1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // External symbol to be used when generating the shadow address for 110 // architectures with multiple VMAs. Instead of using a constant integer 111 // the runtime will set the external mask based on the VMA range. 112 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 113 114 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 115 // alignment requirements provided by the input IR are correct. For example, 116 // if the input IR contains a load with alignment 8, this flag will cause 117 // the shadow load to have alignment 16. This flag is disabled by default as 118 // we have unfortunately encountered too much code (including Clang itself; 119 // see PR14291) which performs misaligned access. 120 static cl::opt<bool> ClPreserveAlignment( 121 "dfsan-preserve-alignment", 122 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 123 cl::init(false)); 124 125 // The ABI list files control how shadow parameters are passed. The pass treats 126 // every function labelled "uninstrumented" in the ABI list file as conforming 127 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 128 // additional annotations for those functions, a call to one of those functions 129 // will produce a warning message, as the labelling behaviour of the function is 130 // unknown. The other supported annotations are "functional" and "discard", 131 // which are described below under DataFlowSanitizer::WrapperKind. 132 static cl::list<std::string> ClABIListFiles( 133 "dfsan-abilist", 134 cl::desc("File listing native ABI functions and how the pass treats them"), 135 cl::Hidden); 136 137 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 138 // functions (see DataFlowSanitizer::InstrumentedABI below). 139 static cl::opt<bool> ClArgsABI( 140 "dfsan-args-abi", 141 cl::desc("Use the argument ABI rather than the TLS ABI"), 142 cl::Hidden); 143 144 // Controls whether the pass includes or ignores the labels of pointers in load 145 // instructions. 146 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 147 "dfsan-combine-pointer-labels-on-load", 148 cl::desc("Combine the label of the pointer with the label of the data when " 149 "loading from memory."), 150 cl::Hidden, cl::init(true)); 151 152 // Controls whether the pass includes or ignores the labels of pointers in 153 // stores instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnStore( 155 "dfsan-combine-pointer-labels-on-store", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "storing in memory."), 158 cl::Hidden, cl::init(false)); 159 160 static cl::opt<bool> ClDebugNonzeroLabels( 161 "dfsan-debug-nonzero-labels", 162 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 163 "load or return with a nonzero label"), 164 cl::Hidden); 165 166 // Experimental feature that inserts callbacks for certain data events. 167 // Currently callbacks are only inserted for loads, stores, memory transfers 168 // (i.e. memcpy and memmove), and comparisons. 169 // 170 // If this flag is set to true, the user must provide definitions for the 171 // following callback functions: 172 // void __dfsan_load_callback(dfsan_label Label, void* addr); 173 // void __dfsan_store_callback(dfsan_label Label, void* addr); 174 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 175 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 176 static cl::opt<bool> ClEventCallbacks( 177 "dfsan-event-callbacks", 178 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 179 cl::Hidden, cl::init(false)); 180 181 // Use a distinct bit for each base label, enabling faster unions with less 182 // instrumentation. Limits the max number of base labels to 16. 183 static cl::opt<bool> ClFast16Labels( 184 "dfsan-fast-16-labels", 185 cl::desc("Use more efficient instrumentation, limiting the number of " 186 "labels to 16."), 187 cl::Hidden, cl::init(false)); 188 189 // Controls whether the pass tracks the control flow of select instructions. 190 static cl::opt<bool> ClTrackSelectControlFlow( 191 "dfsan-track-select-control-flow", 192 cl::desc("Propagate labels from condition values of select instructions " 193 "to results."), 194 cl::Hidden, cl::init(true)); 195 196 static StringRef GetGlobalTypeString(const GlobalValue &G) { 197 // Types of GlobalVariables are always pointer types. 198 Type *GType = G.getValueType(); 199 // For now we support excluding struct types only. 200 if (StructType *SGType = dyn_cast<StructType>(GType)) { 201 if (!SGType->isLiteral()) 202 return SGType->getName(); 203 } 204 return "<unknown type>"; 205 } 206 207 namespace { 208 209 class DFSanABIList { 210 std::unique_ptr<SpecialCaseList> SCL; 211 212 public: 213 DFSanABIList() = default; 214 215 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 216 217 /// Returns whether either this function or its source file are listed in the 218 /// given category. 219 bool isIn(const Function &F, StringRef Category) const { 220 return isIn(*F.getParent(), Category) || 221 SCL->inSection("dataflow", "fun", F.getName(), Category); 222 } 223 224 /// Returns whether this global alias is listed in the given category. 225 /// 226 /// If GA aliases a function, the alias's name is matched as a function name 227 /// would be. Similarly, aliases of globals are matched like globals. 228 bool isIn(const GlobalAlias &GA, StringRef Category) const { 229 if (isIn(*GA.getParent(), Category)) 230 return true; 231 232 if (isa<FunctionType>(GA.getValueType())) 233 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 234 235 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 236 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 237 Category); 238 } 239 240 /// Returns whether this module is listed in the given category. 241 bool isIn(const Module &M, StringRef Category) const { 242 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 243 } 244 }; 245 246 /// TransformedFunction is used to express the result of transforming one 247 /// function type into another. This struct is immutable. It holds metadata 248 /// useful for updating calls of the old function to the new type. 249 struct TransformedFunction { 250 TransformedFunction(FunctionType* OriginalType, 251 FunctionType* TransformedType, 252 std::vector<unsigned> ArgumentIndexMapping) 253 : OriginalType(OriginalType), 254 TransformedType(TransformedType), 255 ArgumentIndexMapping(ArgumentIndexMapping) {} 256 257 // Disallow copies. 258 TransformedFunction(const TransformedFunction&) = delete; 259 TransformedFunction& operator=(const TransformedFunction&) = delete; 260 261 // Allow moves. 262 TransformedFunction(TransformedFunction&&) = default; 263 TransformedFunction& operator=(TransformedFunction&&) = default; 264 265 /// Type of the function before the transformation. 266 FunctionType *OriginalType; 267 268 /// Type of the function after the transformation. 269 FunctionType *TransformedType; 270 271 /// Transforming a function may change the position of arguments. This 272 /// member records the mapping from each argument's old position to its new 273 /// position. Argument positions are zero-indexed. If the transformation 274 /// from F to F' made the first argument of F into the third argument of F', 275 /// then ArgumentIndexMapping[0] will equal 2. 276 std::vector<unsigned> ArgumentIndexMapping; 277 }; 278 279 /// Given function attributes from a call site for the original function, 280 /// return function attributes appropriate for a call to the transformed 281 /// function. 282 AttributeList TransformFunctionAttributes( 283 const TransformedFunction& TransformedFunction, 284 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 285 286 // Construct a vector of AttributeSet for each function argument. 287 std::vector<llvm::AttributeSet> ArgumentAttributes( 288 TransformedFunction.TransformedType->getNumParams()); 289 290 // Copy attributes from the parameter of the original function to the 291 // transformed version. 'ArgumentIndexMapping' holds the mapping from 292 // old argument position to new. 293 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 294 i < ie; ++i) { 295 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 296 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 297 } 298 299 // Copy annotations on varargs arguments. 