1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// There are two possible memory layouts. In the first one, each byte of 22 /// application memory is backed by a shadow memory byte. The shadow byte can 23 /// represent up to 8 labels. To enable this you must specify the 24 /// -dfsan-fast-8-labels flag. On Linux/x86_64, memory is then laid out as 25 /// follows: 26 /// 27 /// +--------------------+ 0x800000000000 (top of memory) 28 /// | application memory | 29 /// +--------------------+ 0x700000008000 (kAppAddr) 30 /// | | 31 /// | unused | 32 /// | | 33 /// +--------------------+ 0x300200000000 (kUnusedAddr) 34 /// | union table | 35 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 36 /// | origin | 37 /// +--------------------+ 0x200000008000 (kOriginAddr) 38 /// | shadow memory | 39 /// +--------------------+ 0x100000008000 (kShadowAddr) 40 /// | unused | 41 /// +--------------------+ 0x000000010000 42 /// | reserved by kernel | 43 /// +--------------------+ 0x000000000000 44 /// 45 /// 46 /// In the second memory layout, each byte of application memory is backed by 47 /// two bytes of shadow memory which hold the label. That means we can represent 48 /// either 16 labels (with -dfsan-fast-16-labels flag) or 2^16 labels (on the 49 /// default legacy mode) per byte. On Linux/x86_64, memory is then laid out as 50 /// follows: 51 /// 52 /// +--------------------+ 0x800000000000 (top of memory) 53 /// | application memory | 54 /// +--------------------+ 0x700000008000 (kAppAddr) 55 /// | | 56 /// | unused | 57 /// | | 58 /// +--------------------+ 0x300200000000 (kUnusedAddr) 59 /// | union table | 60 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 61 /// | origin | 62 /// +--------------------+ 0x200000008000 (kOriginAddr) 63 /// | shadow memory | 64 /// +--------------------+ 0x000000010000 (kShadowAddr) 65 /// | reserved by kernel | 66 /// +--------------------+ 0x000000000000 67 /// 68 /// 69 /// To derive a shadow memory address from an application memory address, 70 /// bits 44-46 are cleared to bring the address into the range 71 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 72 /// account for the double byte representation of shadow labels and move the 73 /// address into the shadow memory range. See the function 74 /// DataFlowSanitizer::getShadowAddress below. 75 /// 76 /// For more information, please refer to the design document: 77 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 78 // 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 82 #include "llvm/ADT/DenseMap.h" 83 #include "llvm/ADT/DenseSet.h" 84 #include "llvm/ADT/DepthFirstIterator.h" 85 #include "llvm/ADT/None.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include "llvm/ADT/SmallVector.h" 88 #include "llvm/ADT/StringExtras.h" 89 #include "llvm/ADT/StringRef.h" 90 #include "llvm/ADT/Triple.h" 91 #include "llvm/ADT/iterator.h" 92 #include "llvm/Analysis/ValueTracking.h" 93 #include "llvm/IR/Argument.h" 94 #include "llvm/IR/Attributes.h" 95 #include "llvm/IR/BasicBlock.h" 96 #include "llvm/IR/Constant.h" 97 #include "llvm/IR/Constants.h" 98 #include "llvm/IR/DataLayout.h" 99 #include "llvm/IR/DerivedTypes.h" 100 #include "llvm/IR/Dominators.h" 101 #include "llvm/IR/Function.h" 102 #include "llvm/IR/GlobalAlias.h" 103 #include "llvm/IR/GlobalValue.h" 104 #include "llvm/IR/GlobalVariable.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InlineAsm.h" 107 #include "llvm/IR/InstVisitor.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/LLVMContext.h" 113 #include "llvm/IR/MDBuilder.h" 114 #include "llvm/IR/Module.h" 115 #include "llvm/IR/PassManager.h" 116 #include "llvm/IR/Type.h" 117 #include "llvm/IR/User.h" 118 #include "llvm/IR/Value.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Alignment.h" 122 #include "llvm/Support/Casting.h" 123 #include "llvm/Support/CommandLine.h" 124 #include "llvm/Support/ErrorHandling.h" 125 #include "llvm/Support/SpecialCaseList.h" 126 #include "llvm/Support/VirtualFileSystem.h" 127 #include "llvm/Transforms/Instrumentation.h" 128 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 129 #include "llvm/Transforms/Utils/Local.h" 130 #include <algorithm> 131 #include <cassert> 132 #include <cstddef> 133 #include <cstdint> 134 #include <iterator> 135 #include <memory> 136 #include <set> 137 #include <string> 138 #include <utility> 139 #include <vector> 140 141 using namespace llvm; 142 143 // This must be consistent with ShadowWidthBits. 144 static const Align ShadowTLSAlignment = Align(2); 145 146 static const Align MinOriginAlignment = Align(4); 147 148 // The size of TLS variables. These constants must be kept in sync with the ones 149 // in dfsan.cpp. 150 static const unsigned ArgTLSSize = 800; 151 static const unsigned RetvalTLSSize = 800; 152 153 // External symbol to be used when generating the shadow address for 154 // architectures with multiple VMAs. Instead of using a constant integer 155 // the runtime will set the external mask based on the VMA range. 156 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 157 158 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 159 // alignment requirements provided by the input IR are correct. For example, 160 // if the input IR contains a load with alignment 8, this flag will cause 161 // the shadow load to have alignment 16. This flag is disabled by default as 162 // we have unfortunately encountered too much code (including Clang itself; 163 // see PR14291) which performs misaligned access. 164 static cl::opt<bool> ClPreserveAlignment( 165 "dfsan-preserve-alignment", 166 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 167 cl::init(false)); 168 169 // The ABI list files control how shadow parameters are passed. The pass treats 170 // every function labelled "uninstrumented" in the ABI list file as conforming 171 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 172 // additional annotations for those functions, a call to one of those functions 173 // will produce a warning message, as the labelling behaviour of the function is 174 // unknown. The other supported annotations are "functional" and "discard", 175 // which are described below under DataFlowSanitizer::WrapperKind. 176 static cl::list<std::string> ClABIListFiles( 177 "dfsan-abilist", 178 cl::desc("File listing native ABI functions and how the pass treats them"), 179 cl::Hidden); 180 181 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 182 // functions (see DataFlowSanitizer::InstrumentedABI below). 183 static cl::opt<bool> 184 ClArgsABI("dfsan-args-abi", 185 cl::desc("Use the argument ABI rather than the TLS ABI"), 186 cl::Hidden); 187 188 // Controls whether the pass includes or ignores the labels of pointers in load 189 // instructions. 190 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 191 "dfsan-combine-pointer-labels-on-load", 192 cl::desc("Combine the label of the pointer with the label of the data when " 193 "loading from memory."), 194 cl::Hidden, cl::init(true)); 195 196 // Controls whether the pass includes or ignores the labels of pointers in 197 // stores instructions. 198 static cl::opt<bool> ClCombinePointerLabelsOnStore( 199 "dfsan-combine-pointer-labels-on-store", 200 cl::desc("Combine the label of the pointer with the label of the data when " 201 "storing in memory."), 202 cl::Hidden, cl::init(false)); 203 204 static cl::opt<bool> ClDebugNonzeroLabels( 205 "dfsan-debug-nonzero-labels", 206 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 207 "load or return with a nonzero label"), 208 cl::Hidden); 209 210 // Experimental feature that inserts callbacks for certain data events. 211 // Currently callbacks are only inserted for loads, stores, memory transfers 212 // (i.e. memcpy and memmove), and comparisons. 213 // 214 // If this flag is set to true, the user must provide definitions for the 215 // following callback functions: 216 // void __dfsan_load_callback(dfsan_label Label, void* addr); 217 // void __dfsan_store_callback(dfsan_label Label, void* addr); 218 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 219 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 220 static cl::opt<bool> ClEventCallbacks( 221 "dfsan-event-callbacks", 222 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 223 cl::Hidden, cl::init(false)); 224 225 // Use a distinct bit for each base label, enabling faster unions with less 226 // instrumentation. Limits the max number of base labels to 16. 227 static cl::opt<bool> ClFast16Labels( 228 "dfsan-fast-16-labels", 229 cl::desc("Use more efficient instrumentation, limiting the number of " 230 "labels to 16."), 231 cl::Hidden, cl::init(false)); 232 233 // Use a distinct bit for each base label, enabling faster unions with less 234 // instrumentation. Limits the max number of base labels to 8. 235 static cl::opt<bool> ClFast8Labels( 236 "dfsan-fast-8-labels", 237 cl::desc("Use more efficient instrumentation, limiting the number of " 238 "labels to 8."), 239 cl::Hidden, cl::init(false)); 240 241 // Controls whether the pass tracks the control flow of select instructions. 242 static cl::opt<bool> ClTrackSelectControlFlow( 243 "dfsan-track-select-control-flow", 244 cl::desc("Propagate labels from condition values of select instructions " 245 "to results."), 246 cl::Hidden, cl::init(true)); 247 248 // TODO: This default value follows MSan. DFSan may use a different value. 249 static cl::opt<int> ClInstrumentWithCallThreshold( 250 "dfsan-instrument-with-call-threshold", 251 cl::desc("If the function being instrumented requires more than " 252 "this number of origin stores, use callbacks instead of " 253 "inline checks (-1 means never use callbacks)."), 254 cl::Hidden, cl::init(3500)); 255 256 // Controls how to track origins. 257 // * 0: do not track origins. 258 // * 1: track origins at memory store operations. 259 // * 2: TODO: track origins at memory store operations and callsites. 260 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 261 cl::desc("Track origins of labels"), 262 cl::Hidden, cl::init(0)); 263 264 static StringRef getGlobalTypeString(const GlobalValue &G) { 265 // Types of GlobalVariables are always pointer types. 266 Type *GType = G.getValueType(); 267 // For now we support excluding struct types only. 268 if (StructType *SGType = dyn_cast<StructType>(GType)) { 269 if (!SGType->isLiteral()) 270 return SGType->getName(); 271 } 272 return "<unknown type>"; 273 } 274 275 namespace { 276 277 class DFSanABIList { 278 std::unique_ptr<SpecialCaseList> SCL; 279 280 public: 281 DFSanABIList() = default; 282 283 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 284 285 /// Returns whether either this function or its source file are listed in the 286 /// given category. 287 bool isIn(const Function &F, StringRef Category) const { 288 return isIn(*F.getParent(), Category) || 289 SCL->inSection("dataflow", "fun", F.getName(), Category); 290 } 291 292 /// Returns whether this global alias is listed in the given category. 293 /// 294 /// If GA aliases a function, the alias's name is matched as a function name 295 /// would be. Similarly, aliases of globals are matched like globals. 296 bool isIn(const GlobalAlias &GA, StringRef Category) const { 297 if (isIn(*GA.getParent(), Category)) 298 return true; 299 300 if (isa<FunctionType>(GA.getValueType())) 301 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 302 303 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 304 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 305 Category); 306 } 307 308 /// Returns whether this module is listed in the given category. 309 bool isIn(const Module &M, StringRef Category) const { 310 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 311 } 312 }; 313 314 /// TransformedFunction is used to express the result of transforming one 315 /// function type into another. This struct is immutable. It holds metadata 316 /// useful for updating calls of the old function to the new type. 317 struct TransformedFunction { 318 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 319 std::vector<unsigned> ArgumentIndexMapping) 320 : OriginalType(OriginalType), TransformedType(TransformedType), 321 ArgumentIndexMapping(ArgumentIndexMapping) {} 322 323 // Disallow copies. 324 TransformedFunction(const TransformedFunction &) = delete; 325 TransformedFunction &operator=(const TransformedFunction &) = delete; 326 327 // Allow moves. 328 TransformedFunction(TransformedFunction &&) = default; 329 TransformedFunction &operator=(TransformedFunction &&) = default; 330 331 /// Type of the function before the transformation. 332 FunctionType *OriginalType; 333 334 /// Type of the function after the transformation. 335 FunctionType *TransformedType; 336 337 /// Transforming a function may change the position of arguments. This 338 /// member records the mapping from each argument's old position to its new 339 /// position. Argument positions are zero-indexed. If the transformation 340 /// from F to F' made the first argument of F into the third argument of F', 341 /// then ArgumentIndexMapping[0] will equal 2. 342 std::vector<unsigned> ArgumentIndexMapping; 343 }; 344 345 /// Given function attributes from a call site for the original function, 346 /// return function attributes appropriate for a call to the transformed 347 /// function. 348 AttributeList 349 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 350 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 351 352 // Construct a vector of AttributeSet for each function argument. 353 std::vector<llvm::AttributeSet> ArgumentAttributes( 354 TransformedFunction.TransformedType->getNumParams()); 355 356 // Copy attributes from the parameter of the original function to the 357 // transformed version. 'ArgumentIndexMapping' holds the mapping from 358 // old argument position to new. 359 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 360 I < IE; ++I) { 361 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 362 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 363 } 364 365 // Copy annotations on varargs arguments. 366 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 367 IE = CallSiteAttrs.getNumAttrSets(); 368 I < IE; ++I) { 369 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 370 } 371 372 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 373 CallSiteAttrs.getRetAttributes(), 374 llvm::makeArrayRef(ArgumentAttributes)); 375 } 376 377 class DataFlowSanitizer { 378 friend struct DFSanFunction; 379 friend class DFSanVisitor; 380 381 enum { 382 OriginWidthBits = 32, 383 OriginWidthBytes = OriginWidthBits / 8 384 }; 385 386 /// Which ABI should be used for instrumented functions? 387 enum InstrumentedABI { 388 /// Argument and return value labels are passed through additional 389 /// arguments and by modifying the return type. 390 IA_Args, 391 392 /// Argument and return value labels are passed through TLS variables 393 /// __dfsan_arg_tls and __dfsan_retval_tls. 394 IA_TLS 395 }; 396 397 /// How should calls to uninstrumented functions be handled? 