1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/DenseSet.h" 50 #include "llvm/ADT/DepthFirstIterator.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/Analysis/ValueTracking.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstVisitor.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/MDBuilder.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/SpecialCaseList.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <algorithm> 67 #include <iterator> 68 #include <set> 69 #include <utility> 70 71 using namespace llvm; 72 73 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 74 // alignment requirements provided by the input IR are correct. For example, 75 // if the input IR contains a load with alignment 8, this flag will cause 76 // the shadow load to have alignment 16. This flag is disabled by default as 77 // we have unfortunately encountered too much code (including Clang itself; 78 // see PR14291) which performs misaligned access. 79 static cl::opt<bool> ClPreserveAlignment( 80 "dfsan-preserve-alignment", 81 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 82 cl::init(false)); 83 84 // The ABI list file controls how shadow parameters are passed. The pass treats 85 // every function labelled "uninstrumented" in the ABI list file as conforming 86 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 87 // additional annotations for those functions, a call to one of those functions 88 // will produce a warning message, as the labelling behaviour of the function is 89 // unknown. The other supported annotations are "functional" and "discard", 90 // which are described below under DataFlowSanitizer::WrapperKind. 91 static cl::opt<std::string> ClABIListFile( 92 "dfsan-abilist", 93 cl::desc("File listing native ABI functions and how the pass treats them"), 94 cl::Hidden); 95 96 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 97 // functions (see DataFlowSanitizer::InstrumentedABI below). 98 static cl::opt<bool> ClArgsABI( 99 "dfsan-args-abi", 100 cl::desc("Use the argument ABI rather than the TLS ABI"), 101 cl::Hidden); 102 103 // Controls whether the pass includes or ignores the labels of pointers in load 104 // instructions. 105 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 106 "dfsan-combine-pointer-labels-on-load", 107 cl::desc("Combine the label of the pointer with the label of the data when " 108 "loading from memory."), 109 cl::Hidden, cl::init(true)); 110 111 // Controls whether the pass includes or ignores the labels of pointers in 112 // stores instructions. 113 static cl::opt<bool> ClCombinePointerLabelsOnStore( 114 "dfsan-combine-pointer-labels-on-store", 115 cl::desc("Combine the label of the pointer with the label of the data when " 116 "storing in memory."), 117 cl::Hidden, cl::init(false)); 118 119 static cl::opt<bool> ClDebugNonzeroLabels( 120 "dfsan-debug-nonzero-labels", 121 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 122 "load or return with a nonzero label"), 123 cl::Hidden); 124 125 namespace { 126 127 StringRef GetGlobalTypeString(const GlobalValue &G) { 128 // Types of GlobalVariables are always pointer types. 129 Type *GType = G.getType()->getElementType(); 130 // For now we support blacklisting struct types only. 131 if (StructType *SGType = dyn_cast<StructType>(GType)) { 132 if (!SGType->isLiteral()) 133 return SGType->getName(); 134 } 135 return "<unknown type>"; 136 } 137 138 class DFSanABIList { 139 std::unique_ptr<SpecialCaseList> SCL; 140 141 public: 142 DFSanABIList(SpecialCaseList *SCL) : SCL(SCL) {} 143 144 /// Returns whether either this function or its source file are listed in the 145 /// given category. 146 bool isIn(const Function &F, const StringRef Category) const { 147 return isIn(*F.getParent(), Category) || 148 SCL->inSection("fun", F.getName(), Category); 149 } 150 151 /// Returns whether this global alias is listed in the given category. 152 /// 153 /// If GA aliases a function, the alias's name is matched as a function name 154 /// would be. Similarly, aliases of globals are matched like globals. 155 bool isIn(const GlobalAlias &GA, const StringRef Category) const { 156 if (isIn(*GA.getParent(), Category)) 157 return true; 158 159 if (isa<FunctionType>(GA.getType()->getElementType())) 160 return SCL->inSection("fun", GA.getName(), Category); 161 162 return SCL->inSection("global", GA.getName(), Category) || 163 SCL->inSection("type", GetGlobalTypeString(GA), Category); 164 } 165 166 /// Returns whether this module is listed in the given category. 167 bool isIn(const Module &M, const StringRef Category) const { 168 return SCL->inSection("src", M.getModuleIdentifier(), Category); 169 } 170 }; 171 172 class DataFlowSanitizer : public ModulePass { 173 friend struct DFSanFunction; 174 friend class DFSanVisitor; 175 176 enum { 177 ShadowWidth = 16 178 }; 179 180 /// Which ABI should be used for instrumented functions? 181 enum InstrumentedABI { 182 /// Argument and return value labels are passed through additional 183 /// arguments and by modifying the return type. 184 IA_Args, 185 186 /// Argument and return value labels are passed through TLS variables 187 /// __dfsan_arg_tls and __dfsan_retval_tls. 188 IA_TLS 189 }; 190 191 /// How should calls to uninstrumented functions be handled? 192 enum WrapperKind { 193 /// This function is present in an uninstrumented form but we don't know 194 /// how it should be handled. Print a warning and call the function anyway. 195 /// Don't label the return value. 196 WK_Warning, 197 198 /// This function does not write to (user-accessible) memory, and its return 199 /// value is unlabelled. 200 WK_Discard, 201 202 /// This function does not write to (user-accessible) memory, and the label 203 /// of its return value is the union of the label of its arguments. 