1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/DenseSet.h" 51 #include "llvm/ADT/DepthFirstIterator.h" 52 #include "llvm/ADT/None.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/ADT/Triple.h" 58 #include "llvm/Analysis/ValueTracking.h" 59 #include "llvm/IR/Argument.h" 60 #include "llvm/IR/Attributes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CallSite.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/InitializePasses.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/SpecialCaseList.h" 91 #include "llvm/Transforms/Instrumentation.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstddef> 97 #include <cstdint> 98 #include <iterator> 99 #include <memory> 100 #include <set> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 // External symbol to be used when generating the shadow address for 108 // architectures with multiple VMAs. Instead of using a constant integer 109 // the runtime will set the external mask based on the VMA range. 110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 111 112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 113 // alignment requirements provided by the input IR are correct. For example, 114 // if the input IR contains a load with alignment 8, this flag will cause 115 // the shadow load to have alignment 16. This flag is disabled by default as 116 // we have unfortunately encountered too much code (including Clang itself; 117 // see PR14291) which performs misaligned access. 118 static cl::opt<bool> ClPreserveAlignment( 119 "dfsan-preserve-alignment", 120 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 121 cl::init(false)); 122 123 // The ABI list files control how shadow parameters are passed. The pass treats 124 // every function labelled "uninstrumented" in the ABI list file as conforming 125 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 126 // additional annotations for those functions, a call to one of those functions 127 // will produce a warning message, as the labelling behaviour of the function is 128 // unknown. The other supported annotations are "functional" and "discard", 129 // which are described below under DataFlowSanitizer::WrapperKind. 130 static cl::list<std::string> ClABIListFiles( 131 "dfsan-abilist", 132 cl::desc("File listing native ABI functions and how the pass treats them"), 133 cl::Hidden); 134 135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 136 // functions (see DataFlowSanitizer::InstrumentedABI below). 137 static cl::opt<bool> ClArgsABI( 138 "dfsan-args-abi", 139 cl::desc("Use the argument ABI rather than the TLS ABI"), 140 cl::Hidden); 141 142 // Controls whether the pass includes or ignores the labels of pointers in load 143 // instructions. 144 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 145 "dfsan-combine-pointer-labels-on-load", 146 cl::desc("Combine the label of the pointer with the label of the data when " 147 "loading from memory."), 148 cl::Hidden, cl::init(true)); 149 150 // Controls whether the pass includes or ignores the labels of pointers in 151 // stores instructions. 152 static cl::opt<bool> ClCombinePointerLabelsOnStore( 153 "dfsan-combine-pointer-labels-on-store", 154 cl::desc("Combine the label of the pointer with the label of the data when " 155 "storing in memory."), 156 cl::Hidden, cl::init(false)); 157 158 static cl::opt<bool> ClDebugNonzeroLabels( 159 "dfsan-debug-nonzero-labels", 160 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 161 "load or return with a nonzero label"), 162 cl::Hidden); 163 164 static StringRef GetGlobalTypeString(const GlobalValue &G) { 165 // Types of GlobalVariables are always pointer types. 166 Type *GType = G.getValueType(); 167 // For now we support blacklisting struct types only. 168 if (StructType *SGType = dyn_cast<StructType>(GType)) { 169 if (!SGType->isLiteral()) 170 return SGType->getName(); 171 } 172 return "<unknown type>"; 173 } 174 175 namespace { 176 177 class DFSanABIList { 178 std::unique_ptr<SpecialCaseList> SCL; 179 180 public: 181 DFSanABIList() = default; 182 183 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 184 185 /// Returns whether either this function or its source file are listed in the 186 /// given category. 187 bool isIn(const Function &F, StringRef Category) const { 188 return isIn(*F.getParent(), Category) || 189 SCL->inSection("dataflow", "fun", F.getName(), Category); 190 } 191 192 /// Returns whether this global alias is listed in the given category. 193 /// 194 /// If GA aliases a function, the alias's name is matched as a function name 195 /// would be. Similarly, aliases of globals are matched like globals. 196 bool isIn(const GlobalAlias &GA, StringRef Category) const { 197 if (isIn(*GA.getParent(), Category)) 198 return true; 199 200 if (isa<FunctionType>(GA.getValueType())) 201 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 202 203 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 204 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 205 Category); 206 } 207 208 /// Returns whether this module is listed in the given category. 209 bool isIn(const Module &M, StringRef Category) const { 210 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 211 } 212 }; 213 214 /// TransformedFunction is used to express the result of transforming one 215 /// function type into another. This struct is immutable. It holds metadata 216 /// useful for updating calls of the old function to the new type. 217 struct TransformedFunction { 218 TransformedFunction(FunctionType* OriginalType, 219 FunctionType* TransformedType, 220 std::vector<unsigned> ArgumentIndexMapping) 221 : OriginalType(OriginalType), 222 TransformedType(TransformedType), 223 ArgumentIndexMapping(ArgumentIndexMapping) {} 224 225 // Disallow copies. 226 TransformedFunction(const TransformedFunction&) = delete; 227 TransformedFunction& operator=(const TransformedFunction&) = delete; 228 229 // Allow moves. 230 TransformedFunction(TransformedFunction&&) = default; 231 TransformedFunction& operator=(TransformedFunction&&) = default; 232 233 /// Type of the function before the transformation. 234 FunctionType *OriginalType; 235 236 /// Type of the function after the transformation. 237 FunctionType *TransformedType; 238 239 /// Transforming a function may change the position of arguments. This 240 /// member records the mapping from each argument's old position to its new 241 /// position. Argument positions are zero-indexed. If the transformation 242 /// from F to F' made the first argument of F into the third argument of F', 243 /// then ArgumentIndexMapping[0] will equal 2. 244 std::vector<unsigned> ArgumentIndexMapping; 245 }; 246 247 /// Given function attributes from a call site for the original function, 248 /// return function attributes appropriate for a call to the transformed 249 /// function. 250 AttributeList TransformFunctionAttributes( 251 const TransformedFunction& TransformedFunction, 252 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 253 254 // Construct a vector of AttributeSet for each function argument. 255 std::vector<llvm::AttributeSet> ArgumentAttributes( 256 TransformedFunction.TransformedType->getNumParams()); 257 258 // Copy attributes from the parameter of the original function to the 259 // transformed version. 'ArgumentIndexMapping' holds the mapping from 260 // old argument position to new. 261 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 262 i < ie; ++i) { 263 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 264 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 265 } 266 267 // Copy annotations on varargs arguments. 