1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallVector.h" 69 #include "llvm/ADT/StringExtras.h" 70 #include "llvm/ADT/StringRef.h" 71 #include "llvm/ADT/Triple.h" 72 #include "llvm/ADT/iterator.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Argument.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DataLayout.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/GlobalAlias.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/GlobalVariable.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InlineAsm.h" 88 #include "llvm/IR/InstVisitor.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/LLVMContext.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Alignment.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/SpecialCaseList.h" 107 #include "llvm/Support/VirtualFileSystem.h" 108 #include "llvm/Transforms/Instrumentation.h" 109 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 110 #include "llvm/Transforms/Utils/Local.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <iterator> 116 #include <memory> 117 #include <set> 118 #include <string> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 // This must be consistent with ShadowWidthBits. 125 static const Align ShadowTLSAlignment = Align(2); 126 127 static const Align MinOriginAlignment = Align(4); 128 129 // The size of TLS variables. These constants must be kept in sync with the ones 130 // in dfsan.cpp. 131 static const unsigned ArgTLSSize = 800; 132 static const unsigned RetvalTLSSize = 800; 133 134 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 135 // alignment requirements provided by the input IR are correct. For example, 136 // if the input IR contains a load with alignment 8, this flag will cause 137 // the shadow load to have alignment 16. This flag is disabled by default as 138 // we have unfortunately encountered too much code (including Clang itself; 139 // see PR14291) which performs misaligned access. 140 static cl::opt<bool> ClPreserveAlignment( 141 "dfsan-preserve-alignment", 142 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 143 cl::init(false)); 144 145 // The ABI list files control how shadow parameters are passed. The pass treats 146 // every function labelled "uninstrumented" in the ABI list file as conforming 147 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 148 // additional annotations for those functions, a call to one of those functions 149 // will produce a warning message, as the labelling behaviour of the function is 150 // unknown. The other supported annotations for uninstrumented functions are 151 // "functional" and "discard", which are described below under 152 // DataFlowSanitizer::WrapperKind. 153 // Functions will often be labelled with both "uninstrumented" and one of 154 // "functional" or "discard". This will leave the function unchanged by this 155 // pass, and create a wrapper function that will call the original. 156 // 157 // Instrumented functions can also be annotated as "force_zero_labels", which 158 // will make all shadow and return values set zero labels. 159 // Functions should never be labelled with both "force_zero_labels" and 160 // "uninstrumented" or any of the unistrumented wrapper kinds. 161 static cl::list<std::string> ClABIListFiles( 162 "dfsan-abilist", 163 cl::desc("File listing native ABI functions and how the pass treats them"), 164 cl::Hidden); 165 166 // Controls whether the pass includes or ignores the labels of pointers in load 167 // instructions. 168 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 169 "dfsan-combine-pointer-labels-on-load", 170 cl::desc("Combine the label of the pointer with the label of the data when " 171 "loading from memory."), 172 cl::Hidden, cl::init(true)); 173 174 // Controls whether the pass includes or ignores the labels of pointers in 175 // stores instructions. 176 static cl::opt<bool> ClCombinePointerLabelsOnStore( 177 "dfsan-combine-pointer-labels-on-store", 178 cl::desc("Combine the label of the pointer with the label of the data when " 179 "storing in memory."), 180 cl::Hidden, cl::init(false)); 181 182 // Controls whether the pass propagates labels of offsets in GEP instructions. 183 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 184 "dfsan-combine-offset-labels-on-gep", 185 cl::desc( 186 "Combine the label of the offset with the label of the pointer when " 187 "doing pointer arithmetic."), 188 cl::Hidden, cl::init(true)); 189 190 static cl::opt<bool> ClDebugNonzeroLabels( 191 "dfsan-debug-nonzero-labels", 192 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 193 "load or return with a nonzero label"), 194 cl::Hidden); 195 196 // Experimental feature that inserts callbacks for certain data events. 197 // Currently callbacks are only inserted for loads, stores, memory transfers 198 // (i.e. memcpy and memmove), and comparisons. 199 // 200 // If this flag is set to true, the user must provide definitions for the 201 // following callback functions: 202 // void __dfsan_load_callback(dfsan_label Label, void* addr); 203 // void __dfsan_store_callback(dfsan_label Label, void* addr); 204 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 205 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 206 static cl::opt<bool> ClEventCallbacks( 207 "dfsan-event-callbacks", 208 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 209 cl::Hidden, cl::init(false)); 210 211 // Controls whether the pass tracks the control flow of select instructions. 212 static cl::opt<bool> ClTrackSelectControlFlow( 213 "dfsan-track-select-control-flow", 214 cl::desc("Propagate labels from condition values of select instructions " 215 "to results."), 216 cl::Hidden, cl::init(true)); 217 218 // TODO: This default value follows MSan. DFSan may use a different value. 219 static cl::opt<int> ClInstrumentWithCallThreshold( 220 "dfsan-instrument-with-call-threshold", 221 cl::desc("If the function being instrumented requires more than " 222 "this number of origin stores, use callbacks instead of " 223 "inline checks (-1 means never use callbacks)."), 224 cl::Hidden, cl::init(3500)); 225 226 // Controls how to track origins. 227 // * 0: do not track origins. 228 // * 1: track origins at memory store operations. 229 // * 2: track origins at memory load and store operations. 230 // TODO: track callsites. 231 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 232 cl::desc("Track origins of labels"), 233 cl::Hidden, cl::init(0)); 234 235 static StringRef getGlobalTypeString(const GlobalValue &G) { 236 // Types of GlobalVariables are always pointer types. 237 Type *GType = G.getValueType(); 238 // For now we support excluding struct types only. 239 if (StructType *SGType = dyn_cast<StructType>(GType)) { 240 if (!SGType->isLiteral()) 241 return SGType->getName(); 242 } 243 return "<unknown type>"; 244 } 245 246 namespace { 247 248 // Memory map parameters used in application-to-shadow address calculation. 249 // Offset = (Addr & ~AndMask) ^ XorMask 250 // Shadow = ShadowBase + Offset 251 // Origin = (OriginBase + Offset) & ~3ULL 252 struct MemoryMapParams { 253 uint64_t AndMask; 254 uint64_t XorMask; 255 uint64_t ShadowBase; 256 uint64_t OriginBase; 257 }; 258 259 } // end anonymous namespace 260 261 // x86_64 Linux 262 // NOLINTNEXTLINE(readability-identifier-naming) 263 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 264 0, // AndMask (not used) 265 0x500000000000, // XorMask 266 0, // ShadowBase (not used) 267 0x100000000000, // OriginBase 268 }; 269 270 namespace { 271 272 class DFSanABIList { 273 std::unique_ptr<SpecialCaseList> SCL; 274 275 public: 276 DFSanABIList() = default; 277 278 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 279 280 /// Returns whether either this function or its source file are listed in the 281 /// given category. 282 bool isIn(const Function &F, StringRef Category) const { 283 return isIn(*F.getParent(), Category) || 284 SCL->inSection("dataflow", "fun", F.getName(), Category); 285 } 286 287 /// Returns whether this global alias is listed in the given category. 288 /// 289 /// If GA aliases a function, the alias's name is matched as a function name 290 /// would be. Similarly, aliases of globals are matched like globals. 291 bool isIn(const GlobalAlias &GA, StringRef Category) const { 292 if (isIn(*GA.getParent(), Category)) 293 return true; 294 295 if (isa<FunctionType>(GA.getValueType())) 296 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 297 298 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 299 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 300 Category); 301 } 302 303 /// Returns whether this module is listed in the given category. 304 bool isIn(const Module &M, StringRef Category) const { 305 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 306 } 307 }; 308 309 /// TransformedFunction is used to express the result of transforming one 310 /// function type into another. This struct is immutable. It holds metadata 311 /// useful for updating calls of the old function to the new type. 312 struct TransformedFunction { 313 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 314 std::vector<unsigned> ArgumentIndexMapping) 315 : OriginalType(OriginalType), TransformedType(TransformedType), 316 ArgumentIndexMapping(ArgumentIndexMapping) {} 317 318 // Disallow copies. 319 TransformedFunction(const TransformedFunction &) = delete; 320 TransformedFunction &operator=(const TransformedFunction &) = delete; 321 322 // Allow moves. 323 TransformedFunction(TransformedFunction &&) = default; 324 TransformedFunction &operator=(TransformedFunction &&) = default; 325 326 /// Type of the function before the transformation. 327 FunctionType *OriginalType; 328 329 /// Type of the function after the transformation. 330 FunctionType *TransformedType; 331 332 /// Transforming a function may change the position of arguments. This 333 /// member records the mapping from each argument's old position to its new 334 /// position. Argument positions are zero-indexed. If the transformation 335 /// from F to F' made the first argument of F into the third argument of F', 336 /// then ArgumentIndexMapping[0] will equal 2. 337 std::vector<unsigned> ArgumentIndexMapping; 338 }; 339 340 /// Given function attributes from a call site for the original function, 341 /// return function attributes appropriate for a call to the transformed 342 /// function. 343 AttributeList 344 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 345 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 346 347 // Construct a vector of AttributeSet for each function argument. 348 std::vector<llvm::AttributeSet> ArgumentAttributes( 349 TransformedFunction.TransformedType->getNumParams()); 350 351 // Copy attributes from the parameter of the original function to the 352 // transformed version. 'ArgumentIndexMapping' holds the mapping from 353 // old argument position to new. 354 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 355 I < IE; ++I) { 356 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 357 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 358 } 359 360 // Copy annotations on varargs arguments. 361 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 362 IE = CallSiteAttrs.getNumAttrSets(); 363 I < IE; ++I) { 364 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 365 } 366 367 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 368 CallSiteAttrs.getRetAttrs(), 369 llvm::makeArrayRef(ArgumentAttributes)); 370 } 371 372 class DataFlowSanitizer { 373 friend struct DFSanFunction; 374 friend class DFSanVisitor; 375 376 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 377 378 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 379 380 /// How should calls to uninstrumented functions be handled? 381 enum WrapperKind { 382 /// This function is present in an uninstrumented form but we don't know 383 /// how it should be handled. Print a warning and call the function anyway. 384 /// Don't label the return value. 385 WK_Warning, 386 387 /// This function does not write to (user-accessible) memory, and its return 388 /// value is unlabelled. 389 WK_Discard, 390 391 /// This function does not write to (user-accessible) memory, and the label 392 /// of its return value is the union of the label of its arguments. 393 WK_Functional, 394 395 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 396 /// where F is the name of the function. This function may wrap the 397 /// original function or provide its own implementation. WK_Custom uses an 398 /// extra pointer argument to return the shadow. This allows the wrapped 399 /// form of the function type to be expressed in C. 400 WK_Custom 401 }; 402 403 Module *Mod; 404 LLVMContext *Ctx; 405 Type *Int8Ptr; 406 IntegerType *OriginTy; 407 PointerType *OriginPtrTy; 408 ConstantInt *ZeroOrigin; 409 /// The shadow type for all primitive types and vector types. 