1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/DenseSet.h" 51 #include "llvm/ADT/DepthFirstIterator.h" 52 #include "llvm/ADT/None.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/ADT/Triple.h" 58 #include "llvm/Analysis/ValueTracking.h" 59 #include "llvm/IR/Argument.h" 60 #include "llvm/IR/Attributes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Dominators.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/GlobalAlias.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstVisitor.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/MDBuilder.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/User.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/InitializePasses.h" 85 #include "llvm/Pass.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/SpecialCaseList.h" 90 #include "llvm/Support/VirtualFileSystem.h" 91 #include "llvm/Transforms/Instrumentation.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstddef> 97 #include <cstdint> 98 #include <iterator> 99 #include <memory> 100 #include <set> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 // External symbol to be used when generating the shadow address for 108 // architectures with multiple VMAs. Instead of using a constant integer 109 // the runtime will set the external mask based on the VMA range. 110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 111 112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 113 // alignment requirements provided by the input IR are correct. For example, 114 // if the input IR contains a load with alignment 8, this flag will cause 115 // the shadow load to have alignment 16. This flag is disabled by default as 116 // we have unfortunately encountered too much code (including Clang itself; 117 // see PR14291) which performs misaligned access. 118 static cl::opt<bool> ClPreserveAlignment( 119 "dfsan-preserve-alignment", 120 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 121 cl::init(false)); 122 123 // The ABI list files control how shadow parameters are passed. The pass treats 124 // every function labelled "uninstrumented" in the ABI list file as conforming 125 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 126 // additional annotations for those functions, a call to one of those functions 127 // will produce a warning message, as the labelling behaviour of the function is 128 // unknown. The other supported annotations are "functional" and "discard", 129 // which are described below under DataFlowSanitizer::WrapperKind. 130 static cl::list<std::string> ClABIListFiles( 131 "dfsan-abilist", 132 cl::desc("File listing native ABI functions and how the pass treats them"), 133 cl::Hidden); 134 135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 136 // functions (see DataFlowSanitizer::InstrumentedABI below). 137 static cl::opt<bool> ClArgsABI( 138 "dfsan-args-abi", 139 cl::desc("Use the argument ABI rather than the TLS ABI"), 140 cl::Hidden); 141 142 // Controls whether the pass includes or ignores the labels of pointers in load 143 // instructions. 144 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 145 "dfsan-combine-pointer-labels-on-load", 146 cl::desc("Combine the label of the pointer with the label of the data when " 147 "loading from memory."), 148 cl::Hidden, cl::init(true)); 149 150 // Controls whether the pass includes or ignores the labels of pointers in 151 // stores instructions. 152 static cl::opt<bool> ClCombinePointerLabelsOnStore( 153 "dfsan-combine-pointer-labels-on-store", 154 cl::desc("Combine the label of the pointer with the label of the data when " 155 "storing in memory."), 156 cl::Hidden, cl::init(false)); 157 158 static cl::opt<bool> ClDebugNonzeroLabels( 159 "dfsan-debug-nonzero-labels", 160 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 161 "load or return with a nonzero label"), 162 cl::Hidden); 163 164 // Experimental feature that inserts callbacks for certain data events. 165 // Currently callbacks are only inserted for loads, stores, memory transfers 166 // (i.e. memcpy and memmove), and comparisons. 167 // 168 // If this flag is set to true, the user must provide definitions for the 169 // following callback functions: 170 // void __dfsan_load_callback(dfsan_label Label); 171 // void __dfsan_store_callback(dfsan_label Label); 172 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 173 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 174 static cl::opt<bool> ClEventCallbacks( 175 "dfsan-event-callbacks", 176 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 177 cl::Hidden, cl::init(false)); 178 179 static StringRef GetGlobalTypeString(const GlobalValue &G) { 180 // Types of GlobalVariables are always pointer types. 181 Type *GType = G.getValueType(); 182 // For now we support blacklisting struct types only. 183 if (StructType *SGType = dyn_cast<StructType>(GType)) { 184 if (!SGType->isLiteral()) 185 return SGType->getName(); 186 } 187 return "<unknown type>"; 188 } 189 190 namespace { 191 192 class DFSanABIList { 193 std::unique_ptr<SpecialCaseList> SCL; 194 195 public: 196 DFSanABIList() = default; 197 198 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 199 200 /// Returns whether either this function or its source file are listed in the 201 /// given category. 202 bool isIn(const Function &F, StringRef Category) const { 203 return isIn(*F.getParent(), Category) || 204 SCL->inSection("dataflow", "fun", F.getName(), Category); 205 } 206 207 /// Returns whether this global alias is listed in the given category. 208 /// 209 /// If GA aliases a function, the alias's name is matched as a function name 210 /// would be. Similarly, aliases of globals are matched like globals. 211 bool isIn(const GlobalAlias &GA, StringRef Category) const { 212 if (isIn(*GA.getParent(), Category)) 213 return true; 214 215 if (isa<FunctionType>(GA.getValueType())) 216 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 217 218 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 219 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 220 Category); 221 } 222 223 /// Returns whether this module is listed in the given category. 224 bool isIn(const Module &M, StringRef Category) const { 225 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 226 } 227 }; 228 229 /// TransformedFunction is used to express the result of transforming one 230 /// function type into another. This struct is immutable. It holds metadata 231 /// useful for updating calls of the old function to the new type. 232 struct TransformedFunction { 233 TransformedFunction(FunctionType* OriginalType, 234 FunctionType* TransformedType, 235 std::vector<unsigned> ArgumentIndexMapping) 236 : OriginalType(OriginalType), 237 TransformedType(TransformedType), 238 ArgumentIndexMapping(ArgumentIndexMapping) {} 239 240 // Disallow copies. 241 TransformedFunction(const TransformedFunction&) = delete; 242 TransformedFunction& operator=(const TransformedFunction&) = delete; 243 244 // Allow moves. 245 TransformedFunction(TransformedFunction&&) = default; 246 TransformedFunction& operator=(TransformedFunction&&) = default; 247 248 /// Type of the function before the transformation. 249 FunctionType *OriginalType; 250 251 /// Type of the function after the transformation. 252 FunctionType *TransformedType; 253 254 /// Transforming a function may change the position of arguments. This 255 /// member records the mapping from each argument's old position to its new 256 /// position. Argument positions are zero-indexed. If the transformation 257 /// from F to F' made the first argument of F into the third argument of F', 258 /// then ArgumentIndexMapping[0] will equal 2. 259 std::vector<unsigned> ArgumentIndexMapping; 260 }; 261 262 /// Given function attributes from a call site for the original function, 263 /// return function attributes appropriate for a call to the transformed 264 /// function. 