204 WK_Functional, 205 206 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 207 /// where F is the name of the function. This function may wrap the 208 /// original function or provide its own implementation. This is similar to 209 /// the IA_Args ABI, except that IA_Args uses a struct return type to 210 /// pass the return value shadow in a register, while WK_Custom uses an 211 /// extra pointer argument to return the shadow. This allows the wrapped 212 /// form of the function type to be expressed in C. 213 WK_Custom 214 }; 215 216 const DataLayout *DL; 217 Module *Mod; 218 LLVMContext *Ctx; 219 IntegerType *ShadowTy; 220 PointerType *ShadowPtrTy; 221 IntegerType *IntptrTy; 222 ConstantInt *ZeroShadow; 223 ConstantInt *ShadowPtrMask; 224 ConstantInt *ShadowPtrMul; 225 Constant *ArgTLS; 226 Constant *RetvalTLS; 227 void *(*GetArgTLSPtr)(); 228 void *(*GetRetvalTLSPtr)(); 229 Constant *GetArgTLS; 230 Constant *GetRetvalTLS; 231 FunctionType *DFSanUnionFnTy; 232 FunctionType *DFSanUnionLoadFnTy; 233 FunctionType *DFSanUnimplementedFnTy; 234 FunctionType *DFSanSetLabelFnTy; 235 FunctionType *DFSanNonzeroLabelFnTy; 236 Constant *DFSanUnionFn; 237 Constant *DFSanCheckedUnionFn; 238 Constant *DFSanUnionLoadFn; 239 Constant *DFSanUnimplementedFn; 240 Constant *DFSanSetLabelFn; 241 Constant *DFSanNonzeroLabelFn; 242 MDNode *ColdCallWeights; 243 DFSanABIList ABIList; 244 DenseMap<Value *, Function *> UnwrappedFnMap; 245 AttributeSet ReadOnlyNoneAttrs; 246 247 Value *getShadowAddress(Value *Addr, Instruction *Pos); 248 bool isInstrumented(const Function *F); 249 bool isInstrumented(const GlobalAlias *GA); 250 FunctionType *getArgsFunctionType(FunctionType *T); 251 FunctionType *getTrampolineFunctionType(FunctionType *T); 252 FunctionType *getCustomFunctionType(FunctionType *T); 253 InstrumentedABI getInstrumentedABI(); 254 WrapperKind getWrapperKind(Function *F); 255 void addGlobalNamePrefix(GlobalValue *GV); 256 Function *buildWrapperFunction(Function *F, StringRef NewFName, 257 GlobalValue::LinkageTypes NewFLink, 258 FunctionType *NewFT); 259 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 260 261 public: 262 DataFlowSanitizer(StringRef ABIListFile = StringRef(), 263 void *(*getArgTLS)() = nullptr, 264 void *(*getRetValTLS)() = nullptr); 265 static char ID; 266 bool doInitialization(Module &M) override; 267 bool runOnModule(Module &M) override; 268 }; 269 270 struct DFSanFunction { 271 DataFlowSanitizer &DFS; 272 Function *F; 273 DominatorTree DT; 274 DataFlowSanitizer::InstrumentedABI IA; 275 bool IsNativeABI; 276 Value *ArgTLSPtr; 277 Value *RetvalTLSPtr; 278 AllocaInst *LabelReturnAlloca; 279 DenseMap<Value *, Value *> ValShadowMap; 280 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 281 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 282 DenseSet<Instruction *> SkipInsts; 283 DenseSet<Value *> NonZeroChecks; 284 bool AvoidNewBlocks; 285 286 struct CachedCombinedShadow { 287 BasicBlock *Block; 288 Value *Shadow; 289 }; 290 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 291 CachedCombinedShadows; 292 DenseMap<Value *, std::set<Value *>> ShadowElements; 293 294 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 295 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 296 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr), 297 LabelReturnAlloca(nullptr) { 298 DT.recalculate(*F); 299 // FIXME: Need to track down the register allocator issue which causes poor 300 // performance in pathological cases with large numbers of basic blocks. 301 AvoidNewBlocks = F->size() > 1000; 302 } 303 Value *getArgTLSPtr(); 304 Value *getArgTLS(unsigned Index, Instruction *Pos); 305 Value *getRetvalTLS(); 306 Value *getShadow(Value *V); 307 void setShadow(Instruction *I, Value *Shadow); 308 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 309 Value *combineOperandShadows(Instruction *Inst); 310 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 311 Instruction *Pos); 312 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 313 Instruction *Pos); 314 }; 315 316 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 317 public: 318 DFSanFunction &DFSF; 319 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 320 321 void visitOperandShadowInst(Instruction &I); 322 323 void visitBinaryOperator(BinaryOperator &BO); 324 void visitCastInst(CastInst &CI); 325 void visitCmpInst(CmpInst &CI); 326 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 327 void visitLoadInst(LoadInst &LI); 328 void visitStoreInst(StoreInst &SI); 329 void visitReturnInst(ReturnInst &RI); 330 void visitCallSite(CallSite CS); 331 void visitPHINode(PHINode &PN); 332 void visitExtractElementInst(ExtractElementInst &I); 333 void visitInsertElementInst(InsertElementInst &I); 334 void visitShuffleVectorInst(ShuffleVectorInst &I); 335 void visitExtractValueInst(ExtractValueInst &I); 336 void visitInsertValueInst(InsertValueInst &I); 337 void visitAllocaInst(AllocaInst &I); 338 void visitSelectInst(SelectInst &I); 339 void visitMemSetInst(MemSetInst &I); 340 void visitMemTransferInst(MemTransferInst &I); 341 }; 342 343 } 344 345 char DataFlowSanitizer::ID; 346 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 347 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 348 349 ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile, 350 void *(*getArgTLS)(), 351 void *(*getRetValTLS)()) { 352 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS); 353 } 354 355 DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile, 356 void *(*getArgTLS)(), 357 void *(*getRetValTLS)()) 358 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS), 359 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile 360 : ABIListFile)) { 361 } 362 363 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 364 llvm::SmallVector<Type *, 4> ArgTypes; 365 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 366 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 367 ArgTypes.push_back(ShadowTy); 368 if (T->isVarArg()) 369 ArgTypes.push_back(ShadowPtrTy); 370 Type *RetType = T->getReturnType(); 371 if (!RetType->isVoidTy()) 372 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr); 373 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 374 } 375 376 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 377 assert(!T->isVarArg()); 378 llvm::SmallVector<Type *, 4> ArgTypes; 379 ArgTypes.push_back(T->getPointerTo()); 380 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 381 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 382 ArgTypes.push_back(ShadowTy); 383 Type *RetType = T->getReturnType(); 384 if (!RetType->isVoidTy()) 385 ArgTypes.push_back(ShadowPtrTy); 386 return FunctionType::get(T->getReturnType(), ArgTypes, false); 387 } 388 389 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 390 assert(!T->isVarArg()); 391 llvm::SmallVector<Type *, 4> ArgTypes; 392 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 393 i != e; ++i) { 394 FunctionType *FT; 395 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 396 *i)->getElementType()))) { 397 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 398 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 399 } else { 400 ArgTypes.push_back(*i); 401 } 402 } 403 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 404 ArgTypes.push_back(ShadowTy); 405 Type *RetType = T->getReturnType(); 406 if (!RetType->isVoidTy()) 407 