 1058 continue; 1059 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant()) 1060 continue; 1061 1062 AllConstants = false; 1063 break; 1064 } 1065 if (AllConstants) 1066 return DFS.ZeroShadow; 1067 1068 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1069 switch (Size) { 1070 case 0: 1071 return DFS.ZeroShadow; 1072 case 1: { 1073 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1074 LI->setAlignment(ShadowAlign); 1075 return LI; 1076 } 1077 case 2: { 1078 IRBuilder<> IRB(Pos); 1079 Value *ShadowAddr1 = 1080 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1081 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1082 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1083 } 1084 } 1085 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1086 // Fast path for the common case where each byte has identical shadow: load 1087 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1088 // shadow is non-equal. 1089 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1090 IRBuilder<> FallbackIRB(FallbackBB); 1091 CallInst *FallbackCall = FallbackIRB.CreateCall2( 1092 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1093 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1094 1095 // Compare each of the shadows stored in the loaded 64 bits to each other, 1096 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1097 IRBuilder<> IRB(Pos); 1098 Value *WideAddr = 1099 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1100 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1101 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1102 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1103 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1104 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1105 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1106 1107 BasicBlock *Head = Pos->getParent(); 1108 BasicBlock *Tail = Head->splitBasicBlock(Pos); 1109 1110 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1111 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1112 1113 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1114 for (auto Child : Children) 1115 DT.changeImmediateDominator(Child, NewNode); 1116 } 1117 1118 // In the following code LastBr will refer to the previous basic block's 1119 // conditional branch instruction, whose true successor is fixed up to point 1120 // to the next block during the loop below or to the tail after the final 1121 // iteration. 1122 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1123 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1124 DT.addNewBlock(FallbackBB, Head); 1125 1126 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1127 Ofs += 64 / DFS.ShadowWidth) { 1128 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1129 DT.addNewBlock(NextBB, LastBr->getParent()); 1130 IRBuilder<> NextIRB(NextBB); 1131 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1132 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1133 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1134 LastBr->setSuccessor(0, NextBB); 1135 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1136 } 1137 1138 LastBr->setSuccessor(0, Tail); 1139 FallbackIRB.CreateBr(Tail); 1140 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1141 Shadow->addIncoming(FallbackCall, FallbackBB); 1142 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1143 return Shadow; 1144 } 1145 1146 IRBuilder<> IRB(Pos); 1147 CallInst *FallbackCall = IRB.CreateCall2( 1148 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1149 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1150 return FallbackCall; 1151 } 1152 1153 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1154 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType()); 1155 if (Size == 0) { 1156 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1157 return; 1158 } 1159 1160 uint64_t Align; 1161 if (ClPreserveAlignment) { 1162 Align = LI.getAlignment(); 1163 if (Align == 0) 1164 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType()); 1165 } else { 1166 Align = 1; 1167 } 1168 IRBuilder<> IRB(&LI); 1169 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1170 if (ClCombinePointerLabelsOnLoad) { 1171 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1172 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1173 } 1174 if (Shadow != DFSF.DFS.ZeroShadow) 1175 DFSF.NonZeroChecks.push_back(Shadow); 1176 1177 DFSF.setShadow(&LI, Shadow); 1178 } 1179 1180 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1181 Value *Shadow, Instruction *Pos) { 1182 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1183 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1184 AllocaShadowMap.find(AI); 1185 if (i != AllocaShadowMap.end()) { 