265 AttributeList TransformFunctionAttributes( 266 const TransformedFunction& TransformedFunction, 267 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 268 269 // Construct a vector of AttributeSet for each function argument. 270 std::vector<llvm::AttributeSet> ArgumentAttributes( 271 TransformedFunction.TransformedType->getNumParams()); 272 273 // Copy attributes from the parameter of the original function to the 274 // transformed version. 'ArgumentIndexMapping' holds the mapping from 275 // old argument position to new. 276 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 277 i < ie; ++i) { 278 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 279 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 280 } 281 282 // Copy annotations on varargs arguments. 283 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 284 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 285 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 286 } 287 288 return AttributeList::get( 289 Ctx, 290 CallSiteAttrs.getFnAttributes(), 291 CallSiteAttrs.getRetAttributes(), 292 llvm::makeArrayRef(ArgumentAttributes)); 293 } 294 295 class DataFlowSanitizer : public ModulePass { 296 friend struct DFSanFunction; 297 friend class DFSanVisitor; 298 299 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 300 301 /// Which ABI should be used for instrumented functions? 302 enum InstrumentedABI { 303 /// Argument and return value labels are passed through additional 304 /// arguments and by modifying the return type. 305 IA_Args, 306 307 /// Argument and return value labels are passed through TLS variables 308 /// __dfsan_arg_tls and __dfsan_retval_tls. 309 IA_TLS 310 }; 311 312 /// How should calls to uninstrumented functions be handled? 313 enum WrapperKind { 314 /// This function is present in an uninstrumented form but we don't know 315 /// how it should be handled. Print a warning and call the function anyway. 316 /// Don't label the return value. 317 WK_Warning, 318 319 /// This function does not write to (user-accessible) memory, and its return 320 /// value is unlabelled. 321 WK_Discard, 322 323 /// This function does not write to (user-accessible) memory, and the label 324 /// of its return value is the union of the label of its arguments. 325 WK_Functional, 326 327 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 328 /// where F is the name of the function. This function may wrap the 329 /// original function or provide its own implementation. This is similar to 330 /// the IA_Args ABI, except that IA_Args uses a struct return type to 331 /// pass the return value shadow in a register, while WK_Custom uses an 332 /// extra pointer argument to return the shadow. This allows the wrapped 333 /// form of the function type to be expressed in C. 334 WK_Custom 335 }; 336 337 Module *Mod; 338 LLVMContext *Ctx; 339 IntegerType *ShadowTy; 340 PointerType *ShadowPtrTy; 341 IntegerType *IntptrTy; 342 ConstantInt *ZeroShadow; 343 ConstantInt *ShadowPtrMask; 344 ConstantInt *ShadowPtrMul; 345 Constant *ArgTLS; 346 Constant *RetvalTLS; 347 void *(*GetArgTLSPtr)(); 348 void *(*GetRetvalTLSPtr)(); 349 FunctionType *GetArgTLSTy; 350 FunctionType *GetRetvalTLSTy; 351 Constant *GetArgTLS; 352 Constant *GetRetvalTLS; 353 Constant *ExternalShadowMask; 354 FunctionType *DFSanUnionFnTy; 355 FunctionType *DFSanUnionLoadFnTy; 356 FunctionType *DFSanUnimplementedFnTy; 357 FunctionType *DFSanSetLabelFnTy; 358 FunctionType *DFSanNonzeroLabelFnTy; 359 FunctionType *DFSanVarargWrapperFnTy; 360 FunctionType *DFSanLoadStoreCmpCallbackFnTy; 361 FunctionType *DFSanMemTransferCallbackFnTy; 362 FunctionCallee DFSanUnionFn; 363 FunctionCallee DFSanCheckedUnionFn; 364 FunctionCallee DFSanUnionLoadFn; 365 FunctionCallee DFSanUnimplementedFn; 366 FunctionCallee DFSanSetLabelFn; 367 FunctionCallee DFSanNonzeroLabelFn; 368 FunctionCallee DFSanVarargWrapperFn; 369 FunctionCallee DFSanLoadCallbackFn; 370 FunctionCallee DFSanStoreCallbackFn; 371 FunctionCallee DFSanMemTransferCallbackFn; 372 FunctionCallee DFSanCmpCallbackFn; 373 MDNode *ColdCallWeights; 374 DFSanABIList ABIList; 375 DenseMap<Value *, Function *> UnwrappedFnMap; 376 AttrBuilder ReadOnlyNoneAttrs; 377 bool DFSanRuntimeShadowMask = false; 378 379 Value *getShadowAddress(Value *Addr, Instruction *Pos); 380 bool isInstrumented(const Function *F); 381 bool isInstrumented(const GlobalAlias *GA); 382 FunctionType *getArgsFunctionType(FunctionType *T); 383 FunctionType *getTrampolineFunctionType(FunctionType *T); 384 TransformedFunction getCustomFunctionType(FunctionType *T); 385 InstrumentedABI getInstrumentedABI(); 386 WrapperKind getWrapperKind(Function *F); 387 void addGlobalNamePrefix(GlobalValue *GV); 388 Function *buildWrapperFunction(Function *F, StringRef NewFName, 389 GlobalValue::LinkageTypes NewFLink, 390 FunctionType *NewFT); 391 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 392 void initializeCallbackFunctions(Module &M); 393 void initializeRuntimeFunctions(Module &M); 394 395 public: 396 static char ID; 397 398 DataFlowSanitizer( 399 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 400 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 401 402 bool doInitialization(Module &M) override; 403 bool runOnModule(Module &M) override; 404 }; 405 406 struct DFSanFunction { 407 DataFlowSanitizer &DFS; 408 Function *F; 409 DominatorTree DT; 410 DataFlowSanitizer::InstrumentedABI IA; 411 bool IsNativeABI; 412 Value *ArgTLSPtr = nullptr; 413 Value *RetvalTLSPtr = nullptr; 414 AllocaInst *LabelReturnAlloca = nullptr; 415 DenseMap<Value *, Value *> ValShadowMap; 416 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 417 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 418 DenseSet<Instruction *> SkipInsts; 419 std::vector<Value *> NonZeroChecks; 420 bool AvoidNewBlocks; 421 422 struct CachedCombinedShadow { 423 BasicBlock *Block; 424 Value *Shadow; 425 }; 426 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 427 CachedCombinedShadows; 428 DenseMap<Value *, std::set<Value *>> ShadowElements; 429 430 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 431 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 432 DT.recalculate(*F); 433 // FIXME: Need to track down the register allocator issue which causes poor 434 // performance in pathological cases with large numbers of basic blocks. 435 AvoidNewBlocks = F->size() > 1000; 436 } 437 438 Value *getArgTLSPtr(); 439 Value *getArgTLS(unsigned Index, Instruction *Pos); 440 Value *getRetvalTLS(); 441 Value *getShadow(Value *V); 442 void setShadow(Instruction *I, Value *Shadow); 443 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 444 Value *combineOperandShadows(Instruction *Inst); 445 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 446 Instruction *Pos); 447 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow, 448 Instruction *Pos); 449 }; 450 451 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 452 public: 453 DFSanFunction &DFSF; 454 455 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 456 457 const DataLayout &getDataLayout() const { 458 return DFSF.F->getParent()->getDataLayout(); 459 } 460 461 // Combines shadow values for all of I's operands. Returns the combined shadow 462 // value. 