268 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 269 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 270 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 271 } 272 273 return AttributeList::get( 274 Ctx, 275 CallSiteAttrs.getFnAttributes(), 276 CallSiteAttrs.getRetAttributes(), 277 llvm::makeArrayRef(ArgumentAttributes)); 278 } 279 280 class DataFlowSanitizer : public ModulePass { 281 friend struct DFSanFunction; 282 friend class DFSanVisitor; 283 284 enum { 285 ShadowWidth = 16 286 }; 287 288 /// Which ABI should be used for instrumented functions? 289 enum InstrumentedABI { 290 /// Argument and return value labels are passed through additional 291 /// arguments and by modifying the return type. 292 IA_Args, 293 294 /// Argument and return value labels are passed through TLS variables 295 /// __dfsan_arg_tls and __dfsan_retval_tls. 296 IA_TLS 297 }; 298 299 /// How should calls to uninstrumented functions be handled? 300 enum WrapperKind { 301 /// This function is present in an uninstrumented form but we don't know 302 /// how it should be handled. Print a warning and call the function anyway. 303 /// Don't label the return value. 304 WK_Warning, 305 306 /// This function does not write to (user-accessible) memory, and its return 307 /// value is unlabelled. 308 WK_Discard, 309 310 /// This function does not write to (user-accessible) memory, and the label 311 /// of its return value is the union of the label of its arguments. 312 WK_Functional, 313 314 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 315 /// where F is the name of the function. This function may wrap the 316 /// original function or provide its own implementation. This is similar to 317 /// the IA_Args ABI, except that IA_Args uses a struct return type to 318 /// pass the return value shadow in a register, while WK_Custom uses an 319 /// extra pointer argument to return the shadow. This allows the wrapped 320 /// form of the function type to be expressed in C. 321 WK_Custom 322 }; 323 324 Module *Mod; 325 LLVMContext *Ctx; 326 IntegerType *ShadowTy; 327 PointerType *ShadowPtrTy; 328 IntegerType *IntptrTy; 329 ConstantInt *ZeroShadow; 330 ConstantInt *ShadowPtrMask; 331 ConstantInt *ShadowPtrMul; 332 Constant *ArgTLS; 333 Constant *RetvalTLS; 334 void *(*GetArgTLSPtr)(); 335 void *(*GetRetvalTLSPtr)(); 336 FunctionType *GetArgTLSTy; 337 FunctionType *GetRetvalTLSTy; 338 Constant *GetArgTLS; 339 Constant *GetRetvalTLS; 340 Constant *ExternalShadowMask; 341 FunctionType *DFSanUnionFnTy; 342 FunctionType *DFSanUnionLoadFnTy; 343 FunctionType *DFSanUnimplementedFnTy; 344 FunctionType *DFSanSetLabelFnTy; 345 FunctionType *DFSanNonzeroLabelFnTy; 346 FunctionType *DFSanVarargWrapperFnTy; 347 FunctionCallee DFSanUnionFn; 348 FunctionCallee DFSanCheckedUnionFn; 349 FunctionCallee DFSanUnionLoadFn; 350 FunctionCallee DFSanUnimplementedFn; 351 FunctionCallee DFSanSetLabelFn; 352 FunctionCallee DFSanNonzeroLabelFn; 353 FunctionCallee DFSanVarargWrapperFn; 354 MDNode *ColdCallWeights; 355 DFSanABIList ABIList; 356 DenseMap<Value *, Function *> UnwrappedFnMap; 357 AttrBuilder ReadOnlyNoneAttrs; 358 bool DFSanRuntimeShadowMask = false; 359 360 Value *getShadowAddress(Value *Addr, Instruction *Pos); 361 bool isInstrumented(const Function *F); 362 bool isInstrumented(const GlobalAlias *GA); 363 FunctionType *getArgsFunctionType(FunctionType *T); 364 FunctionType *getTrampolineFunctionType(FunctionType *T); 365 TransformedFunction getCustomFunctionType(FunctionType *T); 366 InstrumentedABI getInstrumentedABI(); 367 WrapperKind getWrapperKind(Function *F); 368 void addGlobalNamePrefix(GlobalValue *GV); 369 Function *buildWrapperFunction(Function *F, StringRef NewFName, 370 GlobalValue::LinkageTypes NewFLink, 371 FunctionType *NewFT); 372 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 373 374 public: 375 static char ID; 376 377 DataFlowSanitizer( 378 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 379 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 380 381 bool doInitialization(Module &M) override; 382 bool runOnModule(Module &M) override; 383 }; 384 385 struct DFSanFunction { 386 DataFlowSanitizer &DFS; 387 Function *F; 388 DominatorTree DT; 389 DataFlowSanitizer::InstrumentedABI IA; 390 bool IsNativeABI; 391 Value *ArgTLSPtr = nullptr; 392 Value *RetvalTLSPtr = nullptr; 393 AllocaInst *LabelReturnAlloca = nullptr; 394 DenseMap<Value *, Value *> ValShadowMap; 395 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 396 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 397 DenseSet<Instruction *> SkipInsts; 398 std::vector<Value *> NonZeroChecks; 399 bool AvoidNewBlocks; 400 401 struct CachedCombinedShadow { 402 BasicBlock *Block; 403 Value *Shadow; 404 }; 405 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 406 CachedCombinedShadows; 407 DenseMap<Value *, std::set<Value *>> ShadowElements; 408 409 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 410 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 411 DT.recalculate(*F); 412 // FIXME: Need to track down the register allocator issue which causes poor 413 // performance in pathological cases with large numbers of basic blocks. 414 AvoidNewBlocks = F->size() > 1000; 415 } 416 417 Value *getArgTLSPtr(); 418 Value *getArgTLS(unsigned Index, Instruction *Pos); 419 Value *getRetvalTLS(); 420 Value *getShadow(Value *V); 421 void setShadow(Instruction *I, Value *Shadow); 422 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 423 Value *combineOperandShadows(Instruction *Inst); 424 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 425 Instruction *Pos); 426 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 427 Instruction *Pos); 428 }; 429 430 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 431 public: 432 DFSanFunction &DFSF; 433 434 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 435 436 const DataLayout &getDataLayout() const { 437 return DFSF.F->getParent()->getDataLayout(); 438 } 439 440 void visitOperandShadowInst(Instruction &I); 441 void visitUnaryOperator(UnaryOperator &UO); 442 void visitBinaryOperator(BinaryOperator &BO); 443 void visitCastInst(CastInst &CI); 444 void visitCmpInst(CmpInst &CI); 445 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 446 void visitLoadInst(LoadInst &LI); 447 void visitStoreInst(StoreInst &SI); 448 void visitReturnInst(ReturnInst &RI); 449 void visitCallSite(CallSite CS); 450 void visitPHINode(PHINode &PN); 451 void visitExtractElementInst(ExtractElementInst &I); 452 void visitInsertElementInst(InsertElementInst &I); 453 void visitShuffleVectorInst(ShuffleVectorInst &I); 454 void visitExtractValueInst(ExtractValueInst &I); 455 void visitInsertValueInst(InsertValueInst &I); 456 void visitAllocaInst(AllocaInst &I); 457 void visitSelectInst(SelectInst &I); 458 void visitMemSetInst(MemSetInst &I); 459 void visitMemTransferInst(MemTransferInst &I); 460 }; 461 462 } // end anonymous namespace 463 464 char DataFlowSanitizer::ID; 465 466 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 467 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 468 469 ModulePass * 470 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 471 void *(*getArgTLS)(), 472 void *(*getRetValTLS)()) { 473 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 474 } 475 476 DataFlowSanitizer::DataFlowSanitizer( 477 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 478 void *(*getRetValTLS)()) 479 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 480 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 