300 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 301 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 302 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 303 } 304 305 return AttributeList::get( 306 Ctx, 307 CallSiteAttrs.getFnAttributes(), 308 CallSiteAttrs.getRetAttributes(), 309 llvm::makeArrayRef(ArgumentAttributes)); 310 } 311 312 class DataFlowSanitizer { 313 friend struct DFSanFunction; 314 friend class DFSanVisitor; 315 316 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 317 318 /// Which ABI should be used for instrumented functions? 319 enum InstrumentedABI { 320 /// Argument and return value labels are passed through additional 321 /// arguments and by modifying the return type. 322 IA_Args, 323 324 /// Argument and return value labels are passed through TLS variables 325 /// __dfsan_arg_tls and __dfsan_retval_tls. 326 IA_TLS 327 }; 328 329 /// How should calls to uninstrumented functions be handled? 330 enum WrapperKind { 331 /// This function is present in an uninstrumented form but we don't know 332 /// how it should be handled. Print a warning and call the function anyway. 333 /// Don't label the return value. 334 WK_Warning, 335 336 /// This function does not write to (user-accessible) memory, and its return 337 /// value is unlabelled. 338 WK_Discard, 339 340 /// This function does not write to (user-accessible) memory, and the label 341 /// of its return value is the union of the label of its arguments. 342 WK_Functional, 343 344 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 345 /// where F is the name of the function. This function may wrap the 346 /// original function or provide its own implementation. This is similar to 347 /// the IA_Args ABI, except that IA_Args uses a struct return type to 348 /// pass the return value shadow in a register, while WK_Custom uses an 349 /// extra pointer argument to return the shadow. This allows the wrapped 350 /// form of the function type to be expressed in C. 351 WK_Custom 352 }; 353 354 Module *Mod; 355 LLVMContext *Ctx; 356 Type *Int8Ptr; 357 /// The shadow type for all primitive types. Until we support field/index 358 /// level shadow values, aggregate and vector types also use this shadow 359 /// type. 360 IntegerType *PrimitiveShadowTy; 361 PointerType *PrimitiveShadowPtrTy; 362 IntegerType *IntptrTy; 363 ConstantInt *ZeroPrimitiveShadow; 364 ConstantInt *ShadowPtrMask; 365 ConstantInt *ShadowPtrMul; 366 Constant *ArgTLS; 367 Constant *RetvalTLS; 368 Constant *ExternalShadowMask; 369 FunctionType *DFSanUnionFnTy; 370 FunctionType *DFSanUnionLoadFnTy; 371 FunctionType *DFSanUnimplementedFnTy; 372 FunctionType *DFSanSetLabelFnTy; 373 FunctionType *DFSanNonzeroLabelFnTy; 374 FunctionType *DFSanVarargWrapperFnTy; 375 FunctionType *DFSanCmpCallbackFnTy; 376 FunctionType *DFSanLoadStoreCallbackFnTy; 377 FunctionType *DFSanMemTransferCallbackFnTy; 378 FunctionCallee DFSanUnionFn; 379 FunctionCallee DFSanCheckedUnionFn; 380 FunctionCallee DFSanUnionLoadFn; 381 FunctionCallee DFSanUnionLoadFast16LabelsFn; 382 FunctionCallee DFSanUnimplementedFn; 383 FunctionCallee DFSanSetLabelFn; 384 FunctionCallee DFSanNonzeroLabelFn; 385 FunctionCallee DFSanVarargWrapperFn; 386 FunctionCallee DFSanLoadCallbackFn; 387 FunctionCallee DFSanStoreCallbackFn; 388 FunctionCallee DFSanMemTransferCallbackFn; 389 FunctionCallee DFSanCmpCallbackFn; 390 MDNode *ColdCallWeights; 391 DFSanABIList ABIList; 392 DenseMap<Value *, Function *> UnwrappedFnMap; 393 AttrBuilder ReadOnlyNoneAttrs; 394 bool DFSanRuntimeShadowMask = false; 395 396 Value *getShadowAddress(Value *Addr, Instruction *Pos); 397 bool isInstrumented(const Function *F); 398 bool isInstrumented(const GlobalAlias *GA); 399 FunctionType *getArgsFunctionType(FunctionType *T); 400 FunctionType *getTrampolineFunctionType(FunctionType *T); 401 TransformedFunction getCustomFunctionType(FunctionType *T); 402 InstrumentedABI getInstrumentedABI(); 403 WrapperKind getWrapperKind(Function *F); 404 void addGlobalNamePrefix(GlobalValue *GV); 405 Function *buildWrapperFunction(Function *F, StringRef NewFName, 406 GlobalValue::LinkageTypes NewFLink, 407 FunctionType *NewFT); 408 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 409 void initializeCallbackFunctions(Module &M); 410 void initializeRuntimeFunctions(Module &M); 411 412 bool init(Module &M); 413 414 public: 415 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 416 417 bool runImpl(Module &M); 418 }; 419 420 struct DFSanFunction { 421 DataFlowSanitizer &DFS; 422 Function *F; 423 DominatorTree DT; 424 DataFlowSanitizer::InstrumentedABI IA; 425 bool IsNativeABI; 426 AllocaInst *LabelReturnAlloca = nullptr; 427 DenseMap<Value *, Value *> ValShadowMap; 428 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 429 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 430 DenseSet<Instruction *> SkipInsts; 431 std::vector<Value *> NonZeroChecks; 432 bool AvoidNewBlocks; 433 434 struct CachedShadow { 435 BasicBlock *Block; // The block where Shadow is defined. 436 Value *Shadow; 437 }; 438 /// Maps a value to its latest shadow value in terms of domination tree. 439 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 440 DenseMap<Value *, std::set<Value *>> ShadowElements; 441 442 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 443 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 444 DT.recalculate(*F); 445 // FIXME: Need to track down the register allocator issue which causes poor 446 // performance in pathological cases with large numbers of basic blocks. 447 AvoidNewBlocks = F->size() > 1000; 448 } 449 450 Value *getArgTLS(unsigned Index, Instruction *Pos); 451 Value *getShadow(Value *V); 452 void setShadow(Instruction *I, Value *Shadow); 453 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 454 Value *combineOperandShadows(Instruction *Inst); 455 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 456 Instruction *Pos); 457 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow, 458 Instruction *Pos); 459 }; 460 461 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 462 public: 463 DFSanFunction &DFSF; 464 465 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 466 467 const DataLayout &getDataLayout() const { 468 return DFSF.F->getParent()->getDataLayout(); 469 } 470 471 // Combines shadow values for all of I's operands. Returns the combined shadow 472 // value. 473 Value *visitOperandShadowInst(Instruction &I); 474 475 void visitUnaryOperator(UnaryOperator &UO); 476 void visitBinaryOperator(BinaryOperator &BO); 477 void visitCastInst(CastInst &CI); 478 void visitCmpInst(CmpInst &CI); 479 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 480 void visitLoadInst(LoadInst &LI); 481 void visitStoreInst(StoreInst &SI); 482 void visitReturnInst(ReturnInst &RI); 483 void visitCallBase(CallBase &CB); 484 void visitPHINode(PHINode &PN); 485 void visitExtractElementInst(ExtractElementInst &I); 486 void visitInsertElementInst(InsertElementInst &I); 487 void visitShuffleVectorInst(ShuffleVectorInst &I); 488 void visitExtractValueInst(ExtractValueInst &I); 489 void visitInsertValueInst(InsertValueInst &I); 490 void visitAllocaInst(AllocaInst &I); 491 void visitSelectInst(SelectInst &I); 492 void visitMemSetInst(MemSetInst &I); 493 void visitMemTransferInst(MemTransferInst &I); 494 }; 495 496 } // end anonymous namespace 497 498 DataFlowSanitizer::DataFlowSanitizer( 499 const std::vector<std::string> &ABIListFiles) { 500 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 501 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 502 ClABIListFiles.end()); 503 // FIXME: should we propagate vfs::FileSystem to this constructor? 