463 Value *visitOperandShadowInst(Instruction &I); 464 465 void visitUnaryOperator(UnaryOperator &UO); 466 void visitBinaryOperator(BinaryOperator &BO); 467 void visitCastInst(CastInst &CI); 468 void visitCmpInst(CmpInst &CI); 469 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 470 void visitLoadInst(LoadInst &LI); 471 void visitStoreInst(StoreInst &SI); 472 void visitReturnInst(ReturnInst &RI); 473 void visitCallBase(CallBase &CB); 474 void visitPHINode(PHINode &PN); 475 void visitExtractElementInst(ExtractElementInst &I); 476 void visitInsertElementInst(InsertElementInst &I); 477 void visitShuffleVectorInst(ShuffleVectorInst &I); 478 void visitExtractValueInst(ExtractValueInst &I); 479 void visitInsertValueInst(InsertValueInst &I); 480 void visitAllocaInst(AllocaInst &I); 481 void visitSelectInst(SelectInst &I); 482 void visitMemSetInst(MemSetInst &I); 483 void visitMemTransferInst(MemTransferInst &I); 484 }; 485 486 } // end anonymous namespace 487 488 char DataFlowSanitizer::ID; 489 490 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 491 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 492 493 ModulePass * 494 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 495 void *(*getArgTLS)(), 496 void *(*getRetValTLS)()) { 497 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 498 } 499 500 DataFlowSanitizer::DataFlowSanitizer( 501 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 502 void *(*getRetValTLS)()) 503 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 504 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 505 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 506 ClABIListFiles.end()); 507 // FIXME: should we propagate vfs::FileSystem to this constructor? 508 ABIList.set( 509 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 510 } 511 512 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 513 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 514 ArgTypes.append(T->getNumParams(), ShadowTy); 515 if (T->isVarArg()) 516 ArgTypes.push_back(ShadowPtrTy); 517 Type *RetType = T->getReturnType(); 518 if (!RetType->isVoidTy()) 519 RetType = StructType::get(RetType, ShadowTy); 520 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 521 } 522 523 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 524 assert(!T->isVarArg()); 525 SmallVector<Type *, 4> ArgTypes; 526 ArgTypes.push_back(T->getPointerTo()); 527 ArgTypes.append(T->param_begin(), T->param_end()); 528 ArgTypes.append(T->getNumParams(), ShadowTy); 529 Type *RetType = T->getReturnType(); 530 if (!RetType->isVoidTy()) 531 ArgTypes.push_back(ShadowPtrTy); 532 return FunctionType::get(T->getReturnType(), ArgTypes, false); 533 } 534 535 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 536 SmallVector<Type *, 4> ArgTypes; 537 538 // Some parameters of the custom function being constructed are 539 // parameters of T. Record the mapping from parameters of T to 540 // parameters of the custom function, so that parameter attributes 541 // at call sites can be updated. 542 std::vector<unsigned> ArgumentIndexMapping; 543 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 544 Type* param_type = T->getParamType(i); 545 FunctionType *FT; 546 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 547 cast<PointerType>(param_type)->getElementType()))) { 548 ArgumentIndexMapping.push_back(ArgTypes.size()); 549 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 550 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 551 } else { 552 ArgumentIndexMapping.push_back(ArgTypes.size()); 553 ArgTypes.push_back(param_type); 554 } 555 } 556 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 557 ArgTypes.push_back(ShadowTy); 558 if (T->isVarArg()) 559 ArgTypes.push_back(ShadowPtrTy); 560 Type *RetType = T->getReturnType(); 561 if (!RetType->isVoidTy()) 562 ArgTypes.push_back(ShadowPtrTy); 563 return TransformedFunction( 564 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 565 ArgumentIndexMapping); 566 } 567 568 bool DataFlowSanitizer::doInitialization(Module &M) { 569 Triple TargetTriple(M.getTargetTriple()); 570 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 571 bool IsMIPS64 = TargetTriple.isMIPS64(); 572 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 573 TargetTriple.getArch() == Triple::aarch64_be; 574 575 const DataLayout &DL = M.getDataLayout(); 576 577 Mod = &M; 578 Ctx = &M.getContext(); 579 ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 580 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 581 IntptrTy = DL.getIntPtrType(*Ctx); 582 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 583 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 584 if (IsX86_64) 585 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 586 else if (IsMIPS64) 587 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 588 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 589 else if (IsAArch64) 590 DFSanRuntimeShadowMask = true; 591 else 592 report_fatal_error("unsupported triple"); 593 594 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 595 DFSanUnionFnTy = 596 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 597 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 598 DFSanUnionLoadFnTy = 599 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 600 DFSanUnimplementedFnTy = FunctionType::get( 601 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 602 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 603 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 604 DFSanSetLabelArgs, /*isVarArg=*/false); 605 DFSanNonzeroLabelFnTy = FunctionType::get( 606 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 607 DFSanVarargWrapperFnTy = FunctionType::get( 608 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 609 DFSanLoadStoreCmpCallbackFnTy = 610 FunctionType::get(Type::getVoidTy(*Ctx), ShadowTy, /*isVarArg=*/false); 611 Type *DFSanMemTransferCallbackArgs[2] = {ShadowPtrTy, IntptrTy}; 612 DFSanMemTransferCallbackFnTy = 613 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 614 /*isVarArg=*/false); 615 616 if (GetArgTLSPtr) { 617 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 618 ArgTLS = nullptr; 619 GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false); 620 GetArgTLS = ConstantExpr::getIntToPtr( 621 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 622 PointerType::getUnqual(GetArgTLSTy)); 623 } 624 if (GetRetvalTLSPtr) { 625 RetvalTLS = nullptr; 626 GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false); 627 GetRetvalTLS = ConstantExpr::getIntToPtr( 628 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 629 PointerType::getUnqual(GetRetvalTLSTy)); 630 } 631 632 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 633 return true; 634 } 635 636 bool DataFlowSanitizer::isInstrumented(const Function *F) { 637 return !ABIList.isIn(*F, "uninstrumented"); 638 } 639 640 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 641 return !ABIList.isIn(*GA, "uninstrumented"); 642 } 643 644 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 645 return ClArgsABI ? IA_Args : IA_TLS; 646 } 647 648 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 649 if (ABIList.isIn(*F, "functional")) 650 return WK_Functional; 651 if (ABIList.isIn(*F, "discard")) 652 return WK_Discard; 653 if (ABIList.isIn(*F, "custom")) 654 return WK_Custom; 655 656 return WK_Warning; 657 } 658 659 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 660 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 661 GV->setName(Prefix + GVName); 662 663 // Try to change the name of the function in module inline asm. We only do 664 // this for specific asm directives, currently only ".symver", to try to avoid 665 // corrupting asm which happens to contain the symbol name as a substring. 