398 enum WrapperKind { 399 /// This function is present in an uninstrumented form but we don't know 400 /// how it should be handled. Print a warning and call the function anyway. 401 /// Don't label the return value. 402 WK_Warning, 403 404 /// This function does not write to (user-accessible) memory, and its return 405 /// value is unlabelled. 406 WK_Discard, 407 408 /// This function does not write to (user-accessible) memory, and the label 409 /// of its return value is the union of the label of its arguments. 410 WK_Functional, 411 412 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 413 /// where F is the name of the function. This function may wrap the 414 /// original function or provide its own implementation. This is similar to 415 /// the IA_Args ABI, except that IA_Args uses a struct return type to 416 /// pass the return value shadow in a register, while WK_Custom uses an 417 /// extra pointer argument to return the shadow. This allows the wrapped 418 /// form of the function type to be expressed in C. 419 WK_Custom 420 }; 421 422 unsigned ShadowWidthBits; 423 unsigned ShadowWidthBytes; 424 425 Module *Mod; 426 LLVMContext *Ctx; 427 Type *Int8Ptr; 428 IntegerType *OriginTy; 429 PointerType *OriginPtrTy; 430 ConstantInt *OriginBase; 431 ConstantInt *ZeroOrigin; 432 /// The shadow type for all primitive types and vector types. 433 IntegerType *PrimitiveShadowTy; 434 PointerType *PrimitiveShadowPtrTy; 435 IntegerType *IntptrTy; 436 ConstantInt *ZeroPrimitiveShadow; 437 ConstantInt *ShadowPtrMask; 438 ConstantInt *ShadowPtrMul; 439 Constant *ArgTLS; 440 ArrayType *ArgOriginTLSTy; 441 Constant *ArgOriginTLS; 442 Constant *RetvalTLS; 443 Constant *RetvalOriginTLS; 444 Constant *ExternalShadowMask; 445 FunctionType *DFSanUnionFnTy; 446 FunctionType *DFSanUnionLoadFnTy; 447 FunctionType *DFSanLoadLabelAndOriginFnTy; 448 FunctionType *DFSanUnimplementedFnTy; 449 FunctionType *DFSanSetLabelFnTy; 450 FunctionType *DFSanNonzeroLabelFnTy; 451 FunctionType *DFSanVarargWrapperFnTy; 452 FunctionType *DFSanCmpCallbackFnTy; 453 FunctionType *DFSanLoadStoreCallbackFnTy; 454 FunctionType *DFSanMemTransferCallbackFnTy; 455 FunctionType *DFSanChainOriginFnTy; 456 FunctionType *DFSanMemOriginTransferFnTy; 457 FunctionType *DFSanMaybeStoreOriginFnTy; 458 FunctionCallee DFSanUnionFn; 459 FunctionCallee DFSanCheckedUnionFn; 460 FunctionCallee DFSanUnionLoadFn; 461 FunctionCallee DFSanUnionLoadFastLabelsFn; 462 FunctionCallee DFSanLoadLabelAndOriginFn; 463 FunctionCallee DFSanUnimplementedFn; 464 FunctionCallee DFSanSetLabelFn; 465 FunctionCallee DFSanNonzeroLabelFn; 466 FunctionCallee DFSanVarargWrapperFn; 467 FunctionCallee DFSanLoadCallbackFn; 468 FunctionCallee DFSanStoreCallbackFn; 469 FunctionCallee DFSanMemTransferCallbackFn; 470 FunctionCallee DFSanCmpCallbackFn; 471 FunctionCallee DFSanChainOriginFn; 472 FunctionCallee DFSanMemOriginTransferFn; 473 FunctionCallee DFSanMaybeStoreOriginFn; 474 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 475 MDNode *ColdCallWeights; 476 MDNode *OriginStoreWeights; 477 DFSanABIList ABIList; 478 DenseMap<Value *, Function *> UnwrappedFnMap; 479 AttrBuilder ReadOnlyNoneAttrs; 480 bool DFSanRuntimeShadowMask = false; 481 482 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 483 Value *getShadowAddress(Value *Addr, Instruction *Pos); 484 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 485 std::pair<Value *, Value *> 486 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 487 bool isInstrumented(const Function *F); 488 bool isInstrumented(const GlobalAlias *GA); 489 FunctionType *getArgsFunctionType(FunctionType *T); 490 FunctionType *getTrampolineFunctionType(FunctionType *T); 491 TransformedFunction getCustomFunctionType(FunctionType *T); 492 InstrumentedABI getInstrumentedABI(); 493 WrapperKind getWrapperKind(Function *F); 494 void addGlobalNamePrefix(GlobalValue *GV); 495 Function *buildWrapperFunction(Function *F, StringRef NewFName, 496 GlobalValue::LinkageTypes NewFLink, 497 FunctionType *NewFT); 498 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 499 void initializeCallbackFunctions(Module &M); 500 void initializeRuntimeFunctions(Module &M); 501 void injectMetadataGlobals(Module &M); 502 503 bool init(Module &M); 504 505 /// Returns whether fast8 or fast16 mode has been specified. 506 bool hasFastLabelsEnabled(); 507 508 /// Returns whether the pass tracks origins. Support only fast16 mode in TLS 509 /// ABI mode. 510 bool shouldTrackOrigins(); 511 512 /// Returns whether the pass tracks labels for struct fields and array 513 /// indices. Support only fast16 mode in TLS ABI mode. 514 bool shouldTrackFieldsAndIndices(); 515 516 /// Returns a zero constant with the shadow type of OrigTy. 517 /// 518 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 519 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 520 /// getZeroShadow(other type) = i16(0) 521 /// 522 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 523 /// returns false. 524 Constant *getZeroShadow(Type *OrigTy); 525 /// Returns a zero constant with the shadow type of V's type. 526 Constant *getZeroShadow(Value *V); 527 528 /// Checks if V is a zero shadow. 529 bool isZeroShadow(Value *V); 530 531 /// Returns the shadow type of OrigTy. 532 /// 533 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 534 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 535 /// getShadowTy(other type) = i16 536 /// 537 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 538 /// returns false. 539 Type *getShadowTy(Type *OrigTy); 540 /// Returns the shadow type of of V's type. 541 Type *getShadowTy(Value *V); 542 543 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 544 545 public: 546 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 547 548 bool runImpl(Module &M); 549 }; 550 551 struct DFSanFunction { 552 DataFlowSanitizer &DFS; 553 Function *F; 554 DominatorTree DT; 555 DataFlowSanitizer::InstrumentedABI IA; 556 bool IsNativeABI; 557 AllocaInst *LabelReturnAlloca = nullptr; 558 AllocaInst *OriginReturnAlloca = nullptr; 559 DenseMap<Value *, Value *> ValShadowMap; 560 DenseMap<Value *, Value *> ValOriginMap; 561 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 562 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 563 564 struct PHIFixupElement { 565 PHINode *Phi; 566 PHINode *ShadowPhi; 567 PHINode *OriginPhi; 568 }; 569 std::vector<PHIFixupElement> PHIFixups; 570 571 DenseSet<Instruction *> SkipInsts; 572 std::vector<Value *> NonZeroChecks; 573 bool AvoidNewBlocks; 574 575 struct CachedShadow { 576 BasicBlock *Block; // The block where Shadow is defined. 577 Value *Shadow; 578 }; 579 /// Maps a value to its latest shadow value in terms of domination tree. 580 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 581 /// Maps a value to its latest collapsed shadow value it was converted to in 582 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 583 /// used at a post process where CFG blocks are split. So it does not cache 584 /// BasicBlock like CachedShadows, but uses domination between values. 585 DenseMap<Value *, Value *> CachedCollapsedShadows; 586 DenseMap<Value *, std::set<Value *>> ShadowElements; 587 588 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 589 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 590 DT.recalculate(*F); 591 // FIXME: Need to track down the register allocator issue which causes poor 592 // performance in pathological cases with large numbers of basic blocks. 593 AvoidNewBlocks = F->size() > 1000; 594 } 595 596 /// Computes the shadow address for a given function argument. 597 /// 598 /// Shadow = ArgTLS+ArgOffset. 599 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 600 601 /// Computes the shadow address for a return value. 602 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 603 604 /// Computes the origin address for a given function argument. 605 /// 606 /// Origin = ArgOriginTLS[ArgNo]. 607 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 608 609 /// Computes the origin address for a return value. 610 Value *getRetvalOriginTLS(); 611 612 Value *getOrigin(Value *V); 613 void setOrigin(Instruction *I, Value *Origin); 614 /// Generates IR to compute the origin of the last operand with a taint label. 615 Value *combineOperandOrigins(Instruction *Inst); 616 /// Before the instruction Pos, generates IR to compute the last origin with a 617 /// taint label. Labels and origins are from vectors Shadows and Origins 618 /// correspondingly. The generated IR is like 619 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 620 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 621 /// zeros with other bitwidths. 622 Value *combineOrigins(const std::vector<Value *> &Shadows, 623 const std::vector<Value *> &Origins, Instruction *Pos, 624 ConstantInt *Zero = nullptr); 625 626 Value *getShadow(Value *V); 627 void setShadow(Instruction *I, Value *Shadow); 628 /// Generates IR to compute the union of the two given shadows, inserting it 629 /// before Pos. The combined value is with primitive type. 630 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 631 /// Combines the shadow values of V1 and V2, then converts the combined value 632 /// with primitive type into a shadow value with the original type T. 633 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 634 Instruction *Pos); 635 Value *combineOperandShadows(Instruction *Inst); 636 std::pair<Value *, Value *> loadShadowOrigin(Value *ShadowAddr, uint64_t Size, 637 Align InstAlignment, 638 Instruction *Pos); 639 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 640 Align InstAlignment, Value *PrimitiveShadow, 641 Value *Origin, Instruction *Pos); 642 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 643 /// the expanded shadow value. 644 /// 645 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 646 /// EFP([n x T], PS) = [n x EFP(T,PS)] 647 /// EFP(other types, PS) = PS 648 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 649 Instruction *Pos); 650 /// Collapses Shadow into a single primitive shadow value, unioning all 651 /// primitive shadow values in the process. Returns the final primitive 652 /// shadow value. 653 /// 654 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 655 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 656 /// CTP(other types, PS) = PS 657 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 658 659 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 660 Instruction *Pos); 661 662 Align getShadowAlign(Align InstAlignment); 663 664 private: 665 /// Collapses the shadow with aggregate type into a single primitive shadow 666 /// value. 667 template <class AggregateType> 668 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 669 IRBuilder<> &IRB); 670 671 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 672 673 /// Returns the shadow value of an argument A. 674 Value *getShadowForTLSArgument(Argument *A); 675 676 /// The fast path of loading shadow in legacy mode. 677 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 678 Align ShadowAlign, Instruction *Pos); 679 680 /// The fast path of loading shadow in fast-16-label mode. 681 std::pair<Value *, Value *> 682 loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 683 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 684 Instruction *Pos); 685 686 Align getOriginAlign(Align InstAlignment); 687 688 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 689 /// is __dfsan_load_label_and_origin. This function returns the union of all 690 /// labels and the origin of the first taint label. However this is an 691 /// additional call with many instructions. To ensure common cases are fast, 692 /// checks if it is possible to load labels and origins without using the 693 /// callback function. 694 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 695 696 /// Returns a chain at the current stack with previous origin V. 697 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 698 699 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 700 /// Origin otherwise. 701 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 702 703 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 704 /// Size). 705 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 706 uint64_t StoreOriginSize, Align Alignment); 707 708 /// Stores Origin in terms of its Shadow value. 709 /// * Do not write origins for zero shadows because we do not trace origins 710 /// for untainted sinks. 711 /// * Use __dfsan_maybe_store_origin if there are too many origin store 712 /// instrumentations. 713 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 714 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 715 716 /// Convert a scalar value to an i1 by comparing with 0. 717 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 718 719 bool shouldInstrumentWithCall(); 720 721 int NumOriginStores = 0; 722 }; 723 724 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 725 public: 726 DFSanFunction &DFSF; 727 728 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 729 730 const DataLayout &getDataLayout() const { 731 return DFSF.F->getParent()->getDataLayout(); 732 } 733 734 // Combines shadow values and origins for all of I's operands. 735 void visitInstOperands(Instruction &I); 736 737 void visitUnaryOperator(UnaryOperator &UO); 738 void visitBinaryOperator(BinaryOperator &BO); 739 void visitCastInst(CastInst &CI); 740 void visitCmpInst(CmpInst &CI); 741 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 742 void visitLoadInst(LoadInst &LI); 743 void visitStoreInst(StoreInst &SI); 744 void visitAtomicRMWInst(AtomicRMWInst &I); 745 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 746 void visitReturnInst(ReturnInst &RI); 747 void visitCallBase(CallBase &CB); 748 void visitPHINode(PHINode &PN); 749 void visitExtractElementInst(ExtractElementInst &I); 750 void visitInsertElementInst(InsertElementInst &I); 751 void visitShuffleVectorInst(ShuffleVectorInst &I); 752 void visitExtractValueInst(ExtractValueInst &I); 753 void visitInsertValueInst(InsertValueInst &I); 754 void visitAllocaInst(AllocaInst &I); 755 void visitSelectInst(SelectInst &I); 756 void visitMemSetInst(MemSetInst &I); 757 void visitMemTransferInst(MemTransferInst &I); 758 759 private: 760 void visitCASOrRMW(Align InstAlignment, Instruction &I); 761 762 // Returns false when this is an invoke of a custom function. 763 bool visitWrappedCallBase(Function &F, CallBase &CB); 764 765 // Combines origins for all of I's operands. 766 void visitInstOperandOrigins(Instruction &I); 767 768 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 769 IRBuilder<> &IRB); 770 771 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 772 IRBuilder<> &IRB); 773 }; 774 775 } // end anonymous namespace 776 777 DataFlowSanitizer::DataFlowSanitizer( 778 const std::vector<std::string> &ABIListFiles) { 779 if (ClFast8Labels && ClFast16Labels) { 780 report_fatal_error( 781 "cannot set both -dfsan-fast-8-labels and -dfsan-fast-16-labels"); 782 } 783 784 ShadowWidthBits = ClFast8Labels ? 