1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Each byte of application memory is backed by a shadow memory byte. The 22 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 23 /// laid out as follows: 24 /// 25 /// +--------------------+ 0x800000000000 (top of memory) 26 /// | application 3 | 27 /// +--------------------+ 0x700000000000 28 /// | invalid | 29 /// +--------------------+ 0x610000000000 30 /// | origin 1 | 31 /// +--------------------+ 0x600000000000 32 /// | application 2 | 33 /// +--------------------+ 0x510000000000 34 /// | shadow 1 | 35 /// +--------------------+ 0x500000000000 36 /// | invalid | 37 /// +--------------------+ 0x400000000000 38 /// | origin 3 | 39 /// +--------------------+ 0x300000000000 40 /// | shadow 3 | 41 /// +--------------------+ 0x200000000000 42 /// | origin 2 | 43 /// +--------------------+ 0x110000000000 44 /// | invalid | 45 /// +--------------------+ 0x100000000000 46 /// | shadow 2 | 47 /// +--------------------+ 0x010000000000 48 /// | application 1 | 49 /// +--------------------+ 0x000000000000 50 /// 51 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 52 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 53 /// 54 /// For more information, please refer to the design document: 55 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 56 // 57 //===----------------------------------------------------------------------===// 58 59 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 60 #include "llvm/ADT/DenseMap.h" 61 #include "llvm/ADT/DenseSet.h" 62 #include "llvm/ADT/DepthFirstIterator.h" 63 #include "llvm/ADT/None.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringExtras.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Triple.h" 69 #include "llvm/ADT/iterator.h" 70 #include "llvm/Analysis/ValueTracking.h" 71 #include "llvm/IR/Argument.h" 72 #include "llvm/IR/Attributes.h" 73 #include "llvm/IR/BasicBlock.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstVisitor.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/MDBuilder.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/User.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/Support/Alignment.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/SpecialCaseList.h" 104 #include "llvm/Support/VirtualFileSystem.h" 105 #include "llvm/Transforms/Instrumentation.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstddef> 111 #include <cstdint> 112 #include <iterator> 113 #include <memory> 114 #include <set> 115 #include <string> 116 #include <utility> 117 #include <vector> 118 119 using namespace llvm; 120 121 // This must be consistent with ShadowWidthBits. 122 static const Align ShadowTLSAlignment = Align(2); 123 124 static const Align MinOriginAlignment = Align(4); 125 126 // The size of TLS variables. These constants must be kept in sync with the ones 127 // in dfsan.cpp. 128 static const unsigned ArgTLSSize = 800; 129 static const unsigned RetvalTLSSize = 800; 130 131 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 132 // alignment requirements provided by the input IR are correct. For example, 133 // if the input IR contains a load with alignment 8, this flag will cause 134 // the shadow load to have alignment 16. This flag is disabled by default as 135 // we have unfortunately encountered too much code (including Clang itself; 136 // see PR14291) which performs misaligned access. 137 static cl::opt<bool> ClPreserveAlignment( 138 "dfsan-preserve-alignment", 139 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 140 cl::init(false)); 141 142 // The ABI list files control how shadow parameters are passed. The pass treats 143 // every function labelled "uninstrumented" in the ABI list file as conforming 144 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 145 // additional annotations for those functions, a call to one of those functions 146 // will produce a warning message, as the labelling behaviour of the function is 147 // unknown. The other supported annotations for uninstrumented functions are 148 // "functional" and "discard", which are described below under 149 // DataFlowSanitizer::WrapperKind. 150 // Functions will often be labelled with both "uninstrumented" and one of 151 // "functional" or "discard". This will leave the function unchanged by this 152 // pass, and create a wrapper function that will call the original. 153 // 154 // Instrumented functions can also be annotated as "force_zero_labels", which 155 // will make all shadow and return values set zero labels. 156 // Functions should never be labelled with both "force_zero_labels" and 157 // "uninstrumented" or any of the unistrumented wrapper kinds. 158 static cl::list<std::string> ClABIListFiles( 159 "dfsan-abilist", 160 cl::desc("File listing native ABI functions and how the pass treats them"), 161 cl::Hidden); 162 163 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 164 // functions (see DataFlowSanitizer::InstrumentedABI below). 165 static cl::opt<bool> 166 ClArgsABI("dfsan-args-abi", 167 cl::desc("Use the argument ABI rather than the TLS ABI"), 168 cl::Hidden); 169 170 // Controls whether the pass includes or ignores the labels of pointers in load 171 // instructions. 172 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 173 "dfsan-combine-pointer-labels-on-load", 174 cl::desc("Combine the label of the pointer with the label of the data when " 175 "loading from memory."), 176 cl::Hidden, cl::init(true)); 177 178 // Controls whether the pass includes or ignores the labels of pointers in 179 // stores instructions. 180 static cl::opt<bool> ClCombinePointerLabelsOnStore( 181 "dfsan-combine-pointer-labels-on-store", 182 cl::desc("Combine the label of the pointer with the label of the data when " 183 "storing in memory."), 184 cl::Hidden, cl::init(false)); 185 186 // Controls whether the pass propagates labels of offsets in GEP instructions. 187 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 188 "dfsan-combine-offset-labels-on-gep", 189 cl::desc( 190 "Combine the label of the offset with the label of the pointer when " 191 "doing pointer arithmetic."), 192 cl::Hidden, cl::init(true)); 193 194 static cl::opt<bool> ClDebugNonzeroLabels( 195 "dfsan-debug-nonzero-labels", 196 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 197 "load or return with a nonzero label"), 198 cl::Hidden); 199 200 // Experimental feature that inserts callbacks for certain data events. 201 // Currently callbacks are only inserted for loads, stores, memory transfers 202 // (i.e. memcpy and memmove), and comparisons. 203 // 204 // If this flag is set to true, the user must provide definitions for the 205 // following callback functions: 206 // void __dfsan_load_callback(dfsan_label Label, void* addr); 207 // void __dfsan_store_callback(dfsan_label Label, void* addr); 208 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 209 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 210 static cl::opt<bool> ClEventCallbacks( 211 "dfsan-event-callbacks", 212 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 213 cl::Hidden, cl::init(false)); 214 215 // Controls whether the pass tracks the control flow of select instructions. 216 static cl::opt<bool> ClTrackSelectControlFlow( 217 "dfsan-track-select-control-flow", 218 cl::desc("Propagate labels from condition values of select instructions " 219 "to results."), 220 cl::Hidden, cl::init(true)); 221 222 // TODO: This default value follows MSan. DFSan may use a different value. 223 static cl::opt<int> ClInstrumentWithCallThreshold( 224 "dfsan-instrument-with-call-threshold", 225 cl::desc("If the function being instrumented requires more than " 226 "this number of origin stores, use callbacks instead of " 227 "inline checks (-1 means never use callbacks)."), 228 cl::Hidden, cl::init(3500)); 229 230 // Controls how to track origins. 231 // * 0: do not track origins. 232 // * 1: track origins at memory store operations. 233 // * 2: track origins at memory load and store operations. 234 // TODO: track callsites. 235 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 236 cl::desc("Track origins of labels"), 237 cl::Hidden, cl::init(0)); 238 239 static StringRef getGlobalTypeString(const GlobalValue &G) { 240 // Types of GlobalVariables are always pointer types. 241 Type *GType = G.getValueType(); 242 // For now we support excluding struct types only. 243 if (StructType *SGType = dyn_cast<StructType>(GType)) { 244 if (!SGType->isLiteral()) 245 return SGType->getName(); 246 } 247 return "<unknown type>"; 248 } 249 250 namespace { 251 252 // Memory map parameters used in application-to-shadow address calculation. 253 // Offset = (Addr & ~AndMask) ^ XorMask 254 // Shadow = ShadowBase + Offset 255 // Origin = (OriginBase + Offset) & ~3ULL 256 struct MemoryMapParams { 257 uint64_t AndMask; 258 uint64_t XorMask; 259 uint64_t ShadowBase; 260 uint64_t OriginBase; 261 }; 262 263 } // end anonymous namespace 264 265 // x86_64 Linux 266 // NOLINTNEXTLINE(readability-identifier-naming) 267 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 268 0, // AndMask (not used) 269 0x500000000000, // XorMask 270 0, // ShadowBase (not used) 271 0x100000000000, // OriginBase 272 }; 273 274 namespace { 275 276 class DFSanABIList { 277 std::unique_ptr<SpecialCaseList> SCL; 278 279 public: 280 DFSanABIList() = default; 281 282 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 283 284 /// Returns whether either this function or its source file are listed in the 285 /// given category. 286 bool isIn(const Function &F, StringRef Category) const { 287 return isIn(*F.getParent(), Category) || 288 SCL->inSection("dataflow", "fun", F.getName(), Category); 289 } 290 291 /// Returns whether this global alias is listed in the given category. 292 /// 293 /// If GA aliases a function, the alias's name is matched as a function name 294 /// would be. Similarly, aliases of globals are matched like globals. 295 bool isIn(const GlobalAlias &GA, StringRef Category) const { 296 if (isIn(*GA.getParent(), Category)) 297 return true; 298 299 if (isa<FunctionType>(GA.getValueType())) 300 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 301 302 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 303 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 304 Category); 305 } 306 307 /// Returns whether this module is listed in the given category. 308 bool isIn(const Module &M, StringRef Category) const { 309 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 310 } 311 }; 312 313 /// TransformedFunction is used to express the result of transforming one 314 /// function type into another. This struct is immutable. It holds metadata 315 /// useful for updating calls of the old function to the new type. 316 struct TransformedFunction { 317 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 318 std::vector<unsigned> ArgumentIndexMapping) 319 : OriginalType(OriginalType), TransformedType(TransformedType), 320 ArgumentIndexMapping(ArgumentIndexMapping) {} 321 322 // Disallow copies. 323 TransformedFunction(const TransformedFunction &) = delete; 324 TransformedFunction &operator=(const TransformedFunction &) = delete; 325 326 // Allow moves. 327 TransformedFunction(TransformedFunction &&) = default; 328 TransformedFunction &operator=(TransformedFunction &&) = default; 329 330 /// Type of the function before the transformation. 331 FunctionType *OriginalType; 332 333 /// Type of the function after the transformation. 334 FunctionType *TransformedType; 335 336 /// Transforming a function may change the position of arguments. This 337 /// member records the mapping from each argument's old position to its new 338 /// position. Argument positions are zero-indexed. If the transformation 339 /// from F to F' made the first argument of F into the third argument of F', 340 /// then ArgumentIndexMapping[0] will equal 2. 341 std::vector<unsigned> ArgumentIndexMapping; 342 }; 343 344 /// Given function attributes from a call site for the original function, 345 /// return function attributes appropriate for a call to the transformed 346 /// function. 347 AttributeList 348 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 349 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 350 351 // Construct a vector of AttributeSet for each function argument. 352 std::vector<llvm::AttributeSet> ArgumentAttributes( 353 TransformedFunction.TransformedType->getNumParams()); 354 355 // Copy attributes from the parameter of the original function to the 356 // transformed version. 'ArgumentIndexMapping' holds the mapping from 357 // old argument position to new. 358 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 359 I < IE; ++I) { 360 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 361 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 362 } 363 364 // Copy annotations on varargs arguments. 365 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 366 IE = CallSiteAttrs.getNumAttrSets(); 367 I < IE; ++I) { 368 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 369 } 370 371 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 372 CallSiteAttrs.getRetAttrs(), 373 llvm::makeArrayRef(ArgumentAttributes)); 374 } 375 376 class DataFlowSanitizer { 377 friend struct DFSanFunction; 378 friend class DFSanVisitor; 379 380 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 381 382 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 383 384 /// Which ABI should be used for instrumented functions? 385 enum InstrumentedABI { 386 /// Argument and return value labels are passed through additional 387 /// arguments and by modifying the return type. 388 IA_Args, 389 390 /// Argument and return value labels are passed through TLS variables 391 /// __dfsan_arg_tls and __dfsan_retval_tls. 392 IA_TLS 393 }; 394 395 /// How should calls to uninstrumented functions be handled? 396 enum WrapperKind { 397 /// This function is present in an uninstrumented form but we don't know 398 /// how it should be handled. Print a warning and call the function anyway. 399 /// Don't label the return value. 400 WK_Warning, 401 402 /// This function does not write to (user-accessible) memory, and its return 403 /// value is unlabelled. 404 WK_Discard, 405 406 /// This function does not write to (user-accessible) memory, and the label 407 /// of its return value is the union of the label of its arguments. 408 WK_Functional, 409 410 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 411 /// where F is the name of the function. This function may wrap the 412 /// original function or provide its own implementation. This is similar to 413 /// the IA_Args ABI, except that IA_Args uses a struct return type to 414 /// pass the return value shadow in a register, while WK_Custom uses an 415 /// extra pointer argument to return the shadow. This allows the wrapped 416 /// form of the function type to be expressed in C. 417 WK_Custom 418 }; 419 420 Module *Mod; 421 LLVMContext *Ctx; 422 Type *Int8Ptr; 423 IntegerType *OriginTy; 424 PointerType *OriginPtrTy; 425 ConstantInt *ZeroOrigin; 426 /// The shadow type for all primitive types and vector types. 