410 IntegerType *PrimitiveShadowTy; 411 PointerType *PrimitiveShadowPtrTy; 412 IntegerType *IntptrTy; 413 ConstantInt *ZeroPrimitiveShadow; 414 Constant *ArgTLS; 415 ArrayType *ArgOriginTLSTy; 416 Constant *ArgOriginTLS; 417 Constant *RetvalTLS; 418 Constant *RetvalOriginTLS; 419 FunctionType *DFSanUnionLoadFnTy; 420 FunctionType *DFSanLoadLabelAndOriginFnTy; 421 FunctionType *DFSanUnimplementedFnTy; 422 FunctionType *DFSanSetLabelFnTy; 423 FunctionType *DFSanNonzeroLabelFnTy; 424 FunctionType *DFSanVarargWrapperFnTy; 425 FunctionType *DFSanCmpCallbackFnTy; 426 FunctionType *DFSanLoadStoreCallbackFnTy; 427 FunctionType *DFSanMemTransferCallbackFnTy; 428 FunctionType *DFSanChainOriginFnTy; 429 FunctionType *DFSanChainOriginIfTaintedFnTy; 430 FunctionType *DFSanMemOriginTransferFnTy; 431 FunctionType *DFSanMaybeStoreOriginFnTy; 432 FunctionCallee DFSanUnionLoadFn; 433 FunctionCallee DFSanLoadLabelAndOriginFn; 434 FunctionCallee DFSanUnimplementedFn; 435 FunctionCallee DFSanSetLabelFn; 436 FunctionCallee DFSanNonzeroLabelFn; 437 FunctionCallee DFSanVarargWrapperFn; 438 FunctionCallee DFSanLoadCallbackFn; 439 FunctionCallee DFSanStoreCallbackFn; 440 FunctionCallee DFSanMemTransferCallbackFn; 441 FunctionCallee DFSanCmpCallbackFn; 442 FunctionCallee DFSanChainOriginFn; 443 FunctionCallee DFSanChainOriginIfTaintedFn; 444 FunctionCallee DFSanMemOriginTransferFn; 445 FunctionCallee DFSanMaybeStoreOriginFn; 446 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 447 MDNode *ColdCallWeights; 448 MDNode *OriginStoreWeights; 449 DFSanABIList ABIList; 450 DenseMap<Value *, Function *> UnwrappedFnMap; 451 AttrBuilder ReadOnlyNoneAttrs; 452 453 /// Memory map parameters used in calculation mapping application addresses 454 /// to shadow addresses and origin addresses. 455 const MemoryMapParams *MapParams; 456 457 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 458 Value *getShadowAddress(Value *Addr, Instruction *Pos); 459 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 460 std::pair<Value *, Value *> 461 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 462 bool isInstrumented(const Function *F); 463 bool isInstrumented(const GlobalAlias *GA); 464 bool isForceZeroLabels(const Function *F); 465 FunctionType *getTrampolineFunctionType(FunctionType *T); 466 TransformedFunction getCustomFunctionType(FunctionType *T); 467 WrapperKind getWrapperKind(Function *F); 468 void addGlobalNameSuffix(GlobalValue *GV); 469 Function *buildWrapperFunction(Function *F, StringRef NewFName, 470 GlobalValue::LinkageTypes NewFLink, 471 FunctionType *NewFT); 472 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 473 void initializeCallbackFunctions(Module &M); 474 void initializeRuntimeFunctions(Module &M); 475 void injectMetadataGlobals(Module &M); 476 bool initializeModule(Module &M); 477 478 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 479 /// from it. Returns the origin's loaded value. 480 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 481 Value **OriginAddr); 482 483 /// Returns whether the given load byte size is amenable to inlined 484 /// optimization patterns. 485 bool hasLoadSizeForFastPath(uint64_t Size); 486 487 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 488 bool shouldTrackOrigins(); 489 490 /// Returns a zero constant with the shadow type of OrigTy. 491 /// 492 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 493 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 494 /// getZeroShadow(other type) = i16(0) 495 Constant *getZeroShadow(Type *OrigTy); 496 /// Returns a zero constant with the shadow type of V's type. 497 Constant *getZeroShadow(Value *V); 498 499 /// Checks if V is a zero shadow. 500 bool isZeroShadow(Value *V); 501 502 /// Returns the shadow type of OrigTy. 503 /// 504 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 505 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 506 /// getShadowTy(other type) = i16 507 Type *getShadowTy(Type *OrigTy); 508 /// Returns the shadow type of of V's type. 509 Type *getShadowTy(Value *V); 510 511 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 512 513 public: 514 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 515 516 bool runImpl(Module &M); 517 }; 518 519 struct DFSanFunction { 520 DataFlowSanitizer &DFS; 521 Function *F; 522 DominatorTree DT; 523 bool IsNativeABI; 524 bool IsForceZeroLabels; 525 AllocaInst *LabelReturnAlloca = nullptr; 526 AllocaInst *OriginReturnAlloca = nullptr; 527 DenseMap<Value *, Value *> ValShadowMap; 528 DenseMap<Value *, Value *> ValOriginMap; 529 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 530 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 531 532 struct PHIFixupElement { 533 PHINode *Phi; 534 PHINode *ShadowPhi; 535 PHINode *OriginPhi; 536 }; 537 std::vector<PHIFixupElement> PHIFixups; 538 539 DenseSet<Instruction *> SkipInsts; 540 std::vector<Value *> NonZeroChecks; 541 542 struct CachedShadow { 543 BasicBlock *Block; // The block where Shadow is defined. 544 Value *Shadow; 545 }; 546 /// Maps a value to its latest shadow value in terms of domination tree. 547 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 548 /// Maps a value to its latest collapsed shadow value it was converted to in 549 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 550 /// used at a post process where CFG blocks are split. So it does not cache 551 /// BasicBlock like CachedShadows, but uses domination between values. 552 DenseMap<Value *, Value *> CachedCollapsedShadows; 553 DenseMap<Value *, std::set<Value *>> ShadowElements; 554 555 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 556 bool IsForceZeroLabels) 557 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 558 IsForceZeroLabels(IsForceZeroLabels) { 559 DT.recalculate(*F); 560 } 561 562 /// Computes the shadow address for a given function argument. 563 /// 564 /// Shadow = ArgTLS+ArgOffset. 565 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 566 567 /// Computes the shadow address for a return value. 568 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 569 570 /// Computes the origin address for a given function argument. 571 /// 572 /// Origin = ArgOriginTLS[ArgNo]. 573 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 574 575 /// Computes the origin address for a return value. 576 Value *getRetvalOriginTLS(); 577 578 Value *getOrigin(Value *V); 579 void setOrigin(Instruction *I, Value *Origin); 580 /// Generates IR to compute the origin of the last operand with a taint label. 581 Value *combineOperandOrigins(Instruction *Inst); 582 /// Before the instruction Pos, generates IR to compute the last origin with a 583 /// taint label. Labels and origins are from vectors Shadows and Origins 584 /// correspondingly. The generated IR is like 585 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 586 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 587 /// zeros with other bitwidths. 588 Value *combineOrigins(const std::vector<Value *> &Shadows, 589 const std::vector<Value *> &Origins, Instruction *Pos, 590 ConstantInt *Zero = nullptr); 591 592 Value *getShadow(Value *V); 593 void setShadow(Instruction *I, Value *Shadow); 594 /// Generates IR to compute the union of the two given shadows, inserting it 595 /// before Pos. The combined value is with primitive type. 596 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 597 /// Combines the shadow values of V1 and V2, then converts the combined value 598 /// with primitive type into a shadow value with the original type T. 599 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 600 Instruction *Pos); 601 Value *combineOperandShadows(Instruction *Inst); 602 603 /// Generates IR to load shadow and origin corresponding to bytes [\p 604 /// Addr, \p Addr + \p Size), where addr has alignment \p 605 /// InstAlignment, and take the union of each of those shadows. The returned 606 /// shadow always has primitive type. 607 /// 608 /// When tracking loads is enabled, the returned origin is a chain at the 609 /// current stack if the returned shadow is tainted. 610 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 611 Align InstAlignment, 612 Instruction *Pos); 613 614 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 615 Align InstAlignment, Value *PrimitiveShadow, 616 Value *Origin, Instruction *Pos); 617 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 618 /// the expanded shadow value. 619 /// 620 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 621 /// EFP([n x T], PS) = [n x EFP(T,PS)] 622 /// EFP(other types, PS) = PS 623 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 624 Instruction *Pos); 625 /// Collapses Shadow into a single primitive shadow value, unioning all 626 /// primitive shadow values in the process. Returns the final primitive 627 /// shadow value. 628 /// 629 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 630 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 631 /// CTP(other types, PS) = PS 632 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 633 634 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 635 Instruction *Pos); 636 637 Align getShadowAlign(Align InstAlignment); 638 639 private: 640 /// Collapses the shadow with aggregate type into a single primitive shadow 641 /// value. 642 template <class AggregateType> 643 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 644 IRBuilder<> &IRB); 645 646 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 647 648 /// Returns the shadow value of an argument A. 649 Value *getShadowForTLSArgument(Argument *A); 650 651 /// The fast path of loading shadows. 652 std::pair<Value *, Value *> 653 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 654 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 655 Instruction *Pos); 656 657 Align getOriginAlign(Align InstAlignment); 658 659 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 660 /// is __dfsan_load_label_and_origin. This function returns the union of all 661 /// labels and the origin of the first taint label. However this is an 662 /// additional call with many instructions. To ensure common cases are fast, 663 /// checks if it is possible to load labels and origins without using the 664 /// callback function. 665 /// 666 /// When enabling tracking load instructions, we always use 667 /// __dfsan_load_label_and_origin to reduce code size. 668 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 669 670 /// Returns a chain at the current stack with previous origin V. 671 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 672 673 /// Returns a chain at the current stack with previous origin V if Shadow is 674 /// tainted. 675 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 676 677 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 678 /// Origin otherwise. 679 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 680 681 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 682 /// Size). 683 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 684 uint64_t StoreOriginSize, Align Alignment); 685 686 /// Stores Origin in terms of its Shadow value. 687 /// * Do not write origins for zero shadows because we do not trace origins 688 /// for untainted sinks. 689 /// * Use __dfsan_maybe_store_origin if there are too many origin store 690 /// instrumentations. 691 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 692 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 693 694 /// Convert a scalar value to an i1 by comparing with 0. 695 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 696 697 bool shouldInstrumentWithCall(); 698 699 /// Generates IR to load shadow and origin corresponding to bytes [\p 700 /// Addr, \p Addr + \p Size), where addr has alignment \p 701 /// InstAlignment, and take the union of each of those shadows. The returned 702 /// shadow always has primitive type. 703 std::pair<Value *, Value *> 704 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 705 Align InstAlignment, Instruction *Pos); 706 int NumOriginStores = 0; 707 }; 708 709 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 710 public: 711 DFSanFunction &DFSF; 712 713 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 714 715 const DataLayout &getDataLayout() const { 716 return DFSF.F->getParent()->getDataLayout(); 717 } 718 719 // Combines shadow values and origins for all of I's operands. 720 void visitInstOperands(Instruction &I); 721 722 void visitUnaryOperator(UnaryOperator &UO); 723 void visitBinaryOperator(BinaryOperator &BO); 724 void visitBitCastInst(BitCastInst &BCI); 725 void visitCastInst(CastInst &CI); 726 void visitCmpInst(CmpInst &CI); 727 void visitLandingPadInst(LandingPadInst &LPI); 728 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 729 void visitLoadInst(LoadInst &LI); 730 void visitStoreInst(StoreInst &SI); 731 void visitAtomicRMWInst(AtomicRMWInst &I); 732 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 733 void visitReturnInst(ReturnInst &RI); 734 void visitCallBase(CallBase &CB); 735 void visitPHINode(PHINode &PN); 736 void visitExtractElementInst(ExtractElementInst &I); 737 void visitInsertElementInst(InsertElementInst &I); 738 void visitShuffleVectorInst(ShuffleVectorInst &I); 739 void visitExtractValueInst(ExtractValueInst &I); 740 void visitInsertValueInst(InsertValueInst &I); 741 void visitAllocaInst(AllocaInst &I); 742 void visitSelectInst(SelectInst &I); 743 void visitMemSetInst(MemSetInst &I); 744 void visitMemTransferInst(MemTransferInst &I); 745 746 private: 747 void visitCASOrRMW(Align InstAlignment, Instruction &I); 748 749 // Returns false when this is an invoke of a custom function. 750 bool visitWrappedCallBase(Function &F, CallBase &CB); 751 752 // Combines origins for all of I's operands. 753 void visitInstOperandOrigins(Instruction &I); 754 755 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 756 IRBuilder<> &IRB); 757 758 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 759 IRBuilder<> &IRB); 760 }; 761 762 } // end anonymous namespace 763 764 DataFlowSanitizer::DataFlowSanitizer( 765 const std::vector<std::string> &ABIListFiles) { 766 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 767 llvm::append_range(AllABIListFiles, ClABIListFiles); 768 // FIXME: should we propagate vfs::FileSystem to this constructor? 