8 : 16; 785 ShadowWidthBytes = ShadowWidthBits / 8; 786 787 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 788 llvm::append_range(AllABIListFiles, ClABIListFiles); 789 // FIXME: should we propagate vfs::FileSystem to this constructor? 790 ABIList.set( 791 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 792 } 793 794 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 795 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 796 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 797 if (T->isVarArg()) 798 ArgTypes.push_back(PrimitiveShadowPtrTy); 799 Type *RetType = T->getReturnType(); 800 if (!RetType->isVoidTy()) 801 RetType = StructType::get(RetType, PrimitiveShadowTy); 802 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 803 } 804 805 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 806 assert(!T->isVarArg()); 807 SmallVector<Type *, 4> ArgTypes; 808 ArgTypes.push_back(T->getPointerTo()); 809 ArgTypes.append(T->param_begin(), T->param_end()); 810 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 811 Type *RetType = T->getReturnType(); 812 if (!RetType->isVoidTy()) 813 ArgTypes.push_back(PrimitiveShadowPtrTy); 814 815 if (shouldTrackOrigins()) { 816 ArgTypes.append(T->getNumParams(), OriginTy); 817 if (!RetType->isVoidTy()) 818 ArgTypes.push_back(OriginPtrTy); 819 } 820 821 return FunctionType::get(T->getReturnType(), ArgTypes, false); 822 } 823 824 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 825 SmallVector<Type *, 4> ArgTypes; 826 827 // Some parameters of the custom function being constructed are 828 // parameters of T. Record the mapping from parameters of T to 829 // parameters of the custom function, so that parameter attributes 830 // at call sites can be updated. 831 std::vector<unsigned> ArgumentIndexMapping; 832 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 833 Type *ParamType = T->getParamType(I); 834 FunctionType *FT; 835 if (isa<PointerType>(ParamType) && 836 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 837 ArgumentIndexMapping.push_back(ArgTypes.size()); 838 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 839 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 840 } else { 841 ArgumentIndexMapping.push_back(ArgTypes.size()); 842 ArgTypes.push_back(ParamType); 843 } 844 } 845 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 846 ArgTypes.push_back(PrimitiveShadowTy); 847 if (T->isVarArg()) 848 ArgTypes.push_back(PrimitiveShadowPtrTy); 849 Type *RetType = T->getReturnType(); 850 if (!RetType->isVoidTy()) 851 ArgTypes.push_back(PrimitiveShadowPtrTy); 852 853 if (shouldTrackOrigins()) { 854 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 855 ArgTypes.push_back(OriginTy); 856 if (T->isVarArg()) 857 ArgTypes.push_back(OriginPtrTy); 858 if (!RetType->isVoidTy()) 859 ArgTypes.push_back(OriginPtrTy); 860 } 861 862 return TransformedFunction( 863 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 864 ArgumentIndexMapping); 865 } 866 867 bool DataFlowSanitizer::isZeroShadow(Value *V) { 868 if (!shouldTrackFieldsAndIndices()) 869 return ZeroPrimitiveShadow == V; 870 871 Type *T = V->getType(); 872 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 873 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 874 return CI->isZero(); 875 return false; 876 } 877 878 return isa<ConstantAggregateZero>(V); 879 } 880 881 bool DataFlowSanitizer::hasFastLabelsEnabled() { 882 static const bool HasFastLabelsEnabled = ClFast8Labels || ClFast16Labels; 883 return HasFastLabelsEnabled; 884 } 885 886 bool DataFlowSanitizer::shouldTrackOrigins() { 887 static const bool ShouldTrackOrigins = 888 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 889 ClFast16Labels; 890 return ShouldTrackOrigins; 891 } 892 893 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 894 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 895 hasFastLabelsEnabled(); 896 } 897 898 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 899 if (!shouldTrackFieldsAndIndices()) 900 return ZeroPrimitiveShadow; 901 902 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 903 return ZeroPrimitiveShadow; 904 Type *ShadowTy = getShadowTy(OrigTy); 905 return ConstantAggregateZero::get(ShadowTy); 906 } 907 908 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 909 return getZeroShadow(V->getType()); 910 } 911 912 static Value *expandFromPrimitiveShadowRecursive( 913 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 914 Value *PrimitiveShadow, IRBuilder<> &IRB) { 915 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 916 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 917 918 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 919 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 920 Indices.push_back(Idx); 921 Shadow = expandFromPrimitiveShadowRecursive( 922 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 923 Indices.pop_back(); 924 } 925 return Shadow; 926 } 927 928 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 929 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 930 Indices.push_back(Idx); 931 Shadow = expandFromPrimitiveShadowRecursive( 932 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 933 Indices.pop_back(); 934 } 935 return Shadow; 936 } 937 llvm_unreachable("Unexpected shadow type"); 938 } 939 940 bool DFSanFunction::shouldInstrumentWithCall() { 941 return ClInstrumentWithCallThreshold >= 0 && 942 NumOriginStores >= ClInstrumentWithCallThreshold; 943 } 944 945 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 946 Instruction *Pos) { 947 Type *ShadowTy = DFS.getShadowTy(T); 948 949 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 950 return PrimitiveShadow; 951 952 if (DFS.isZeroShadow(PrimitiveShadow)) 953 return DFS.getZeroShadow(ShadowTy); 954 955 IRBuilder<> IRB(Pos); 956 SmallVector<unsigned, 4> Indices; 957 Value *Shadow = UndefValue::get(ShadowTy); 958 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 959 PrimitiveShadow, IRB); 960 961 // Caches the primitive shadow value that built the shadow value. 962 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 963 return Shadow; 964 } 965 966 template <class AggregateType> 967 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 968 IRBuilder<> &IRB) { 969 if (!AT->getNumElements()) 970 return DFS.ZeroPrimitiveShadow; 971 972 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 973 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 974 975 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 976 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 977 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 978 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 979 } 980 return Aggregator; 981 } 982 983 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 984 IRBuilder<> &IRB) { 985 Type *ShadowTy = Shadow->getType(); 986 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 987 return Shadow; 988 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 989 return collapseAggregateShadow<>(AT, Shadow, IRB); 990 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 991 return collapseAggregateShadow<>(ST, Shadow, IRB); 992 llvm_unreachable("Unexpected shadow type"); 993 } 994 995 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 996 Instruction *Pos) { 997 Type *ShadowTy = Shadow->getType(); 998 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 999 return Shadow; 1000 1001 assert(DFS.shouldTrackFieldsAndIndices()); 1002 1003 // Checks if the cached collapsed shadow value dominates Pos. 1004 Value *&CS = CachedCollapsedShadows[Shadow]; 1005 if (CS && DT.dominates(CS, Pos)) 1006 return CS; 1007 1008 IRBuilder<> IRB(Pos); 1009 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1010 // Caches the converted primitive shadow value. 1011 CS = PrimitiveShadow; 1012 return PrimitiveShadow; 1013 } 1014 1015 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1016 if (!shouldTrackFieldsAndIndices()) 1017 return PrimitiveShadowTy; 1018 1019 if (!OrigTy->isSized()) 1020 return PrimitiveShadowTy; 1021 if (isa<IntegerType>(OrigTy)) 1022 return PrimitiveShadowTy; 1023 if (isa<VectorType>(OrigTy)) 1024 return PrimitiveShadowTy; 1025 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1026 return ArrayType::get(getShadowTy(AT->getElementType()), 1027 AT->getNumElements()); 1028 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1029 SmallVector<Type *, 4> Elements; 1030 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1031 Elements.push_back(getShadowTy(ST->getElementType(I))); 1032 return StructType::get(*Ctx, Elements); 1033 } 1034 return PrimitiveShadowTy; 1035 } 1036 1037 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1038 return getShadowTy(V->getType()); 1039 } 1040 1041 bool DataFlowSanitizer::init(Module &M) { 1042 Triple TargetTriple(M.getTargetTriple()); 1043 const DataLayout &DL = M.getDataLayout(); 1044 1045 Mod = &M; 1046 Ctx = &M.getContext(); 1047 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1048 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1049 OriginPtrTy = PointerType::getUnqual(OriginTy); 1050 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1051 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1052 IntptrTy = DL.getIntPtrType(*Ctx); 1053 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1054 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 1055 OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL); 1056 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1057 1058 switch (TargetTriple.getArch()) { 1059 case Triple::x86_64: 1060 ShadowPtrMask = ClFast8Labels 1061 ? ConstantInt::getSigned(IntptrTy, ~0x600000000000LL) 1062 : ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 1063 break; 1064 case Triple::mips64: 1065 case Triple::mips64el: 1066 ShadowPtrMask = ClFast8Labels 1067 ? ConstantInt::getSigned(IntptrTy, ~0xE000000000LL) 1068 : ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 1069 break; 1070 case Triple::aarch64: 1071 case Triple::aarch64_be: 1072 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 1073 DFSanRuntimeShadowMask = true; 1074 break; 1075 default: 1076 report_fatal_error("unsupported triple"); 1077 } 1078 1079 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 1080 DFSanUnionFnTy = 1081 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 1082 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1083 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1084 /*isVarArg=*/false); 1085 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1086 DFSanLoadLabelAndOriginFnTy = 1087 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1088 /*isVarArg=*/false); 1089 DFSanUnimplementedFnTy = FunctionType::get( 1090 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1091 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1092 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1093 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1094 DFSanSetLabelArgs, /*isVarArg=*/false); 1095 DFSanNonzeroLabelFnTy = 1096 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1097 DFSanVarargWrapperFnTy = FunctionType::get( 1098 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1099 DFSanCmpCallbackFnTy = 1100 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1101 /*isVarArg=*/false); 1102 DFSanChainOriginFnTy = 1103 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1104 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1105 Int8Ptr, IntptrTy, OriginTy}; 1106 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1107 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1108 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1109 DFSanMemOriginTransferFnTy = FunctionType::get( 1110 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1111 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1112 DFSanLoadStoreCallbackFnTy = 1113 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1114 /*isVarArg=*/false); 1115 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1116 DFSanMemTransferCallbackFnTy = 1117 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1118 /*isVarArg=*/false); 1119 1120 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1121 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1122 return true; 1123 } 1124 1125 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1126 return !ABIList.isIn(*F, "uninstrumented"); 1127 } 1128 1129 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1130 return !ABIList.isIn(*GA, "uninstrumented"); 1131 } 1132 1133 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1134 return ClArgsABI ? IA_Args : IA_TLS; 1135 } 1136 1137 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1138 if (ABIList.isIn(*F, "functional")) 1139 return WK_Functional; 1140 if (ABIList.isIn(*F, "discard")) 1141 return WK_Discard; 1142 if (ABIList.isIn(*F, "custom")) 1143 return WK_Custom; 1144 1145 return WK_Warning; 1146 } 1147 1148 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 1149 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 1150 GV->setName(Prefix + GVName); 1151 1152 // Try to change the name of the function in module inline asm. We only do 1153 // this for specific asm directives, currently only ".symver", to try to avoid 1154 // corrupting asm which happens to contain the symbol name as a substring. 1155 // Note that the substitution for .symver assumes that the versioned symbol 1156 // also has an instrumented name. 1157 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1158 std::string SearchStr = ".symver " + GVName + ","; 1159 size_t Pos = Asm.find(SearchStr); 1160 if (Pos != std::string::npos) { 1161 Asm.replace(Pos, SearchStr.size(), 1162 ".symver " + Prefix + GVName + "," + Prefix); 1163 GV->getParent()->setModuleInlineAsm(Asm); 1164 } 1165 } 1166 1167 Function * 1168 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1169 GlobalValue::LinkageTypes NewFLink, 1170 FunctionType *NewFT) { 1171 FunctionType *FT = F->getFunctionType(); 1172 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1173 NewFName, F->getParent()); 1174 NewF->copyAttributesFrom(F); 1175 NewF->removeAttributes( 1176 AttributeList::ReturnIndex, 1177 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1178 1179 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1180 if (F->isVarArg()) { 1181 NewF->removeAttributes(AttributeList::FunctionIndex, 1182 AttrBuilder().addAttribute("split-stack")); 1183 CallInst::Create(DFSanVarargWrapperFn, 1184 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1185 BB); 1186 new UnreachableInst(*Ctx, BB); 1187 } else { 1188 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1189 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1190 1191 CallInst *CI = CallInst::Create(F, Args, "", BB); 1192 if (FT->getReturnType()->isVoidTy()) 1193 ReturnInst::Create(*Ctx, BB); 1194 else 1195 ReturnInst::Create(*Ctx, CI, BB); 1196 } 1197 1198 return NewF; 1199 } 1200 1201 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1202 StringRef FName) { 1203 FunctionType *FTT = getTrampolineFunctionType(FT); 1204 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1205 Function *F = dyn_cast<Function>(C.getCallee()); 1206 if (F && F->isDeclaration()) { 1207 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1208 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1209 std::vector<Value *> Args; 1210 Function::arg_iterator AI = F->arg_begin() + 1; 1211 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1212 Args.push_back(&*AI); 1213 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1214 Type *RetType = FT->getReturnType(); 1215 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1216 : ReturnInst::Create(*Ctx, CI, BB); 1217 1218 // F is called by a wrapped custom function with primitive shadows. So 1219 // its arguments and return value need conversion. 