427 IntegerType *PrimitiveShadowTy; 428 PointerType *PrimitiveShadowPtrTy; 429 IntegerType *IntptrTy; 430 ConstantInt *ZeroPrimitiveShadow; 431 Constant *ArgTLS; 432 ArrayType *ArgOriginTLSTy; 433 Constant *ArgOriginTLS; 434 Constant *RetvalTLS; 435 Constant *RetvalOriginTLS; 436 FunctionType *DFSanUnionLoadFnTy; 437 FunctionType *DFSanLoadLabelAndOriginFnTy; 438 FunctionType *DFSanUnimplementedFnTy; 439 FunctionType *DFSanSetLabelFnTy; 440 FunctionType *DFSanNonzeroLabelFnTy; 441 FunctionType *DFSanVarargWrapperFnTy; 442 FunctionType *DFSanCmpCallbackFnTy; 443 FunctionType *DFSanLoadStoreCallbackFnTy; 444 FunctionType *DFSanMemTransferCallbackFnTy; 445 FunctionType *DFSanChainOriginFnTy; 446 FunctionType *DFSanChainOriginIfTaintedFnTy; 447 FunctionType *DFSanMemOriginTransferFnTy; 448 FunctionType *DFSanMaybeStoreOriginFnTy; 449 FunctionCallee DFSanUnionLoadFn; 450 FunctionCallee DFSanLoadLabelAndOriginFn; 451 FunctionCallee DFSanUnimplementedFn; 452 FunctionCallee DFSanSetLabelFn; 453 FunctionCallee DFSanNonzeroLabelFn; 454 FunctionCallee DFSanVarargWrapperFn; 455 FunctionCallee DFSanLoadCallbackFn; 456 FunctionCallee DFSanStoreCallbackFn; 457 FunctionCallee DFSanMemTransferCallbackFn; 458 FunctionCallee DFSanCmpCallbackFn; 459 FunctionCallee DFSanChainOriginFn; 460 FunctionCallee DFSanChainOriginIfTaintedFn; 461 FunctionCallee DFSanMemOriginTransferFn; 462 FunctionCallee DFSanMaybeStoreOriginFn; 463 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 464 MDNode *ColdCallWeights; 465 MDNode *OriginStoreWeights; 466 DFSanABIList ABIList; 467 DenseMap<Value *, Function *> UnwrappedFnMap; 468 AttrBuilder ReadOnlyNoneAttrs; 469 470 /// Memory map parameters used in calculation mapping application addresses 471 /// to shadow addresses and origin addresses. 472 const MemoryMapParams *MapParams; 473 474 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 475 Value *getShadowAddress(Value *Addr, Instruction *Pos); 476 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 477 std::pair<Value *, Value *> 478 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 479 bool isInstrumented(const Function *F); 480 bool isInstrumented(const GlobalAlias *GA); 481 bool isForceZeroLabels(const Function *F); 482 FunctionType *getArgsFunctionType(FunctionType *T); 483 FunctionType *getTrampolineFunctionType(FunctionType *T); 484 TransformedFunction getCustomFunctionType(FunctionType *T); 485 InstrumentedABI getInstrumentedABI(); 486 WrapperKind getWrapperKind(Function *F); 487 void addGlobalNameSuffix(GlobalValue *GV); 488 Function *buildWrapperFunction(Function *F, StringRef NewFName, 489 GlobalValue::LinkageTypes NewFLink, 490 FunctionType *NewFT); 491 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 492 void initializeCallbackFunctions(Module &M); 493 void initializeRuntimeFunctions(Module &M); 494 void injectMetadataGlobals(Module &M); 495 bool initializeModule(Module &M); 496 497 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 498 /// from it. Returns the origin's loaded value. 499 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 500 Value **OriginAddr); 501 502 /// Returns whether the given load byte size is amenable to inlined 503 /// optimization patterns. 504 bool hasLoadSizeForFastPath(uint64_t Size); 505 506 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 507 bool shouldTrackOrigins(); 508 509 /// Returns whether the pass tracks labels for struct fields and array 510 /// indices. Supports only TLS ABI mode. 511 bool shouldTrackFieldsAndIndices(); 512 513 /// Returns a zero constant with the shadow type of OrigTy. 514 /// 515 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 516 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 517 /// getZeroShadow(other type) = i16(0) 518 /// 519 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 520 /// returns false. 521 Constant *getZeroShadow(Type *OrigTy); 522 /// Returns a zero constant with the shadow type of V's type. 523 Constant *getZeroShadow(Value *V); 524 525 /// Checks if V is a zero shadow. 526 bool isZeroShadow(Value *V); 527 528 /// Returns the shadow type of OrigTy. 529 /// 530 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 531 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 532 /// getShadowTy(other type) = i16 533 /// 534 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 535 /// returns false. 536 Type *getShadowTy(Type *OrigTy); 537 /// Returns the shadow type of of V's type. 538 Type *getShadowTy(Value *V); 539 540 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 541 542 public: 543 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 544 545 bool runImpl(Module &M); 546 }; 547 548 struct DFSanFunction { 549 DataFlowSanitizer &DFS; 550 Function *F; 551 DominatorTree DT; 552 DataFlowSanitizer::InstrumentedABI IA; 553 bool IsNativeABI; 554 bool IsForceZeroLabels; 555 AllocaInst *LabelReturnAlloca = nullptr; 556 AllocaInst *OriginReturnAlloca = nullptr; 557 DenseMap<Value *, Value *> ValShadowMap; 558 DenseMap<Value *, Value *> ValOriginMap; 559 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 560 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 561 562 struct PHIFixupElement { 563 PHINode *Phi; 564 PHINode *ShadowPhi; 565 PHINode *OriginPhi; 566 }; 567 std::vector<PHIFixupElement> PHIFixups; 568 569 DenseSet<Instruction *> SkipInsts; 570 std::vector<Value *> NonZeroChecks; 571 572 struct CachedShadow { 573 BasicBlock *Block; // The block where Shadow is defined. 574 Value *Shadow; 575 }; 576 /// Maps a value to its latest shadow value in terms of domination tree. 577 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 578 /// Maps a value to its latest collapsed shadow value it was converted to in 579 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 580 /// used at a post process where CFG blocks are split. So it does not cache 581 /// BasicBlock like CachedShadows, but uses domination between values. 582 DenseMap<Value *, Value *> CachedCollapsedShadows; 583 DenseMap<Value *, std::set<Value *>> ShadowElements; 584 585 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 586 bool IsForceZeroLabels) 587 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI), 588 IsForceZeroLabels(IsForceZeroLabels) { 589 DT.recalculate(*F); 590 } 591 592 /// Computes the shadow address for a given function argument. 593 /// 594 /// Shadow = ArgTLS+ArgOffset. 595 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 596 597 /// Computes the shadow address for a return value. 598 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 599 600 /// Computes the origin address for a given function argument. 601 /// 602 /// Origin = ArgOriginTLS[ArgNo]. 603 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 604 605 /// Computes the origin address for a return value. 606 Value *getRetvalOriginTLS(); 607 608 Value *getOrigin(Value *V); 609 void setOrigin(Instruction *I, Value *Origin); 610 /// Generates IR to compute the origin of the last operand with a taint label. 611 Value *combineOperandOrigins(Instruction *Inst); 612 /// Before the instruction Pos, generates IR to compute the last origin with a 613 /// taint label. Labels and origins are from vectors Shadows and Origins 614 /// correspondingly. The generated IR is like 615 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 616 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 617 /// zeros with other bitwidths. 618 Value *combineOrigins(const std::vector<Value *> &Shadows, 619 const std::vector<Value *> &Origins, Instruction *Pos, 620 ConstantInt *Zero = nullptr); 621 622 Value *getShadow(Value *V); 623 void setShadow(Instruction *I, Value *Shadow); 624 /// Generates IR to compute the union of the two given shadows, inserting it 625 /// before Pos. The combined value is with primitive type. 626 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 627 /// Combines the shadow values of V1 and V2, then converts the combined value 628 /// with primitive type into a shadow value with the original type T. 629 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 630 Instruction *Pos); 631 Value *combineOperandShadows(Instruction *Inst); 632 633 /// Generates IR to load shadow and origin corresponding to bytes [\p 634 /// Addr, \p Addr + \p Size), where addr has alignment \p 635 /// InstAlignment, and take the union of each of those shadows. The returned 636 /// shadow always has primitive type. 637 /// 638 /// When tracking loads is enabled, the returned origin is a chain at the 639 /// current stack if the returned shadow is tainted. 640 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 641 Align InstAlignment, 642 Instruction *Pos); 643 644 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 645 Align InstAlignment, Value *PrimitiveShadow, 646 Value *Origin, Instruction *Pos); 647 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 648 /// the expanded shadow value. 649 /// 650 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 651 /// EFP([n x T], PS) = [n x EFP(T,PS)] 652 /// EFP(other types, PS) = PS 653 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 654 Instruction *Pos); 655 /// Collapses Shadow into a single primitive shadow value, unioning all 656 /// primitive shadow values in the process. Returns the final primitive 657 /// shadow value. 658 /// 659 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 660 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 661 /// CTP(other types, PS) = PS 662 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 663 664 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 665 Instruction *Pos); 666 667 Align getShadowAlign(Align InstAlignment); 668 669 private: 670 /// Collapses the shadow with aggregate type into a single primitive shadow 671 /// value. 672 template <class AggregateType> 673 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 674 IRBuilder<> &IRB); 675 676 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 677 678 /// Returns the shadow value of an argument A. 679 Value *getShadowForTLSArgument(Argument *A); 680 681 /// The fast path of loading shadows. 682 std::pair<Value *, Value *> 683 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 684 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 685 Instruction *Pos); 686 687 Align getOriginAlign(Align InstAlignment); 688 689 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 690 /// is __dfsan_load_label_and_origin. This function returns the union of all 691 /// labels and the origin of the first taint label. However this is an 692 /// additional call with many instructions. To ensure common cases are fast, 693 /// checks if it is possible to load labels and origins without using the 694 /// callback function. 695 /// 696 /// When enabling tracking load instructions, we always use 697 /// __dfsan_load_label_and_origin to reduce code size. 698 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 699 700 /// Returns a chain at the current stack with previous origin V. 701 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 702 703 /// Returns a chain at the current stack with previous origin V if Shadow is 704 /// tainted. 705 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 706 707 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 708 /// Origin otherwise. 709 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 710 711 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 712 /// Size). 713 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 714 uint64_t StoreOriginSize, Align Alignment); 715 716 /// Stores Origin in terms of its Shadow value. 717 /// * Do not write origins for zero shadows because we do not trace origins 718 /// for untainted sinks. 719 /// * Use __dfsan_maybe_store_origin if there are too many origin store 720 /// instrumentations. 721 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 722 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 723 724 /// Convert a scalar value to an i1 by comparing with 0. 725 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 726 727 bool shouldInstrumentWithCall(); 728 729 /// Generates IR to load shadow and origin corresponding to bytes [\p 730 /// Addr, \p Addr + \p Size), where addr has alignment \p 731 /// InstAlignment, and take the union of each of those shadows. The returned 732 /// shadow always has primitive type. 733 std::pair<Value *, Value *> 734 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 735 Align InstAlignment, Instruction *Pos); 736 int NumOriginStores = 0; 737 }; 738 739 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 740 public: 741 DFSanFunction &DFSF; 742 743 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 744 745 const DataLayout &getDataLayout() const { 746 return DFSF.F->getParent()->getDataLayout(); 747 } 748 749 // Combines shadow values and origins for all of I's operands. 750 void visitInstOperands(Instruction &I); 751 752 void visitUnaryOperator(UnaryOperator &UO); 753 void visitBinaryOperator(BinaryOperator &BO); 754 void visitBitCastInst(BitCastInst &BCI); 755 void visitCastInst(CastInst &CI); 756 void visitCmpInst(CmpInst &CI); 757 void visitLandingPadInst(LandingPadInst &LPI); 758 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 759 void visitLoadInst(LoadInst &LI); 760 void visitStoreInst(StoreInst &SI); 761 void visitAtomicRMWInst(AtomicRMWInst &I); 762 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 763 void visitReturnInst(ReturnInst &RI); 764 void visitCallBase(CallBase &CB); 765 void visitPHINode(PHINode &PN); 766 void visitExtractElementInst(ExtractElementInst &I); 767 void visitInsertElementInst(InsertElementInst &I); 768 void visitShuffleVectorInst(ShuffleVectorInst &I); 769 void visitExtractValueInst(ExtractValueInst &I); 770 void visitInsertValueInst(InsertValueInst &I); 771 void visitAllocaInst(AllocaInst &I); 772 void visitSelectInst(SelectInst &I); 773 void visitMemSetInst(MemSetInst &I); 774 void visitMemTransferInst(MemTransferInst &I); 775 776 private: 777 void visitCASOrRMW(Align InstAlignment, Instruction &I); 778 779 // Returns false when this is an invoke of a custom function. 780 bool visitWrappedCallBase(Function &F, CallBase &CB); 781 782 // Combines origins for all of I's operands. 