1186 IRBuilder<> IRB(Pos); 1187 IRB.CreateStore(Shadow, i->second); 1188 return; 1189 } 1190 } 1191 1192 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1193 IRBuilder<> IRB(Pos); 1194 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1195 if (Shadow == DFS.ZeroShadow) { 1196 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1197 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1198 Value *ExtShadowAddr = 1199 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1200 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1201 return; 1202 } 1203 1204 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1205 uint64_t Offset = 0; 1206 if (Size >= ShadowVecSize) { 1207 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1208 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1209 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1210 ShadowVec = IRB.CreateInsertElement( 1211 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1212 } 1213 Value *ShadowVecAddr = 1214 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1215 do { 1216 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset); 1217 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1218 Size -= ShadowVecSize; 1219 ++Offset; 1220 } while (Size >= ShadowVecSize); 1221 Offset *= ShadowVecSize; 1222 } 1223 while (Size > 0) { 1224 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset); 1225 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1226 --Size; 1227 ++Offset; 1228 } 1229 } 1230 1231 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1232 uint64_t Size = 1233 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType()); 1234 if (Size == 0) 1235 return; 1236 1237 uint64_t Align; 1238 if (ClPreserveAlignment) { 1239 Align = SI.getAlignment(); 1240 if (Align == 0) 1241 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType()); 1242 } else { 1243 Align = 1; 1244 } 1245 1246 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1247 if (ClCombinePointerLabelsOnStore) { 1248 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1249 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1250 } 1251 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1252 } 1253 1254 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1255 visitOperandShadowInst(BO); 1256 } 1257 1258 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1259 1260 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1261 1262 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1263 visitOperandShadowInst(GEPI); 1264 } 1265 1266 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1267 visitOperandShadowInst(I); 1268 } 1269 1270 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1271 visitOperandShadowInst(I); 1272 } 1273 1274 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1275 visitOperandShadowInst(I); 1276 } 1277 1278 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1279 visitOperandShadowInst(I); 1280 } 1281 1282 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1283 visitOperandShadowInst(I); 1284 } 1285 1286 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1287 bool AllLoadsStores = true; 1288 for (User *U : I.users()) { 1289 if (isa<LoadInst>(U)) 1290 continue; 1291 1292 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1293 if (SI->getPointerOperand() == &I) 1294 continue; 1295 } 1296 1297 AllLoadsStores = false; 1298 break; 1299 } 1300 if (AllLoadsStores) { 1301 IRBuilder<> IRB(&I); 1302 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1303 } 1304 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1305 } 1306 1307 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1308 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1309 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1310 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1311 1312 if (isa<VectorType>(I.getCondition()->getType())) { 1313 DFSF.setShadow( 1314 &I, 1315 DFSF.combineShadows( 1316 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1317 } else { 1318 Value *ShadowSel; 1319 if (TrueShadow == FalseShadow) { 1320 ShadowSel = TrueShadow; 1321 } else { 1322 ShadowSel = 1323 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1324 } 1325 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1326 } 1327 } 1328 1329 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1330 IRBuilder<> IRB(&I); 1331 Value *ValShadow = DFSF.getShadow(I.getValue()); 1332 IRB.CreateCall3( 1333 DFSF.DFS.DFSanSetLabelFn, ValShadow, 1334 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 1335 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)); 1336 } 1337 1338 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1339 IRBuilder<> IRB(&I); 1340 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1341 