1220 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1221 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1222 ++ValAI; 1223 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1224 Value *Shadow = 1225 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1226 DFSF.ValShadowMap[&*ValAI] = Shadow; 1227 } 1228 Function::arg_iterator RetShadowAI = ShadowAI; 1229 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1230 if (ShouldTrackOrigins) { 1231 ValAI = F->arg_begin(); 1232 ++ValAI; 1233 Function::arg_iterator OriginAI = ShadowAI; 1234 if (!RetType->isVoidTy()) 1235 ++OriginAI; 1236 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1237 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1238 } 1239 } 1240 DFSanVisitor(DFSF).visitCallInst(*CI); 1241 if (!RetType->isVoidTy()) { 1242 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1243 DFSF.getShadow(RI->getReturnValue()), RI); 1244 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1245 if (ShouldTrackOrigins) { 1246 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1247 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1248 } 1249 } 1250 } 1251 1252 return cast<Constant>(C.getCallee()); 1253 } 1254 1255 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1256 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1257 { 1258 AttributeList AL; 1259 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1260 Attribute::NoUnwind); 1261 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1262 Attribute::ReadNone); 1263 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1264 Attribute::ZExt); 1265 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1266 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1267 DFSanUnionFn = 1268 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1269 } 1270 { 1271 AttributeList AL; 1272 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1273 Attribute::NoUnwind); 1274 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1275 Attribute::ReadNone); 1276 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1277 Attribute::ZExt); 1278 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1279 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1280 DFSanCheckedUnionFn = 1281 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1282 } 1283 { 1284 AttributeList AL; 1285 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1286 Attribute::NoUnwind); 1287 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1288 Attribute::ReadOnly); 1289 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1290 Attribute::ZExt); 1291 DFSanUnionLoadFn = 1292 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1293 } 1294 { 1295 AttributeList AL; 1296 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1297 Attribute::NoUnwind); 1298 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1299 Attribute::ReadOnly); 1300 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1301 Attribute::ZExt); 1302 DFSanUnionLoadFastLabelsFn = Mod->getOrInsertFunction( 1303 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1304 } 1305 { 1306 AttributeList AL; 1307 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1308 Attribute::NoUnwind); 1309 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1310 Attribute::ReadOnly); 1311 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1312 Attribute::ZExt); 1313 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1314 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1315 } 1316 DFSanUnimplementedFn = 1317 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1318 { 1319 AttributeList AL; 1320 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1321 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1322 DFSanSetLabelFn = 1323 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1324 } 1325 DFSanNonzeroLabelFn = 1326 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1327 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1328 DFSanVarargWrapperFnTy); 1329 { 1330 AttributeList AL; 1331 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1332 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1333 Attribute::ZExt); 1334 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1335 DFSanChainOriginFnTy, AL); 1336 } 1337 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1338 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1339 1340 { 1341 AttributeList AL; 1342 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1343 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1344 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1345 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1346 } 1347 1348 DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts()); 1349 DFSanRuntimeFunctions.insert( 1350 DFSanCheckedUnionFn.getCallee()->stripPointerCasts()); 1351 DFSanRuntimeFunctions.insert( 1352 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1353 DFSanRuntimeFunctions.insert( 1354 DFSanUnionLoadFastLabelsFn.getCallee()->stripPointerCasts()); 1355 DFSanRuntimeFunctions.insert( 1356 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1357 DFSanRuntimeFunctions.insert( 1358 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1359 DFSanRuntimeFunctions.insert( 1360 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1361 DFSanRuntimeFunctions.insert( 1362 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1363 DFSanRuntimeFunctions.insert( 1364 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1365 DFSanRuntimeFunctions.insert( 1366 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1367 DFSanRuntimeFunctions.insert( 1368 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1369 DFSanRuntimeFunctions.insert( 1370 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1371 DFSanRuntimeFunctions.insert( 1372 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1373 DFSanRuntimeFunctions.insert( 1374 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1375 DFSanRuntimeFunctions.insert( 1376 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1377 DFSanRuntimeFunctions.insert( 1378 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1379 } 1380 1381 // Initializes event callback functions and declare them in the module 1382 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1383 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1384 DFSanLoadStoreCallbackFnTy); 1385 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1386 DFSanLoadStoreCallbackFnTy); 1387 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1388 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1389 DFSanCmpCallbackFn = 1390 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1391 } 1392 1393 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1394 // These variables can be used: 1395 // - by the runtime (to discover what the shadow width was, during 1396 // compilation) 1397 // - in testing (to avoid hardcoding the shadow width and type but instead 1398 // extract them by pattern matching) 1399 Type *IntTy = Type::getInt32Ty(*Ctx); 1400 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1401 return new GlobalVariable( 1402 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1403 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1404 }); 1405 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1406 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1407 GlobalValue::WeakODRLinkage, 1408 ConstantInt::get(IntTy, ShadowWidthBytes), 1409 "__dfsan_shadow_width_bytes"); 1410 }); 1411 } 1412 1413 bool DataFlowSanitizer::runImpl(Module &M) { 1414 init(M); 1415 1416 if (ABIList.isIn(M, "skip")) 1417 return false; 1418 1419 const unsigned InitialGlobalSize = M.global_size(); 1420 const unsigned InitialModuleSize = M.size(); 1421 1422 bool Changed = false; 1423 1424 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1425 Type *Ty) -> Constant * { 1426 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1427 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1428 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1429 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1430 } 1431 return C; 1432 }; 1433 1434 // These globals must be kept in sync with the ones in dfsan.cpp. 1435 ArgTLS = 1436 GetOrInsertGlobal("__dfsan_arg_tls", 1437 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1438 RetvalTLS = GetOrInsertGlobal( 1439 "__dfsan_retval_tls", 1440 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1441 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1442 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1443 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1444 1445 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1446 Changed = true; 1447 return new GlobalVariable( 1448 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1449 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1450 "__dfsan_track_origins"); 1451 }); 1452 1453 injectMetadataGlobals(M); 1454 1455 ExternalShadowMask = 1456 Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy); 1457 1458 initializeCallbackFunctions(M); 1459 initializeRuntimeFunctions(M); 1460 1461 std::vector<Function *> FnsToInstrument; 1462 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1463 for (Function &F : M) 1464 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1465 FnsToInstrument.push_back(&F); 1466 1467 // Give function aliases prefixes when necessary, and build wrappers where the 1468 // instrumentedness is inconsistent. 1469 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1470 AI != AE;) { 1471 GlobalAlias *GA = &*AI; 1472 ++AI; 1473 // Don't stop on weak. We assume people aren't playing games with the 1474 // instrumentedness of overridden weak aliases. 1475 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1476 if (!F) 1477 continue; 1478 1479 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1480 if (GAInst && FInst) { 1481 addGlobalNamePrefix(GA); 1482 } else if (GAInst != FInst) { 1483 // Non-instrumented alias of an instrumented function, or vice versa. 1484 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1485 // below will take care of instrumenting it. 1486 Function *NewF = 1487 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1488 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1489 NewF->takeName(GA); 1490 GA->eraseFromParent(); 1491 FnsToInstrument.push_back(NewF); 1492 } 1493 } 1494 1495 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1496 .addAttribute(Attribute::ReadNone); 1497 1498 // First, change the ABI of every function in the module. ABI-listed 1499 // functions keep their original ABI and get a wrapper function. 1500 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1501 FE = FnsToInstrument.end(); 1502 FI != FE; ++FI) { 1503 Function &F = **FI; 1504 FunctionType *FT = F.getFunctionType(); 1505 1506 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1507 FT->getReturnType()->isVoidTy()); 1508 1509 if (isInstrumented(&F)) { 1510 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1511 // easily identify cases of mismatching ABIs. 1512 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1513 FunctionType *NewFT = getArgsFunctionType(FT); 1514 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1515 F.getAddressSpace(), "", &M); 1516 NewF->copyAttributesFrom(&F); 1517 NewF->removeAttributes( 1518 AttributeList::ReturnIndex, 1519 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1520 for (Function::arg_iterator FArg = F.arg_begin(), 1521 NewFArg = NewF->arg_begin(), 1522 FArgEnd = F.arg_end(); 1523 FArg != FArgEnd; ++FArg, ++NewFArg) { 1524 FArg->replaceAllUsesWith(&*NewFArg); 1525 } 1526 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1527 1528 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1529 UI != UE;) { 1530 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1531 ++UI; 1532 if (BA) { 1533 BA->replaceAllUsesWith( 1534 BlockAddress::get(NewF, BA->getBasicBlock())); 1535 delete BA; 1536 } 1537 } 1538 F.replaceAllUsesWith( 1539 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1540 NewF->takeName(&F); 1541 F.eraseFromParent(); 1542 *FI = NewF; 1543 addGlobalNamePrefix(NewF); 1544 } else { 1545 addGlobalNamePrefix(&F); 1546 } 1547 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1548 // Build a wrapper function for F. The wrapper simply calls F, and is 1549 // added to FnsToInstrument so that any instrumentation according to its 1550 // WrapperKind is done in the second pass below. 1551 FunctionType *NewFT = 1552 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1553 1554 // If the function being wrapped has local linkage, then preserve the 1555 // function's linkage in the wrapper function. 1556 GlobalValue::LinkageTypes WrapperLinkage = 1557 F.hasLocalLinkage() ? F.getLinkage() 1558 : GlobalValue::LinkOnceODRLinkage; 1559 1560 Function *NewF = buildWrapperFunction( 1561 &F, 1562 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1563 std::string(F.getName()), 1564 WrapperLinkage, NewFT); 1565 if (getInstrumentedABI() == IA_TLS) 1566 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1567 1568 Value *WrappedFnCst = 1569 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1570 F.replaceAllUsesWith(WrappedFnCst); 1571 1572 UnwrappedFnMap[WrappedFnCst] = &F; 1573 *FI = NewF; 1574 1575 if (!F.isDeclaration()) { 1576 // This function is probably defining an interposition of an 1577 // uninstrumented function and hence needs to keep the original ABI. 1578 // But any functions it may call need to use the instrumented ABI, so 1579 // we instrument it in a mode which preserves the original ABI. 1580 FnsWithNativeABI.insert(&F); 1581 1582 // This code needs to rebuild the iterators, as they may be invalidated 1583 // by the push_back, taking care that the new range does not include 1584 // any functions added by this code. 1585 size_t N = FI - FnsToInstrument.begin(), 1586 Count = FE - FnsToInstrument.begin(); 1587 FnsToInstrument.push_back(&F); 1588 FI = FnsToInstrument.begin() + N; 1589 FE = FnsToInstrument.begin() + Count; 1590 } 1591 // Hopefully, nobody will try to indirectly call a vararg 1592 // function... yet. 1593 } else if (FT->isVarArg()) { 1594 UnwrappedFnMap[&F] = &F; 1595 *FI = nullptr; 1596 } 1597 } 1598 1599 for (Function *F : FnsToInstrument) { 1600 if (!F || F->isDeclaration()) 1601 continue; 1602 1603 removeUnreachableBlocks(*F); 1604 1605 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1606 1607 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1608 // Build a copy of the list before iterating over it. 1609 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1610 1611 for (BasicBlock *BB : BBList) { 1612 Instruction *Inst = &BB->front(); 1613 while (true) { 1614 // DFSanVisitor may split the current basic block, changing the current 1615 // instruction's next pointer and moving the next instruction to the 1616 // tail block from which we should continue. 