783 void visitInstOperandOrigins(Instruction &I); 784 785 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 786 IRBuilder<> &IRB); 787 788 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 789 IRBuilder<> &IRB); 790 }; 791 792 } // end anonymous namespace 793 794 DataFlowSanitizer::DataFlowSanitizer( 795 const std::vector<std::string> &ABIListFiles) { 796 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 797 llvm::append_range(AllABIListFiles, ClABIListFiles); 798 // FIXME: should we propagate vfs::FileSystem to this constructor? 799 ABIList.set( 800 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 801 } 802 803 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 804 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 805 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 806 if (T->isVarArg()) 807 ArgTypes.push_back(PrimitiveShadowPtrTy); 808 Type *RetType = T->getReturnType(); 809 if (!RetType->isVoidTy()) 810 RetType = StructType::get(RetType, PrimitiveShadowTy); 811 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 812 } 813 814 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 815 assert(!T->isVarArg()); 816 SmallVector<Type *, 4> ArgTypes; 817 ArgTypes.push_back(T->getPointerTo()); 818 ArgTypes.append(T->param_begin(), T->param_end()); 819 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 820 Type *RetType = T->getReturnType(); 821 if (!RetType->isVoidTy()) 822 ArgTypes.push_back(PrimitiveShadowPtrTy); 823 824 if (shouldTrackOrigins()) { 825 ArgTypes.append(T->getNumParams(), OriginTy); 826 if (!RetType->isVoidTy()) 827 ArgTypes.push_back(OriginPtrTy); 828 } 829 830 return FunctionType::get(T->getReturnType(), ArgTypes, false); 831 } 832 833 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 834 SmallVector<Type *, 4> ArgTypes; 835 836 // Some parameters of the custom function being constructed are 837 // parameters of T. Record the mapping from parameters of T to 838 // parameters of the custom function, so that parameter attributes 839 // at call sites can be updated. 840 std::vector<unsigned> ArgumentIndexMapping; 841 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 842 Type *ParamType = T->getParamType(I); 843 FunctionType *FT; 844 if (isa<PointerType>(ParamType) && 845 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 846 ArgumentIndexMapping.push_back(ArgTypes.size()); 847 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 848 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 849 } else { 850 ArgumentIndexMapping.push_back(ArgTypes.size()); 851 ArgTypes.push_back(ParamType); 852 } 853 } 854 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 855 ArgTypes.push_back(PrimitiveShadowTy); 856 if (T->isVarArg()) 857 ArgTypes.push_back(PrimitiveShadowPtrTy); 858 Type *RetType = T->getReturnType(); 859 if (!RetType->isVoidTy()) 860 ArgTypes.push_back(PrimitiveShadowPtrTy); 861 862 if (shouldTrackOrigins()) { 863 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 864 ArgTypes.push_back(OriginTy); 865 if (T->isVarArg()) 866 ArgTypes.push_back(OriginPtrTy); 867 if (!RetType->isVoidTy()) 868 ArgTypes.push_back(OriginPtrTy); 869 } 870 871 return TransformedFunction( 872 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 873 ArgumentIndexMapping); 874 } 875 876 bool DataFlowSanitizer::isZeroShadow(Value *V) { 877 if (!shouldTrackFieldsAndIndices()) 878 return ZeroPrimitiveShadow == V; 879 880 Type *T = V->getType(); 881 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 882 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 883 return CI->isZero(); 884 return false; 885 } 886 887 return isa<ConstantAggregateZero>(V); 888 } 889 890 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 891 uint64_t ShadowSize = Size * ShadowWidthBytes; 892 return ShadowSize % 8 == 0 || ShadowSize == 4; 893 } 894 895 bool DataFlowSanitizer::shouldTrackOrigins() { 896 static const bool ShouldTrackOrigins = 897 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 898 return ShouldTrackOrigins; 899 } 900 901 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 902 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 903 } 904 905 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 906 if (!shouldTrackFieldsAndIndices()) 907 return ZeroPrimitiveShadow; 908 909 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 910 return ZeroPrimitiveShadow; 911 Type *ShadowTy = getShadowTy(OrigTy); 912 return ConstantAggregateZero::get(ShadowTy); 913 } 914 915 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 916 return getZeroShadow(V->getType()); 917 } 918 919 static Value *expandFromPrimitiveShadowRecursive( 920 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 921 Value *PrimitiveShadow, IRBuilder<> &IRB) { 922 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 923 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 924 925 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 926 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 927 Indices.push_back(Idx); 928 Shadow = expandFromPrimitiveShadowRecursive( 929 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 930 Indices.pop_back(); 931 } 932 return Shadow; 933 } 934 935 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 936 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 937 Indices.push_back(Idx); 938 Shadow = expandFromPrimitiveShadowRecursive( 939 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 940 Indices.pop_back(); 941 } 942 return Shadow; 943 } 944 llvm_unreachable("Unexpected shadow type"); 945 } 946 947 bool DFSanFunction::shouldInstrumentWithCall() { 948 return ClInstrumentWithCallThreshold >= 0 && 949 NumOriginStores >= ClInstrumentWithCallThreshold; 950 } 951 952 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 953 Instruction *Pos) { 954 Type *ShadowTy = DFS.getShadowTy(T); 955 956 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 957 return PrimitiveShadow; 958 959 if (DFS.isZeroShadow(PrimitiveShadow)) 960 return DFS.getZeroShadow(ShadowTy); 961 962 IRBuilder<> IRB(Pos); 963 SmallVector<unsigned, 4> Indices; 964 Value *Shadow = UndefValue::get(ShadowTy); 965 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 966 PrimitiveShadow, IRB); 967 968 // Caches the primitive shadow value that built the shadow value. 969 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 970 return Shadow; 971 } 972 973 template <class AggregateType> 974 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 975 IRBuilder<> &IRB) { 976 if (!AT->getNumElements()) 977 return DFS.ZeroPrimitiveShadow; 978 979 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 980 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 981 982 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 983 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 984 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 985 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 986 } 987 return Aggregator; 988 } 989 990 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 991 IRBuilder<> &IRB) { 992 Type *ShadowTy = Shadow->getType(); 993 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 994 return Shadow; 995 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 996 return collapseAggregateShadow<>(AT, Shadow, IRB); 997 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 998 return collapseAggregateShadow<>(ST, Shadow, IRB); 999 llvm_unreachable("Unexpected shadow type"); 1000 } 1001 1002 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1003 Instruction *Pos) { 1004 Type *ShadowTy = Shadow->getType(); 1005 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1006 return Shadow; 1007 1008 assert(DFS.shouldTrackFieldsAndIndices()); 1009 1010 // Checks if the cached collapsed shadow value dominates Pos. 1011 Value *&CS = CachedCollapsedShadows[Shadow]; 1012 if (CS && DT.dominates(CS, Pos)) 1013 return CS; 1014 1015 IRBuilder<> IRB(Pos); 1016 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1017 // Caches the converted primitive shadow value. 1018 CS = PrimitiveShadow; 1019 return PrimitiveShadow; 1020 } 1021 1022 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1023 if (!shouldTrackFieldsAndIndices()) 1024 return PrimitiveShadowTy; 1025 1026 if (!OrigTy->isSized()) 1027 return PrimitiveShadowTy; 1028 if (isa<IntegerType>(OrigTy)) 1029 return PrimitiveShadowTy; 1030 if (isa<VectorType>(OrigTy)) 1031 return PrimitiveShadowTy; 1032 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1033 return ArrayType::get(getShadowTy(AT->getElementType()), 1034 AT->getNumElements()); 1035 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1036 SmallVector<Type *, 4> Elements; 1037 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1038 Elements.push_back(getShadowTy(ST->getElementType(I))); 1039 return StructType::get(*Ctx, Elements); 1040 } 1041 return PrimitiveShadowTy; 1042 } 1043 1044 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1045 return getShadowTy(V->getType()); 1046 } 1047 1048 bool DataFlowSanitizer::initializeModule(Module &M) { 1049 Triple TargetTriple(M.getTargetTriple()); 1050 const DataLayout &DL = M.getDataLayout(); 1051 1052 if (TargetTriple.getOS() != Triple::Linux) 1053 report_fatal_error("unsupported operating system"); 1054 if (TargetTriple.getArch() != Triple::x86_64) 1055 report_fatal_error("unsupported architecture"); 1056 MapParams = &Linux_X86_64_MemoryMapParams; 1057 1058 Mod = &M; 1059 Ctx = &M.getContext(); 1060 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1061 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1062 OriginPtrTy = PointerType::getUnqual(OriginTy); 1063 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1064 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1065 IntptrTy = DL.getIntPtrType(*Ctx); 1066 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1067 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1068 1069 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1070 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1071 /*isVarArg=*/false); 1072 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1073 DFSanLoadLabelAndOriginFnTy = 1074 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1075 /*isVarArg=*/false); 1076 DFSanUnimplementedFnTy = FunctionType::get( 1077 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1078 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1079 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1080 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1081 DFSanSetLabelArgs, /*isVarArg=*/false); 1082 DFSanNonzeroLabelFnTy = 1083 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1084 DFSanVarargWrapperFnTy = FunctionType::get( 1085 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1086 DFSanCmpCallbackFnTy = 1087 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1088 /*isVarArg=*/false); 1089 DFSanChainOriginFnTy = 1090 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1091 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1092 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1093 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1094 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1095 Int8Ptr, IntptrTy, OriginTy}; 1096 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1097 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1098 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1099 DFSanMemOriginTransferFnTy = FunctionType::get( 1100 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1101 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1102 DFSanLoadStoreCallbackFnTy = 1103 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1104 /*isVarArg=*/false); 1105 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1106 DFSanMemTransferCallbackFnTy = 1107 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1108 /*isVarArg=*/false); 1109 1110 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1111 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1112 return true; 1113 } 1114 1115 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1116 return !ABIList.isIn(*F, "uninstrumented"); 1117 } 1118 1119 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1120 return !ABIList.isIn(*GA, "uninstrumented"); 1121 } 1122 1123 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1124 return ABIList.isIn(*F, "force_zero_labels"); 1125 } 1126 1127 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1128 return ClArgsABI ? IA_Args : IA_TLS; 1129 } 1130 1131 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1132 if (ABIList.isIn(*F, "functional")) 1133 return WK_Functional; 1134 if (ABIList.isIn(*F, "discard")) 1135 return WK_Discard; 1136 if (ABIList.isIn(*F, "custom")) 1137 return WK_Custom; 1138 1139 return WK_Warning; 1140 } 1141 1142 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1143 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1144 GV->setName(GVName + Suffix); 1145 1146 // Try to change the name of the function in module inline asm. We only do 1147 // this for specific asm directives, currently only ".symver", to try to avoid 1148 // corrupting asm which happens to contain the symbol name as a substring. 1149 // Note that the substitution for .symver assumes that the versioned symbol 1150 // also has an instrumented name. 1151 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1152 std::string SearchStr = ".symver " + GVName + ","; 1153 size_t Pos = Asm.find(SearchStr); 1154 if (Pos != std::string::npos) { 1155 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1156 Pos = Asm.find("@"); 1157 1158 if (Pos == std::string::npos) 1159 report_fatal_error("unsupported .symver: " + Asm); 1160 1161 Asm.replace(Pos, 1, Suffix + "@"); 1162 GV->getParent()->setModuleInlineAsm(Asm); 1163 } 1164 } 1165 1166 Function * 1167 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1168 GlobalValue::LinkageTypes NewFLink, 1169 FunctionType *NewFT) { 1170 FunctionType *FT = F->getFunctionType(); 1171 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1172 NewFName, F->getParent()); 1173 NewF->copyAttributesFrom(F); 1174 NewF->removeRetAttrs( 1175 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1176 1177 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1178 if (F->isVarArg()) { 1179 NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack")); 1180 CallInst::Create(DFSanVarargWrapperFn, 1181 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1182 BB); 1183 new UnreachableInst(*Ctx, BB); 1184 } else { 1185 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1186 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1187 1188 CallInst *CI = CallInst::Create(F, Args, "", BB); 1189 if (FT->getReturnType()->isVoidTy()) 1190 ReturnInst::Create(*Ctx, BB); 1191 else 1192 ReturnInst::Create(*Ctx, CI, BB); 1193 } 1194 1195 return NewF; 1196 } 1197 1198 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1199 StringRef FName) { 1200 FunctionType *FTT = getTrampolineFunctionType(FT); 1201 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1202 Function *F = dyn_cast<Function>(C.getCallee()); 1203 if (F && F->isDeclaration()) { 1204 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1205 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1206 std::vector<Value *> Args; 1207 Function::arg_iterator AI = F->arg_begin() + 1; 1208 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1209 Args.push_back(&*AI); 1210 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1211 Type *RetType = FT->getReturnType(); 1212 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1213 : ReturnInst::Create(*Ctx, CI, BB); 1214 1215 // F is called by a wrapped custom function with primitive shadows. So 1216 // its arguments and return value need conversion. 