ArgTypes.push_back(ShadowPtrTy); 408 return FunctionType::get(T->getReturnType(), ArgTypes, false); 409 } 410 411 bool DataFlowSanitizer::doInitialization(Module &M) { 412 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 413 if (!DLP) 414 report_fatal_error("data layout missing"); 415 DL = &DLP->getDataLayout(); 416 417 Mod = &M; 418 Ctx = &M.getContext(); 419 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 420 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 421 IntptrTy = DL->getIntPtrType(*Ctx); 422 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 423 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 424 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 425 426 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 427 DFSanUnionFnTy = 428 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 429 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 430 DFSanUnionLoadFnTy = 431 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 432 DFSanUnimplementedFnTy = FunctionType::get( 433 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 434 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 435 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 436 DFSanSetLabelArgs, /*isVarArg=*/false); 437 DFSanNonzeroLabelFnTy = FunctionType::get( 438 Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false); 439 440 if (GetArgTLSPtr) { 441 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 442 ArgTLS = nullptr; 443 GetArgTLS = ConstantExpr::getIntToPtr( 444 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 445 PointerType::getUnqual( 446 FunctionType::get(PointerType::getUnqual(ArgTLSTy), 447 (Type *)nullptr))); 448 } 449 if (GetRetvalTLSPtr) { 450 RetvalTLS = nullptr; 451 GetRetvalTLS = ConstantExpr::getIntToPtr( 452 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 453 PointerType::getUnqual( 454 FunctionType::get(PointerType::getUnqual(ShadowTy), 455 (Type *)nullptr))); 456 } 457 458 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 459 return true; 460 } 461 462 bool DataFlowSanitizer::isInstrumented(const Function *F) { 463 return !ABIList.isIn(*F, "uninstrumented"); 464 } 465 466 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 467 return !ABIList.isIn(*GA, "uninstrumented"); 468 } 469 470 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 471 return ClArgsABI ? IA_Args : IA_TLS; 472 } 473 474 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 475 if (ABIList.isIn(*F, "functional")) 476 return WK_Functional; 477 if (ABIList.isIn(*F, "discard")) 478 return WK_Discard; 479 if (ABIList.isIn(*F, "custom")) 480 return WK_Custom; 481 482 return WK_Warning; 483 } 484 485 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 486 std::string GVName = GV->getName(), Prefix = "dfs$"; 487 GV->setName(Prefix + GVName); 488 489 // Try to change the name of the function in module inline asm. We only do 490 // this for specific asm directives, currently only ".symver", to try to avoid 491 // corrupting asm which happens to contain the symbol name as a substring. 492 // Note that the substitution for .symver assumes that the versioned symbol 493 // also has an instrumented name. 494 std::string Asm = GV->getParent()->getModuleInlineAsm(); 495 std::string SearchStr = ".symver " + GVName + ","; 496 size_t Pos = Asm.find(SearchStr); 497 if (Pos != std::string::npos) { 498 Asm.replace(Pos, SearchStr.size(), 499 ".symver " + Prefix + GVName + "," + Prefix); 500 GV->getParent()->setModuleInlineAsm(Asm); 501 } 502 } 503 504 Function * 505 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 506 GlobalValue::LinkageTypes NewFLink, 507 FunctionType *NewFT) { 508 FunctionType *FT = F->getFunctionType(); 509 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 510 F->getParent()); 511 NewF->copyAttributesFrom(F); 512 NewF->removeAttributes( 513 AttributeSet::ReturnIndex, 514 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 515 AttributeSet::ReturnIndex)); 516 517 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 518 std::vector<Value *> Args; 519 unsigned n = FT->getNumParams(); 520 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 521 Args.push_back(&*ai); 522 CallInst *CI = CallInst::Create(F, Args, "", BB); 523 if (FT->getReturnType()->isVoidTy()) 524 ReturnInst::Create(*Ctx, BB); 525 else 526 ReturnInst::Create(*Ctx, CI, BB); 527 528 return NewF; 529 } 530 531 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 532 StringRef FName) { 533 FunctionType *FTT = getTrampolineFunctionType(FT); 534 Constant *C = Mod->getOrInsertFunction(FName, FTT); 535 Function *F = dyn_cast<Function>(C); 536 if (F && F->isDeclaration()) { 537 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 538 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 539 std::vector<Value *> Args; 540 Function::arg_iterator AI = F->arg_begin(); ++AI; 541 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 542 Args.push_back(&*AI); 543 CallInst *CI = 544 CallInst::Create(&F->getArgumentList().front(), Args, "", BB); 545 ReturnInst *RI; 546 if (FT->getReturnType()->isVoidTy()) 547 RI = ReturnInst::Create(*Ctx, BB); 548 else 549 RI = ReturnInst::Create(*Ctx, CI, BB); 550 551 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 552 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 553 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 554 DFSF.ValShadowMap[ValAI] = ShadowAI; 555 DFSanVisitor(DFSF).visitCallInst(*CI); 556 if (!FT->getReturnType()->isVoidTy()) 557 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 558 &F->getArgumentList().back(), RI); 559 } 560 561 return C; 562 } 563 564 bool DataFlowSanitizer::runOnModule(Module &M) { 565 if (!DL) 566 return false; 567 568 if (ABIList.isIn(M, "skip")) 569 return false; 570 571 if (!GetArgTLSPtr) { 572 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 573 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 574 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 575 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 576 } 577 if (!GetRetvalTLSPtr) { 578 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 579 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 580 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 581 } 582 583 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 584 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 585 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 586 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 587 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 588 F->addAttribute(1, Attribute::ZExt); 589 F->addAttribute(2, Attribute::ZExt); 