769 ABIList.set( 770 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 771 } 772 773 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 774 assert(!T->isVarArg()); 775 SmallVector<Type *, 4> ArgTypes; 776 ArgTypes.push_back(T->getPointerTo()); 777 ArgTypes.append(T->param_begin(), T->param_end()); 778 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 779 Type *RetType = T->getReturnType(); 780 if (!RetType->isVoidTy()) 781 ArgTypes.push_back(PrimitiveShadowPtrTy); 782 783 if (shouldTrackOrigins()) { 784 ArgTypes.append(T->getNumParams(), OriginTy); 785 if (!RetType->isVoidTy()) 786 ArgTypes.push_back(OriginPtrTy); 787 } 788 789 return FunctionType::get(T->getReturnType(), ArgTypes, false); 790 } 791 792 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 793 SmallVector<Type *, 4> ArgTypes; 794 795 // Some parameters of the custom function being constructed are 796 // parameters of T. Record the mapping from parameters of T to 797 // parameters of the custom function, so that parameter attributes 798 // at call sites can be updated. 799 std::vector<unsigned> ArgumentIndexMapping; 800 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 801 Type *ParamType = T->getParamType(I); 802 FunctionType *FT; 803 if (isa<PointerType>(ParamType) && 804 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 805 ArgumentIndexMapping.push_back(ArgTypes.size()); 806 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 807 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 808 } else { 809 ArgumentIndexMapping.push_back(ArgTypes.size()); 810 ArgTypes.push_back(ParamType); 811 } 812 } 813 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 814 ArgTypes.push_back(PrimitiveShadowTy); 815 if (T->isVarArg()) 816 ArgTypes.push_back(PrimitiveShadowPtrTy); 817 Type *RetType = T->getReturnType(); 818 if (!RetType->isVoidTy()) 819 ArgTypes.push_back(PrimitiveShadowPtrTy); 820 821 if (shouldTrackOrigins()) { 822 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 823 ArgTypes.push_back(OriginTy); 824 if (T->isVarArg()) 825 ArgTypes.push_back(OriginPtrTy); 826 if (!RetType->isVoidTy()) 827 ArgTypes.push_back(OriginPtrTy); 828 } 829 830 return TransformedFunction( 831 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 832 ArgumentIndexMapping); 833 } 834 835 bool DataFlowSanitizer::isZeroShadow(Value *V) { 836 Type *T = V->getType(); 837 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 838 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 839 return CI->isZero(); 840 return false; 841 } 842 843 return isa<ConstantAggregateZero>(V); 844 } 845 846 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 847 uint64_t ShadowSize = Size * ShadowWidthBytes; 848 return ShadowSize % 8 == 0 || ShadowSize == 4; 849 } 850 851 bool DataFlowSanitizer::shouldTrackOrigins() { 852 static const bool ShouldTrackOrigins = ClTrackOrigins; 853 return ShouldTrackOrigins; 854 } 855 856 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 857 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 858 return ZeroPrimitiveShadow; 859 Type *ShadowTy = getShadowTy(OrigTy); 860 return ConstantAggregateZero::get(ShadowTy); 861 } 862 863 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 864 return getZeroShadow(V->getType()); 865 } 866 867 static Value *expandFromPrimitiveShadowRecursive( 868 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 869 Value *PrimitiveShadow, IRBuilder<> &IRB) { 870 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 871 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 872 873 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 874 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 875 Indices.push_back(Idx); 876 Shadow = expandFromPrimitiveShadowRecursive( 877 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 878 Indices.pop_back(); 879 } 880 return Shadow; 881 } 882 883 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 884 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 885 Indices.push_back(Idx); 886 Shadow = expandFromPrimitiveShadowRecursive( 887 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 888 Indices.pop_back(); 889 } 890 return Shadow; 891 } 892 llvm_unreachable("Unexpected shadow type"); 893 } 894 895 bool DFSanFunction::shouldInstrumentWithCall() { 896 return ClInstrumentWithCallThreshold >= 0 && 897 NumOriginStores >= ClInstrumentWithCallThreshold; 898 } 899 900 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 901 Instruction *Pos) { 902 Type *ShadowTy = DFS.getShadowTy(T); 903 904 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 905 return PrimitiveShadow; 906 907 if (DFS.isZeroShadow(PrimitiveShadow)) 908 return DFS.getZeroShadow(ShadowTy); 909 910 IRBuilder<> IRB(Pos); 911 SmallVector<unsigned, 4> Indices; 912 Value *Shadow = UndefValue::get(ShadowTy); 913 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 914 PrimitiveShadow, IRB); 915 916 // Caches the primitive shadow value that built the shadow value. 917 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 918 return Shadow; 919 } 920 921 template <class AggregateType> 922 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 923 IRBuilder<> &IRB) { 924 if (!AT->getNumElements()) 925 return DFS.ZeroPrimitiveShadow; 926 927 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 928 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 929 930 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 931 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 932 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 933 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 934 } 935 return Aggregator; 936 } 937 938 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 939 IRBuilder<> &IRB) { 940 Type *ShadowTy = Shadow->getType(); 941 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 942 return Shadow; 943 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 944 return collapseAggregateShadow<>(AT, Shadow, IRB); 945 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 946 return collapseAggregateShadow<>(ST, Shadow, IRB); 947 llvm_unreachable("Unexpected shadow type"); 948 } 949 950 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 951 Instruction *Pos) { 952 Type *ShadowTy = Shadow->getType(); 953 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 954 return Shadow; 955 956 // Checks if the cached collapsed shadow value dominates Pos. 957 Value *&CS = CachedCollapsedShadows[Shadow]; 958 if (CS && DT.dominates(CS, Pos)) 959 return CS; 960 961 IRBuilder<> IRB(Pos); 962 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 963 // Caches the converted primitive shadow value. 964 CS = PrimitiveShadow; 965 return PrimitiveShadow; 966 } 967 968 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 969 if (!OrigTy->isSized()) 970 return PrimitiveShadowTy; 971 if (isa<IntegerType>(OrigTy)) 972 return PrimitiveShadowTy; 973 if (isa<VectorType>(OrigTy)) 974 return PrimitiveShadowTy; 975 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 976 return ArrayType::get(getShadowTy(AT->getElementType()), 977 AT->getNumElements()); 978 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 979 SmallVector<Type *, 4> Elements; 980 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 981 Elements.push_back(getShadowTy(ST->getElementType(I))); 982 return StructType::get(*Ctx, Elements); 983 } 984 return PrimitiveShadowTy; 985 } 986 987 Type *DataFlowSanitizer::getShadowTy(Value *V) { 988 return getShadowTy(V->getType()); 989 } 990 991 bool DataFlowSanitizer::initializeModule(Module &M) { 992 Triple TargetTriple(M.getTargetTriple()); 993 const DataLayout &DL = M.getDataLayout(); 994 995 if (TargetTriple.getOS() != Triple::Linux) 996 report_fatal_error("unsupported operating system"); 997 if (TargetTriple.getArch() != Triple::x86_64) 998 report_fatal_error("unsupported architecture"); 999 MapParams = &Linux_X86_64_MemoryMapParams; 1000 1001 Mod = &M; 1002 Ctx = &M.getContext(); 1003 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1004 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1005 OriginPtrTy = PointerType::getUnqual(OriginTy); 1006 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1007 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1008 IntptrTy = DL.getIntPtrType(*Ctx); 1009 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1010 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1011 1012 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1013 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1014 /*isVarArg=*/false); 1015 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1016 DFSanLoadLabelAndOriginFnTy = 1017 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1018 /*isVarArg=*/false); 1019 DFSanUnimplementedFnTy = FunctionType::get( 1020 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1021 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1022 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1023 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1024 DFSanSetLabelArgs, /*isVarArg=*/false); 1025 DFSanNonzeroLabelFnTy = 1026 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1027 DFSanVarargWrapperFnTy = FunctionType::get( 1028 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1029 DFSanCmpCallbackFnTy = 1030 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1031 /*isVarArg=*/false); 1032 DFSanChainOriginFnTy = 1033 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1034 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1035 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1036 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1037 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1038 Int8Ptr, IntptrTy, OriginTy}; 1039 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1040 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1041 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1042 DFSanMemOriginTransferFnTy = FunctionType::get( 1043 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1044 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1045 DFSanLoadStoreCallbackFnTy = 1046 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1047 /*isVarArg=*/false); 1048 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1049 DFSanMemTransferCallbackFnTy = 1050 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1051 /*isVarArg=*/false); 1052 1053 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1054 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1055 return true; 1056 } 1057 1058 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1059 return !ABIList.isIn(*F, "uninstrumented"); 1060 } 1061 1062 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1063 return !ABIList.isIn(*GA, "uninstrumented"); 1064 } 1065 1066 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1067 return ABIList.isIn(*F, "force_zero_labels"); 1068 } 1069 1070 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1071 if (ABIList.isIn(*F, "functional")) 1072 return WK_Functional; 1073 if (ABIList.isIn(*F, "discard")) 1074 return WK_Discard; 1075 if (ABIList.isIn(*F, "custom")) 1076 return WK_Custom; 1077 1078 return WK_Warning; 1079 } 1080 1081 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1082 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1083 GV->setName(GVName + Suffix); 1084 1085 // Try to change the name of the function in module inline asm. We only do 1086 // this for specific asm directives, currently only ".symver", to try to avoid 1087 // corrupting asm which happens to contain the symbol name as a substring. 1088 // Note that the substitution for .symver assumes that the versioned symbol 1089 // also has an instrumented name. 1090 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1091 std::string SearchStr = ".symver " + GVName + ","; 1092 size_t Pos = Asm.find(SearchStr); 1093 if (Pos != std::string::npos) { 1094 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1095 Pos = Asm.find("@"); 1096 1097 if (Pos == std::string::npos) 1098 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1099 1100 Asm.replace(Pos, 1, Suffix + "@"); 1101 GV->getParent()->setModuleInlineAsm(Asm); 1102 } 1103 } 1104 1105 Function * 1106 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1107 GlobalValue::LinkageTypes NewFLink, 1108 FunctionType *NewFT) { 1109 FunctionType *FT = F->getFunctionType(); 1110 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1111 NewFName, F->getParent()); 1112 NewF->copyAttributesFrom(F); 1113 NewF->removeRetAttrs( 1114 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1115 1116 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1117 if (F->isVarArg()) { 1118 NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack")); 1119 CallInst::Create(DFSanVarargWrapperFn, 1120 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1121 BB); 1122 new UnreachableInst(*Ctx, BB); 1123 } else { 1124 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1125 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1126 1127 CallInst *CI = CallInst::Create(F, Args, "", BB); 1128 if (FT->getReturnType()->isVoidTy()) 1129 ReturnInst::Create(*Ctx, BB); 1130 else 1131 ReturnInst::Create(*Ctx, CI, BB); 1132 } 1133 1134 return NewF; 1135 } 1136 1137 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1138 StringRef FName) { 1139 FunctionType *FTT = getTrampolineFunctionType(FT); 1140 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1141 Function *F = dyn_cast<Function>(C.getCallee()); 1142 if (F && F->isDeclaration()) { 1143 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1144 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1145 std::vector<Value *> Args; 1146 Function::arg_iterator AI = F->arg_begin() + 1; 1147 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1148 Args.push_back(&*AI); 1149 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1150 Type *RetType = FT->getReturnType(); 1151 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1152 : ReturnInst::Create(*Ctx, CI, BB); 1153 1154 // F is called by a wrapped custom function with primitive shadows. So 1155 // its arguments and return value need conversion. 