481 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 482 ClABIListFiles.end()); 483 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 484 } 485 486 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 487 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 488 ArgTypes.append(T->getNumParams(), ShadowTy); 489 if (T->isVarArg()) 490 ArgTypes.push_back(ShadowPtrTy); 491 Type *RetType = T->getReturnType(); 492 if (!RetType->isVoidTy()) 493 RetType = StructType::get(RetType, ShadowTy); 494 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 495 } 496 497 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 498 assert(!T->isVarArg()); 499 SmallVector<Type *, 4> ArgTypes; 500 ArgTypes.push_back(T->getPointerTo()); 501 ArgTypes.append(T->param_begin(), T->param_end()); 502 ArgTypes.append(T->getNumParams(), ShadowTy); 503 Type *RetType = T->getReturnType(); 504 if (!RetType->isVoidTy()) 505 ArgTypes.push_back(ShadowPtrTy); 506 return FunctionType::get(T->getReturnType(), ArgTypes, false); 507 } 508 509 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 510 SmallVector<Type *, 4> ArgTypes; 511 512 // Some parameters of the custom function being constructed are 513 // parameters of T. Record the mapping from parameters of T to 514 // parameters of the custom function, so that parameter attributes 515 // at call sites can be updated. 516 std::vector<unsigned> ArgumentIndexMapping; 517 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 518 Type* param_type = T->getParamType(i); 519 FunctionType *FT; 520 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 521 cast<PointerType>(param_type)->getElementType()))) { 522 ArgumentIndexMapping.push_back(ArgTypes.size()); 523 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 524 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 525 } else { 526 ArgumentIndexMapping.push_back(ArgTypes.size()); 527 ArgTypes.push_back(param_type); 528 } 529 } 530 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 531 ArgTypes.push_back(ShadowTy); 532 if (T->isVarArg()) 533 ArgTypes.push_back(ShadowPtrTy); 534 Type *RetType = T->getReturnType(); 535 if (!RetType->isVoidTy()) 536 ArgTypes.push_back(ShadowPtrTy); 537 return TransformedFunction( 538 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 539 ArgumentIndexMapping); 540 } 541 542 bool DataFlowSanitizer::doInitialization(Module &M) { 543 Triple TargetTriple(M.getTargetTriple()); 544 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 545 bool IsMIPS64 = TargetTriple.isMIPS64(); 546 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 547 TargetTriple.getArch() == Triple::aarch64_be; 548 549 const DataLayout &DL = M.getDataLayout(); 550 551 Mod = &M; 552 Ctx = &M.getContext(); 553 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 554 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 555 IntptrTy = DL.getIntPtrType(*Ctx); 556 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 557 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 558 if (IsX86_64) 559 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 560 else if (IsMIPS64) 561 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 562 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 563 else if (IsAArch64) 564 DFSanRuntimeShadowMask = true; 565 else 566 report_fatal_error("unsupported triple"); 567 568 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 569 DFSanUnionFnTy = 570 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 571 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 572 DFSanUnionLoadFnTy = 573 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 574 DFSanUnimplementedFnTy = FunctionType::get( 575 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 576 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 577 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 578 DFSanSetLabelArgs, /*isVarArg=*/false); 579 DFSanNonzeroLabelFnTy = FunctionType::get( 580 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 581 DFSanVarargWrapperFnTy = FunctionType::get( 582 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 583 584 if (GetArgTLSPtr) { 585 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 586 ArgTLS = nullptr; 587 GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false); 588 GetArgTLS = ConstantExpr::getIntToPtr( 589 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 590 PointerType::getUnqual(GetArgTLSTy)); 591 } 592 if (GetRetvalTLSPtr) { 593 RetvalTLS = nullptr; 594 GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false); 595 GetRetvalTLS = ConstantExpr::getIntToPtr( 596 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 597 PointerType::getUnqual(GetRetvalTLSTy)); 598 } 599 600 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 601 return true; 602 } 603 604 bool DataFlowSanitizer::isInstrumented(const Function *F) { 605 return !ABIList.isIn(*F, "uninstrumented"); 606 } 607 608 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 609 return !ABIList.isIn(*GA, "uninstrumented"); 610 } 611 612 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 613 return ClArgsABI ? IA_Args : IA_TLS; 614 } 615 616 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 617 if (ABIList.isIn(*F, "functional")) 618 return WK_Functional; 619 if (ABIList.isIn(*F, "discard")) 620 return WK_Discard; 621 if (ABIList.isIn(*F, "custom")) 622 return WK_Custom; 623 624 return WK_Warning; 625 } 626 627 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 628 std::string GVName = GV->getName(), Prefix = "dfs$"; 629 GV->setName(Prefix + GVName); 630 631 // Try to change the name of the function in module inline asm. We only do 632 // this for specific asm directives, currently only ".symver", to try to avoid 633 // corrupting asm which happens to contain the symbol name as a substring. 634 // Note that the substitution for .symver assumes that the versioned symbol 635 // also has an instrumented name. 636 std::string Asm = GV->getParent()->getModuleInlineAsm(); 637 std::string SearchStr = ".symver " + GVName + ","; 638 size_t Pos = Asm.find(SearchStr); 639 if (Pos != std::string::npos) { 640 Asm.replace(Pos, SearchStr.size(), 641 ".symver " + Prefix + GVName + "," + Prefix); 642 GV->getParent()->setModuleInlineAsm(Asm); 643 } 644 } 645 646 Function * 647 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 648 GlobalValue::LinkageTypes NewFLink, 649 FunctionType *NewFT) { 650 FunctionType *FT = F->getFunctionType(); 651 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 652 NewFName, F->getParent()); 653 NewF->copyAttributesFrom(F); 654 NewF->removeAttributes( 655 AttributeList::ReturnIndex, 656 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 657 658 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 659 if (F->isVarArg()) { 660 NewF->removeAttributes(AttributeList::FunctionIndex, 661 AttrBuilder().addAttribute("split-stack")); 662 CallInst::Create(DFSanVarargWrapperFn, 663 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 664 BB); 665 new UnreachableInst(*Ctx, BB); 666 } else { 667 std::vector<Value *> Args; 668 unsigned n = FT->getNumParams(); 669 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 670 Args.push_back(&*ai); 671 CallInst *CI = CallInst::Create(F, Args, "", BB); 672 if (FT->getReturnType()->isVoidTy()) 673 ReturnInst::Create(*Ctx, BB); 674 else 675 ReturnInst::Create(*Ctx, CI, BB); 676 } 677 678 return NewF; 679 } 680 681 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 682 StringRef FName) { 683 FunctionType *FTT = getTrampolineFunctionType(FT); 684 