1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x300200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x300000000000 (kUnionTableAddr) 32 /// | origin | 33 /// +--------------------+ 0x200000008000 (kOriginAddr) 34 /// | shadow memory | 35 /// +--------------------+ 0x000000010000 (kShadowAddr) 36 /// | reserved by kernel | 37 /// +--------------------+ 0x000000000000 38 /// 39 /// To derive a shadow memory address from an application memory address, 40 /// bits 44-46 are cleared to bring the address into the range 41 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 42 /// account for the double byte representation of shadow labels and move the 43 /// address into the shadow memory range. See the function 44 /// DataFlowSanitizer::getShadowAddress below. 45 /// 46 /// For more information, please refer to the design document: 47 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 52 #include "llvm/ADT/DenseMap.h" 53 #include "llvm/ADT/DenseSet.h" 54 #include "llvm/ADT/DepthFirstIterator.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/iterator.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InlineAsm.h" 77 #include "llvm/IR/InstVisitor.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MDBuilder.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/Alignment.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/SpecialCaseList.h" 96 #include "llvm/Support/VirtualFileSystem.h" 97 #include "llvm/Transforms/Instrumentation.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstddef> 103 #include <cstdint> 104 #include <iterator> 105 #include <memory> 106 #include <set> 107 #include <string> 108 #include <utility> 109 #include <vector> 110 111 using namespace llvm; 112 113 // This must be consistent with ShadowWidthBits. 114 static const Align ShadowTLSAlignment = Align(2); 115 116 static const Align MinOriginAlignment = Align(4); 117 118 // The size of TLS variables. These constants must be kept in sync with the ones 119 // in dfsan.cpp. 120 static const unsigned ArgTLSSize = 800; 121 static const unsigned RetvalTLSSize = 800; 122 123 // External symbol to be used when generating the shadow address for 124 // architectures with multiple VMAs. Instead of using a constant integer 125 // the runtime will set the external mask based on the VMA range. 126 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 127 128 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 129 // alignment requirements provided by the input IR are correct. For example, 130 // if the input IR contains a load with alignment 8, this flag will cause 131 // the shadow load to have alignment 16. This flag is disabled by default as 132 // we have unfortunately encountered too much code (including Clang itself; 133 // see PR14291) which performs misaligned access. 134 static cl::opt<bool> ClPreserveAlignment( 135 "dfsan-preserve-alignment", 136 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 137 cl::init(false)); 138 139 // The ABI list files control how shadow parameters are passed. The pass treats 140 // every function labelled "uninstrumented" in the ABI list file as conforming 141 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 142 // additional annotations for those functions, a call to one of those functions 143 // will produce a warning message, as the labelling behaviour of the function is 144 // unknown. The other supported annotations are "functional" and "discard", 145 // which are described below under DataFlowSanitizer::WrapperKind. 146 static cl::list<std::string> ClABIListFiles( 147 "dfsan-abilist", 148 cl::desc("File listing native ABI functions and how the pass treats them"), 149 cl::Hidden); 150 151 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 152 // functions (see DataFlowSanitizer::InstrumentedABI below). 153 static cl::opt<bool> 154 ClArgsABI("dfsan-args-abi", 155 cl::desc("Use the argument ABI rather than the TLS ABI"), 156 cl::Hidden); 157 158 // Controls whether the pass includes or ignores the labels of pointers in load 159 // instructions. 160 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 161 "dfsan-combine-pointer-labels-on-load", 162 cl::desc("Combine the label of the pointer with the label of the data when " 163 "loading from memory."), 164 cl::Hidden, cl::init(true)); 165 166 // Controls whether the pass includes or ignores the labels of pointers in 167 // stores instructions. 168 static cl::opt<bool> ClCombinePointerLabelsOnStore( 169 "dfsan-combine-pointer-labels-on-store", 170 cl::desc("Combine the label of the pointer with the label of the data when " 171 "storing in memory."), 172 cl::Hidden, cl::init(false)); 173 174 static cl::opt<bool> ClDebugNonzeroLabels( 175 "dfsan-debug-nonzero-labels", 176 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 177 "load or return with a nonzero label"), 178 cl::Hidden); 179 180 // Experimental feature that inserts callbacks for certain data events. 181 // Currently callbacks are only inserted for loads, stores, memory transfers 182 // (i.e. memcpy and memmove), and comparisons. 183 // 184 // If this flag is set to true, the user must provide definitions for the 185 // following callback functions: 186 // void __dfsan_load_callback(dfsan_label Label, void* addr); 187 // void __dfsan_store_callback(dfsan_label Label, void* addr); 188 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 189 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 190 static cl::opt<bool> ClEventCallbacks( 191 "dfsan-event-callbacks", 192 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 193 cl::Hidden, cl::init(false)); 194 195 // Use a distinct bit for each base label, enabling faster unions with less 196 // instrumentation. Limits the max number of base labels to 16. 197 static cl::opt<bool> ClFast16Labels( 198 "dfsan-fast-16-labels", 199 cl::desc("Use more efficient instrumentation, limiting the number of " 200 "labels to 16."), 201 cl::Hidden, cl::init(false)); 202 203 // Controls whether the pass tracks the control flow of select instructions. 204 static cl::opt<bool> ClTrackSelectControlFlow( 205 "dfsan-track-select-control-flow", 206 cl::desc("Propagate labels from condition values of select instructions " 207 "to results."), 208 cl::Hidden, cl::init(true)); 209 210 // TODO: This default value follows MSan. DFSan may use a different value. 211 static cl::opt<int> ClInstrumentWithCallThreshold( 212 "dfsan-instrument-with-call-threshold", 213 cl::desc("If the function being instrumented requires more than " 214 "this number of origin stores, use callbacks instead of " 215 "inline checks (-1 means never use callbacks)."), 216 cl::Hidden, cl::init(3500)); 217 218 // Controls how to track origins. 219 // * 0: do not track origins. 220 // * 1: track origins at memory store operations. 221 // * 2: TODO: track origins at memory store operations and callsites. 222 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 223 cl::desc("Track origins of labels"), 224 cl::Hidden, cl::init(0)); 225 226 static StringRef getGlobalTypeString(const GlobalValue &G) { 227 // Types of GlobalVariables are always pointer types. 228 Type *GType = G.getValueType(); 229 // For now we support excluding struct types only. 230 if (StructType *SGType = dyn_cast<StructType>(GType)) { 231 if (!SGType->isLiteral()) 232 return SGType->getName(); 233 } 234 return "<unknown type>"; 235 } 236 237 namespace { 238 239 class DFSanABIList { 240 std::unique_ptr<SpecialCaseList> SCL; 241 242 public: 243 DFSanABIList() = default; 244 245 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 246 247 /// Returns whether either this function or its source file are listed in the 248 /// given category. 249 bool isIn(const Function &F, StringRef Category) const { 250 return isIn(*F.getParent(), Category) || 251 SCL->inSection("dataflow", "fun", F.getName(), Category); 252 } 253 254 /// Returns whether this global alias is listed in the given category. 255 /// 256 /// If GA aliases a function, the alias's name is matched as a function name 257 /// would be. Similarly, aliases of globals are matched like globals. 258 bool isIn(const GlobalAlias &GA, StringRef Category) const { 259 if (isIn(*GA.getParent(), Category)) 260 return true; 261 262 if (isa<FunctionType>(GA.getValueType())) 263 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 264 265 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 266 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 267 Category); 268 } 269 270 /// Returns whether this module is listed in the given category. 271 bool isIn(const Module &M, StringRef Category) const { 272 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 273 } 274 }; 275 276 /// TransformedFunction is used to express the result of transforming one 277 /// function type into another. This struct is immutable. It holds metadata 278 /// useful for updating calls of the old function to the new type. 279 struct TransformedFunction { 280 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 281 std::vector<unsigned> ArgumentIndexMapping) 282 : OriginalType(OriginalType), TransformedType(TransformedType), 283 ArgumentIndexMapping(ArgumentIndexMapping) {} 284 285 // Disallow copies. 286 TransformedFunction(const TransformedFunction &) = delete; 287 TransformedFunction &operator=(const TransformedFunction &) = delete; 288 289 // Allow moves. 290 TransformedFunction(TransformedFunction &&) = default; 291 TransformedFunction &operator=(TransformedFunction &&) = default; 292 293 /// Type of the function before the transformation. 294 FunctionType *OriginalType; 295 296 /// Type of the function after the transformation. 297 FunctionType *TransformedType; 298 299 /// Transforming a function may change the position of arguments. This 300 /// member records the mapping from each argument's old position to its new 301 /// position. Argument positions are zero-indexed. If the transformation 302 /// from F to F' made the first argument of F into the third argument of F', 303 /// then ArgumentIndexMapping[0] will equal 2. 304 std::vector<unsigned> ArgumentIndexMapping; 305 }; 306 307 /// Given function attributes from a call site for the original function, 308 /// return function attributes appropriate for a call to the transformed 309 /// function. 310 AttributeList 311 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 312 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 313 314 // Construct a vector of AttributeSet for each function argument. 315 std::vector<llvm::AttributeSet> ArgumentAttributes( 316 TransformedFunction.TransformedType->getNumParams()); 317 318 // Copy attributes from the parameter of the original function to the 319 // transformed version. 'ArgumentIndexMapping' holds the mapping from 320 // old argument position to new. 321 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 322 I < IE; ++I) { 323 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 324 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 325 } 326 327 // Copy annotations on varargs arguments. 328 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 329 IE = CallSiteAttrs.getNumAttrSets(); 330 I < IE; ++I) { 331 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 332 } 333 334 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 335 CallSiteAttrs.getRetAttributes(), 336 llvm::makeArrayRef(ArgumentAttributes)); 337 } 338 339 class DataFlowSanitizer { 340 friend struct DFSanFunction; 341 friend class DFSanVisitor; 342 343 enum { 344 ShadowWidthBits = 16, 345 ShadowWidthBytes = ShadowWidthBits / 8, 346 OriginWidthBits = 32, 347 OriginWidthBytes = OriginWidthBits / 8 348 }; 349 350 /// Which ABI should be used for instrumented functions? 351 enum InstrumentedABI { 352 /// Argument and return value labels are passed through additional 353 /// arguments and by modifying the return type. 354 IA_Args, 355 356 /// Argument and return value labels are passed through TLS variables 357 /// __dfsan_arg_tls and __dfsan_retval_tls. 358 IA_TLS 359 }; 360 361 /// How should calls to uninstrumented functions be handled? 362 enum WrapperKind { 363 /// This function is present in an uninstrumented form but we don't know 364 /// how it should be handled. Print a warning and call the function anyway. 365 /// Don't label the return value. 366 WK_Warning, 367 368 /// This function does not write to (user-accessible) memory, and its return 369 /// value is unlabelled. 370 WK_Discard, 371 372 /// This function does not write to (user-accessible) memory, and the label 373 /// of its return value is the union of the label of its arguments. 374 WK_Functional, 375 376 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 377 /// where F is the name of the function. This function may wrap the 378 /// original function or provide its own implementation. This is similar to 379 /// the IA_Args ABI, except that IA_Args uses a struct return type to 380 /// pass the return value shadow in a register, while WK_Custom uses an 381 /// extra pointer argument to return the shadow. This allows the wrapped 382 /// form of the function type to be expressed in C. 383 WK_Custom 384 }; 385 386 Module *Mod; 387 LLVMContext *Ctx; 388 Type *Int8Ptr; 389 IntegerType *OriginTy; 390 PointerType *OriginPtrTy; 391 ConstantInt *OriginBase; 392 ConstantInt *ZeroOrigin; 393 /// The shadow type for all primitive types and vector types. 