666 // Note that the substitution for .symver assumes that the versioned symbol 667 // also has an instrumented name. 668 std::string Asm = GV->getParent()->getModuleInlineAsm(); 669 std::string SearchStr = ".symver " + GVName + ","; 670 size_t Pos = Asm.find(SearchStr); 671 if (Pos != std::string::npos) { 672 Asm.replace(Pos, SearchStr.size(), 673 ".symver " + Prefix + GVName + "," + Prefix); 674 GV->getParent()->setModuleInlineAsm(Asm); 675 } 676 } 677 678 Function * 679 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 680 GlobalValue::LinkageTypes NewFLink, 681 FunctionType *NewFT) { 682 FunctionType *FT = F->getFunctionType(); 683 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 684 NewFName, F->getParent()); 685 NewF->copyAttributesFrom(F); 686 NewF->removeAttributes( 687 AttributeList::ReturnIndex, 688 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 689 690 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 691 if (F->isVarArg()) { 692 NewF->removeAttributes(AttributeList::FunctionIndex, 693 AttrBuilder().addAttribute("split-stack")); 694 CallInst::Create(DFSanVarargWrapperFn, 695 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 696 BB); 697 new UnreachableInst(*Ctx, BB); 698 } else { 699 std::vector<Value *> Args; 700 unsigned n = FT->getNumParams(); 701 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 702 Args.push_back(&*ai); 703 CallInst *CI = CallInst::Create(F, Args, "", BB); 704 if (FT->getReturnType()->isVoidTy()) 705 ReturnInst::Create(*Ctx, BB); 706 else 707 ReturnInst::Create(*Ctx, CI, BB); 708 } 709 710 return NewF; 711 } 712 713 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 714 StringRef FName) { 715 FunctionType *FTT = getTrampolineFunctionType(FT); 716 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 717 Function *F = dyn_cast<Function>(C.getCallee()); 718 if (F && F->isDeclaration()) { 719 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 720 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 721 std::vector<Value *> Args; 722 Function::arg_iterator AI = F->arg_begin(); ++AI; 723 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 724 Args.push_back(&*AI); 725 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 726 ReturnInst *RI; 727 if (FT->getReturnType()->isVoidTy()) 728 RI = ReturnInst::Create(*Ctx, BB); 729 else 730 RI = ReturnInst::Create(*Ctx, CI, BB); 731 732 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 733 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 734 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 735 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 736 DFSanVisitor(DFSF).visitCallInst(*CI); 737 if (!FT->getReturnType()->isVoidTy()) 738 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 739 &*std::prev(F->arg_end()), RI); 740 } 741 742 return cast<Constant>(C.getCallee()); 743 } 744 745 // Initialize DataFlowSanitizer runtime functions and declare them in the module 746 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 747 { 748 AttributeList AL; 749 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 750 Attribute::NoUnwind); 751 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 752 Attribute::ReadNone); 753 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 754 Attribute::ZExt); 755 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 756 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 757 DFSanUnionFn = 758 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 759 } 760 { 761 AttributeList AL; 762 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 763 Attribute::NoUnwind); 764 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 765 Attribute::ReadNone); 766 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 767 Attribute::ZExt); 768 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 769 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 770 DFSanCheckedUnionFn = 771 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 772 } 773 { 774 AttributeList AL; 775 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 776 Attribute::NoUnwind); 777 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 778 Attribute::ReadOnly); 779 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 780 Attribute::ZExt); 781 DFSanUnionLoadFn = 782 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 783 } 784 DFSanUnimplementedFn = 785 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 786 { 787 AttributeList AL; 788 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 789 DFSanSetLabelFn = 790 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 791 } 792 DFSanNonzeroLabelFn = 793 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 794 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 795 DFSanVarargWrapperFnTy); 796 } 797 798 // Initializes event callback functions and declare them in the module 799 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 800 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 801 DFSanLoadStoreCmpCallbackFnTy); 802 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 803 "__dfsan_store_callback", DFSanLoadStoreCmpCallbackFnTy); 804 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 805 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 806 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 807 DFSanLoadStoreCmpCallbackFnTy); 808 } 809 810 bool DataFlowSanitizer::runOnModule(Module &M) { 811 if (ABIList.isIn(M, "skip")) 812 return false; 813 814 if (!GetArgTLSPtr) { 815 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 816 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 817 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 818 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 819 } 820 if (!GetRetvalTLSPtr) { 821 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 822 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 823 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 824 } 825 826 ExternalShadowMask = 827 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 828 829 initializeCallbackFunctions(M); 830 initializeRuntimeFunctions(M); 831 832 std::vector<Function *> FnsToInstrument; 833 SmallPtrSet<Function *, 2> FnsWithNativeABI; 834 for (Function &i : M) { 835 if (!i.isIntrinsic() && 836 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 837 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 838 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 839 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 840 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 841 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 842 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 843 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 844 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 845 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 846 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 847 FnsToInstrument.push_back(&i); 848 } 849 850 // Give function aliases prefixes when necessary, and build wrappers where the 851 // instrumentedness is inconsistent. 852 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 853 GlobalAlias *GA = &*i; 854 ++i; 855 // Don't stop on weak. We assume people aren't playing games with the 856 // instrumentedness of overridden weak aliases. 857 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 858 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 859 if (GAInst && FInst) { 860 addGlobalNamePrefix(GA); 861 } else if (GAInst != FInst) { 862 // Non-instrumented alias of an instrumented function, or vice versa. 863 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 864 // below will take care of instrumenting it. 865 Function *NewF = 866 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 867 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 868 NewF->takeName(GA); 869 GA->eraseFromParent(); 870 FnsToInstrument.push_back(NewF); 871 } 872 } 873 } 874 875 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 876 .addAttribute(Attribute::ReadNone); 877 878 // First, change the ABI of every function in the module. ABI-listed 879 // functions keep their original ABI and get a wrapper function. 880 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 881 e = FnsToInstrument.end(); 882 i != e; ++i) { 883 Function &F = **i; 884 FunctionType *FT = F.getFunctionType(); 885 886 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 887 FT->getReturnType()->isVoidTy()); 888 889 if (isInstrumented(&F)) { 890 // Instrumented functions get a 'dfs$' prefix. This allows us to more 891 // easily identify cases of mismatching ABIs. 892 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 893 FunctionType *NewFT = getArgsFunctionType(FT); 894 Function *NewF = Function::Create(NewFT, F.getLinkage(), 895 F.getAddressSpace(), "", &M); 896 NewF->copyAttributesFrom(&F); 897 NewF->removeAttributes( 898 AttributeList::ReturnIndex, 899 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 900 for (Function::arg_iterator FArg = F.arg_begin(), 901 NewFArg = NewF->arg_begin(), 902 FArgEnd = F.arg_end(); 903 FArg != FArgEnd; ++FArg, ++NewFArg) { 904 FArg->replaceAllUsesWith(&*NewFArg); 905 } 906 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 907 908 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 909 UI != UE;) { 910 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 911 ++UI; 912 if (BA) { 913 BA->replaceAllUsesWith( 914 BlockAddress::get(NewF, BA->getBasicBlock())); 915 delete BA; 916 } 917 } 918 F.replaceAllUsesWith( 919 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 920 NewF->takeName(&F); 921 F.eraseFromParent(); 922 *i = NewF; 923 addGlobalNamePrefix(NewF); 924 } else { 925 addGlobalNamePrefix(&F); 926 } 927 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 928 // Build a wrapper function for F. The wrapper simply calls F, and is 929 // added to FnsToInstrument so that any instrumentation according to its 930 // WrapperKind is done in the second pass below. 