590 } 591 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 592 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 593 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 594 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 595 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 596 F->addAttribute(1, Attribute::ZExt); 597 F->addAttribute(2, Attribute::ZExt); 598 } 599 DFSanUnionLoadFn = 600 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 601 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 602 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 603 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 604 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 605 } 606 DFSanUnimplementedFn = 607 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 608 DFSanSetLabelFn = 609 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 610 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 611 F->addAttribute(1, Attribute::ZExt); 612 } 613 DFSanNonzeroLabelFn = 614 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 615 616 std::vector<Function *> FnsToInstrument; 617 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 618 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) { 619 if (!i->isIntrinsic() && 620 i != DFSanUnionFn && 621 i != DFSanCheckedUnionFn && 622 i != DFSanUnionLoadFn && 623 i != DFSanUnimplementedFn && 624 i != DFSanSetLabelFn && 625 i != DFSanNonzeroLabelFn) 626 FnsToInstrument.push_back(&*i); 627 } 628 629 // Give function aliases prefixes when necessary, and build wrappers where the 630 // instrumentedness is inconsistent. 631 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 632 GlobalAlias *GA = &*i; 633 ++i; 634 // Don't stop on weak. We assume people aren't playing games with the 635 // instrumentedness of overridden weak aliases. 636 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 637 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 638 if (GAInst && FInst) { 639 addGlobalNamePrefix(GA); 640 } else if (GAInst != FInst) { 641 // Non-instrumented alias of an instrumented function, or vice versa. 642 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 643 // below will take care of instrumenting it. 644 Function *NewF = 645 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 646 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 647 NewF->takeName(GA); 648 GA->eraseFromParent(); 649 FnsToInstrument.push_back(NewF); 650 } 651 } 652 } 653 654 AttrBuilder B; 655 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 656 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B); 657 658 // First, change the ABI of every function in the module. ABI-listed 659 // functions keep their original ABI and get a wrapper function. 660 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 661 e = FnsToInstrument.end(); 662 i != e; ++i) { 663 Function &F = **i; 664 FunctionType *FT = F.getFunctionType(); 665 666 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 667 FT->getReturnType()->isVoidTy()); 668 669 if (isInstrumented(&F)) { 670 // Instrumented functions get a 'dfs$' prefix. This allows us to more 671 // easily identify cases of mismatching ABIs. 672 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 673 FunctionType *NewFT = getArgsFunctionType(FT); 674 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 675 NewF->copyAttributesFrom(&F); 676 NewF->removeAttributes( 677 AttributeSet::ReturnIndex, 678 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 679 AttributeSet::ReturnIndex)); 680 for (Function::arg_iterator FArg = F.arg_begin(), 681 NewFArg = NewF->arg_begin(), 682 FArgEnd = F.arg_end(); 683 FArg != FArgEnd; ++FArg, ++NewFArg) { 684 FArg->replaceAllUsesWith(NewFArg); 685 } 686 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 687 688 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 689 UI != UE;) { 690 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 691 ++UI; 692 if (BA) { 693 BA->replaceAllUsesWith( 694 BlockAddress::get(NewF, BA->getBasicBlock())); 695 delete BA; 696 } 697 } 698 F.replaceAllUsesWith( 699 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 700 NewF->takeName(&F); 701 F.eraseFromParent(); 702 *i = NewF; 703 addGlobalNamePrefix(NewF); 704 } else { 705 addGlobalNamePrefix(&F); 706 } 707 // Hopefully, nobody will try to indirectly call a vararg 708 // function... yet. 709 } else if (FT->isVarArg()) { 710 UnwrappedFnMap[&F] = &F; 711 *i = nullptr; 712 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 713 // Build a wrapper function for F. The wrapper simply calls F, and is 714 // added to FnsToInstrument so that any instrumentation according to its 715 // WrapperKind is done in the second pass below. 716 FunctionType *NewFT = getInstrumentedABI() == IA_Args 717 ? getArgsFunctionType(FT) 718 : FT; 719 Function *NewF = buildWrapperFunction( 720 &F, std::string("dfsw$") + std::string(F.getName()), 721 GlobalValue::LinkOnceODRLinkage, NewFT); 722 if (getInstrumentedABI() == IA_TLS) 723 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs); 724 725 Value *WrappedFnCst = 726 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 727 F.replaceAllUsesWith(WrappedFnCst); 728 UnwrappedFnMap[WrappedFnCst] = &F; 729 *i = NewF; 730 731 if (!F.isDeclaration()) { 732 // This function is probably defining an interposition of an 733 // uninstrumented function and hence needs to keep the original ABI. 734 // But any functions it may call need to use the instrumented ABI, so 735 // we instrument it in a mode which preserves the original ABI. 736 FnsWithNativeABI.insert(&F); 737 738 // This code needs to rebuild the iterators, as they may be invalidated 739 // by the push_back, taking care that the new range does not include 740 // any functions added by this code. 741 size_t N = i - FnsToInstrument.begin(), 742 Count = e - FnsToInstrument.begin(); 743 FnsToInstrument.push_back(&F); 744 i = FnsToInstrument.begin() + N; 745 e = FnsToInstrument.begin() + Count; 746 } 747 } 748 } 749 750 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 751 e = FnsToInstrument.end(); 752 i != e; ++i) { 753 if (!*i || (*i)->isDeclaration()) 754 continue; 755 756 removeUnreachableBlocks(**i); 757 758 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i)); 759 760 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 761 // Build a copy of the list before iterating over it. 762 llvm::SmallVector<BasicBlock *, 4> BBList( 763 depth_first(&(*i)->getEntryBlock())); 764 765 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(), 766 e = BBList.end(); 767 i != e; ++i) { 768 Instruction *Inst = &(*i)->front(); 769 while (1) { 770 // DFSanVisitor may split the current basic block, changing the current 771 // instruction's next pointer and moving the next instruction to the 772 // tail block from which we should continue. 