394 IntegerType *PrimitiveShadowTy; 395 PointerType *PrimitiveShadowPtrTy; 396 IntegerType *IntptrTy; 397 ConstantInt *ZeroPrimitiveShadow; 398 ConstantInt *ShadowPtrMask; 399 ConstantInt *ShadowPtrMul; 400 Constant *ArgTLS; 401 ArrayType *ArgOriginTLSTy; 402 Constant *ArgOriginTLS; 403 Constant *RetvalTLS; 404 Constant *RetvalOriginTLS; 405 Constant *ExternalShadowMask; 406 FunctionType *DFSanUnionFnTy; 407 FunctionType *DFSanUnionLoadFnTy; 408 FunctionType *DFSanLoadLabelAndOriginFnTy; 409 FunctionType *DFSanUnimplementedFnTy; 410 FunctionType *DFSanSetLabelFnTy; 411 FunctionType *DFSanNonzeroLabelFnTy; 412 FunctionType *DFSanVarargWrapperFnTy; 413 FunctionType *DFSanCmpCallbackFnTy; 414 FunctionType *DFSanLoadStoreCallbackFnTy; 415 FunctionType *DFSanMemTransferCallbackFnTy; 416 FunctionType *DFSanChainOriginFnTy; 417 FunctionType *DFSanMemOriginTransferFnTy; 418 FunctionType *DFSanMaybeStoreOriginFnTy; 419 FunctionCallee DFSanUnionFn; 420 FunctionCallee DFSanCheckedUnionFn; 421 FunctionCallee DFSanUnionLoadFn; 422 FunctionCallee DFSanUnionLoadFast16LabelsFn; 423 FunctionCallee DFSanLoadLabelAndOriginFn; 424 FunctionCallee DFSanUnimplementedFn; 425 FunctionCallee DFSanSetLabelFn; 426 FunctionCallee DFSanNonzeroLabelFn; 427 FunctionCallee DFSanVarargWrapperFn; 428 FunctionCallee DFSanLoadCallbackFn; 429 FunctionCallee DFSanStoreCallbackFn; 430 FunctionCallee DFSanMemTransferCallbackFn; 431 FunctionCallee DFSanCmpCallbackFn; 432 FunctionCallee DFSanChainOriginFn; 433 FunctionCallee DFSanMemOriginTransferFn; 434 FunctionCallee DFSanMaybeStoreOriginFn; 435 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 436 MDNode *ColdCallWeights; 437 MDNode *OriginStoreWeights; 438 DFSanABIList ABIList; 439 DenseMap<Value *, Function *> UnwrappedFnMap; 440 AttrBuilder ReadOnlyNoneAttrs; 441 bool DFSanRuntimeShadowMask = false; 442 443 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 444 Value *getShadowAddress(Value *Addr, Instruction *Pos); 445 std::pair<Value *, Value *> 446 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 447 bool isInstrumented(const Function *F); 448 bool isInstrumented(const GlobalAlias *GA); 449 FunctionType *getArgsFunctionType(FunctionType *T); 450 FunctionType *getTrampolineFunctionType(FunctionType *T); 451 TransformedFunction getCustomFunctionType(FunctionType *T); 452 InstrumentedABI getInstrumentedABI(); 453 WrapperKind getWrapperKind(Function *F); 454 void addGlobalNamePrefix(GlobalValue *GV); 455 Function *buildWrapperFunction(Function *F, StringRef NewFName, 456 GlobalValue::LinkageTypes NewFLink, 457 FunctionType *NewFT); 458 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 459 void initializeCallbackFunctions(Module &M); 460 void initializeRuntimeFunctions(Module &M); 461 void injectMetadataGlobals(Module &M); 462 463 bool init(Module &M); 464 465 /// Returns whether the pass tracks origins. Support only fast16 mode in TLS 466 /// ABI mode. 467 bool shouldTrackOrigins(); 468 469 /// Returns whether the pass tracks labels for struct fields and array 470 /// indices. Support only fast16 mode in TLS ABI mode. 471 bool shouldTrackFieldsAndIndices(); 472 473 /// Returns a zero constant with the shadow type of OrigTy. 474 /// 475 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 476 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 477 /// getZeroShadow(other type) = i16(0) 478 /// 479 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 480 /// returns false. 481 Constant *getZeroShadow(Type *OrigTy); 482 /// Returns a zero constant with the shadow type of V's type. 483 Constant *getZeroShadow(Value *V); 484 485 /// Checks if V is a zero shadow. 486 bool isZeroShadow(Value *V); 487 488 /// Returns the shadow type of OrigTy. 489 /// 490 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 491 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 492 /// getShadowTy(other type) = i16 493 /// 494 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 495 /// returns false. 496 Type *getShadowTy(Type *OrigTy); 497 /// Returns the shadow type of of V's type. 498 Type *getShadowTy(Value *V); 499 500 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 501 502 public: 503 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 504 505 bool runImpl(Module &M); 506 }; 507 508 struct DFSanFunction { 509 DataFlowSanitizer &DFS; 510 Function *F; 511 DominatorTree DT; 512 DataFlowSanitizer::InstrumentedABI IA; 513 bool IsNativeABI; 514 AllocaInst *LabelReturnAlloca = nullptr; 515 AllocaInst *OriginReturnAlloca = nullptr; 516 DenseMap<Value *, Value *> ValShadowMap; 517 DenseMap<Value *, Value *> ValOriginMap; 518 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 519 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 520 521 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 522 DenseSet<Instruction *> SkipInsts; 523 std::vector<Value *> NonZeroChecks; 524 bool AvoidNewBlocks; 525 526 struct CachedShadow { 527 BasicBlock *Block; // The block where Shadow is defined. 528 Value *Shadow; 529 }; 530 /// Maps a value to its latest shadow value in terms of domination tree. 531 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 532 /// Maps a value to its latest collapsed shadow value it was converted to in 533 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 534 /// used at a post process where CFG blocks are split. So it does not cache 535 /// BasicBlock like CachedShadows, but uses domination between values. 536 DenseMap<Value *, Value *> CachedCollapsedShadows; 537 DenseMap<Value *, std::set<Value *>> ShadowElements; 538 539 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 540 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 541 DT.recalculate(*F); 542 // FIXME: Need to track down the register allocator issue which causes poor 543 // performance in pathological cases with large numbers of basic blocks. 544 AvoidNewBlocks = F->size() > 1000; 545 } 546 547 /// Computes the shadow address for a given function argument. 548 /// 549 /// Shadow = ArgTLS+ArgOffset. 550 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 551 552 /// Computes the shadow address for a return value. 553 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 554 555 /// Computes the origin address for a given function argument. 556 /// 557 /// Origin = ArgOriginTLS[ArgNo]. 558 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 559 560 /// Computes the origin address for a return value. 561 Value *getRetvalOriginTLS(); 562 563 Value *getOrigin(Value *V); 564 void setOrigin(Instruction *I, Value *Origin); 565 /// Generates IR to compute the origin of the last operand with a taint label. 566 Value *combineOperandOrigins(Instruction *Inst); 567 /// Before the instruction Pos, generates IR to compute the last origin with a 568 /// taint label. Labels and origins are from vectors Shadows and Origins 569 /// correspondingly. The generated IR is like 570 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 571 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 572 /// zeros with other bitwidths. 573 Value *combineOrigins(const std::vector<Value *> &Shadows, 574 const std::vector<Value *> &Origins, Instruction *Pos, 575 ConstantInt *Zero = nullptr); 576 577 Value *getShadow(Value *V); 578 void setShadow(Instruction *I, Value *Shadow); 579 /// Generates IR to compute the union of the two given shadows, inserting it 580 /// before Pos. The combined value is with primitive type. 581 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 582 /// Combines the shadow values of V1 and V2, then converts the combined value 583 /// with primitive type into a shadow value with the original type T. 584 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 585 Instruction *Pos); 586 Value *combineOperandShadows(Instruction *Inst); 587 std::pair<Value *, Value *> loadShadowOrigin(Value *ShadowAddr, uint64_t Size, 588 Align InstAlignment, 589 Instruction *Pos); 590 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 591 Align InstAlignment, Value *PrimitiveShadow, 592 Value *Origin, Instruction *Pos); 593 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 594 /// the expanded shadow value. 595 /// 596 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 597 /// EFP([n x T], PS) = [n x EFP(T,PS)] 598 /// EFP(other types, PS) = PS 599 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 600 Instruction *Pos); 601 /// Collapses Shadow into a single primitive shadow value, unioning all 602 /// primitive shadow values in the process. Returns the final primitive 603 /// shadow value. 604 /// 605 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 606 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 607 /// CTP(other types, PS) = PS 608 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 609 610 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 611 Instruction *Pos); 612 613 Align getShadowAlign(Align InstAlignment); 614 615 private: 616 /// Collapses the shadow with aggregate type into a single primitive shadow 617 /// value. 618 template <class AggregateType> 619 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 620 IRBuilder<> &IRB); 621 622 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 623 624 /// Returns the shadow value of an argument A. 625 Value *getShadowForTLSArgument(Argument *A); 626 627 /// The fast path of loading shadow in legacy mode. 628 Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 629 Align ShadowAlign, Instruction *Pos); 630 631 /// The fast path of loading shadow in fast-16-label mode. 632 std::pair<Value *, Value *> 633 loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 634 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 635 Instruction *Pos); 636 637 Align getOriginAlign(Align InstAlignment); 638 639 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 640 /// is __dfsan_load_label_and_origin. This function returns the union of all 641 /// labels and the origin of the first taint label. However this is an 642 /// additional call with many instructions. To ensure common cases are fast, 643 /// checks if it is possible to load labels and origins without using the 644 /// callback function. 645 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 646 647 /// Returns a chain at the current stack with previous origin V. 648 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 649 650 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 651 /// Origin otherwise. 652 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 653 654 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 655 /// Size). 656 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 657 uint64_t StoreOriginSize, Align Alignment); 658 659 /// Stores Origin in terms of its Shadow value. 660 /// * Do not write origins for zero shadows because we do not trace origins 661 /// for untainted sinks. 662 /// * Use __dfsan_maybe_store_origin if there are too many origin store 663 /// instrumentations. 664 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 665 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 666 667 /// Convert a scalar value to an i1 by comparing with 0. 668 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 669 670 bool shouldInstrumentWithCall(); 671 672 int NumOriginStores = 0; 673 }; 674 675 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 676 public: 677 DFSanFunction &DFSF; 678 679 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 680 681 const DataLayout &getDataLayout() const { 682 return DFSF.F->getParent()->getDataLayout(); 683 } 684 685 // Combines shadow values and origins for all of I's operands. 686 void visitInstOperands(Instruction &I); 687 688 void visitUnaryOperator(UnaryOperator &UO); 689 void visitBinaryOperator(BinaryOperator &BO); 690 void visitCastInst(CastInst &CI); 691 void visitCmpInst(CmpInst &CI); 692 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 693 void visitLoadInst(LoadInst &LI); 694 void visitStoreInst(StoreInst &SI); 695 void visitAtomicRMWInst(AtomicRMWInst &I); 696 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 697 void visitReturnInst(ReturnInst &RI); 698 void visitCallBase(CallBase &CB); 699 void visitPHINode(PHINode &PN); 700 void visitExtractElementInst(ExtractElementInst &I); 701 void visitInsertElementInst(InsertElementInst &I); 702 void visitShuffleVectorInst(ShuffleVectorInst &I); 703 void visitExtractValueInst(ExtractValueInst &I); 704 void visitInsertValueInst(InsertValueInst &I); 705 void visitAllocaInst(AllocaInst &I); 706 void visitSelectInst(SelectInst &I); 707 void visitMemSetInst(MemSetInst &I); 708 void visitMemTransferInst(MemTransferInst &I); 709 710 private: 711 void visitCASOrRMW(Align InstAlignment, Instruction &I); 712 713 // Returns false when this is an invoke of a custom function. 714 bool visitWrappedCallBase(Function &F, CallBase &CB); 715 716 // Combines origins for all of I's operands. 717 void visitInstOperandOrigins(Instruction &I); 718 719 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 720 IRBuilder<> &IRB); 721 722 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 723 IRBuilder<> &IRB); 724 }; 725 726 } // end anonymous namespace 727 728 DataFlowSanitizer::DataFlowSanitizer( 729 const std::vector<std::string> &ABIListFiles) { 730 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 731 llvm::append_range(AllABIListFiles, ClABIListFiles); 732 // FIXME: should we propagate vfs::FileSystem to this constructor? 733 ABIList.set( 734 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 735 } 736 737 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 738 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 739 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 740 if (T->isVarArg()) 741 ArgTypes.push_back(PrimitiveShadowPtrTy); 742 Type *RetType = T->getReturnType(); 743 if (!RetType->isVoidTy()) 744 RetType = StructType::get(RetType, PrimitiveShadowTy); 745 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 746 } 747 748 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 749 assert(!T->isVarArg()); 750 SmallVector<Type *, 4> ArgTypes; 751 ArgTypes.push_back(T->getPointerTo()); 752 ArgTypes.append(T->param_begin(), T->param_end()); 753 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 754 Type *RetType = T->getReturnType(); 755 if (!RetType->isVoidTy()) 756 ArgTypes.push_back(PrimitiveShadowPtrTy); 757 758 if (shouldTrackOrigins()) { 759 ArgTypes.append(T->getNumParams(), OriginTy); 760 if (!RetType->isVoidTy()) 761 ArgTypes.push_back(OriginPtrTy); 762 } 763 764 return FunctionType::get(T->getReturnType(), ArgTypes, false); 765 } 766 767 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 768 SmallVector<Type *, 4> ArgTypes; 769 770 // Some parameters of the custom function being constructed are 771 // parameters of T. Record the mapping from parameters of T to 772 // parameters of the custom function, so that parameter attributes 773 // at call sites can be updated. 