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 685 Function *F = dyn_cast<Function>(C.getCallee()); 686 if (F && F->isDeclaration()) { 687 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 688 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 689 std::vector<Value *> Args; 690 Function::arg_iterator AI = F->arg_begin(); ++AI; 691 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 692 Args.push_back(&*AI); 693 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 694 ReturnInst *RI; 695 if (FT->getReturnType()->isVoidTy()) 696 RI = ReturnInst::Create(*Ctx, BB); 697 else 698 RI = ReturnInst::Create(*Ctx, CI, BB); 699 700 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 701 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 702 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 703 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 704 DFSanVisitor(DFSF).visitCallInst(*CI); 705 if (!FT->getReturnType()->isVoidTy()) 706 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 707 &*std::prev(F->arg_end()), RI); 708 } 709 710 return cast<Constant>(C.getCallee()); 711 } 712 713 bool DataFlowSanitizer::runOnModule(Module &M) { 714 if (ABIList.isIn(M, "skip")) 715 return false; 716 717 if (!GetArgTLSPtr) { 718 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 719 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 720 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 721 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 722 } 723 if (!GetRetvalTLSPtr) { 724 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 725 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 726 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 727 } 728 729 ExternalShadowMask = 730 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 731 732 { 733 AttributeList AL; 734 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 735 Attribute::NoUnwind); 736 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 737 Attribute::ReadNone); 738 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 739 Attribute::ZExt); 740 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 741 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 742 DFSanUnionFn = 743 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 744 } 745 746 { 747 AttributeList AL; 748 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 749 Attribute::NoUnwind); 750 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 751 Attribute::ReadNone); 752 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 753 Attribute::ZExt); 754 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 755 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 756 DFSanCheckedUnionFn = 757 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 758 } 759 { 760 AttributeList AL; 761 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 762 Attribute::NoUnwind); 763 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 764 Attribute::ReadOnly); 765 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 766 Attribute::ZExt); 767 DFSanUnionLoadFn = 768 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 769 } 770 DFSanUnimplementedFn = 771 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 772 { 773 AttributeList AL; 774 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 775 DFSanSetLabelFn = 776 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 777 } 778 DFSanNonzeroLabelFn = 779 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 780 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 781 DFSanVarargWrapperFnTy); 782 783 std::vector<Function *> FnsToInstrument; 784 SmallPtrSet<Function *, 2> FnsWithNativeABI; 785 for (Function &i : M) { 786 if (!i.isIntrinsic() && 787 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 788 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 789 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 790 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 791 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 792 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 793 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 794 FnsToInstrument.push_back(&i); 795 } 796 797 // Give function aliases prefixes when necessary, and build wrappers where the 798 // instrumentedness is inconsistent. 799 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 800 GlobalAlias *GA = &*i; 801 ++i; 802 // Don't stop on weak. We assume people aren't playing games with the 803 // instrumentedness of overridden weak aliases. 804 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 805 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 806 if (GAInst && FInst) { 807 addGlobalNamePrefix(GA); 808 } else if (GAInst != FInst) { 809 // Non-instrumented alias of an instrumented function, or vice versa. 810 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 811 // below will take care of instrumenting it. 812 Function *NewF = 813 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 814 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 815 NewF->takeName(GA); 816 GA->eraseFromParent(); 817 FnsToInstrument.push_back(NewF); 818 } 819 } 820 } 821 822 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 823 .addAttribute(Attribute::ReadNone); 824 825 // First, change the ABI of every function in the module. ABI-listed 826 // functions keep their original ABI and get a wrapper function. 827 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 828 e = FnsToInstrument.end(); 829 i != e; ++i) { 830 Function &F = **i; 831 FunctionType *FT = F.getFunctionType(); 832 833 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 834 FT->getReturnType()->isVoidTy()); 835 836 if (isInstrumented(&F)) { 837 // Instrumented functions get a 'dfs$' prefix. This allows us to more 838 // easily identify cases of mismatching ABIs. 839 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 840 FunctionType *NewFT = getArgsFunctionType(FT); 841 Function *NewF = Function::Create(NewFT, F.getLinkage(), 842 F.getAddressSpace(), "", &M); 843 NewF->copyAttributesFrom(&F); 844 NewF->removeAttributes( 845 AttributeList::ReturnIndex, 846 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 847 for (Function::arg_iterator FArg = F.arg_begin(), 848 NewFArg = NewF->arg_begin(), 849 FArgEnd = F.arg_end(); 850 FArg != FArgEnd; ++FArg, ++NewFArg) { 851 FArg->replaceAllUsesWith(&*NewFArg); 852 } 853 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 854 855 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 856 UI != UE;) { 857 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 858 ++UI; 859 if (BA) { 860 BA->replaceAllUsesWith( 861 BlockAddress::get(NewF, BA->getBasicBlock())); 862 delete BA; 863 } 864 } 865 F.replaceAllUsesWith( 866 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 867 NewF->takeName(&F); 868 F.eraseFromParent(); 869 *i = NewF; 870 addGlobalNamePrefix(NewF); 871 } else { 872 addGlobalNamePrefix(&F); 873 } 874 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 875 // Build a wrapper function for F. The wrapper simply calls F, and is 876 // added to FnsToInstrument so that any instrumentation according to its 877 // WrapperKind is done in the second pass below. 878 FunctionType *NewFT = getInstrumentedABI() == IA_Args 879 ? getArgsFunctionType(FT) 880 : FT; 881 882 // If the function being wrapped has local linkage, then preserve the 883 // function's linkage in the wrapper function. 