773 Instruction *Next = Inst->getNextNode(); 774 // DFSanVisitor may delete Inst, so keep track of whether it was a 775 // terminator. 776 bool IsTerminator = isa<TerminatorInst>(Inst); 777 if (!DFSF.SkipInsts.count(Inst)) 778 DFSanVisitor(DFSF).visit(Inst); 779 if (IsTerminator) 780 break; 781 Inst = Next; 782 } 783 } 784 785 // We will not necessarily be able to compute the shadow for every phi node 786 // until we have visited every block. Therefore, the code that handles phi 787 // nodes adds them to the PHIFixups list so that they can be properly 788 // handled here. 789 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 790 i = DFSF.PHIFixups.begin(), 791 e = DFSF.PHIFixups.end(); 792 i != e; ++i) { 793 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 794 ++val) { 795 i->second->setIncomingValue( 796 val, DFSF.getShadow(i->first->getIncomingValue(val))); 797 } 798 } 799 800 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 801 // places (i.e. instructions in basic blocks we haven't even begun visiting 802 // yet). To make our life easier, do this work in a pass after the main 803 // instrumentation. 804 if (ClDebugNonzeroLabels) { 805 for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(), 806 e = DFSF.NonZeroChecks.end(); 807 i != e; ++i) { 808 Instruction *Pos; 809 if (Instruction *I = dyn_cast<Instruction>(*i)) 810 Pos = I->getNextNode(); 811 else 812 Pos = DFSF.F->getEntryBlock().begin(); 813 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 814 Pos = Pos->getNextNode(); 815 IRBuilder<> IRB(Pos); 816 Value *Ne = IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow); 817 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 818 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 819 IRBuilder<> ThenIRB(BI); 820 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn); 821 } 822 } 823 } 824 825 return false; 826 } 827 828 Value *DFSanFunction::getArgTLSPtr() { 829 if (ArgTLSPtr) 830 return ArgTLSPtr; 831 if (DFS.ArgTLS) 832 return ArgTLSPtr = DFS.ArgTLS; 833 834 IRBuilder<> IRB(F->getEntryBlock().begin()); 835 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS); 836 } 837 838 Value *DFSanFunction::getRetvalTLS() { 839 if (RetvalTLSPtr) 840 return RetvalTLSPtr; 841 if (DFS.RetvalTLS) 842 return RetvalTLSPtr = DFS.RetvalTLS; 843 844 IRBuilder<> IRB(F->getEntryBlock().begin()); 845 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS); 846 } 847 848 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 849 IRBuilder<> IRB(Pos); 850 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 851 } 852 853 Value *DFSanFunction::getShadow(Value *V) { 854 if (!isa<Argument>(V) && !isa<Instruction>(V)) 855 return DFS.ZeroShadow; 856 Value *&Shadow = ValShadowMap[V]; 857 if (!Shadow) { 858 if (Argument *A = dyn_cast<Argument>(V)) { 859 if (IsNativeABI) 860 return DFS.ZeroShadow; 861 switch (IA) { 862 case DataFlowSanitizer::IA_TLS: { 863 Value *ArgTLSPtr = getArgTLSPtr(); 864 Instruction *ArgTLSPos = 865 DFS.ArgTLS ? &*F->getEntryBlock().begin() 866 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 867 IRBuilder<> IRB(ArgTLSPos); 868 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 869 break; 870 } 871 case DataFlowSanitizer::IA_Args: { 872 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2; 873 Function::arg_iterator i = F->arg_begin(); 874 while (ArgIdx--) 875 ++i; 876 Shadow = i; 877 assert(Shadow->getType() == DFS.ShadowTy); 878 break; 879 } 880 } 881 NonZeroChecks.insert(Shadow); 882 } else { 883 Shadow = DFS.ZeroShadow; 884 } 885 } 886 return Shadow; 887 } 888 889 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 890 assert(!ValShadowMap.count(I)); 891 assert(Shadow->getType() == DFS.ShadowTy); 892 ValShadowMap[I] = Shadow; 893 } 894 895 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 896 assert(Addr != RetvalTLS && "Reinstrumenting?"); 897 IRBuilder<> IRB(Pos); 898 return IRB.CreateIntToPtr( 899 IRB.CreateMul( 900 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask), 901 ShadowPtrMul), 902 ShadowPtrTy); 903 } 904 905 // Generates IR to compute the union of the two given shadows, inserting it 906 // before Pos. Returns the computed union Value. 907 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 908 if (V1 == DFS.ZeroShadow) 909 return V2; 910 if (V2 == DFS.ZeroShadow) 911 return V1; 912 if (V1 == V2) 913 return V1; 914 915 auto V1Elems = ShadowElements.find(V1); 916 auto V2Elems = ShadowElements.find(V2); 917 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 918 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 919 V2Elems->second.begin(), V2Elems->second.end())) { 920 return V1; 921 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 922 V1Elems->second.begin(), V1Elems->second.end())) { 923 return V2; 924 } 925 } else if (V1Elems != ShadowElements.end()) { 926 if (V1Elems->second.count(V2)) 927 return V1; 928 } else if (V2Elems != ShadowElements.end()) { 929 if (V2Elems->second.count(V1)) 930 return V2; 931 } 932 933 auto Key = std::make_pair(V1, V2); 934 if (V1 > V2) 935 std::swap(Key.first, Key.second); 936 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 937 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 938 return CCS.Shadow; 939 940 IRBuilder<> IRB(Pos); 941 if (AvoidNewBlocks) { 942 CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2); 943 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 944 Call->addAttribute(1, Attribute::ZExt); 945 Call->addAttribute(2, Attribute::ZExt); 946 947 CCS.Block = Pos->getParent(); 948 CCS.Shadow = Call; 949 } else { 950 BasicBlock *Head = Pos->getParent(); 951 Value *Ne = IRB.CreateICmpNE(V1, V2); 952 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 953 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 954 IRBuilder<> ThenIRB(BI); 955 CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2); 956 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 957 Call->addAttribute(1, Attribute::ZExt); 958 Call->addAttribute(2, Attribute::ZExt); 959 960 BasicBlock *Tail = BI->getSuccessor(0); 961 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin()); 962 Phi->addIncoming(Call, Call->getParent()); 963 Phi->addIncoming(V1, Head); 964 965 CCS.Block = Tail; 966 CCS.Shadow = Phi; 967 } 968 969 std::set<Value *> UnionElems; 970 if (V1Elems != ShadowElements.end()) { 971 UnionElems = V1Elems->second; 972 } else { 973 UnionElems.insert(V1); 974 } 975 if (V2Elems != ShadowElements.end()) { 976 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 977 } else { 978 UnionElems.insert(V2); 979 } 980 ShadowElements[CCS.Shadow] = std::move(UnionElems); 981 982 return CCS.Shadow; 983 } 984 985 // A convenience function which folds the shadows of each of the operands 986 // of the provided instruction Inst, inserting the IR before Inst. Returns 987 // the computed union Value. 