774 std::vector<unsigned> ArgumentIndexMapping; 775 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 776 Type *ParamType = T->getParamType(I); 777 FunctionType *FT; 778 if (isa<PointerType>(ParamType) && 779 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 780 ArgumentIndexMapping.push_back(ArgTypes.size()); 781 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 782 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 783 } else { 784 ArgumentIndexMapping.push_back(ArgTypes.size()); 785 ArgTypes.push_back(ParamType); 786 } 787 } 788 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 789 ArgTypes.push_back(PrimitiveShadowTy); 790 if (T->isVarArg()) 791 ArgTypes.push_back(PrimitiveShadowPtrTy); 792 Type *RetType = T->getReturnType(); 793 if (!RetType->isVoidTy()) 794 ArgTypes.push_back(PrimitiveShadowPtrTy); 795 796 if (shouldTrackOrigins()) { 797 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 798 ArgTypes.push_back(OriginTy); 799 if (T->isVarArg()) 800 ArgTypes.push_back(OriginPtrTy); 801 if (!RetType->isVoidTy()) 802 ArgTypes.push_back(OriginPtrTy); 803 } 804 805 return TransformedFunction( 806 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 807 ArgumentIndexMapping); 808 } 809 810 bool DataFlowSanitizer::isZeroShadow(Value *V) { 811 if (!shouldTrackFieldsAndIndices()) 812 return ZeroPrimitiveShadow == V; 813 814 Type *T = V->getType(); 815 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 816 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 817 return CI->isZero(); 818 return false; 819 } 820 821 return isa<ConstantAggregateZero>(V); 822 } 823 824 bool DataFlowSanitizer::shouldTrackOrigins() { 825 static const bool ShouldTrackOrigins = 826 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS && 827 ClFast16Labels; 828 return ShouldTrackOrigins; 829 } 830 831 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 832 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 833 } 834 835 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 836 if (!shouldTrackFieldsAndIndices()) 837 return ZeroPrimitiveShadow; 838 839 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 840 return ZeroPrimitiveShadow; 841 Type *ShadowTy = getShadowTy(OrigTy); 842 return ConstantAggregateZero::get(ShadowTy); 843 } 844 845 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 846 return getZeroShadow(V->getType()); 847 } 848 849 static Value *expandFromPrimitiveShadowRecursive( 850 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 851 Value *PrimitiveShadow, IRBuilder<> &IRB) { 852 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 853 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 854 855 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 856 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 857 Indices.push_back(Idx); 858 Shadow = expandFromPrimitiveShadowRecursive( 859 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 860 Indices.pop_back(); 861 } 862 return Shadow; 863 } 864 865 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 866 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 867 Indices.push_back(Idx); 868 Shadow = expandFromPrimitiveShadowRecursive( 869 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 870 Indices.pop_back(); 871 } 872 return Shadow; 873 } 874 llvm_unreachable("Unexpected shadow type"); 875 } 876 877 bool DFSanFunction::shouldInstrumentWithCall() { 878 return ClInstrumentWithCallThreshold >= 0 && 879 NumOriginStores >= ClInstrumentWithCallThreshold; 880 } 881 882 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 883 Instruction *Pos) { 884 Type *ShadowTy = DFS.getShadowTy(T); 885 886 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 887 return PrimitiveShadow; 888 889 if (DFS.isZeroShadow(PrimitiveShadow)) 890 return DFS.getZeroShadow(ShadowTy); 891 892 IRBuilder<> IRB(Pos); 893 SmallVector<unsigned, 4> Indices; 894 Value *Shadow = UndefValue::get(ShadowTy); 895 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 896 PrimitiveShadow, IRB); 897 898 // Caches the primitive shadow value that built the shadow value. 899 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 900 return Shadow; 901 } 902 903 template <class AggregateType> 904 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 905 IRBuilder<> &IRB) { 906 if (!AT->getNumElements()) 907 return DFS.ZeroPrimitiveShadow; 908 909 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 910 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 911 912 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 913 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 914 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 915 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 916 } 917 return Aggregator; 918 } 919 920 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 921 IRBuilder<> &IRB) { 922 Type *ShadowTy = Shadow->getType(); 923 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 924 return Shadow; 925 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 926 return collapseAggregateShadow<>(AT, Shadow, IRB); 927 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 928 return collapseAggregateShadow<>(ST, Shadow, IRB); 929 llvm_unreachable("Unexpected shadow type"); 930 } 931 932 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 933 Instruction *Pos) { 934 Type *ShadowTy = Shadow->getType(); 935 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 936 return Shadow; 937 938 assert(DFS.shouldTrackFieldsAndIndices()); 939 940 // Checks if the cached collapsed shadow value dominates Pos. 941 Value *&CS = CachedCollapsedShadows[Shadow]; 942 if (CS && DT.dominates(CS, Pos)) 943 return CS; 944 945 IRBuilder<> IRB(Pos); 946 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 947 // Caches the converted primitive shadow value. 948 CS = PrimitiveShadow; 949 return PrimitiveShadow; 950 } 951 952 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 953 if (!shouldTrackFieldsAndIndices()) 954 return PrimitiveShadowTy; 955 956 if (!OrigTy->isSized()) 957 return PrimitiveShadowTy; 958 if (isa<IntegerType>(OrigTy)) 959 return PrimitiveShadowTy; 960 if (isa<VectorType>(OrigTy)) 961 return PrimitiveShadowTy; 962 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 963 return ArrayType::get(getShadowTy(AT->getElementType()), 964 AT->getNumElements()); 965 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 966 SmallVector<Type *, 4> Elements; 967 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 968 Elements.push_back(getShadowTy(ST->getElementType(I))); 969 return StructType::get(*Ctx, Elements); 970 } 971 return PrimitiveShadowTy; 972 } 973 974 Type *DataFlowSanitizer::getShadowTy(Value *V) { 975 return getShadowTy(V->getType()); 976 } 977 978 bool DataFlowSanitizer::init(Module &M) { 979 Triple TargetTriple(M.getTargetTriple()); 980 const DataLayout &DL = M.getDataLayout(); 981 982 Mod = &M; 983 Ctx = &M.getContext(); 984 Int8Ptr = Type::getInt8PtrTy(*Ctx); 985 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 986 OriginPtrTy = PointerType::getUnqual(OriginTy); 987 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 988 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 989 IntptrTy = DL.getIntPtrType(*Ctx); 990 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 991 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 992 OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL); 993 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 994 995 switch (TargetTriple.getArch()) { 996 case Triple::x86_64: 997 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 998 break; 999 case Triple::mips64: 1000 case Triple::mips64el: 1001 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 1002 break; 1003 case Triple::aarch64: 1004 case Triple::aarch64_be: 1005 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 1006 DFSanRuntimeShadowMask = true; 1007 break; 1008 default: 1009 report_fatal_error("unsupported triple"); 1010 } 1011 1012 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 1013 DFSanUnionFnTy = 1014 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 1015 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1016 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1017 /*isVarArg=*/false); 1018 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1019 DFSanLoadLabelAndOriginFnTy = 1020 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1021 /*isVarArg=*/false); 1022 DFSanUnimplementedFnTy = FunctionType::get( 1023 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1024 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1025 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1026 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1027 DFSanSetLabelArgs, /*isVarArg=*/false); 1028 DFSanNonzeroLabelFnTy = 1029 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1030 DFSanVarargWrapperFnTy = FunctionType::get( 1031 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1032 DFSanCmpCallbackFnTy = 1033 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1034 /*isVarArg=*/false); 1035 DFSanChainOriginFnTy = 1036 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1037 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1038 Int8Ptr, IntptrTy, OriginTy}; 1039 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1040 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1041 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1042 DFSanMemOriginTransferFnTy = FunctionType::get( 1043 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1044 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1045 DFSanLoadStoreCallbackFnTy = 1046 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1047 /*isVarArg=*/false); 1048 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1049 DFSanMemTransferCallbackFnTy = 1050 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1051 /*isVarArg=*/false); 1052 1053 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1054 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1055 return true; 1056 } 1057 1058 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1059 return !ABIList.isIn(*F, "uninstrumented"); 1060 } 1061 1062 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1063 return !ABIList.isIn(*GA, "uninstrumented"); 1064 } 1065 1066 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1067 return ClArgsABI ? IA_Args : IA_TLS; 1068 } 1069 1070 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1071 if (ABIList.isIn(*F, "functional")) 1072 return WK_Functional; 1073 if (ABIList.isIn(*F, "discard")) 1074 return WK_Discard; 1075 if (ABIList.isIn(*F, "custom")) 1076 return WK_Custom; 1077 1078 return WK_Warning; 1079 } 1080 1081 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 1082 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 1083 GV->setName(Prefix + GVName); 1084 1085 // Try to change the name of the function in module inline asm. We only do 1086 // this for specific asm directives, currently only ".symver", to try to avoid 1087 // corrupting asm which happens to contain the symbol name as a substring. 1088 // Note that the substitution for .symver assumes that the versioned symbol 1089 // also has an instrumented name. 1090 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1091 std::string SearchStr = ".symver " + GVName + ","; 1092 size_t Pos = Asm.find(SearchStr); 1093 if (Pos != std::string::npos) { 1094 Asm.replace(Pos, SearchStr.size(), 1095 ".symver " + Prefix + GVName + "," + Prefix); 1096 GV->getParent()->setModuleInlineAsm(Asm); 1097 } 1098 } 1099 1100 Function * 1101 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1102 GlobalValue::LinkageTypes NewFLink, 1103 FunctionType *NewFT) { 1104 FunctionType *FT = F->getFunctionType(); 1105 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1106 NewFName, F->getParent()); 1107 NewF->copyAttributesFrom(F); 1108 NewF->removeAttributes( 1109 AttributeList::ReturnIndex, 1110 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1111 1112 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1113 if (F->isVarArg()) { 1114 NewF->removeAttributes(AttributeList::FunctionIndex, 1115 AttrBuilder().addAttribute("split-stack")); 1116 CallInst::Create(DFSanVarargWrapperFn, 1117 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1118 BB); 1119 new UnreachableInst(*Ctx, BB); 1120 } else { 1121 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1122 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1123 1124 CallInst *CI = CallInst::Create(F, Args, "", BB); 1125 if (FT->getReturnType()->isVoidTy()) 1126 ReturnInst::Create(*Ctx, BB); 1127 else 1128 ReturnInst::Create(*Ctx, CI, BB); 1129 } 1130 1131 return NewF; 1132 } 1133 1134 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1135 StringRef FName) { 1136 FunctionType *FTT = getTrampolineFunctionType(FT); 1137 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1138 Function *F = dyn_cast<Function>(C.getCallee()); 1139 if (F && F->isDeclaration()) { 1140 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1141 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1142 std::vector<Value *> Args; 1143 Function::arg_iterator AI = F->arg_begin() + 1; 1144 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1145 Args.push_back(&*AI); 1146 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1147 Type *RetType = FT->getReturnType(); 1148 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1149 : ReturnInst::Create(*Ctx, CI, BB); 1150 1151 // F is called by a wrapped custom function with primitive shadows. So 1152 // its arguments and return value need conversion. 