1217 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true, 1218 /*ForceZeroLabels=*/false); 1219 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1220 ++ValAI; 1221 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1222 Value *Shadow = 1223 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1224 DFSF.ValShadowMap[&*ValAI] = Shadow; 1225 } 1226 Function::arg_iterator RetShadowAI = ShadowAI; 1227 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1228 if (ShouldTrackOrigins) { 1229 ValAI = F->arg_begin(); 1230 ++ValAI; 1231 Function::arg_iterator OriginAI = ShadowAI; 1232 if (!RetType->isVoidTy()) 1233 ++OriginAI; 1234 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1235 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1236 } 1237 } 1238 DFSanVisitor(DFSF).visitCallInst(*CI); 1239 if (!RetType->isVoidTy()) { 1240 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1241 DFSF.getShadow(RI->getReturnValue()), RI); 1242 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1243 if (ShouldTrackOrigins) { 1244 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1245 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1246 } 1247 } 1248 } 1249 1250 return cast<Constant>(C.getCallee()); 1251 } 1252 1253 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1254 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1255 { 1256 AttributeList AL; 1257 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1258 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1259 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1260 DFSanUnionLoadFn = 1261 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1262 } 1263 { 1264 AttributeList AL; 1265 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1266 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1267 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1268 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1269 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1270 } 1271 DFSanUnimplementedFn = 1272 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1273 { 1274 AttributeList AL; 1275 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1276 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1277 DFSanSetLabelFn = 1278 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1279 } 1280 DFSanNonzeroLabelFn = 1281 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1282 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1283 DFSanVarargWrapperFnTy); 1284 { 1285 AttributeList AL; 1286 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1287 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1288 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1289 DFSanChainOriginFnTy, AL); 1290 } 1291 { 1292 AttributeList AL; 1293 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1294 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1295 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1296 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1297 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1298 } 1299 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1300 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1301 1302 { 1303 AttributeList AL; 1304 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1305 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1306 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1307 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1308 } 1309 1310 DFSanRuntimeFunctions.insert( 1311 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1312 DFSanRuntimeFunctions.insert( 1313 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1314 DFSanRuntimeFunctions.insert( 1315 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1316 DFSanRuntimeFunctions.insert( 1317 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1318 DFSanRuntimeFunctions.insert( 1319 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1320 DFSanRuntimeFunctions.insert( 1321 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1322 DFSanRuntimeFunctions.insert( 1323 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1324 DFSanRuntimeFunctions.insert( 1325 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1326 DFSanRuntimeFunctions.insert( 1327 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1328 DFSanRuntimeFunctions.insert( 1329 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1330 DFSanRuntimeFunctions.insert( 1331 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1332 DFSanRuntimeFunctions.insert( 1333 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1334 DFSanRuntimeFunctions.insert( 1335 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1336 DFSanRuntimeFunctions.insert( 1337 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1338 } 1339 1340 // Initializes event callback functions and declare them in the module 1341 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1342 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1343 DFSanLoadStoreCallbackFnTy); 1344 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1345 DFSanLoadStoreCallbackFnTy); 1346 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1347 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1348 DFSanCmpCallbackFn = 1349 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1350 } 1351 1352 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1353 // These variables can be used: 1354 // - by the runtime (to discover what the shadow width was, during 1355 // compilation) 1356 // - in testing (to avoid hardcoding the shadow width and type but instead 1357 // extract them by pattern matching) 1358 Type *IntTy = Type::getInt32Ty(*Ctx); 1359 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1360 return new GlobalVariable( 1361 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1362 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1363 }); 1364 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1365 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1366 GlobalValue::WeakODRLinkage, 1367 ConstantInt::get(IntTy, ShadowWidthBytes), 1368 "__dfsan_shadow_width_bytes"); 1369 }); 1370 } 1371 1372 bool DataFlowSanitizer::runImpl(Module &M) { 1373 initializeModule(M); 1374 1375 if (ABIList.isIn(M, "skip")) 1376 return false; 1377 1378 const unsigned InitialGlobalSize = M.global_size(); 1379 const unsigned InitialModuleSize = M.size(); 1380 1381 bool Changed = false; 1382 1383 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1384 Type *Ty) -> Constant * { 1385 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1386 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1387 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1388 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1389 } 1390 return C; 1391 }; 1392 1393 // These globals must be kept in sync with the ones in dfsan.cpp. 1394 ArgTLS = 1395 GetOrInsertGlobal("__dfsan_arg_tls", 1396 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1397 RetvalTLS = GetOrInsertGlobal( 1398 "__dfsan_retval_tls", 1399 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1400 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1401 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1402 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1403 1404 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1405 Changed = true; 1406 return new GlobalVariable( 1407 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1408 ConstantInt::getSigned(OriginTy, 1409 shouldTrackOrigins() ? ClTrackOrigins : 0), 1410 "__dfsan_track_origins"); 1411 }); 1412 1413 injectMetadataGlobals(M); 1414 1415 initializeCallbackFunctions(M); 1416 initializeRuntimeFunctions(M); 1417 1418 std::vector<Function *> FnsToInstrument; 1419 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1420 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1421 for (Function &F : M) 1422 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1423 FnsToInstrument.push_back(&F); 1424 1425 // Give function aliases prefixes when necessary, and build wrappers where the 1426 // instrumentedness is inconsistent. 1427 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1428 AI != AE;) { 1429 GlobalAlias *GA = &*AI; 1430 ++AI; 1431 // Don't stop on weak. We assume people aren't playing games with the 1432 // instrumentedness of overridden weak aliases. 1433 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1434 if (!F) 1435 continue; 1436 1437 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1438 if (GAInst && FInst) { 1439 addGlobalNameSuffix(GA); 1440 } else if (GAInst != FInst) { 1441 // Non-instrumented alias of an instrumented function, or vice versa. 1442 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1443 // below will take care of instrumenting it. 1444 Function *NewF = 1445 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1446 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1447 NewF->takeName(GA); 1448 GA->eraseFromParent(); 1449 FnsToInstrument.push_back(NewF); 1450 } 1451 } 1452 1453 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1454 .addAttribute(Attribute::ReadNone); 1455 1456 // First, change the ABI of every function in the module. ABI-listed 1457 // functions keep their original ABI and get a wrapper function. 1458 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1459 FE = FnsToInstrument.end(); 1460 FI != FE; ++FI) { 1461 Function &F = **FI; 1462 FunctionType *FT = F.getFunctionType(); 1463 1464 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1465 FT->getReturnType()->isVoidTy()); 1466 1467 if (isInstrumented(&F)) { 1468 if (isForceZeroLabels(&F)) 1469 FnsWithForceZeroLabel.insert(&F); 1470 1471 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1472 // easily identify cases of mismatching ABIs. This naming scheme is 1473 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1474 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1475 FunctionType *NewFT = getArgsFunctionType(FT); 1476 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1477 F.getAddressSpace(), "", &M); 1478 NewF->copyAttributesFrom(&F); 1479 NewF->removeRetAttrs( 1480 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1481 for (Function::arg_iterator FArg = F.arg_begin(), 1482 NewFArg = NewF->arg_begin(), 1483 FArgEnd = F.arg_end(); 1484 FArg != FArgEnd; ++FArg, ++NewFArg) { 1485 FArg->replaceAllUsesWith(&*NewFArg); 1486 } 1487 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1488 1489 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1490 UI != UE;) { 1491 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1492 ++UI; 1493 if (BA) { 1494 BA->replaceAllUsesWith( 1495 BlockAddress::get(NewF, BA->getBasicBlock())); 1496 delete BA; 1497 } 1498 } 1499 F.replaceAllUsesWith( 1500 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1501 NewF->takeName(&F); 1502 F.eraseFromParent(); 1503 *FI = NewF; 1504 addGlobalNameSuffix(NewF); 1505 } else { 1506 addGlobalNameSuffix(&F); 1507 } 1508 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1509 // Build a wrapper function for F. The wrapper simply calls F, and is 1510 // added to FnsToInstrument so that any instrumentation according to its 1511 // WrapperKind is done in the second pass below. 1512 FunctionType *NewFT = 1513 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1514 1515 // If the function being wrapped has local linkage, then preserve the 1516 // function's linkage in the wrapper function. 1517 GlobalValue::LinkageTypes WrapperLinkage = 1518 F.hasLocalLinkage() ? F.getLinkage() 1519 : GlobalValue::LinkOnceODRLinkage; 1520 1521 Function *NewF = buildWrapperFunction( 1522 &F, 1523 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1524 std::string(F.getName()), 1525 WrapperLinkage, NewFT); 1526 if (getInstrumentedABI() == IA_TLS) 1527 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1528 1529 Value *WrappedFnCst = 1530 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1531 F.replaceAllUsesWith(WrappedFnCst); 1532 1533 UnwrappedFnMap[WrappedFnCst] = &F; 1534 *FI = NewF; 1535 1536 if (!F.isDeclaration()) { 1537 // This function is probably defining an interposition of an 1538 // uninstrumented function and hence needs to keep the original ABI. 1539 // But any functions it may call need to use the instrumented ABI, so 1540 // we instrument it in a mode which preserves the original ABI. 1541 FnsWithNativeABI.insert(&F); 1542 1543 // This code needs to rebuild the iterators, as they may be invalidated 1544 // by the push_back, taking care that the new range does not include 1545 // any functions added by this code. 1546 size_t N = FI - FnsToInstrument.begin(), 1547 Count = FE - FnsToInstrument.begin(); 1548 FnsToInstrument.push_back(&F); 1549 FI = FnsToInstrument.begin() + N; 1550 FE = FnsToInstrument.begin() + Count; 1551 } 1552 // Hopefully, nobody will try to indirectly call a vararg 1553 // function... yet. 1554 } else if (FT->isVarArg()) { 1555 UnwrappedFnMap[&F] = &F; 1556 *FI = nullptr; 1557 } 1558 } 1559 1560 for (Function *F : FnsToInstrument) { 1561 if (!F || F->isDeclaration()) 1562 continue; 1563 1564 removeUnreachableBlocks(*F); 1565 1566 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1567 FnsWithForceZeroLabel.count(F)); 1568 1569 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1570 // Build a copy of the list before iterating over it. 1571 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1572 1573 for (BasicBlock *BB : BBList) { 1574 Instruction *Inst = &BB->front(); 1575 while (true) { 1576 // DFSanVisitor may split the current basic block, changing the current 1577 // instruction's next pointer and moving the next instruction to the 1578 // tail block from which we should continue. 1579 Instruction *Next = Inst->getNextNode(); 1580 // DFSanVisitor may delete Inst, so keep track of whether it was a 1581 // terminator. 