988 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 989 if (Inst->getNumOperands() == 0) 990 return DFS.ZeroShadow; 991 992 Value *Shadow = getShadow(Inst->getOperand(0)); 993 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 994 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 995 } 996 return Shadow; 997 } 998 999 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1000 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1001 DFSF.setShadow(&I, CombinedShadow); 1002 } 1003 1004 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1005 // Addr has alignment Align, and take the union of each of those shadows. 1006 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1007 Instruction *Pos) { 1008 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1009 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1010 AllocaShadowMap.find(AI); 1011 if (i != AllocaShadowMap.end()) { 1012 IRBuilder<> IRB(Pos); 1013 return IRB.CreateLoad(i->second); 1014 } 1015 } 1016 1017 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1018 SmallVector<Value *, 2> Objs; 1019 GetUnderlyingObjects(Addr, Objs, DFS.DL); 1020 bool AllConstants = true; 1021 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end(); 1022 i != e; ++i) { 1023 if (isa<Function>(*i) || isa<BlockAddress>(*i)) 1024 continue; 1025 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant()) 1026 continue; 1027 1028 AllConstants = false; 1029 break; 1030 } 1031 if (AllConstants) 1032 return DFS.ZeroShadow; 1033 1034 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1035 switch (Size) { 1036 case 0: 1037 return DFS.ZeroShadow; 1038 case 1: { 1039 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1040 LI->setAlignment(ShadowAlign); 1041 return LI; 1042 } 1043 case 2: { 1044 IRBuilder<> IRB(Pos); 1045 Value *ShadowAddr1 = 1046 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1047 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1048 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1049 } 1050 } 1051 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1052 // Fast path for the common case where each byte has identical shadow: load 1053 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1054 // shadow is non-equal. 1055 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1056 IRBuilder<> FallbackIRB(FallbackBB); 1057 CallInst *FallbackCall = FallbackIRB.CreateCall2( 1058 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1059 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1060 1061 // Compare each of the shadows stored in the loaded 64 bits to each other, 1062 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1063 IRBuilder<> IRB(Pos); 1064 Value *WideAddr = 1065 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1066 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1067 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1068 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1069 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1070 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1071 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1072 1073 BasicBlock *Head = Pos->getParent(); 1074 BasicBlock *Tail = Head->splitBasicBlock(Pos); 1075 1076 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1077 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1078 1079 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1080 for (auto Child : Children) 1081 DT.changeImmediateDominator(Child, NewNode); 1082 } 1083 1084 // In the following code LastBr will refer to the previous basic block's 1085 // conditional branch instruction, whose true successor is fixed up to point 1086 // to the next block during the loop below or to the tail after the final 1087 // iteration. 1088 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1089 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1090 DT.addNewBlock(FallbackBB, Head); 1091 1092 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1093 Ofs += 64 / DFS.ShadowWidth) { 1094 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1095 DT.addNewBlock(NextBB, LastBr->getParent()); 1096 IRBuilder<> NextIRB(NextBB); 1097 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1098 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1099 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1100 LastBr->setSuccessor(0, NextBB); 1101 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1102 } 1103 1104 LastBr->setSuccessor(0, Tail); 1105 FallbackIRB.CreateBr(Tail); 1106 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1107 Shadow->addIncoming(FallbackCall, FallbackBB); 1108 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1109 return Shadow; 1110 } 1111 1112 IRBuilder<> IRB(Pos); 1113 CallInst *FallbackCall = IRB.CreateCall2( 1114 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1115 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1116 return FallbackCall; 1117 } 1118 1119 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1120 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType()); 1121 if (Size == 0) { 1122 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1123 return; 1124 } 1125 1126 uint64_t Align; 1127 if (ClPreserveAlignment) { 1128 Align = LI.getAlignment(); 1129 if (Align == 0) 1130 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType()); 1131 } else { 1132 Align = 1; 1133 } 1134 IRBuilder<> IRB(&LI); 1135 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1136 if (ClCombinePointerLabelsOnLoad) { 1137 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1138 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1139 } 1140 if (Shadow != DFSF.DFS.ZeroShadow) 1141 DFSF.NonZeroChecks.insert(Shadow); 1142 1143 DFSF.setShadow(&LI, Shadow); 1144 } 1145 1146 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1147 Value *Shadow, Instruction *Pos) { 1148 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1149 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1150 AllocaShadowMap.find(AI); 1151 if (i != AllocaShadowMap.end()) { 1152 IRBuilder<> IRB(Pos); 1153 IRB.CreateStore(Shadow, i->second); 1154 return; 1155 } 1156 } 