884 GlobalValue::LinkageTypes wrapperLinkage = 885 F.hasLocalLinkage() 886 ? F.getLinkage() 887 : GlobalValue::LinkOnceODRLinkage; 888 889 Function *NewF = buildWrapperFunction( 890 &F, std::string("dfsw$") + std::string(F.getName()), 891 wrapperLinkage, NewFT); 892 if (getInstrumentedABI() == IA_TLS) 893 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 894 895 Value *WrappedFnCst = 896 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 897 F.replaceAllUsesWith(WrappedFnCst); 898 899 UnwrappedFnMap[WrappedFnCst] = &F; 900 *i = NewF; 901 902 if (!F.isDeclaration()) { 903 // This function is probably defining an interposition of an 904 // uninstrumented function and hence needs to keep the original ABI. 905 // But any functions it may call need to use the instrumented ABI, so 906 // we instrument it in a mode which preserves the original ABI. 907 FnsWithNativeABI.insert(&F); 908 909 // This code needs to rebuild the iterators, as they may be invalidated 910 // by the push_back, taking care that the new range does not include 911 // any functions added by this code. 912 size_t N = i - FnsToInstrument.begin(), 913 Count = e - FnsToInstrument.begin(); 914 FnsToInstrument.push_back(&F); 915 i = FnsToInstrument.begin() + N; 916 e = FnsToInstrument.begin() + Count; 917 } 918 // Hopefully, nobody will try to indirectly call a vararg 919 // function... yet. 920 } else if (FT->isVarArg()) { 921 UnwrappedFnMap[&F] = &F; 922 *i = nullptr; 923 } 924 } 925 926 for (Function *i : FnsToInstrument) { 927 if (!i || i->isDeclaration()) 928 continue; 929 930 removeUnreachableBlocks(*i); 931 932 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 933 934 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 935 // Build a copy of the list before iterating over it. 936 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 937 938 for (BasicBlock *i : BBList) { 939 Instruction *Inst = &i->front(); 940 while (true) { 941 // DFSanVisitor may split the current basic block, changing the current 942 // instruction's next pointer and moving the next instruction to the 943 // tail block from which we should continue. 944 Instruction *Next = Inst->getNextNode(); 945 // DFSanVisitor may delete Inst, so keep track of whether it was a 946 // terminator. 947 bool IsTerminator = Inst->isTerminator(); 948 if (!DFSF.SkipInsts.count(Inst)) 949 DFSanVisitor(DFSF).visit(Inst); 950 if (IsTerminator) 951 break; 952 Inst = Next; 953 } 954 } 955 956 // We will not necessarily be able to compute the shadow for every phi node 957 // until we have visited every block. Therefore, the code that handles phi 958 // nodes adds them to the PHIFixups list so that they can be properly 959 // handled here. 960 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 961 i = DFSF.PHIFixups.begin(), 962 e = DFSF.PHIFixups.end(); 963 i != e; ++i) { 964 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 965 ++val) { 966 i->second->setIncomingValue( 967 val, DFSF.getShadow(i->first->getIncomingValue(val))); 968 } 969 } 970 971 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 972 // places (i.e. instructions in basic blocks we haven't even begun visiting 973 // yet). To make our life easier, do this work in a pass after the main 974 // instrumentation. 975 if (ClDebugNonzeroLabels) { 976 for (Value *V : DFSF.NonZeroChecks) { 977 Instruction *Pos; 978 if (Instruction *I = dyn_cast<Instruction>(V)) 979 Pos = I->getNextNode(); 980 else 981 Pos = &DFSF.F->getEntryBlock().front(); 982 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 983 Pos = Pos->getNextNode(); 984 IRBuilder<> IRB(Pos); 985 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 986 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 987 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 988 IRBuilder<> ThenIRB(BI); 989 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 990 } 991 } 992 } 993 994 return false; 995 } 996 997 Value *DFSanFunction::getArgTLSPtr() { 998 if (ArgTLSPtr) 999 return ArgTLSPtr; 1000 if (DFS.ArgTLS) 1001 return ArgTLSPtr = DFS.ArgTLS; 1002 1003 IRBuilder<> IRB(&F->getEntryBlock().front()); 1004 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {}); 1005 } 1006 1007 Value *DFSanFunction::getRetvalTLS() { 1008 if (RetvalTLSPtr) 1009 return RetvalTLSPtr; 1010 if (DFS.RetvalTLS) 1011 return RetvalTLSPtr = DFS.RetvalTLS; 1012 1013 IRBuilder<> IRB(&F->getEntryBlock().front()); 1014 return RetvalTLSPtr = 1015 IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {}); 1016 } 1017 1018 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1019 IRBuilder<> IRB(Pos); 1020 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), 1021 getArgTLSPtr(), 0, Idx); 1022 } 1023 1024 Value *DFSanFunction::getShadow(Value *V) { 1025 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1026 return DFS.ZeroShadow; 1027 Value *&Shadow = ValShadowMap[V]; 1028 if (!Shadow) { 1029 if (Argument *A = dyn_cast<Argument>(V)) { 1030 if (IsNativeABI) 1031 return DFS.ZeroShadow; 1032 switch (IA) { 1033 case DataFlowSanitizer::IA_TLS: { 1034 Value *ArgTLSPtr = getArgTLSPtr(); 1035 Instruction *ArgTLSPos = 1036 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1037 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1038 IRBuilder<> IRB(ArgTLSPos); 1039 Shadow = 1040 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); 1041 break; 1042 } 1043 case DataFlowSanitizer::IA_Args: { 1044 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1045 Function::arg_iterator i = F->arg_begin(); 1046 while (ArgIdx--) 1047 ++i; 1048 Shadow = &*i; 1049 assert(Shadow->getType() == DFS.ShadowTy); 1050 break; 1051 } 1052 } 1053 NonZeroChecks.push_back(Shadow); 1054 } else { 1055 Shadow = DFS.ZeroShadow; 1056 } 1057 } 1058 return Shadow; 1059 } 1060 1061 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1062 assert(!ValShadowMap.count(I)); 1063 assert(Shadow->getType() == DFS.ShadowTy); 1064 ValShadowMap[I] = Shadow; 1065 } 1066 1067 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1068 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1069 IRBuilder<> IRB(Pos); 1070 Value *ShadowPtrMaskValue; 1071 if (DFSanRuntimeShadowMask) 1072 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1073 else 1074 ShadowPtrMaskValue = ShadowPtrMask; 1075 return IRB.CreateIntToPtr( 1076 IRB.CreateMul( 1077 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1078 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1079 ShadowPtrMul), 1080 ShadowPtrTy); 1081 } 1082 1083 // Generates IR to compute the union of the two given shadows, inserting it 1084 // before Pos. Returns the computed union Value. 