1582 bool IsTerminator = Inst->isTerminator(); 1583 if (!DFSF.SkipInsts.count(Inst)) 1584 DFSanVisitor(DFSF).visit(Inst); 1585 if (IsTerminator) 1586 break; 1587 Inst = Next; 1588 } 1589 } 1590 1591 // We will not necessarily be able to compute the shadow for every phi node 1592 // until we have visited every block. Therefore, the code that handles phi 1593 // nodes adds them to the PHIFixups list so that they can be properly 1594 // handled here. 1595 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1596 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1597 ++Val) { 1598 P.ShadowPhi->setIncomingValue( 1599 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1600 if (P.OriginPhi) 1601 P.OriginPhi->setIncomingValue( 1602 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1603 } 1604 } 1605 1606 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1607 // places (i.e. instructions in basic blocks we haven't even begun visiting 1608 // yet). To make our life easier, do this work in a pass after the main 1609 // instrumentation. 1610 if (ClDebugNonzeroLabels) { 1611 for (Value *V : DFSF.NonZeroChecks) { 1612 Instruction *Pos; 1613 if (Instruction *I = dyn_cast<Instruction>(V)) 1614 Pos = I->getNextNode(); 1615 else 1616 Pos = &DFSF.F->getEntryBlock().front(); 1617 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1618 Pos = Pos->getNextNode(); 1619 IRBuilder<> IRB(Pos); 1620 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1621 Value *Ne = 1622 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1623 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1624 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1625 IRBuilder<> ThenIRB(BI); 1626 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1627 } 1628 } 1629 } 1630 1631 return Changed || !FnsToInstrument.empty() || 1632 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1633 } 1634 1635 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1636 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1637 if (ArgOffset) 1638 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1639 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1640 "_dfsarg"); 1641 } 1642 1643 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1644 return IRB.CreatePointerCast( 1645 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1646 } 1647 1648 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1649 1650 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1651 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1652 "_dfsarg_o"); 1653 } 1654 1655 Value *DFSanFunction::getOrigin(Value *V) { 1656 assert(DFS.shouldTrackOrigins()); 1657 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1658 return DFS.ZeroOrigin; 1659 Value *&Origin = ValOriginMap[V]; 1660 if (!Origin) { 1661 if (Argument *A = dyn_cast<Argument>(V)) { 1662 if (IsNativeABI) 1663 return DFS.ZeroOrigin; 1664 switch (IA) { 1665 case DataFlowSanitizer::IA_TLS: { 1666 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1667 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1668 IRBuilder<> IRB(ArgOriginTLSPos); 1669 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1670 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1671 } else { 1672 // Overflow 1673 Origin = DFS.ZeroOrigin; 1674 } 1675 break; 1676 } 1677 case DataFlowSanitizer::IA_Args: { 1678 Origin = DFS.ZeroOrigin; 1679 break; 1680 } 1681 } 1682 } else { 1683 Origin = DFS.ZeroOrigin; 1684 } 1685 } 1686 return Origin; 1687 } 1688 1689 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1690 if (!DFS.shouldTrackOrigins()) 1691 return; 1692 assert(!ValOriginMap.count(I)); 1693 assert(Origin->getType() == DFS.OriginTy); 1694 ValOriginMap[I] = Origin; 1695 } 1696 1697 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1698 unsigned ArgOffset = 0; 1699 const DataLayout &DL = F->getParent()->getDataLayout(); 1700 for (auto &FArg : F->args()) { 1701 if (!FArg.getType()->isSized()) { 1702 if (A == &FArg) 1703 break; 1704 continue; 1705 } 1706 1707 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1708 if (A != &FArg) { 1709 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1710 if (ArgOffset > ArgTLSSize) 1711 break; // ArgTLS overflows, uses a zero shadow. 1712 continue; 1713 } 1714 1715 if (ArgOffset + Size > ArgTLSSize) 1716 break; // ArgTLS overflows, uses a zero shadow. 1717 1718 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1719 IRBuilder<> IRB(ArgTLSPos); 1720 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1721 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1722 ShadowTLSAlignment); 1723 } 1724 1725 return DFS.getZeroShadow(A); 1726 } 1727 1728 Value *DFSanFunction::getShadow(Value *V) { 1729 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1730 return DFS.getZeroShadow(V); 1731 if (IsForceZeroLabels) 1732 return DFS.getZeroShadow(V); 1733 Value *&Shadow = ValShadowMap[V]; 1734 if (!Shadow) { 1735 if (Argument *A = dyn_cast<Argument>(V)) { 1736 if (IsNativeABI) 1737 return DFS.getZeroShadow(V); 1738 switch (IA) { 1739 case DataFlowSanitizer::IA_TLS: { 1740 Shadow = getShadowForTLSArgument(A); 1741 break; 1742 } 1743 case DataFlowSanitizer::IA_Args: { 1744 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1745 Function::arg_iterator Arg = F->arg_begin(); 1746 std::advance(Arg, ArgIdx); 1747 Shadow = &*Arg; 1748 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1749 break; 1750 } 1751 } 1752 NonZeroChecks.push_back(Shadow); 1753 } else { 1754 Shadow = DFS.getZeroShadow(V); 1755 } 1756 } 1757 return Shadow; 1758 } 1759 1760 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1761 assert(!ValShadowMap.count(I)); 1762 assert(DFS.shouldTrackFieldsAndIndices() || 1763 Shadow->getType() == DFS.PrimitiveShadowTy); 1764 ValShadowMap[I] = Shadow; 1765 } 1766 1767 /// Compute the integer shadow offset that corresponds to a given 1768 /// application address. 1769 /// 1770 /// Offset = (Addr & ~AndMask) ^ XorMask 1771 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1772 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1773 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1774 1775 uint64_t AndMask = MapParams->AndMask; 1776 if (AndMask) 1777 OffsetLong = 1778 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1779 1780 uint64_t XorMask = MapParams->XorMask; 1781 if (XorMask) 1782 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1783 return OffsetLong; 1784 } 1785 1786 std::pair<Value *, Value *> 1787 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1788 Instruction *Pos) { 1789 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1790 IRBuilder<> IRB(Pos); 1791 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1792 Value *ShadowLong = ShadowOffset; 1793 uint64_t ShadowBase = MapParams->ShadowBase; 1794 if (ShadowBase != 0) { 1795 ShadowLong = 1796 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1797 } 1798 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1799 Value *ShadowPtr = 1800 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1801 Value *OriginPtr = nullptr; 1802 if (shouldTrackOrigins()) { 1803 Value *OriginLong = ShadowOffset; 1804 uint64_t OriginBase = MapParams->OriginBase; 1805 if (OriginBase != 0) 1806 OriginLong = 1807 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1808 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1809 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1810 // So Mask is unnecessary. 1811 if (Alignment < MinOriginAlignment) { 1812 uint64_t Mask = MinOriginAlignment.value() - 1; 1813 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1814 } 1815 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1816 } 1817 return std::make_pair(ShadowPtr, OriginPtr); 1818 } 1819 1820 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1821 Value *ShadowOffset) { 1822 IRBuilder<> IRB(Pos); 1823 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1824 } 1825 1826 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1827 IRBuilder<> IRB(Pos); 1828 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1829 return getShadowAddress(Addr, Pos, ShadowOffset); 1830 } 1831 1832 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1833 Instruction *Pos) { 1834 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1835 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1836 } 1837 1838 // Generates IR to compute the union of the two given shadows, inserting it 1839 // before Pos. The combined value is with primitive type. 1840 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1841 if (DFS.isZeroShadow(V1)) 1842 return collapseToPrimitiveShadow(V2, Pos); 1843 if (DFS.isZeroShadow(V2)) 1844 return collapseToPrimitiveShadow(V1, Pos); 1845 if (V1 == V2) 1846 return collapseToPrimitiveShadow(V1, Pos); 1847 1848 auto V1Elems = ShadowElements.find(V1); 1849 auto V2Elems = ShadowElements.find(V2); 1850 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1851 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1852 V2Elems->second.begin(), V2Elems->second.end())) { 1853 return collapseToPrimitiveShadow(V1, Pos); 1854 } 1855 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1856 V1Elems->second.begin(), V1Elems->second.end())) { 1857 return collapseToPrimitiveShadow(V2, Pos); 1858 } 1859 } else if (V1Elems != ShadowElements.end()) { 1860 if (V1Elems->second.count(V2)) 1861 return collapseToPrimitiveShadow(V1, Pos); 1862 } else if (V2Elems != ShadowElements.end()) { 1863 if (V2Elems->second.count(V1)) 1864 return collapseToPrimitiveShadow(V2, Pos); 1865 } 1866 1867 auto Key = std::make_pair(V1, V2); 1868 if (V1 > V2) 1869 std::swap(Key.first, Key.second); 1870 CachedShadow &CCS = CachedShadows[Key]; 1871 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1872 return CCS.Shadow; 1873 1874 // Converts inputs shadows to shadows with primitive types. 1875 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1876 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1877 1878 IRBuilder<> IRB(Pos); 1879 CCS.Block = Pos->getParent(); 1880 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1881 1882 std::set<Value *> UnionElems; 1883 if (V1Elems != ShadowElements.end()) { 1884 UnionElems = V1Elems->second; 1885 } else { 1886 UnionElems.insert(V1); 1887 } 1888 if (V2Elems != ShadowElements.end()) { 1889 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1890 } else { 1891 UnionElems.insert(V2); 1892 } 1893 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1894 1895 return CCS.Shadow; 1896 } 1897 1898 // A convenience function which folds the shadows of each of the operands 1899 // of the provided instruction Inst, inserting the IR before Inst. Returns 1900 // the computed union Value. 1901 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1902 if (Inst->getNumOperands() == 0) 1903 return DFS.getZeroShadow(Inst); 1904 1905 Value *Shadow = getShadow(Inst->getOperand(0)); 1906 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1907 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1908 1909 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1910 } 1911 1912 void DFSanVisitor::visitInstOperands(Instruction &I) { 1913 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1914 DFSF.setShadow(&I, CombinedShadow); 1915 visitInstOperandOrigins(I); 1916 } 1917 1918 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1919 const std::vector<Value *> &Origins, 1920 Instruction *Pos, ConstantInt *Zero) { 1921 assert(Shadows.size() == Origins.size()); 1922 size_t Size = Origins.size(); 1923 if (Size == 0) 1924 return DFS.ZeroOrigin; 1925 Value *Origin = nullptr; 1926 if (!Zero) 1927 Zero = DFS.ZeroPrimitiveShadow; 1928 for (size_t I = 0; I != Size; ++I) { 1929 Value *OpOrigin = Origins[I]; 1930 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1931 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1932 continue; 1933 if (!Origin) { 1934 Origin = OpOrigin; 1935 continue; 1936 } 1937 Value *OpShadow = Shadows[I]; 1938 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1939 IRBuilder<> IRB(Pos); 1940 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1941 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1942 } 1943 return Origin ? Origin : DFS.ZeroOrigin; 1944 } 1945 1946 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1947 size_t Size = Inst->getNumOperands(); 1948 std::vector<Value *> Shadows(Size); 1949 std::vector<Value *> Origins(Size); 1950 for (unsigned I = 0; I != Size; ++I) { 1951 Shadows[I] = getShadow(Inst->getOperand(I)); 1952 Origins[I] = getOrigin(Inst->getOperand(I)); 1953 } 1954 return combineOrigins(Shadows, Origins, Inst); 1955 } 1956 1957 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1958 if (!DFSF.DFS.shouldTrackOrigins()) 1959 return; 1960 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1961 DFSF.setOrigin(&I, CombinedOrigin); 1962 } 1963 1964 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1965 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1966 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1967 } 1968 1969 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1970 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1971 return Align(std::max(MinOriginAlignment, Alignment)); 1972 } 1973 1974 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1975 Align InstAlignment) { 1976 // When enabling tracking load instructions, we always use 1977 // __dfsan_load_label_and_origin to reduce code size. 1978 if (ClTrackOrigins == 2) 1979 return true; 1980 1981 assert(Size != 0); 1982 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1983 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1984 // load its origin aligned at 4. If not, although origins may be lost, it 1985 // should not happen very often. 1986 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1987 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1988 // * Otherwise we use __dfsan_load_label_and_origin. 1989 // This should ensure that common cases run efficiently. 1990 if (Size <= 2) 1991 return false; 1992 1993 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1994 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1995 } 1996 1997 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1998 Value **OriginAddr) { 1999 IRBuilder<> IRB(Pos); 2000 *OriginAddr = 2001 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2002 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2003 } 2004 2005 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 2006 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2007 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 2008 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2009 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2010 2011 assert(Size >= 4 && "Not large enough load size for fast path!"); 2012 2013 // Used for origin tracking. 2014 std::vector<Value *> Shadows; 2015 std::vector<Value *> Origins; 2016 2017 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2018 // but this function is only used in a subset of cases that make it possible 2019 // to optimize the instrumentation. 