1617 Instruction *Next = Inst->getNextNode(); 1618 // DFSanVisitor may delete Inst, so keep track of whether it was a 1619 // terminator. 1620 bool IsTerminator = Inst->isTerminator(); 1621 if (!DFSF.SkipInsts.count(Inst)) 1622 DFSanVisitor(DFSF).visit(Inst); 1623 if (IsTerminator) 1624 break; 1625 Inst = Next; 1626 } 1627 } 1628 1629 // We will not necessarily be able to compute the shadow for every phi node 1630 // until we have visited every block. Therefore, the code that handles phi 1631 // nodes adds them to the PHIFixups list so that they can be properly 1632 // handled here. 1633 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1634 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1635 ++Val) { 1636 P.ShadowPhi->setIncomingValue( 1637 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1638 if (P.OriginPhi) 1639 P.OriginPhi->setIncomingValue( 1640 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1641 } 1642 } 1643 1644 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1645 // places (i.e. instructions in basic blocks we haven't even begun visiting 1646 // yet). To make our life easier, do this work in a pass after the main 1647 // instrumentation. 1648 if (ClDebugNonzeroLabels) { 1649 for (Value *V : DFSF.NonZeroChecks) { 1650 Instruction *Pos; 1651 if (Instruction *I = dyn_cast<Instruction>(V)) 1652 Pos = I->getNextNode(); 1653 else 1654 Pos = &DFSF.F->getEntryBlock().front(); 1655 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1656 Pos = Pos->getNextNode(); 1657 IRBuilder<> IRB(Pos); 1658 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1659 Value *Ne = 1660 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1661 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1662 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1663 IRBuilder<> ThenIRB(BI); 1664 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1665 } 1666 } 1667 } 1668 1669 return Changed || !FnsToInstrument.empty() || 1670 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1671 } 1672 1673 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1674 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1675 if (ArgOffset) 1676 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1677 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1678 "_dfsarg"); 1679 } 1680 1681 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1682 return IRB.CreatePointerCast( 1683 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1684 } 1685 1686 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1687 1688 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1689 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1690 "_dfsarg_o"); 1691 } 1692 1693 Value *DFSanFunction::getOrigin(Value *V) { 1694 assert(DFS.shouldTrackOrigins()); 1695 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1696 return DFS.ZeroOrigin; 1697 Value *&Origin = ValOriginMap[V]; 1698 if (!Origin) { 1699 if (Argument *A = dyn_cast<Argument>(V)) { 1700 if (IsNativeABI) 1701 return DFS.ZeroOrigin; 1702 switch (IA) { 1703 case DataFlowSanitizer::IA_TLS: { 1704 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1705 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1706 IRBuilder<> IRB(ArgOriginTLSPos); 1707 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1708 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1709 } else { 1710 // Overflow 1711 Origin = DFS.ZeroOrigin; 1712 } 1713 break; 1714 } 1715 case DataFlowSanitizer::IA_Args: { 1716 Origin = DFS.ZeroOrigin; 1717 break; 1718 } 1719 } 1720 } else { 1721 Origin = DFS.ZeroOrigin; 1722 } 1723 } 1724 return Origin; 1725 } 1726 1727 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1728 if (!DFS.shouldTrackOrigins()) 1729 return; 1730 assert(!ValOriginMap.count(I)); 1731 assert(Origin->getType() == DFS.OriginTy); 1732 ValOriginMap[I] = Origin; 1733 } 1734 1735 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1736 unsigned ArgOffset = 0; 1737 const DataLayout &DL = F->getParent()->getDataLayout(); 1738 for (auto &FArg : F->args()) { 1739 if (!FArg.getType()->isSized()) { 1740 if (A == &FArg) 1741 break; 1742 continue; 1743 } 1744 1745 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1746 if (A != &FArg) { 1747 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1748 if (ArgOffset > ArgTLSSize) 1749 break; // ArgTLS overflows, uses a zero shadow. 1750 continue; 1751 } 1752 1753 if (ArgOffset + Size > ArgTLSSize) 1754 break; // ArgTLS overflows, uses a zero shadow. 1755 1756 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1757 IRBuilder<> IRB(ArgTLSPos); 1758 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1759 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1760 ShadowTLSAlignment); 1761 } 1762 1763 return DFS.getZeroShadow(A); 1764 } 1765 1766 Value *DFSanFunction::getShadow(Value *V) { 1767 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1768 return DFS.getZeroShadow(V); 1769 Value *&Shadow = ValShadowMap[V]; 1770 if (!Shadow) { 1771 if (Argument *A = dyn_cast<Argument>(V)) { 1772 if (IsNativeABI) 1773 return DFS.getZeroShadow(V); 1774 switch (IA) { 1775 case DataFlowSanitizer::IA_TLS: { 1776 Shadow = getShadowForTLSArgument(A); 1777 break; 1778 } 1779 case DataFlowSanitizer::IA_Args: { 1780 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1781 Function::arg_iterator Arg = F->arg_begin(); 1782 std::advance(Arg, ArgIdx); 1783 Shadow = &*Arg; 1784 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1785 break; 1786 } 1787 } 1788 NonZeroChecks.push_back(Shadow); 1789 } else { 1790 Shadow = DFS.getZeroShadow(V); 1791 } 1792 } 1793 return Shadow; 1794 } 1795 1796 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1797 assert(!ValShadowMap.count(I)); 1798 assert(DFS.shouldTrackFieldsAndIndices() || 1799 Shadow->getType() == DFS.PrimitiveShadowTy); 1800 ValShadowMap[I] = Shadow; 1801 } 1802 1803 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1804 // Returns Addr & shadow_mask 1805 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1806 Value *ShadowPtrMaskValue; 1807 if (DFSanRuntimeShadowMask) 1808 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1809 else 1810 ShadowPtrMaskValue = ShadowPtrMask; 1811 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1812 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1813 } 1814 1815 std::pair<Value *, Value *> 1816 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1817 Instruction *Pos) { 1818 // Returns ((Addr & shadow_mask) + origin_base) & ~4UL 1819 IRBuilder<> IRB(Pos); 1820 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1821 Value *ShadowPtr = getShadowAddress(Addr, Pos, ShadowOffset); 1822 Value *OriginPtr = nullptr; 1823 if (shouldTrackOrigins()) { 1824 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase); 1825 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1826 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1827 // So Mask is unnecessary. 1828 if (Alignment < MinOriginAlignment) { 1829 uint64_t Mask = MinOriginAlignment.value() - 1; 1830 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1831 } 1832 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1833 } 1834 return {ShadowPtr, OriginPtr}; 1835 } 1836 1837 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1838 Value *ShadowOffset) { 1839 IRBuilder<> IRB(Pos); 1840 1841 if (!ShadowPtrMul->isOne()) 1842 ShadowOffset = IRB.CreateMul(ShadowOffset, ShadowPtrMul); 1843 1844 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1845 } 1846 1847 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1848 // Returns (Addr & shadow_mask) x 2 1849 IRBuilder<> IRB(Pos); 1850 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1851 return getShadowAddress(Addr, Pos, ShadowOffset); 1852 } 1853 1854 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1855 Instruction *Pos) { 1856 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1857 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1858 } 1859 1860 // Generates IR to compute the union of the two given shadows, inserting it 1861 // before Pos. The combined value is with primitive type. 1862 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1863 if (DFS.isZeroShadow(V1)) 1864 return collapseToPrimitiveShadow(V2, Pos); 1865 if (DFS.isZeroShadow(V2)) 1866 return collapseToPrimitiveShadow(V1, Pos); 1867 if (V1 == V2) 1868 return collapseToPrimitiveShadow(V1, Pos); 1869 1870 auto V1Elems = ShadowElements.find(V1); 1871 auto V2Elems = ShadowElements.find(V2); 1872 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1873 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1874 V2Elems->second.begin(), V2Elems->second.end())) { 1875 return collapseToPrimitiveShadow(V1, Pos); 1876 } 1877 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1878 V1Elems->second.begin(), V1Elems->second.end())) { 1879 return collapseToPrimitiveShadow(V2, Pos); 1880 } 1881 } else if (V1Elems != ShadowElements.end()) { 1882 if (V1Elems->second.count(V2)) 1883 return collapseToPrimitiveShadow(V1, Pos); 1884 } else if (V2Elems != ShadowElements.end()) { 1885 if (V2Elems->second.count(V1)) 1886 return collapseToPrimitiveShadow(V2, Pos); 1887 } 1888 1889 auto Key = std::make_pair(V1, V2); 1890 if (V1 > V2) 1891 std::swap(Key.first, Key.second); 1892 CachedShadow &CCS = CachedShadows[Key]; 1893 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1894 return CCS.Shadow; 1895 1896 // Converts inputs shadows to shadows with primitive types. 1897 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1898 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1899 1900 IRBuilder<> IRB(Pos); 1901 if (DFS.hasFastLabelsEnabled()) { 1902 CCS.Block = Pos->getParent(); 1903 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1904 } else if (AvoidNewBlocks) { 1905 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1906 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1907 Call->addParamAttr(0, Attribute::ZExt); 1908 Call->addParamAttr(1, Attribute::ZExt); 1909 1910 CCS.Block = Pos->getParent(); 1911 CCS.Shadow = Call; 1912 } else { 1913 BasicBlock *Head = Pos->getParent(); 1914 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1915 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1916 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1917 IRBuilder<> ThenIRB(BI); 1918 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1919 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1920 Call->addParamAttr(0, Attribute::ZExt); 1921 Call->addParamAttr(1, Attribute::ZExt); 1922 1923 BasicBlock *Tail = BI->getSuccessor(0); 1924 PHINode *Phi = 1925 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1926 Phi->addIncoming(Call, Call->getParent()); 1927 Phi->addIncoming(PV1, Head); 1928 1929 CCS.Block = Tail; 1930 CCS.Shadow = Phi; 1931 } 1932 1933 std::set<Value *> UnionElems; 1934 if (V1Elems != ShadowElements.end()) { 1935 UnionElems = V1Elems->second; 1936 } else { 1937 UnionElems.insert(V1); 1938 } 1939 if (V2Elems != ShadowElements.end()) { 1940 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1941 } else { 1942 UnionElems.insert(V2); 1943 } 1944 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1945 1946 return CCS.Shadow; 1947 } 1948 1949 // A convenience function which folds the shadows of each of the operands 1950 // of the provided instruction Inst, inserting the IR before Inst. Returns 1951 // the computed union Value. 1952 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1953 if (Inst->getNumOperands() == 0) 1954 return DFS.getZeroShadow(Inst); 1955 1956 Value *Shadow = getShadow(Inst->getOperand(0)); 1957 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1958 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1959 1960 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1961 } 1962 1963 void DFSanVisitor::visitInstOperands(Instruction &I) { 1964 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1965 DFSF.setShadow(&I, CombinedShadow); 1966 visitInstOperandOrigins(I); 1967 } 1968 1969 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1970 const std::vector<Value *> &Origins, 1971 Instruction *Pos, ConstantInt *Zero) { 1972 assert(Shadows.size() == Origins.size()); 1973 size_t Size = Origins.size(); 1974 if (Size == 0) 1975 return DFS.ZeroOrigin; 1976 Value *Origin = nullptr; 1977 if (!Zero) 1978 Zero = DFS.ZeroPrimitiveShadow; 1979 for (size_t I = 0; I != Size; ++I) { 1980 Value *OpOrigin = Origins[I]; 1981 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1982 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1983 continue; 1984 if (!Origin) { 1985 Origin = OpOrigin; 1986 continue; 1987 } 1988 Value *OpShadow = Shadows[I]; 1989 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1990 IRBuilder<> IRB(Pos); 1991 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1992 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1993 } 1994 return Origin ? Origin : DFS.ZeroOrigin; 1995 } 1996 1997 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1998 size_t Size = Inst->getNumOperands(); 1999 std::vector<Value *> Shadows(Size); 2000 std::vector<Value *> Origins(Size); 2001 for (unsigned I = 0; I != Size; ++I) { 2002 Shadows[I] = getShadow(Inst->getOperand(I)); 2003 Origins[I] = getOrigin(Inst->getOperand(I)); 2004 } 2005 return combineOrigins(Shadows, Origins, Inst); 2006 } 2007 2008 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2009 if (!DFSF.DFS.shouldTrackOrigins()) 2010 return; 2011 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2012 DFSF.setOrigin(&I, CombinedOrigin); 2013 } 2014 2015 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2016 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2017 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2018 } 2019 2020 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2021 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2022 return Align(std::max(MinOriginAlignment, Alignment)); 2023 } 2024 2025 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2026 Align InstAlignment) { 2027 assert(Size != 0); 2028 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2029 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2030 // load its origin aligned at 4. If not, although origins may be lost, it 2031 // should not happen very often. 2032 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2033 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2034 // * Otherwise we use __dfsan_load_label_and_origin. 2035 // This should ensure that common cases run efficiently. 