931 FunctionType *NewFT = getInstrumentedABI() == IA_Args 932 ? getArgsFunctionType(FT) 933 : FT; 934 935 // If the function being wrapped has local linkage, then preserve the 936 // function's linkage in the wrapper function. 937 GlobalValue::LinkageTypes wrapperLinkage = 938 F.hasLocalLinkage() 939 ? F.getLinkage() 940 : GlobalValue::LinkOnceODRLinkage; 941 942 Function *NewF = buildWrapperFunction( 943 &F, std::string("dfsw$") + std::string(F.getName()), 944 wrapperLinkage, NewFT); 945 if (getInstrumentedABI() == IA_TLS) 946 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 947 948 Value *WrappedFnCst = 949 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 950 F.replaceAllUsesWith(WrappedFnCst); 951 952 UnwrappedFnMap[WrappedFnCst] = &F; 953 *i = NewF; 954 955 if (!F.isDeclaration()) { 956 // This function is probably defining an interposition of an 957 // uninstrumented function and hence needs to keep the original ABI. 958 // But any functions it may call need to use the instrumented ABI, so 959 // we instrument it in a mode which preserves the original ABI. 960 FnsWithNativeABI.insert(&F); 961 962 // This code needs to rebuild the iterators, as they may be invalidated 963 // by the push_back, taking care that the new range does not include 964 // any functions added by this code. 965 size_t N = i - FnsToInstrument.begin(), 966 Count = e - FnsToInstrument.begin(); 967 FnsToInstrument.push_back(&F); 968 i = FnsToInstrument.begin() + N; 969 e = FnsToInstrument.begin() + Count; 970 } 971 // Hopefully, nobody will try to indirectly call a vararg 972 // function... yet. 973 } else if (FT->isVarArg()) { 974 UnwrappedFnMap[&F] = &F; 975 *i = nullptr; 976 } 977 } 978 979 for (Function *i : FnsToInstrument) { 980 if (!i || i->isDeclaration()) 981 continue; 982 983 removeUnreachableBlocks(*i); 984 985 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 986 987 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 988 // Build a copy of the list before iterating over it. 989 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 990 991 for (BasicBlock *i : BBList) { 992 Instruction *Inst = &i->front(); 993 while (true) { 994 // DFSanVisitor may split the current basic block, changing the current 995 // instruction's next pointer and moving the next instruction to the 996 // tail block from which we should continue. 997 Instruction *Next = Inst->getNextNode(); 998 // DFSanVisitor may delete Inst, so keep track of whether it was a 999 // terminator. 1000 bool IsTerminator = Inst->isTerminator(); 1001 if (!DFSF.SkipInsts.count(Inst)) 1002 DFSanVisitor(DFSF).visit(Inst); 1003 if (IsTerminator) 1004 break; 1005 Inst = Next; 1006 } 1007 } 1008 1009 // We will not necessarily be able to compute the shadow for every phi node 1010 // until we have visited every block. Therefore, the code that handles phi 1011 // nodes adds them to the PHIFixups list so that they can be properly 1012 // handled here. 1013 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1014 i = DFSF.PHIFixups.begin(), 1015 e = DFSF.PHIFixups.end(); 1016 i != e; ++i) { 1017 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1018 ++val) { 1019 i->second->setIncomingValue( 1020 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1021 } 1022 } 1023 1024 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1025 // places (i.e. instructions in basic blocks we haven't even begun visiting 1026 // yet). To make our life easier, do this work in a pass after the main 1027 // instrumentation. 1028 if (ClDebugNonzeroLabels) { 1029 for (Value *V : DFSF.NonZeroChecks) { 1030 Instruction *Pos; 1031 if (Instruction *I = dyn_cast<Instruction>(V)) 1032 Pos = I->getNextNode(); 1033 else 1034 Pos = &DFSF.F->getEntryBlock().front(); 1035 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1036 Pos = Pos->getNextNode(); 1037 IRBuilder<> IRB(Pos); 1038 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 1039 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1040 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1041 IRBuilder<> ThenIRB(BI); 1042 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1043 } 1044 } 1045 } 1046 1047 return false; 1048 } 1049 1050 Value *DFSanFunction::getArgTLSPtr() { 1051 if (ArgTLSPtr) 1052 return ArgTLSPtr; 1053 if (DFS.ArgTLS) 1054 return ArgTLSPtr = DFS.ArgTLS; 1055 1056 IRBuilder<> IRB(&F->getEntryBlock().front()); 1057 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {}); 1058 } 1059 1060 Value *DFSanFunction::getRetvalTLS() { 1061 if (RetvalTLSPtr) 1062 return RetvalTLSPtr; 1063 if (DFS.RetvalTLS) 1064 return RetvalTLSPtr = DFS.RetvalTLS; 1065 1066 IRBuilder<> IRB(&F->getEntryBlock().front()); 1067 return RetvalTLSPtr = 1068 IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {}); 1069 } 1070 1071 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1072 IRBuilder<> IRB(Pos); 1073 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), 1074 getArgTLSPtr(), 0, Idx); 1075 } 1076 1077 Value *DFSanFunction::getShadow(Value *V) { 1078 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1079 return DFS.ZeroShadow; 1080 Value *&Shadow = ValShadowMap[V]; 1081 if (!Shadow) { 1082 if (Argument *A = dyn_cast<Argument>(V)) { 1083 if (IsNativeABI) 1084 return DFS.ZeroShadow; 1085 switch (IA) { 1086 case DataFlowSanitizer::IA_TLS: { 1087 Value *ArgTLSPtr = getArgTLSPtr(); 1088 Instruction *ArgTLSPos = 1089 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1090 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1091 IRBuilder<> IRB(ArgTLSPos); 1092 Shadow = 1093 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); 1094 break; 1095 } 1096 case DataFlowSanitizer::IA_Args: { 1097 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1098 Function::arg_iterator i = F->arg_begin(); 1099 while (ArgIdx--) 1100 ++i; 1101 Shadow = &*i; 1102 assert(Shadow->getType() == DFS.ShadowTy); 1103 break; 1104 } 1105 } 1106 NonZeroChecks.push_back(Shadow); 1107 } else { 1108 Shadow = DFS.ZeroShadow; 1109 } 1110 } 1111 return Shadow; 1112 } 1113 1114 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1115 assert(!ValShadowMap.count(I)); 1116 assert(Shadow->getType() == DFS.ShadowTy); 1117 ValShadowMap[I] = Shadow; 1118 } 1119 1120 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1121 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1122 IRBuilder<> IRB(Pos); 1123 Value *ShadowPtrMaskValue; 1124 if (DFSanRuntimeShadowMask) 1125 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1126 else 1127 ShadowPtrMaskValue = ShadowPtrMask; 1128 return IRB.CreateIntToPtr( 1129 IRB.CreateMul( 1130 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1131 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1132 ShadowPtrMul), 1133 ShadowPtrTy); 1134 } 1135 1136 // Generates IR to compute the union of the two given shadows, inserting it 1137 // before Pos. Returns the computed union Value. 