2020 // 2021 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2022 // per byte) is either: 2023 // - a multiple of 8 (common) 2024 // - equal to 4 (only for load32) 2025 // 2026 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2027 // other cases, we use a 64-bit integer to hold the wide shadow. 2028 Type *WideShadowTy = 2029 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2030 2031 IRBuilder<> IRB(Pos); 2032 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2033 Value *CombinedWideShadow = 2034 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2035 2036 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2037 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2038 2039 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2040 if (BytesPerWideShadow > 4) { 2041 assert(BytesPerWideShadow == 8); 2042 // The wide shadow relates to two origin pointers: one for the first four 2043 // application bytes, and one for the latest four. We use a left shift to 2044 // get just the shadow bytes that correspond to the first origin pointer, 2045 // and then the entire shadow for the second origin pointer (which will be 2046 // chosen by combineOrigins() iff the least-significant half of the wide 2047 // shadow was empty but the other half was not). 2048 Value *WideShadowLo = IRB.CreateShl( 2049 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2050 Shadows.push_back(WideShadow); 2051 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2052 2053 Shadows.push_back(WideShadowLo); 2054 Origins.push_back(Origin); 2055 } else { 2056 Shadows.push_back(WideShadow); 2057 Origins.push_back(Origin); 2058 } 2059 }; 2060 2061 if (ShouldTrackOrigins) 2062 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2063 2064 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2065 // then OR individual shadows within the combined WideShadow by binary ORing. 2066 // This is fewer instructions than ORing shadows individually, since it 2067 // needs logN shift/or instructions (N being the bytes of the combined wide 2068 // shadow). 2069 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2070 ByteOfs += BytesPerWideShadow) { 2071 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 2072 ConstantInt::get(DFS.IntptrTy, 1)); 2073 Value *NextWideShadow = 2074 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2075 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2076 if (ShouldTrackOrigins) { 2077 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2078 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2079 } 2080 } 2081 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2082 Width >>= 1) { 2083 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2084 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2085 } 2086 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2087 ShouldTrackOrigins 2088 ? combineOrigins(Shadows, Origins, Pos, 2089 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2090 : DFS.ZeroOrigin}; 2091 } 2092 2093 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2094 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2095 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2096 2097 // Non-escaped loads. 2098 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2099 const auto SI = AllocaShadowMap.find(AI); 2100 if (SI != AllocaShadowMap.end()) { 2101 IRBuilder<> IRB(Pos); 2102 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2103 const auto OI = AllocaOriginMap.find(AI); 2104 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2105 return {ShadowLI, ShouldTrackOrigins 2106 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2107 : nullptr}; 2108 } 2109 } 2110 2111 // Load from constant addresses. 2112 SmallVector<const Value *, 2> Objs; 2113 getUnderlyingObjects(Addr, Objs); 2114 bool AllConstants = true; 2115 for (const Value *Obj : Objs) { 2116 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2117 continue; 2118 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2119 continue; 2120 2121 AllConstants = false; 2122 break; 2123 } 2124 if (AllConstants) 2125 return {DFS.ZeroPrimitiveShadow, 2126 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2127 2128 if (Size == 0) 2129 return {DFS.ZeroPrimitiveShadow, 2130 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2131 2132 // Use callback to load if this is not an optimizable case for origin 2133 // tracking. 2134 if (ShouldTrackOrigins && 2135 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2136 IRBuilder<> IRB(Pos); 2137 CallInst *Call = 2138 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2139 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2140 ConstantInt::get(DFS.IntptrTy, Size)}); 2141 Call->addRetAttr(Attribute::ZExt); 2142 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2143 DFS.PrimitiveShadowTy), 2144 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2145 } 2146 2147 // Other cases that support loading shadows or origins in a fast way. 2148 Value *ShadowAddr, *OriginAddr; 2149 std::tie(ShadowAddr, OriginAddr) = 2150 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2151 2152 const Align ShadowAlign = getShadowAlign(InstAlignment); 2153 const Align OriginAlign = getOriginAlign(InstAlignment); 2154 Value *Origin = nullptr; 2155 if (ShouldTrackOrigins) { 2156 IRBuilder<> IRB(Pos); 2157 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2158 } 2159 2160 // When the byte size is small enough, we can load the shadow directly with 2161 // just a few instructions. 2162 switch (Size) { 2163 case 1: { 2164 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2165 LI->setAlignment(ShadowAlign); 2166 return {LI, Origin}; 2167 } 2168 case 2: { 2169 IRBuilder<> IRB(Pos); 2170 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2171 ConstantInt::get(DFS.IntptrTy, 1)); 2172 Value *Load = 2173 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2174 Value *Load1 = 2175 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2176 return {combineShadows(Load, Load1, Pos), Origin}; 2177 } 2178 } 2179 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2180 2181 if (HasSizeForFastPath) 2182 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2183 OriginAlign, Origin, Pos); 2184 2185 IRBuilder<> IRB(Pos); 2186 CallInst *FallbackCall = IRB.CreateCall( 2187 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2188 FallbackCall->addRetAttr(Attribute::ZExt); 2189 return {FallbackCall, Origin}; 2190 } 2191 2192 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2193 uint64_t Size, 2194 Align InstAlignment, 2195 Instruction *Pos) { 2196 Value *PrimitiveShadow, *Origin; 2197 std::tie(PrimitiveShadow, Origin) = 2198 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2199 if (DFS.shouldTrackOrigins()) { 2200 if (ClTrackOrigins == 2) { 2201 IRBuilder<> IRB(Pos); 2202 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2203 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2204 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2205 } 2206 } 2207 return {PrimitiveShadow, Origin}; 2208 } 2209 2210 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2211 switch (AO) { 2212 case AtomicOrdering::NotAtomic: 2213 return AtomicOrdering::NotAtomic; 2214 case AtomicOrdering::Unordered: 2215 case AtomicOrdering::Monotonic: 2216 case AtomicOrdering::Acquire: 2217 return AtomicOrdering::Acquire; 2218 case AtomicOrdering::Release: 2219 case AtomicOrdering::AcquireRelease: 2220 return AtomicOrdering::AcquireRelease; 2221 case AtomicOrdering::SequentiallyConsistent: 2222 return AtomicOrdering::SequentiallyConsistent; 2223 } 2224 llvm_unreachable("Unknown ordering"); 2225 } 2226 2227 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2228 auto &DL = LI.getModule()->getDataLayout(); 2229 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2230 if (Size == 0) { 2231 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2232 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2233 return; 2234 } 2235 2236 // When an application load is atomic, increase atomic ordering between 2237 // atomic application loads and stores to ensure happen-before order; load 2238 // shadow data after application data; store zero shadow data before 2239 // application data. This ensure shadow loads return either labels of the 2240 // initial application data or zeros. 2241 if (LI.isAtomic()) 2242 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2243 2244 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2245 std::vector<Value *> Shadows; 2246 std::vector<Value *> Origins; 2247 Value *PrimitiveShadow, *Origin; 2248 std::tie(PrimitiveShadow, Origin) = 2249 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2250 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2251 if (ShouldTrackOrigins) { 2252 Shadows.push_back(PrimitiveShadow); 2253 Origins.push_back(Origin); 2254 } 2255 if (ClCombinePointerLabelsOnLoad) { 2256 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2257 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2258 if (ShouldTrackOrigins) { 2259 Shadows.push_back(PtrShadow); 2260 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2261 } 2262 } 2263 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2264 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2265 2266 Value *Shadow = 2267 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2268 DFSF.setShadow(&LI, Shadow); 2269 2270 if (ShouldTrackOrigins) { 2271 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2272 } 2273 2274 if (ClEventCallbacks) { 2275 IRBuilder<> IRB(Pos); 2276 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2277 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2278 } 2279 } 2280 2281 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2282 IRBuilder<> &IRB) { 2283 assert(DFS.shouldTrackOrigins()); 2284 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2285 } 2286 2287 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2288 if (!DFS.shouldTrackOrigins()) 2289 return V; 2290 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2291 } 2292 2293 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2294 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2295 const DataLayout &DL = F->getParent()->getDataLayout(); 2296 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2297 if (IntptrSize == OriginSize) 2298 return Origin; 2299 assert(IntptrSize == OriginSize * 2); 2300 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2301 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2302 } 2303 2304 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2305 Value *StoreOriginAddr, 2306 uint64_t StoreOriginSize, Align Alignment) { 2307 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2308 const DataLayout &DL = F->getParent()->getDataLayout(); 2309 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2310 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2311 assert(IntptrAlignment >= MinOriginAlignment); 2312 assert(IntptrSize >= OriginSize); 2313 2314 unsigned Ofs = 0; 2315 Align CurrentAlignment = Alignment; 2316 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2317 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2318 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2319 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2320 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2321 Value *Ptr = 2322 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2323 : IntptrStoreOriginPtr; 2324 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2325 Ofs += IntptrSize / OriginSize; 2326 CurrentAlignment = IntptrAlignment; 2327 } 2328 } 2329 2330 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2331 ++I) { 2332 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2333 : StoreOriginAddr; 2334 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2335 CurrentAlignment = MinOriginAlignment; 2336 } 2337 } 2338 2339 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2340 const Twine &Name) { 2341 Type *VTy = V->getType(); 2342 assert(VTy->isIntegerTy()); 2343 if (VTy->getIntegerBitWidth() == 1) 2344 // Just converting a bool to a bool, so do nothing. 2345 return V; 2346 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2347 } 2348 2349 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2350 Value *Shadow, Value *Origin, 2351 Value *StoreOriginAddr, Align InstAlignment) { 2352 // Do not write origins for zero shadows because we do not trace origins for 2353 // untainted sinks. 2354 const Align OriginAlignment = getOriginAlign(InstAlignment); 2355 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2356 IRBuilder<> IRB(Pos); 2357 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2358 if (!ConstantShadow->isZeroValue()) 2359 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2360 OriginAlignment); 2361 return; 2362 } 2363 2364 if (shouldInstrumentWithCall()) { 2365 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2366 {CollapsedShadow, 2367 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2368 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2369 } else { 2370 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2371 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2372 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2373 IRBuilder<> IRBNew(CheckTerm); 2374 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2375 OriginAlignment); 2376 ++NumOriginStores; 2377 } 2378 } 2379 2380 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2381 Align ShadowAlign, 2382 Instruction *Pos) { 2383 IRBuilder<> IRB(Pos); 2384 IntegerType *ShadowTy = 2385 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2386 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2387 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2388 Value *ExtShadowAddr = 2389 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2390 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2391 // Do not write origins for 0 shadows because we do not trace origins for 2392 // untainted sinks. 2393 } 2394 2395 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2396 Align InstAlignment, 2397 Value *PrimitiveShadow, 2398 Value *Origin, 2399 Instruction *Pos) { 2400 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2401 2402 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2403 const auto SI = AllocaShadowMap.find(AI); 2404 if (SI != AllocaShadowMap.end()) { 2405 IRBuilder<> IRB(Pos); 2406 IRB.CreateStore(PrimitiveShadow, SI->second); 2407 2408 // Do not write origins for 0 shadows because we do not trace origins for 2409 // untainted sinks. 