2036 if (Size <= 2) 2037 return false; 2038 2039 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2040 if (Alignment >= MinOriginAlignment && 2041 Size % (64 / DFS.ShadowWidthBits) == 0) 2042 return false; 2043 2044 return true; 2045 } 2046 2047 std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast( 2048 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2049 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 2050 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2051 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2052 2053 assert(Size >= 4 && "Not large enough load size for fast path!"); 2054 2055 // Used for origin tracking. 2056 std::vector<Value *> Shadows; 2057 std::vector<Value *> Origins; 2058 2059 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2060 // but this function is only used in a subset of cases that make it possible 2061 // to optimize the instrumentation. 2062 // 2063 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2064 // per byte) is either: 2065 // - a multiple of 8 (common) 2066 // - equal to 4 (only for load32 in fast-8 mode) 2067 // 2068 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2069 // other cases, we use a 64-bit integer to hold the wide shadow. 2070 Type *WideShadowTy = 2071 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2072 2073 IRBuilder<> IRB(Pos); 2074 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2075 Value *CombinedWideShadow = 2076 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2077 2078 if (ShouldTrackOrigins) { 2079 Shadows.push_back(CombinedWideShadow); 2080 Origins.push_back(FirstOrigin); 2081 } 2082 2083 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2084 // then OR individual shadows within the combined WideShadow by binary ORing. 2085 // This is fewer instructions than ORing shadows individually, since it 2086 // needs logN shift/or instructions (N being the bytes of the combined wide 2087 // shadow). 2088 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2089 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2090 2091 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2092 ByteOfs += BytesPerWideShadow) { 2093 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 2094 ConstantInt::get(DFS.IntptrTy, 1)); 2095 Value *NextWideShadow = 2096 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2097 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2098 if (ShouldTrackOrigins) { 2099 Shadows.push_back(NextWideShadow); 2100 OriginAddr = IRB.CreateGEP(DFS.OriginTy, OriginAddr, 2101 ConstantInt::get(DFS.IntptrTy, 1)); 2102 Origins.push_back( 2103 IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign)); 2104 } 2105 } 2106 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2107 Width >>= 1) { 2108 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2109 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2110 } 2111 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2112 ShouldTrackOrigins 2113 ? combineOrigins(Shadows, Origins, Pos, 2114 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2115 : DFS.ZeroOrigin}; 2116 } 2117 2118 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 2119 Align ShadowAlign, 2120 Instruction *Pos) { 2121 // Fast path for the common case where each byte has identical shadow: load 2122 // shadow 64 (or 32) bits at a time, fall out to a __dfsan_union_load call if 2123 // any shadow is non-equal. 2124 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 2125 IRBuilder<> FallbackIRB(FallbackBB); 2126 CallInst *FallbackCall = FallbackIRB.CreateCall( 2127 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2128 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2129 2130 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2131 assert(Size >= 4 && "Not large enough load size for fast path!"); 2132 2133 // Same as in loadFast16AShadowsFast. In the case of load32, we can fit the 2134 // wide shadow in a 32-bit integer instead. 2135 Type *WideShadowTy = 2136 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2137 2138 // Compare each of the shadows stored in the loaded 64 bits to each other, 2139 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 2140 IRBuilder<> IRB(Pos); 2141 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2142 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2143 Value *WideShadow = 2144 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2145 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 2146 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 2147 Value *ShrShadow = 2148 IRB.CreateLShr(WideShadow, WideShadowBitWidth - DFS.ShadowWidthBits); 2149 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 2150 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 2151 2152 BasicBlock *Head = Pos->getParent(); 2153 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 2154 2155 if (DomTreeNode *OldNode = DT.getNode(Head)) { 2156 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 2157 2158 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 2159 for (auto *Child : Children) 2160 DT.changeImmediateDominator(Child, NewNode); 2161 } 2162 2163 // In the following code LastBr will refer to the previous basic block's 2164 // conditional branch instruction, whose true successor is fixed up to point 2165 // to the next block during the loop below or to the tail after the final 2166 // iteration. 2167 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 2168 ReplaceInstWithInst(Head->getTerminator(), LastBr); 2169 DT.addNewBlock(FallbackBB, Head); 2170 2171 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2172 2173 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2174 ByteOfs += BytesPerWideShadow) { 2175 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 2176 DT.addNewBlock(NextBB, LastBr->getParent()); 2177 IRBuilder<> NextIRB(NextBB); 2178 WideAddr = NextIRB.CreateGEP(WideShadowTy, WideAddr, 2179 ConstantInt::get(DFS.IntptrTy, 1)); 2180 Value *NextWideShadow = 2181 NextIRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2182 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 2183 LastBr->setSuccessor(0, NextBB); 2184 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 2185 } 2186 2187 LastBr->setSuccessor(0, Tail); 2188 FallbackIRB.CreateBr(Tail); 2189 PHINode *Shadow = 2190 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 2191 Shadow->addIncoming(FallbackCall, FallbackBB); 2192 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 2193 return Shadow; 2194 } 2195 2196 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 2197 // Addr has alignment Align, and take the union of each of those shadows. The 2198 // returned shadow always has primitive type. 2199 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2200 uint64_t Size, 2201 Align InstAlignment, 2202 Instruction *Pos) { 2203 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2204 2205 // Non-escaped loads. 2206 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2207 const auto SI = AllocaShadowMap.find(AI); 2208 if (SI != AllocaShadowMap.end()) { 2209 IRBuilder<> IRB(Pos); 2210 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2211 const auto OI = AllocaOriginMap.find(AI); 2212 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2213 return {ShadowLI, ShouldTrackOrigins 2214 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2215 : nullptr}; 2216 } 2217 } 2218 2219 // Load from constant addresses. 2220 SmallVector<const Value *, 2> Objs; 2221 getUnderlyingObjects(Addr, Objs); 2222 bool AllConstants = true; 2223 for (const Value *Obj : Objs) { 2224 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2225 continue; 2226 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2227 continue; 2228 2229 AllConstants = false; 2230 break; 2231 } 2232 if (AllConstants) 2233 return {DFS.ZeroPrimitiveShadow, 2234 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2235 2236 if (Size == 0) 2237 return {DFS.ZeroPrimitiveShadow, 2238 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2239 2240 // Use callback to load if this is not an optimizable case for origin 2241 // tracking. 2242 if (ShouldTrackOrigins && 2243 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2244 IRBuilder<> IRB(Pos); 2245 CallInst *Call = 2246 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2247 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2248 ConstantInt::get(DFS.IntptrTy, Size)}); 2249 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2250 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2251 DFS.PrimitiveShadowTy), 2252 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2253 } 2254 2255 // Other cases that support loading shadows or origins in a fast way. 2256 Value *ShadowAddr, *OriginAddr; 2257 std::tie(ShadowAddr, OriginAddr) = 2258 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2259 2260 const Align ShadowAlign = getShadowAlign(InstAlignment); 2261 const Align OriginAlign = getOriginAlign(InstAlignment); 2262 Value *Origin = nullptr; 2263 if (ShouldTrackOrigins) { 2264 IRBuilder<> IRB(Pos); 2265 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2266 } 2267 2268 // When the byte size is small enough, we can load the shadow directly with 2269 // just a few instructions. 2270 switch (Size) { 2271 case 1: { 2272 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2273 LI->setAlignment(ShadowAlign); 2274 return {LI, Origin}; 2275 } 2276 case 2: { 2277 IRBuilder<> IRB(Pos); 2278 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2279 ConstantInt::get(DFS.IntptrTy, 1)); 2280 Value *Load = 2281 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2282 Value *Load1 = 2283 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2284 return {combineShadows(Load, Load1, Pos), Origin}; 2285 } 2286 } 2287 uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2288 bool HasSizeForFastPath = ShadowSize % 8 == 0 || ShadowSize == 4; 2289 bool HasFastLabelsEnabled = DFS.hasFastLabelsEnabled(); 2290 2291 if (HasFastLabelsEnabled && HasSizeForFastPath) 2292 return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2293 OriginAlign, Origin, Pos); 2294 2295 if (!AvoidNewBlocks && HasSizeForFastPath) 2296 return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin}; 2297 2298 IRBuilder<> IRB(Pos); 2299 FunctionCallee &UnionLoadFn = HasFastLabelsEnabled 2300 ? DFS.DFSanUnionLoadFastLabelsFn 2301 : DFS.DFSanUnionLoadFn; 2302 CallInst *FallbackCall = IRB.CreateCall( 2303 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2304 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2305 return {FallbackCall, Origin}; 2306 } 2307 2308 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2309 switch (AO) { 2310 case AtomicOrdering::NotAtomic: 2311 return AtomicOrdering::NotAtomic; 2312 case AtomicOrdering::Unordered: 2313 case AtomicOrdering::Monotonic: 2314 case AtomicOrdering::Acquire: 2315 return AtomicOrdering::Acquire; 2316 case AtomicOrdering::Release: 2317 case AtomicOrdering::AcquireRelease: 2318 return AtomicOrdering::AcquireRelease; 2319 case AtomicOrdering::SequentiallyConsistent: 2320 return AtomicOrdering::SequentiallyConsistent; 2321 } 2322 llvm_unreachable("Unknown ordering"); 2323 } 2324 2325 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2326 auto &DL = LI.getModule()->getDataLayout(); 2327 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2328 if (Size == 0) { 2329 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2330 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2331 return; 2332 } 2333 2334 // When an application load is atomic, increase atomic ordering between 2335 // atomic application loads and stores to ensure happen-before order; load 2336 // shadow data after application data; store zero shadow data before 2337 // application data. This ensure shadow loads return either labels of the 2338 // initial application data or zeros. 2339 if (LI.isAtomic()) 2340 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2341 2342 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2343 std::vector<Value *> Shadows; 2344 std::vector<Value *> Origins; 2345 Value *PrimitiveShadow, *Origin; 2346 std::tie(PrimitiveShadow, Origin) = 2347 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2348 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2349 if (ShouldTrackOrigins) { 2350 Shadows.push_back(PrimitiveShadow); 2351 Origins.push_back(Origin); 2352 } 2353 if (ClCombinePointerLabelsOnLoad) { 2354 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2355 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2356 if (ShouldTrackOrigins) { 2357 Shadows.push_back(PtrShadow); 2358 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2359 } 2360 } 2361 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2362 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2363 2364 Value *Shadow = 2365 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2366 DFSF.setShadow(&LI, Shadow); 2367 2368 if (ShouldTrackOrigins) { 2369 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2370 } 2371 2372 if (ClEventCallbacks) { 2373 IRBuilder<> IRB(Pos); 2374 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2375 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2376 } 2377 } 2378 2379 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2380 if (!DFS.shouldTrackOrigins()) 2381 return V; 2382 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2383 } 2384 2385 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2386 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2387 const DataLayout &DL = F->getParent()->getDataLayout(); 2388 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2389 if (IntptrSize == OriginSize) 2390 return Origin; 2391 assert(IntptrSize == OriginSize * 2); 2392 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2393 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2394 } 2395 2396 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2397 Value *StoreOriginAddr, 2398 uint64_t StoreOriginSize, Align Alignment) { 2399 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2400 const DataLayout &DL = F->getParent()->getDataLayout(); 2401 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2402 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2403 assert(IntptrAlignment >= MinOriginAlignment); 2404 assert(IntptrSize >= OriginSize); 2405 2406 unsigned Ofs = 0; 2407 Align CurrentAlignment = Alignment; 2408 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2409 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2410 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2411 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2412 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2413 Value *Ptr = 2414 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2415 : IntptrStoreOriginPtr; 2416 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2417 Ofs += IntptrSize / OriginSize; 2418 CurrentAlignment = IntptrAlignment; 2419 } 2420 } 2421 2422 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2423 ++I) { 2424 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2425 : StoreOriginAddr; 2426 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2427 CurrentAlignment = MinOriginAlignment; 2428 } 2429 } 2430 2431 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2432 const Twine &Name) { 2433 Type *VTy = V->getType(); 2434 assert(VTy->isIntegerTy()); 2435 if (VTy->getIntegerBitWidth() == 1) 2436 // Just converting a bool to a bool, so do nothing. 