1085 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1086 if (V1 == DFS.ZeroShadow) 1087 return V2; 1088 if (V2 == DFS.ZeroShadow) 1089 return V1; 1090 if (V1 == V2) 1091 return V1; 1092 1093 auto V1Elems = ShadowElements.find(V1); 1094 auto V2Elems = ShadowElements.find(V2); 1095 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1096 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1097 V2Elems->second.begin(), V2Elems->second.end())) { 1098 return V1; 1099 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1100 V1Elems->second.begin(), V1Elems->second.end())) { 1101 return V2; 1102 } 1103 } else if (V1Elems != ShadowElements.end()) { 1104 if (V1Elems->second.count(V2)) 1105 return V1; 1106 } else if (V2Elems != ShadowElements.end()) { 1107 if (V2Elems->second.count(V1)) 1108 return V2; 1109 } 1110 1111 auto Key = std::make_pair(V1, V2); 1112 if (V1 > V2) 1113 std::swap(Key.first, Key.second); 1114 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1115 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1116 return CCS.Shadow; 1117 1118 IRBuilder<> IRB(Pos); 1119 if (AvoidNewBlocks) { 1120 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1121 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1122 Call->addParamAttr(0, Attribute::ZExt); 1123 Call->addParamAttr(1, Attribute::ZExt); 1124 1125 CCS.Block = Pos->getParent(); 1126 CCS.Shadow = Call; 1127 } else { 1128 BasicBlock *Head = Pos->getParent(); 1129 Value *Ne = IRB.CreateICmpNE(V1, V2); 1130 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1131 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1132 IRBuilder<> ThenIRB(BI); 1133 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1134 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1135 Call->addParamAttr(0, Attribute::ZExt); 1136 Call->addParamAttr(1, Attribute::ZExt); 1137 1138 BasicBlock *Tail = BI->getSuccessor(0); 1139 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1140 Phi->addIncoming(Call, Call->getParent()); 1141 Phi->addIncoming(V1, Head); 1142 1143 CCS.Block = Tail; 1144 CCS.Shadow = Phi; 1145 } 1146 1147 std::set<Value *> UnionElems; 1148 if (V1Elems != ShadowElements.end()) { 1149 UnionElems = V1Elems->second; 1150 } else { 1151 UnionElems.insert(V1); 1152 } 1153 if (V2Elems != ShadowElements.end()) { 1154 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1155 } else { 1156 UnionElems.insert(V2); 1157 } 1158 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1159 1160 return CCS.Shadow; 1161 } 1162 1163 // A convenience function which folds the shadows of each of the operands 1164 // of the provided instruction Inst, inserting the IR before Inst. Returns 1165 // the computed union Value. 1166 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1167 if (Inst->getNumOperands() == 0) 1168 return DFS.ZeroShadow; 1169 1170 Value *Shadow = getShadow(Inst->getOperand(0)); 1171 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1172 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1173 } 1174 return Shadow; 1175 } 1176 1177 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1178 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1179 DFSF.setShadow(&I, CombinedShadow); 1180 } 1181 1182 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1183 // Addr has alignment Align, and take the union of each of those shadows. 1184 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1185 Instruction *Pos) { 1186 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1187 const auto i = AllocaShadowMap.find(AI); 1188 if (i != AllocaShadowMap.end()) { 1189 IRBuilder<> IRB(Pos); 1190 return IRB.CreateLoad(DFS.ShadowTy, i->second); 1191 } 1192 } 1193 1194 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1195 SmallVector<const Value *, 2> Objs; 1196 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1197 bool AllConstants = true; 1198 for (const Value *Obj : Objs) { 1199 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1200 continue; 1201 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1202 continue; 1203 1204 AllConstants = false; 1205 break; 1206 } 1207 if (AllConstants) 1208 return DFS.ZeroShadow; 1209 1210 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1211 switch (Size) { 1212 case 0: 1213 return DFS.ZeroShadow; 1214 case 1: { 1215 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); 1216 LI->setAlignment(MaybeAlign(ShadowAlign)); 1217 return LI; 1218 } 1219 case 2: { 1220 IRBuilder<> IRB(Pos); 1221 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1222 ConstantInt::get(DFS.IntptrTy, 1)); 1223 return combineShadows( 1224 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), 1225 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); 1226 } 1227 } 1228 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1229 // Fast path for the common case where each byte has identical shadow: load 1230 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1231 // shadow is non-equal. 1232 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1233 IRBuilder<> FallbackIRB(FallbackBB); 1234 CallInst *FallbackCall = FallbackIRB.CreateCall( 1235 DFS.DFSanUnionLoadFn, 1236 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1237 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1238 1239 // Compare each of the shadows stored in the loaded 64 bits to each other, 1240 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1241 IRBuilder<> IRB(Pos); 1242 Value *WideAddr = 1243 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1244 Value *WideShadow = 1245 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1246 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1247 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1248 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1249 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1250 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1251 1252 BasicBlock *Head = Pos->getParent(); 1253 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1254 1255 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1256 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1257 1258 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1259 for (auto Child : Children) 1260 DT.changeImmediateDominator(Child, NewNode); 1261 } 1262 1263 // In the following code LastBr will refer to the previous basic block's 1264 // conditional branch instruction, whose true successor is fixed up to point 1265 // to the next block during the loop below or to the tail after the final 1266 // iteration. 1267 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1268 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1269 DT.addNewBlock(FallbackBB, Head); 1270 1271 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1272 Ofs += 64 / DFS.ShadowWidth) { 1273 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1274 DT.addNewBlock(NextBB, LastBr->getParent()); 1275 IRBuilder<> NextIRB(NextBB); 1276 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1277 ConstantInt::get(DFS.IntptrTy, 1)); 1278 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1279 WideAddr, ShadowAlign); 1280 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1281 LastBr->setSuccessor(0, NextBB); 1282 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1283 } 1284 1285 LastBr->setSuccessor(0, Tail); 1286 FallbackIRB.CreateBr(Tail); 1287 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1288 Shadow->addIncoming(FallbackCall, FallbackBB); 1289 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1290 return Shadow; 1291 } 1292 1293 IRBuilder<> IRB(Pos); 1294 CallInst *FallbackCall = IRB.CreateCall( 1295 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1296 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1297 return FallbackCall; 1298 } 1299 1300 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1301 auto &DL = LI.getModule()->getDataLayout(); 1302 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1303 if (Size == 0) { 1304 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1305 return; 1306 } 1307 1308 uint64_t Align; 1309 if (ClPreserveAlignment) { 1310 Align = LI.getAlignment(); 1311 if (Align == 0) 1312 Align = DL.getABITypeAlignment(LI.getType()); 1313 } else { 1314 Align = 1; 1315 } 1316 IRBuilder<> IRB(&LI); 1317 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1318 if (ClCombinePointerLabelsOnLoad) { 1319 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1320 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1321 } 1322 if (Shadow != DFSF.DFS.ZeroShadow) 1323 DFSF.NonZeroChecks.push_back(Shadow); 1324 1325 DFSF.setShadow(&LI, Shadow); 1326 } 1327 1328 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1329 Value *Shadow, Instruction *Pos) { 