2410 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2411 const auto OI = AllocaOriginMap.find(AI); 2412 assert(OI != AllocaOriginMap.end() && Origin); 2413 IRB.CreateStore(Origin, OI->second); 2414 } 2415 return; 2416 } 2417 } 2418 2419 const Align ShadowAlign = getShadowAlign(InstAlignment); 2420 if (DFS.isZeroShadow(PrimitiveShadow)) { 2421 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2422 return; 2423 } 2424 2425 IRBuilder<> IRB(Pos); 2426 Value *ShadowAddr, *OriginAddr; 2427 std::tie(ShadowAddr, OriginAddr) = 2428 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2429 2430 const unsigned ShadowVecSize = 8; 2431 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2432 "Shadow vector is too large!"); 2433 2434 uint64_t Offset = 0; 2435 uint64_t LeftSize = Size; 2436 if (LeftSize >= ShadowVecSize) { 2437 auto *ShadowVecTy = 2438 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2439 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2440 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2441 ShadowVec = IRB.CreateInsertElement( 2442 ShadowVec, PrimitiveShadow, 2443 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2444 } 2445 Value *ShadowVecAddr = 2446 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2447 do { 2448 Value *CurShadowVecAddr = 2449 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2450 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2451 LeftSize -= ShadowVecSize; 2452 ++Offset; 2453 } while (LeftSize >= ShadowVecSize); 2454 Offset *= ShadowVecSize; 2455 } 2456 while (LeftSize > 0) { 2457 Value *CurShadowAddr = 2458 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2459 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2460 --LeftSize; 2461 ++Offset; 2462 } 2463 2464 if (ShouldTrackOrigins) { 2465 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2466 InstAlignment); 2467 } 2468 } 2469 2470 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2471 switch (AO) { 2472 case AtomicOrdering::NotAtomic: 2473 return AtomicOrdering::NotAtomic; 2474 case AtomicOrdering::Unordered: 2475 case AtomicOrdering::Monotonic: 2476 case AtomicOrdering::Release: 2477 return AtomicOrdering::Release; 2478 case AtomicOrdering::Acquire: 2479 case AtomicOrdering::AcquireRelease: 2480 return AtomicOrdering::AcquireRelease; 2481 case AtomicOrdering::SequentiallyConsistent: 2482 return AtomicOrdering::SequentiallyConsistent; 2483 } 2484 llvm_unreachable("Unknown ordering"); 2485 } 2486 2487 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2488 auto &DL = SI.getModule()->getDataLayout(); 2489 Value *Val = SI.getValueOperand(); 2490 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2491 if (Size == 0) 2492 return; 2493 2494 // When an application store is atomic, increase atomic ordering between 2495 // atomic application loads and stores to ensure happen-before order; load 2496 // shadow data after application data; store zero shadow data before 2497 // application data. This ensure shadow loads return either labels of the 2498 // initial application data or zeros. 2499 if (SI.isAtomic()) 2500 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2501 2502 const bool ShouldTrackOrigins = 2503 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2504 std::vector<Value *> Shadows; 2505 std::vector<Value *> Origins; 2506 2507 Value *Shadow = 2508 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2509 2510 if (ShouldTrackOrigins) { 2511 Shadows.push_back(Shadow); 2512 Origins.push_back(DFSF.getOrigin(Val)); 2513 } 2514 2515 Value *PrimitiveShadow; 2516 if (ClCombinePointerLabelsOnStore) { 2517 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2518 if (ShouldTrackOrigins) { 2519 Shadows.push_back(PtrShadow); 2520 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2521 } 2522 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2523 } else { 2524 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2525 } 2526 Value *Origin = nullptr; 2527 if (ShouldTrackOrigins) 2528 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2529 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2530 PrimitiveShadow, Origin, &SI); 2531 if (ClEventCallbacks) { 2532 IRBuilder<> IRB(&SI); 2533 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2534 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2535 } 2536 } 2537 2538 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2539 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2540 2541 Value *Val = I.getOperand(1); 2542 const auto &DL = I.getModule()->getDataLayout(); 2543 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2544 if (Size == 0) 2545 return; 2546 2547 // Conservatively set data at stored addresses and return with zero shadow to 2548 // prevent shadow data races. 2549 IRBuilder<> IRB(&I); 2550 Value *Addr = I.getOperand(0); 2551 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2552 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2553 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2554 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2555 } 2556 2557 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2558 visitCASOrRMW(I.getAlign(), I); 2559 // TODO: The ordering change follows MSan. It is possible not to change 2560 // ordering because we always set and use 0 shadows. 2561 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2562 } 2563 2564 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2565 visitCASOrRMW(I.getAlign(), I); 2566 // TODO: The ordering change follows MSan. It is possible not to change 2567 // ordering because we always set and use 0 shadows. 2568 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2569 } 2570 2571 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2572 visitInstOperands(UO); 2573 } 2574 2575 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2576 visitInstOperands(BO); 2577 } 2578 2579 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2580 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2581 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2582 // a musttail call and a ret, don't instrument. New instructions are not 2583 // allowed after a musttail call. 2584 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2585 if (CI->isMustTailCall()) 2586 return; 2587 } 2588 // TODO: handle musttail call returns for IA_Args. 2589 visitInstOperands(BCI); 2590 } 2591 2592 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2593 2594 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2595 visitInstOperands(CI); 2596 if (ClEventCallbacks) { 2597 IRBuilder<> IRB(&CI); 2598 Value *CombinedShadow = DFSF.getShadow(&CI); 2599 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2600 } 2601 } 2602 2603 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2604 // We do not need to track data through LandingPadInst. 2605 // 2606 // For the C++ exceptions, if a value is thrown, this value will be stored 2607 // in a memory location provided by __cxa_allocate_exception(...) (on the 2608 // throw side) or __cxa_begin_catch(...) (on the catch side). 2609 // This memory will have a shadow, so with the loads and stores we will be 2610 // able to propagate labels on data thrown through exceptions, without any 2611 // special handling of the LandingPadInst. 2612 // 2613 // The second element in the pair result of the LandingPadInst is a 2614 // register value, but it is for a type ID and should never be tainted. 2615 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2616 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2617 } 2618 2619 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2620 if (ClCombineOffsetLabelsOnGEP) { 2621 visitInstOperands(GEPI); 2622 return; 2623 } 2624 2625 // Only propagate shadow/origin of base pointer value but ignore those of 2626 // offset operands. 2627 Value *BasePointer = GEPI.getPointerOperand(); 2628 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2629 if (DFSF.DFS.shouldTrackOrigins()) 2630 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2631 } 2632 2633 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2634 visitInstOperands(I); 2635 } 2636 2637 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2638 visitInstOperands(I); 2639 } 2640 2641 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2642 visitInstOperands(I); 2643 } 2644 2645 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2646 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2647 visitInstOperands(I); 2648 return; 2649 } 2650 2651 IRBuilder<> IRB(&I); 2652 Value *Agg = I.getAggregateOperand(); 2653 Value *AggShadow = DFSF.getShadow(Agg); 2654 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2655 DFSF.setShadow(&I, ResShadow); 2656 visitInstOperandOrigins(I); 2657 } 2658 2659 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2660 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2661 visitInstOperands(I); 2662 return; 2663 } 2664 2665 IRBuilder<> IRB(&I); 2666 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2667 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2668 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2669 DFSF.setShadow(&I, Res); 2670 visitInstOperandOrigins(I); 2671 } 2672 2673 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2674 bool AllLoadsStores = true; 2675 for (User *U : I.users()) { 2676 if (isa<LoadInst>(U)) 2677 continue; 2678 2679 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2680 if (SI->getPointerOperand() == &I) 2681 continue; 2682 } 2683 2684 AllLoadsStores = false; 2685 break; 2686 } 2687 if (AllLoadsStores) { 2688 IRBuilder<> IRB(&I); 2689 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2690 if (DFSF.DFS.shouldTrackOrigins()) { 2691 DFSF.AllocaOriginMap[&I] = 2692 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2693 } 2694 } 2695 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2696 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2697 } 2698 2699 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2700 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2701 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2702 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2703 Value *ShadowSel = nullptr; 2704 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2705 std::vector<Value *> Shadows; 2706 std::vector<Value *> Origins; 2707 Value *TrueOrigin = 2708 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2709 Value *FalseOrigin = 2710 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2711 2712 if (isa<VectorType>(I.getCondition()->getType())) { 2713 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2714 FalseShadow, &I); 2715 if (ShouldTrackOrigins) { 2716 Shadows.push_back(TrueShadow); 2717 Shadows.push_back(FalseShadow); 2718 Origins.push_back(TrueOrigin); 2719 Origins.push_back(FalseOrigin); 2720 } 2721 } else { 2722 if (TrueShadow == FalseShadow) { 2723 ShadowSel = TrueShadow; 2724 if (ShouldTrackOrigins) { 2725 Shadows.push_back(TrueShadow); 2726 Origins.push_back(TrueOrigin); 2727 } 2728 } else { 2729 ShadowSel = 2730 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2731 if (ShouldTrackOrigins) { 2732 Shadows.push_back(ShadowSel); 2733 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2734 FalseOrigin, "", &I)); 2735 } 2736 } 2737 } 2738 DFSF.setShadow(&I, ClTrackSelectControlFlow 2739 ? DFSF.combineShadowsThenConvert( 2740 I.getType(), CondShadow, ShadowSel, &I) 2741 : ShadowSel); 2742 if (ShouldTrackOrigins) { 2743 if (ClTrackSelectControlFlow) { 2744 Shadows.push_back(CondShadow); 2745 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2746 } 2747 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2748 } 2749 } 2750 2751 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2752 IRBuilder<> IRB(&I); 2753 Value *ValShadow = DFSF.getShadow(I.getValue()); 2754 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2755 ? DFSF.getOrigin(I.getValue()) 2756 : DFSF.DFS.ZeroOrigin; 2757 IRB.CreateCall( 2758 DFSF.DFS.DFSanSetLabelFn, 2759 {ValShadow, ValOrigin, 2760 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2761 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2762 } 2763 2764 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2765 IRBuilder<> IRB(&I); 2766 2767 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2768 // need to move origins before moving shadows. 2769 if (DFSF.DFS.shouldTrackOrigins()) { 2770 IRB.CreateCall( 2771 DFSF.DFS.DFSanMemOriginTransferFn, 2772 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2773 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2774 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2775 } 2776 2777 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2778 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2779 Value *LenShadow = 2780 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2781 DFSF.DFS.ShadowWidthBytes)); 2782 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2783 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2784 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2785 auto *MTI = cast<MemTransferInst>( 2786 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2787 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2788 if (ClPreserveAlignment) { 2789 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2790 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2791 } else { 2792 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2793 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2794 } 2795 if (ClEventCallbacks) { 2796 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2797 {RawDestShadow, 2798 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2799 } 2800 } 2801 2802 static bool isAMustTailRetVal(Value *RetVal) { 2803 // Tail call may have a bitcast between return. 2804 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2805 RetVal = I->getOperand(0); 2806 } 2807 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2808 return I->isMustTailCall(); 2809 } 2810 return false; 2811 } 2812 2813 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2814 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2815 switch (DFSF.IA) { 2816 case DataFlowSanitizer::IA_TLS: { 2817 // Don't emit the instrumentation for musttail call returns. 2818 if (isAMustTailRetVal(RI.getReturnValue())) 2819 return; 2820 2821 Value *S = DFSF.getShadow(RI.getReturnValue()); 2822 IRBuilder<> IRB(&RI); 2823 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2824 unsigned Size = 2825 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2826 if (Size <= RetvalTLSSize) { 2827 // If the size overflows, stores nothing. At callsite, oversized return 2828 // shadows are set to zero. 2829 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2830 ShadowTLSAlignment); 2831 } 2832 if (DFSF.DFS.shouldTrackOrigins()) { 2833 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2834 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2835 } 2836 break; 2837 } 2838 case DataFlowSanitizer::IA_Args: { 2839 // TODO: handle musttail call returns for IA_Args. 2840 2841 IRBuilder<> IRB(&RI); 2842 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2843 Value *InsVal = 2844 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2845 Value *InsShadow = 2846 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2847 RI.setOperand(0, InsShadow); 2848 break; 2849 } 2850 } 2851 } 2852 } 2853 2854 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2855 std::vector<Value *> &Args, 2856 IRBuilder<> &IRB) { 2857 FunctionType *FT = F.getFunctionType(); 2858 2859 auto *I = CB.arg_begin(); 2860 2861 // Adds non-variable argument shadows. 