1157 1158 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1159 IRBuilder<> IRB(Pos); 1160 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1161 if (Shadow == DFS.ZeroShadow) { 1162 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1163 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1164 Value *ExtShadowAddr = 1165 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1166 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1167 return; 1168 } 1169 1170 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1171 uint64_t Offset = 0; 1172 if (Size >= ShadowVecSize) { 1173 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1174 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1175 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1176 ShadowVec = IRB.CreateInsertElement( 1177 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1178 } 1179 Value *ShadowVecAddr = 1180 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1181 do { 1182 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset); 1183 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1184 Size -= ShadowVecSize; 1185 ++Offset; 1186 } while (Size >= ShadowVecSize); 1187 Offset *= ShadowVecSize; 1188 } 1189 while (Size > 0) { 1190 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset); 1191 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1192 --Size; 1193 ++Offset; 1194 } 1195 } 1196 1197 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1198 uint64_t Size = 1199 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType()); 1200 if (Size == 0) 1201 return; 1202 1203 uint64_t Align; 1204 if (ClPreserveAlignment) { 1205 Align = SI.getAlignment(); 1206 if (Align == 0) 1207 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType()); 1208 } else { 1209 Align = 1; 1210 } 1211 1212 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1213 if (ClCombinePointerLabelsOnStore) { 1214 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1215 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1216 } 1217 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1218 } 1219 1220 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1221 visitOperandShadowInst(BO); 1222 } 1223 1224 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1225 1226 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1227 1228 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1229 visitOperandShadowInst(GEPI); 1230 } 1231 1232 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1233 visitOperandShadowInst(I); 1234 } 1235 1236 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1237 visitOperandShadowInst(I); 1238 } 1239 1240 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1241 visitOperandShadowInst(I); 1242 } 1243 1244 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1245 visitOperandShadowInst(I); 1246 } 1247 1248 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1249 visitOperandShadowInst(I); 1250 } 1251 1252 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1253 bool AllLoadsStores = true; 1254 for (User *U : I.users()) { 1255 if (isa<LoadInst>(U)) 1256 continue; 1257 1258 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1259 if (SI->getPointerOperand() == &I) 1260 continue; 1261 } 1262 1263 AllLoadsStores = false; 1264 break; 1265 } 1266 if (AllLoadsStores) { 1267 IRBuilder<> IRB(&I); 1268 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1269 } 1270 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1271 } 1272 1273 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1274 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1275 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1276 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1277 1278 if (isa<VectorType>(I.getCondition()->getType())) { 1279 DFSF.setShadow( 1280 &I, 1281 DFSF.combineShadows( 1282 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1283 } else { 1284 Value *ShadowSel; 1285 if (TrueShadow == FalseShadow) { 1286 ShadowSel = TrueShadow; 1287 } else { 1288 ShadowSel = 1289 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1290 } 1291 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1292 } 1293 } 1294 1295 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1296 IRBuilder<> IRB(&I); 1297 Value *ValShadow = DFSF.getShadow(I.getValue()); 1298 IRB.CreateCall3( 1299 DFSF.DFS.DFSanSetLabelFn, ValShadow, 1300 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 1301 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)); 1302 } 1303 1304 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1305 IRBuilder<> IRB(&I); 1306 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1307 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1308 Value *LenShadow = IRB.CreateMul( 1309 I.getLength(), 1310 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1311 Value *AlignShadow; 1312 if (ClPreserveAlignment) { 1313 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1314 ConstantInt::get(I.getAlignmentCst()->getType(), 1315 DFSF.DFS.ShadowWidth / 8)); 1316 } else { 1317 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1318 DFSF.DFS.ShadowWidth / 8); 1319 } 1320 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1321 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1322 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1323 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow, 1324 AlignShadow, I.getVolatileCst()); 1325 } 1326 1327 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1328 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1329 switch (DFSF.IA) { 1330 case DataFlowSanitizer::IA_TLS: { 1331 Value *S = DFSF.getShadow(RI.getReturnValue()); 1332 IRBuilder<> IRB(&RI); 1333 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1334 break; 1335 } 1336 case DataFlowSanitizer::IA_Args: { 1337 IRBuilder<> IRB(&RI); 1338 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1339 Value *InsVal = 1340 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1341 Value *InsShadow = 1342 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1343 RI.setOperand(0, InsShadow); 1344 break; 1345 } 1346 } 1347 } 1348 } 1349 1350 void DFSanVisitor::visitCallSite(CallSite CS) { 1351 Function *F = CS.getCalledFunction(); 1352 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1353 visitOperandShadowInst(*CS.getInstruction()); 1354 return; 1355 } 1356 1357 IRBuilder<> IRB(CS.getInstruction()); 1358 1359 DenseMap<Value *, Function *>::iterator i = 1360 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1361 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1362 Function *F = i->second; 1363 switch (DFSF.DFS.getWrapperKind(F)) { 1364 case DataFlowSanitizer::WK_Warning: { 1365 CS.setCalledFunction(F); 1366 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1367 IRB.CreateGlobalStringPtr(F->getName())); 1368 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1369 return; 1370 } 1371 case DataFlowSanitizer::WK_Discard: { 1372 CS.setCalledFunction(F); 1373 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1374 return; 1375 } 1376 case DataFlowSanitizer::WK_Functional: { 1377 CS.setCalledFunction(F); 1378 visitOperandShadowInst(*CS.getInstruction()); 1379 return; 1380 } 1381 case DataFlowSanitizer::WK_Custom: { 1382 // Don't try to handle invokes of custom functions, it's too complicated. 