504 ABIList.set( 505 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 506 } 507 508 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 509 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 510 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 511 if (T->isVarArg()) 512 ArgTypes.push_back(PrimitiveShadowPtrTy); 513 Type *RetType = T->getReturnType(); 514 if (!RetType->isVoidTy()) 515 RetType = StructType::get(RetType, PrimitiveShadowTy); 516 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 517 } 518 519 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 520 assert(!T->isVarArg()); 521 SmallVector<Type *, 4> ArgTypes; 522 ArgTypes.push_back(T->getPointerTo()); 523 ArgTypes.append(T->param_begin(), T->param_end()); 524 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 525 Type *RetType = T->getReturnType(); 526 if (!RetType->isVoidTy()) 527 ArgTypes.push_back(PrimitiveShadowPtrTy); 528 return FunctionType::get(T->getReturnType(), ArgTypes, false); 529 } 530 531 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 532 SmallVector<Type *, 4> ArgTypes; 533 534 // Some parameters of the custom function being constructed are 535 // parameters of T. Record the mapping from parameters of T to 536 // parameters of the custom function, so that parameter attributes 537 // at call sites can be updated. 538 std::vector<unsigned> ArgumentIndexMapping; 539 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 540 Type* param_type = T->getParamType(i); 541 FunctionType *FT; 542 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 543 cast<PointerType>(param_type)->getElementType()))) { 544 ArgumentIndexMapping.push_back(ArgTypes.size()); 545 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 546 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 547 } else { 548 ArgumentIndexMapping.push_back(ArgTypes.size()); 549 ArgTypes.push_back(param_type); 550 } 551 } 552 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 553 ArgTypes.push_back(PrimitiveShadowTy); 554 if (T->isVarArg()) 555 ArgTypes.push_back(PrimitiveShadowPtrTy); 556 Type *RetType = T->getReturnType(); 557 if (!RetType->isVoidTy()) 558 ArgTypes.push_back(PrimitiveShadowPtrTy); 559 return TransformedFunction( 560 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 561 ArgumentIndexMapping); 562 } 563 564 bool DataFlowSanitizer::init(Module &M) { 565 Triple TargetTriple(M.getTargetTriple()); 566 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 567 bool IsMIPS64 = TargetTriple.isMIPS64(); 568 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 569 TargetTriple.getArch() == Triple::aarch64_be; 570 571 const DataLayout &DL = M.getDataLayout(); 572 573 Mod = &M; 574 Ctx = &M.getContext(); 575 Int8Ptr = Type::getInt8PtrTy(*Ctx); 576 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 577 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 578 IntptrTy = DL.getIntPtrType(*Ctx); 579 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 580 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 581 if (IsX86_64) 582 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 583 else if (IsMIPS64) 584 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 585 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 586 else if (IsAArch64) 587 DFSanRuntimeShadowMask = true; 588 else 589 report_fatal_error("unsupported triple"); 590 591 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 592 DFSanUnionFnTy = 593 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 594 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 595 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 596 /*isVarArg=*/false); 597 DFSanUnimplementedFnTy = FunctionType::get( 598 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 599 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 600 IntptrTy}; 601 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 602 DFSanSetLabelArgs, /*isVarArg=*/false); 603 DFSanNonzeroLabelFnTy = 604 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 605 DFSanVarargWrapperFnTy = FunctionType::get( 606 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 607 DFSanCmpCallbackFnTy = 608 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 609 /*isVarArg=*/false); 610 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 611 DFSanLoadStoreCallbackFnTy = 612 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 613 /*isVarArg=*/false); 614 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 615 DFSanMemTransferCallbackFnTy = 616 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 617 /*isVarArg=*/false); 618 619 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 620 return true; 621 } 622 623 bool DataFlowSanitizer::isInstrumented(const Function *F) { 624 return !ABIList.isIn(*F, "uninstrumented"); 625 } 626 627 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 628 return !ABIList.isIn(*GA, "uninstrumented"); 629 } 630 631 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 632 return ClArgsABI ? IA_Args : IA_TLS; 633 } 634 635 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 636 if (ABIList.isIn(*F, "functional")) 637 return WK_Functional; 638 if (ABIList.isIn(*F, "discard")) 639 return WK_Discard; 640 if (ABIList.isIn(*F, "custom")) 641 return WK_Custom; 642 643 return WK_Warning; 644 } 645 646 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 647 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 648 GV->setName(Prefix + GVName); 649 650 // Try to change the name of the function in module inline asm. We only do 651 // this for specific asm directives, currently only ".symver", to try to avoid 652 // corrupting asm which happens to contain the symbol name as a substring. 653 // Note that the substitution for .symver assumes that the versioned symbol 654 // also has an instrumented name. 655 std::string Asm = GV->getParent()->getModuleInlineAsm(); 656 std::string SearchStr = ".symver " + GVName + ","; 657 size_t Pos = Asm.find(SearchStr); 658 if (Pos != std::string::npos) { 659 Asm.replace(Pos, SearchStr.size(), 660 ".symver " + Prefix + GVName + "," + Prefix); 661 GV->getParent()->setModuleInlineAsm(Asm); 662 } 663 } 664 665 Function * 666 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 667 GlobalValue::LinkageTypes NewFLink, 668 FunctionType *NewFT) { 669 FunctionType *FT = F->getFunctionType(); 670 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 671 NewFName, F->getParent()); 672 NewF->copyAttributesFrom(F); 673 NewF->removeAttributes( 674 AttributeList::ReturnIndex, 675 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 676 677 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 678 if (F->isVarArg()) { 679 NewF->removeAttributes(AttributeList::FunctionIndex, 680 AttrBuilder().addAttribute("split-stack")); 681 CallInst::Create(DFSanVarargWrapperFn, 682 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 683 BB); 684 new UnreachableInst(*Ctx, BB); 685 } else { 686 std::vector<Value *> Args; 687 unsigned n = FT->getNumParams(); 688 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 689 Args.push_back(&*ai); 690 CallInst *CI = CallInst::Create(F, Args, "", BB); 691 if (FT->getReturnType()->isVoidTy()) 692 ReturnInst::Create(*Ctx, BB); 693 else 694 ReturnInst::Create(*Ctx, CI, BB); 695 } 696 697 return NewF; 698 } 699 700 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 701 StringRef FName) { 702 FunctionType *FTT = getTrampolineFunctionType(FT); 703 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 704 Function *F = dyn_cast<Function>(C.getCallee()); 705 if (F && F->isDeclaration()) { 706 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 707 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 708 std::vector<Value *> Args; 709 Function::arg_iterator AI = F->arg_begin(); ++AI; 710 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 711 Args.push_back(&*AI); 712 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 713 ReturnInst *RI; 714 if (FT->getReturnType()->isVoidTy()) 715 RI = ReturnInst::Create(*Ctx, BB); 716 else 717 RI = ReturnInst::Create(*Ctx, CI, BB); 718 719 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 720 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 721 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 722 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 723 DFSanVisitor(DFSF).visitCallInst(*CI); 724 if (!FT->getReturnType()->isVoidTy()) 725 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 726 &*std::prev(F->arg_end()), RI); 727 } 728 729 return cast<Constant>(C.getCallee()); 730 } 731 732 // Initialize