2862 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2863 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2864 2865 // Adds variable argument shadows. 2866 if (FT->isVarArg()) { 2867 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2868 CB.arg_size() - FT->getNumParams()); 2869 auto *LabelVAAlloca = 2870 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2871 "labelva", &DFSF.F->getEntryBlock().front()); 2872 2873 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2874 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2875 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2876 LabelVAPtr); 2877 } 2878 2879 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2880 } 2881 2882 // Adds the return value shadow. 2883 if (!FT->getReturnType()->isVoidTy()) { 2884 if (!DFSF.LabelReturnAlloca) { 2885 DFSF.LabelReturnAlloca = new AllocaInst( 2886 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2887 "labelreturn", &DFSF.F->getEntryBlock().front()); 2888 } 2889 Args.push_back(DFSF.LabelReturnAlloca); 2890 } 2891 } 2892 2893 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2894 std::vector<Value *> &Args, 2895 IRBuilder<> &IRB) { 2896 FunctionType *FT = F.getFunctionType(); 2897 2898 auto *I = CB.arg_begin(); 2899 2900 // Add non-variable argument origins. 2901 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2902 Args.push_back(DFSF.getOrigin(*I)); 2903 2904 // Add variable argument origins. 2905 if (FT->isVarArg()) { 2906 auto *OriginVATy = 2907 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2908 auto *OriginVAAlloca = 2909 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2910 "originva", &DFSF.F->getEntryBlock().front()); 2911 2912 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2913 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2914 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2915 } 2916 2917 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2918 } 2919 2920 // Add the return value origin. 2921 if (!FT->getReturnType()->isVoidTy()) { 2922 if (!DFSF.OriginReturnAlloca) { 2923 DFSF.OriginReturnAlloca = new AllocaInst( 2924 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2925 "originreturn", &DFSF.F->getEntryBlock().front()); 2926 } 2927 Args.push_back(DFSF.OriginReturnAlloca); 2928 } 2929 } 2930 2931 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2932 IRBuilder<> IRB(&CB); 2933 switch (DFSF.DFS.getWrapperKind(&F)) { 2934 case DataFlowSanitizer::WK_Warning: 2935 CB.setCalledFunction(&F); 2936 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2937 IRB.CreateGlobalStringPtr(F.getName())); 2938 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2939 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2940 return true; 2941 case DataFlowSanitizer::WK_Discard: 2942 CB.setCalledFunction(&F); 2943 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2944 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2945 return true; 2946 case DataFlowSanitizer::WK_Functional: 2947 CB.setCalledFunction(&F); 2948 visitInstOperands(CB); 2949 return true; 2950 case DataFlowSanitizer::WK_Custom: 2951 // Don't try to handle invokes of custom functions, it's too complicated. 2952 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2953 // wrapper. 2954 CallInst *CI = dyn_cast<CallInst>(&CB); 2955 if (!CI) 2956 return false; 2957 2958 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2959 FunctionType *FT = F.getFunctionType(); 2960 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2961 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2962 CustomFName += F.getName(); 2963 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2964 CustomFName, CustomFn.TransformedType); 2965 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2966 CustomFn->copyAttributesFrom(&F); 2967 2968 // Custom functions returning non-void will write to the return label. 2969 if (!FT->getReturnType()->isVoidTy()) { 2970 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2971 } 2972 } 2973 2974 std::vector<Value *> Args; 2975 2976 // Adds non-variable arguments. 2977 auto *I = CB.arg_begin(); 2978 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2979 Type *T = (*I)->getType(); 2980 FunctionType *ParamFT; 2981 if (isa<PointerType>(T) && 2982 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2983 std::string TName = "dfst"; 2984 TName += utostr(FT->getNumParams() - N); 2985 TName += "$"; 2986 TName += F.getName(); 2987 Constant *Trampoline = 2988 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2989 Args.push_back(Trampoline); 2990 Args.push_back( 2991 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2992 } else { 2993 Args.push_back(*I); 2994 } 2995 } 2996 2997 // Adds shadow arguments. 2998 const unsigned ShadowArgStart = Args.size(); 2999 addShadowArguments(F, CB, Args, IRB); 3000 3001 // Adds origin arguments. 3002 const unsigned OriginArgStart = Args.size(); 3003 if (ShouldTrackOrigins) 3004 addOriginArguments(F, CB, Args, IRB); 3005 3006 // Adds variable arguments. 3007 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3008 3009 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3010 CustomCI->setCallingConv(CI->getCallingConv()); 3011 CustomCI->setAttributes(transformFunctionAttributes( 3012 CustomFn, CI->getContext(), CI->getAttributes())); 3013 3014 // Update the parameter attributes of the custom call instruction to 3015 // zero extend the shadow parameters. This is required for targets 3016 // which consider PrimitiveShadowTy an illegal type. 3017 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3018 const unsigned ArgNo = ShadowArgStart + N; 3019 if (CustomCI->getArgOperand(ArgNo)->getType() == 3020 DFSF.DFS.PrimitiveShadowTy) 3021 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3022 if (ShouldTrackOrigins) { 3023 const unsigned OriginArgNo = OriginArgStart + N; 3024 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3025 DFSF.DFS.OriginTy) 3026 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3027 } 3028 } 3029 3030 // Loads the return value shadow and origin. 3031 if (!FT->getReturnType()->isVoidTy()) { 3032 LoadInst *LabelLoad = 3033 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3034 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3035 FT->getReturnType(), LabelLoad, &CB)); 3036 if (ShouldTrackOrigins) { 3037 LoadInst *OriginLoad = 3038 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3039 DFSF.setOrigin(CustomCI, OriginLoad); 3040 } 3041 } 3042 3043 CI->replaceAllUsesWith(CustomCI); 3044 CI->eraseFromParent(); 3045 return true; 3046 } 3047 return false; 3048 } 3049 3050 void DFSanVisitor::visitCallBase(CallBase &CB) { 3051 Function *F = CB.getCalledFunction(); 3052 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3053 visitInstOperands(CB); 3054 return; 3055 } 3056 3057 // Calls to this function are synthesized in wrappers, and we shouldn't 3058 // instrument them. 3059 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3060 return; 3061 3062 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3063 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3064 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3065 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3066 return; 3067 3068 IRBuilder<> IRB(&CB); 3069 3070 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3071 FunctionType *FT = CB.getFunctionType(); 3072 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3073 // Stores argument shadows. 3074 unsigned ArgOffset = 0; 3075 const DataLayout &DL = getDataLayout(); 3076 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3077 if (ShouldTrackOrigins) { 3078 // Ignore overflowed origins 3079 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3080 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3081 !DFSF.DFS.isZeroShadow(ArgShadow)) 3082 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3083 DFSF.getArgOriginTLS(I, IRB)); 3084 } 3085 3086 unsigned Size = 3087 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3088 // Stop storing if arguments' size overflows. Inside a function, arguments 3089 // after overflow have zero shadow values. 3090 if (ArgOffset + Size > ArgTLSSize) 3091 break; 3092 IRB.CreateAlignedStore( 3093 DFSF.getShadow(CB.getArgOperand(I)), 3094 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3095 ShadowTLSAlignment); 3096 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3097 } 3098 } 3099 3100 Instruction *Next = nullptr; 3101 if (!CB.getType()->isVoidTy()) { 3102 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3103 if (II->getNormalDest()->getSinglePredecessor()) { 3104 Next = &II->getNormalDest()->front(); 3105 } else { 3106 BasicBlock *NewBB = 3107 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3108 Next = &NewBB->front(); 3109 } 3110 } else { 3111 assert(CB.getIterator() != CB.getParent()->end()); 3112 Next = CB.getNextNode(); 3113 } 3114 3115 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3116 // Don't emit the epilogue for musttail call returns. 3117 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3118 return; 3119 3120 // Loads the return value shadow. 3121 IRBuilder<> NextIRB(Next); 3122 const DataLayout &DL = getDataLayout(); 3123 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3124 if (Size > RetvalTLSSize) { 3125 // Set overflowed return shadow to be zero. 3126 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3127 } else { 3128 LoadInst *LI = NextIRB.CreateAlignedLoad( 3129 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3130 ShadowTLSAlignment, "_dfsret"); 3131 DFSF.SkipInsts.insert(LI); 3132 DFSF.setShadow(&CB, LI); 3133 DFSF.NonZeroChecks.push_back(LI); 3134 } 3135 3136 if (ShouldTrackOrigins) { 3137 LoadInst *LI = NextIRB.CreateLoad( 3138 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3139 DFSF.SkipInsts.insert(LI); 3140 DFSF.setOrigin(&CB, LI); 3141 } 3142 } 3143 } 3144 3145 // Do all instrumentation for IA_Args down here to defer tampering with the 3146 // CFG in a way that SplitEdge may be able to detect. 3147 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3148 // TODO: handle musttail call returns for IA_Args. 3149 3150 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3151 Value *Func = 3152 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3153 3154 const unsigned NumParams = FT->getNumParams(); 3155 3156 // Copy original arguments. 3157 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3158 std::vector<Value *> Args(NumParams); 3159 std::copy_n(ArgIt, NumParams, Args.begin()); 3160 3161 // Add shadow arguments by transforming original arguments. 3162 std::generate_n(std::back_inserter(Args), NumParams, 3163 [&]() { return DFSF.getShadow(*ArgIt++); }); 3164 3165 if (FT->isVarArg()) { 3166 unsigned VarArgSize = CB.arg_size() - NumParams; 3167 ArrayType *VarArgArrayTy = 3168 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3169 AllocaInst *VarArgShadow = 3170 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3171 "", &DFSF.F->getEntryBlock().front()); 3172 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3173 3174 // Copy remaining var args. 3175 unsigned GepIndex = 0; 3176 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3177 IRB.CreateStore( 3178 DFSF.getShadow(Arg), 3179 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3180 Args.push_back(Arg); 3181 }); 3182 } 3183 3184 CallBase *NewCB; 3185 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3186 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3187 II->getUnwindDest(), Args); 3188 } else { 3189 NewCB = IRB.CreateCall(NewFT, Func, Args); 3190 } 3191 NewCB->setCallingConv(CB.getCallingConv()); 3192 NewCB->setAttributes(CB.getAttributes().removeRetAttributes( 3193 *DFSF.DFS.Ctx, AttributeFuncs::typeIncompatible(NewCB->getType()))); 3194 3195 if (Next) { 3196 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3197 DFSF.SkipInsts.insert(ExVal); 3198 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3199 DFSF.SkipInsts.insert(ExShadow); 3200 DFSF.setShadow(ExVal, ExShadow); 3201 DFSF.NonZeroChecks.push_back(ExShadow); 3202 3203 CB.replaceAllUsesWith(ExVal); 3204 } 3205 3206 CB.eraseFromParent(); 3207 } 3208 } 3209 3210 void DFSanVisitor::visitPHINode(PHINode &PN) { 3211 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3212 PHINode *ShadowPN = 3213 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3214 3215 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3216 Value *UndefShadow = UndefValue::get(ShadowTy); 3217 for (BasicBlock *BB : PN.blocks()) 3218 ShadowPN->addIncoming(UndefShadow, BB); 3219 3220 DFSF.setShadow(&PN, ShadowPN); 3221 3222 PHINode *OriginPN = nullptr; 3223 if (DFSF.DFS.shouldTrackOrigins()) { 3224 OriginPN = 3225 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3226 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3227 for (BasicBlock *BB : PN.blocks()) 3228 OriginPN->addIncoming(UndefOrigin, BB); 3229 DFSF.setOrigin(&PN, OriginPN); 3230 } 3231 3232 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3233 } 3234 3235 namespace { 3236 class DataFlowSanitizerLegacyPass : public ModulePass { 3237 private: 3238 std::vector<std::string> ABIListFiles; 3239 3240 public: 3241 static char ID; 3242 3243 DataFlowSanitizerLegacyPass( 3244 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3245 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3246 3247 bool runOnModule(Module &M) override { 3248 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3249 } 3250 }; 3251 } // namespace 3252 3253 char DataFlowSanitizerLegacyPass::ID; 3254 3255 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3256 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3257 3258 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3259 const std::vector<std::string> &ABIListFiles) { 3260 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3261 } 3262 3263 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3264 ModuleAnalysisManager &AM) { 3265 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3266 return PreservedAnalyses::none(); 3267 } 3268 return PreservedAnalyses::all(); 3269 } 3270