1156 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true, 1157 /*ForceZeroLabels=*/false); 1158 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1159 ++ValAI; 1160 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1161 Value *Shadow = 1162 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1163 DFSF.ValShadowMap[&*ValAI] = Shadow; 1164 } 1165 Function::arg_iterator RetShadowAI = ShadowAI; 1166 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1167 if (ShouldTrackOrigins) { 1168 ValAI = F->arg_begin(); 1169 ++ValAI; 1170 Function::arg_iterator OriginAI = ShadowAI; 1171 if (!RetType->isVoidTy()) 1172 ++OriginAI; 1173 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1174 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1175 } 1176 } 1177 DFSanVisitor(DFSF).visitCallInst(*CI); 1178 if (!RetType->isVoidTy()) { 1179 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1180 DFSF.getShadow(RI->getReturnValue()), RI); 1181 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1182 if (ShouldTrackOrigins) { 1183 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1184 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1185 } 1186 } 1187 } 1188 1189 return cast<Constant>(C.getCallee()); 1190 } 1191 1192 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1193 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1194 { 1195 AttributeList AL; 1196 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1197 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1198 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1199 DFSanUnionLoadFn = 1200 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1201 } 1202 { 1203 AttributeList AL; 1204 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1205 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1206 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1207 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1208 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1209 } 1210 DFSanUnimplementedFn = 1211 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1212 { 1213 AttributeList AL; 1214 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1215 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1216 DFSanSetLabelFn = 1217 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1218 } 1219 DFSanNonzeroLabelFn = 1220 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1221 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1222 DFSanVarargWrapperFnTy); 1223 { 1224 AttributeList AL; 1225 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1226 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1227 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1228 DFSanChainOriginFnTy, AL); 1229 } 1230 { 1231 AttributeList AL; 1232 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1233 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1234 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1235 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1236 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1237 } 1238 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1239 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1240 1241 { 1242 AttributeList AL; 1243 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1244 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1245 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1246 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1247 } 1248 1249 DFSanRuntimeFunctions.insert( 1250 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1251 DFSanRuntimeFunctions.insert( 1252 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1253 DFSanRuntimeFunctions.insert( 1254 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1255 DFSanRuntimeFunctions.insert( 1256 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1257 DFSanRuntimeFunctions.insert( 1258 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1259 DFSanRuntimeFunctions.insert( 1260 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1261 DFSanRuntimeFunctions.insert( 1262 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1263 DFSanRuntimeFunctions.insert( 1264 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1265 DFSanRuntimeFunctions.insert( 1266 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1267 DFSanRuntimeFunctions.insert( 1268 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1269 DFSanRuntimeFunctions.insert( 1270 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1271 DFSanRuntimeFunctions.insert( 1272 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1273 DFSanRuntimeFunctions.insert( 1274 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1275 DFSanRuntimeFunctions.insert( 1276 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1277 } 1278 1279 // Initializes event callback functions and declare them in the module 1280 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1281 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1282 DFSanLoadStoreCallbackFnTy); 1283 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1284 DFSanLoadStoreCallbackFnTy); 1285 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1286 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1287 DFSanCmpCallbackFn = 1288 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1289 } 1290 1291 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1292 // These variables can be used: 1293 // - by the runtime (to discover what the shadow width was, during 1294 // compilation) 1295 // - in testing (to avoid hardcoding the shadow width and type but instead 1296 // extract them by pattern matching) 1297 Type *IntTy = Type::getInt32Ty(*Ctx); 1298 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1299 return new GlobalVariable( 1300 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1301 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1302 }); 1303 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1304 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1305 GlobalValue::WeakODRLinkage, 1306 ConstantInt::get(IntTy, ShadowWidthBytes), 1307 "__dfsan_shadow_width_bytes"); 1308 }); 1309 } 1310 1311 bool DataFlowSanitizer::runImpl(Module &M) { 1312 initializeModule(M); 1313 1314 if (ABIList.isIn(M, "skip")) 1315 return false; 1316 1317 const unsigned InitialGlobalSize = M.global_size(); 1318 const unsigned InitialModuleSize = M.size(); 1319 1320 bool Changed = false; 1321 1322 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1323 Type *Ty) -> Constant * { 1324 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1325 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1326 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1327 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1328 } 1329 return C; 1330 }; 1331 1332 // These globals must be kept in sync with the ones in dfsan.cpp. 1333 ArgTLS = 1334 GetOrInsertGlobal("__dfsan_arg_tls", 1335 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1336 RetvalTLS = GetOrInsertGlobal( 1337 "__dfsan_retval_tls", 1338 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1339 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1340 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1341 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1342 1343 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1344 Changed = true; 1345 return new GlobalVariable( 1346 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1347 ConstantInt::getSigned(OriginTy, 1348 shouldTrackOrigins() ? ClTrackOrigins : 0), 1349 "__dfsan_track_origins"); 1350 }); 1351 1352 injectMetadataGlobals(M); 1353 1354 initializeCallbackFunctions(M); 1355 initializeRuntimeFunctions(M); 1356 1357 std::vector<Function *> FnsToInstrument; 1358 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1359 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1360 for (Function &F : M) 1361 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1362 FnsToInstrument.push_back(&F); 1363 1364 // Give function aliases prefixes when necessary, and build wrappers where the 1365 // instrumentedness is inconsistent. 1366 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1367 AI != AE;) { 1368 GlobalAlias *GA = &*AI; 1369 ++AI; 1370 // Don't stop on weak. We assume people aren't playing games with the 1371 // instrumentedness of overridden weak aliases. 1372 auto *F = dyn_cast<Function>(GA->getAliaseeObject()); 1373 if (!F) 1374 continue; 1375 1376 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1377 if (GAInst && FInst) { 1378 addGlobalNameSuffix(GA); 1379 } else if (GAInst != FInst) { 1380 // Non-instrumented alias of an instrumented function, or vice versa. 1381 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1382 // below will take care of instrumenting it. 1383 Function *NewF = 1384 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1385 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1386 NewF->takeName(GA); 1387 GA->eraseFromParent(); 1388 FnsToInstrument.push_back(NewF); 1389 } 1390 } 1391 1392 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1393 .addAttribute(Attribute::ReadNone); 1394 1395 // First, change the ABI of every function in the module. ABI-listed 1396 // functions keep their original ABI and get a wrapper function. 1397 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1398 FE = FnsToInstrument.end(); 1399 FI != FE; ++FI) { 1400 Function &F = **FI; 1401 FunctionType *FT = F.getFunctionType(); 1402 1403 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1404 FT->getReturnType()->isVoidTy()); 1405 1406 if (isInstrumented(&F)) { 1407 if (isForceZeroLabels(&F)) 1408 FnsWithForceZeroLabel.insert(&F); 1409 1410 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1411 // easily identify cases of mismatching ABIs. This naming scheme is 1412 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1413 addGlobalNameSuffix(&F); 1414 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1415 // Build a wrapper function for F. The wrapper simply calls F, and is 1416 // added to FnsToInstrument so that any instrumentation according to its 1417 // WrapperKind is done in the second pass below. 1418 1419 // If the function being wrapped has local linkage, then preserve the 1420 // function's linkage in the wrapper function. 1421 GlobalValue::LinkageTypes WrapperLinkage = 1422 F.hasLocalLinkage() ? F.getLinkage() 1423 : GlobalValue::LinkOnceODRLinkage; 1424 1425 Function *NewF = buildWrapperFunction( 1426 &F, 1427 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1428 std::string(F.getName()), 1429 WrapperLinkage, FT); 1430 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1431 1432 Value *WrappedFnCst = 1433 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1434 F.replaceAllUsesWith(WrappedFnCst); 1435 1436 UnwrappedFnMap[WrappedFnCst] = &F; 1437 *FI = NewF; 1438 1439 if (!F.isDeclaration()) { 1440 // This function is probably defining an interposition of an 1441 // uninstrumented function and hence needs to keep the original ABI. 1442 // But any functions it may call need to use the instrumented ABI, so 1443 // we instrument it in a mode which preserves the original ABI. 1444 FnsWithNativeABI.insert(&F); 1445 1446 // This code needs to rebuild the iterators, as they may be invalidated 1447 // by the push_back, taking care that the new range does not include 1448 // any functions added by this code. 1449 size_t N = FI - FnsToInstrument.begin(), 1450 Count = FE - FnsToInstrument.begin(); 1451 FnsToInstrument.push_back(&F); 1452 FI = FnsToInstrument.begin() + N; 1453 FE = FnsToInstrument.begin() + Count; 1454 } 1455 // Hopefully, nobody will try to indirectly call a vararg 1456 // function... yet. 1457 } else if (FT->isVarArg()) { 1458 UnwrappedFnMap[&F] = &F; 1459 *FI = nullptr; 1460 } 1461 } 1462 1463 for (Function *F : FnsToInstrument) { 1464 if (!F || F->isDeclaration()) 1465 continue; 1466 1467 removeUnreachableBlocks(*F); 1468 1469 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1470 FnsWithForceZeroLabel.count(F)); 1471 1472 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1473 // Build a copy of the list before iterating over it. 1474 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1475 1476 for (BasicBlock *BB : BBList) { 1477 Instruction *Inst = &BB->front(); 1478 while (true) { 1479 // DFSanVisitor may split the current basic block, changing the current 1480 // instruction's next pointer and moving the next instruction to the 1481 // tail block from which we should continue. 1482 Instruction *Next = Inst->getNextNode(); 1483 // DFSanVisitor may delete Inst, so keep track of whether it was a 1484 // terminator. 1485 bool IsTerminator = Inst->isTerminator(); 1486 if (!DFSF.SkipInsts.count(Inst)) 1487 DFSanVisitor(DFSF).visit(Inst); 1488 if (IsTerminator) 1489 break; 1490 Inst = Next; 1491 } 1492 } 1493 1494 // We will not necessarily be able to compute the shadow for every phi node 1495 // until we have visited every block. Therefore, the code that handles phi 1496 // nodes adds them to the PHIFixups list so that they can be properly 1497 // handled here. 1498 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1499 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1500 ++Val) { 1501 P.ShadowPhi->setIncomingValue( 1502 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1503 if (P.OriginPhi) 1504 P.OriginPhi->setIncomingValue( 1505 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1506 } 1507 } 1508 1509 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1510 // places (i.e. instructions in basic blocks we haven't even begun visiting 1511 // yet). To make our life easier, do this work in a pass after the main 1512 // instrumentation. 