1138 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1139 if (V1 == DFS.ZeroShadow) 1140 return V2; 1141 if (V2 == DFS.ZeroShadow) 1142 return V1; 1143 if (V1 == V2) 1144 return V1; 1145 1146 auto V1Elems = ShadowElements.find(V1); 1147 auto V2Elems = ShadowElements.find(V2); 1148 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1149 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1150 V2Elems->second.begin(), V2Elems->second.end())) { 1151 return V1; 1152 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1153 V1Elems->second.begin(), V1Elems->second.end())) { 1154 return V2; 1155 } 1156 } else if (V1Elems != ShadowElements.end()) { 1157 if (V1Elems->second.count(V2)) 1158 return V1; 1159 } else if (V2Elems != ShadowElements.end()) { 1160 if (V2Elems->second.count(V1)) 1161 return V2; 1162 } 1163 1164 auto Key = std::make_pair(V1, V2); 1165 if (V1 > V2) 1166 std::swap(Key.first, Key.second); 1167 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1168 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1169 return CCS.Shadow; 1170 1171 IRBuilder<> IRB(Pos); 1172 if (AvoidNewBlocks) { 1173 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1174 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1175 Call->addParamAttr(0, Attribute::ZExt); 1176 Call->addParamAttr(1, Attribute::ZExt); 1177 1178 CCS.Block = Pos->getParent(); 1179 CCS.Shadow = Call; 1180 } else { 1181 BasicBlock *Head = Pos->getParent(); 1182 Value *Ne = IRB.CreateICmpNE(V1, V2); 1183 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1184 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1185 IRBuilder<> ThenIRB(BI); 1186 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1187 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1188 Call->addParamAttr(0, Attribute::ZExt); 1189 Call->addParamAttr(1, Attribute::ZExt); 1190 1191 BasicBlock *Tail = BI->getSuccessor(0); 1192 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1193 Phi->addIncoming(Call, Call->getParent()); 1194 Phi->addIncoming(V1, Head); 1195 1196 CCS.Block = Tail; 1197 CCS.Shadow = Phi; 1198 } 1199 1200 std::set<Value *> UnionElems; 1201 if (V1Elems != ShadowElements.end()) { 1202 UnionElems = V1Elems->second; 1203 } else { 1204 UnionElems.insert(V1); 1205 } 1206 if (V2Elems != ShadowElements.end()) { 1207 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1208 } else { 1209 UnionElems.insert(V2); 1210 } 1211 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1212 1213 return CCS.Shadow; 1214 } 1215 1216 // A convenience function which folds the shadows of each of the operands 1217 // of the provided instruction Inst, inserting the IR before Inst. Returns 1218 // the computed union Value. 1219 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1220 if (Inst->getNumOperands() == 0) 1221 return DFS.ZeroShadow; 1222 1223 Value *Shadow = getShadow(Inst->getOperand(0)); 1224 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1225 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1226 } 1227 return Shadow; 1228 } 1229 1230 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1231 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1232 DFSF.setShadow(&I, CombinedShadow); 1233 return CombinedShadow; 1234 } 1235 1236 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1237 // Addr has alignment Align, and take the union of each of those shadows. 1238 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1239 Instruction *Pos) { 1240 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1241 const auto i = AllocaShadowMap.find(AI); 1242 if (i != AllocaShadowMap.end()) { 1243 IRBuilder<> IRB(Pos); 1244 return IRB.CreateLoad(DFS.ShadowTy, i->second); 1245 } 1246 } 1247 1248 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1249 SmallVector<const Value *, 2> Objs; 1250 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1251 bool AllConstants = true; 1252 for (const Value *Obj : Objs) { 1253 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1254 continue; 1255 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1256 continue; 1257 1258 AllConstants = false; 1259 break; 1260 } 1261 if (AllConstants) 1262 return DFS.ZeroShadow; 1263 1264 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1265 switch (Size) { 1266 case 0: 1267 return DFS.ZeroShadow; 1268 case 1: { 1269 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); 1270 LI->setAlignment(ShadowAlign); 1271 return LI; 1272 } 1273 case 2: { 1274 IRBuilder<> IRB(Pos); 1275 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1276 ConstantInt::get(DFS.IntptrTy, 1)); 1277 return combineShadows( 1278 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), 1279 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); 1280 } 1281 } 1282 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1283 // Fast path for the common case where each byte has identical shadow: load 1284 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1285 // shadow is non-equal. 1286 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1287 IRBuilder<> FallbackIRB(FallbackBB); 1288 CallInst *FallbackCall = FallbackIRB.CreateCall( 1289 DFS.DFSanUnionLoadFn, 1290 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1291 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1292 1293 // Compare each of the shadows stored in the loaded 64 bits to each other, 1294 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1295 IRBuilder<> IRB(Pos); 1296 Value *WideAddr = 1297 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1298 Value *WideShadow = 1299 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1300 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1301 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1302 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1303 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1304 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1305 1306 BasicBlock *Head = Pos->getParent(); 1307 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1308 1309 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1310 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1311 1312 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1313 for (auto Child : Children) 1314 DT.changeImmediateDominator(Child, NewNode); 1315 } 1316 1317 // In the following code LastBr will refer to the previous basic block's 1318 // conditional branch instruction, whose true successor is fixed up to point 1319 // to the next block during the loop below or to the tail after the final 1320 // iteration. 1321 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1322 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1323 DT.addNewBlock(FallbackBB, Head); 1324 1325 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1326 Ofs += 64 / DFS.ShadowWidthBits) { 1327 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1328 DT.addNewBlock(NextBB, LastBr->getParent()); 1329 IRBuilder<> NextIRB(NextBB); 1330 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1331 ConstantInt::get(DFS.IntptrTy, 1)); 1332 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1333 WideAddr, ShadowAlign); 1334 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1335 LastBr->setSuccessor(0, NextBB); 1336 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1337 } 1338 1339 LastBr->setSuccessor(0, Tail); 1340 FallbackIRB.CreateBr(Tail); 1341 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1342 Shadow->addIncoming(FallbackCall, FallbackBB); 1343 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1344 return Shadow; 1345 } 1346 1347 IRBuilder<> IRB(Pos); 1348 CallInst *FallbackCall = IRB.CreateCall( 1349 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1350 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1351 return FallbackCall; 1352 } 1353 1354 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1355 auto &DL = LI.getModule()->getDataLayout(); 1356 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1357 if (Size == 0) { 1358 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1359 return; 1360 } 1361 1362 uint64_t Align; 1363 if (ClPreserveAlignment) { 1364 Align = LI.getAlignment(); 1365 if (Align == 0) 1366 Align = DL.getABITypeAlignment(LI.getType()); 