1383 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1384 // wrapper. 1385 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1386 FunctionType *FT = F->getFunctionType(); 1387 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1388 std::string CustomFName = "__dfsw_"; 1389 CustomFName += F->getName(); 1390 Constant *CustomF = 1391 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1392 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1393 CustomFn->copyAttributesFrom(F); 1394 1395 // Custom functions returning non-void will write to the return label. 1396 if (!FT->getReturnType()->isVoidTy()) { 1397 CustomFn->removeAttributes(AttributeSet::FunctionIndex, 1398 DFSF.DFS.ReadOnlyNoneAttrs); 1399 } 1400 } 1401 1402 std::vector<Value *> Args; 1403 1404 CallSite::arg_iterator i = CS.arg_begin(); 1405 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1406 Type *T = (*i)->getType(); 1407 FunctionType *ParamFT; 1408 if (isa<PointerType>(T) && 1409 (ParamFT = dyn_cast<FunctionType>( 1410 cast<PointerType>(T)->getElementType()))) { 1411 std::string TName = "dfst"; 1412 TName += utostr(FT->getNumParams() - n); 1413 TName += "$"; 1414 TName += F->getName(); 1415 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1416 Args.push_back(T); 1417 Args.push_back( 1418 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1419 } else { 1420 Args.push_back(*i); 1421 } 1422 } 1423 1424 i = CS.arg_begin(); 1425 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1426 Args.push_back(DFSF.getShadow(*i)); 1427 1428 if (!FT->getReturnType()->isVoidTy()) { 1429 if (!DFSF.LabelReturnAlloca) { 1430 DFSF.LabelReturnAlloca = 1431 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn", 1432 DFSF.F->getEntryBlock().begin()); 1433 } 1434 Args.push_back(DFSF.LabelReturnAlloca); 1435 } 1436 1437 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1438 CustomCI->setCallingConv(CI->getCallingConv()); 1439 CustomCI->setAttributes(CI->getAttributes()); 1440 1441 if (!FT->getReturnType()->isVoidTy()) { 1442 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1443 DFSF.setShadow(CustomCI, LabelLoad); 1444 } 1445 1446 CI->replaceAllUsesWith(CustomCI); 1447 CI->eraseFromParent(); 1448 return; 1449 } 1450 break; 1451 } 1452 } 1453 } 1454 1455 FunctionType *FT = cast<FunctionType>( 1456 CS.getCalledValue()->getType()->getPointerElementType()); 1457 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1458 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1459 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1460 DFSF.getArgTLS(i, CS.getInstruction())); 1461 } 1462 } 1463 1464 Instruction *Next = nullptr; 1465 if (!CS.getType()->isVoidTy()) { 1466 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1467 if (II->getNormalDest()->getSinglePredecessor()) { 1468 Next = II->getNormalDest()->begin(); 1469 } else { 1470 BasicBlock *NewBB = 1471 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS); 1472 Next = NewBB->begin(); 1473 } 1474 } else { 1475 Next = CS->getNextNode(); 1476 } 1477 1478 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1479 IRBuilder<> NextIRB(Next); 1480 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1481 DFSF.SkipInsts.insert(LI); 1482 DFSF.setShadow(CS.getInstruction(), LI); 1483 DFSF.NonZeroChecks.insert(LI); 1484 } 1485 } 1486 1487 // Do all instrumentation for IA_Args down here to defer tampering with the 1488 // CFG in a way that SplitEdge may be able to detect. 1489 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1490 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1491 Value *Func = 1492 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1493 std::vector<Value *> Args; 1494 1495 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1496 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1497 Args.push_back(*i); 1498 1499 i = CS.arg_begin(); 1500 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1501 Args.push_back(DFSF.getShadow(*i)); 1502 1503 if (FT->isVarArg()) { 1504 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1505 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1506 AllocaInst *VarArgShadow = 1507 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin()); 1508 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0)); 1509 for (unsigned n = 0; i != e; ++i, ++n) { 1510 IRB.CreateStore(DFSF.getShadow(*i), 1511 IRB.CreateConstGEP2_32(VarArgShadow, 0, n)); 1512 Args.push_back(*i); 1513 } 1514 } 1515 1516 CallSite NewCS; 1517 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1518 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1519 Args); 1520 } else { 1521 NewCS = IRB.CreateCall(Func, Args); 1522 } 1523 NewCS.setCallingConv(CS.getCallingConv()); 1524 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1525 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex, 1526 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(), 1527 AttributeSet::ReturnIndex))); 1528 1529 if (Next) { 1530 ExtractValueInst *ExVal = 1531 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1532 DFSF.SkipInsts.insert(ExVal); 1533 ExtractValueInst *ExShadow = 1534 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1535 DFSF.SkipInsts.insert(ExShadow); 1536 DFSF.setShadow(ExVal, ExShadow); 1537 DFSF.NonZeroChecks.insert(ExShadow); 1538 1539 CS.getInstruction()->replaceAllUsesWith(ExVal); 1540 } 1541 1542 CS.getInstruction()->eraseFromParent(); 1543 } 1544 } 1545 1546 void DFSanVisitor::visitPHINode(PHINode &PN) { 1547 PHINode *ShadowPN = 1548 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1549 1550 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1551 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1552 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1553 ++i) { 1554 ShadowPN->addIncoming(UndefShadow, *i); 1555 } 1556 1557 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1558 DFSF.setShadow(&PN, ShadowPN); 1559 } 1560