1513 if (ClDebugNonzeroLabels) { 1514 for (Value *V : DFSF.NonZeroChecks) { 1515 Instruction *Pos; 1516 if (Instruction *I = dyn_cast<Instruction>(V)) 1517 Pos = I->getNextNode(); 1518 else 1519 Pos = &DFSF.F->getEntryBlock().front(); 1520 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1521 Pos = Pos->getNextNode(); 1522 IRBuilder<> IRB(Pos); 1523 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1524 Value *Ne = 1525 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1526 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1527 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1528 IRBuilder<> ThenIRB(BI); 1529 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1530 } 1531 } 1532 } 1533 1534 return Changed || !FnsToInstrument.empty() || 1535 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1536 } 1537 1538 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1539 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1540 if (ArgOffset) 1541 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1542 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1543 "_dfsarg"); 1544 } 1545 1546 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1547 return IRB.CreatePointerCast( 1548 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1549 } 1550 1551 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1552 1553 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1554 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1555 "_dfsarg_o"); 1556 } 1557 1558 Value *DFSanFunction::getOrigin(Value *V) { 1559 assert(DFS.shouldTrackOrigins()); 1560 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1561 return DFS.ZeroOrigin; 1562 Value *&Origin = ValOriginMap[V]; 1563 if (!Origin) { 1564 if (Argument *A = dyn_cast<Argument>(V)) { 1565 if (IsNativeABI) 1566 return DFS.ZeroOrigin; 1567 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1568 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1569 IRBuilder<> IRB(ArgOriginTLSPos); 1570 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1571 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1572 } else { 1573 // Overflow 1574 Origin = DFS.ZeroOrigin; 1575 } 1576 } else { 1577 Origin = DFS.ZeroOrigin; 1578 } 1579 } 1580 return Origin; 1581 } 1582 1583 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1584 if (!DFS.shouldTrackOrigins()) 1585 return; 1586 assert(!ValOriginMap.count(I)); 1587 assert(Origin->getType() == DFS.OriginTy); 1588 ValOriginMap[I] = Origin; 1589 } 1590 1591 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1592 unsigned ArgOffset = 0; 1593 const DataLayout &DL = F->getParent()->getDataLayout(); 1594 for (auto &FArg : F->args()) { 1595 if (!FArg.getType()->isSized()) { 1596 if (A == &FArg) 1597 break; 1598 continue; 1599 } 1600 1601 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1602 if (A != &FArg) { 1603 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1604 if (ArgOffset > ArgTLSSize) 1605 break; // ArgTLS overflows, uses a zero shadow. 1606 continue; 1607 } 1608 1609 if (ArgOffset + Size > ArgTLSSize) 1610 break; // ArgTLS overflows, uses a zero shadow. 1611 1612 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1613 IRBuilder<> IRB(ArgTLSPos); 1614 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1615 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1616 ShadowTLSAlignment); 1617 } 1618 1619 return DFS.getZeroShadow(A); 1620 } 1621 1622 Value *DFSanFunction::getShadow(Value *V) { 1623 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1624 return DFS.getZeroShadow(V); 1625 if (IsForceZeroLabels) 1626 return DFS.getZeroShadow(V); 1627 Value *&Shadow = ValShadowMap[V]; 1628 if (!Shadow) { 1629 if (Argument *A = dyn_cast<Argument>(V)) { 1630 if (IsNativeABI) 1631 return DFS.getZeroShadow(V); 1632 Shadow = getShadowForTLSArgument(A); 1633 NonZeroChecks.push_back(Shadow); 1634 } else { 1635 Shadow = DFS.getZeroShadow(V); 1636 } 1637 } 1638 return Shadow; 1639 } 1640 1641 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1642 assert(!ValShadowMap.count(I)); 1643 ValShadowMap[I] = Shadow; 1644 } 1645 1646 /// Compute the integer shadow offset that corresponds to a given 1647 /// application address. 1648 /// 1649 /// Offset = (Addr & ~AndMask) ^ XorMask 1650 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1651 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1652 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1653 1654 uint64_t AndMask = MapParams->AndMask; 1655 if (AndMask) 1656 OffsetLong = 1657 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1658 1659 uint64_t XorMask = MapParams->XorMask; 1660 if (XorMask) 1661 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1662 return OffsetLong; 1663 } 1664 1665 std::pair<Value *, Value *> 1666 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1667 Instruction *Pos) { 1668 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1669 IRBuilder<> IRB(Pos); 1670 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1671 Value *ShadowLong = ShadowOffset; 1672 uint64_t ShadowBase = MapParams->ShadowBase; 1673 if (ShadowBase != 0) { 1674 ShadowLong = 1675 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1676 } 1677 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1678 Value *ShadowPtr = 1679 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1680 Value *OriginPtr = nullptr; 1681 if (shouldTrackOrigins()) { 1682 Value *OriginLong = ShadowOffset; 1683 uint64_t OriginBase = MapParams->OriginBase; 1684 if (OriginBase != 0) 1685 OriginLong = 1686 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1687 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1688 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1689 // So Mask is unnecessary. 1690 if (Alignment < MinOriginAlignment) { 1691 uint64_t Mask = MinOriginAlignment.value() - 1; 1692 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1693 } 1694 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1695 } 1696 return std::make_pair(ShadowPtr, OriginPtr); 1697 } 1698 1699 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1700 Value *ShadowOffset) { 1701 IRBuilder<> IRB(Pos); 1702 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1703 } 1704 1705 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1706 IRBuilder<> IRB(Pos); 1707 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1708 return getShadowAddress(Addr, Pos, ShadowOffset); 1709 } 1710 1711 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1712 Instruction *Pos) { 1713 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1714 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1715 } 1716 1717 // Generates IR to compute the union of the two given shadows, inserting it 1718 // before Pos. The combined value is with primitive type. 1719 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1720 if (DFS.isZeroShadow(V1)) 1721 return collapseToPrimitiveShadow(V2, Pos); 1722 if (DFS.isZeroShadow(V2)) 1723 return collapseToPrimitiveShadow(V1, Pos); 1724 if (V1 == V2) 1725 return collapseToPrimitiveShadow(V1, Pos); 1726 1727 auto V1Elems = ShadowElements.find(V1); 1728 auto V2Elems = ShadowElements.find(V2); 1729 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1730 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1731 V2Elems->second.begin(), V2Elems->second.end())) { 1732 return collapseToPrimitiveShadow(V1, Pos); 1733 } 1734 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1735 V1Elems->second.begin(), V1Elems->second.end())) { 1736 return collapseToPrimitiveShadow(V2, Pos); 1737 } 1738 } else if (V1Elems != ShadowElements.end()) { 1739 if (V1Elems->second.count(V2)) 1740 return collapseToPrimitiveShadow(V1, Pos); 1741 } else if (V2Elems != ShadowElements.end()) { 1742 if (V2Elems->second.count(V1)) 1743 return collapseToPrimitiveShadow(V2, Pos); 1744 } 1745 1746 auto Key = std::make_pair(V1, V2); 1747 if (V1 > V2) 1748 std::swap(Key.first, Key.second); 1749 CachedShadow &CCS = CachedShadows[Key]; 1750 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1751 return CCS.Shadow; 1752 1753 // Converts inputs shadows to shadows with primitive types. 1754 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1755 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1756 1757 IRBuilder<> IRB(Pos); 1758 CCS.Block = Pos->getParent(); 1759 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1760 1761 std::set<Value *> UnionElems; 1762 if (V1Elems != ShadowElements.end()) { 1763 UnionElems = V1Elems->second; 1764 } else { 1765 UnionElems.insert(V1); 1766 } 1767 if (V2Elems != ShadowElements.end()) { 1768 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1769 } else { 1770 UnionElems.insert(V2); 1771 } 1772 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1773 1774 return CCS.Shadow; 1775 } 1776 1777 // A convenience function which folds the shadows of each of the operands 1778 // of the provided instruction Inst, inserting the IR before Inst. Returns 1779 // the computed union Value. 1780 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1781 if (Inst->getNumOperands() == 0) 1782 return DFS.getZeroShadow(Inst); 1783 1784 Value *Shadow = getShadow(Inst->getOperand(0)); 1785 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1786 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1787 1788 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1789 } 1790 1791 void DFSanVisitor::visitInstOperands(Instruction &I) { 1792 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1793 DFSF.setShadow(&I, CombinedShadow); 1794 visitInstOperandOrigins(I); 1795 } 1796 1797 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1798 const std::vector<Value *> &Origins, 1799 Instruction *Pos, ConstantInt *Zero) { 1800 assert(Shadows.size() == Origins.size()); 1801 size_t Size = Origins.size(); 1802 if (Size == 0) 1803 return DFS.ZeroOrigin; 1804 Value *Origin = nullptr; 1805 if (!Zero) 1806 Zero = DFS.ZeroPrimitiveShadow; 1807 for (size_t I = 0; I != Size; ++I) { 1808 Value *OpOrigin = Origins[I]; 1809 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1810 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1811 continue; 1812 if (!Origin) { 1813 Origin = OpOrigin; 1814 continue; 1815 } 1816 Value *OpShadow = Shadows[I]; 1817 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1818 IRBuilder<> IRB(Pos); 1819 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1820 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1821 } 1822 return Origin ? Origin : DFS.ZeroOrigin; 1823 } 1824 1825 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1826 size_t Size = Inst->getNumOperands(); 1827 std::vector<Value *> Shadows(Size); 1828 std::vector<Value *> Origins(Size); 1829 for (unsigned I = 0; I != Size; ++I) { 1830 Shadows[I] = getShadow(Inst->getOperand(I)); 1831 Origins[I] = getOrigin(Inst->getOperand(I)); 1832 } 1833 return combineOrigins(Shadows, Origins, Inst); 1834 } 1835 1836 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1837 if (!DFSF.DFS.shouldTrackOrigins()) 1838 return; 1839 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1840 DFSF.setOrigin(&I, CombinedOrigin); 1841 } 1842 1843 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1844 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1845 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1846 } 1847 1848 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1849 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1850 return Align(std::max(MinOriginAlignment, Alignment)); 1851 } 1852 1853 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1854 Align InstAlignment) { 1855 // When enabling tracking load instructions, we always use 1856 // __dfsan_load_label_and_origin to reduce code size. 1857 if (ClTrackOrigins == 2) 1858 return true; 1859 1860 assert(Size != 0); 1861 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1862 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1863 // load its origin aligned at 4. If not, although origins may be lost, it 1864 // should not happen very often. 1865 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1866 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1867 // * Otherwise we use __dfsan_load_label_and_origin. 1868 // This should ensure that common cases run efficiently. 1869 if (Size <= 2) 1870 return false; 1871 1872 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1873 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1874 } 1875 1876 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1877 Value **OriginAddr) { 1878 IRBuilder<> IRB(Pos); 1879 *OriginAddr = 1880 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1881 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1882 } 1883 1884 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1885 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1886 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1887 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1888 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1889 1890 assert(Size >= 4 && "Not large enough load size for fast path!"); 1891 1892 // Used for origin tracking. 1893 std::vector<Value *> Shadows; 1894 std::vector<Value *> Origins; 1895 1896 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1897 // but this function is only used in a subset of cases that make it possible 1898 // to optimize the instrumentation. 