1367 } else { 1368 Align = 1; 1369 } 1370 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1371 if (ClCombinePointerLabelsOnLoad) { 1372 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1373 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1374 } 1375 if (Shadow != DFSF.DFS.ZeroShadow) 1376 DFSF.NonZeroChecks.push_back(Shadow); 1377 1378 DFSF.setShadow(&LI, Shadow); 1379 if (ClEventCallbacks) { 1380 IRBuilder<> IRB(&LI); 1381 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, Shadow); 1382 } 1383 } 1384 1385 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment, 1386 Value *Shadow, Instruction *Pos) { 1387 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1388 const auto i = AllocaShadowMap.find(AI); 1389 if (i != AllocaShadowMap.end()) { 1390 IRBuilder<> IRB(Pos); 1391 IRB.CreateStore(Shadow, i->second); 1392 return; 1393 } 1394 } 1395 1396 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1397 IRBuilder<> IRB(Pos); 1398 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1399 if (Shadow == DFS.ZeroShadow) { 1400 IntegerType *ShadowTy = 1401 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1402 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1403 Value *ExtShadowAddr = 1404 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1405 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1406 return; 1407 } 1408 1409 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1410 uint64_t Offset = 0; 1411 if (Size >= ShadowVecSize) { 1412 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1413 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1414 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1415 ShadowVec = IRB.CreateInsertElement( 1416 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1417 } 1418 Value *ShadowVecAddr = 1419 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1420 do { 1421 Value *CurShadowVecAddr = 1422 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1423 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1424 Size -= ShadowVecSize; 1425 ++Offset; 1426 } while (Size >= ShadowVecSize); 1427 Offset *= ShadowVecSize; 1428 } 1429 while (Size > 0) { 1430 Value *CurShadowAddr = 1431 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1432 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1433 --Size; 1434 ++Offset; 1435 } 1436 } 1437 1438 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1439 auto &DL = SI.getModule()->getDataLayout(); 1440 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1441 if (Size == 0) 1442 return; 1443 1444 const Align Alignement = 1445 ClPreserveAlignment ? DL.getValueOrABITypeAlignment( 1446 SI.getAlign(), SI.getValueOperand()->getType()) 1447 : Align(1); 1448 1449 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1450 if (ClCombinePointerLabelsOnStore) { 1451 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1452 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1453 } 1454 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignement, Shadow, &SI); 1455 if (ClEventCallbacks) { 1456 IRBuilder<> IRB(&SI); 1457 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, Shadow); 1458 } 1459 } 1460 1461 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1462 visitOperandShadowInst(UO); 1463 } 1464 1465 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1466 visitOperandShadowInst(BO); 1467 } 1468 1469 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1470 1471 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1472 Value *CombinedShadow = visitOperandShadowInst(CI); 1473 if (ClEventCallbacks) { 1474 IRBuilder<> IRB(&CI); 1475 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1476 } 1477 } 1478 1479 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1480 visitOperandShadowInst(GEPI); 1481 } 1482 1483 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1484 visitOperandShadowInst(I); 1485 } 1486 1487 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1488 visitOperandShadowInst(I); 1489 } 1490 1491 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1492 visitOperandShadowInst(I); 1493 } 1494 1495 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1496 visitOperandShadowInst(I); 1497 } 1498 1499 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1500 visitOperandShadowInst(I); 1501 } 1502 1503 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1504 bool AllLoadsStores = true; 1505 for (User *U : I.users()) { 1506 if (isa<LoadInst>(U)) 1507 continue; 1508 1509 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1510 if (SI->getPointerOperand() == &I) 1511 continue; 1512 } 1513 1514 AllLoadsStores = false; 1515 break; 1516 } 1517 if (AllLoadsStores) { 1518 IRBuilder<> IRB(&I); 1519 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1520 } 1521 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1522 } 1523 1524 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1525 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1526 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1527 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1528 1529 if (isa<VectorType>(I.getCondition()->getType())) { 1530 DFSF.setShadow( 1531 &I, 1532 DFSF.combineShadows( 1533 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1534 } else { 1535 Value *ShadowSel; 1536 if (TrueShadow == FalseShadow) { 1537 ShadowSel = TrueShadow; 1538 } else { 1539 ShadowSel = 1540 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1541 } 1542 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1543 } 1544 } 1545 1546 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1547 IRBuilder<> IRB(&I); 1548 Value *ValShadow = DFSF.getShadow(I.getValue()); 1549 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1550 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1551 *DFSF.DFS.Ctx)), 1552 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1553 } 1554 1555 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1556 IRBuilder<> IRB(&I); 1557 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1558 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1559 Value *LenShadow = 1560 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1561 DFSF.DFS.ShadowWidthBytes)); 1562 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1563 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1564 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1565 auto *MTI = cast<MemTransferInst>( 1566 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1567 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1568 if (ClPreserveAlignment) { 1569 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1570 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1571 } else { 1572 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1573 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1574 } 1575 if (ClEventCallbacks) { 1576 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1577 {RawDestShadow, I.getLength()}); 1578 } 1579 } 1580 1581 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1582 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1583 switch (DFSF.IA) { 1584 case DataFlowSanitizer::IA_TLS: { 1585 Value *S = DFSF.getShadow(RI.getReturnValue()); 1586 IRBuilder<> IRB(&RI); 1587 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1588 break; 1589 } 1590 case DataFlowSanitizer::IA_Args: { 1591 IRBuilder<> IRB(&RI); 1592 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1593 Value *InsVal = 1594 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1595 Value *InsShadow = 1596 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1597 RI.setOperand(0, InsShadow); 1598 break; 1599 } 1600 } 1601 } 1602 } 1603 1604 void DFSanVisitor::visitCallBase(CallBase &CB) { 1605 Function *F = CB.getCalledFunction(); 1606 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1607 visitOperandShadowInst(CB); 1608 return; 1609 } 1610 1611 // Calls to this function are synthesized in wrappers, and we shouldn't 1612 // instrument them. 1613 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1614 return; 1615 1616 IRBuilder<> IRB(&CB); 1617 1618 DenseMap<Value *, Function *>::iterator i = 1619 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1620 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1621 Function *F = i->second; 1622 switch (DFSF.DFS.getWrapperKind(F)) { 1623 case DataFlowSanitizer::WK_Warning: 1624 CB.setCalledFunction(F); 1625 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1626 IRB.CreateGlobalStringPtr(F->getName())); 1627 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1628 return; 1629 case DataFlowSanitizer::WK_Discard: 1630 CB.setCalledFunction(F); 1631 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow); 1632 return; 1633 case DataFlowSanitizer::WK_Functional: 1634 CB.setCalledFunction(F); 1635 visitOperandShadowInst(CB); 1636 return; 1637 case DataFlowSanitizer::WK_Custom: 1638 // Don't try to handle invokes of custom functions, it's too complicated. 