1330 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1331 const auto i = AllocaShadowMap.find(AI); 1332 if (i != AllocaShadowMap.end()) { 1333 IRBuilder<> IRB(Pos); 1334 IRB.CreateStore(Shadow, i->second); 1335 return; 1336 } 1337 } 1338 1339 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1340 IRBuilder<> IRB(Pos); 1341 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1342 if (Shadow == DFS.ZeroShadow) { 1343 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1344 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1345 Value *ExtShadowAddr = 1346 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1347 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1348 return; 1349 } 1350 1351 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1352 uint64_t Offset = 0; 1353 if (Size >= ShadowVecSize) { 1354 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1355 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1356 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1357 ShadowVec = IRB.CreateInsertElement( 1358 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1359 } 1360 Value *ShadowVecAddr = 1361 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1362 do { 1363 Value *CurShadowVecAddr = 1364 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1365 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1366 Size -= ShadowVecSize; 1367 ++Offset; 1368 } while (Size >= ShadowVecSize); 1369 Offset *= ShadowVecSize; 1370 } 1371 while (Size > 0) { 1372 Value *CurShadowAddr = 1373 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1374 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1375 --Size; 1376 ++Offset; 1377 } 1378 } 1379 1380 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1381 auto &DL = SI.getModule()->getDataLayout(); 1382 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1383 if (Size == 0) 1384 return; 1385 1386 uint64_t Align; 1387 if (ClPreserveAlignment) { 1388 Align = SI.getAlignment(); 1389 if (Align == 0) 1390 Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); 1391 } else { 1392 Align = 1; 1393 } 1394 1395 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1396 if (ClCombinePointerLabelsOnStore) { 1397 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1398 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1399 } 1400 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1401 } 1402 1403 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1404 visitOperandShadowInst(UO); 1405 } 1406 1407 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1408 visitOperandShadowInst(BO); 1409 } 1410 1411 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1412 1413 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1414 1415 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1416 visitOperandShadowInst(GEPI); 1417 } 1418 1419 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1420 visitOperandShadowInst(I); 1421 } 1422 1423 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1424 visitOperandShadowInst(I); 1425 } 1426 1427 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1428 visitOperandShadowInst(I); 1429 } 1430 1431 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1432 visitOperandShadowInst(I); 1433 } 1434 1435 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1436 visitOperandShadowInst(I); 1437 } 1438 1439 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1440 bool AllLoadsStores = true; 1441 for (User *U : I.users()) { 1442 if (isa<LoadInst>(U)) 1443 continue; 1444 1445 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1446 if (SI->getPointerOperand() == &I) 1447 continue; 1448 } 1449 1450 AllLoadsStores = false; 1451 break; 1452 } 1453 if (AllLoadsStores) { 1454 IRBuilder<> IRB(&I); 1455 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1456 } 1457 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1458 } 1459 1460 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1461 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1462 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1463 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1464 1465 if (isa<VectorType>(I.getCondition()->getType())) { 1466 DFSF.setShadow( 1467 &I, 1468 DFSF.combineShadows( 1469 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1470 } else { 1471 Value *ShadowSel; 1472 if (TrueShadow == FalseShadow) { 1473 ShadowSel = TrueShadow; 1474 } else { 1475 ShadowSel = 1476 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1477 } 1478 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1479 } 1480 } 1481 1482 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1483 IRBuilder<> IRB(&I); 1484 Value *ValShadow = DFSF.getShadow(I.getValue()); 1485 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1486 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1487 *DFSF.DFS.Ctx)), 1488 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1489 } 1490 1491 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1492 IRBuilder<> IRB(&I); 1493 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1494 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1495 Value *LenShadow = IRB.CreateMul( 1496 I.getLength(), 1497 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1498 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1499 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1500 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1501 auto *MTI = cast<MemTransferInst>( 1502 IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 1503 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1504 if (ClPreserveAlignment) { 1505 MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1506 MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1507 } else { 1508 MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); 1509 MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); 1510 } 1511 } 1512 1513 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1514 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1515 switch (DFSF.IA) { 1516 case DataFlowSanitizer::IA_TLS: { 1517 Value *S = DFSF.getShadow(RI.getReturnValue()); 1518 IRBuilder<> IRB(&RI); 1519 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1520 break; 1521 } 1522 case DataFlowSanitizer::IA_Args: { 1523 IRBuilder<> IRB(&RI); 1524 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1525 Value *InsVal = 1526 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1527 Value *InsShadow = 1528 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1529 RI.setOperand(0, InsShadow); 1530 break; 1531 } 1532 } 1533 } 1534 } 1535 1536 void DFSanVisitor::visitCallSite(CallSite CS) { 1537 Function *F = CS.getCalledFunction(); 1538 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1539 visitOperandShadowInst(*CS.getInstruction()); 1540 return; 1541 } 1542 1543 // Calls to this function are synthesized in wrappers, and we shouldn't 1544 // instrument them. 1545 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1546 return; 1547 1548 IRBuilder<> IRB(CS.getInstruction()); 1549 1550 DenseMap<Value *, Function *>::iterator i = 1551 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1552 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1553 Function *F = i->second; 1554 switch (DFSF.DFS.getWrapperKind(F)) { 1555 case DataFlowSanitizer::WK_Warning: 1556 CS.setCalledFunction(F); 1557 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1558 IRB.CreateGlobalStringPtr(F->getName())); 1559 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1560 return; 1561 case DataFlowSanitizer::WK_Discard: 1562 CS.setCalledFunction(F); 1563 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1564 return; 1565 case DataFlowSanitizer::WK_Functional: 1566 CS.setCalledFunction(F); 1567 visitOperandShadowInst(*CS.getInstruction()); 1568 return; 1569 case DataFlowSanitizer::WK_Custom: 1570 // Don't try to handle invokes of custom functions, it's too complicated. 