1899 // 1900 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1901 // per byte) is either: 1902 // - a multiple of 8 (common) 1903 // - equal to 4 (only for load32) 1904 // 1905 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1906 // other cases, we use a 64-bit integer to hold the wide shadow. 1907 Type *WideShadowTy = 1908 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1909 1910 IRBuilder<> IRB(Pos); 1911 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1912 Value *CombinedWideShadow = 1913 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1914 1915 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1916 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1917 1918 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 1919 if (BytesPerWideShadow > 4) { 1920 assert(BytesPerWideShadow == 8); 1921 // The wide shadow relates to two origin pointers: one for the first four 1922 // application bytes, and one for the latest four. We use a left shift to 1923 // get just the shadow bytes that correspond to the first origin pointer, 1924 // and then the entire shadow for the second origin pointer (which will be 1925 // chosen by combineOrigins() iff the least-significant half of the wide 1926 // shadow was empty but the other half was not). 1927 Value *WideShadowLo = IRB.CreateShl( 1928 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 1929 Shadows.push_back(WideShadow); 1930 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 1931 1932 Shadows.push_back(WideShadowLo); 1933 Origins.push_back(Origin); 1934 } else { 1935 Shadows.push_back(WideShadow); 1936 Origins.push_back(Origin); 1937 } 1938 }; 1939 1940 if (ShouldTrackOrigins) 1941 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 1942 1943 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 1944 // then OR individual shadows within the combined WideShadow by binary ORing. 1945 // This is fewer instructions than ORing shadows individually, since it 1946 // needs logN shift/or instructions (N being the bytes of the combined wide 1947 // shadow). 1948 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 1949 ByteOfs += BytesPerWideShadow) { 1950 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 1951 ConstantInt::get(DFS.IntptrTy, 1)); 1952 Value *NextWideShadow = 1953 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1954 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1955 if (ShouldTrackOrigins) { 1956 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 1957 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 1958 } 1959 } 1960 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 1961 Width >>= 1) { 1962 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1963 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1964 } 1965 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 1966 ShouldTrackOrigins 1967 ? combineOrigins(Shadows, Origins, Pos, 1968 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 1969 : DFS.ZeroOrigin}; 1970 } 1971 1972 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 1973 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 1974 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1975 1976 // Non-escaped loads. 1977 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1978 const auto SI = AllocaShadowMap.find(AI); 1979 if (SI != AllocaShadowMap.end()) { 1980 IRBuilder<> IRB(Pos); 1981 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 1982 const auto OI = AllocaOriginMap.find(AI); 1983 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 1984 return {ShadowLI, ShouldTrackOrigins 1985 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 1986 : nullptr}; 1987 } 1988 } 1989 1990 // Load from constant addresses. 1991 SmallVector<const Value *, 2> Objs; 1992 getUnderlyingObjects(Addr, Objs); 1993 bool AllConstants = true; 1994 for (const Value *Obj : Objs) { 1995 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1996 continue; 1997 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1998 continue; 1999 2000 AllConstants = false; 2001 break; 2002 } 2003 if (AllConstants) 2004 return {DFS.ZeroPrimitiveShadow, 2005 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2006 2007 if (Size == 0) 2008 return {DFS.ZeroPrimitiveShadow, 2009 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2010 2011 // Use callback to load if this is not an optimizable case for origin 2012 // tracking. 2013 if (ShouldTrackOrigins && 2014 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2015 IRBuilder<> IRB(Pos); 2016 CallInst *Call = 2017 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2018 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2019 ConstantInt::get(DFS.IntptrTy, Size)}); 2020 Call->addRetAttr(Attribute::ZExt); 2021 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2022 DFS.PrimitiveShadowTy), 2023 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2024 } 2025 2026 // Other cases that support loading shadows or origins in a fast way. 2027 Value *ShadowAddr, *OriginAddr; 2028 std::tie(ShadowAddr, OriginAddr) = 2029 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2030 2031 const Align ShadowAlign = getShadowAlign(InstAlignment); 2032 const Align OriginAlign = getOriginAlign(InstAlignment); 2033 Value *Origin = nullptr; 2034 if (ShouldTrackOrigins) { 2035 IRBuilder<> IRB(Pos); 2036 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2037 } 2038 2039 // When the byte size is small enough, we can load the shadow directly with 2040 // just a few instructions. 2041 switch (Size) { 2042 case 1: { 2043 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2044 LI->setAlignment(ShadowAlign); 2045 return {LI, Origin}; 2046 } 2047 case 2: { 2048 IRBuilder<> IRB(Pos); 2049 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2050 ConstantInt::get(DFS.IntptrTy, 1)); 2051 Value *Load = 2052 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2053 Value *Load1 = 2054 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2055 return {combineShadows(Load, Load1, Pos), Origin}; 2056 } 2057 } 2058 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2059 2060 if (HasSizeForFastPath) 2061 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2062 OriginAlign, Origin, Pos); 2063 2064 IRBuilder<> IRB(Pos); 2065 CallInst *FallbackCall = IRB.CreateCall( 2066 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2067 FallbackCall->addRetAttr(Attribute::ZExt); 2068 return {FallbackCall, Origin}; 2069 } 2070 2071 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2072 uint64_t Size, 2073 Align InstAlignment, 2074 Instruction *Pos) { 2075 Value *PrimitiveShadow, *Origin; 2076 std::tie(PrimitiveShadow, Origin) = 2077 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2078 if (DFS.shouldTrackOrigins()) { 2079 if (ClTrackOrigins == 2) { 2080 IRBuilder<> IRB(Pos); 2081 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2082 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2083 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2084 } 2085 } 2086 return {PrimitiveShadow, Origin}; 2087 } 2088 2089 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2090 switch (AO) { 2091 case AtomicOrdering::NotAtomic: 2092 return AtomicOrdering::NotAtomic; 2093 case AtomicOrdering::Unordered: 2094 case AtomicOrdering::Monotonic: 2095 case AtomicOrdering::Acquire: 2096 return AtomicOrdering::Acquire; 2097 case AtomicOrdering::Release: 2098 case AtomicOrdering::AcquireRelease: 2099 return AtomicOrdering::AcquireRelease; 2100 case AtomicOrdering::SequentiallyConsistent: 2101 return AtomicOrdering::SequentiallyConsistent; 2102 } 2103 llvm_unreachable("Unknown ordering"); 2104 } 2105 2106 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2107 auto &DL = LI.getModule()->getDataLayout(); 2108 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2109 if (Size == 0) { 2110 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2111 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2112 return; 2113 } 2114 2115 // When an application load is atomic, increase atomic ordering between 2116 // atomic application loads and stores to ensure happen-before order; load 2117 // shadow data after application data; store zero shadow data before 2118 // application data. This ensure shadow loads return either labels of the 2119 // initial application data or zeros. 2120 if (LI.isAtomic()) 2121 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2122 2123 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2124 std::vector<Value *> Shadows; 2125 std::vector<Value *> Origins; 2126 Value *PrimitiveShadow, *Origin; 2127 std::tie(PrimitiveShadow, Origin) = 2128 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2129 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2130 if (ShouldTrackOrigins) { 2131 Shadows.push_back(PrimitiveShadow); 2132 Origins.push_back(Origin); 2133 } 2134 if (ClCombinePointerLabelsOnLoad) { 2135 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2136 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2137 if (ShouldTrackOrigins) { 2138 Shadows.push_back(PtrShadow); 2139 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2140 } 2141 } 2142 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2143 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2144 2145 Value *Shadow = 2146 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2147 DFSF.setShadow(&LI, Shadow); 2148 2149 if (ShouldTrackOrigins) { 2150 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2151 } 2152 2153 if (ClEventCallbacks) { 2154 IRBuilder<> IRB(Pos); 2155 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2156 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2157 } 2158 } 2159 2160 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2161 IRBuilder<> &IRB) { 2162 assert(DFS.shouldTrackOrigins()); 2163 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2164 } 2165 2166 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2167 if (!DFS.shouldTrackOrigins()) 2168 return V; 2169 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2170 } 2171 2172 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2173 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2174 const DataLayout &DL = F->getParent()->getDataLayout(); 2175 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2176 if (IntptrSize == OriginSize) 2177 return Origin; 2178 assert(IntptrSize == OriginSize * 2); 2179 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2180 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2181 } 2182 2183 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2184 Value *StoreOriginAddr, 2185 uint64_t StoreOriginSize, Align Alignment) { 2186 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2187 const DataLayout &DL = F->getParent()->getDataLayout(); 2188 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2189 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2190 assert(IntptrAlignment >= MinOriginAlignment); 2191 assert(IntptrSize >= OriginSize); 2192 2193 unsigned Ofs = 0; 2194 Align CurrentAlignment = Alignment; 2195 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2196 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2197 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2198 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2199 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2200 Value *Ptr = 2201 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2202 : IntptrStoreOriginPtr; 2203 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2204 Ofs += IntptrSize / OriginSize; 2205 CurrentAlignment = IntptrAlignment; 2206 } 2207 } 2208 2209 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2210 ++I) { 2211 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2212 : StoreOriginAddr; 2213 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2214 CurrentAlignment = MinOriginAlignment; 2215 } 2216 } 2217 2218 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2219 const Twine &Name) { 2220 Type *VTy = V->getType(); 2221 assert(VTy->isIntegerTy()); 2222 if (VTy->getIntegerBitWidth() == 1) 2223 // Just converting a bool to a bool, so do nothing. 2224 return V; 2225 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2226 } 2227 2228 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2229 Value *Shadow, Value *Origin, 2230 Value *StoreOriginAddr, Align InstAlignment) { 2231 // Do not write origins for zero shadows because we do not trace origins for 2232 // untainted sinks. 2233 const Align OriginAlignment = getOriginAlign(InstAlignment); 2234 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2235 IRBuilder<> IRB(Pos); 2236 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2237 if (!ConstantShadow->isZeroValue()) 2238 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2239 OriginAlignment); 2240 return; 2241 } 2242 2243 if (shouldInstrumentWithCall()) { 2244 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2245 {CollapsedShadow, 2246 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2247 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2248 } else { 2249 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2250 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2251 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2252 IRBuilder<> IRBNew(CheckTerm); 2253 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2254 OriginAlignment); 2255 ++NumOriginStores; 2256 } 2257 } 2258 2259 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2260 Align ShadowAlign, 2261 Instruction *Pos) { 2262 IRBuilder<> IRB(Pos); 2263 IntegerType *ShadowTy = 2264 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2265 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2266 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2267 Value *ExtShadowAddr = 2268 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2269 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2270 // Do not write origins for 0 shadows because we do not trace origins for 2271 // untainted sinks. 