1153 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1154 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1155 ++ValAI; 1156 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1157 Value *Shadow = 1158 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1159 DFSF.ValShadowMap[&*ValAI] = Shadow; 1160 } 1161 Function::arg_iterator RetShadowAI = ShadowAI; 1162 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1163 if (ShouldTrackOrigins) { 1164 ValAI = F->arg_begin(); 1165 ++ValAI; 1166 Function::arg_iterator OriginAI = ShadowAI; 1167 if (!RetType->isVoidTy()) 1168 ++OriginAI; 1169 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1170 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1171 } 1172 } 1173 DFSanVisitor(DFSF).visitCallInst(*CI); 1174 if (!RetType->isVoidTy()) { 1175 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1176 DFSF.getShadow(RI->getReturnValue()), RI); 1177 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1178 if (ShouldTrackOrigins) { 1179 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1180 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1181 } 1182 } 1183 } 1184 1185 return cast<Constant>(C.getCallee()); 1186 } 1187 1188 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1189 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1190 { 1191 AttributeList AL; 1192 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1193 Attribute::NoUnwind); 1194 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1195 Attribute::ReadNone); 1196 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1197 Attribute::ZExt); 1198 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1199 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1200 DFSanUnionFn = 1201 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 1202 } 1203 { 1204 AttributeList AL; 1205 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1206 Attribute::NoUnwind); 1207 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1208 Attribute::ReadNone); 1209 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1210 Attribute::ZExt); 1211 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1212 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1213 DFSanCheckedUnionFn = 1214 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1215 } 1216 { 1217 AttributeList AL; 1218 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1219 Attribute::NoUnwind); 1220 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1221 Attribute::ReadOnly); 1222 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1223 Attribute::ZExt); 1224 DFSanUnionLoadFn = 1225 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1226 } 1227 { 1228 AttributeList AL; 1229 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1230 Attribute::NoUnwind); 1231 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1232 Attribute::ReadOnly); 1233 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1234 Attribute::ZExt); 1235 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1236 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1237 } 1238 { 1239 AttributeList AL; 1240 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1241 Attribute::NoUnwind); 1242 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1243 Attribute::ReadOnly); 1244 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1245 Attribute::ZExt); 1246 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1247 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1248 } 1249 DFSanUnimplementedFn = 1250 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1251 { 1252 AttributeList AL; 1253 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1254 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1255 DFSanSetLabelFn = 1256 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1257 } 1258 DFSanNonzeroLabelFn = 1259 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1260 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1261 DFSanVarargWrapperFnTy); 1262 { 1263 AttributeList AL; 1264 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1265 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1266 Attribute::ZExt); 1267 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1268 DFSanChainOriginFnTy, AL); 1269 } 1270 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1271 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1272 1273 { 1274 AttributeList AL; 1275 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1276 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1277 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1278 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1279 } 1280 1281 DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts()); 1282 DFSanRuntimeFunctions.insert( 1283 DFSanCheckedUnionFn.getCallee()->stripPointerCasts()); 1284 DFSanRuntimeFunctions.insert( 1285 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1286 DFSanRuntimeFunctions.insert( 1287 DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts()); 1288 DFSanRuntimeFunctions.insert( 1289 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1290 DFSanRuntimeFunctions.insert( 1291 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1292 DFSanRuntimeFunctions.insert( 1293 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1294 DFSanRuntimeFunctions.insert( 1295 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1296 DFSanRuntimeFunctions.insert( 1297 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1298 DFSanRuntimeFunctions.insert( 1299 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1300 DFSanRuntimeFunctions.insert( 1301 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1302 DFSanRuntimeFunctions.insert( 1303 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1304 DFSanRuntimeFunctions.insert( 1305 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1306 DFSanRuntimeFunctions.insert( 1307 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1308 DFSanRuntimeFunctions.insert( 1309 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1310 DFSanRuntimeFunctions.insert( 1311 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1312 } 1313 1314 // Initializes event callback functions and declare them in the module 1315 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1316 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1317 DFSanLoadStoreCallbackFnTy); 1318 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1319 DFSanLoadStoreCallbackFnTy); 1320 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1321 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1322 DFSanCmpCallbackFn = 1323 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1324 } 1325 1326 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1327 // These variables can be used: 1328 // - by the runtime (to discover what the shadow width was, during 1329 // compilation) 1330 // - in testing (to avoid hardcoding the shadow width and type but instead 1331 // extract them by pattern matching) 1332 Type *IntTy = Type::getInt32Ty(*Ctx); 1333 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1334 return new GlobalVariable( 1335 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1336 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1337 }); 1338 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1339 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1340 GlobalValue::WeakODRLinkage, 1341 ConstantInt::get(IntTy, ShadowWidthBytes), 1342 "__dfsan_shadow_width_bytes"); 1343 }); 1344 } 1345 1346 bool DataFlowSanitizer::runImpl(Module &M) { 1347 init(M); 1348 1349 if (ABIList.isIn(M, "skip")) 1350 return false; 1351 1352 const unsigned InitialGlobalSize = M.global_size(); 1353 const unsigned InitialModuleSize = M.size(); 1354 1355 bool Changed = false; 1356 1357 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1358 Type *Ty) -> Constant * { 1359 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1360 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1361 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1362 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1363 } 1364 return C; 1365 }; 1366 1367 // These globals must be kept in sync with the ones in dfsan.cpp. 1368 ArgTLS = 1369 GetOrInsertGlobal("__dfsan_arg_tls", 1370 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1371 RetvalTLS = GetOrInsertGlobal( 1372 "__dfsan_retval_tls", 1373 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1374 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1375 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1376 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1377 1378 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1379 Changed = true; 1380 return new GlobalVariable( 1381 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1382 ConstantInt::getSigned(OriginTy, shouldTrackOrigins()), 1383 "__dfsan_track_origins"); 1384 }); 1385 1386 injectMetadataGlobals(M); 1387 1388 ExternalShadowMask = 1389 Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy); 1390 1391 initializeCallbackFunctions(M); 1392 initializeRuntimeFunctions(M); 1393 1394 std::vector<Function *> FnsToInstrument; 1395 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1396 for (Function &F : M) 1397 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1398 FnsToInstrument.push_back(&F); 1399 1400 // Give function aliases prefixes when necessary, and build wrappers where the 1401 // instrumentedness is inconsistent. 1402 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1403 AI != AE;) { 1404 GlobalAlias *GA = &*AI; 1405 ++AI; 1406 // Don't stop on weak. We assume people aren't playing games with the 1407 // instrumentedness of overridden weak aliases. 1408 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1409 if (!F) 1410 continue; 1411 1412 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1413 if (GAInst && FInst) { 1414 addGlobalNamePrefix(GA); 1415 } else if (GAInst != FInst) { 1416 // Non-instrumented alias of an instrumented function, or vice versa. 1417 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1418 // below will take care of instrumenting it. 1419 Function *NewF = 1420 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1421 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1422 NewF->takeName(GA); 1423 GA->eraseFromParent(); 1424 FnsToInstrument.push_back(NewF); 1425 } 1426 } 1427 1428 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1429 .addAttribute(Attribute::ReadNone); 1430 1431 // First, change the ABI of every function in the module. ABI-listed 1432 // functions keep their original ABI and get a wrapper function. 1433 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1434 FE = FnsToInstrument.end(); 1435 FI != FE; ++FI) { 1436 Function &F = **FI; 1437 FunctionType *FT = F.getFunctionType(); 1438 1439 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1440 FT->getReturnType()->isVoidTy()); 1441 1442 if (isInstrumented(&F)) { 1443 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1444 // easily identify cases of mismatching ABIs. 1445 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1446 FunctionType *NewFT = getArgsFunctionType(FT); 1447 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1448 F.getAddressSpace(), "", &M); 1449 NewF->copyAttributesFrom(&F); 1450 NewF->removeAttributes( 1451 AttributeList::ReturnIndex, 1452 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1453 for (Function::arg_iterator FArg = F.arg_begin(), 1454 NewFArg = NewF->arg_begin(), 1455 FArgEnd = F.arg_end(); 1456 FArg != FArgEnd; ++FArg, ++NewFArg) { 1457 FArg->replaceAllUsesWith(&*NewFArg); 1458 } 1459 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1460 1461 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1462 UI != UE;) { 1463 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1464 ++UI; 1465 if (BA) { 1466 BA->replaceAllUsesWith( 1467 BlockAddress::get(NewF, BA->getBasicBlock())); 1468 delete BA; 1469 } 1470 } 1471 F.replaceAllUsesWith( 1472 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1473 NewF->takeName(&F); 1474 F.eraseFromParent(); 1475 *FI = NewF; 1476 addGlobalNamePrefix(NewF); 1477 } else { 1478 addGlobalNamePrefix(&F); 1479 } 1480 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1481 // Build a wrapper function for F. The wrapper simply calls F, and is 1482 // added to FnsToInstrument so that any instrumentation according to its 1483 // WrapperKind is done in the second pass below. 1484 FunctionType *NewFT = 1485 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1486 1487 // If the function being wrapped has local linkage, then preserve the 1488 // function's linkage in the wrapper function. 1489 GlobalValue::LinkageTypes WrapperLinkage = 1490 F.hasLocalLinkage() ? F.getLinkage() 1491 : GlobalValue::LinkOnceODRLinkage; 1492 1493 Function *NewF = buildWrapperFunction( 1494 &F, 1495 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1496 std::string(F.getName()), 1497 WrapperLinkage, NewFT); 1498 if (getInstrumentedABI() == IA_TLS) 1499 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1500 1501 Value *WrappedFnCst = 1502 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1503 F.replaceAllUsesWith(WrappedFnCst); 1504 1505 UnwrappedFnMap[WrappedFnCst] = &F; 1506 *FI = NewF; 1507 1508 if (!F.isDeclaration()) { 1509 // This function is probably defining an interposition of an 1510 // uninstrumented function and hence needs to keep the original ABI. 1511 // But any functions it may call need to use the instrumented ABI, so 1512 // we instrument it in a mode which preserves the original ABI. 1513 FnsWithNativeABI.insert(&F); 1514 1515 // This code needs to rebuild the iterators, as they may be invalidated 1516 // by the push_back, taking care that the new range does not include 1517 // any functions added by this code. 1518 size_t N = FI - FnsToInstrument.begin(), 1519 Count = FE - FnsToInstrument.begin(); 1520 FnsToInstrument.push_back(&F); 1521 FI = FnsToInstrument.begin() + N; 1522 FE = FnsToInstrument.begin() + Count; 1523 } 1524 // Hopefully, nobody will try to indirectly call a vararg 1525 // function... yet. 1526 } else if (FT->isVarArg()) { 1527 UnwrappedFnMap[&F] = &F; 1528 *FI = nullptr; 1529 } 1530 } 1531 1532 for (Function *F : FnsToInstrument) { 1533 if (!F || F->isDeclaration()) 1534 continue; 1535 1536 removeUnreachableBlocks(*F); 1537 1538 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1539 1540 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1541 // Build a copy of the list before iterating over it. 1542 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1543 1544 for (BasicBlock *BB : BBList) { 1545 Instruction *Inst = &BB->front(); 1546 while (true) { 1547 // DFSanVisitor may split the current basic block, changing the current 1548 // instruction's next pointer and moving the next instruction to the 1549 // tail block from which we should continue. 