2437 return V; 2438 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2439 } 2440 2441 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2442 Value *Shadow, Value *Origin, 2443 Value *StoreOriginAddr, Align InstAlignment) { 2444 // Do not write origins for zero shadows because we do not trace origins for 2445 // untainted sinks. 2446 const Align OriginAlignment = getOriginAlign(InstAlignment); 2447 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2448 IRBuilder<> IRB(Pos); 2449 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2450 if (!ConstantShadow->isZeroValue()) 2451 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2452 OriginAlignment); 2453 return; 2454 } 2455 2456 if (shouldInstrumentWithCall()) { 2457 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2458 {CollapsedShadow, 2459 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2460 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2461 } else { 2462 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2463 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2464 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2465 IRBuilder<> IRBNew(CheckTerm); 2466 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2467 OriginAlignment); 2468 ++NumOriginStores; 2469 } 2470 } 2471 2472 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2473 Align ShadowAlign, 2474 Instruction *Pos) { 2475 IRBuilder<> IRB(Pos); 2476 IntegerType *ShadowTy = 2477 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2478 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2479 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2480 Value *ExtShadowAddr = 2481 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2482 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2483 // Do not write origins for 0 shadows because we do not trace origins for 2484 // untainted sinks. 2485 } 2486 2487 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2488 Align InstAlignment, 2489 Value *PrimitiveShadow, 2490 Value *Origin, 2491 Instruction *Pos) { 2492 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2493 2494 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2495 const auto SI = AllocaShadowMap.find(AI); 2496 if (SI != AllocaShadowMap.end()) { 2497 IRBuilder<> IRB(Pos); 2498 IRB.CreateStore(PrimitiveShadow, SI->second); 2499 2500 // Do not write origins for 0 shadows because we do not trace origins for 2501 // untainted sinks. 2502 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2503 const auto OI = AllocaOriginMap.find(AI); 2504 assert(OI != AllocaOriginMap.end() && Origin); 2505 IRB.CreateStore(Origin, OI->second); 2506 } 2507 return; 2508 } 2509 } 2510 2511 const Align ShadowAlign = getShadowAlign(InstAlignment); 2512 if (DFS.isZeroShadow(PrimitiveShadow)) { 2513 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2514 return; 2515 } 2516 2517 IRBuilder<> IRB(Pos); 2518 Value *ShadowAddr, *OriginAddr; 2519 std::tie(ShadowAddr, OriginAddr) = 2520 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2521 2522 const unsigned ShadowVecSize = 8; 2523 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2524 "Shadow vector is too large!"); 2525 2526 uint64_t Offset = 0; 2527 uint64_t LeftSize = Size; 2528 if (LeftSize >= ShadowVecSize) { 2529 auto *ShadowVecTy = 2530 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2531 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2532 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2533 ShadowVec = IRB.CreateInsertElement( 2534 ShadowVec, PrimitiveShadow, 2535 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2536 } 2537 Value *ShadowVecAddr = 2538 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2539 do { 2540 Value *CurShadowVecAddr = 2541 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2542 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2543 LeftSize -= ShadowVecSize; 2544 ++Offset; 2545 } while (LeftSize >= ShadowVecSize); 2546 Offset *= ShadowVecSize; 2547 } 2548 while (LeftSize > 0) { 2549 Value *CurShadowAddr = 2550 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2551 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2552 --LeftSize; 2553 ++Offset; 2554 } 2555 2556 if (ShouldTrackOrigins) { 2557 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2558 InstAlignment); 2559 } 2560 } 2561 2562 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2563 switch (AO) { 2564 case AtomicOrdering::NotAtomic: 2565 return AtomicOrdering::NotAtomic; 2566 case AtomicOrdering::Unordered: 2567 case AtomicOrdering::Monotonic: 2568 case AtomicOrdering::Release: 2569 return AtomicOrdering::Release; 2570 case AtomicOrdering::Acquire: 2571 case AtomicOrdering::AcquireRelease: 2572 return AtomicOrdering::AcquireRelease; 2573 case AtomicOrdering::SequentiallyConsistent: 2574 return AtomicOrdering::SequentiallyConsistent; 2575 } 2576 llvm_unreachable("Unknown ordering"); 2577 } 2578 2579 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2580 auto &DL = SI.getModule()->getDataLayout(); 2581 Value *Val = SI.getValueOperand(); 2582 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2583 if (Size == 0) 2584 return; 2585 2586 // When an application store is atomic, increase atomic ordering between 2587 // atomic application loads and stores to ensure happen-before order; load 2588 // shadow data after application data; store zero shadow data before 2589 // application data. This ensure shadow loads return either labels of the 2590 // initial application data or zeros. 2591 if (SI.isAtomic()) 2592 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2593 2594 const bool ShouldTrackOrigins = 2595 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2596 std::vector<Value *> Shadows; 2597 std::vector<Value *> Origins; 2598 2599 Value *Shadow = 2600 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2601 2602 if (ShouldTrackOrigins) { 2603 Shadows.push_back(Shadow); 2604 Origins.push_back(DFSF.getOrigin(Val)); 2605 } 2606 2607 Value *PrimitiveShadow; 2608 if (ClCombinePointerLabelsOnStore) { 2609 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2610 if (ShouldTrackOrigins) { 2611 Shadows.push_back(PtrShadow); 2612 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2613 } 2614 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2615 } else { 2616 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2617 } 2618 Value *Origin = nullptr; 2619 if (ShouldTrackOrigins) 2620 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2621 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2622 PrimitiveShadow, Origin, &SI); 2623 if (ClEventCallbacks) { 2624 IRBuilder<> IRB(&SI); 2625 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2626 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2627 } 2628 } 2629 2630 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2631 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2632 2633 Value *Val = I.getOperand(1); 2634 const auto &DL = I.getModule()->getDataLayout(); 2635 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2636 if (Size == 0) 2637 return; 2638 2639 // Conservatively set data at stored addresses and return with zero shadow to 2640 // prevent shadow data races. 2641 IRBuilder<> IRB(&I); 2642 Value *Addr = I.getOperand(0); 2643 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2644 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2645 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2646 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2647 } 2648 2649 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2650 visitCASOrRMW(I.getAlign(), I); 2651 // TODO: The ordering change follows MSan. It is possible not to change 2652 // ordering because we always set and use 0 shadows. 2653 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2654 } 2655 2656 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2657 visitCASOrRMW(I.getAlign(), I); 2658 // TODO: The ordering change follows MSan. It is possible not to change 2659 // ordering because we always set and use 0 shadows. 2660 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2661 } 2662 2663 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2664 visitInstOperands(UO); 2665 } 2666 2667 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2668 visitInstOperands(BO); 2669 } 2670 2671 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2672 2673 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2674 visitInstOperands(CI); 2675 if (ClEventCallbacks) { 2676 IRBuilder<> IRB(&CI); 2677 Value *CombinedShadow = DFSF.getShadow(&CI); 2678 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2679 } 2680 } 2681 2682 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2683 visitInstOperands(GEPI); 2684 } 2685 2686 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2687 visitInstOperands(I); 2688 } 2689 2690 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2691 visitInstOperands(I); 2692 } 2693 2694 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2695 visitInstOperands(I); 2696 } 2697 2698 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2699 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2700 visitInstOperands(I); 2701 return; 2702 } 2703 2704 IRBuilder<> IRB(&I); 2705 Value *Agg = I.getAggregateOperand(); 2706 Value *AggShadow = DFSF.getShadow(Agg); 2707 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2708 DFSF.setShadow(&I, ResShadow); 2709 visitInstOperandOrigins(I); 2710 } 2711 2712 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2713 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2714 visitInstOperands(I); 2715 return; 2716 } 2717 2718 IRBuilder<> IRB(&I); 2719 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2720 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2721 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2722 DFSF.setShadow(&I, Res); 2723 visitInstOperandOrigins(I); 2724 } 2725 2726 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2727 bool AllLoadsStores = true; 2728 for (User *U : I.users()) { 2729 if (isa<LoadInst>(U)) 2730 continue; 2731 2732 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2733 if (SI->getPointerOperand() == &I) 2734 continue; 2735 } 2736 2737 AllLoadsStores = false; 2738 break; 2739 } 2740 if (AllLoadsStores) { 2741 IRBuilder<> IRB(&I); 2742 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2743 if (DFSF.DFS.shouldTrackOrigins()) { 2744 DFSF.AllocaOriginMap[&I] = 2745 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2746 } 2747 } 2748 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2749 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2750 } 2751 2752 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2753 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2754 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2755 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2756 Value *ShadowSel = nullptr; 2757 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2758 std::vector<Value *> Shadows; 2759 std::vector<Value *> Origins; 2760 Value *TrueOrigin = 2761 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2762 Value *FalseOrigin = 2763 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2764 2765 if (isa<VectorType>(I.getCondition()->getType())) { 2766 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2767 FalseShadow, &I); 2768 if (ShouldTrackOrigins) { 2769 Shadows.push_back(TrueShadow); 2770 Shadows.push_back(FalseShadow); 2771 Origins.push_back(TrueOrigin); 2772 Origins.push_back(FalseOrigin); 2773 } 2774 } else { 2775 if (TrueShadow == FalseShadow) { 2776 ShadowSel = TrueShadow; 2777 if (ShouldTrackOrigins) { 2778 Shadows.push_back(TrueShadow); 2779 Origins.push_back(TrueOrigin); 2780 } 2781 } else { 2782 ShadowSel = 2783 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2784 if (ShouldTrackOrigins) { 2785 Shadows.push_back(ShadowSel); 2786 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2787 FalseOrigin, "", &I)); 2788 } 2789 } 2790 } 2791 DFSF.setShadow(&I, ClTrackSelectControlFlow 2792 ? DFSF.combineShadowsThenConvert( 2793 I.getType(), CondShadow, ShadowSel, &I) 2794 : ShadowSel); 2795 if (ShouldTrackOrigins) { 2796 if (ClTrackSelectControlFlow) { 2797 Shadows.push_back(CondShadow); 2798 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2799 } 2800 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2801 } 2802 } 2803 2804 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2805 IRBuilder<> IRB(&I); 2806 Value *ValShadow = DFSF.getShadow(I.getValue()); 2807 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2808 ? DFSF.getOrigin(I.getValue()) 2809 : DFSF.DFS.ZeroOrigin; 2810 IRB.CreateCall( 2811 DFSF.DFS.DFSanSetLabelFn, 2812 {ValShadow, ValOrigin, 2813 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2814 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2815 } 2816 2817 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2818 IRBuilder<> IRB(&I); 2819 2820 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2821 // need to move origins before moving shadows. 2822 if (DFSF.DFS.shouldTrackOrigins()) { 2823 IRB.CreateCall( 2824 DFSF.DFS.DFSanMemOriginTransferFn, 2825 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2826 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2827 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2828 } 2829 2830 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2831 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2832 Value *LenShadow = 2833 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2834 DFSF.DFS.ShadowWidthBytes)); 2835 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2836 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2837 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2838 auto *MTI = cast<MemTransferInst>( 2839 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2840 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2841 if (ClPreserveAlignment) { 2842 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2843 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2844 } else { 2845 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2846 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2847 } 2848 if (ClEventCallbacks) { 2849 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2850 {RawDestShadow, I.getLength()}); 2851 } 2852 } 2853 2854 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2855 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2856 switch (DFSF.IA) { 2857 case DataFlowSanitizer::IA_TLS: { 2858 Value *S = DFSF.getShadow(RI.getReturnValue()); 2859 IRBuilder<> IRB(&RI); 2860 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2861 unsigned Size = 2862 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2863 if (Size <= RetvalTLSSize) { 2864 // If the size overflows, stores nothing. At callsite, oversized return 2865 // shadows are set to zero. 2866 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2867 ShadowTLSAlignment); 2868 } 2869 if (DFSF.DFS.shouldTrackOrigins()) { 2870 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2871 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2872 } 2873 break; 2874 } 2875 case DataFlowSanitizer::IA_Args: { 2876 IRBuilder<> IRB(&RI); 2877 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2878 Value *InsVal = 2879 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2880 Value *InsShadow = 2881 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2882 RI.setOperand(0, InsShadow); 2883 break; 2884 } 2885 } 2886 } 2887 } 2888 2889 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2890 std::vector<Value *> &Args, 2891 IRBuilder<> &IRB) { 2892 FunctionType *FT = F.getFunctionType(); 2893 2894 auto *I = CB.arg_begin(); 2895 2896 // Adds non-variable argument shadows. 