2272 } 2273 2274 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2275 Align InstAlignment, 2276 Value *PrimitiveShadow, 2277 Value *Origin, 2278 Instruction *Pos) { 2279 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2280 2281 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2282 const auto SI = AllocaShadowMap.find(AI); 2283 if (SI != AllocaShadowMap.end()) { 2284 IRBuilder<> IRB(Pos); 2285 IRB.CreateStore(PrimitiveShadow, SI->second); 2286 2287 // Do not write origins for 0 shadows because we do not trace origins for 2288 // untainted sinks. 2289 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2290 const auto OI = AllocaOriginMap.find(AI); 2291 assert(OI != AllocaOriginMap.end() && Origin); 2292 IRB.CreateStore(Origin, OI->second); 2293 } 2294 return; 2295 } 2296 } 2297 2298 const Align ShadowAlign = getShadowAlign(InstAlignment); 2299 if (DFS.isZeroShadow(PrimitiveShadow)) { 2300 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2301 return; 2302 } 2303 2304 IRBuilder<> IRB(Pos); 2305 Value *ShadowAddr, *OriginAddr; 2306 std::tie(ShadowAddr, OriginAddr) = 2307 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2308 2309 const unsigned ShadowVecSize = 8; 2310 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2311 "Shadow vector is too large!"); 2312 2313 uint64_t Offset = 0; 2314 uint64_t LeftSize = Size; 2315 if (LeftSize >= ShadowVecSize) { 2316 auto *ShadowVecTy = 2317 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2318 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2319 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2320 ShadowVec = IRB.CreateInsertElement( 2321 ShadowVec, PrimitiveShadow, 2322 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2323 } 2324 Value *ShadowVecAddr = 2325 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2326 do { 2327 Value *CurShadowVecAddr = 2328 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2329 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2330 LeftSize -= ShadowVecSize; 2331 ++Offset; 2332 } while (LeftSize >= ShadowVecSize); 2333 Offset *= ShadowVecSize; 2334 } 2335 while (LeftSize > 0) { 2336 Value *CurShadowAddr = 2337 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2338 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2339 --LeftSize; 2340 ++Offset; 2341 } 2342 2343 if (ShouldTrackOrigins) { 2344 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2345 InstAlignment); 2346 } 2347 } 2348 2349 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2350 switch (AO) { 2351 case AtomicOrdering::NotAtomic: 2352 return AtomicOrdering::NotAtomic; 2353 case AtomicOrdering::Unordered: 2354 case AtomicOrdering::Monotonic: 2355 case AtomicOrdering::Release: 2356 return AtomicOrdering::Release; 2357 case AtomicOrdering::Acquire: 2358 case AtomicOrdering::AcquireRelease: 2359 return AtomicOrdering::AcquireRelease; 2360 case AtomicOrdering::SequentiallyConsistent: 2361 return AtomicOrdering::SequentiallyConsistent; 2362 } 2363 llvm_unreachable("Unknown ordering"); 2364 } 2365 2366 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2367 auto &DL = SI.getModule()->getDataLayout(); 2368 Value *Val = SI.getValueOperand(); 2369 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2370 if (Size == 0) 2371 return; 2372 2373 // When an application store is atomic, increase atomic ordering between 2374 // atomic application loads and stores to ensure happen-before order; load 2375 // shadow data after application data; store zero shadow data before 2376 // application data. This ensure shadow loads return either labels of the 2377 // initial application data or zeros. 2378 if (SI.isAtomic()) 2379 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2380 2381 const bool ShouldTrackOrigins = 2382 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2383 std::vector<Value *> Shadows; 2384 std::vector<Value *> Origins; 2385 2386 Value *Shadow = 2387 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2388 2389 if (ShouldTrackOrigins) { 2390 Shadows.push_back(Shadow); 2391 Origins.push_back(DFSF.getOrigin(Val)); 2392 } 2393 2394 Value *PrimitiveShadow; 2395 if (ClCombinePointerLabelsOnStore) { 2396 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2397 if (ShouldTrackOrigins) { 2398 Shadows.push_back(PtrShadow); 2399 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2400 } 2401 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2402 } else { 2403 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2404 } 2405 Value *Origin = nullptr; 2406 if (ShouldTrackOrigins) 2407 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2408 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2409 PrimitiveShadow, Origin, &SI); 2410 if (ClEventCallbacks) { 2411 IRBuilder<> IRB(&SI); 2412 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2413 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2414 } 2415 } 2416 2417 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2418 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2419 2420 Value *Val = I.getOperand(1); 2421 const auto &DL = I.getModule()->getDataLayout(); 2422 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2423 if (Size == 0) 2424 return; 2425 2426 // Conservatively set data at stored addresses and return with zero shadow to 2427 // prevent shadow data races. 2428 IRBuilder<> IRB(&I); 2429 Value *Addr = I.getOperand(0); 2430 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2431 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2432 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2433 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2434 } 2435 2436 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2437 visitCASOrRMW(I.getAlign(), I); 2438 // TODO: The ordering change follows MSan. It is possible not to change 2439 // ordering because we always set and use 0 shadows. 2440 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2441 } 2442 2443 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2444 visitCASOrRMW(I.getAlign(), I); 2445 // TODO: The ordering change follows MSan. It is possible not to change 2446 // ordering because we always set and use 0 shadows. 2447 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2448 } 2449 2450 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2451 visitInstOperands(UO); 2452 } 2453 2454 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2455 visitInstOperands(BO); 2456 } 2457 2458 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2459 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2460 // a musttail call and a ret, don't instrument. New instructions are not 2461 // allowed after a musttail call. 2462 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2463 if (CI->isMustTailCall()) 2464 return; 2465 visitInstOperands(BCI); 2466 } 2467 2468 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2469 2470 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2471 visitInstOperands(CI); 2472 if (ClEventCallbacks) { 2473 IRBuilder<> IRB(&CI); 2474 Value *CombinedShadow = DFSF.getShadow(&CI); 2475 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2476 } 2477 } 2478 2479 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2480 // We do not need to track data through LandingPadInst. 2481 // 2482 // For the C++ exceptions, if a value is thrown, this value will be stored 2483 // in a memory location provided by __cxa_allocate_exception(...) (on the 2484 // throw side) or __cxa_begin_catch(...) (on the catch side). 2485 // This memory will have a shadow, so with the loads and stores we will be 2486 // able to propagate labels on data thrown through exceptions, without any 2487 // special handling of the LandingPadInst. 2488 // 2489 // The second element in the pair result of the LandingPadInst is a 2490 // register value, but it is for a type ID and should never be tainted. 2491 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2492 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2493 } 2494 2495 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2496 if (ClCombineOffsetLabelsOnGEP) { 2497 visitInstOperands(GEPI); 2498 return; 2499 } 2500 2501 // Only propagate shadow/origin of base pointer value but ignore those of 2502 // offset operands. 2503 Value *BasePointer = GEPI.getPointerOperand(); 2504 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2505 if (DFSF.DFS.shouldTrackOrigins()) 2506 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2507 } 2508 2509 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2510 visitInstOperands(I); 2511 } 2512 2513 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2514 visitInstOperands(I); 2515 } 2516 2517 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2518 visitInstOperands(I); 2519 } 2520 2521 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2522 IRBuilder<> IRB(&I); 2523 Value *Agg = I.getAggregateOperand(); 2524 Value *AggShadow = DFSF.getShadow(Agg); 2525 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2526 DFSF.setShadow(&I, ResShadow); 2527 visitInstOperandOrigins(I); 2528 } 2529 2530 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2531 IRBuilder<> IRB(&I); 2532 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2533 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2534 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2535 DFSF.setShadow(&I, Res); 2536 visitInstOperandOrigins(I); 2537 } 2538 2539 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2540 bool AllLoadsStores = true; 2541 for (User *U : I.users()) { 2542 if (isa<LoadInst>(U)) 2543 continue; 2544 2545 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2546 if (SI->getPointerOperand() == &I) 2547 continue; 2548 } 2549 2550 AllLoadsStores = false; 2551 break; 2552 } 2553 if (AllLoadsStores) { 2554 IRBuilder<> IRB(&I); 2555 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2556 if (DFSF.DFS.shouldTrackOrigins()) { 2557 DFSF.AllocaOriginMap[&I] = 2558 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2559 } 2560 } 2561 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2562 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2563 } 2564 2565 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2566 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2567 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2568 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2569 Value *ShadowSel = nullptr; 2570 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2571 std::vector<Value *> Shadows; 2572 std::vector<Value *> Origins; 2573 Value *TrueOrigin = 2574 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2575 Value *FalseOrigin = 2576 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2577 2578 if (isa<VectorType>(I.getCondition()->getType())) { 2579 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2580 FalseShadow, &I); 2581 if (ShouldTrackOrigins) { 2582 Shadows.push_back(TrueShadow); 2583 Shadows.push_back(FalseShadow); 2584 Origins.push_back(TrueOrigin); 2585 Origins.push_back(FalseOrigin); 2586 } 2587 } else { 2588 if (TrueShadow == FalseShadow) { 2589 ShadowSel = TrueShadow; 2590 if (ShouldTrackOrigins) { 2591 Shadows.push_back(TrueShadow); 2592 Origins.push_back(TrueOrigin); 2593 } 2594 } else { 2595 ShadowSel = 2596 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2597 if (ShouldTrackOrigins) { 2598 Shadows.push_back(ShadowSel); 2599 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2600 FalseOrigin, "", &I)); 2601 } 2602 } 2603 } 2604 DFSF.setShadow(&I, ClTrackSelectControlFlow 2605 ? DFSF.combineShadowsThenConvert( 2606 I.getType(), CondShadow, ShadowSel, &I) 2607 : ShadowSel); 2608 if (ShouldTrackOrigins) { 2609 if (ClTrackSelectControlFlow) { 2610 Shadows.push_back(CondShadow); 2611 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2612 } 2613 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2614 } 2615 } 2616 2617 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2618 IRBuilder<> IRB(&I); 2619 Value *ValShadow = DFSF.getShadow(I.getValue()); 2620 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2621 ? DFSF.getOrigin(I.getValue()) 2622 : DFSF.DFS.ZeroOrigin; 2623 IRB.CreateCall( 2624 DFSF.DFS.DFSanSetLabelFn, 2625 {ValShadow, ValOrigin, 2626 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2627 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2628 } 2629 2630 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2631 IRBuilder<> IRB(&I); 2632 2633 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2634 // need to move origins before moving shadows. 2635 if (DFSF.DFS.shouldTrackOrigins()) { 2636 IRB.CreateCall( 2637 DFSF.DFS.DFSanMemOriginTransferFn, 2638 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2639 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2640 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2641 } 2642 2643 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2644 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2645 Value *LenShadow = 2646 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2647 DFSF.DFS.ShadowWidthBytes)); 2648 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2649 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2650 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2651 auto *MTI = cast<MemTransferInst>( 2652 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2653 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2654 if (ClPreserveAlignment) { 2655 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2656 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2657 } else { 2658 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2659 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2660 } 2661 if (ClEventCallbacks) { 2662 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2663 {RawDestShadow, 2664 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2665 } 2666 } 2667 2668 static bool isAMustTailRetVal(Value *RetVal) { 2669 // Tail call may have a bitcast between return. 