1550 Instruction *Next = Inst->getNextNode(); 1551 // DFSanVisitor may delete Inst, so keep track of whether it was a 1552 // terminator. 1553 bool IsTerminator = Inst->isTerminator(); 1554 if (!DFSF.SkipInsts.count(Inst)) 1555 DFSanVisitor(DFSF).visit(Inst); 1556 if (IsTerminator) 1557 break; 1558 Inst = Next; 1559 } 1560 } 1561 1562 // We will not necessarily be able to compute the shadow for every phi node 1563 // until we have visited every block. Therefore, the code that handles phi 1564 // nodes adds them to the PHIFixups list so that they can be properly 1565 // handled here. 1566 for (auto PHIFixup : DFSF.PHIFixups) { 1567 PHINode *PN, *ShadowPN; 1568 std::tie(PN, ShadowPN) = PHIFixup; 1569 for (unsigned Val = 0, N = PN->getNumIncomingValues(); Val < N; ++Val) { 1570 ShadowPN->setIncomingValue(Val, 1571 DFSF.getShadow(PN->getIncomingValue(Val))); 1572 } 1573 } 1574 1575 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1576 // places (i.e. instructions in basic blocks we haven't even begun visiting 1577 // yet). To make our life easier, do this work in a pass after the main 1578 // instrumentation. 1579 if (ClDebugNonzeroLabels) { 1580 for (Value *V : DFSF.NonZeroChecks) { 1581 Instruction *Pos; 1582 if (Instruction *I = dyn_cast<Instruction>(V)) 1583 Pos = I->getNextNode(); 1584 else 1585 Pos = &DFSF.F->getEntryBlock().front(); 1586 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1587 Pos = Pos->getNextNode(); 1588 IRBuilder<> IRB(Pos); 1589 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1590 Value *Ne = 1591 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1592 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1593 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1594 IRBuilder<> ThenIRB(BI); 1595 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1596 } 1597 } 1598 } 1599 1600 return Changed || !FnsToInstrument.empty() || 1601 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1602 } 1603 1604 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1605 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1606 if (ArgOffset) 1607 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1608 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1609 "_dfsarg"); 1610 } 1611 1612 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1613 return IRB.CreatePointerCast( 1614 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1615 } 1616 1617 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1618 1619 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1620 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1621 "_dfsarg_o"); 1622 } 1623 1624 Value *DFSanFunction::getOrigin(Value *V) { 1625 assert(DFS.shouldTrackOrigins()); 1626 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1627 return DFS.ZeroOrigin; 1628 Value *&Origin = ValOriginMap[V]; 1629 if (!Origin) { 1630 if (Argument *A = dyn_cast<Argument>(V)) { 1631 if (IsNativeABI) 1632 return DFS.ZeroOrigin; 1633 switch (IA) { 1634 case DataFlowSanitizer::IA_TLS: { 1635 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1636 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1637 IRBuilder<> IRB(ArgOriginTLSPos); 1638 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1639 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1640 } else { 1641 // Overflow 1642 Origin = DFS.ZeroOrigin; 1643 } 1644 break; 1645 } 1646 case DataFlowSanitizer::IA_Args: { 1647 Origin = DFS.ZeroOrigin; 1648 break; 1649 } 1650 } 1651 } else { 1652 Origin = DFS.ZeroOrigin; 1653 } 1654 } 1655 return Origin; 1656 } 1657 1658 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1659 if (!DFS.shouldTrackOrigins()) 1660 return; 1661 assert(!ValOriginMap.count(I)); 1662 assert(Origin->getType() == DFS.OriginTy); 1663 ValOriginMap[I] = Origin; 1664 } 1665 1666 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1667 unsigned ArgOffset = 0; 1668 const DataLayout &DL = F->getParent()->getDataLayout(); 1669 for (auto &FArg : F->args()) { 1670 if (!FArg.getType()->isSized()) { 1671 if (A == &FArg) 1672 break; 1673 continue; 1674 } 1675 1676 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1677 if (A != &FArg) { 1678 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1679 if (ArgOffset > ArgTLSSize) 1680 break; // ArgTLS overflows, uses a zero shadow. 1681 continue; 1682 } 1683 1684 if (ArgOffset + Size > ArgTLSSize) 1685 break; // ArgTLS overflows, uses a zero shadow. 1686 1687 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1688 IRBuilder<> IRB(ArgTLSPos); 1689 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1690 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1691 ShadowTLSAlignment); 1692 } 1693 1694 return DFS.getZeroShadow(A); 1695 } 1696 1697 Value *DFSanFunction::getShadow(Value *V) { 1698 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1699 return DFS.getZeroShadow(V); 1700 Value *&Shadow = ValShadowMap[V]; 1701 if (!Shadow) { 1702 if (Argument *A = dyn_cast<Argument>(V)) { 1703 if (IsNativeABI) 1704 return DFS.getZeroShadow(V); 1705 switch (IA) { 1706 case DataFlowSanitizer::IA_TLS: { 1707 Shadow = getShadowForTLSArgument(A); 1708 break; 1709 } 1710 case DataFlowSanitizer::IA_Args: { 1711 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1712 Function::arg_iterator Arg = F->arg_begin(); 1713 std::advance(Arg, ArgIdx); 1714 Shadow = &*Arg; 1715 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1716 break; 1717 } 1718 } 1719 NonZeroChecks.push_back(Shadow); 1720 } else { 1721 Shadow = DFS.getZeroShadow(V); 1722 } 1723 } 1724 return Shadow; 1725 } 1726 1727 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1728 assert(!ValShadowMap.count(I)); 1729 assert(DFS.shouldTrackFieldsAndIndices() || 1730 Shadow->getType() == DFS.PrimitiveShadowTy); 1731 ValShadowMap[I] = Shadow; 1732 } 1733 1734 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1735 // Returns Addr & shadow_mask 1736 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1737 Value *ShadowPtrMaskValue; 1738 if (DFSanRuntimeShadowMask) 1739 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1740 else 1741 ShadowPtrMaskValue = ShadowPtrMask; 1742 return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1743 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)); 1744 } 1745 1746 std::pair<Value *, Value *> 1747 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1748 Instruction *Pos) { 1749 // Returns ((Addr & shadow_mask) + origin_base) & ~4UL 1750 IRBuilder<> IRB(Pos); 1751 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1752 Value *ShadowPtr = IRB.CreateIntToPtr( 1753 IRB.CreateMul(ShadowOffset, ShadowPtrMul), PrimitiveShadowPtrTy); 1754 Value *OriginPtr = nullptr; 1755 if (shouldTrackOrigins()) { 1756 Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase); 1757 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1758 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1759 // So Mask is unnecessary. 1760 if (Alignment < MinOriginAlignment) { 1761 uint64_t Mask = MinOriginAlignment.value() - 1; 1762 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1763 } 1764 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1765 } 1766 return {ShadowPtr, OriginPtr}; 1767 } 1768 1769 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1770 // Returns (Addr & shadow_mask) x 2 1771 IRBuilder<> IRB(Pos); 1772 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1773 return IRB.CreateIntToPtr(IRB.CreateMul(ShadowOffset, ShadowPtrMul), 1774 PrimitiveShadowPtrTy); 1775 } 1776 1777 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1778 Instruction *Pos) { 1779 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1780 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1781 } 1782 1783 // Generates IR to compute the union of the two given shadows, inserting it 1784 // before Pos. The combined value is with primitive type. 1785 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1786 if (DFS.isZeroShadow(V1)) 1787 return collapseToPrimitiveShadow(V2, Pos); 1788 if (DFS.isZeroShadow(V2)) 1789 return collapseToPrimitiveShadow(V1, Pos); 1790 if (V1 == V2) 1791 return collapseToPrimitiveShadow(V1, Pos); 1792 1793 auto V1Elems = ShadowElements.find(V1); 1794 auto V2Elems = ShadowElements.find(V2); 1795 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1796 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1797 V2Elems->second.begin(), V2Elems->second.end())) { 1798 return collapseToPrimitiveShadow(V1, Pos); 1799 } 1800 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1801 V1Elems->second.begin(), V1Elems->second.end())) { 1802 return collapseToPrimitiveShadow(V2, Pos); 1803 } 1804 } else if (V1Elems != ShadowElements.end()) { 1805 if (V1Elems->second.count(V2)) 1806 return collapseToPrimitiveShadow(V1, Pos); 1807 } else if (V2Elems != ShadowElements.end()) { 1808 if (V2Elems->second.count(V1)) 1809 return collapseToPrimitiveShadow(V2, Pos); 1810 } 1811 1812 auto Key = std::make_pair(V1, V2); 1813 if (V1 > V2) 1814 std::swap(Key.first, Key.second); 1815 CachedShadow &CCS = CachedShadows[Key]; 1816 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1817 return CCS.Shadow; 1818 1819 // Converts inputs shadows to shadows with primitive types. 1820 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1821 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1822 1823 IRBuilder<> IRB(Pos); 1824 if (ClFast16Labels) { 1825 CCS.Block = Pos->getParent(); 1826 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1827 } else if (AvoidNewBlocks) { 1828 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1829 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1830 Call->addParamAttr(0, Attribute::ZExt); 1831 Call->addParamAttr(1, Attribute::ZExt); 1832 1833 CCS.Block = Pos->getParent(); 1834 CCS.Shadow = Call; 1835 } else { 1836 BasicBlock *Head = Pos->getParent(); 1837 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1838 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1839 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1840 IRBuilder<> ThenIRB(BI); 1841 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1842 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1843 Call->addParamAttr(0, Attribute::ZExt); 1844 Call->addParamAttr(1, Attribute::ZExt); 1845 1846 BasicBlock *Tail = BI->getSuccessor(0); 1847 PHINode *Phi = 1848 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1849 Phi->addIncoming(Call, Call->getParent()); 1850 Phi->addIncoming(PV1, Head); 1851 1852 CCS.Block = Tail; 1853 CCS.Shadow = Phi; 1854 } 1855 1856 std::set<Value *> UnionElems; 1857 if (V1Elems != ShadowElements.end()) { 1858 UnionElems = V1Elems->second; 1859 } else { 1860 UnionElems.insert(V1); 1861 } 1862 if (V2Elems != ShadowElements.end()) { 1863 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1864 } else { 1865 UnionElems.insert(V2); 1866 } 1867 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1868 1869 return CCS.Shadow; 1870 } 1871 1872 // A convenience function which folds the shadows of each of the operands 1873 // of the provided instruction Inst, inserting the IR before Inst. Returns 1874 // the computed union Value. 1875 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1876 if (Inst->getNumOperands() == 0) 1877 return DFS.getZeroShadow(Inst); 1878 1879 Value *Shadow = getShadow(Inst->getOperand(0)); 1880 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1881 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1882 1883 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1884 } 1885 1886 void DFSanVisitor::visitInstOperands(Instruction &I) { 1887 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1888 DFSF.setShadow(&I, CombinedShadow); 1889 visitInstOperandOrigins(I); 1890 } 1891 1892 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1893 const std::vector<Value *> &Origins, 1894 Instruction *Pos, ConstantInt *Zero) { 1895 assert(Shadows.size() == Origins.size()); 1896 size_t Size = Origins.size(); 1897 if (Size == 0) 1898 return DFS.ZeroOrigin; 1899 Value *Origin = nullptr; 1900 if (!Zero) 1901 Zero = DFS.ZeroPrimitiveShadow; 1902 for (size_t I = 0; I != Size; ++I) { 1903 Value *OpOrigin = Origins[I]; 1904 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1905 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1906 continue; 1907 if (!Origin) { 1908 Origin = OpOrigin; 1909 continue; 1910 } 1911 Value *OpShadow = Shadows[I]; 1912 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1913 IRBuilder<> IRB(Pos); 1914 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1915 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1916 } 1917 return Origin ? Origin : DFS.ZeroOrigin; 1918 } 1919 1920 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1921 size_t Size = Inst->getNumOperands(); 1922 std::vector<Value *> Shadows(Size); 1923 std::vector<Value *> Origins(Size); 1924 for (unsigned I = 0; I != Size; ++I) { 1925 Shadows[I] = getShadow(Inst->getOperand(I)); 1926 Origins[I] = getOrigin(Inst->getOperand(I)); 1927 } 1928 return combineOrigins(Shadows, Origins, Inst); 1929 } 1930 1931 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1932 if (!DFSF.DFS.shouldTrackOrigins()) 1933 return; 1934 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1935 DFSF.setOrigin(&I, CombinedOrigin); 1936 } 1937 1938 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1939 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1940 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1941 } 1942 1943 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1944 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1945 return Align(std::max(MinOriginAlignment, Alignment)); 1946 } 1947 1948 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1949 Align InstAlignment) { 1950 assert(Size != 0); 1951 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1952 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1953 // load its origin aligned at 4. If not, although origins may be lost, it 1954 // should not happen very often. 1955 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1956 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1957 // * Otherwise we use __dfsan_load_label_and_origin. 