DataFlowSanitizer runtime functions and declare them in the module 733 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 734 { 735 AttributeList AL; 736 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 737 Attribute::NoUnwind); 738 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 739 Attribute::ReadNone); 740 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 741 Attribute::ZExt); 742 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 743 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 744 DFSanUnionFn = 745 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 746 } 747 { 748 AttributeList AL; 749 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 750 Attribute::NoUnwind); 751 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 752 Attribute::ReadNone); 753 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 754 Attribute::ZExt); 755 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 756 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 757 DFSanCheckedUnionFn = 758 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 759 } 760 { 761 AttributeList AL; 762 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 763 Attribute::NoUnwind); 764 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 765 Attribute::ReadOnly); 766 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 767 Attribute::ZExt); 768 DFSanUnionLoadFn = 769 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 770 } 771 { 772 AttributeList AL; 773 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 774 Attribute::NoUnwind); 775 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 776 Attribute::ReadOnly); 777 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 778 Attribute::ZExt); 779 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 780 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 781 } 782 DFSanUnimplementedFn = 783 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 784 { 785 AttributeList AL; 786 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 787 DFSanSetLabelFn = 788 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 789 } 790 DFSanNonzeroLabelFn = 791 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 792 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 793 DFSanVarargWrapperFnTy); 794 } 795 796 // Initializes event callback functions and declare them in the module 797 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 798 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 799 DFSanLoadStoreCallbackFnTy); 800 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 801 DFSanLoadStoreCallbackFnTy); 802 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 803 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 804 DFSanCmpCallbackFn = 805 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 806 } 807 808 bool DataFlowSanitizer::runImpl(Module &M) { 809 init(M); 810 811 if (ABIList.isIn(M, "skip")) 812 return false; 813 814 const unsigned InitialGlobalSize = M.global_size(); 815 const unsigned InitialModuleSize = M.size(); 816 817 bool Changed = false; 818 819 Type *ArgTLSTy = ArrayType::get(PrimitiveShadowTy, 64); 820 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 821 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 822 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 823 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 824 } 825 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", PrimitiveShadowTy); 826 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 827 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 828 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 829 } 830 831 ExternalShadowMask = 832 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 833 834 initializeCallbackFunctions(M); 835 initializeRuntimeFunctions(M); 836 837 std::vector<Function *> FnsToInstrument; 838 SmallPtrSet<Function *, 2> FnsWithNativeABI; 839 for (Function &i : M) { 840 if (!i.isIntrinsic() && 841 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 842 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 843 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 844 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 845 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 846 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 847 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 848 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 849 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 850 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 851 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 852 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 853 FnsToInstrument.push_back(&i); 854 } 855 856 // Give function aliases prefixes when necessary, and build wrappers where the 857 // instrumentedness is inconsistent. 858 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 859 GlobalAlias *GA = &*i; 860 ++i; 861 // Don't stop on weak. We assume people aren't playing games with the 862 // instrumentedness of overridden weak aliases. 863 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 864 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 865 if (GAInst && FInst) { 866 addGlobalNamePrefix(GA); 867 } else if (GAInst != FInst) { 868 // Non-instrumented alias of an instrumented function, or vice versa. 869 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 870 // below will take care of instrumenting it. 871 Function *NewF = 872 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 873 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 874 NewF->takeName(GA); 875 GA->eraseFromParent(); 876 FnsToInstrument.push_back(NewF); 877 } 878 } 879 } 880 881 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 882 .addAttribute(Attribute::ReadNone); 883 884 // First, change the ABI of every function in the module. ABI-listed 885 // functions keep their original ABI and get a wrapper function. 886 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 887 e = FnsToInstrument.end(); 888 i != e; ++i) { 889 Function &F = **i; 890 FunctionType *FT = F.getFunctionType(); 891 892 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 893 FT->getReturnType()->isVoidTy()); 894 895 if (isInstrumented(&F)) { 896 // Instrumented functions get a 'dfs$' prefix. This allows us to more 897 // easily identify cases of mismatching ABIs. 898 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 899 FunctionType *NewFT = getArgsFunctionType(FT); 900 Function *NewF = Function::Create(NewFT, F.getLinkage(), 901 F.getAddressSpace(), "", &M); 902 NewF->copyAttributesFrom(&F); 903 NewF->removeAttributes( 904 AttributeList::ReturnIndex, 905 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 906 for (Function::arg_iterator FArg = F.arg_begin(), 907 NewFArg = NewF->arg_begin(), 908 FArgEnd = F.arg_end(); 909 FArg != FArgEnd; ++FArg, ++NewFArg) { 910 FArg->replaceAllUsesWith(&*NewFArg); 911 } 912 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 913 914 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 915 UI != UE;) { 916 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 917 ++UI; 918 if (BA) { 919 BA->replaceAllUsesWith( 920 BlockAddress::get(NewF, BA->getBasicBlock())); 921 delete BA; 922 } 923 } 924 F.replaceAllUsesWith( 925 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 926 NewF->takeName(&F); 927 F.eraseFromParent(); 928 *i = NewF; 929 addGlobalNamePrefix(NewF); 930 } else { 931 addGlobalNamePrefix(&F); 932 } 933 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 934 // Build a wrapper function for F. The wrapper simply calls F, and is 935 // added to FnsToInstrument so that any instrumentation according to its 936 // WrapperKind is done in the second pass below. 937 FunctionType *NewFT = getInstrumentedABI() == IA_Args 938 ? getArgsFunctionType(FT) 939 : FT; 940 941 // If the function being wrapped has local linkage, then preserve the 942 // function's linkage in the wrapper function. 