1639 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1640 // wrapper. 1641 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1642 FunctionType *FT = F->getFunctionType(); 1643 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1644 std::string CustomFName = "__dfsw_"; 1645 CustomFName += F->getName(); 1646 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1647 CustomFName, CustomFn.TransformedType); 1648 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1649 CustomFn->copyAttributesFrom(F); 1650 1651 // Custom functions returning non-void will write to the return label. 1652 if (!FT->getReturnType()->isVoidTy()) { 1653 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1654 DFSF.DFS.ReadOnlyNoneAttrs); 1655 } 1656 } 1657 1658 std::vector<Value *> Args; 1659 1660 auto i = CB.arg_begin(); 1661 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1662 Type *T = (*i)->getType(); 1663 FunctionType *ParamFT; 1664 if (isa<PointerType>(T) && 1665 (ParamFT = dyn_cast<FunctionType>( 1666 cast<PointerType>(T)->getElementType()))) { 1667 std::string TName = "dfst"; 1668 TName += utostr(FT->getNumParams() - n); 1669 TName += "$"; 1670 TName += F->getName(); 1671 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1672 Args.push_back(T); 1673 Args.push_back( 1674 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1675 } else { 1676 Args.push_back(*i); 1677 } 1678 } 1679 1680 i = CB.arg_begin(); 1681 const unsigned ShadowArgStart = Args.size(); 1682 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1683 Args.push_back(DFSF.getShadow(*i)); 1684 1685 if (FT->isVarArg()) { 1686 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1687 CB.arg_size() - FT->getNumParams()); 1688 auto *LabelVAAlloca = new AllocaInst( 1689 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1690 "labelva", &DFSF.F->getEntryBlock().front()); 1691 1692 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 1693 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1694 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1695 } 1696 1697 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1698 } 1699 1700 if (!FT->getReturnType()->isVoidTy()) { 1701 if (!DFSF.LabelReturnAlloca) { 1702 DFSF.LabelReturnAlloca = 1703 new AllocaInst(DFSF.DFS.ShadowTy, 1704 getDataLayout().getAllocaAddrSpace(), 1705 "labelreturn", &DFSF.F->getEntryBlock().front()); 1706 } 1707 Args.push_back(DFSF.LabelReturnAlloca); 1708 } 1709 1710 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 1711 Args.push_back(*i); 1712 1713 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1714 CustomCI->setCallingConv(CI->getCallingConv()); 1715 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1716 CI->getContext(), CI->getAttributes())); 1717 1718 // Update the parameter attributes of the custom call instruction to 1719 // zero extend the shadow parameters. This is required for targets 1720 // which consider ShadowTy an illegal type. 1721 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1722 const unsigned ArgNo = ShadowArgStart + n; 1723 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1724 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1725 } 1726 1727 if (!FT->getReturnType()->isVoidTy()) { 1728 LoadInst *LabelLoad = 1729 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); 1730 DFSF.setShadow(CustomCI, LabelLoad); 1731 } 1732 1733 CI->replaceAllUsesWith(CustomCI); 1734 CI->eraseFromParent(); 1735 return; 1736 } 1737 break; 1738 } 1739 } 1740 1741 FunctionType *FT = CB.getFunctionType(); 1742 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1743 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1744 IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)), 1745 DFSF.getArgTLS(i, &CB)); 1746 } 1747 } 1748 1749 Instruction *Next = nullptr; 1750 if (!CB.getType()->isVoidTy()) { 1751 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1752 if (II->getNormalDest()->getSinglePredecessor()) { 1753 Next = &II->getNormalDest()->front(); 1754 } else { 1755 BasicBlock *NewBB = 1756 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1757 Next = &NewBB->front(); 1758 } 1759 } else { 1760 assert(CB.getIterator() != CB.getParent()->end()); 1761 Next = CB.getNextNode(); 1762 } 1763 1764 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1765 IRBuilder<> NextIRB(Next); 1766 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS()); 1767 DFSF.SkipInsts.insert(LI); 1768 DFSF.setShadow(&CB, LI); 1769 DFSF.NonZeroChecks.push_back(LI); 1770 } 1771 } 1772 1773 // Do all instrumentation for IA_Args down here to defer tampering with the 1774 // CFG in a way that SplitEdge may be able to detect. 1775 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1776 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1777 Value *Func = 1778 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 1779 std::vector<Value *> Args; 1780 1781 auto i = CB.arg_begin(), E = CB.arg_end(); 1782 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1783 Args.push_back(*i); 1784 1785 i = CB.arg_begin(); 1786 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1787 Args.push_back(DFSF.getShadow(*i)); 1788 1789 if (FT->isVarArg()) { 1790 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 1791 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1792 AllocaInst *VarArgShadow = 1793 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1794 "", &DFSF.F->getEntryBlock().front()); 1795 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1796 for (unsigned n = 0; i != E; ++i, ++n) { 1797 IRB.CreateStore( 1798 DFSF.getShadow(*i), 1799 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1800 Args.push_back(*i); 1801 } 1802 } 1803 1804 CallBase *NewCB; 1805 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1806 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1807 II->getUnwindDest(), Args); 1808 } else { 1809 NewCB = IRB.CreateCall(NewFT, Func, Args); 1810 } 1811 NewCB->setCallingConv(CB.getCallingConv()); 1812 NewCB->setAttributes(CB.getAttributes().removeAttributes( 1813 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1814 AttributeFuncs::typeIncompatible(NewCB->getType()))); 1815 1816 if (Next) { 1817 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 1818 DFSF.SkipInsts.insert(ExVal); 1819 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 1820 DFSF.SkipInsts.insert(ExShadow); 1821 DFSF.setShadow(ExVal, ExShadow); 1822 DFSF.NonZeroChecks.push_back(ExShadow); 1823 1824 CB.replaceAllUsesWith(ExVal); 1825 } 1826 1827 CB.eraseFromParent(); 1828 } 1829 } 1830 1831 void DFSanVisitor::visitPHINode(PHINode &PN) { 1832 PHINode *ShadowPN = 1833 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1834 1835 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1836 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1837 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1838 ++i) { 1839 ShadowPN->addIncoming(UndefShadow, *i); 1840 } 1841 1842 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1843 DFSF.setShadow(&PN, ShadowPN); 1844 } 1845