1958 // This should ensure that common cases run efficiently. 1959 if (Size <= 2) 1960 return false; 1961 1962 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1963 if (Alignment >= MinOriginAlignment && 1964 Size % (64 / DFS.ShadowWidthBits) == 0) 1965 return false; 1966 1967 return true; 1968 } 1969 1970 std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast( 1971 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1972 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1973 // First OR all the WideShadows, then OR individual shadows within the 1974 // combined WideShadow. This is fewer instructions than ORing shadows 1975 // individually. 1976 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1977 std::vector<Value *> Shadows; 1978 std::vector<Value *> Origins; 1979 IRBuilder<> IRB(Pos); 1980 Value *WideAddr = 1981 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1982 Value *CombinedWideShadow = 1983 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1984 if (ShouldTrackOrigins) { 1985 Shadows.push_back(CombinedWideShadow); 1986 Origins.push_back(FirstOrigin); 1987 } 1988 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1989 Ofs += 64 / DFS.ShadowWidthBits) { 1990 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1991 ConstantInt::get(DFS.IntptrTy, 1)); 1992 Value *NextWideShadow = 1993 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1994 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1995 if (ShouldTrackOrigins) { 1996 Shadows.push_back(NextWideShadow); 1997 OriginAddr = IRB.CreateGEP(DFS.OriginTy, OriginAddr, 1998 ConstantInt::get(DFS.IntptrTy, 1)); 1999 Origins.push_back( 2000 IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign)); 2001 } 2002 } 2003 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 2004 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2005 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2006 } 2007 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2008 ShouldTrackOrigins 2009 ? combineOrigins(Shadows, Origins, Pos, 2010 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2011 : DFS.ZeroOrigin}; 2012 } 2013 2014 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size, 2015 Align ShadowAlign, 2016 Instruction *Pos) { 2017 // Fast path for the common case where each byte has identical shadow: load 2018 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 2019 // shadow is non-equal. 2020 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 2021 IRBuilder<> FallbackIRB(FallbackBB); 2022 CallInst *FallbackCall = FallbackIRB.CreateCall( 2023 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2024 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2025 2026 // Compare each of the shadows stored in the loaded 64 bits to each other, 2027 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 2028 IRBuilder<> IRB(Pos); 2029 Value *WideAddr = 2030 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 2031 Value *WideShadow = 2032 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 2033 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 2034 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 2035 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 2036 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 2037 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 2038 2039 BasicBlock *Head = Pos->getParent(); 2040 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 2041 2042 if (DomTreeNode *OldNode = DT.getNode(Head)) { 2043 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 2044 2045 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 2046 for (auto *Child : Children) 2047 DT.changeImmediateDominator(Child, NewNode); 2048 } 2049 2050 // In the following code LastBr will refer to the previous basic block's 2051 // conditional branch instruction, whose true successor is fixed up to point 2052 // to the next block during the loop below or to the tail after the final 2053 // iteration. 2054 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 2055 ReplaceInstWithInst(Head->getTerminator(), LastBr); 2056 DT.addNewBlock(FallbackBB, Head); 2057 2058 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 2059 Ofs += 64 / DFS.ShadowWidthBits) { 2060 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 2061 DT.addNewBlock(NextBB, LastBr->getParent()); 2062 IRBuilder<> NextIRB(NextBB); 2063 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 2064 ConstantInt::get(DFS.IntptrTy, 1)); 2065 Value *NextWideShadow = 2066 NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), WideAddr, ShadowAlign); 2067 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 2068 LastBr->setSuccessor(0, NextBB); 2069 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 2070 } 2071 2072 LastBr->setSuccessor(0, Tail); 2073 FallbackIRB.CreateBr(Tail); 2074 PHINode *Shadow = 2075 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 2076 Shadow->addIncoming(FallbackCall, FallbackBB); 2077 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 2078 return Shadow; 2079 } 2080 2081 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 2082 // Addr has alignment Align, and take the union of each of those shadows. The 2083 // returned shadow always has primitive type. 2084 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2085 uint64_t Size, 2086 Align InstAlignment, 2087 Instruction *Pos) { 2088 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2089 2090 // Non-escaped loads. 2091 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2092 const auto SI = AllocaShadowMap.find(AI); 2093 if (SI != AllocaShadowMap.end()) { 2094 IRBuilder<> IRB(Pos); 2095 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2096 const auto OI = AllocaOriginMap.find(AI); 2097 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2098 return {ShadowLI, ShouldTrackOrigins 2099 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2100 : nullptr}; 2101 } 2102 } 2103 2104 // Load from constant addresses. 2105 SmallVector<const Value *, 2> Objs; 2106 getUnderlyingObjects(Addr, Objs); 2107 bool AllConstants = true; 2108 for (const Value *Obj : Objs) { 2109 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2110 continue; 2111 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2112 continue; 2113 2114 AllConstants = false; 2115 break; 2116 } 2117 if (AllConstants) 2118 return {DFS.ZeroPrimitiveShadow, 2119 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2120 2121 if (Size == 0) 2122 return {DFS.ZeroPrimitiveShadow, 2123 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2124 2125 // Use callback to load if this is not an optimizable case for origin 2126 // tracking. 2127 if (ShouldTrackOrigins && 2128 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2129 IRBuilder<> IRB(Pos); 2130 CallInst *Call = 2131 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2132 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2133 ConstantInt::get(DFS.IntptrTy, Size)}); 2134 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2135 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2136 DFS.PrimitiveShadowTy), 2137 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2138 } 2139 2140 // Other cases that support loading shadows or origins in a fast way. 2141 Value *ShadowAddr, *OriginAddr; 2142 std::tie(ShadowAddr, OriginAddr) = 2143 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2144 2145 const Align ShadowAlign = getShadowAlign(InstAlignment); 2146 const Align OriginAlign = getOriginAlign(InstAlignment); 2147 Value *Origin = nullptr; 2148 if (ShouldTrackOrigins) { 2149 IRBuilder<> IRB(Pos); 2150 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2151 } 2152 2153 switch (Size) { 2154 case 1: { 2155 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2156 LI->setAlignment(ShadowAlign); 2157 return {LI, Origin}; 2158 } 2159 case 2: { 2160 IRBuilder<> IRB(Pos); 2161 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2162 ConstantInt::get(DFS.IntptrTy, 1)); 2163 Value *Load = 2164 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2165 Value *Load1 = 2166 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2167 return {combineShadows(Load, Load1, Pos), Origin}; 2168 } 2169 } 2170 2171 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) 2172 return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2173 OriginAlign, Origin, Pos); 2174 2175 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) 2176 return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin}; 2177 2178 IRBuilder<> IRB(Pos); 2179 FunctionCallee &UnionLoadFn = 2180 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 2181 CallInst *FallbackCall = IRB.CreateCall( 2182 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2183 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2184 return {FallbackCall, Origin}; 2185 } 2186 2187 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2188 switch (AO) { 2189 case AtomicOrdering::NotAtomic: 2190 return AtomicOrdering::NotAtomic; 2191 case AtomicOrdering::Unordered: 2192 case AtomicOrdering::Monotonic: 2193 case AtomicOrdering::Acquire: 2194 return AtomicOrdering::Acquire; 2195 case AtomicOrdering::Release: 2196 case AtomicOrdering::AcquireRelease: 2197 return AtomicOrdering::AcquireRelease; 2198 case AtomicOrdering::SequentiallyConsistent: 2199 return AtomicOrdering::SequentiallyConsistent; 2200 } 2201 llvm_unreachable("Unknown ordering"); 2202 } 2203 2204 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2205 auto &DL = LI.getModule()->getDataLayout(); 2206 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2207 if (Size == 0) { 2208 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2209 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2210 return; 2211 } 2212 2213 // When an application load is atomic, increase atomic ordering between 2214 // atomic application loads and stores to ensure happen-before order; load 2215 // shadow data after application data; store zero shadow data before 2216 // application data. This ensure shadow loads return either labels of the 2217 // initial application data or zeros. 2218 if (LI.isAtomic()) 2219 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2220 2221 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2222 std::vector<Value *> Shadows; 2223 std::vector<Value *> Origins; 2224 Value *PrimitiveShadow, *Origin; 2225 std::tie(PrimitiveShadow, Origin) = 2226 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2227 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2228 if (ShouldTrackOrigins) { 2229 Shadows.push_back(PrimitiveShadow); 2230 Origins.push_back(Origin); 2231 } 2232 if (ClCombinePointerLabelsOnLoad) { 2233 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2234 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2235 if (ShouldTrackOrigins) { 2236 Shadows.push_back(PtrShadow); 2237 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2238 } 2239 } 2240 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2241 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2242 2243 Value *Shadow = 2244 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2245 DFSF.setShadow(&LI, Shadow); 2246 2247 if (ShouldTrackOrigins) { 2248 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2249 } 2250 2251 if (ClEventCallbacks) { 2252 IRBuilder<> IRB(Pos); 2253 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2254 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2255 } 2256 } 2257 2258 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2259 if (!DFS.shouldTrackOrigins()) 2260 return V; 2261 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2262 } 2263 2264 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2265 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2266 const DataLayout &DL = F->getParent()->getDataLayout(); 2267 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2268 if (IntptrSize == OriginSize) 2269 return Origin; 2270 assert(IntptrSize == OriginSize * 2); 2271 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2272 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2273 } 2274 2275 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2276 Value *StoreOriginAddr, 2277 uint64_t StoreOriginSize, Align Alignment) { 2278 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2279 const DataLayout &DL = F->getParent()->getDataLayout(); 2280 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2281 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2282 assert(IntptrAlignment >= MinOriginAlignment); 2283 assert(IntptrSize >= OriginSize); 2284 2285 unsigned Ofs = 0; 2286 Align CurrentAlignment = Alignment; 2287 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2288 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2289 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2290 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2291 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2292 Value *Ptr = 2293 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2294 : IntptrStoreOriginPtr; 2295 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2296 Ofs += IntptrSize / OriginSize; 2297 CurrentAlignment = IntptrAlignment; 2298 } 2299 } 2300 2301 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2302 ++I) { 2303 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2304 : StoreOriginAddr; 2305 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2306 CurrentAlignment = MinOriginAlignment; 2307 } 2308 } 2309 2310 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2311 const Twine &Name) { 2312 Type *VTy = V->getType(); 2313 assert(VTy->isIntegerTy()); 2314 if (VTy->getIntegerBitWidth() == 1) 2315 // Just converting a bool to a bool, so do nothing. 2316 return V; 2317 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2318 } 2319 2320 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2321 Value *Shadow, Value *Origin, 2322 Value *StoreOriginAddr, Align InstAlignment) { 2323 // Do not write origins for zero shadows because we do not trace origins for 2324 // untainted sinks. 