943 GlobalValue::LinkageTypes wrapperLinkage = 944 F.hasLocalLinkage() 945 ? F.getLinkage() 946 : GlobalValue::LinkOnceODRLinkage; 947 948 Function *NewF = buildWrapperFunction( 949 &F, std::string("dfsw$") + std::string(F.getName()), 950 wrapperLinkage, NewFT); 951 if (getInstrumentedABI() == IA_TLS) 952 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 953 954 Value *WrappedFnCst = 955 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 956 F.replaceAllUsesWith(WrappedFnCst); 957 958 UnwrappedFnMap[WrappedFnCst] = &F; 959 *i = NewF; 960 961 if (!F.isDeclaration()) { 962 // This function is probably defining an interposition of an 963 // uninstrumented function and hence needs to keep the original ABI. 964 // But any functions it may call need to use the instrumented ABI, so 965 // we instrument it in a mode which preserves the original ABI. 966 FnsWithNativeABI.insert(&F); 967 968 // This code needs to rebuild the iterators, as they may be invalidated 969 // by the push_back, taking care that the new range does not include 970 // any functions added by this code. 971 size_t N = i - FnsToInstrument.begin(), 972 Count = e - FnsToInstrument.begin(); 973 FnsToInstrument.push_back(&F); 974 i = FnsToInstrument.begin() + N; 975 e = FnsToInstrument.begin() + Count; 976 } 977 // Hopefully, nobody will try to indirectly call a vararg 978 // function... yet. 979 } else if (FT->isVarArg()) { 980 UnwrappedFnMap[&F] = &F; 981 *i = nullptr; 982 } 983 } 984 985 for (Function *i : FnsToInstrument) { 986 if (!i || i->isDeclaration()) 987 continue; 988 989 removeUnreachableBlocks(*i); 990 991 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 992 993 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 994 // Build a copy of the list before iterating over it. 995 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 996 997 for (BasicBlock *i : BBList) { 998 Instruction *Inst = &i->front(); 999 while (true) { 1000 // DFSanVisitor may split the current basic block, changing the current 1001 // instruction's next pointer and moving the next instruction to the 1002 // tail block from which we should continue. 1003 Instruction *Next = Inst->getNextNode(); 1004 // DFSanVisitor may delete Inst, so keep track of whether it was a 1005 // terminator. 1006 bool IsTerminator = Inst->isTerminator(); 1007 if (!DFSF.SkipInsts.count(Inst)) 1008 DFSanVisitor(DFSF).visit(Inst); 1009 if (IsTerminator) 1010 break; 1011 Inst = Next; 1012 } 1013 } 1014 1015 // We will not necessarily be able to compute the shadow for every phi node 1016 // until we have visited every block. Therefore, the code that handles phi 1017 // nodes adds them to the PHIFixups list so that they can be properly 1018 // handled here. 1019 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1020 i = DFSF.PHIFixups.begin(), 1021 e = DFSF.PHIFixups.end(); 1022 i != e; ++i) { 1023 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1024 ++val) { 1025 i->second->setIncomingValue( 1026 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1027 } 1028 } 1029 1030 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1031 // places (i.e. instructions in basic blocks we haven't even begun visiting 1032 // yet). To make our life easier, do this work in a pass after the main 1033 // instrumentation. 1034 if (ClDebugNonzeroLabels) { 1035 for (Value *V : DFSF.NonZeroChecks) { 1036 Instruction *Pos; 1037 if (Instruction *I = dyn_cast<Instruction>(V)) 1038 Pos = I->getNextNode(); 1039 else 1040 Pos = &DFSF.F->getEntryBlock().front(); 1041 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1042 Pos = Pos->getNextNode(); 1043 IRBuilder<> IRB(Pos); 1044 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroPrimitiveShadow); 1045 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1046 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1047 IRBuilder<> ThenIRB(BI); 1048 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1049 } 1050 } 1051 } 1052 1053 return Changed || !FnsToInstrument.empty() || 1054 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1055 } 1056 1057 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 1058 IRBuilder<> IRB(Pos); 1059 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.PrimitiveShadowTy, 64), 1060 DFS.ArgTLS, 0, Idx); 1061 } 1062 1063 Value *DFSanFunction::getShadow(Value *V) { 1064 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1065 return DFS.ZeroPrimitiveShadow; 1066 Value *&Shadow = ValShadowMap[V]; 1067 if (!Shadow) { 1068 if (Argument *A = dyn_cast<Argument>(V)) { 1069 if (IsNativeABI) 1070 return DFS.ZeroPrimitiveShadow; 1071 switch (IA) { 1072 case DataFlowSanitizer::IA_TLS: { 1073 Value *ArgTLSPtr = DFS.ArgTLS; 1074 Instruction *ArgTLSPos = 1075 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1076 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1077 IRBuilder<> IRB(ArgTLSPos); 1078 Shadow = IRB.CreateLoad(DFS.PrimitiveShadowTy, 1079 getArgTLS(A->getArgNo(), ArgTLSPos)); 1080 break; 1081 } 1082 case DataFlowSanitizer::IA_Args: { 1083 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1084 Function::arg_iterator i = F->arg_begin(); 1085 while (ArgIdx--) 1086 ++i; 1087 Shadow = &*i; 1088 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1089 break; 1090 } 1091 } 1092 NonZeroChecks.push_back(Shadow); 1093 } else { 1094 Shadow = DFS.ZeroPrimitiveShadow; 1095 } 1096 } 1097 return Shadow; 1098 } 1099 1100 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1101 assert(!ValShadowMap.count(I)); 1102 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1103 ValShadowMap[I] = Shadow; 1104 } 1105 1106 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1107 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1108 IRBuilder<> IRB(Pos); 1109 Value *ShadowPtrMaskValue; 1110 if (DFSanRuntimeShadowMask) 1111 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1112 else 1113 ShadowPtrMaskValue = ShadowPtrMask; 1114 return IRB.CreateIntToPtr( 1115 IRB.CreateMul( 1116 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1117 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1118 ShadowPtrMul), 1119 PrimitiveShadowPtrTy); 1120 } 1121 1122 // Generates IR to compute the union of the two given shadows, inserting it 1123 // before Pos. Returns the computed union Value. 1124 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1125 if (V1 == DFS.ZeroPrimitiveShadow) 1126 return V2; 1127 if (V2 == DFS.ZeroPrimitiveShadow) 1128 return V1; 1129 if (V1 == V2) 1130 return V1; 1131 1132 auto V1Elems = ShadowElements.find(V1); 1133 auto V2Elems = ShadowElements.find(V2); 1134 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1135 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1136 V2Elems->second.begin(), V2Elems->second.end())) { 1137 return V1; 1138 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1139 V1Elems->second.begin(), V1Elems->second.end())) { 1140 return V2; 1141 } 1142 } else if (V1Elems != ShadowElements.end()) { 1143 if (V1Elems->second.count(V2)) 1144 return V1; 1145 } else if (V2Elems != ShadowElements.end()) { 1146 if (V2Elems->second.count(V1)) 1147 return V2; 1148 } 1149 1150 auto Key = std::make_pair(V1, V2); 1151 if (V1 > V2) 1152 std::swap(Key.first, Key.second); 1153 CachedShadow &CCS = CachedShadows[Key]; 1154 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1155 return CCS.Shadow; 1156 1157 IRBuilder<> IRB(Pos); 1158 if (ClFast16Labels) { 1159 CCS.Block = Pos->getParent(); 1160 CCS.Shadow = IRB.CreateOr(V1, V2); 1161 } else if (AvoidNewBlocks) { 1162 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1163 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1164 Call->addParamAttr(0, Attribute::ZExt); 1165 Call->addParamAttr(1, Attribute::ZExt); 1166 1167 CCS.Block = Pos->getParent(); 1168 CCS.Shadow = Call; 1169 } else { 1170 BasicBlock *Head = Pos->getParent(); 1171 Value *Ne = IRB.CreateICmpNE(V1, V2); 1172 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1173 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1174 IRBuilder<> ThenIRB(BI); 1175 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1176 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1177 Call->addParamAttr(0, Attribute::ZExt); 1178 Call->addParamAttr(1, Attribute::ZExt); 1179 1180 BasicBlock *Tail = BI->getSuccessor(0); 1181 PHINode *Phi = 1182 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1183 Phi->addIncoming(Call, Call->getParent()); 1184 Phi->addIncoming(V1, Head); 1185 1186 CCS.Block = Tail; 1187 CCS.Shadow = Phi; 1188 } 1189 1190 std::set<Value *> UnionElems; 1191 if (V1Elems != ShadowElements.end()) { 1192 UnionElems = V1Elems->second; 1193 } else { 1194 UnionElems.insert(V1); 1195 } 1196 if (V2Elems != ShadowElements.end()) { 1197 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1198 } else { 1199 UnionElems.insert(V2); 1200 } 1201 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1202 1203 return CCS.Shadow; 1204 } 1205 1206 // A convenience function which folds the shadows of each of the operands 1207 // of the provided instruction Inst, inserting the IR before Inst. Returns 1208 // the computed union Value. 