2897 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2898 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2899 2900 // Adds variable argument shadows. 2901 if (FT->isVarArg()) { 2902 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2903 CB.arg_size() - FT->getNumParams()); 2904 auto *LabelVAAlloca = 2905 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2906 "labelva", &DFSF.F->getEntryBlock().front()); 2907 2908 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2909 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2910 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2911 LabelVAPtr); 2912 } 2913 2914 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2915 } 2916 2917 // Adds the return value shadow. 2918 if (!FT->getReturnType()->isVoidTy()) { 2919 if (!DFSF.LabelReturnAlloca) { 2920 DFSF.LabelReturnAlloca = new AllocaInst( 2921 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2922 "labelreturn", &DFSF.F->getEntryBlock().front()); 2923 } 2924 Args.push_back(DFSF.LabelReturnAlloca); 2925 } 2926 } 2927 2928 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2929 std::vector<Value *> &Args, 2930 IRBuilder<> &IRB) { 2931 FunctionType *FT = F.getFunctionType(); 2932 2933 auto *I = CB.arg_begin(); 2934 2935 // Add non-variable argument origins. 2936 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2937 Args.push_back(DFSF.getOrigin(*I)); 2938 2939 // Add variable argument origins. 2940 if (FT->isVarArg()) { 2941 auto *OriginVATy = 2942 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2943 auto *OriginVAAlloca = 2944 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2945 "originva", &DFSF.F->getEntryBlock().front()); 2946 2947 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2948 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2949 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2950 } 2951 2952 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2953 } 2954 2955 // Add the return value origin. 2956 if (!FT->getReturnType()->isVoidTy()) { 2957 if (!DFSF.OriginReturnAlloca) { 2958 DFSF.OriginReturnAlloca = new AllocaInst( 2959 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2960 "originreturn", &DFSF.F->getEntryBlock().front()); 2961 } 2962 Args.push_back(DFSF.OriginReturnAlloca); 2963 } 2964 } 2965 2966 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2967 IRBuilder<> IRB(&CB); 2968 switch (DFSF.DFS.getWrapperKind(&F)) { 2969 case DataFlowSanitizer::WK_Warning: 2970 CB.setCalledFunction(&F); 2971 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2972 IRB.CreateGlobalStringPtr(F.getName())); 2973 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2974 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2975 return true; 2976 case DataFlowSanitizer::WK_Discard: 2977 CB.setCalledFunction(&F); 2978 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2979 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2980 return true; 2981 case DataFlowSanitizer::WK_Functional: 2982 CB.setCalledFunction(&F); 2983 visitInstOperands(CB); 2984 return true; 2985 case DataFlowSanitizer::WK_Custom: 2986 // Don't try to handle invokes of custom functions, it's too complicated. 2987 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2988 // wrapper. 2989 CallInst *CI = dyn_cast<CallInst>(&CB); 2990 if (!CI) 2991 return false; 2992 2993 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2994 FunctionType *FT = F.getFunctionType(); 2995 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2996 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2997 CustomFName += F.getName(); 2998 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2999 CustomFName, CustomFn.TransformedType); 3000 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3001 CustomFn->copyAttributesFrom(&F); 3002 3003 // Custom functions returning non-void will write to the return label. 3004 if (!FT->getReturnType()->isVoidTy()) { 3005 CustomFn->removeAttributes(AttributeList::FunctionIndex, 3006 DFSF.DFS.ReadOnlyNoneAttrs); 3007 } 3008 } 3009 3010 std::vector<Value *> Args; 3011 3012 // Adds non-variable arguments. 3013 auto *I = CB.arg_begin(); 3014 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3015 Type *T = (*I)->getType(); 3016 FunctionType *ParamFT; 3017 if (isa<PointerType>(T) && 3018 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 3019 std::string TName = "dfst"; 3020 TName += utostr(FT->getNumParams() - N); 3021 TName += "$"; 3022 TName += F.getName(); 3023 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 3024 Args.push_back(T); 3025 Args.push_back( 3026 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 3027 } else { 3028 Args.push_back(*I); 3029 } 3030 } 3031 3032 // Adds shadow arguments. 3033 const unsigned ShadowArgStart = Args.size(); 3034 addShadowArguments(F, CB, Args, IRB); 3035 3036 // Adds origin arguments. 3037 const unsigned OriginArgStart = Args.size(); 3038 if (ShouldTrackOrigins) 3039 addOriginArguments(F, CB, Args, IRB); 3040 3041 // Adds variable arguments. 3042 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3043 3044 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3045 CustomCI->setCallingConv(CI->getCallingConv()); 3046 CustomCI->setAttributes(transformFunctionAttributes( 3047 CustomFn, CI->getContext(), CI->getAttributes())); 3048 3049 // Update the parameter attributes of the custom call instruction to 3050 // zero extend the shadow parameters. This is required for targets 3051 // which consider PrimitiveShadowTy an illegal type. 3052 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3053 const unsigned ArgNo = ShadowArgStart + N; 3054 if (CustomCI->getArgOperand(ArgNo)->getType() == 3055 DFSF.DFS.PrimitiveShadowTy) 3056 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3057 if (ShouldTrackOrigins) { 3058 const unsigned OriginArgNo = OriginArgStart + N; 3059 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3060 DFSF.DFS.OriginTy) 3061 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3062 } 3063 } 3064 3065 // Loads the return value shadow and origin. 3066 if (!FT->getReturnType()->isVoidTy()) { 3067 LoadInst *LabelLoad = 3068 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3069 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3070 FT->getReturnType(), LabelLoad, &CB)); 3071 if (ShouldTrackOrigins) { 3072 LoadInst *OriginLoad = 3073 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3074 DFSF.setOrigin(CustomCI, OriginLoad); 3075 } 3076 } 3077 3078 CI->replaceAllUsesWith(CustomCI); 3079 CI->eraseFromParent(); 3080 return true; 3081 } 3082 return false; 3083 } 3084 3085 void DFSanVisitor::visitCallBase(CallBase &CB) { 3086 Function *F = CB.getCalledFunction(); 3087 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3088 visitInstOperands(CB); 3089 return; 3090 } 3091 3092 // Calls to this function are synthesized in wrappers, and we shouldn't 3093 // instrument them. 3094 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3095 return; 3096 3097 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3098 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3099 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3100 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3101 return; 3102 3103 IRBuilder<> IRB(&CB); 3104 3105 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3106 FunctionType *FT = CB.getFunctionType(); 3107 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3108 // Stores argument shadows. 3109 unsigned ArgOffset = 0; 3110 const DataLayout &DL = getDataLayout(); 3111 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3112 if (ShouldTrackOrigins) { 3113 // Ignore overflowed origins 3114 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3115 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3116 !DFSF.DFS.isZeroShadow(ArgShadow)) 3117 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3118 DFSF.getArgOriginTLS(I, IRB)); 3119 } 3120 3121 unsigned Size = 3122 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3123 // Stop storing if arguments' size overflows. Inside a function, arguments 3124 // after overflow have zero shadow values. 3125 if (ArgOffset + Size > ArgTLSSize) 3126 break; 3127 IRB.CreateAlignedStore( 3128 DFSF.getShadow(CB.getArgOperand(I)), 3129 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3130 ShadowTLSAlignment); 3131 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3132 } 3133 } 3134 3135 Instruction *Next = nullptr; 3136 if (!CB.getType()->isVoidTy()) { 3137 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3138 if (II->getNormalDest()->getSinglePredecessor()) { 3139 Next = &II->getNormalDest()->front(); 3140 } else { 3141 BasicBlock *NewBB = 3142 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3143 Next = &NewBB->front(); 3144 } 3145 } else { 3146 assert(CB.getIterator() != CB.getParent()->end()); 3147 Next = CB.getNextNode(); 3148 } 3149 3150 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3151 // Loads the return value shadow. 3152 IRBuilder<> NextIRB(Next); 3153 const DataLayout &DL = getDataLayout(); 3154 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3155 if (Size > RetvalTLSSize) { 3156 // Set overflowed return shadow to be zero. 3157 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3158 } else { 3159 LoadInst *LI = NextIRB.CreateAlignedLoad( 3160 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3161 ShadowTLSAlignment, "_dfsret"); 3162 DFSF.SkipInsts.insert(LI); 3163 DFSF.setShadow(&CB, LI); 3164 DFSF.NonZeroChecks.push_back(LI); 3165 } 3166 3167 if (ShouldTrackOrigins) { 3168 LoadInst *LI = NextIRB.CreateLoad( 3169 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3170 DFSF.SkipInsts.insert(LI); 3171 DFSF.setOrigin(&CB, LI); 3172 } 3173 } 3174 } 3175 3176 // Do all instrumentation for IA_Args down here to defer tampering with the 3177 // CFG in a way that SplitEdge may be able to detect. 3178 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3179 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3180 Value *Func = 3181 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3182 3183 const unsigned NumParams = FT->getNumParams(); 3184 3185 // Copy original arguments. 3186 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3187 std::vector<Value *> Args(NumParams); 3188 std::copy_n(ArgIt, NumParams, Args.begin()); 3189 3190 // Add shadow arguments by transforming original arguments. 3191 std::generate_n(std::back_inserter(Args), NumParams, 3192 [&]() { return DFSF.getShadow(*ArgIt++); }); 3193 3194 if (FT->isVarArg()) { 3195 unsigned VarArgSize = CB.arg_size() - NumParams; 3196 ArrayType *VarArgArrayTy = 3197 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3198 AllocaInst *VarArgShadow = 3199 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3200 "", &DFSF.F->getEntryBlock().front()); 3201 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3202 3203 // Copy remaining var args. 3204 unsigned GepIndex = 0; 3205 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3206 IRB.CreateStore( 3207 DFSF.getShadow(Arg), 3208 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3209 Args.push_back(Arg); 3210 }); 3211 } 3212 3213 CallBase *NewCB; 3214 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3215 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3216 II->getUnwindDest(), Args); 3217 } else { 3218 NewCB = IRB.CreateCall(NewFT, Func, Args); 3219 } 3220 NewCB->setCallingConv(CB.getCallingConv()); 3221 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3222 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3223 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3224 3225 if (Next) { 3226 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3227 DFSF.SkipInsts.insert(ExVal); 3228 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3229 DFSF.SkipInsts.insert(ExShadow); 3230 DFSF.setShadow(ExVal, ExShadow); 3231 DFSF.NonZeroChecks.push_back(ExShadow); 3232 3233 CB.replaceAllUsesWith(ExVal); 3234 } 3235 3236 CB.eraseFromParent(); 3237 } 3238 } 3239 3240 void DFSanVisitor::visitPHINode(PHINode &PN) { 3241 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3242 PHINode *ShadowPN = 3243 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3244 3245 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3246 Value *UndefShadow = UndefValue::get(ShadowTy); 3247 for (BasicBlock *BB : PN.blocks()) 3248 ShadowPN->addIncoming(UndefShadow, BB); 3249 3250 DFSF.setShadow(&PN, ShadowPN); 3251 3252 PHINode *OriginPN = nullptr; 3253 if (DFSF.DFS.shouldTrackOrigins()) { 3254 OriginPN = 3255 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3256 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3257 for (BasicBlock *BB : PN.blocks()) 3258 OriginPN->addIncoming(UndefOrigin, BB); 3259 DFSF.setOrigin(&PN, OriginPN); 3260 } 3261 3262 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3263 } 3264 3265 namespace { 3266 class DataFlowSanitizerLegacyPass : public ModulePass { 3267 private: 3268 std::vector<std::string> ABIListFiles; 3269 3270 public: 3271 static char ID; 3272 3273 DataFlowSanitizerLegacyPass( 3274 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3275 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3276 3277 bool runOnModule(Module &M) override { 3278 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3279 } 3280 }; 3281 } // namespace 3282 3283 char DataFlowSanitizerLegacyPass::ID; 3284 3285 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3286 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3287 3288 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3289 const std::vector<std::string> &ABIListFiles) { 3290 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3291 } 3292 3293 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3294 ModuleAnalysisManager &AM) { 3295 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3296 return PreservedAnalyses::none(); 3297 } 3298 return PreservedAnalyses::all(); 3299 } 3300