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1342 Value *LenShadow = IRB.CreateMul( 1343 I.getLength(), 1344 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1345 Value *AlignShadow; 1346 if (ClPreserveAlignment) { 1347 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1348 ConstantInt::get(I.getAlignmentCst()->getType(), 1349 DFSF.DFS.ShadowWidth / 8)); 1350 } else { 1351 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1352 DFSF.DFS.ShadowWidth / 8); 1353 } 1354 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1355 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1356 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1357 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow, 1358 AlignShadow, I.getVolatileCst()); 1359 } 1360 1361 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1362 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1363 switch (DFSF.IA) { 1364 case DataFlowSanitizer::IA_TLS: { 1365 Value *S = DFSF.getShadow(RI.getReturnValue()); 1366 IRBuilder<> IRB(&RI); 1367 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1368 break; 1369 } 1370 case DataFlowSanitizer::IA_Args: { 1371 IRBuilder<> IRB(&RI); 1372 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1373 Value *InsVal = 1374 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1375 Value *InsShadow = 1376 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1377 RI.setOperand(0, InsShadow); 1378 break; 1379 } 1380 } 1381 } 1382 } 1383 1384 void DFSanVisitor::visitCallSite(CallSite CS) { 1385 Function *F = CS.getCalledFunction(); 1386 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1387 visitOperandShadowInst(*CS.getInstruction()); 1388 return; 1389 } 1390 1391 // Calls to this function are synthesized in wrappers, and we shouldn't 1392 // instrument them. 1393 if (F == DFSF.DFS.DFSanVarargWrapperFn) 1394 return; 1395 1396 assert(!(cast<FunctionType>( 1397 CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() && 1398 dyn_cast<InvokeInst>(CS.getInstruction()))); 1399 1400 IRBuilder<> IRB(CS.getInstruction()); 1401 1402 DenseMap<Value *, Function *>::iterator i = 1403 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1404 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1405 Function *F = i->second; 1406 switch (DFSF.DFS.getWrapperKind(F)) { 1407 case DataFlowSanitizer::WK_Warning: { 1408 CS.setCalledFunction(F); 1409 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1410 IRB.CreateGlobalStringPtr(F->getName())); 1411 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1412 return; 1413 } 1414 case DataFlowSanitizer::WK_Discard: { 1415 CS.setCalledFunction(F); 1416 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1417 return; 1418 } 1419 case DataFlowSanitizer::WK_Functional: { 1420 CS.setCalledFunction(F); 1421 visitOperandShadowInst(*CS.getInstruction()); 1422 return; 1423 } 1424 case DataFlowSanitizer::WK_Custom: { 1425 // Don't try to handle invokes of custom functions, it's too complicated. 1426 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1427 // wrapper. 1428 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1429 FunctionType *FT = F->getFunctionType(); 1430 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1431 std::string CustomFName = "__dfsw_"; 1432 CustomFName += F->getName(); 1433 Constant *CustomF = 1434 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1435 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1436 CustomFn->copyAttributesFrom(F); 1437 1438 // Custom functions returning non-void will write to the return label. 1439 if (!FT->getReturnType()->isVoidTy()) { 1440 CustomFn->removeAttributes(AttributeSet::FunctionIndex, 1441 DFSF.DFS.ReadOnlyNoneAttrs); 1442 } 1443 } 1444 1445 std::vector<Value *> Args; 1446 1447 CallSite::arg_iterator i = CS.arg_begin(); 1448 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1449 Type *T = (*i)->getType(); 1450 FunctionType *ParamFT; 1451 if (isa<PointerType>(T) && 1452 (ParamFT = dyn_cast<FunctionType>( 1453 cast<PointerType>(T)->getElementType()))) { 1454 std::string TName = "dfst"; 1455 TName += utostr(FT->getNumParams() - n); 1456 TName += "$"; 1457 TName += F->getName(); 1458 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1459 Args.push_back(T); 1460 Args.push_back( 1461 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1462 } else { 1463 Args.push_back(*i); 1464 } 1465 } 1466 1467 i = CS.arg_begin(); 1468 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1469 Args.push_back(DFSF.getShadow(*i)); 1470 1471 if (FT->isVarArg()) { 1472 auto LabelVAAlloca = 1473 new AllocaInst(ArrayType::get(DFSF.DFS.ShadowTy, 1474 CS.arg_size() - FT->getNumParams()), 1475 "labelva", DFSF.F->getEntryBlock().begin()); 