1209 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1210 if (Inst->getNumOperands() == 0) 1211 return DFS.ZeroPrimitiveShadow; 1212 1213 Value *Shadow = getShadow(Inst->getOperand(0)); 1214 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1215 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1216 } 1217 return Shadow; 1218 } 1219 1220 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1221 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1222 DFSF.setShadow(&I, CombinedShadow); 1223 return CombinedShadow; 1224 } 1225 1226 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1227 // Addr has alignment Align, and take the union of each of those shadows. 1228 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1229 Instruction *Pos) { 1230 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1231 const auto i = AllocaShadowMap.find(AI); 1232 if (i != AllocaShadowMap.end()) { 1233 IRBuilder<> IRB(Pos); 1234 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1235 } 1236 } 1237 1238 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1239 SmallVector<const Value *, 2> Objs; 1240 getUnderlyingObjects(Addr, Objs); 1241 bool AllConstants = true; 1242 for (const Value *Obj : Objs) { 1243 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1244 continue; 1245 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1246 continue; 1247 1248 AllConstants = false; 1249 break; 1250 } 1251 if (AllConstants) 1252 return DFS.ZeroPrimitiveShadow; 1253 1254 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1255 switch (Size) { 1256 case 0: 1257 return DFS.ZeroPrimitiveShadow; 1258 case 1: { 1259 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1260 LI->setAlignment(ShadowAlign); 1261 return LI; 1262 } 1263 case 2: { 1264 IRBuilder<> IRB(Pos); 1265 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1266 ConstantInt::get(DFS.IntptrTy, 1)); 1267 return combineShadows( 1268 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1269 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1270 Pos); 1271 } 1272 } 1273 1274 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { 1275 // First OR all the WideShadows, then OR individual shadows within the 1276 // combined WideShadow. This is fewer instructions than ORing shadows 1277 // individually. 1278 IRBuilder<> IRB(Pos); 1279 Value *WideAddr = 1280 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1281 Value *CombinedWideShadow = 1282 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1283 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1284 Ofs += 64 / DFS.ShadowWidthBits) { 1285 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1286 ConstantInt::get(DFS.IntptrTy, 1)); 1287 Value *NextWideShadow = 1288 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1289 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1290 } 1291 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1292 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1293 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1294 } 1295 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1296 } 1297 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1298 // Fast path for the common case where each byte has identical shadow: load 1299 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1300 // shadow is non-equal. 1301 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1302 IRBuilder<> FallbackIRB(FallbackBB); 1303 CallInst *FallbackCall = FallbackIRB.CreateCall( 1304 DFS.DFSanUnionLoadFn, 1305 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1306 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1307 1308 // Compare each of the shadows stored in the loaded 64 bits to each other, 1309 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1310 IRBuilder<> IRB(Pos); 1311 Value *WideAddr = 1312 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1313 Value *WideShadow = 1314 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1315 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1316 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1317 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1318 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1319 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1320 1321 BasicBlock *Head = Pos->getParent(); 1322 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1323 1324 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1325 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1326 1327 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1328 for (auto Child : Children) 1329 DT.changeImmediateDominator(Child, NewNode); 1330 } 1331 1332 // In the following code LastBr will refer to the previous basic block's 1333 // conditional branch instruction, whose true successor is fixed up to point 1334 // to the next block during the loop below or to the tail after the final 1335 // iteration. 1336 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1337 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1338 DT.addNewBlock(FallbackBB, Head); 1339 1340 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1341 Ofs += 64 / DFS.ShadowWidthBits) { 1342 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1343 DT.addNewBlock(NextBB, LastBr->getParent()); 1344 IRBuilder<> NextIRB(NextBB); 1345 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1346 ConstantInt::get(DFS.IntptrTy, 1)); 1347 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1348 WideAddr, ShadowAlign); 1349 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1350 LastBr->setSuccessor(0, NextBB); 1351 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1352 } 1353 1354 LastBr->setSuccessor(0, Tail); 1355 FallbackIRB.CreateBr(Tail); 1356 PHINode *Shadow = 1357 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1358 Shadow->addIncoming(FallbackCall, FallbackBB); 1359 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1360 return Shadow; 1361 } 1362 1363 IRBuilder<> IRB(Pos); 1364 FunctionCallee &UnionLoadFn = 1365 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1366 CallInst *FallbackCall = IRB.CreateCall( 1367 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1368 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1369 return FallbackCall; 1370 } 1371 1372 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1373 auto &DL = LI.getModule()->getDataLayout(); 1374 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1375 if (Size == 0) { 1376 DFSF.setShadow(&LI, DFSF.DFS.ZeroPrimitiveShadow); 1377 return; 1378 } 1379 1380 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1381 Value *Shadow = 1382 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1383 if (ClCombinePointerLabelsOnLoad) { 1384 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1385 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1386 } 1387 if (Shadow != DFSF.DFS.ZeroPrimitiveShadow) 1388 DFSF.NonZeroChecks.push_back(Shadow); 1389 1390 DFSF.setShadow(&LI, Shadow); 1391 if (ClEventCallbacks) { 1392 IRBuilder<> IRB(&LI); 1393 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1394 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {Shadow, Addr8}); 1395 } 1396 } 1397 1398 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment, 1399 Value *Shadow, Instruction *Pos) { 1400 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1401 const auto i = AllocaShadowMap.find(AI); 1402 if (i != AllocaShadowMap.end()) { 1403 IRBuilder<> IRB(Pos); 1404 IRB.CreateStore(Shadow, i->second); 