2670 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2671 RetVal = I->getOperand(0); 2672 } 2673 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2674 return I->isMustTailCall(); 2675 } 2676 return false; 2677 } 2678 2679 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2680 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2681 // Don't emit the instrumentation for musttail call returns. 2682 if (isAMustTailRetVal(RI.getReturnValue())) 2683 return; 2684 2685 Value *S = DFSF.getShadow(RI.getReturnValue()); 2686 IRBuilder<> IRB(&RI); 2687 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2688 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2689 if (Size <= RetvalTLSSize) { 2690 // If the size overflows, stores nothing. At callsite, oversized return 2691 // shadows are set to zero. 2692 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2693 } 2694 if (DFSF.DFS.shouldTrackOrigins()) { 2695 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2696 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2697 } 2698 } 2699 } 2700 2701 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2702 std::vector<Value *> &Args, 2703 IRBuilder<> &IRB) { 2704 FunctionType *FT = F.getFunctionType(); 2705 2706 auto *I = CB.arg_begin(); 2707 2708 // Adds non-variable argument shadows. 2709 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2710 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2711 2712 // Adds variable argument shadows. 2713 if (FT->isVarArg()) { 2714 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2715 CB.arg_size() - FT->getNumParams()); 2716 auto *LabelVAAlloca = 2717 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2718 "labelva", &DFSF.F->getEntryBlock().front()); 2719 2720 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2721 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2722 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2723 LabelVAPtr); 2724 } 2725 2726 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2727 } 2728 2729 // Adds the return value shadow. 2730 if (!FT->getReturnType()->isVoidTy()) { 2731 if (!DFSF.LabelReturnAlloca) { 2732 DFSF.LabelReturnAlloca = new AllocaInst( 2733 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2734 "labelreturn", &DFSF.F->getEntryBlock().front()); 2735 } 2736 Args.push_back(DFSF.LabelReturnAlloca); 2737 } 2738 } 2739 2740 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2741 std::vector<Value *> &Args, 2742 IRBuilder<> &IRB) { 2743 FunctionType *FT = F.getFunctionType(); 2744 2745 auto *I = CB.arg_begin(); 2746 2747 // Add non-variable argument origins. 2748 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2749 Args.push_back(DFSF.getOrigin(*I)); 2750 2751 // Add variable argument origins. 2752 if (FT->isVarArg()) { 2753 auto *OriginVATy = 2754 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2755 auto *OriginVAAlloca = 2756 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2757 "originva", &DFSF.F->getEntryBlock().front()); 2758 2759 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2760 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2761 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2762 } 2763 2764 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2765 } 2766 2767 // Add the return value origin. 2768 if (!FT->getReturnType()->isVoidTy()) { 2769 if (!DFSF.OriginReturnAlloca) { 2770 DFSF.OriginReturnAlloca = new AllocaInst( 2771 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2772 "originreturn", &DFSF.F->getEntryBlock().front()); 2773 } 2774 Args.push_back(DFSF.OriginReturnAlloca); 2775 } 2776 } 2777 2778 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2779 IRBuilder<> IRB(&CB); 2780 switch (DFSF.DFS.getWrapperKind(&F)) { 2781 case DataFlowSanitizer::WK_Warning: 2782 CB.setCalledFunction(&F); 2783 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2784 IRB.CreateGlobalStringPtr(F.getName())); 2785 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2786 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2787 return true; 2788 case DataFlowSanitizer::WK_Discard: 2789 CB.setCalledFunction(&F); 2790 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2791 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2792 return true; 2793 case DataFlowSanitizer::WK_Functional: 2794 CB.setCalledFunction(&F); 2795 visitInstOperands(CB); 2796 return true; 2797 case DataFlowSanitizer::WK_Custom: 2798 // Don't try to handle invokes of custom functions, it's too complicated. 2799 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2800 // wrapper. 2801 CallInst *CI = dyn_cast<CallInst>(&CB); 2802 if (!CI) 2803 return false; 2804 2805 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2806 FunctionType *FT = F.getFunctionType(); 2807 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2808 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2809 CustomFName += F.getName(); 2810 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2811 CustomFName, CustomFn.TransformedType); 2812 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2813 CustomFn->copyAttributesFrom(&F); 2814 2815 // Custom functions returning non-void will write to the return label. 2816 if (!FT->getReturnType()->isVoidTy()) { 2817 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2818 } 2819 } 2820 2821 std::vector<Value *> Args; 2822 2823 // Adds non-variable arguments. 2824 auto *I = CB.arg_begin(); 2825 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2826 Type *T = (*I)->getType(); 2827 FunctionType *ParamFT; 2828 if (isa<PointerType>(T) && 2829 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2830 std::string TName = "dfst"; 2831 TName += utostr(FT->getNumParams() - N); 2832 TName += "$"; 2833 TName += F.getName(); 2834 Constant *Trampoline = 2835 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2836 Args.push_back(Trampoline); 2837 Args.push_back( 2838 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2839 } else { 2840 Args.push_back(*I); 2841 } 2842 } 2843 2844 // Adds shadow arguments. 2845 const unsigned ShadowArgStart = Args.size(); 2846 addShadowArguments(F, CB, Args, IRB); 2847 2848 // Adds origin arguments. 2849 const unsigned OriginArgStart = Args.size(); 2850 if (ShouldTrackOrigins) 2851 addOriginArguments(F, CB, Args, IRB); 2852 2853 // Adds variable arguments. 2854 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2855 2856 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2857 CustomCI->setCallingConv(CI->getCallingConv()); 2858 CustomCI->setAttributes(transformFunctionAttributes( 2859 CustomFn, CI->getContext(), CI->getAttributes())); 2860 2861 // Update the parameter attributes of the custom call instruction to 2862 // zero extend the shadow parameters. This is required for targets 2863 // which consider PrimitiveShadowTy an illegal type. 2864 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2865 const unsigned ArgNo = ShadowArgStart + N; 2866 if (CustomCI->getArgOperand(ArgNo)->getType() == 2867 DFSF.DFS.PrimitiveShadowTy) 2868 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2869 if (ShouldTrackOrigins) { 2870 const unsigned OriginArgNo = OriginArgStart + N; 2871 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2872 DFSF.DFS.OriginTy) 2873 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2874 } 2875 } 2876 2877 // Loads the return value shadow and origin. 2878 if (!FT->getReturnType()->isVoidTy()) { 2879 LoadInst *LabelLoad = 2880 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2881 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2882 FT->getReturnType(), LabelLoad, &CB)); 2883 if (ShouldTrackOrigins) { 2884 LoadInst *OriginLoad = 2885 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2886 DFSF.setOrigin(CustomCI, OriginLoad); 2887 } 2888 } 2889 2890 CI->replaceAllUsesWith(CustomCI); 2891 CI->eraseFromParent(); 2892 return true; 2893 } 2894 return false; 2895 } 2896 2897 void DFSanVisitor::visitCallBase(CallBase &CB) { 2898 Function *F = CB.getCalledFunction(); 2899 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2900 visitInstOperands(CB); 2901 return; 2902 } 2903 2904 // Calls to this function are synthesized in wrappers, and we shouldn't 2905 // instrument them. 2906 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2907 return; 2908 2909 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2910 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2911 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2912 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2913 return; 2914 2915 IRBuilder<> IRB(&CB); 2916 2917 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2918 FunctionType *FT = CB.getFunctionType(); 2919 const DataLayout &DL = getDataLayout(); 2920 2921 // Stores argument shadows. 2922 unsigned ArgOffset = 0; 2923 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2924 if (ShouldTrackOrigins) { 2925 // Ignore overflowed origins 2926 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2927 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2928 !DFSF.DFS.isZeroShadow(ArgShadow)) 2929 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2930 DFSF.getArgOriginTLS(I, IRB)); 2931 } 2932 2933 unsigned Size = 2934 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2935 // Stop storing if arguments' size overflows. Inside a function, arguments 2936 // after overflow have zero shadow values. 2937 if (ArgOffset + Size > ArgTLSSize) 2938 break; 2939 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 2940 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2941 ShadowTLSAlignment); 2942 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2943 } 2944 2945 Instruction *Next = nullptr; 2946 if (!CB.getType()->isVoidTy()) { 2947 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2948 if (II->getNormalDest()->getSinglePredecessor()) { 2949 Next = &II->getNormalDest()->front(); 2950 } else { 2951 BasicBlock *NewBB = 2952 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2953 Next = &NewBB->front(); 2954 } 2955 } else { 2956 assert(CB.getIterator() != CB.getParent()->end()); 2957 Next = CB.getNextNode(); 2958 } 2959 2960 // Don't emit the epilogue for musttail call returns. 2961 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 2962 return; 2963 2964 // Loads the return value shadow. 2965 IRBuilder<> NextIRB(Next); 2966 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2967 if (Size > RetvalTLSSize) { 2968 // Set overflowed return shadow to be zero. 2969 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2970 } else { 2971 LoadInst *LI = NextIRB.CreateAlignedLoad( 2972 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2973 ShadowTLSAlignment, "_dfsret"); 2974 DFSF.SkipInsts.insert(LI); 2975 DFSF.setShadow(&CB, LI); 2976 DFSF.NonZeroChecks.push_back(LI); 2977 } 2978 2979 if (ShouldTrackOrigins) { 2980 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 2981 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 2982 DFSF.SkipInsts.insert(LI); 2983 DFSF.setOrigin(&CB, LI); 2984 } 2985 } 2986 } 2987 2988 void DFSanVisitor::visitPHINode(PHINode &PN) { 2989 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2990 PHINode *ShadowPN = 2991 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2992 2993 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2994 Value *UndefShadow = UndefValue::get(ShadowTy); 2995 for (BasicBlock *BB : PN.blocks()) 2996 ShadowPN->addIncoming(UndefShadow, BB); 2997 2998 DFSF.setShadow(&PN, ShadowPN); 2999 3000 PHINode *OriginPN = nullptr; 3001 if (DFSF.DFS.shouldTrackOrigins()) { 3002 OriginPN = 3003 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3004 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3005 for (BasicBlock *BB : PN.blocks()) 3006 OriginPN->addIncoming(UndefOrigin, BB); 3007 DFSF.setOrigin(&PN, OriginPN); 3008 } 3009 3010 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3011 } 3012 3013 namespace { 3014 class DataFlowSanitizerLegacyPass : public ModulePass { 3015 private: 3016 std::vector<std::string> ABIListFiles; 3017 3018 public: 3019 static char ID; 3020 3021 DataFlowSanitizerLegacyPass( 3022 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3023 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3024 3025 bool runOnModule(Module &M) override { 3026 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3027 } 3028 }; 3029 } // namespace 3030 3031 char DataFlowSanitizerLegacyPass::ID; 3032 3033 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3034 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3035 3036 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3037 const std::vector<std::string> &ABIListFiles) { 3038 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3039 } 3040 3041 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3042 ModuleAnalysisManager &AM) { 3043 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3044 return PreservedAnalyses::none(); 3045 } 3046 return PreservedAnalyses::all(); 3047 } 3048