2325 const Align OriginAlignment = getOriginAlign(InstAlignment); 2326 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2327 IRBuilder<> IRB(Pos); 2328 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2329 if (!ConstantShadow->isZeroValue()) 2330 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2331 OriginAlignment); 2332 return; 2333 } 2334 2335 if (shouldInstrumentWithCall()) { 2336 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2337 {CollapsedShadow, 2338 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2339 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2340 } else { 2341 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2342 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2343 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2344 IRBuilder<> IRBNew(CheckTerm); 2345 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2346 OriginAlignment); 2347 ++NumOriginStores; 2348 } 2349 } 2350 2351 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2352 Align ShadowAlign, 2353 Instruction *Pos) { 2354 IRBuilder<> IRB(Pos); 2355 IntegerType *ShadowTy = 2356 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2357 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2358 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2359 Value *ExtShadowAddr = 2360 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2361 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2362 // Do not write origins for 0 shadows because we do not trace origins for 2363 // untainted sinks. 2364 } 2365 2366 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2367 Align InstAlignment, 2368 Value *PrimitiveShadow, 2369 Value *Origin, 2370 Instruction *Pos) { 2371 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2372 2373 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2374 const auto SI = AllocaShadowMap.find(AI); 2375 if (SI != AllocaShadowMap.end()) { 2376 IRBuilder<> IRB(Pos); 2377 IRB.CreateStore(PrimitiveShadow, SI->second); 2378 2379 // Do not write origins for 0 shadows because we do not trace origins for 2380 // untainted sinks. 2381 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2382 const auto OI = AllocaOriginMap.find(AI); 2383 assert(OI != AllocaOriginMap.end() && Origin); 2384 IRB.CreateStore(Origin, OI->second); 2385 } 2386 return; 2387 } 2388 } 2389 2390 const Align ShadowAlign = getShadowAlign(InstAlignment); 2391 if (DFS.isZeroShadow(PrimitiveShadow)) { 2392 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2393 return; 2394 } 2395 2396 IRBuilder<> IRB(Pos); 2397 Value *ShadowAddr, *OriginAddr; 2398 std::tie(ShadowAddr, OriginAddr) = 2399 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2400 2401 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 2402 uint64_t Offset = 0; 2403 uint64_t LeftSize = Size; 2404 if (LeftSize >= ShadowVecSize) { 2405 auto *ShadowVecTy = 2406 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2407 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2408 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2409 ShadowVec = IRB.CreateInsertElement( 2410 ShadowVec, PrimitiveShadow, 2411 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2412 } 2413 Value *ShadowVecAddr = 2414 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2415 do { 2416 Value *CurShadowVecAddr = 2417 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2418 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2419 LeftSize -= ShadowVecSize; 2420 ++Offset; 2421 } while (LeftSize >= ShadowVecSize); 2422 Offset *= ShadowVecSize; 2423 } 2424 while (LeftSize > 0) { 2425 Value *CurShadowAddr = 2426 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2427 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2428 --LeftSize; 2429 ++Offset; 2430 } 2431 2432 if (ShouldTrackOrigins) { 2433 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2434 InstAlignment); 2435 } 2436 } 2437 2438 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2439 switch (AO) { 2440 case AtomicOrdering::NotAtomic: 2441 return AtomicOrdering::NotAtomic; 2442 case AtomicOrdering::Unordered: 2443 case AtomicOrdering::Monotonic: 2444 case AtomicOrdering::Release: 2445 return AtomicOrdering::Release; 2446 case AtomicOrdering::Acquire: 2447 case AtomicOrdering::AcquireRelease: 2448 return AtomicOrdering::AcquireRelease; 2449 case AtomicOrdering::SequentiallyConsistent: 2450 return AtomicOrdering::SequentiallyConsistent; 2451 } 2452 llvm_unreachable("Unknown ordering"); 2453 } 2454 2455 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2456 auto &DL = SI.getModule()->getDataLayout(); 2457 Value *Val = SI.getValueOperand(); 2458 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2459 if (Size == 0) 2460 return; 2461 2462 // When an application store is atomic, increase atomic ordering between 2463 // atomic application loads and stores to ensure happen-before order; load 2464 // shadow data after application data; store zero shadow data before 2465 // application data. This ensure shadow loads return either labels of the 2466 // initial application data or zeros. 2467 if (SI.isAtomic()) 2468 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2469 2470 const bool ShouldTrackOrigins = 2471 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2472 std::vector<Value *> Shadows; 2473 std::vector<Value *> Origins; 2474 2475 Value *Shadow = 2476 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2477 2478 if (ShouldTrackOrigins) { 2479 Shadows.push_back(Shadow); 2480 Origins.push_back(DFSF.getOrigin(Val)); 2481 } 2482 2483 Value *PrimitiveShadow; 2484 if (ClCombinePointerLabelsOnStore) { 2485 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2486 if (ShouldTrackOrigins) { 2487 Shadows.push_back(PtrShadow); 2488 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2489 } 2490 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2491 } else { 2492 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2493 } 2494 Value *Origin = nullptr; 2495 if (ShouldTrackOrigins) { 2496 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2497 } 2498 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2499 PrimitiveShadow, Origin, &SI); 2500 if (ClEventCallbacks) { 2501 IRBuilder<> IRB(&SI); 2502 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2503 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2504 } 2505 } 2506 2507 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2508 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2509 2510 Value *Val = I.getOperand(1); 2511 const auto &DL = I.getModule()->getDataLayout(); 2512 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2513 if (Size == 0) 2514 return; 2515 2516 // Conservatively set data at stored addresses and return with zero shadow to 2517 // prevent shadow data races. 2518 IRBuilder<> IRB(&I); 2519 Value *Addr = I.getOperand(0); 2520 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2521 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2522 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2523 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2524 } 2525 2526 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2527 visitCASOrRMW(I.getAlign(), I); 2528 // TODO: The ordering change follows MSan. It is possible not to change 2529 // ordering because we always set and use 0 shadows. 2530 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2531 } 2532 2533 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2534 visitCASOrRMW(I.getAlign(), I); 2535 // TODO: The ordering change follows MSan. It is possible not to change 2536 // ordering because we always set and use 0 shadows. 2537 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2538 } 2539 2540 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2541 visitInstOperands(UO); 2542 } 2543 2544 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2545 visitInstOperands(BO); 2546 } 2547 2548 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2549 2550 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2551 visitInstOperands(CI); 2552 if (ClEventCallbacks) { 2553 IRBuilder<> IRB(&CI); 2554 Value *CombinedShadow = DFSF.getShadow(&CI); 2555 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2556 } 2557 } 2558 2559 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2560 visitInstOperands(GEPI); 2561 } 2562 2563 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2564 visitInstOperands(I); 2565 } 2566 2567 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2568 visitInstOperands(I); 2569 } 2570 2571 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2572 visitInstOperands(I); 2573 } 2574 2575 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2576 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2577 visitInstOperands(I); 2578 return; 2579 } 2580 2581 IRBuilder<> IRB(&I); 2582 Value *Agg = I.getAggregateOperand(); 2583 Value *AggShadow = DFSF.getShadow(Agg); 2584 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2585 DFSF.setShadow(&I, ResShadow); 2586 visitInstOperandOrigins(I); 2587 } 2588 2589 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2590 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2591 visitInstOperands(I); 2592 return; 2593 } 2594 2595 IRBuilder<> IRB(&I); 2596 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2597 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2598 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2599 DFSF.setShadow(&I, Res); 2600 visitInstOperandOrigins(I); 2601 } 2602 2603 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2604 bool AllLoadsStores = true; 2605 for (User *U : I.users()) { 2606 if (isa<LoadInst>(U)) 2607 continue; 2608 2609 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2610 if (SI->getPointerOperand() == &I) 2611 continue; 2612 } 2613 2614 AllLoadsStores = false; 2615 break; 2616 } 2617 if (AllLoadsStores) { 2618 IRBuilder<> IRB(&I); 2619 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2620 if (DFSF.DFS.shouldTrackOrigins()) { 2621 DFSF.AllocaOriginMap[&I] = 2622 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2623 } 2624 } 2625 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2626 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2627 } 2628 2629 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2630 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2631 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2632 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2633 Value *ShadowSel = nullptr; 2634 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2635 std::vector<Value *> Shadows; 2636 std::vector<Value *> Origins; 2637 Value *TrueOrigin = 2638 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2639 Value *FalseOrigin = 2640 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2641 2642 if (isa<VectorType>(I.getCondition()->getType())) { 2643 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2644 FalseShadow, &I); 2645 if (ShouldTrackOrigins) { 2646 Shadows.push_back(TrueShadow); 2647 Shadows.push_back(FalseShadow); 2648 Origins.push_back(TrueOrigin); 2649 Origins.push_back(FalseOrigin); 2650 } 2651 } else { 2652 if (TrueShadow == FalseShadow) { 2653 ShadowSel = TrueShadow; 2654 if (ShouldTrackOrigins) { 2655 Shadows.push_back(TrueShadow); 2656 Origins.push_back(TrueOrigin); 2657 } 2658 } else { 2659 ShadowSel = 2660 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2661 if (ShouldTrackOrigins) { 2662 Shadows.push_back(ShadowSel); 2663 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2664 FalseOrigin, "", &I)); 2665 } 2666 } 2667 } 2668 DFSF.setShadow(&I, ClTrackSelectControlFlow 2669 ? DFSF.combineShadowsThenConvert( 2670 I.getType(), CondShadow, ShadowSel, &I) 2671 : ShadowSel); 2672 if (ShouldTrackOrigins) { 2673 if (ClTrackSelectControlFlow) { 2674 Shadows.push_back(CondShadow); 2675 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2676 } 2677 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2678 } 2679 } 2680 2681 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2682 IRBuilder<> IRB(&I); 2683 Value *ValShadow = DFSF.getShadow(I.getValue()); 2684 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2685 ? DFSF.getOrigin(I.getValue()) 2686 : DFSF.DFS.ZeroOrigin; 2687 IRB.CreateCall( 2688 DFSF.DFS.DFSanSetLabelFn, 2689 {ValShadow, ValOrigin, 2690 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2691 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2692 } 2693 2694 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2695 IRBuilder<> IRB(&I); 2696 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2697 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2698 Value *LenShadow = 2699 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2700 DFSF.DFS.ShadowWidthBytes)); 2701 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2702 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2703 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2704 auto *MTI = cast<MemTransferInst>( 2705 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2706 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2707 if (ClPreserveAlignment) { 2708 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2709 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2710 } else { 2711 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2712 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2713 } 2714 if (ClEventCallbacks) { 2715 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2716 {RawDestShadow, I.getLength()}); 2717 } 2718 } 2719 2720 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2721 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2722 switch (DFSF.IA) { 2723 case DataFlowSanitizer::IA_TLS: { 2724 Value *S = DFSF.getShadow(RI.getReturnValue()); 2725 IRBuilder<> IRB(&RI); 2726 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2727 unsigned Size = 2728 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2729 if (Size <= RetvalTLSSize) { 2730 // If the size overflows, stores nothing. At callsite, oversized return 2731 // shadows are set to zero. 2732 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2733 ShadowTLSAlignment); 2734 } 2735 if (DFSF.DFS.shouldTrackOrigins()) { 2736 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2737 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2738 } 2739 break; 2740 } 2741 case DataFlowSanitizer::IA_Args: { 2742 IRBuilder<> IRB(&RI); 2743 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2744 Value *InsVal = 2745 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2746 Value *InsShadow = 2747 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2748 RI.setOperand(0, InsShadow); 2749 break; 2750 } 2751 } 2752 } 2753 } 2754 2755 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2756 std::vector<Value *> &Args, 2757 IRBuilder<> &IRB) { 2758 FunctionType *FT = F.getFunctionType(); 2759 2760 auto *I = CB.arg_begin(); 2761 2762 // Adds non-variable argument shadows. 