1405 return; 1406 } 1407 } 1408 1409 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1410 IRBuilder<> IRB(Pos); 1411 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1412 if (Shadow == DFS.ZeroPrimitiveShadow) { 1413 IntegerType *ShadowTy = 1414 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1415 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1416 Value *ExtShadowAddr = 1417 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1418 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1419 return; 1420 } 1421 1422 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1423 uint64_t Offset = 0; 1424 if (Size >= ShadowVecSize) { 1425 auto *ShadowVecTy = 1426 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 1427 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1428 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1429 ShadowVec = IRB.CreateInsertElement( 1430 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1431 } 1432 Value *ShadowVecAddr = 1433 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1434 do { 1435 Value *CurShadowVecAddr = 1436 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1437 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1438 Size -= ShadowVecSize; 1439 ++Offset; 1440 } while (Size >= ShadowVecSize); 1441 Offset *= ShadowVecSize; 1442 } 1443 while (Size > 0) { 1444 Value *CurShadowAddr = 1445 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 1446 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1447 --Size; 1448 ++Offset; 1449 } 1450 } 1451 1452 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1453 auto &DL = SI.getModule()->getDataLayout(); 1454 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1455 if (Size == 0) 1456 return; 1457 1458 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1459 1460 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1461 if (ClCombinePointerLabelsOnStore) { 1462 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1463 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1464 } 1465 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI); 1466 if (ClEventCallbacks) { 1467 IRBuilder<> IRB(&SI); 1468 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1469 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {Shadow, Addr8}); 1470 } 1471 } 1472 1473 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1474 visitOperandShadowInst(UO); 1475 } 1476 1477 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1478 visitOperandShadowInst(BO); 1479 } 1480 1481 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1482 1483 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1484 Value *CombinedShadow = visitOperandShadowInst(CI); 1485 if (ClEventCallbacks) { 1486 IRBuilder<> IRB(&CI); 1487 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1488 } 1489 } 1490 1491 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1492 visitOperandShadowInst(GEPI); 1493 } 1494 1495 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1496 visitOperandShadowInst(I); 1497 } 1498 1499 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1500 visitOperandShadowInst(I); 1501 } 1502 1503 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1504 visitOperandShadowInst(I); 1505 } 1506 1507 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1508 visitOperandShadowInst(I); 1509 } 1510 1511 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1512 visitOperandShadowInst(I); 1513 } 1514 1515 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1516 bool AllLoadsStores = true; 1517 for (User *U : I.users()) { 1518 if (isa<LoadInst>(U)) 1519 continue; 1520 1521 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1522 if (SI->getPointerOperand() == &I) 1523 continue; 1524 } 1525 1526 AllLoadsStores = false; 1527 break; 1528 } 1529 if (AllLoadsStores) { 1530 IRBuilder<> IRB(&I); 1531 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 1532 } 1533 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 1534 } 1535 1536 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1537 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1538 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1539 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1540 Value *ShadowSel = nullptr; 1541 1542 if (isa<VectorType>(I.getCondition()->getType())) { 1543 ShadowSel = DFSF.combineShadows(TrueShadow, FalseShadow, &I); 1544 } else { 1545 if (TrueShadow == FalseShadow) { 1546 ShadowSel = TrueShadow; 1547 } else { 1548 ShadowSel = 1549 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1550 } 1551 } 1552 DFSF.setShadow(&I, ClTrackSelectControlFlow 1553 ? DFSF.combineShadows(CondShadow, ShadowSel, &I) 1554 : ShadowSel); 1555 } 1556 1557 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1558 IRBuilder<> IRB(&I); 1559 Value *ValShadow = DFSF.getShadow(I.getValue()); 1560 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1561 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1562 *DFSF.DFS.Ctx)), 1563 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1564 } 1565 1566 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1567 IRBuilder<> IRB(&I); 1568 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1569 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1570 Value *LenShadow = 1571 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1572 DFSF.DFS.ShadowWidthBytes)); 1573 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1574 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1575 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1576 auto *MTI = cast<MemTransferInst>( 1577 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1578 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1579 if (ClPreserveAlignment) { 1580 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1581 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1582 } else { 1583 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1584 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1585 } 1586 if (ClEventCallbacks) { 1587 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1588 {RawDestShadow, I.getLength()}); 1589 } 1590 } 1591 1592 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1593 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1594 switch (DFSF.IA) { 1595 case DataFlowSanitizer::IA_TLS: { 1596 Value *S = DFSF.getShadow(RI.getReturnValue()); 1597 IRBuilder<> IRB(&RI); 1598 IRB.CreateStore(S, DFSF.DFS.RetvalTLS); 1599 break; 1600 } 1601 case DataFlowSanitizer::IA_Args: { 1602 IRBuilder<> IRB(&RI); 1603 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1604 Value *InsVal = 1605 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1606 Value *InsShadow = 1607 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1608 RI.setOperand(0, InsShadow); 1609 break; 1610 } 1611 } 1612 } 1613 } 1614 1615 void DFSanVisitor::visitCallBase(CallBase &CB) { 1616 Function *F = CB.getCalledFunction(); 1617 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1618 visitOperandShadowInst(CB); 1619 return; 1620 } 1621 1622 // Calls to this function are synthesized in wrappers, and we shouldn't 1623 // instrument them. 1624 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1625 return; 1626 1627 IRBuilder<> IRB(&CB); 1628 1629 DenseMap<Value *, Function *>::iterator i = 1630 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1631 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1632 Function *F = i->second; 1633 switch (DFSF.DFS.getWrapperKind(F)) { 1634 case DataFlowSanitizer::WK_Warning: 1635 CB.setCalledFunction(F); 1636 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1637 IRB.CreateGlobalStringPtr(F->getName())); 1638 DFSF.setShadow(&CB, DFSF.DFS.ZeroPrimitiveShadow); 1639 return; 1640 case DataFlowSanitizer::WK_Discard: 1641 CB.setCalledFunction(F); 1642 DFSF.setShadow(&CB, DFSF.DFS.ZeroPrimitiveShadow); 1643 return; 1644 case DataFlowSanitizer::WK_Functional: 1645 CB.setCalledFunction(F); 1646 visitOperandShadowInst(CB); 1647 return; 1648 case DataFlowSanitizer::WK_Custom: 1649 // Don't try to handle invokes of custom functions, it's too complicated. 1650 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1651 // wrapper. 