1571 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1572 // wrapper. 1573 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1574 FunctionType *FT = F->getFunctionType(); 1575 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1576 std::string CustomFName = "__dfsw_"; 1577 CustomFName += F->getName(); 1578 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1579 CustomFName, CustomFn.TransformedType); 1580 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1581 CustomFn->copyAttributesFrom(F); 1582 1583 // Custom functions returning non-void will write to the return label. 1584 if (!FT->getReturnType()->isVoidTy()) { 1585 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1586 DFSF.DFS.ReadOnlyNoneAttrs); 1587 } 1588 } 1589 1590 std::vector<Value *> Args; 1591 1592 CallSite::arg_iterator i = CS.arg_begin(); 1593 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1594 Type *T = (*i)->getType(); 1595 FunctionType *ParamFT; 1596 if (isa<PointerType>(T) && 1597 (ParamFT = dyn_cast<FunctionType>( 1598 cast<PointerType>(T)->getElementType()))) { 1599 std::string TName = "dfst"; 1600 TName += utostr(FT->getNumParams() - n); 1601 TName += "$"; 1602 TName += F->getName(); 1603 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1604 Args.push_back(T); 1605 Args.push_back( 1606 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1607 } else { 1608 Args.push_back(*i); 1609 } 1610 } 1611 1612 i = CS.arg_begin(); 1613 const unsigned ShadowArgStart = Args.size(); 1614 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1615 Args.push_back(DFSF.getShadow(*i)); 1616 1617 if (FT->isVarArg()) { 1618 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1619 CS.arg_size() - FT->getNumParams()); 1620 auto *LabelVAAlloca = new AllocaInst( 1621 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1622 "labelva", &DFSF.F->getEntryBlock().front()); 1623 1624 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1625 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1626 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1627 } 1628 1629 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1630 } 1631 1632 if (!FT->getReturnType()->isVoidTy()) { 1633 if (!DFSF.LabelReturnAlloca) { 1634 DFSF.LabelReturnAlloca = 1635 new AllocaInst(DFSF.DFS.ShadowTy, 1636 getDataLayout().getAllocaAddrSpace(), 1637 "labelreturn", &DFSF.F->getEntryBlock().front()); 1638 } 1639 Args.push_back(DFSF.LabelReturnAlloca); 1640 } 1641 1642 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1643 Args.push_back(*i); 1644 1645 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1646 CustomCI->setCallingConv(CI->getCallingConv()); 1647 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1648 CI->getContext(), CI->getAttributes())); 1649 1650 // Update the parameter attributes of the custom call instruction to 1651 // zero extend the shadow parameters. This is required for targets 1652 // which consider ShadowTy an illegal type. 1653 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1654 const unsigned ArgNo = ShadowArgStart + n; 1655 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1656 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1657 } 1658 1659 if (!FT->getReturnType()->isVoidTy()) { 1660 LoadInst *LabelLoad = 1661 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); 1662 DFSF.setShadow(CustomCI, LabelLoad); 1663 } 1664 1665 CI->replaceAllUsesWith(CustomCI); 1666 CI->eraseFromParent(); 1667 return; 1668 } 1669 break; 1670 } 1671 } 1672 1673 FunctionType *FT = cast<FunctionType>( 1674 CS.getCalledValue()->getType()->getPointerElementType()); 1675 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1676 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1677 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1678 DFSF.getArgTLS(i, CS.getInstruction())); 1679 } 1680 } 1681 1682 Instruction *Next = nullptr; 1683 if (!CS.getType()->isVoidTy()) { 1684 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1685 if (II->getNormalDest()->getSinglePredecessor()) { 1686 Next = &II->getNormalDest()->front(); 1687 } else { 1688 BasicBlock *NewBB = 1689 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1690 Next = &NewBB->front(); 1691 } 1692 } else { 1693 assert(CS->getIterator() != CS->getParent()->end()); 1694 Next = CS->getNextNode(); 1695 } 1696 1697 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1698 IRBuilder<> NextIRB(Next); 1699 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS()); 1700 DFSF.SkipInsts.insert(LI); 1701 DFSF.setShadow(CS.getInstruction(), LI); 1702 DFSF.NonZeroChecks.push_back(LI); 1703 } 1704 } 1705 1706 // Do all instrumentation for IA_Args down here to defer tampering with the 1707 // CFG in a way that SplitEdge may be able to detect. 1708 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1709 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1710 Value *Func = 1711 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1712 std::vector<Value *> Args; 1713 1714 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1715 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1716 Args.push_back(*i); 1717 1718 i = CS.arg_begin(); 1719 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1720 Args.push_back(DFSF.getShadow(*i)); 1721 1722 if (FT->isVarArg()) { 1723 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1724 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1725 AllocaInst *VarArgShadow = 1726 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1727 "", &DFSF.F->getEntryBlock().front()); 1728 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1729 for (unsigned n = 0; i != e; ++i, ++n) { 1730 IRB.CreateStore( 1731 DFSF.getShadow(*i), 1732 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1733 Args.push_back(*i); 1734 } 1735 } 1736 1737 CallSite NewCS; 1738 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1739 NewCS = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1740 II->getUnwindDest(), Args); 1741 } else { 1742 NewCS = IRB.CreateCall(NewFT, Func, Args); 1743 } 1744 NewCS.setCallingConv(CS.getCallingConv()); 1745 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1746 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1747 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); 1748 1749 if (Next) { 1750 ExtractValueInst *ExVal = 1751 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1752 DFSF.SkipInsts.insert(ExVal); 1753 ExtractValueInst *ExShadow = 1754 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1755 DFSF.SkipInsts.insert(ExShadow); 1756 DFSF.setShadow(ExVal, ExShadow); 1757 DFSF.NonZeroChecks.push_back(ExShadow); 1758 1759 CS.getInstruction()->replaceAllUsesWith(ExVal); 1760 } 1761 1762 CS.getInstruction()->eraseFromParent(); 1763 } 1764 } 1765 1766 void DFSanVisitor::visitPHINode(PHINode &PN) { 1767 PHINode *ShadowPN = 1768 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1769 1770 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1771 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1772 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1773 ++i) { 1774 ShadowPN->addIncoming(UndefShadow, *i); 1775 } 1776 1777 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1778 DFSF.setShadow(&PN, ShadowPN); 1779 } 1780