1476 1477 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1478 auto LabelVAPtr = IRB.CreateStructGEP(LabelVAAlloca, n); 1479 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1480 } 1481 1482 Args.push_back(IRB.CreateStructGEP(LabelVAAlloca, 0)); 1483 } 1484 1485 if (!FT->getReturnType()->isVoidTy()) { 1486 if (!DFSF.LabelReturnAlloca) { 1487 DFSF.LabelReturnAlloca = 1488 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn", 1489 DFSF.F->getEntryBlock().begin()); 1490 } 1491 Args.push_back(DFSF.LabelReturnAlloca); 1492 } 1493 1494 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1495 Args.push_back(*i); 1496 1497 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1498 CustomCI->setCallingConv(CI->getCallingConv()); 1499 CustomCI->setAttributes(CI->getAttributes()); 1500 1501 if (!FT->getReturnType()->isVoidTy()) { 1502 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1503 DFSF.setShadow(CustomCI, LabelLoad); 1504 } 1505 1506 CI->replaceAllUsesWith(CustomCI); 1507 CI->eraseFromParent(); 1508 return; 1509 } 1510 break; 1511 } 1512 } 1513 } 1514 1515 FunctionType *FT = cast<FunctionType>( 1516 CS.getCalledValue()->getType()->getPointerElementType()); 1517 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1518 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1519 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1520 DFSF.getArgTLS(i, CS.getInstruction())); 1521 } 1522 } 1523 1524 Instruction *Next = nullptr; 1525 if (!CS.getType()->isVoidTy()) { 1526 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1527 if (II->getNormalDest()->getSinglePredecessor()) { 1528 Next = II->getNormalDest()->begin(); 1529 } else { 1530 BasicBlock *NewBB = 1531 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1532 Next = NewBB->begin(); 1533 } 1534 } else { 1535 Next = CS->getNextNode(); 1536 } 1537 1538 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1539 IRBuilder<> NextIRB(Next); 1540 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1541 DFSF.SkipInsts.insert(LI); 1542 DFSF.setShadow(CS.getInstruction(), LI); 1543 DFSF.NonZeroChecks.push_back(LI); 1544 } 1545 } 1546 1547 // Do all instrumentation for IA_Args down here to defer tampering with the 1548 // CFG in a way that SplitEdge may be able to detect. 1549 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1550 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1551 Value *Func = 1552 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1553 std::vector<Value *> Args; 1554 1555 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1556 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1557 Args.push_back(*i); 1558 1559 i = CS.arg_begin(); 1560 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1561 Args.push_back(DFSF.getShadow(*i)); 1562 1563 if (FT->isVarArg()) { 1564 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1565 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1566 AllocaInst *VarArgShadow = 1567 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin()); 1568 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0)); 1569 for (unsigned n = 0; i != e; ++i, ++n) { 1570 IRB.CreateStore(DFSF.getShadow(*i), 1571 IRB.CreateConstGEP2_32(VarArgShadow, 0, n)); 1572 Args.push_back(*i); 1573 } 1574 } 1575 1576 CallSite NewCS; 1577 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1578 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1579 Args); 1580 } else { 1581 NewCS = IRB.CreateCall(Func, Args); 1582 } 1583 NewCS.setCallingConv(CS.getCallingConv()); 1584 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1585 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex, 1586 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(), 1587 AttributeSet::ReturnIndex))); 1588 1589 if (Next) { 1590 ExtractValueInst *ExVal = 1591 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1592 DFSF.SkipInsts.insert(ExVal); 1593 ExtractValueInst *ExShadow = 1594 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1595 DFSF.SkipInsts.insert(ExShadow); 1596 DFSF.setShadow(ExVal, ExShadow); 1597 DFSF.NonZeroChecks.push_back(ExShadow); 1598 1599 CS.getInstruction()->replaceAllUsesWith(ExVal); 1600 } 1601 1602 CS.getInstruction()->eraseFromParent(); 1603 } 1604 } 1605 1606 void DFSanVisitor::visitPHINode(PHINode &PN) { 1607 PHINode *ShadowPN = 1608 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1609 1610 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1611 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1612 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1613 ++i) { 1614 ShadowPN->addIncoming(UndefShadow, *i); 1615 } 1616 1617 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1618 DFSF.setShadow(&PN, ShadowPN); 1619 } 1620