1652 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1653 FunctionType *FT = F->getFunctionType(); 1654 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1655 std::string CustomFName = "__dfsw_"; 1656 CustomFName += F->getName(); 1657 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1658 CustomFName, CustomFn.TransformedType); 1659 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1660 CustomFn->copyAttributesFrom(F); 1661 1662 // Custom functions returning non-void will write to the return label. 1663 if (!FT->getReturnType()->isVoidTy()) { 1664 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1665 DFSF.DFS.ReadOnlyNoneAttrs); 1666 } 1667 } 1668 1669 std::vector<Value *> Args; 1670 1671 auto i = CB.arg_begin(); 1672 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1673 Type *T = (*i)->getType(); 1674 FunctionType *ParamFT; 1675 if (isa<PointerType>(T) && 1676 (ParamFT = dyn_cast<FunctionType>( 1677 cast<PointerType>(T)->getElementType()))) { 1678 std::string TName = "dfst"; 1679 TName += utostr(FT->getNumParams() - n); 1680 TName += "$"; 1681 TName += F->getName(); 1682 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1683 Args.push_back(T); 1684 Args.push_back( 1685 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1686 } else { 1687 Args.push_back(*i); 1688 } 1689 } 1690 1691 i = CB.arg_begin(); 1692 const unsigned ShadowArgStart = Args.size(); 1693 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1694 Args.push_back(DFSF.getShadow(*i)); 1695 1696 if (FT->isVarArg()) { 1697 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 1698 CB.arg_size() - FT->getNumParams()); 1699 auto *LabelVAAlloca = new AllocaInst( 1700 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1701 "labelva", &DFSF.F->getEntryBlock().front()); 1702 1703 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 1704 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1705 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1706 } 1707 1708 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1709 } 1710 1711 if (!FT->getReturnType()->isVoidTy()) { 1712 if (!DFSF.LabelReturnAlloca) { 1713 DFSF.LabelReturnAlloca = 1714 new AllocaInst(DFSF.DFS.PrimitiveShadowTy, 1715 getDataLayout().getAllocaAddrSpace(), 1716 "labelreturn", &DFSF.F->getEntryBlock().front()); 1717 } 1718 Args.push_back(DFSF.LabelReturnAlloca); 1719 } 1720 1721 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 1722 Args.push_back(*i); 1723 1724 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1725 CustomCI->setCallingConv(CI->getCallingConv()); 1726 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1727 CI->getContext(), CI->getAttributes())); 1728 1729 // Update the parameter attributes of the custom call instruction to 1730 // zero extend the shadow parameters. This is required for targets 1731 // which consider ShadowTy an illegal type. 1732 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1733 const unsigned ArgNo = ShadowArgStart + n; 1734 if (CustomCI->getArgOperand(ArgNo)->getType() == 1735 DFSF.DFS.PrimitiveShadowTy) 1736 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1737 } 1738 1739 if (!FT->getReturnType()->isVoidTy()) { 1740 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, 1741 DFSF.LabelReturnAlloca); 1742 DFSF.setShadow(CustomCI, LabelLoad); 1743 } 1744 1745 CI->replaceAllUsesWith(CustomCI); 1746 CI->eraseFromParent(); 1747 return; 1748 } 1749 break; 1750 } 1751 } 1752 1753 FunctionType *FT = CB.getFunctionType(); 1754 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1755 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1756 IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)), 1757 DFSF.getArgTLS(i, &CB)); 1758 } 1759 } 1760 1761 Instruction *Next = nullptr; 1762 if (!CB.getType()->isVoidTy()) { 1763 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1764 if (II->getNormalDest()->getSinglePredecessor()) { 1765 Next = &II->getNormalDest()->front(); 1766 } else { 1767 BasicBlock *NewBB = 1768 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1769 Next = &NewBB->front(); 1770 } 1771 } else { 1772 assert(CB.getIterator() != CB.getParent()->end()); 1773 Next = CB.getNextNode(); 1774 } 1775 1776 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1777 IRBuilder<> NextIRB(Next); 1778 LoadInst *LI = 1779 NextIRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.DFS.RetvalTLS); 1780 DFSF.SkipInsts.insert(LI); 1781 DFSF.setShadow(&CB, LI); 1782 DFSF.NonZeroChecks.push_back(LI); 1783 } 1784 } 1785 1786 // Do all instrumentation for IA_Args down here to defer tampering with the 1787 // CFG in a way that SplitEdge may be able to detect. 1788 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1789 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1790 Value *Func = 1791 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 1792 std::vector<Value *> Args; 1793 1794 auto i = CB.arg_begin(), E = CB.arg_end(); 1795 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1796 Args.push_back(*i); 1797 1798 i = CB.arg_begin(); 1799 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1800 Args.push_back(DFSF.getShadow(*i)); 1801 1802 if (FT->isVarArg()) { 1803 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 1804 ArrayType *VarArgArrayTy = 1805 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 1806 AllocaInst *VarArgShadow = 1807 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1808 "", &DFSF.F->getEntryBlock().front()); 1809 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1810 for (unsigned n = 0; i != E; ++i, ++n) { 1811 IRB.CreateStore( 1812 DFSF.getShadow(*i), 1813 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1814 Args.push_back(*i); 1815 } 1816 } 1817 1818 CallBase *NewCB; 1819 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 1820 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 1821 II->getUnwindDest(), Args); 1822 } else { 1823 NewCB = IRB.CreateCall(NewFT, Func, Args); 1824 } 1825 NewCB->setCallingConv(CB.getCallingConv()); 1826 NewCB->setAttributes(CB.getAttributes().removeAttributes( 1827 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1828 AttributeFuncs::typeIncompatible(NewCB->getType()))); 1829 1830 if (Next) { 1831 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 1832 DFSF.SkipInsts.insert(ExVal); 1833 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 1834 DFSF.SkipInsts.insert(ExShadow); 1835 DFSF.setShadow(ExVal, ExShadow); 1836 DFSF.NonZeroChecks.push_back(ExShadow); 1837 1838 CB.replaceAllUsesWith(ExVal); 1839 } 1840 1841 CB.eraseFromParent(); 1842 } 1843 } 1844 1845 void DFSanVisitor::visitPHINode(PHINode &PN) { 1846 PHINode *ShadowPN = PHINode::Create(DFSF.DFS.PrimitiveShadowTy, 1847 PN.getNumIncomingValues(), "", &PN); 1848 1849 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1850 Value *UndefShadow = UndefValue::get(DFSF.DFS.PrimitiveShadowTy); 1851 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1852 ++i) { 1853 ShadowPN->addIncoming(UndefShadow, *i); 1854 } 1855 1856 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1857 DFSF.setShadow(&PN, ShadowPN); 1858 } 1859 1860 namespace { 1861 class DataFlowSanitizerLegacyPass : public ModulePass { 1862 private: 1863 std::vector<std::string> ABIListFiles; 1864 1865 public: 1866 static char ID; 1867 1868 DataFlowSanitizerLegacyPass( 1869 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 1870 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 1871 1872 bool runOnModule(Module &M) override { 1873 return DataFlowSanitizer(ABIListFiles).runImpl(M); 1874 } 1875 }; 1876 } // namespace 1877 1878 char DataFlowSanitizerLegacyPass::ID; 1879 1880 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 1881 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 1882 1883 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 1884 const std::vector<std::string> &ABIListFiles) { 1885 return new DataFlowSanitizerLegacyPass(ABIListFiles); 1886 } 1887 1888 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 1889 ModuleAnalysisManager &AM) { 1890 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 1891 return PreservedAnalyses::none(); 1892 } 1893 return PreservedAnalyses::all(); 1894 } 1895