2763 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2764 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2765 2766 // Adds variable argument shadows. 2767 if (FT->isVarArg()) { 2768 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2769 CB.arg_size() - FT->getNumParams()); 2770 auto *LabelVAAlloca = 2771 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2772 "labelva", &DFSF.F->getEntryBlock().front()); 2773 2774 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2775 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2776 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2777 LabelVAPtr); 2778 } 2779 2780 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2781 } 2782 2783 // Adds the return value shadow. 2784 if (!FT->getReturnType()->isVoidTy()) { 2785 if (!DFSF.LabelReturnAlloca) { 2786 DFSF.LabelReturnAlloca = new AllocaInst( 2787 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2788 "labelreturn", &DFSF.F->getEntryBlock().front()); 2789 } 2790 Args.push_back(DFSF.LabelReturnAlloca); 2791 } 2792 } 2793 2794 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2795 std::vector<Value *> &Args, 2796 IRBuilder<> &IRB) { 2797 FunctionType *FT = F.getFunctionType(); 2798 2799 auto *I = CB.arg_begin(); 2800 2801 // Add non-variable argument origins. 2802 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2803 Args.push_back(DFSF.getOrigin(*I)); 2804 2805 // Add variable argument origins. 2806 if (FT->isVarArg()) { 2807 auto *OriginVATy = 2808 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2809 auto *OriginVAAlloca = 2810 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2811 "originva", &DFSF.F->getEntryBlock().front()); 2812 2813 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2814 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2815 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2816 } 2817 2818 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2819 } 2820 2821 // Add the return value origin. 2822 if (!FT->getReturnType()->isVoidTy()) { 2823 if (!DFSF.OriginReturnAlloca) { 2824 DFSF.OriginReturnAlloca = new AllocaInst( 2825 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2826 "originreturn", &DFSF.F->getEntryBlock().front()); 2827 } 2828 Args.push_back(DFSF.OriginReturnAlloca); 2829 } 2830 } 2831 2832 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2833 IRBuilder<> IRB(&CB); 2834 switch (DFSF.DFS.getWrapperKind(&F)) { 2835 case DataFlowSanitizer::WK_Warning: 2836 CB.setCalledFunction(&F); 2837 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2838 IRB.CreateGlobalStringPtr(F.getName())); 2839 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2840 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2841 return true; 2842 case DataFlowSanitizer::WK_Discard: 2843 CB.setCalledFunction(&F); 2844 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2845 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2846 return true; 2847 case DataFlowSanitizer::WK_Functional: 2848 CB.setCalledFunction(&F); 2849 visitInstOperands(CB); 2850 return true; 2851 case DataFlowSanitizer::WK_Custom: 2852 // Don't try to handle invokes of custom functions, it's too complicated. 2853 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2854 // wrapper. 2855 CallInst *CI = dyn_cast<CallInst>(&CB); 2856 if (!CI) 2857 return false; 2858 2859 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2860 FunctionType *FT = F.getFunctionType(); 2861 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2862 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2863 CustomFName += F.getName(); 2864 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2865 CustomFName, CustomFn.TransformedType); 2866 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2867 CustomFn->copyAttributesFrom(&F); 2868 2869 // Custom functions returning non-void will write to the return label. 2870 if (!FT->getReturnType()->isVoidTy()) { 2871 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2872 DFSF.DFS.ReadOnlyNoneAttrs); 2873 } 2874 } 2875 2876 std::vector<Value *> Args; 2877 2878 // Adds non-variable arguments. 2879 auto *I = CB.arg_begin(); 2880 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2881 Type *T = (*I)->getType(); 2882 FunctionType *ParamFT; 2883 if (isa<PointerType>(T) && 2884 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2885 std::string TName = "dfst"; 2886 TName += utostr(FT->getNumParams() - N); 2887 TName += "$"; 2888 TName += F.getName(); 2889 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2890 Args.push_back(T); 2891 Args.push_back( 2892 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2893 } else { 2894 Args.push_back(*I); 2895 } 2896 } 2897 2898 // Adds shadow arguments. 2899 const unsigned ShadowArgStart = Args.size(); 2900 addShadowArguments(F, CB, Args, IRB); 2901 2902 // Adds origin arguments. 2903 const unsigned OriginArgStart = Args.size(); 2904 if (ShouldTrackOrigins) 2905 addOriginArguments(F, CB, Args, IRB); 2906 2907 // Adds variable arguments. 2908 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2909 2910 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2911 CustomCI->setCallingConv(CI->getCallingConv()); 2912 CustomCI->setAttributes(transformFunctionAttributes( 2913 CustomFn, CI->getContext(), CI->getAttributes())); 2914 2915 // Update the parameter attributes of the custom call instruction to 2916 // zero extend the shadow parameters. This is required for targets 2917 // which consider PrimitiveShadowTy an illegal type. 2918 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2919 const unsigned ArgNo = ShadowArgStart + N; 2920 if (CustomCI->getArgOperand(ArgNo)->getType() == 2921 DFSF.DFS.PrimitiveShadowTy) 2922 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2923 if (ShouldTrackOrigins) { 2924 const unsigned OriginArgNo = OriginArgStart + N; 2925 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2926 DFSF.DFS.OriginTy) 2927 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2928 } 2929 } 2930 2931 // Loads the return value shadow and origin. 2932 if (!FT->getReturnType()->isVoidTy()) { 2933 LoadInst *LabelLoad = 2934 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2935 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2936 FT->getReturnType(), LabelLoad, &CB)); 2937 if (ShouldTrackOrigins) { 2938 LoadInst *OriginLoad = 2939 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2940 DFSF.setOrigin(CustomCI, OriginLoad); 2941 } 2942 } 2943 2944 CI->replaceAllUsesWith(CustomCI); 2945 CI->eraseFromParent(); 2946 return true; 2947 } 2948 return false; 2949 } 2950 2951 void DFSanVisitor::visitCallBase(CallBase &CB) { 2952 Function *F = CB.getCalledFunction(); 2953 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2954 visitInstOperands(CB); 2955 return; 2956 } 2957 2958 // Calls to this function are synthesized in wrappers, and we shouldn't 2959 // instrument them. 2960 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2961 return; 2962 2963 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2964 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2965 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2966 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2967 return; 2968 2969 IRBuilder<> IRB(&CB); 2970 2971 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2972 FunctionType *FT = CB.getFunctionType(); 2973 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2974 // Stores argument shadows. 2975 unsigned ArgOffset = 0; 2976 const DataLayout &DL = getDataLayout(); 2977 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2978 if (ShouldTrackOrigins) { 2979 // Ignore overflowed origins 2980 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2981 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2982 !DFSF.DFS.isZeroShadow(ArgShadow)) 2983 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2984 DFSF.getArgOriginTLS(I, IRB)); 2985 } 2986 2987 unsigned Size = 2988 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2989 // Stop storing if arguments' size overflows. Inside a function, arguments 2990 // after overflow have zero shadow values. 2991 if (ArgOffset + Size > ArgTLSSize) 2992 break; 2993 IRB.CreateAlignedStore( 2994 DFSF.getShadow(CB.getArgOperand(I)), 2995 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2996 ShadowTLSAlignment); 2997 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2998 } 2999 } 3000 3001 Instruction *Next = nullptr; 3002 if (!CB.getType()->isVoidTy()) { 3003 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3004 if (II->getNormalDest()->getSinglePredecessor()) { 3005 Next = &II->getNormalDest()->front(); 3006 } else { 3007 BasicBlock *NewBB = 3008 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3009 Next = &NewBB->front(); 3010 } 3011 } else { 3012 assert(CB.getIterator() != CB.getParent()->end()); 3013 Next = CB.getNextNode(); 3014 } 3015 3016 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3017 // Loads the return value shadow. 3018 IRBuilder<> NextIRB(Next); 3019 const DataLayout &DL = getDataLayout(); 3020 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3021 if (Size > RetvalTLSSize) { 3022 // Set overflowed return shadow to be zero. 3023 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3024 } else { 3025 LoadInst *LI = NextIRB.CreateAlignedLoad( 3026 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3027 ShadowTLSAlignment, "_dfsret"); 3028 DFSF.SkipInsts.insert(LI); 3029 DFSF.setShadow(&CB, LI); 3030 DFSF.NonZeroChecks.push_back(LI); 3031 } 3032 3033 if (ShouldTrackOrigins) { 3034 LoadInst *LI = NextIRB.CreateLoad( 3035 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3036 DFSF.SkipInsts.insert(LI); 3037 DFSF.setOrigin(&CB, LI); 3038 } 3039 } 3040 } 3041 3042 // Do all instrumentation for IA_Args down here to defer tampering with the 3043 // CFG in a way that SplitEdge may be able to detect. 3044 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3045 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3046 Value *Func = 3047 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3048 3049 const unsigned NumParams = FT->getNumParams(); 3050 3051 // Copy original arguments. 3052 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3053 std::vector<Value *> Args(NumParams); 3054 std::copy_n(ArgIt, NumParams, Args.begin()); 3055 3056 // Add shadow arguments by transforming original arguments. 3057 std::generate_n(std::back_inserter(Args), NumParams, 3058 [&]() { return DFSF.getShadow(*ArgIt++); }); 3059 3060 if (FT->isVarArg()) { 3061 unsigned VarArgSize = CB.arg_size() - NumParams; 3062 ArrayType *VarArgArrayTy = 3063 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3064 AllocaInst *VarArgShadow = 3065 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3066 "", &DFSF.F->getEntryBlock().front()); 3067 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3068 3069 // Copy remaining var args. 3070 unsigned GepIndex = 0; 3071 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3072 IRB.CreateStore( 3073 DFSF.getShadow(Arg), 3074 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3075 Args.push_back(Arg); 3076 }); 3077 } 3078 3079 CallBase *NewCB; 3080 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3081 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3082 II->getUnwindDest(), Args); 3083 } else { 3084 NewCB = IRB.CreateCall(NewFT, Func, Args); 3085 } 3086 NewCB->setCallingConv(CB.getCallingConv()); 3087 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3088 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3089 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3090 3091 if (Next) { 3092 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3093 DFSF.SkipInsts.insert(ExVal); 3094 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3095 DFSF.SkipInsts.insert(ExShadow); 3096 DFSF.setShadow(ExVal, ExShadow); 3097 DFSF.NonZeroChecks.push_back(ExShadow); 3098 3099 CB.replaceAllUsesWith(ExVal); 3100 } 3101 3102 CB.eraseFromParent(); 3103 } 3104 } 3105 3106 void DFSanVisitor::visitPHINode(PHINode &PN) { 3107 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3108 PHINode *ShadowPN = 3109 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3110 3111 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3112 Value *UndefShadow = UndefValue::get(ShadowTy); 3113 for (BasicBlock *BB : PN.blocks()) 3114 ShadowPN->addIncoming(UndefShadow, BB); 3115 3116 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 3117 DFSF.setShadow(&PN, ShadowPN); 3118 } 3119 3120 namespace { 3121 class DataFlowSanitizerLegacyPass : public ModulePass { 3122 private: 3123 std::vector<std::string> ABIListFiles; 3124 3125 public: 3126 static char ID; 3127 3128 DataFlowSanitizerLegacyPass( 3129 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3130 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3131 3132 bool runOnModule(Module &M) override { 3133 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3134 } 3135 }; 3136 } // namespace 3137 3138 char DataFlowSanitizerLegacyPass::ID; 3139 3140 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3141 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3142 3143 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3144 const std::vector<std::string> &ABIListFiles) { 3145 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3146 } 3147 3148 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3149 ModuleAnalysisManager &AM) { 3150 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3151 return PreservedAnalyses::none(); 3152 } 3153 return PreservedAnalyses::all(); 3154 } 3155